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Preface

This volume contains a selection of the papers presented at LOPSTR 2021, the 31st
International Symposium on Logic-Based Program Synthesis and Transformation held
during September 7–8, 2021, as a hybrid (blended) meeting, both in-person (at the
Teachers’ House in Tallinn, Estonia) and virtually, and co-located with PPDP 2021, the
23rd International Symposium on Principles and Practice of Declarative Programming.

Previous LOPSTR symposia were held in Bologna (2020 as a virtual meeting), Porto
(2019), Frankfurt am Main (2018), Namur (2017), Edinburgh (2016), Siena (2015),
Canterbury (2014), Madrid (2013 and 2002), Leuven (2012 and 1997), Odense (2011),
Hagenberg (2010), Coimbra (2009), Valencia (2008), Lyngby (2007), Venice (2006
and 1999), London (2005 and 2000), Verona (2004), Uppsala (2003), Paphos (2001),
Manchester (1998, 1992, and 1991), Stockholm (1996), Arnhem (1995), Pisa (1994),
and Louvain-la-Neuve (1993). More information about the symposium can be found at:
http://saks.iasi.cnr.it/lopstr21/.

The aim of the LOPSTR series is to stimulate and promote international research and
collaboration on logic-based program development. LOPSTR is open to contributions
in logic-based program development in any language paradigm. Topics of interest cover
all aspects of logic-based program development, all stages of the software life cycle,
and issues of both programming-in-the-small and programming-in-the-large, including
synthesis; transformation; specialization; composition; optimisation; inversion; specifi-
cation; analysis and verification; testing and certification; program and model manipu-
lation; machine learning for program development; verification and testing of machine
learning systems; transformational techniques in software engineering; and applications
and tools. LOPSTR has a reputation for being a lively, friendly forum for presenting and
discussing work in progress. Formal proceedings are produced after the symposium so
that authors can incorporate this feedback in the published papers.

In response to the call for papers, 16 contributions were submitted from authors in 10
different countries. One of the submissionswaswithdrawn by the authors, and each of the
remaining submissions was reviewed by three Program Committee members or external
referees. The Program Committee accepted one full paper for immediate inclusion in
the formal proceedings; nine more submissions were selected for presentation at the
symposium. In addition, the symposium program included the joint PPDP-LOPSTR
invited talks by Harald Søndergaard (University of Melbourne, Australia) and Stephen
Wolfram (WolframResearch,UK).After the symposium, the authors of the contributions
accepted for presentation were invited to revise and extend their submissions. Then,
after another round of reviewing, the Program Committee accepted seven more full
papers for inclusion in the formal proceedings. In addition to the eight accepted papers,
this volume includes the paper contributed by the invited speaker Harald Søndergaard:
“String abstract domains and their combination”.

Thanks to Springer’s sponsorship, LOPSTR 2021 featured a best paper award.
The Program Committee assigned the award to “Disjunctive Delimited Control” by
Alexander Vandenbroucke and Tom Schrijvers.

http://saks.iasi.cnr.it/lopstr21/
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We want to thank the Program Committee members, who worked diligently to pro-
duce high-quality reviews for the submitted papers, as well as all the external reviewers
involved in the paper selection. We are very grateful to the Local Organization Com-
mittee, chaired by Niccolò Veltri, for the great job they did in managing the hybrid
in-person and virtual event. We are grateful to EasyChair for providing support to deal
with the submission and reviewing process. Special thanks go to all the authors who
submitted their papers to LOPSTR 2021, without whom the symposium would have not
be possible. Emanuele De Angelis is member of the INdAM Research group GNCS.
Wim Vanhoof is a member of the Namur Digital Institute (NADI).

February 2022 Emanuele De Angelis
Wim Vanhoof
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String Abstract Domains and Their
Combination

Harald Søndergaard(B)

School of Computing and Information Systems, The University of Melbourne,
Melbourne, VIC 3010, Australia

harald@unimelb.edu.au

Abstract. We survey recent developments in string static analysis, with
an emphasis on how string abstract domains can be combined. The paper
has formed the basis for an invited presentation given to LOPSTR 2021
and PPDP 2021.

1 Introduction

String manipulating programs are challenging for static analysis. The primary
problem in static analysis, of finding a good balance between precision and effi-
ciency, is particularly unwieldy for string analysis. For static reasoning about
strings, many facets are of potential relevance, such as string length, shape, and
the set of characters found in a string. Hence abstract interpretations of string
manipulating programs tend to either employ an expressive but overly expensive
abstract domain, or else combine a number of cheaper domains, each designed
to capture a specific aspect of strings.

Much of the interest in the analysis of string manipulation is due to the
fact that web programming and the scripting languages that are supported
by web browsers make heavy use of strings. In the absence of static typing,
strings, because of their flexibility, often end up being used as a kind of uni-
versal data structure. Moreover, scripting languages usually determine object
attributes dynamically, treating an object as a lookup table that can associate
any sort of information with an attribute, that is, with a string. And attributes
may themselves be constructed dynamically. All this contributes to making the
construction of robust, secure programs difficult. Hence much research on string
analysis comes from communities that work with languages such as JavaScript,
PHP and Python. The dynamic nature of these languages calls for combinations
of non-trivial static and dynamic analysis, a continuing challenge.

This survey focuses on abstract interpretation. Much of it is based on Ama-
dini et al. [2,3], from whom we take the concept of a “reference” abstract domain.
We provide a Cook’s Tour of string abstract domains, discuss how to combine
domains, and show how reference domains can help domain combination, in
theory and in practice.

c© Springer Nature Switzerland AG 2022
E. De Angelis and W. Vanhoof (Eds.): LOPSTR 2021, LNCS 13290, pp. 1–15, 2022.
https://doi.org/10.1007/978-3-030-98869-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98869-2_1&domain=pdf
https://doi.org/10.1007/978-3-030-98869-2_1


2 H. Søndergaard

2 Preliminaries

We start by summarising the main mathematical concepts underpinning abstract
interpretation. Readers familiar with abstract interpretation and finite-state
automata can skip this section.

A poset is a set, equipped with a partial order. A binary relation �, defined
on a set D, is a partial order iff it is reflexive, transitive and antisymmetric. Two
elements x, y ∈ D are comparable iff x � y or y � x. A poset D is a chain iff, for
each pair x, y ∈ D, x and y are comparable.

An element x ∈ D is an upper bound for set D′ ⊆ D iff x′ �x for all x′ ∈ D′.
Dually we may define a lower bound for D′. An upper bound x for D′ is the
least upper bound for D′ iff, for every upper bound x′ for D′, x � x′. We denote
it (when it exists) by

⊔
D′. Dually we may define the greatest lower bound and

denote it by
�

D′. We write x � y for
⊔{x, y} and x � y for

�{x, y}.
Let 〈D,�〉 and 〈D′,≤〉 be posets. A function f : D → D′ is isotone iff

∀x, y ∈ D : x � y ⇒ f(x) ≤ f(y). A function f : D → D is idempotent iff
∀x ∈ D : f(f(x)) = f(x). Function f is reductive iff ∀x ∈ D : f(x) � x; it is
extensive iff ∀x ∈ D : x � f(x). A function which is isotone and idempotent is a
closure operator. If it is also reductive, it is called a lower closure operator (lco).
If it is extensive, it is called an upper closure operator (uco).

A poset 〈D,�〉 is a lattice iff every finite subset X ⊆ D has a least upper
bound and a greatest lower bound—written

⊔
X and

�
X, respectively. The

lattice is complete iff the condition applies to every subset, finite or not. It is
bounded iff it has a unique least element (often written ⊥) and a unique greatest
element (often written �). We write the bounded lattice D as 〈D,�,⊥,�,�,�〉.
A complete lattice is necessarily bounded.

Abstract interpretation is a declarative approach to static program analysis.
An analysis is almost completely described by its associated abstract domain: the
set A of abstractions of computation states used by the analysis. The abstract
domain is usually a bounded lattice 〈A,�,⊥,�,�,�〉. In our case, an element
of A will be a string property. Strings are constructed from some unspecified
alphabet Σ. Hence each element (or abstract string) ŝ ∈ A denotes a set
of concrete strings γ(ŝ) ∈ P(Σ∗) via a concretization function γ such that
ŝ � ŝ′ iff γ(ŝ) ⊆ γ(ŝ′). Often γ has an adjoined function α : P(Σ∗) → S, the
abstraction function, that is, we have a Galois connection: α(S) � ŝ iff S ⊆ γ(ŝ).
In this case both α and γ are necessarily isotone, α ◦ γ is an lco, and γ ◦ α is a
uco. Moreover, every concrete operation f : P(Σ∗)k → P(Σ∗) has a unique best
counterpart on S, namely λ(ŝ1, . . . , ŝk) . (α ◦ f)(γ(ŝ1), . . . , γ(ŝk)). Hence we can
essentially identify a program analysis with the abstract domain it uses.

We use standard notation and terminology for automata [24]. A deterministic
finite automaton (DFA) R with alphabet Σ is a quintuple 〈Q,Σ, δ, q0, F 〉, where
Q is the (non-empty) set of states, q0 ∈ Q is the start state, F ⊆ Q is the set
of accept states, and δ : (Q × Σ) → Q is the transition function. The language
recognised by R is written L(R). We use LR(q) to denote the language recognised
by 〈Q,Σ, δ, q, F 〉, that is, by a DFA identical to R, except q is considered the
start state. We let δ∗ : (Q × Σ∗) → Q be the generalised transition function
defined by
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δ∗(q, ε) = q
δ∗(q, x w) = δ∗(δ(q, x), w)

Let q → q′ stand for ∃x ∈ Σ(δ(q, x) = q′). The DFA 〈Q,Σ, δ, q0, F 〉 is trim iff δ
is a partial deterministic function on Q × Σ, and for all q ∈ Q\{q0}, there is a
q′ ∈ F such that q0 →+ q ∧ q →∗ q′.

3 String Abstract Domains

A string abstract domain approximates concrete domain 〈P(Σ∗),⊆, ∅, Σ∗,∩,∪〉.
Figure 1 shows Hasse diagrams for some example string domains. We discuss
them in Sect. 3.2, but first we look at some simple but general string domains.

3.1 Programming Language Agnostic String Abstract Domains

Exactly which strings a variable may be bound to at a given program point is
an undecidable problem. For a simple program such as

x = "foo"
if (*)

x = "zoo"

it is easy to tell that x, upon exit, will take its value from the set {foo, zoo}.
But in general we have to resort to finite descriptions of (possibly infinite) string
sets, and reason with those. For example, we may approximate a set of strings
by the characters they use. Then

αchars({foo, zoo}) = {f, o, z}
γchars({f, o, z}) = {w ∈ Σ∗ | chars(w) ⊆ {f, o, z}}

Abstraction usually over-approximates; our description {f, o, z} may have been
intended to describe {foo, zoo}, but is applies to an infinity of other strings,
such as zoffo.

Domain γ({foo, zoo})
CI [{o}, {f, o, z}]
SS2 {foo, zoo}
SL [3, 3]
PS 〈ε, oo〉

Let us list some examples of string domains.
CI = {⊥CI} ∪ {[L,U ] | L,U ∈ P(Σ), L ⊆ U}
is the Character Inclusion domain. It provides
pairs of character sets, the first of which hold
characters that must be in any string described,
the second characters that may be there. An
example is given in the table on the right.

The String Set domain SSk provides string sets up to cardinality k, rep-
resenting all larger sets as �. The String Length domain SL provides pairs
[lo, hi ] of natural numbers that give lower and upper bounds on the length
of strings described, again exemplified in the table. Let us describe the Pre-
fix/Suffix domain PS in some formal detail (for more detailed definitions of the
other domains, see for example [3]).
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PS = {⊥PS}∪(Σ∗ ×Σ∗). The meaning of an element of form 〈p, s〉 is the set
of strings that have p as prefix and s as (possibly overlapping) suffix. Formally,

γ(⊥PS) = ∅
γ(〈p, s〉) = {p · w | w ∈ Σ∗} ∩ {w · s | w ∈ Σ∗}

The largest element �PS = 〈ε, ε〉 where ε is the empty string. �, � and �
are defined in terms of longest common prefix/suffix operations. Let lcp(S)
and lcs(S) be the longest common prefix (respectively, suffix) of a string
set S. Then 〈p, s〉 �PS 〈p′, s′〉 iff lcp({p, p′}) = p′ ∧ lcs({s, s′}) = s′, and
〈p, s〉 �PS 〈p′, s′〉 = 〈lcp{p, p′}, lcs{s, s′}〉. The meet operation �PS is induced—
for details see Costantini et al. [9]. The abstract catenation operation is par-
ticularly simple in the case of PS: 〈p, s〉 �PS 〈p′, s′〉 = 〈p, s′〉, with ⊥PS as an
annihilator. The abstract version of substring selection (from index i to j) is
defined

〈p, s〉[i..j]PS =

⎧
⎪⎨

⎪⎩

〈p[i..j], p[i..j]〉 if j ≤ |p|
〈p[i..|p|], ε〉 if i ≤ |p| ≤ j

�PS otherwise

Most of these abstract operations have O(|p| + |s|) cost.
Many other, often more sophisticated, string abstract domains have been

proposed. For example, the string hash domain [20] (SH) is a flat domain of hash
values (integers) obtained through application of some string hash function.

3.2 Language Specific String Domains

Aspects of some scripting languages necessitate greater care in string analysis.
For example, it may be important to distinguish strings that are valid represen-
tations of “numerical entities” such as "-42.7" or "NaN". Figures 1(a–c) shows
string abstract domains used by three different analyzers for JavaScript. A string
set such as {foo, NaN} is represented as �, NotSpecial , or NotUnsigned , by the
respective tools, all with different meanings.

Note that it is very difficult for a program analyzer to maintain precision in
the presence of dynamic typing and implicit type conversion. Arceri et al. [4]
retain some agility in their JavaScript analyzer through the use of a tuple of
abstractions for each variable x: (x qua number, x qua string, . . .), so that the
relevant abstraction can be retrieved across conversions.

Amadini et al. [3] performed a comparison of a dozen common string abstract
domains, shown in Fig. 1(d). Figure 1 also identifies the (non-extreme) elements
of some domains not discussed so far, namely NO, NS, UO, and the Constant
String domain CS. The details of these are not essential for this presentation,
except we note that elements of CS are single strings, ⊥CS , or �CS , with the
obvious meanings. The main message to take away is that potentially useful
string domains are legion.
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�SF

{42, NaN} {foo, zoo}

Number NotNumber

{42} . . . {NaN} {foo} . . .

. . .

...
...

{zoo}

⊥SF

(a)

NO

SSk

�J S

NotSpecial NotNumber

Numeric Other Special

⊥J S

42 . . . NaN foo . . . bar length . . . sort

(b)

NS

CS

�T J

Unsigned NotUnsigned

0 . . . 4294967295 foo NaN. . .

⊥T J

(c)

UO

CS
∅

PS

NO CS

CI SHNSUO SSk

T J J S SF HY

P(Σ∗)

(d)

Fig. 1. String abstract domains used by different tools for JavaScript analysis: (a)
SAFE [19], (b) JSAI [18], (c) TAJS [16]; (d) domains compared experimentally in
Amadini et al. [3] (HY is the “hybrid” domain of Madsen and Andreasen [20])

3.3 Regular Expression-Like Domains

The “Bricks” domain of Costantini et al. [8] captures (sequences of) string sets
with multiplicity. A brick is of form [S]i,j where S is a finite string set. [S]i,j

represents the set
⋃

i≤k≤j{w1 · w2 · · · wk | (w1, w2, . . . , wk) ∈ Sk}. For example,
{ab, c, abab, cab, cc} can be approximated by the brick {ab, c}1,2. Elements of
the Bricks domain are sequences of bricks, with the sequencing representing
language catenation. The “Dashed Strings” of Amadini et al. [1] offer a variant
of this using sequences of blocks [S]i,j which are like bricks, except S is a finite
set of characters.

More expressive fragments of regular expressions are sometimes used [6,21].
For example, Park et al. [21] approximate string sets by “atomic” regular expres-
sions. These are regular expressions generated by the grammar

S → ‘ε’ | ‘Σ∗’ | A S | ‘Σ∗’A S A → a1 | . . . | an
where Σ = {a1, . . . , an} (we use quotes to stress that in this grammar, ε and Σ∗

are terminals, not meta-symbols). The abstract domain used by Choi et al. [6]
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is less constrained, and one could even contemplate the use of the whole class of
regular languages, as done in the next section.

An example of a string abstract domain designed specifically for the analysis
of C programs is the “M-Strings” domain, proposed by Cortesi et al. [7]. Recall
that C uses the null character \0 to indicate termination of a string. Hence the
sequence of characters zooo\0ba represents a sequence of two strings. A set of
C string sequences such as {zooo\0ba, dooo\0da} is captured by the M-string
〈{0}�{1}o{4}, {5}�{6}a{7}〉. The numbers in braces are string index positions.
The {1}o{4} component, for example, covers all C strings that have ‘ooo’ from
index 1 to 3, inclusive.

3.4 The Class of Regular Languages as an Abstract Domain RL
Perhaps the most natural choice for a string abstract domain is the bounded
lattice 〈Reg ,⊆, ∅, Σ∗,∩,∪〉 of regular languages. A obvious representation for
the elements are (possibly trim) minimal DFAs [4]. The advantages of this choice
are significant: This abstract domain is very expressive and regular languages
and DFA operations are well understood. Unusually, the domain RL is closed
not only under intersection, but also under complement—a rare occurrence. At
least one implementation is publicly available [4].

There are, however, also significant drawbacks: First, to enable containment
tests, automata need to be maintained in deterministic, ideally minimal, form;
this normalisation is very expensive. Second, there is a clear risk of size explosion,
as DFA size is unbounded; for L(R) ∩ L(R′) and L(R) ∪ L(R′) it can be as bad as
|R|·|R′|. Finally there is the termination problem. Unlike other abstract domains
discussed so far, RL has infinite ascending chains, so that Kleene iteration may
not terminate without “widening”.

4 Widening

Where an abstract domain has infinite ascending chains, termination is usually
ensured by defining a widening operator �. This is an upper bound operator
(a� a�b and b� a�b) with the property that, for any sequence {a1, a2, . . .}, the
sequence b1 = a1, bi+1 = bi�ai+1 stabilises in finitely many steps [10].

The design of widening operators is a difficult art. Done well, widening can be
very powerful, but there is usually no single natural design that presents itself.
For highly expressive domains it often becomes hard to balance convergence rate
with preservation of precision.

Bartzis and Bultan [5] pioneered the design of widening for automata. We
will explain their widening with an example—for exact definitions, the reader is
referred to the original papers discussed in this section.

Example 1. Consider this pseudo-code (from [2]) involving a while loop:

x = "aaa"
while (*)
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A B C D B1
a a a

21 3 4 5 B2
a a a a

B3
a

a

Fig. 2. DFA widening a la Bartzis and Bultan [5]

if (length(x) < 4) x = "a" + x

When the loop is first entered, the variable has the value aaa. After one iteration,
the value is aaaa. Figure 2 shows the (trim, deterministic) automata for these
values, B1 = 〈Q1, Σ, δ1, q01, F1〉 and B2 = 〈Q2, Σ, δ2, q02, F2〉. The idea now is to
weaken B2 by merging some of its states. Which states to merge is determined
by similarity with B1 as follows. Consider the relation

ρ =

⎧
⎨

⎩
(q1, q2) ∈ Q1 × Q2

∣
∣
∣
∣
∣
∣

(a)LB1(q1) = LB2(q2),or
(b)q1 ∈ (Q1 \ F1), q2 ∈ (Q2\F2), and for some

w ∈ Σ∗, q1 = δ∗
1(q01, w) and q2 = δ∗

2(q02, w)

⎫
⎬

⎭

For our example, we have ρ = {(A, 2), (B, 3), (C, 4), (D, 5), (A, 1), (B, 2), (C, 3)}.
Now the idea is to form the reflexive transitive closure of ρ−1 ◦ ρ, to create an
equivalence relation on Q2. The result of widening will be the corresponding
quotient automaton—states of B2 that belong to the same equivalence class
are merged. For our example there are two classes, {1, 2, 3, 4} and {5}, and the
resulting automaton is B3 shown in Fig. 2. ��

Two comments are relevant. First, the automata that result from this type
of widening are usually non-deterministic, and in an implementation, widening
needs to be followed by determinisation. Moreover, as shown by D’Silva [14],
widening is generally sensitive to the shape of the resulting DFA, and for best
results, minimisation is also required. Second, as pointed out by Bartzis and
Bultan [5], the method as described is not strictly a widening, as it does not
guarantee stabilisation in finite time. Bartzis and Bultan mention that a guar-
antee can be secured by dropping the “q1 and q2 are reject states” part of the
condition (b) in the set comprehension above, but the cost is an intolerable loss
of precision; their discussion ([5] page 326) underlines the tension between pre-
cision and convergence. For our example, the automaton that results when the
condition is weakened recognises a∗, rather than the more precise L(B3) = a+.

D’Silva [14] conducted a deeper study of a variety of families of widening for
automata. These generalise the Bartzis-Bultan approach in a number of ways,
including the way relevant state equivalence classes are identified. For example,
in the “k-tails” approach, the relation ρ is determined by considering only strings
of length k or less. Let Lk

R(q) = {w ∈ LR(q) | |w| ≤ k}. Then for automata S1

and S2, (s1, s2) ∈ ρ iff Lk
S1

(s1) = Lk
S2

(s2).
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A B C D S1
a a a

21 3 4 5 S2
a a a a

S3
a a

a

Fig. 3. 1-tails widening a la D’Silva [14]

A B C D A1
a a a

21 3 4 5 A1 � A2
a a a a

A3
a a a

a

Fig. 4. Widening a la Arceri et al. [4]

Example 2. Consider again Example 1. The automata are shown (renamed) in
Fig. 3. In this case, ρ = {(A, 1), (A, 2), (A, 3), (B, 1), (B, 2), (B, 3), (C, 4), (D, 5)}
and (ρ−1 ◦ ρ)∗ induces three equivalence classes, {1, 2, 3}, {4}, and {5}. Hence
the result of widening is S3, shown in Fig. 3. ��
Again, D’Silva warns that the methods discussed may not always be widenings in
the classical sense, as the convergence guarantees that are on offer are conditional
on a variety of parameters.

D’Silva’s ideas have been adopted for practical string analysis by Arceri,
Mastroeni and Xu [4]. Here the decision about which states to merge is based
on the k-tails principle just exemplified, but Arceri et al. replaces the induced
widening operator �k by � defined by A1�A2 = A1�k (A1 � A2).

Example 3. Figure 4 shows the result for our running example. As comparison is
now against A1�A2, we have ρ = {(A, 1), (A, 2), (B, 1), (B, 2), (C, 3), (D, 5)}, and
(ρ−1 ◦ ρ)∗ induces four equivalence classes, {1, 2}, {3}, {4} and {5}. The result
of widening is A3 in Fig. 4. Once S3 and A3 are determinised and minimised,
they are identical (and more precise than B3). ��

5 Combining Domains

The study by Amadini et al. [3] included combinations of different string abstract
domains, but it focused on direct products of the domains involved.

5.1 Direct Products

Suppose the n abstract domains 〈Ai,�i,⊥i,�i,�i,�i〉 (i = 1, . . . , n) all abstract
a concrete domain C. Their direct product is 〈A,�,⊥,�,�,�, 〉 with:

– A = A1 × · · · × An

– (a1, . . . , an) � (b1, . . . , bn) iff ai �i bi for all i ∈ [1..n]
– ⊥ = (⊥1, . . . ,⊥n) and � = (�1, . . . ,�n)
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– (a1, . . . , an) � (b1, . . . , bn) = (a1 �1 b1, . . . , an �n bn)
– (a1, . . . , an) � (b1, . . . , bn) = (a1 �1 b1, . . . , an �n bn)
– γ(a1, . . . , an) =

⋂n
i=1 γi(ai) and α(c) = (α1(c), . . . , αn(c))

The direct product generally induces a concretisation function which is not injec-
tive.

Example 4. Consider string analysis using SL × CI. Of the two descrip-
tions ([3, 3], [{a, b, c}, {a, b, c}]) and ([0, 3], [{a, b, c}, {a, b, c, d}]), the former is
strictly smaller than the latter, by the component-wise ordering of the direct
product. But γ([3, 3], [{a, b, c}, {a, b, c}]) = γ([0, 3], [{a, b, c}, {a, b, c, d}]); each
represents the string set {abc, acb, bac, bca, cab, cba}. The components of the
second description are unnecessarily imprecise. ��
In an analysis based on the direct product, no exchange of information happens
between the component domains, often leading to an unwanted loss of precision.

5.2 Reduced Products

The mathematical solution is to force γ to be injective. Consider the equivalence
relation ≡ defined by

(a1, . . . , an) ≡ (b1, . . . , bn) iff γ(a1, . . . , an) = γ(b1, . . . , bn)

The reduced product A′ = A1 ⊗ . . . ⊗ An is the quotient set of ≡:

A1 ⊗ · · · ⊗ An = {[(a1, . . . , an)]≡ | a1 ∈ A1, . . . , an ∈ An}
Define (the injective) γ : A′ → C and α : C → A′ by

γ([(a1, . . . , an)]≡) =
⋂n

i=1 γi(ai)
α(c) = [(α1(c), . . . , αn(c))]≡

If a greatest lower bound exists (say A1, . . . ,An are complete lattices) then
[(a1, . . . , an)]≡ is identified with its minimal representative:

�
([(a1, . . . , an)]≡).

Moreover, if each (γi, αi) is a Galois connection then so is (γ, α).
Reduced products are easy to define but generally hard to realise. Algorithms

for the required operations are far from obvious. Moreover, an incremental app-
roach to analysis where many abstract domains are involved does not appear
possible. To quote Cousot, Cousot and Mauborgne [12], “The implementation of
the most precise reduction (if it exists) can hardly be modular since in general
adding a new abstract domain to increase precision implies that the reduced
product must be completely redesigned”. Section 6 suggests a remedy.

5.3 Paraphrasing: Translating Approximate Information

It is natural to propose some kind of information exchange to translate insight
from one component of a domain product to other components, in order to calcu-
late minimal representatives of equivalence classes. Let us call this improvement
of one component using information from another paraphrasing.
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As an example, [{a, b, c}, {a, b, c, d}] ∈ CI can be seen as an “SL para-
phraser” λv. v �SL [3,∞] which tightens an SL component appropriately. More
generally, the SL paraphraser corresponding to [L,U ] ∈ CI is λv. v �SL [|L|,∞].

Here is another example of a paraphraser. We can view 〈p, s〉 ∈ PS as a CI
paraphraser P CI

PS〈p, s〉 : CI → CI:

P CI
PS〈p, s〉(v) =

⎧
⎨

⎩

[L ∪ X,U ] if v = [L,U ] and L ∪ X ⊆ U
where X = chars(p) ∪ chars(s)

⊥CI otherwise

Granger [15] proposed an important “local increasing iterations” technique to
improve the precision of abstract interpretation. Granger’s technique can also be
used to improve the direct product of domains—it effectively uses paraphrasing
systematically and repeatedly. Let us call the results Granger products.

However, when many abstract domains are involved, we soon run into a
combinatorial problem. If we have n abstract domains, we can have n(n − 1)
paraphrasers P j

i : Ai → Aj → Aj , so even for small n, a large number of
“translation tools” are needed. The strain of juggling many different kinds of
information, delivered through different abstract domains, becomes prohibitive.
As we have seen, this is typically the situation we are faced in string analysis.
Note that if paraphrasers of type (A1 × · · · × Ak) → Aj → Aj are allowed (for
k > 1), the number of possible paraphrasers is well beyond quadratic.

5.4 One-on-One Paraphrasing

Even if each one-on-one paraphraser P j
i (ai) is an lco, it may have to be applied

repeatedly. The combined effect of paraphrasing until no more tightening is
possible comes down to computing the greatest fixed point of P defined by

P (a1, . . . , an) =

⎛

⎜
⎝

a1 � �
i∈[1..n] P

1
i (ai)(a1)

...
an � �

i∈[1..n] P
n
i (ai)(an)

⎞

⎟
⎠

This is the approach suggested by Granger [15], and further developed by Thakur
and Reps [25].

However, sometimes one-on-one paraphrasing falls short [2]:

Example 5. Let Σ = {a, b, c, d} and consider the combination of abstractions

x = [5, 6] ∈ SL y = [Σ,Σ] ∈ CI z = 〈ab, aba〉 ∈ PS

A system of optimal paraphrasers for this example leads to an equation system
whose solution is simply (x, y, z).

That is, application of P provides no improvement (in this case P acts as
the identity function). To see this, note that the knowledge (in y) that a string s
uses the whole alphabet does not allow us to improve on x, nor on z. Conversely,
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neither x nor z can improve on y, since y is as precise as CI will allow. And, x
and z clearly cannot improve on each other.

In contrast, in P = SL ⊗ CI ⊗ PS, (x, y, z) denotes ∅, since no string
satisfies all three constraints. To see this, note that the combination of y and z
allows only strings of length 7 or more—strings must have form abΣ∗cΣ∗dΣ∗aba
or abΣ∗dΣ∗cΣ∗aba. ��

The example shows that sometimes no amount of (repeated) one-on-one para-
phrasing will lead to the optimal reduction. Nor is this kind of paraphrasing
enough, in general, to implement optimal transfer functions. Amadini et al. [2]
have suggested an alternative that involves the use of what they call a reference
domain.

6 Reference Abstract Domains

C

R

P = i Ai

A2

A1 An

When a large number of abstract domains
A1, . . . ,An need to be combined, we may
look for a way of obtaining the effect
of a reduced product, while avoiding the
combinatorial explosion of paraphrasing.
Amadini et al. [2] propose the use of an
additional domain that can act as a medi-
ator among the n given domains, a “ref-
erence” domain. This domain should be
as expressive as each Ai. This way it
is, if anything, “closer” to the concrete
domain than the reduced product is. In
the diagram on the right, C is the concrete
semantic domain and P is the reduced
product of the n domains A1 to An. For an abstract domain R to fill the role
of reference domain, it must be located as suggested in the diagram.

We can then achieve the effect of using P by recasting each of the n com-
ponents in RL, taking the greatest lower bound of the results in RL, and
translating that back into the n abstract domains A1, . . . ,An. The combined
effect of this amounts to the application of a “strengthening” function (an lco)
S : (A1 × . . . × An) → (A1 × . . . × An).

The same idea was present already in work on symbolic abstraction by Reps
and Thakur [22], albeit in a rather different form. The authors cast the problem
of symbolic abstraction in logical terms, associating abstract domains with dif-
ferent logic fragments. In that setting, a reference domain is simply a sufficiently
expressive fragment.

Example 6. Take the case of abstract domains for linear arithmetic constraints.
The well-known polyhedral domain [13] is very expressive and also expensive.
Instead we may want to combine two cheaper analyses, namely intervals [11] and
Karr’s domain of affine equations [17]. However, reduced products of numeric
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abstract domains, while mathematically straightforward, are difficult to imple-
ment. Noting that translations between each cheap domain and the polyhedral
domain are inexpensive, we may choose to use the latter as reference domain.
For example, assume we have

x ∈ [5,∞], z ∈ [1, 10] and 2x − y = 8, x + 2z = 7

We translate each to polyhedral form and calculate the meet there:

(5 ≤ x, 1 ≤ z, z ≤ 10) � (2x − y = 8, x + 2z = 7)

Then we translate the result (x = 5, y = 2, z = 1) back into the interval domain,
as well as into Karr’s domain. Note how each component is strengthened. ��

In the presence of a large number of incomparable abstract domains, a suit-
able reference domain offers several advantages:

– Simplicity of implementation, as its requires 2n translation functions rather
than a quadratic number.

– Modular implementation; incorporating yet another domain An+1 is mostly
straight-forward.

– Potentially lower computational cost at runtime.

Amadini et al. [2] find the idea particularly useful in the context of string abstract
domains, since RL presents itself as a natural candidate for reference domain.

Algorithms for translations to and from RL are given by Amadini et al. [2],
for the string abstract domains CS, SL, CI, and PS. Trim DFAs are used to rep-
resent regular languages, and most translations turn out to be straightforward.
Here we give just one example, namely the translation of an element 〈p, s〉 ∈ PS
into an element of RL, in the form of a trim DFA. Assume the DFA that recog-
nises p is 〈Q,Σ, δ, q0, {qf}〉 and let q∗ be the unique state for which δ(q∗) = qf .
Note that this DFA is very easily built. Let 〈Q′, Σ, δ′, q′

0, {q′
f}〉 be the Knuth-

Morris-Pratt DFA for s (a recogniser of Σ∗s). Again, this DFA is easily built
directly, rather than going via an NFA (see for example [23] page 765). The DFA
for 〈p, s〉 is 〈(Q ∪ Q′)\{qf}, Σ, δ[q∗ �→ δ∗(q′

0, p)] ∪ δ′, q0, {q′
f}〉.

Example 7. Let Σ = {a, b, c} and consider 〈ab, ba〉 ∈ PS (denoting abΣ∗ ∩
Σ∗ba). Figure 5 shows the DFA for ab (left), the KMP DFA for ab (middle),
and their assembly into a DFA for the prefix/suffix description 〈ab, ba〉. ��

Translating back to prefix/suffix form is no harder. Given a trim DFA, one
can extract the longest prefix in O(|Q|) time, by following transitions from the
start state, stopping when an accept state is reached, or when fan-out exceeds
1. Collecting the longest prefix is slightly more complicated [2] and requires
O(|δ||Q|) time.

Example 8. Let us now combine PS, CI, SL and CS analysis, using RL to
provide the precision of a reduced product. In the context of Σ = {a, b, c},
consider the description

〈〈ab, ba〉, [{a, b}, {a, b, c}], [0, 3],�CS〉 ∈ (PS × CI × SL × CS)
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a

b

a, c

b

b

a

c

a, c

b

a

b

a, c

b

b

a

c

a, c

b

Fig. 5. Constructing a trim DFA for 〈ab, ba〉 ∈ PS

c

a

b

b

a, c

b, c

a

a, b, c

γCI([{a, b}, {a, b, c}])

a, b, c

a, b, c

a, b, c

γSL([0, 3])

a, b, c

γCS(�CS)

a

b

a

Product

Fig. 6. Simpler descriptions as DFAs. The rightmost DFA is the product of the three
on the left, together with the DFA from Fig. 5

The DFA for γPS(〈ab, ba〉) is the one we just calculated (Fig. 5 right). The other
three are shown in Fig. 6, together with the product of all four. This product
automaton recognises {aba}. The refined information is then sent back to the
elementary domains, to yield 〈〈aba, aba〉, [{a, b}, {a, b}], [3, 3], aba〉. Notice the
improved precision, especially for the CS component which has been strength-
ened from Σ∗ to the singleton {aba}. ��

The generated product automata are not, in general, minimal, and we do not
avoid the cost of minimisation. Keeping automata trim pays off by simplifying
some translation operations, and the cost of trimming is low—linear in the size
of a DFA.

Let us finally revisit the example that we started from. Our last example
shows how simple abstract domains, when synchronised through an expressive
reference domain, can yield a precise result. In Sect. 4, the use of widening led
to an imprecise result such as aaa∗ to be produced. Here we avoid widening
altogether.

Example 9. Consider again the while loop from Example 1. Assume analysis uses
the direct product PS×CI×SL, but utilises RL as reference domain. At the first
entry of the loop, the description of the variable is 〈〈aaa, aaa〉, [{a}, {a}], [3, 3]〉.
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At the end of the loop body it is 〈〈aaaa, aaa〉, [{a}, {a}], [4, 4]〉. Analysis finds
that the join of the two, 〈〈aaa, aaa〉, [{a}, {a}], [3, 4]〉, is a fixed point, that is, an
invariant for the loop entry, and the possible values of the variable at exit are
identified precisely as γ(〈〈aaaa, aaa〉, [{a}, {a}], [4, 4]〉 = {aaaa}. ��

7 Conclusion

From the perspective of abstract interpretation, string analysis is interesting, as
it gives rise to a plethora of natural but very different abstract domains, with
very different degrees of expressiveness. A particular challenge is how to manage
this multitude, that is, how to combine many string abstract domains. We have
discussed some approaches to this, paying special attention to the use of the
class of regular languages as a “reference” domain, used to mediate between
other abstract domains.

There would appear to be considerable scope for improved string analysis.
For highly dynamic programming languages, it is likely that combinations of
static and dynamic analysis will be needed, to help solve the pressing problems
in software reliability and security.
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Abstract. In this paper we present a new static data type inference
algorithm for logic programming. Without the need for declaring types
for predicates, our algorithm is able to automatically assign types to
predicates which, in most cases, correspond to the data types processed
by their intended meaning. The algorithm is also able to infer types given
data type definitions similar to data definitions in Haskell and, in this
case, the inferred types are more informative, in general. We present the
type inference algorithm, prove it is decidable and sound with respect
to a type system, and, finally, we evaluate our approach on example
programs that deal with different data structures.

Keywords: Logic Programming · Types · Type Inference

1 Introduction

Types are program annotations that provide information about data usage and
program execution. Ensuring that all types are correct and consistent may be a
daunting task for humans. However, this task can be automatized with the use
of a type inference algorithm which assigns types to programs.

Logic programming implementers have been interested in types from early
on [Zob87,DZ92,Lu01,FSVY91,YFS92,MO84,LR91,SBG08,HJ92,SCWD08].
Most research approached typing as an over-approximation (a superset) of the
program semantics [Zob87,DZ92,YFS92,BJ88,FSVY91]: any programs that suc-
ceed will necessarily be well-typed. Other researchers followed the experience of
functional languages and took a more aggressive approach to typing, where only
well-typed programs are acceptable [MO84,LR91]. Over the course of the last
few years it has become clear that there is a need for a type inference system
that can support Prolog well [SCWD08]. Next, we report on recent progress on
our design, the Y APT type system1. We will introduce the key ideas and then
focus on the practical aspects.

Our approach is motivated by the belief that programs (Prolog or otherwise)
are about manipulating data structures. In Prolog, data structures are denoted
1 This work is partially funded by the portuguese Fundação para a Ciência e a Tec-

nologia and by LIACC (FCT/UID/CEC/0027/2020).

c© Springer Nature Switzerland AG 2022
E. De Angelis and W. Vanhoof (Eds.): LOPSTR 2021, LNCS 13290, pp. 16–37, 2022.
https://doi.org/10.1007/978-3-030-98869-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98869-2_2&domain=pdf
https://doi.org/10.1007/978-3-030-98869-2_2


Data Type Inference for Logic Programming 17

by terms with a common structure and, being untyped, one cannot naturally
distinguish between failure and results of type erroneous calls. We believe that
to fully use data structures we must be able to discriminate between failure,
error, and success. Thus our starting point was a three-valued semantics that
clearly distinguishes type errors from falsehood [BFC19].

There, we first define the Y APT type system that relates programs with
their types. This defines the notion of well-typed program as a program which is
related to a type by the relation defined by the type system. Here we present the
Y APT type inference algorithm which is able to automatically infer data type
definitions. Finally we show that our type inference algorithm is sound with
respect to the type system, in the sense that the inferred type for a program
makes the program well-typed.

We shall assume that typed Prolog programs operate in a context, e.g., sup-
pose a programming context where the well-known append predicate is expected
to operate on lists:

append([],X,X).
append([X|R],Y,[X|R1]) :- append(R,Y,R1).

This information is not achievable when using type inference as a conservative
approximation of the success set of the predicate. The following figure shows the
output of type inference in this case, where ti is the type of the i-th argument of
append, “+” means type disjunction and “A” and “B” are type variables (Fig.
1):

t1 = [] + [A | t1]

t2 = B

t3 = B + [A | t3]

t1 = [] + [A | t1]

t2 = [] + [A | t2]

t3 = [] + [A | t3]

Fig. 1. (1) Program approximation; (2) Well-typing

Types t2 and t3, for the second and third argument of the left-hand side
(1), do not filter any possible term, since they have a type variable as a member
of the type definition, which can be instantiated with any type. And, in fact,
assuming the specific context of using append as list concatenation, some calls
to append succeed even if unintended2, such as append([],1,1). The solution
we found for these arguably over-general types is the definition of closed types,
that we first presented in [BFSC17], which are types where every occurrence of a
type variable is constrained. We also defined a closure operation, from open types
into closed types, using only information provided by the syntax of the programs
themselves. Applying our type inference algorithm with closure to the append
predicate yields the types on the right-hand side (2), which are the intended
types [Nai92] for the append predicate.

2 Accordingly to a notion of intended meaning first presented in [Nai92].
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Our type inference algorithm3 works for pure Prolog with system predicates
for arithmetic. We assume as base types int, float, string, and atom. There is an
optional definition of type declarations (like data declarations in Haskell) which,
if declared by the programmer, are used by the type inference algorithm to refine
types. We follow a syntax inspired in [SCWD08] to specify type information. One
example of such a declaration is the list datatype

:- type list(A) = [] + [A | list(A)].

In order to simplify further processing our type system and type inference
algorithm assume that predicates are in a simplified form called kernel Prolog
[VR90]. In this representation, each predicate in the program is defined by a
single clause (H :- B), where the head H contains distinct variables as arguments
and the body B is a disjunction (represented by the symbol ;) of queries. The
variables in the head of the clause occur in every query in the body of that
clause. We assume that there are no other common variables between queries,
except for the variables that occur in the head of the clause, without loss of
generality. In this form the scope of variables is not limited to a single clause,
but is extended over the whole predicate definition and thus type inference is
easier to perform. In [VR90] a compilation from full Prolog to kernel Prolog is
defined. Thus, in the rest of the paper, we will assume that predicate definitions
are always in kernel Prolog.

2 Types

Here we define a new class of expressions, which we shall call types. We first
define the notion of type term built from an infinite set of type variables TV ar,
a finite set of base types TBase, an infinite set of constants TCons, an infinite
set of function symbols TFunc, and an infinite set of type symbols, TSymb.
Type terms can be:

– a type variable (α, β, γ, · · · ∈ TV ar)
– a constant (1, [ ], ‘c’, · · · ∈ TCons)
– a base type (int, f loat, · · · ∈ TBase)
– a function symbol f ∈ TFunc associated with an arity n applied to an n-tuple

of type terms (f(int, [ ], g(X)))
– a type symbol σ ∈ TSymb associated with an arity n (n ≥ 0) applied to an

n-tuple of type terms (σ(X, int)).

Type variables, constants and base types are called basic types. A ground
type term is a type variable-free type term. Type symbols can be defined in a
type definition. Type definitions are of the form:

σ(α1, . . . , αk) = τ1 + . . . + τn,

3 Implementation at https://github.com/JoaoLBarbosa/TypeInferenceAlgorithm.

https://github.com/JoaoLBarbosa/TypeInferenceAlgorithm
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where each τi is a type term and σ is the type symbol being defined. In general
these definitions are polymorphic, which means that type variables α1, . . . , αk,
for k ≥ 0, include the type variables occurring in τ1+ . . .+τn, and are called type
parameters. If we instantiate one of those type variables, we can replace it in the
parameters and everywhere it appears on the right-hand side of the definition.
The sum τ1 + . . . + τn is a union type, describing values that may have one of
the types τ1, . . . , τn. The ‘+’ is an idempotent, commutative, and associative
operation. Throughout the paper, to condense notation, we will use the symbol
τ̄ to denote union types. We will also use the notation τ ∈ τ̄ to denote that τ is
a summand in the union type τ̄ .

Note that type definitions may be recursive. A deterministic type definitions
is a type definition where, on the right-hand side, none of τi start with a type
symbol and if τi is a type term starting with a function symbol f , then no other
τj starts with f .

Example 1. Assuming a base type int for the set of all integers, the type list of
integers is defined by the type definition list = [ ] + [int | list]4.

Let −→τ stand for a tuple of types τ1 × · · · × τn. A functional type is a type of
the form −→τ1 → τ2. A predicate type is a functional type from a tuple of the type
terms defining the types of its arguments to bool, i.e. τ1 × . . . × τn → bool. A
type can be a type term, an union type, or a predicate type.

Our type language enables parametric polymorphism through the use of type
schemes. A type scheme is defined as ∀X1 . . . ∀Xn

T , where T is a predicate type
and X1, . . . , Xn are distinct type variables. In logic programming, there have
been several authors that have dealt with polymorphism with type schemes
or in a similar way [PR89,BG92,Hen93,Zob87,FSVY91,GdW94,YFS92,FD92,
Han89]. Type schemes have type variables as generic place-holders for ground
type terms. Parametric polymorphism comes from the fact these type variables
can be instantiated with any type.

Example 2. A polymorphic list is defined by the following type definition:

list(X) = [ ] + [X | list(X)]

Notation. Throughout the rest of the paper, for the sake of readability, we
will omit the universal quantifiers on type schemes and the type parameters as
explicit arguments of type symbols in inferred types. Thus we will assume that
all free type variables on type definitions of inferred types are type parameters
which are universally quantified.

Most type languages in logic programming use tuple distributive closures of
types. The notion of tuple distributivity was given by Mishra [Mis84]. Through-
out this paper, we restrict our type definitions to be deterministic. The types
described this way are tuple distributive.
4 Type definitions will use the user friendly Prolog notation for lists instead of the list

constructor.
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Sometimes, the programmer wants to introduce a new type in a program, so
that it is recognized when performing type inference. It is also a way of having
a more structured and clear program. These declarations act similarly to data
declarations in Haskell.

In our algorithm, types can be declared by the programmer in the follow-
ing way:- type type symbol(type vars) = type term1 + . . . + type termn. One
example would be:

:- type tree(X) = empty + node(X, tree(X), tree(X)).

In the rest of the paper we will assume that all constants and function symbols
that start a summand in a declared type cannot start a summand in a different
one, thus there are no overloaded constants nor function symbols. Note that
there is a similar restriction on data declarations in functional programming
languages.

2.1 Semantics

In [BFC19] we defined a formal semantics for types. Here we just give the main
intuitive ideas behind it:

– The semantics of base types and constant types are predefined sets containing
logic terms, for instance, the base type int is the set of all integers and the
semantics of bool is the set of the values true and false;

– Tuples of types, (τ1, . . . , τn), are sets of tuples of terms such that the seman-
tics of each term belongs to the semantics of the type in the corresponding
position;

– f(τ1, . . . , τn) is the set of all terms with main functor f and arity n applied
to the set of tuples belonging to the semantics of (τ1, . . . , τn);

– The semantics of union types is the disjoint union of the semantics of its
summands;

– The semantics of type symbols is the set of all terms that can be derived from
its definition;

– The semantics of functional types, such as predicate types, is the set of func-
tions that when given terms belonging to the semantics of the input types,
output terms belonging to the semantics of output types. For instance the
semantics of int× float → bool, contains all functions that, given a pair with
an integer and a floating point number, output a boolean.

– The semantics of parametric polymorphic types is the intersection of the
semantics of its instances (this idea was first used by Damas [Dam84] to
define the semantics of type schemes).

In [BFC19] we defined a type system and proved that it is sound with respect
to this semantics of types. Here we define a type inference algorithm and prove
that it is sound with respect to the type system, thus, using these two results,
we can conclude that the type inference algorithm is also sound with respect to
the semantics.
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2.2 Closed Types

Closed types were first defined in [BFSC17]. Informally, they are types where
every occurrence of a type variable is constrained. If a type is not closed, we say
that it is an open type. The restrictions under the definition of closed type can
be compressed in the following three principles:

– Types should denote a set of terms which is strictly smaller than the set of
all terms

– Every use of a variable in a program should be type constrained
– Types are based on self-contained definitions.

The last one is important to create a way to go from open types to closed types.
We defined what is an unconstrained type variable as follows:

Definition 1 (Unconstrained Type Variable). A type variable α is uncon-
strained with respect to a set of type definitions T , notation unconstrained(α, T ),
if and only if it occurs exactly once as a summand in the set of all the right-hand
sides of type definitions in T .

Unconstrained type variables type terms with any type, thus they do not
really provide type information. We now define closed type definition, which are
type definitions without type variables as summands in their definition.

Definition 2 (Closed Type Definitions). A type definition σ = τ̄ is closed,
notation closedTypeDef(σ), if and only if there are no type variables as sum-
mands in τ̄ .

The definition for closed types uses these two previous auxiliary definitions.
Closed types correspond to closed records or data definitions in functional pro-
gramming languages. The definition follows:

Definition 3 (Closed Types). A type definition σ = τ̄ is closed with respect
to a set of type definitions T , notation closed(σ, T ), if and only if the predicate
defined as follows holds:

closed(σ, T ) =
{¬unconstrained(α, T ) if τ̄ = α and α is a type variable

closedTypeDef(σ) otherwise

Example 3. We recall the example in the Introduction, of the following types for
the append predicate, where tn is the type of nth predicate argument:

t1 = [] + [A | t1]
t2 = B
t3 = B + [A | t3]

Type t3, for the third argument of append, is open, because t3 has a type
variable as a summand, thus it does not filter any possible term, since the type
variable can be instantiated with any type. An example of a valid closed type
for append is:
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t1 = [] + [A | t1]
t2 = [] + [A | t2]
t3 = [] + [A | t3]

The next step is to transform open types into closed types. Note that some
inferred types may be already closed. For the ones that are not, we defined a
closure operation, described in detail in [BFSC17]. This closure operation is an
optional post-processing step on our algorithm.

To close types, we calculate what we call the proper variable domain of every
type variable that occurs as a summand in a type definition. The proper variable
domain corresponds to the sum of the proper domains of each type that shares
a type term with the open type we are tying to close. The proper domain of a
type is the sum of all summands that are not type variables in its definition. We
then replace the type variable with its proper variable domain.

We have tested the closure algorithm on several examples and for the exam-
ples we tried, the results seem very promising.

3 Examples

There are some flags in the type inference algorithm that can be turned on or
off:

– basetype (default: on) - when this flag is turned on, we assume that each
constant is typed with a base type, when it is turned off, we type each constant
with a constant type corresponding to itself;

– list (default: off) - this flag adds the data type declaration for polymorphic
lists to the program when turned on;

– closure (default: off) - when this flag is turned on, the closure operation is
applied as a post-processing step on the algorithm.

In the following examples pi is the type symbol for the type of the ith argument
of predicate p and we assume that all free type variables on type definitions
are universally quantified and that the type of arguments of built-in arithmetic
predicates is predefined as int + float.

Example 4. Let us consider the predicate concat, which flattens a list of lists,
where app is the append predicate:

concat(X1,X2) :- X1=[], X2=[];
X1=[X|Xs], X2=List, concat(Xs,NXs), app(X,NXs,List).

app(A,B,C) :- A=[], B=D, C=D;
app(E,F,G), E=H, F=I, G=J, A=[K|H], B=I, C=[K|J].

The types inferred with all the flags off correspond to types inferred in previous
type inference algorithms which view types as an approximation of the success
set of the program:
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concat :: concat1 x concat2
concat1 = [] + [ t | concat1 ]
concat2 = C + [] + [ B | concat2 ]
t = [] + [ B | t ]

app :: app1 x app2 x app3
app1 = [] + [ A | app1 ]
app2 = B
app3 = B + [ A | app3 ]

Now the types inferred when turning on the closure flag are:

concat :: concat1 x concat2
concat1 = [] + [ concat2 | concat1 ]
concat2 = [] + [ B | concat2 ]

app :: app1 x app2 x app3
app1 = [] + [ A | app1 ]
app2 = [] + [ A | app2 ]
app3 = [] + [ A | app3 ]

Note that these types are not inferred by any previous type inference algorithm
for logic programming so far, and they are a step towards the automatic inference
of types for programs used in a specific context, more precisely, a context which
corresponds to how it would be used in a programming language with data type
declarations, such as Curry [Han13] or Haskell.

Example 5. Let rev be the reverse list predicate, defined using the append defi-
nition used in the previous example:

rev(A, B) :- A=[], B=[] ;
rev(C, D), app(D, E, F), E=[G], A=[G|C], B=F.

The inferred types with all flags off is (the types inferred for append are the
same as the one in the previous example):

rev :: rev1 x rev2
rev1 = [] + [ A | rev1 ]
rev2 = [] + [ t | rev2 ]
t = B + A

If we turn on the list flag, which declares the data type for Prolog lists, the type
inference algorithm outputs the same types that would be inferred in Curry or
Haskell with pre-defined built-in lists:

rev :: rev1 x rev2
rev1 = list(A)
rev2 = list(A)

list(X) = [] + [ X | list(X) ]
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We now show an example of the minimum of a tree.

Example 6. Let tree minimum be the predicate defined as follows:

tree_min(A,B) :- A=empty, B=0 ;
A=node(C,D,E), tree_min(D,F), tree_min(E,G),
Y=[C,F,G], minimum(Y,X), X=B.

minimum(A,B) :- A=[I], B=I;
A=[X|Xs], minimum(Xs,C), X=<C, B=C ;
A=[Y|Ys], minimum(Ys,D), D=<Y, B=D.

The inferred types with all flags off, except for the basetype flag, are:

tree_min :: tree_min1 x tree_min2
tree_min1 = atom + node(tree_min2, tree_min1, tree_min1)
tree_min2 = A + int + float

minimum :: minimum1 x minimum2
minimum1 = [ minimum2 | t ]
minimum2 = A + int + float
t2 = [] + [ minimum2 | t2 ]

If we now add a predefined declaration of a tree data type and turn on the
list flag, the algorithm outputs:

tree_minimum :: tree_minimum1 x tree_minimum2
tree_minimum1 = tree(tree_minimum2)
tree_minimum2 = int + float

minimum :: minimum1 x minimum2
minimum1 = list(minimum2)
minimum2 = int + float

tree(X) = empty + node(X, tree(X), tree(X))
list(Y) = [] + [ Y | list(Y) ]

4 Type System

Here we define the notion of well-typed program using a set of rules assigning
types to terms, atoms, queries, sequences of queries, and clauses. This is gener-
ally called a type system and ours follows the definition in [BFC19] with some
differences in the notation for recursive types: here we explicitly add a set of
(possibly recursive) type definitions instead of the fix-point notation for types
used in the paper mentioned above. These small differences do not alter the
soundness of the type system.

We first write the following subtyping relation from [BFC19].
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Definition 4 (Subtyping). Let φ be a substitution of types for type variables.
Let � denote the subtyping relation as a partial order (reflexive, anti-symmetric
and transitive) defined as follows:

– τ � τ ′ if ∃φ.φ(τ ′) = τ (Instance)
– τ � τ̄ iff τ ∈ τ̄ (Subset)
– f(τ1, . . . , τn) � f(τ ′1, . . . , τ ′n) iff τ1 ≤ τ ′1, . . . τn ≤ τ ′n (Complex term con-

struction/destruction)
– δ1 � δ2 iff, assuming δ1 � δ2, we get τ̄1 � τ̄2, where δ1 = τ̄1 and δ2 = τ̄2 are

the type definitions for δ1 and δ2 (Recursive Type Unfolding)
– τ � δ iff τ � τ̄ and δ = τ̄ is the type definition for δ (Right Unfolding)
– δ � τ iff (̄τ) � τ and δ = τ̄ is the type definition for δ (Left Unfolding)
– τ � τ1 + τ2 iff τ � τ1 or τ2 � τ (Addition)
– if τ ′ � τ , then τ → bool � τ ′ → bool (Contravariance)

Subtyping of functional types is contravariant in the argument type, meaning
that the order of subtyping is reversed. This is standard in functional languages
and guarantees that when a function type is a subtype of another it is safe to use
a function of one type in a context that expects a function of a different type.
It is safe to substitute a function f for a function g if f accepts a more general
type of argument than g. For example, predicates of type int+float → bool can
be used wherever an int → bool was expected.

Let us now give some auxiliary definitions: an assumption is a type declara-
tion for a variable, written X : τ , where X is a variable and τ a type. We define a
context Γ as a set of assumptions with distinct variables as subjects (alternatively
contexts can be defined as functions from variables to types, where domain(Γ )
stands for its domain). Since Γ can be seen as a function, we use Γ (X) = τ to
denote (X : τ) ∈ Γ . A set of type definitions, Δ, is a set of type definitions of the
form σ = τ̄ , where each definition has a different type symbol on the left-hand
side. It can also be defined as a function from σ to τ̄ . We will therefore use the
notation Δ(σ) = τ̄ to denote (σ = τ̄) ∈ Δ.

Our type system is defined in Fig. 2 and statically relates well-typed programs
with their types by defining a relation Γ,Δ 
P p : τ , where Γ is a context, Δ
a set of type definitions, p is a term, an atom, a query, a sequence of queries,
or a clause, and τ is a type. This relation should be read as expression p has
type τ , given the context Γ and type definitions Δ, in a program P . We will
write Γ ∪ {X : τ} to represent the context that contains all assumptions in Γ
and the additional assumption X : τ (note that because each variable is unique
as a subject of an assumption in a context, in Γ ∪ {X : τ}, Γ does not contain
assumptions with X as subject). We will write a sequence of variables X1, . . . , Xn

as
−→
X , and a sequence of types as −→τ . We assume that clauses are normalized and,

therefore, every call to a predicate in the body of a clause contains only variables.
Note that we have a different rule for recursive clauses and non-recursive

clauses. Whenever we have a recursive clause, its type is derived assuming every
recursive call has the same type as the head of the clause. This corresponds to
the monomorphic restriction described in [Hen93], where the authors prove that
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V AR Γ ∪ {X : σ}, Δ ∪ {σ = τ1 + . . . + τn P X : τi

CST Γ, Δ P c : τ, where basetype(c) = τ

CPL(a) Γ, Δ P t1 : τ1 . . . Γ, Δ P tn : τn
Γ, Δ P f(t1, . . . , tn) : τ

UNF Γ, Δ P t1 : τ Γ, Δ P t2 : τ
Γ, Δ P t1 = t2 : bool

CLL(b) Γ ∪ {− →
Y : σ̄ , Δ P (p(Y1, . . . , Yn) : −body.) : bool

Γ ∪ {X̄ : σ̄}, Δ ∪ {σ̄ = τ̄ P p(X1, . . . , Xn) : bool
, where ∀i.σi σi

CON Γ, Δ P g1 : bool Γ, Δ P gn : bool
Γ, Δ P g1, . . . , gn : bool

CLS(c) Γ, Δ P b1 : bool . . . Γ, Δ P bm : bool

Γ, Δ P (p(
−→
X) : −b1; . . . ; bm.) : bool

RCLS(d) Γ ∪ {− →
X : − →τ ,

−→
Y1 : − →τ , . . . ,

−−→
Ykn : − →τ }, Δ P p(

− →
X) : −b1; . . . ; bm+n. : bool

Γ ∪ {− →
X : − →τ ,

−→
Y1 : − →τ , . . . ,

−−→
Ykn : − →τ }, Δ P

(p(
− →
X) : −b1; . . . ; bm;

bm+1, p(
− →
Y 11), . . . , p(

− →
Y 1k1);

...
bm+n, p(

− →
Y n1), . . . , p(

− →
Y nkn).) : bool

(a) Where basetype(f) = τ1 . . . × τn τ , and τi τi .
(b) Where the clause defining predicate p is in P .
(c) This rule is for non-recursive predicates only.
(d) This rule is for recursive predicates. Note that all variables in recursive calls in a certain sequence
of goals have the same type as the variables in the head in that clause.

Fig. 2. Type System

if we allow polymorphic recursion, i.e. recursion with different instances of the
same polymorphic type, then inference is not decidable.

Also note that the type for a predicate call is a subtype of the type for the
clause defining it. This captures the fact that we can call a polymorphic predicate
with a type that is an instance of the general type scheme, or if the input type
of the predicate is a union type, we can call it with only some of the summands
of that union.



Data Type Inference for Logic Programming 27

5 Type Inference

We have seen how to define the notion of well-typed program using a set of rules
which assign types to programs. Here we will present a type inference algorithm
which, given an untyped logic program, is able to calculate a type which makes
the program well-typed.

Input Program Term Expansion

Constraint
Generation

Type
Declarations/List
and Basetype Flag

Constraint Solving

Closure

Pretty PrinterOutput Types

Inference

Fig. 3. Type Inference Algorithm Flowchart

Our type inference algorithm is composed of several modules, as described
in Fig. 3. On a first step, when consulting programs, we apply term expansion
to transform programs into the internal format that the rest of the algorithm
expects. Secondly, we have the type inference phase itself, where constraint gen-
eration is performed, and a type constraint solver outputs the inferred types for
a given program. There is also a simplification step that is performed during
inference, to assure that the type definitions are always deterministic and sim-
plified. After this, we either directly run a type pretty printer, or go through
closure before printing the types.

Thus the type inference algorithm is composed of four main parts with some
auxiliary steps:

– Term expansion
– Constraint generation
– Constraint solving
– Closure (optional).

Without closure or type declarations our algorithm follows a standard app-
roach of types as approximations of the program semantics. Using our algorithm
to infer well-typings (which filter program behaviour instead of approximating
it) is possible either by using explicit type declarations or by using the closure
step. Using one of the latter approaches, instead of the standard one, yields
better results as can be seen in the example Sect. 3.
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5.1 Stratification

We assume that the input program of our algorithm is stratified. To understand
the meaning of stratified programs, let us define the dependency directed graph
of a program as the graph that has one node representing each predicate in the
program and an edge from q to p for each call from a predicate p to a predicate
q.

Definition 5 (Stratified Program). A stratified program P is such that the
dependency directed graph of P has no cycles of size more than one.

This means that our type inference algorithm deals with predicates defined
by direct recursion but not with mutual recursion. Note that stratified programs
are widely used and characterize a large class of programs which is used in several
database and knowledge base systems [Ull88].

5.2 Constraints and Constraint Generation

The type inference algorithm begins by generating type constraints from a logic
program which are solved by a constraint solver in a second stage of the algo-
rithm. There are two different kinds of type constraints: equality constraints and
subtyping constraints. An equality constraint is of the form τ1 = τ2 and a sub-
typing constraint is of the form τ̄1 ≤ τ̄2. Ultimately we want to determine if a
set of constraints C can be instantiated affirmatively using some substitution S,
that substitutes types for type variables. For this we need to consider a notion
of constraint satisfaction S |= C, in a first order theory with equality [Mah88]
and the extra axioms in Definition 4 for subtyping.

Definition 6 (Constraint satisfaction). Let ≡ mean syntactic type equality
and � the subtyping relation defined in Definition 4. S |= C is defined as follows:

1. S |= τ1 = τ2 if and only if S(τ1) ≡ S(τ2);
2. S |= τ̄1 ≤ τ̄2 if and only if S(τ̄1) � S(τ̄2);
3. S |= C if and only if S |= c for each constraint c ∈ C.

The constraint generation step of the algorithm will output two sets of con-
straints, Eq (a set of equality constraints) and Ineq (a set of subtyping con-
straints), that need to be solved during type inference.

Let us first present two auxiliary functions to combine contexts. Contexts
can be obtained from the disjunction, or conjunction, of other contexts. For this
we define two auxiliary functions, ⊕ and ⊗, to define the result of disjunction, or
conjunction, respectively, of context. These definitions are used by the constraint
generation algorithm. They are defined as follows:

Definition 7. Let Γi be contexts, and Δi be disjoint sets of type definitions
defining the type symbols in Γi, respectively. Let V be the set of variables that
occur in more than one context.
⊕(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)

= (Γ,Δ), where:
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Γ (X) = σ′, where σ′ is a fresh type symbol, for all X ∈ V , and Γ (X) = Γi(X),
for all X /∈ V ∧ X ∈ domain(Γi);
Δ(σ) = Γi1(X) + . . . + Γik(X), for all type symbols σ /∈ Δ1 ∪ · · · ∪ Δn, and
Δ(σ) = Δi(σ), otherwise.

Definition 8. Let Γi be contexts, and Δi be disjoint sets of type definitions
defining the type symbols in Γi, respectively. Let V be the set of variables that
occur in more than one context.
⊗(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)

= (Γ,Δ,Eq), where:
Γ (X) = σ′, where σ′ is a fresh type symbol, for all X ∈ V , and Γ (X) = Γi(X),
for all X /∈ V ∧ X ∈ domain(Γi);
Δ(σ) = α, where α is a fresh type variable, for all type symbols σ /∈ Δ1∪· · ·∪Δn,
and Δ(σ) = Δi(σ), otherwise;
Eq = {α = Δi(Γi(X)), . . . , α = Δj(Γj(X))}, for all fresh α, such that (σ′ =
α) ∈ Δ, Γ (X) = σ′, and X ∈ domain(Γi) ∧ · · · ∧ X ∈ domain(Γj).

Let P be a term, an atom, a query, a sequence of queries, or a clause.
generate(P ) is a function that outputs a tuple of the form (τ, Γ,Eq, Ineq,Δ),
where τ is a type, Γ is an context for variables, Eq is a set of equality constraints,
Ineq is a set of subtyping constraints, and Δ is a set of type definitions. The
function generate, which generates the initial type constraints, is defined case
by case from the program syntax. Its definition follows:

generate(P ) =

– generate(X) = (α, {X : σ}, ∅, ∅, {σ = α}), X is a variable,
where α is a fresh type variable and σ is a fresh type symbol.

– generate(c) = (basetype(c), ∅, ∅, ∅, ∅), c is a constant.
– generate(f(t1, . . . , tn)) = (basetype(f)(τ1, . . . , τn), Γ, Eq, ∅,Δ), f is a func-

tion symbol,
where generate(ti) = (τi, Γi, Eqi, ∅,Δi),
(Γ,Δ,Eq′) = ⊗(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)
, and

Eq = Eq1 ∪ . . . ∪ Eqn ∪ Eq′.
– generate(t1 = t2) = (bool, Γ,Eq, ∅,Δ)

where generate(ti) = (τi, Γi, Eqi, ∅,Δi),
(Γ,Δ,Eq′) = ⊗(

(Γ1, Γ2), (Δ1,Δ2)
)
, and

Eq = Eq1 ∪ Eq2 ∪ {τ1 = τ2} ∪ Eq′.
– generate(p(X1, . . . , Xn)) = (bool, ({X1 : σ1, . . . , Xn : σn}, ∅, {σ1 ≤

τ1, . . . , σn ≤ τn},Δ′), p is a predicate symbol,
where generate(p(Y1, . . . , Yn) : −body) = (bool, Γ,Eq, Ineq,Δ),
{Y1 : τ1, . . . Yn : τn} ∈ Γ
Δ′ = Δ ∪ {σi = αi}, and σi and αi are all fresh.

– generate(c1, . . . , cn) = (bool, Γ,Eq, Ineq1 ∪ . . . ∪ Ineqn,Δ), a query,
where generate(ci) = (bool, Γi, Eqi, Ineqi,Δi),
(Γ,Δ,Eq′) = ⊗(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)
, and

Eq = Eq1 ∪ . . . ∪ Eqn ∪ Eq′.
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– generate(b1; . . . ; bn) = (bool, Γ,Eq1 ∪ . . . ∪ Eqn, Ineq1 ∪ . . . ∪ Ineqn,Δ),
where generate(ci) = (bool, Γi, Eqi, Ineqi,Δi), and
(Γ,Δ) = ⊕(

(Γ1, . . . , Γn), (Δ1, . . . ,Δn)
)
.

– generate(p(X1, . . . , Xn) : −body.) = (bool, Γ,Eq, Ineq,Δ), a non-recursive
clause,
where generate(body) = (bool, Γ,Eq, Ineq,Δ).

– generate(p(X1, . . . , Xn) : −body) = (bool, Γ,Eq, Ineq′,Δ), a recursive clause,
where generate(p(X1, . . . , Xn) : −body′) = (bool, Γ,Eq, Ineq,Δ), such that
body′ is body after removing all recursive calls,
and Ineq′ = Ineq ∪ {−→σ1 ≤ −→τ , . . . ,−→σk ≤ −→τ ,−→τ ≤ −→σ1, . . . ,

−→τ ≤ −→σk}, such that
τ are the types for the variables in the head of the clause in Γ and σi are the
types for the variables in each recursive call.

Example 7. Consider the following predicate:

list(X) :- X = []; X = [Y|YS], list(Ys).

the output of applying the generate function to the predicate is:
generate(list(X) : −X = [ ];X = [Y |Y s], list(Y s)) = {bool, {X : σ1, Y : σ2, Y s :
σ3}, {α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = α + β, σ2 = δ, σ3 = ε}}.

The set {σ3 ≤ σ1, σ1 ≤ σ3} comes from the recursive call to the predicate,
while α = [ ] comes from X = [ ], and β = [δ | ε] comes from X = [Y |Y s]. The
definition σ1 = α + β comes from the application of the ⊕ operation.

5.3 Constraint Solving

Let Eq be a set of equality constraints, Ineq be a set of subtyping constraints, and
Δ a set of type definitions. Function solve(Eq, Ineq,Δ) is a rewriting algorithm
that solves the constraints, outputting a pair of a substitution and a new set of
type definitions. Note that the rewriting rules in the following definitions of the
solver algorithm are assumed to be ordered.

Definition 9. A set of equality constraints is in solved form if:

– all constraints are of the form αi = τi;
– there are no two constraints with the same αi on the left hand side;
– no type variables on the left-hand side of the equations occurs on the right-

hand side of equations.

A set of equality constraints in normal form can be interpreted as a substi-
tution, where each constraint αi = τi corresponds to a substitution for the type
variable αi, [αi �→ τi].

A configuration is either the term fail (representing failure), a pair of a sub-
stitution and a set of type definitions (representing the end of the algorithm), or
a triple of a set of equality constraints Eq, a set of subtyping constraints Ineq,
and a set of type definitions Δ. The following rewriting algorithm consists of the
transformation rules on configurations.
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solve(Eq, Ineq,Δ) =

1. ({τ = τ} ∪ Eq, Ineq,Δ) → (Eq, Ineq,Δ)
2. ({α = τ} ∪ Eq, Ineq,Δ) → ({α = τ} ∪ Eq[α �→ τ ], Ineq[α �→ τ ],Δ[α �→ τ ]),

if type variable α occurs in Eq, Ineq, or Δ
3. ({τ = α} ∪ Eq, Ineq,Δ) → ({α = τ} ∪ Eq, Ineq,Δ), where α is a type

variable and τ is not a type variable
4. ({f(τ1, . . . , τn) = f(τ ′1, . . . , τ ′n)} ∪ Eq, Ineq,Δ → ({τ1 = τ ′1, . . . , τn =

τ ′n} ∪ Eq, Ineq,Δ
5. ({f(τ1, . . . , τn) = g(τ ′1, . . . , τ ′m)} ∪ Eq, Ineq,Δ) → fail
6. (Eq, {τ ≤ τ} ∪ Ineq,Δ) → (Eq, Ineq,Δ)
7. (Eq, {f(τ1, . . . , τn) ≤ f(τ ′1, . . . , τ ′n)} ∪ Ineq,Δ) → (Eq, {τ1 ≤ τ ′1, . . . τn ≤

τ ′n} ∪ Ineq,Δ)
8. (Eq, {α ≤ τ1, . . . , α ≤ τn} ∪ Ineq,Δ) → (Eq ∪ Eq′, {α ≤ τ} ∪ Ineq,Δ′),

where α is a type variable, n ≥ 2, and intersect(τ1, . . . , τn,Δ, I) =
(τ, Eq′,Δ′)

9. (Eq, {α ≤ τ} ∪ Ineq,Δ) → (Eq ∪ {α = τ}, Ineq,Δ),
where α is a type variable and no other constraints exist with α on the
left-hand side

10. (Eq, {τ1 + . . . + τn ≤ τ} ∪ Ineq,Δ) → (Eq, {τ1 ≤ τ, . . . , τn ≤ τ} ∪ Ineq,Δ)
11. (Eq, {σ ≤ τ} ∪ Ineq,Δ) → (Eq, Ineq,Δ),

if (σ,τ) are on the store of pairs of types that have already been compared
12. (Eq, {σ ≤ τ} ∪ Ineq,Δ) → (Eq, {Rhsσ ≤ τ} ∪ Ineq,Δ),

where σ is a type symbol, and σ = Rhsσ ∈ Δ. Also add (σ, τ) to the store
of pairs of types that have been compared

13. (Eq, {τ1 ≤ α, . . . τn ≤ α} ∪ Ineq,Δ) → (Eq ∪ {α = τ1 + . . . + τn}, Ineq,Δ)
14. (Eq, {τ ≤ τ1 + . . . + τn} ∪ Ineq,Δ) → (Eq, {τ ≤ τi} ∪ Ineq,Δ),

where τi is one of the summands
15. (Eq, {τ ≤ σ} ∪ Ineq,Δ) → (Eq, Ineq,Δ),

if (σ,τ) are on the store of pairs of types that have already been compared
16. (Eq, {τ ≤ σ} ∪ Ineq,Δ) → (Eq, {τ ≤ Rhsσ} ∪ Ineq,Δ),

where σ is a type symbol, and σ = Rhsσ ∈ Δ. Also add (σ, τ) to the store
of pairs of types that have been compared

17. (Eq, ∅,Δ) → (Eq,Δ′)
18. otherwise → fail.

Note that an occur check is required in steps 2, 9, and 13. This rewriting
algorithm is based on the one described in [Mah88] for equality constraints, and
an original one for the subtyping constraints. We will now show an example
of the execution of the algorithm on the output of the constraint generation
algorithm, showed in Example 7.

Example 8. Following Example 7, applying solve to the tuple (Eq, Ineq,Δ), cor-
responding to ({X : σ1, Y : σ2, Y s : σ3}, {α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤
σ3}, {σ1 = α + β, σ2 = δ, σ3 = ε}):
({α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = α + β, σ2 = δ, σ3 = ε}) →2

({α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ] + β, σ2 = δ, σ3 = ε}) →2
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({α = [ ], β = [δ | ε]}, {σ3 ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ] + [δ | ε], σ2 = δ, σ3 = ε}) →12

({α = [ ], β = [δ | ε]}, {ε ≤ σ1, σ1 ≤ σ3}, {σ1 = [ ] + [δ | ε], σ2 = δ, σ3 = ε}) →9

({α = [ ], β = [δ | ε], ε = σ1}, {σ1 ≤ σ3}, {σ1 = [ ] + [δ | ε], σ2 = δ, σ3 = ε}) →2

({α = [ ], β = [δ | σ1], ε = σ1}, {σ1 ≤ σ3}, {σ1 = [ ]+[δ | σ1], σ2 = δ, σ3 = σ1}) →s

({α = [ ], β = [δ | σ1], ε = σ1}, {σ1 ≤ σ1}, {σ1 = [ ] + [δ | σ1], σ2 = δ}) →6

({α = [ ], β = [δ | σ1], ε = σ1}, ∅, {σ1 = [ ] + [δ | σ1], σ2 = δ})

Note that the resulting set of constraints only contains constraints in solved
form, that can be seen as a substitution. Step →s, stands for the following
simplification step: if two type definitions are equal, we delete one of them and
replace every occurrence of the type symbol by the other. Therefore, the resulting
context Γ is {X : σ1, Y : σ2, Y s : σ1}.

Type intersection is calculated as follows, intersect(τ1, τ2,Δ, I) = (τ, Eq′,Δ′),
where:

– if both τ1 and τ2 are type variables, then τ = τ2,Δ′ = Δ,Eq′ = {τ1 = τ2}.
– if τ1 = τ2, then τ = τ1,Δ′ = Δ,Eq′ = ∅.
– if (τ1, τ2, τ3) ∈ I, then τ = τ3,Δ′ = Δ,Eq′ = ∅.
– if τ1 is a type variable, then τ = τ2,Δ′ = Δ,Eq′ = ∅.
– if τ2 is a type variable, then τ = τ1,Δ′ = Δ,Eq′ = ∅.
– if τ1 = σ1, τ2 = σ2, and (τ̄ , Eq,Δ2) = cpi(τ̄1, τ̄2,Δ, I ∪ {(τ1, τ2, τ3)}), then

τ = τ3,Δ′ = Δ2 ∪ {τ3 = τ̄}, Eq′ = Eq, where σ1 = τ̄1, σ2 = τ̄2 ∈ Δ and τ3 is
fresh.

– if τ1 = σ1, τ2 = f(t1, . . . , tn), and (τ̄ , Eq,Δ2) = cpi(τ̄ , τ2,Δ, I ∪{(τ1, τ2, τ3)}),
then τ = τ3,Δ′ = Δ∪{τ3 = τ̄}, Eq′ = Eq, where σ1 = τ̄1 ∈ Δ and τ3 is fresh.
Same for τ2 = σ1 and τ1 = f(t1, . . . , tn).

– if τ1 = f(τ1, . . . , τn), τ2 = f(τ ′1, . . . , τ ′n), then ∀i.1 ≤ i ≤ n, (τ ′′i, Eqi,Δi) =
intersect(τi, τ ′i,Δ, I), τ = f(τ ′′1, . . . , τ ′′n),Δ′ = Δ1 ∪ . . . ∪ Δn, Eq′ = Eq1 ∪
. . . ∪ Eqn.

– otherwise fail.

cpi(τ̄1, τ̄2,Δ, I) is a function that applies intersect(τ, τ ′,Δ, I) to every pair of
types τ, τ ′, such that τ ∈ τ̄1 and τ ′ ∈ τ̄2, and gathers all results as the output.

This intersection algorithm is based on the one presented in [Zob87], with
a few minor changes. The difference is that our types can be type variables,
which could not happen in Zobel’s algorithm, since intersection was only cal-
culated between ground types. To deal with this extension, in our algorithm
type variables are treated as Zobel’s any type, except when both types are type
variables, in which case we also unify them. Termination and correctness of type
intersection for a tuple distributive version of Zobel’s algorithm was proved pre-
viously in [Lu01] and replacing the any type with type variables maintains the
same properties, because our use of type intersection considers types where type
variables occur only once, thus they can be safely replaced by Zobel’s any type.
Note that we deal with type variables which occur more than once but with calls
to type unification.
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5.4 Decidability

The next theorem shows that both the equality constraint and subtyping con-
straint solvers terminate at every input set of constraints.

Theorem 1 (Termination). solve always terminates, and when solve termi-
nates, it either fails or the output is a pair of a substitution and a new set of
type definitions.

The proof for this theorem follows a usual termination proof approach, where
we show that a carefully chosen metric decreases at every step.

To guarantee that the output set of equality constraints is in normal form,
in order to be interpreted as a substitution, we also prove the lemma below.

Lemma 1. If solve(Eq, Ineq,Δ) →∗ (S,Δ′), then S is in normal form.

5.5 Soundness

Here we prove that the type inference algorithm is sound, in the sense that
inferred types are derivable in the type system, which defines well-typed pro-
grams. For this we need the following auxiliary definitions and lemmas which
are used in the proofs of the main theorems.

The following lemmas state properties of the constraint satisfaction relation
|=, subtyping, and the type intersection operation.

Lemma 2. If we have S such that S |= C ∪ C′, then S |= C and S |= C′.
Lemma 3. If S |= Eq such that (Γ,Δ,Eq) = ⊗((Γ1, . . . , Γn), (Δ1, . . . ,Δn)),
and ∀i.Γi, S(Δi) 
 Mi : S(τi) then ∀i.Γ, S(Δ) 
 Mi : S(τi).

Lemma 4. If we know for all i = 1, . . . , n that Γi, S(Δi) 
 bi : bool and we
know (Γ,Δ) = ⊗((Γ1, . . . , Γn), (Δ1, . . . ,Δn)), then Γ, S(Δ) 
 bi : bool.

Lemma 5. Let τ1, . . . , τn, τ be types such that ∀i.τi � τ . Then τ1 + . . .+τn � τ .

Lemma 6. Let τ1, . . . , τn, τ be types such that ∃i.τ � τi. Then τ � τ1 + . . .+τn.

Lemma 7. If intersect(τ1, τ2, I,Δ) = (τ, Eq,Δ′), then τ � τ1, and τ � τ2.

Proposition 1. If Eq is a set of equality constraints in normal form, then Eq |=
Eq.

Now we have a theorem for the soundness of constraint generation which
states that if one applies a substitution which satisfies the generated constraints
to the type obtained by the constraint generation function, we get a well-typed
program.

Theorem 2 (Soundness of Constraint Generation). For a program, query,
or term P , if generate(P ) = (τ, Γ,Eq, Ineq,Δ), then for any S |= Eq, Ineq,
we have Γ, S(Δ) 
 P : S(τ).
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We also proved the soundness of constraint solving, which basically shows that
the solved form returned by our constraint solver for a set of constrains C
satisfies C.

Theorem 3 (Soundness of Constraint Solving). Let Eq be a set of equality
constraints, Ineq a set of subtyping constraints, and Δ a set of type definitions.
If solve(Eq, Ineq,Δ) →∗ (S,Δ′) then S |= Eq, Ineq.

Finally, using the last two theorems we prove the soundness of the type inference
algorithm. The soundness theorem states that if one applies the substitution
corresponding to the solved form returned by the solver to the type obtained by
the constraint generation function, we get a well-typed program.

Theorem 4 (Soundness of Type Inference). Given P , if generate(P ) =
(τ, Γ,Eq, Ineq,Δ) and solve(Eq, Ineq,Δ) →∗ (S,Δ′), then Γ, S(Δ′) 
 P : S(τ).

6 Related Work

Types have been used before in Prolog systems: relevant works on type systems
and type inference in logic programming include types used in the logic program-
ming systems CIAO Prolog [SG95,VB02], SWI and Yap [SCWD08]. CIAO uses
types as approximations of the success set, while we use types as filters to the
program semantics. There is an option where the programmer gives the types
for the programs in the form of assertions, which is recommended in [PCPH08].
The well-typings given in [SBG08], also have the property that they never fail,
in the sense that every program has a typing, which is not the case in our algo-
rithm, which will fail for some predicates. The previous system of Yap only type
checked predicate clauses with respect to programmer-supplied type signatures.
Here we define a new type inference algorithm for pure Prolog, which is able to
infer data types.

In several other previous works types approximated the success set of a
predicate [Zob87,DZ92,YFS92,BJ88]. This sometimes led to overly broad types,
because the way logic programs are written can be very general and accept more
than what was initially intended. These approaches were different from ours in
the sense that in our work types can filter the success set of a predicate, when-
ever the programmer chooses to do so, using the closure operation, or data type
declarations.

A different approach relied on ideas coming from functional programming lan-
guages [MO84,LR91,HL94,SCWD08]. Other examples of the influence of func-
tional languages on types for logic programming are the type systems used in
several functional logic programming languages [Han13,SHC96]. Along this line
of research, a rather influential type system for logic programs was Mycroft and
O’Keefe type system [MO84], which was later reconstructed by Lakshman and
Reddy [LR91]. This system had types declared for the constants, function sym-
bols and predicate symbols used in a program. Key differences from our work
are: 1) in previous works each clause of a predicate must have the same type.
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We lift this limitation extending the type language with sums of types, where
the type of a predicate is the sum of the types of its clauses; 2) although we may
use type declarations, they are optional and we can use a closure operation to
infer datatype declarations from untyped programs.

Set constraints have also been used by many authors to infer types for
logic programming languages [HJ92,GdW94,TTD97,CP98,DMP00,DMP02].
Although these approaches differ from ours since they follow the line of conserva-
tive approximations to the success set, we were inspired from general techniques
from this area to define our type constraint solvers.

7 Final Remarks

In this paper, we present a sound type inference algorithm for pure Prolog.
Inferred types are semantic approximations by default, but the user may tune
the algorithm, quite easily, to automatically infer types which correspond to the
usual data types used in the program. Moreover, the algorithm may also be tuned
to use predefined (optional) data type declarations to improve the output types.
We proved the soundness of the algorithm, but completeness (meaning that the
inferred types are a finite representation of all types which make the program
well-typed) is an open problem for now. We strongly suspect that the algorithm
is complete without closure, but could not prove it yet. On the implementation
side we are now extending Y APT to deal with full Prolog to be able to apply
it to more elaborated programs. This includes built-ins and mutually recursive
predicates. For this, we will have predefined rules for every built-in predicate
and we are also extending the algorithm to generate constraints not for single
predicates, but for each strongly connected component on the dependency graph
of the program.
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Abstract. The functional correspondence is a manual derivation tech-
nique transforming higher-order evaluators into the semantically equiv-
alent abstract machines. The transformation consists of two well-known
program transformations: translation to continuation-passing style that
uncovers the control flow of the evaluator and Reynolds’s defunction-
alization that generates a first-order transition function. Ever since the
transformation was first described by Danvy et al. it has found numerous
applications in connecting known evaluators and abstract machines, but
also in discovering new abstract machines for a variety of λ-calculi as well
as for logic-programming, imperative and object-oriented languages.

We present an algorithm that automates the functional correspon-
dence. The algorithm accepts an evaluator written in a dedicated min-
imal functional meta-language and it first transforms it to administra-
tive normal form, which facilitates program analysis, before performing
selective translation to continuation-passing style, and selective defunc-
tionalization. The two selective transformations are driven by a control-
flow analysis that is computed by an abstract interpreter obtained using
the abstracting abstract machines methodology, which makes it possi-
ble to transform only the desired parts of the evaluator. The article is
accompanied by an implementation of the algorithm in the form of a
command-line tool that allows for automatic transformation of an evalu-
ator embedded in a Racket source file and gives fine-grained control over
the resulting machine.

Keywords: Evaluator · Abstract machine · Continuation-passing
style · Defunctionalization

1 Introduction

When it comes to defining or prototyping a programming language one tradition-
ally provides an interpreter for the language in question (the object-language)
written in another language (the meta-language) [19,31]. These definitional
interpreters can be placed on a spectrum from most abstract to most explicit.
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At the abstract end lie the concise meta-circular interpreters which use meta-
language constructs to interpret the same constructs in the object-language (e.g.,
using anonymous functions to model functional values, using conditionals for if
expressions, etc.). In the middle one might place various evaluators with some
constructs interpreted by simpler language features (e.g., with environments rep-
resented as lists or dictionaries instead of functions), but still relying on the
evaluation order of the meta-language. The explicit end is occupied by first-
order machine-like interpreters which use an encoding of a stack for handling
control-flow of the object-language.

When it comes to modelling an implementation of a programming language,
and a functional one in particular, one traditionally constructs an abstract
machine, i.e., a first-order tail-recursive transition system for program execu-
tion. Starting with Landin’s SECD machine [25] for λ-calculus, many abstract
machines have been proposed for various evaluation strategies and with differ-
ing assumptions on capabilities of the runtime (e.g., substitution vs environ-
ments). Notable work includes: Krivine’s machine [24] for call-by-name reduc-
tion, Felleisen and Friedman’s CEK machine [17] and Crégut’s machine [13] for
normalization of λ-terms in normal order. Manual construction of an abstract
machine for a given evaluation discipline can be challenging and it requires
a proof of equivalence w.r.t. the higher-level semantics, therefore methods for
deriving the machines from natural or reduction semantics have been devel-
oped [2,10,15,20,32]. However, one of the most fruitful and accessible abstract
machine derivation methods was developed in the realm of interpreters and pro-
gram transformations by Danvy et al. who introduced a functional correspon-
dence between higher-order evaluators and abstract machines [4] – the topic of
the present work.

The functional correspondence is a realization that Reynolds’s [31] trans-
formation to continuation-passing style1 and defunctionalization, which allow
one to transform higher-order, meta-circular, compositional definitional inter-
preters into first-order, tail-recursive ones, can be seen as a general method of
actually transforming an encoding of a denotational or natural semantics into
an encoding of an equivalent abstract machine. The technique has proven to
be indispensable for deriving a correct-by-construction abstract machine given
an evaluator in a diverse set of languages and calculi including normal and
applicative order λ-calculus evaluation [4] and normalization [8], call-by-need
strategy [5] and Haskell ’s STG language [29], logic engine [11], delimited con-
trol [9], computational effects [6], object-oriented calculi [14] and Coq ’s tactic
language [23]. Despite these successes and its mechanical nature, the functional
correspondence has not yet been transformed into a working tool which would
perform the derivation automatically.

The goal of this work is to give an algorithmic presentation of the functional
correspondence that has been implemented by the first author as a semantics
transformer. In particular, we describe the steps required to successfully convert

1 The transformation used by Reynolds was later formalized by Plotkin as call-by-
value CPS translation [30].
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the human-aided derivation method into a computer algorithm for transforming
evaluators into a representation of an abstract machine. Our approach hinges
on control-flow analysis as the basis for both selective continuation-passing style
transformation and partial defunctionalization, and, unlike most of the works
treating such transformations [7,27], we do not rely on a type system. In order
to obtain correct, useful and computable analysis we employ the abstracting
abstract machines methodology (AAM) [22] which allows for deriving the analy-
sis from an abstract machine for the meta-language. This derivation proved very
capable in handling the non-trivial meta-language containing records, anony-
mous functions and pattern matching. The resulting analysis enables automatic
transformation of user specified parts of the interpreter as opposed to whole-
program-only transformations. The transformation, therefore, consists of: (1)
transformation to administrative normal form (ANF) [18] that facilitates the
subsequent steps, (2) control-flow analysis using the AAM technique and selec-
tive (based on the analysis) CPS transformation that makes the control flow in
the evaluator explicit and idependent from the meta-language, (3) control-flow
analysis once more and selective (again, based on the analysis) defunctionaliza-
tion that replaces selected function spaces with their first-order representations
(e.g., closures and stacks), and (4) let inlining that cleans up after the transfor-
mation.

The algorithm has been implemented in the Haskell programming language
giving raise to a tool—semt—performing the transformation. The tool accepts
evaluators embedded in Racket source files. Full Racket language is available for
testing the evaluators. We tested the tool on multiple interpreters for a diverse
set of programming language calculi. It is available at:

https://bitbucket.org/pl-uwr/semantic-transformer

The rest of this article is structured as follows: In Sect. 2, we introduce
the Interpreter Definition Language which is the meta-language accepted by
the transformer and will be used in example evaluators throughout the paper.
In Sect. 3, we present the algorithmic characterization of the functional cor-
respondence. In Sect. 4, we briefly discuss the performance of the tool on a
selection of case studies. In Sect. 5, we point at future avenues for improve-
ment and conclude. In Appendix A, we illustrate the functional correspondence
with a minimal example, for the readers unfamiliar with the CPS transforma-
tion and/or defunctionalization. Appendix B contains an extended example—a
transformation of a normalization-by-evaluation function for λ-calculus into the
corresponding abstract machine.

2 Interpreters and the Meta-language

The Interpreter Definition Language or IDL is the meta-language used by semt –
a semantic transformer that we have developed. It is a purely functional, higher-
order, dynamically typed language with strict evaluation order. It features named
records and pattern matching which allow for convenient modelling of abstract

https://bitbucket.org/pl-uwr/semantic-transformer
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(def-data Term

String

{Abs String Term}

{App Term Term})

(def init (x) (error "empty environment"))

(def extend (env y v)

(fun (x) (if (eq? x y) v (env x))))

(def eval (env term)

(match term

([String x] (env x))

({Abs x body} (fun (v) (eval (extend env x v) body)))

({App fn arg} ((eval env fn) (eval env arg)))))

(def main ([Term term]) (eval init term))

Fig. 1. A meta-circular interpreter for λ-calculus

x, y, z, f ∈ Var r ∈ StructName s ∈ String b ∈ Int ∪ Boolean ∪ String
Tp � tp ::= String | Integer | Boolean

Pattern � p ::= x | b | _ | {r p . . .} | [tp x]
Term � t ::= x | b | (fun (x . . .) t) | (t t . . .) | {r t . . .}

| (let p t t) | (match t (p t). . .) | (error s)

Fig. 2. Abstract syntax of the IDL terms

syntax of the object-language as well as base types of integers, booleans and
strings. The concrete syntax is in fully parenthesized form and the programs
can be embedded in a Racket source file using a provided library with syntax
definitions.

As shown in Fig. 1 a typical interpreter definition consists of several top-
level function definitions which may be mutually recursive. The def-data form
introduces a datatype definition. In our case it defines a type Term for terms
of λ-calculus. It is a union of three types: Strings representing variables of
λ-calculus; records with label Abs and two fields of types String and Term
representing abstractions; and records labeled App which contain two Terms and
represent applications. A datatype definition may refer to itself, other previously
defined datatypes and records, the base types of String, Integer and Boolean
or a placeholder type Any. The main function is treated as an entry point for the
evaluator and must have its arguments annotated with their type.

The match expression matches an expression against a list of patterns. Pat-
terns may be variables (which will be bound to the value being matched),
wildcards _, base type patterns, e.g., [String x] or record patterns, such as
{Abs x body}. The fun form introduces anonymous function, error "..."
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stops execution and signals the error. Finally, application of a function is written
as in Racket, i.e., as a list of expressions (e.g., (eval init term)). The evalu-
ator in Fig. 1 takes advantage of the functional representation of environments
(init and extend) and it structurally recursively interprets λ-terms (eval).
The evaluation strategy for the object-language is in this case inherited from
the meta-language, and, therefore, call by value (we assumed IDL strict) [31].

The abstract syntax of the IDL terms is presented in Fig. 2. The meta-
variables x, y, z denote variables; r denotes structure (aka record) names; s is
used to denote string literals and b is used for all literal values – strings, integers
and booleans. The meta-variable tp is used in pattern matches which check
whether a value is one of the primitive types. The patterns are referred to with
variable p and may be a variable, a literal value, a wildcard, a record pattern
or a type test. Terms are denoted with variable t and are either a variable, a
literal value, an anonymous function, an application, a record constructor, a let
binding (which may destructure bound term with a pattern), a pattern match
or an error expression.

3 Transformation

The transformation described in this section consists of three main stages: trans-
lation to administrative normal form, selective translation to continuation-pass-
ing style, and selective defunctionalization. After defunctionalization the pro-
gram is in the desired form of an abstract machine. The last step taken by
the transformer is inlining of administrative let-bindings introduced by previous
steps in order to obtain more readable results. In the remainder of this section
we will describe the three main stages of the transformation and the algorithm
used to compute the control-flow analysis.

3.1 Administrative Normal Form

The administrative normal form (ANF) [18] is an intermediate representation for
functional languages in which all intermediate results are let-bound to names.
This shape greatly simplifies later transformations as programs do not have
complicated sub-expressions. From the operational point of view, the only place
where a continuation is grown when evaluating program in ANF is a let-binding.
This property ensures that a program in ANF is also much easier to evaluate
using an abstract machine which will be taken advantage of in Sect. 3.2. The
abstract syntax of terms in ANF and an algorithm for transforming IDL pro-
grams into such form is presented in Fig. 3. The terms are partitioned into
three levels: variables, commands and expressions. Commands c extend variables
with values – base literals, record constructors (with variables as sub-terms) and
abstractions (whose bodies are in ANF); and with redexes like applications of
variables and match expressions (which match on a variable and have branches
in ANF). Expressions e in ANF have the shape of a possibly empty sequence of
let-bindings ending with either an error term or a command.
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Fig. 3. ANF transformation for IDL

The [[·]]· function, written in CPS2, is the main transformation function. Its
arguments are a term to be transformed and a meta-language continuation which
will be called to obtain the term for the rest of the transformed input. This
function decomposes the term according to the (informal) evaluation rules and
uses two helper functions. Function [·]a transforms a continuation expecting a
variable (which are created when transforming commands) into one accepting
any command by let-binding the passed argument c when necessary. Function
[[·]]s· sequences computation of multiple expressions by creating a chain of let-
bindings (using [·]a) and then calling the continuation with created variables.

3.2 Control-Flow Analysis

The analysis most relevant to the task of deriving abstract machines from inter-
preters is the control-flow analysis. Its objective is to find for each expression
in a program an over-approximation of a set of functions it may evaluate to
[28]. This information can be used in two places: when determining whether a
function and applications should be CPS transformed and for checking which
functions an expression in operator position may evaluate to. There are a couple
of different approaches to performing this analysis available in the literature:
abstract interpretation [28], (annotated) type systems [28] and abstract abstract

2 See Appendix A of [18].
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ν ∈ VAddr κ ∈ KAddr l ∈ Label σ ∈ Store
δ ∈ PrimOp ⊆ Val∗ → V al

ρ ∈ Env = Var → VAddr
Val � v ::= b | δ | {r ν . . .} | 〈ρ, x . . . , e〉 | (def x (x . . .) e)

Cont � k ::= 〈ρ, p, e, κ〉 | 〈〉
PartialConf � γ ::= 〈ρ, e, κ〉e | 〈ν, κ〉c

Conf � ς ::= 〈σ, γ〉〈
σ, 〈ρ, x, κ〉e

〉 ⇒ 〈
copyv(ρ(x), l, σ), 〈ρ(x), κ〉c

〉〈
σ,

〈
ρ, bl, κ

〉
e

〉 ⇒ 〈
σ′, 〈ν, κ〉c

〉
where 〈σ′, ν〉 = allocv(b, l, σ)〈

σ,
〈
ρ, {r x . . .}l, κ

〉
e

〉 ⇒ 〈
σ′, 〈ν, κ〉c

〉
where 〈σ′, ν〉 = allocv({r ρ(x) . . .}, l, σ)〈

σ,
〈
ρ, (fun (x . . .)e)l, κ

〉
e

〉 ⇒ 〈
σ′, 〈ν, κ〉c

〉
where 〈σ′, ν〉 = allocv(〈ρ, x . . . , e〉 , l, σ)〈

σ,
〈
ρ, (let p cl e), κ

〉
e

〉 ⇒ 〈
σ′, 〈ρ, c, κ′〉e

〉
where 〈σ′, κ′〉 = allock(〈ρ, p, e, κ〉 , l, σ)〈

σ, 〈ρ, (x y . . .), κ〉e
〉 ⇒ apply(σ, ρ(x), ρ(y) . . . , l)〈

σ, 〈ρ, (match x (p e). . .), κ〉e
〉 ⇒ match(σ, ρ, ρ(x), 〈p, e〉 . . .)〈

σ, 〈ν, κ〉c
〉 ⇒ match(σ, ρ, ν, κ′, 〈p, e〉)
where 〈ρ, p, e, κ′〉 = deref k(σ, κ)

apply(σ, ν, ν′ . . . , κ, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
σ, 〈ρ[(x 
→ ν′) . . .], e, κ〉e

〉
when deref v(σ, ν) = 〈ρ, x . . . , e〉〈

σ, 〈ρ0[(x 
→ ν′) . . .], e, κ〉e
〉

when deref v(σ, ν) = (def y (x . . .) e)〈
σ′, 〈ν′′, κ〉c

〉
when deref v(σ, ν) = δ

and 〈σ′, ν′′〉 = allocv(δ(σ(ν′) . . .), l, σ)
match(σ, ρ, ν, κ, 〈p, e〉 . . .) =

〈
σ, 〈ρ′, e′, κ〉e

〉
where ρ′ is the environment

for the first matching branch with body e′

Fig. 4. A template abstract machine for IDL terms in ANF

machines [22]. We chose to employ the last approach as it allows for derivation
of the control-flow analysis from an abstract machine for IDL. The derivation
technique guarantees correctness of the resulting interpreter and hence provides
high confidence in the actual implementation of the machine. We next present
the template for acquiring both concrete and abstract versions of the abstract
machine for IDL. The former machine defines the semantics of IDL; the latter
computes the CFA.

A Machine Template. We will begin with a template of a machine for IDL
terms in A-normal form, presented in Fig. 4. It is a CEK-style machine mod-
ified to explicitly allocate memory for values and continuations in an abstract
store. The template is parameterized by: implementation of the store σ along
with five operations: allocv, allock, deref v, deref k and copyv; interpretation of
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primitive operations δ and implementation of match function which interprets
pattern matching. The store maps value addresses ν to values v and continua-
tion addresses κ to continuations k. The environment maps program variables
to value locations. The values on which the machine operates are the following:
base values b, primitive operations δ, records with addresses as fields, closures
and top-level functions. Thanks to terms being in A-normal form, there are only
two kinds of continuations which form a stack. The stack frames 〈ρ, p, e, κ〉 are
introduced by let-bindings. They hold an environment ρ, a pattern p to use for
destructuring a value, the body e of a let expression and a pointer to the next
continuation κ. The bottom of the stack is marked by the empty continuation
〈〉. We assume that every term has a unique label l which will be used in the
abstract version of the machine to implement store addresses.

The machine configurations are pairs of a store σ and a partial configura-
tion γ. This split of configuration into two parts will prove beneficial when we
instantiate the template to obtain an abstract interpreter. There are two classes
of partial configurations. An evaluation configuration contains an environment
ρ, an expression e and a continuation pointer κ. A continuation configuration
holds an address ν of a value that has been computed so far and a pointer κ to
a resumption which should be applied next.

The first case of the transition relation ⇒ looks up a pointer for the vari-
able x in the environment ρ and switches to continuation mode. It modifies
the store via copy function which ensures that every occurrence of a variable
has a corresponding binding in the store. The next three cases deal with values
by allocating them in the store and switching to continuation mode. When the
machine encounters a let-binding it allocates a continuation for the body e of the
expression and proceeds to evaluate the bound command c with the new pointer
κ′. In case of applications and match expressions the resulting configuration is
decided using auxiliary functions apply and match, respectively. Finally, in con-
tinuation mode, the machine may only transition if the continuation loaded from
the address κ is a frame. In such a case the machine matches the stored pattern
against the value pointed-to by ν. Otherwise κ points to a 〈〉 instead and the
machine has reached the final state. The auxiliary function apply checks what
kind of function is referenced by ν and proceeds accordingly.

A Concrete Abstract Machine. The machine template can now be instanti-
ated with a store, a match implementation which finds the first matching branch
and interpretation for primitive operations in order to obtain a concrete abstract
machine. By choosing Store to be a mapping with infinite domain we can ensure
that alloc can always return a fresh address. In this setting the store-allocated
continuations are just an implementation of a stack. The extra layer of indirection
introduced by storing values in a store can also be disregarded as the machine
operates on persistent values. Therefore, the resulting machine, which we omit,
corresponds to a CEK-style abstract machine which is a canonical formulation
for call-by-value functional calculi [16].
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VAddr = KAddr = Label
Ṽal � v ::= tp | δ̃ | {r ν . . .} | 〈ρ, x . . . , e〉 | (def x (x . . .) e)

σ ∈ Store = (VAddr → P(Ṽal)) × (KAddr → P(Cont))
allocv(v, l, 〈σv, σk〉) = 〈〈σv[l 
→ σv(l) ∪ {v}], σk〉 , l〉
allock(v, l, 〈σv, σk〉) = 〈〈σv, σk[l 
→ σk(l) ∪ {k}]〉 , l〉
copyv(ν, l, 〈σv, σk〉) = 〈σv[l 
→ σv(l) ∪ σv(ν)], σk〉
deref v(l, 〈σv, σk〉) = σv

ς̃ ∈ C̃onf = Store × P(PartialConf)
〈σ, C〉 ⇒a 〈σ′ � σ, C ∪ C′〉

where σ′ =
⊔{σ′ | ∃γ ∈ C. 〈σ, γ〉 ⇒ 〈σ′, γ′〉}

and C′ = {γ′ | ∃γ ∈ C. 〈σ, γ〉 ⇒ 〈σ′, γ′〉}

Fig. 5. An abstract abstract machine for IDL

An Abstract Abstract Machine. Let us now turn to a different instantia-
tion of the template. Figure 5 shows the missing pieces of an abstract abstract
machine for IDL. The abstract values use base type names tp to represent any
value of that type, abstract versions of primitive operations, records, closures and
top-level functions. The interpretation of primitive operations must approximate
their concrete counterparts.

The store is represented as a pair of finite mappings from labels to sets of
abstract values and continuations, respectively. This bounding of store domain
and range ensures that the state-space of the machine becomes finite and there-
fore can be used for computing an analysis. To retain soundness w.r.t. the con-
crete abstract machine the store must map a single address to multiple values
to account for address reuse. This style of abstraction is classical [28] and fairly
straightforward [22]. When instantiated with this store, the transition relation ⇒
becomes nondeterministic as pointer deref erencing nondeterministically returns
one of the values available in the store. Additionally the implementation of the
match function is also nondeterministic in the choice of the branch to match
against.

This machine is not yet suitable for computing the analysis as the state
space is still too large since every machine configuration has its own copy of
the store. To circumvent this problem a standard technique of widening [28] can
be employed. In particular, following [22], we use a global store. The abstract
configuration ς̃ is a pair of a store and a set of partial configurations. The abstract
transition ⇒a performs one step of computation using ⇒ on the global store σ
paired with every partial configuration γ. The resulting stores σ′ are merged
together and with the original store to create a new, extended global store. The
partial configurations C ′ are added to the initial set of configurations C. The
transition relation ⇒a is deterministic so it can be treated as a function. This
function is monotone on a finite lattice and therefore is amenable to fixed-point
iteration.
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Fig. 6. A translation for CPS terms

Computing the Analysis. With the abstract transition function in hand we
can now specify the algorithm for obtaining the analysis. To start the abstract
interpreter we must provide it with an initial configuration: a store, an envi-
ronment, a term and a continuation pointer. The store will be assembled from
datatype and structure definitions of the program as well as base types. The ini-
tial term is the body of the main function of the interpreter and the environment
is the global environment extended with main’s parameters bound to pointers to
datatypes in the above-built store. The initial continuation is of course 〈〉 and the
pointer is the label of the body of the main function. The analysis is computed
by performing fixed-point iteration of ⇒a. The resulting store will contain a set
of functions to which every variable (the only allowed term) in function position
may evaluate (ensured by the use of copyv function). This result will be used in
Sects. 3.3 and 3.4.

3.3 Selective CPS Transformation

In this section we formulate an algorithm for selectively transforming the pro-
gram into continuation-passing style. All functions (both anonymous and top-
level) marked #:atomic by the user will be kept in direct style. The main function
is implicitly marked as atomic since its interface should be preserved as it is an
entry point of the interpreter. Primitive operations are treated as atomic at call-
site. Atomic functions may call non-atomic ones by providing the called function
an identity continuation. The algorithm uses the results of the control-flow anal-
ysis to determine atomicity of functions to which a variable labeled l in function
position may evaluate. If all functions are atomic then allA(l) holds; if none of
them are atomic then noneA(l) holds. When both atomic and non-atomic func-
tions may be called the algorithm cannot proceed and signals an error in the
source program.

The algorithm consists of two mutually recursive transformations. The first,
[[e]]ck in Fig. 6 transforms a term e into CPS. Its second parameter is a program
variable k which will bind the continuation at runtime. The second, [[e]]d in Fig.
7 transforms a term e which should be kept in direct style.
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Fig. 7. A translation for terms which should be left in direct style

The first five clauses of the CPS translation deal with values. When a variable
is encountered it may be immediately returned by applying a continuation. In
other cases the value must be let-bound in order to preserve the A-normal form
of the term and then the continuation is applied to the introduced variable. The
body e of an anonymous function is translated using [[e]]d when the function is
marked atomic. When the function is not atomic a new variable k′ is appended
to its parameter list and its body is translated using [[e]]ck′. The form of an
application depends on the atomicity of functions which may be applied. When
none of them is atomic the continuation k is passed to the function. When all of
them are atomic the result of the call is let-bound and returned by applying the
continuation k. Match expression is transformed by recursing on its branches.
Since the continuation is always a program variable no code gets duplicated.
When transforming a let expression the algorithm checks whether the bound
command c is trivial – meaning it will call only atomic functions when evaluated
If it is, then it can remain in direct style [[c]]d, no new continuation has to be
introduced and the body can be transformed by [[e]]ck. If the command is non-
trivial then a new continuation is created and bound to k′. This continuation
uses a fresh variable y as its parameter. Its body is the let-expression binding y
instead of command c and with body e transformed with the input continuation
k. The bound command c is transformed with the newly introduced continuation
k′. Finally, the translation of error throws out the continuation.

The transformation for terms which should be kept in direct style begins
similarly to the CPS one – with five clauses for values. In case of an application
the algorithm considers two possibilities: when all functions are atomic the call
remains in direct style, when none of them are atomic a new identity continuation
k is constructed and is passed to the called function. A match expression is
again transformed recursively. A let binding of a call to a CPS function gets
special treatment to preserve A-normal form by chaining allocation of identity
continuation with the call. In other cases a let binding is transformed recursively.
An error expression is left untouched.
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(def eval (env term k)

(match term

([String x] (k (env x)))

({Abs x body}

(k (fun (v k’) (eval (extend env x v) body k’))))

({App fn arg}

(eval env fn

(fun (fn’) (eval env arg (fun (v) (fn’ v k))))))))

(def main ([Term term]) (eval init term (fun (x) x)))

Fig. 8. An interpreter for λ-calculus in CPS

Each top-level function definition in a program is transformed in the same
fashion as anonymous functions. After the transformation the program is still
in ANF and can be again analyzed by the abstract abstract machine of the
previous section. CPS-transforming the direct-style interpreter of Fig. 1 yields
an interpreter in CPS shown in Fig. 8 (after let-inlining for readability), where
we assume that the operations on environments were marked as atomic and
therefore have not changed.

3.4 Selective Defunctionalization

The second step of the functional correspondence and the last stage of the trans-
formation is selective defunctionalization. The goal is to defunctionalize function
spaces deemed interesting by the author of the program. To this end top-level
and anonymous functions may be annotated with #:no-defun to skip defunc-
tionalization of function spaces they belong to. In the algorithm of Fig. 9 the
predicate defun specifies whether a function should be transformed. Predicates
primOp and topLevel specify whether a variable refers to (taking into account
the scoping rules) primitive operation or top-level function, respectively. There
are three cases to consider when transforming an application. If the variable in
operator position refers to top-level function or primitive operation it can be left
as is. Otherwise we can utilize the results of control-flow analysis to obtain the
set of functions which may be applied. When all of them should be defunctional-
ized (allDefun) then a call to the generated apply function is introduced, when
none of them should (noneDefun) then the application is left as is. If the require-
ments are mixed then an error in the source program is signaled. To transform
an abstraction, its free variables (fvs(l)) are collected into a record. The apply
functions are generated using mkApply as specified in Fig. 10 where the fn . . . is
a list of functions which may be applied. After the transformation the program
is no longer in A-normal form since variables referencing top-level functions may
have been transformed into records. However it does not pose a problem since
the majority of work has already been done and the last step – let-inlining does
not require the program to be in ANF. Defunctionalizing the CPS interpreter
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Fig. 9. Selective defunctionalization algorithm for IDL

Fig. 10. Top-level apply function generation

of Fig. 8 and performing let-inlining yields an encoding of the CEK abstract
machine shown in Fig. 11 (again, the environment is left intact).

4 Case Studies

We studied the efficacy of the algorithm and the implementation on a number
of programming language calculi. Figure 12 shows a summary of interpreters
on which we tested the transformer. The first group of interpreters is denota-
tional (mostly meta-circular) in style and covers various extensions of the base
λ-calculus with call-by-value evaluation order. The additions we tested include:
integers with addition, recursive let-bindings, delimited control operators – shift
and reset with CPS interpreter based on [9] and exceptions in two styles: monadic
with exceptions as values (functions return either value or an exception) and
in CPS with success and error continuations. The last interpreter for call-by-
value in Fig. 12 is a normalization function based on normalization by evalua-
tion technique transcribed from [1]. We find this result particularly satisfactory,
since it leads to a non-trivial and previously unpublished abstract machine –
we give more details in Appendix B. The next three interpreters correspond to
big-step operational semantics for call-by-name λ-calculus, call-by-need (call-by-
name with memoization) and a simple imperative language, respectively.
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(def-data Cont

{Halt}

{App1 arg env cont}

{App2 fn cont})

(def-struct {Closure body env x})

(def eval (env term cont)

(match term

([String x] (continue cont (env x)))

({Abs x body} (continue cont {Closure body env x}))

({App fn arg} (eval env fn {App1 arg env cont}))))

(def apply (fn v cont)

(let {Fun body env x} fn)

(eval (extend env x v) body cont))

(def continue (cont val)

(match cont

({Halt} val))

({App1 arg env cont} (eval env arg {App2 val cont}))

({App2 fn cont} (apply fn val cont)))

(def main ([Term term]) (eval {Init} term {Halt}))

Fig. 11. An encoding of the CEK machine for λ-calculus

Transformation of call-by-value and call-by-need λ-calculus yielded machines
very similar to the CEK and Krivine machines, respectively. We were also able to
replicate the machines previously obtained via manual application of the func-
tional correspondence [4,9,11]. The biggest differences were due to introduction
of administrative transitions in handling of applications. This property hints at a
potential for improvement by introducing an inlining step to the transformation.
An interesting feature of the transformation is the ability to select which parts of
the interpreter should be transformed and which should be considered atomic.
These choices are reflected in the resulting machine, e.g., by transforming an
environment look up in call-by-need interpreter we obtain a Krivine machine
which has the search for a value in the environment embedded in its transi-
tion rules, while marking it atomic gives us a more abstract formulation from
[4]. Another consequence of this feature is that one can work with interpreters
already in CPS and essentially skip directly to defunctionalization (as tested on
micro-Prolog interpreter of [11]).
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Language Interpreter style Lang. Features Result

call-by-value
λ-calculus

denotational · CEK machine
denotational integers with add CEK with add
denotational,
recursion via
environment

integers, recursive
let-bindings

similar to Reynolds’s
first-order interpreter

denotational
with conts. shift and reset two layers of conts.

denotational,
monadic exceptions

with handlers

explicit
stack unwinding

denotational,
CPS

pointer to
exception handler

normalization
by evaluation · strong CEK machine

call-by-name
λ-calculus big-step · Krivine machine

call-by-need
λ-calculus

big-step
(state passing) memoization lazy Krivine machine

simple
imperative

big-step
(state passing)

conditionals,
while, assignment ·

micro-Prolog CPS
backtracking,
cut operator logic engine

Fig. 12. Summary of tested interpreters

5 Conclusion

In this article we described an algorithm, based on the functional correspon-
dence [4], that allows for automatic derivation of an abstract machine given
an interpreter which typically corresponds to denotational or natural seman-
tics, allowing the user for fine-grained control over the shape of the resulting
machine. In order to enable the transformation we derived a control-flow analysis
for IDL using the abstracting abstract machines methodology. We implemented
the algorithm in the Haskell programming language and used this tool to trans-
form a selection of interpreters. To the best of our knowledge this is the first,
reasonably generic, implementation of the functional correspondence.

The correctness of the tool relies on the correctness of each of the program
transformations involved in the derivation that are classic and in some form
have been proven correct in the literature [7,26,27,30], as well as on the correct-
ness of the control-flow analysis we take advantage of. An extensive number of
experiments we have carried out indicates that the tool indeed is robust.

In order to improve the capabilities of semt as a practical tool for semantics
engineering, the future work could include extending the set of primitive oper-
ations and adding the ability to import arbitrary Racket functions and provide
their abstract specification. The tool could also be extended to accommodate
other output formats such as LATEX figures or low level C code [19].
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Another avenue for improvement lies in extensions of the meta-language capa-
bilities. Investigation of additions such as control operators, nondeterministic
choice and concurrency could yield many opportunities for diversifying the set
of interpreters (and languages) that may be encoded in the IDL. In particular
control operators could allow for expressing the interpreter for a language with
delimited control (or algebraic effects [12,21]) in direct style.
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A A Primer on the Functional Correspondence

In this section we present a simple illustrative example for the reader unfamiliar
with CPS transformations and/or defunctionalization applied in program devel-
opment. We use IDL as our meta-language, and we perform the two transforma-
tions by hand, without using our tool automating the functional correspondence.

In this example, our object-language is the built-in data type of integers, and
the interpreter we are going to transform interprets a given natural number as
its factorial (the negative integers are arbitrarily mapped to 1):

(def factorial (n)
(match (< 0 n)

(#t (* n (factorial (- n 1))))
(#f 1)))

(def main ([Integer n]) (factorial n))

The familiar factorial function is written in direct style, with no explicit men-
tion of the return stack and with a nested recursive call. The main function is
the entry point for the computation.

Let us CPS transform factorial. To this end, we introduce a functional
parameter cont – a continuation – that represents the rest of the computation
before factorial returns a value to main. Returning a value from the function
is expressed by passing it to the continuation ((cont 1)). The nested recur-
sive function call becomes a tail call by passing the function a continuation
(fun (var) (cont (* n var))). The initial continuation is the identity func-
tion – once factorial completes, it returns the final result. Here is the CPS
version of the program:
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(def factorial (n cont)
(match (< 0 n)

(#t (factorial (- n 1)
(fun (var) (cont (* n var)))))

(#f (cont 1))))

(def main ([Integer n]) (factorial n (fun (x) x)))

Next, we defunctionalize the continuations. Defunctionalization consists in
replacing a function space with a first-order data type and a function interpret-
ing the constructors of this data type. Each constructor represents a function
introduction in the defunctionalized function space; the arguments of the con-
structor are the values of the free variables of the corresponding function.

In our case there are two constructors, one for the continuation in the recur-
sive call that should remember the values of the variables cont and n (call it
Cont), and a 0-argument one for the initial continuation (call it Halt). We then
introduce the continue function that interprets the constructors accordingly
and we replace calls to continuations with calls to this function. The resulting
first-order program reads as follows:

(def-struct {Cont cont n})
(def-struct {Halt })

(def continue (fn var)
(match fn

({Cont cont n} (continue cont (* n var)))
({Halt } var)))

(def factorial (n cont)
(match (< 0 n)

(#t (factorial (- n 1) {Cont cont n}))
(#f (continue cont 1))))

(def main ([Integer n]) (factorial n {Halt}))

What we have obtained is a functional encoding of an abstract machine.
The machine operates in two modes: factorial and continue. The mutually
tail-recursive calls model machine transitions. The data type of the defunction-
alized conitnuation, isomorphic with a list of integers, represents the stack of the
machine. The machine did not have to be invented, but instead it was mechani-
cally derived. This is a very simple example of the general phenomenon known
as the functional correspondence that applies to evaluators of virtually arbitrary
complexity.

B Normalization by Evaluation for λ-calculus

In this section we present a more involved case study: deriving a previously
unknown abstract machine from a normalization function for λ-calculus. The
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Fig. 13. A normalization function for call-by-value λ-calculus

normalization function is shown in Fig. 13. It is based on the technique called
normalization by evaluation, and this particular definition has been adapted
from [1]. The main idea is to use standard evaluator for call-by-value λ-calculus
to evaluate terms to values and then reify them back into terms.

The terms use de Bruijn indices to represent bound variables. Since nor-
malization requires reduction under binders the evaluator must work with open
terms. We use de Bruijn levels (Level) to model variables in open terms. The
eval function as usual transforms a term in a given environment into a value
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Fig. 14. A strong call-by-value machine for λ-calculus

which is represented as a function wrapped in a Fun record. The values also
include Levels and Terms which are introduced by the reify function. The
apply function handles both the standard case of applying a functional value
(case Fun) and the non-standard one which occurs during reification of the value
and amounts to emitting the syntax node for application. The reification func-
tion (reify) turns a value back into a term. When its argument is a Fun it
applies the function f to a Level representing unknown variable. When reified,
a Level is turned back into de Bruijn index. Lastly, reification of an (syntactic)
application proceeds recursively. The main function first evaluates a term in an
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empty environment and then reifies it back into its normal form. As usual, we
keep the environment implementation unchanged during the transformation and
we annotate the functional values to be named Closure.

The transformed normalization function is presented in Fig. 14. We notice
that the machine has two classes of continuations. The first set (handled by
continue1) is responsible for the control-flow of reification procedure. The sec-
ond set (handled by continue) is responsible for the control-flow of evaluation
and for switching to reification mode. We observe that the stack used by the
machine consists of a prefix of only evaluation frames and a suffix of only reifi-
cation frames. The machine switches between evaluation and reification in three
places. In line 3 reification of a closure requires evaluation of its body therefore
machine uses apply1 to evaluate the closure with a Level as an argument. The
switch in other direction is due to evaluation finishing: in line 32 a closure’s body
has been evaluated and has to be reified and then enclosed in an Abs (enforced
by the Fun2 frame); in line 35 the initial term has been reduced and the value
can be reified.

The machine we obtained, to our knowledge, has not been described in the
literature. It is somewhat similar to the one mechanically obtained by Ager
et al. [3] who also used the functional correspondence to derive the machine.
Their machine uses meta-language with mutable state in order to generate fresh
identifiers for variables in open terms instead of de Bruijn levels and it operates
on compiled rather than source terms. The machine we obtained using semt is
as legible as the one derived manuallly.
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Abstract. The s-semantics makes it possible to explicitly deal with
variables in program answers. So it seems suitable for programs using
nonground data structures, like open lists. However it is difficult to find
published examples of using the s-semantics to reason about particular
programs.

Here we apply s-semantics to prove correctness and completeness of
Frühwirth’s n queens program. This is compared with a proof, published
elsewhere, based on the standard semantics and Herbrand interpreta-
tions.

Keywords: Logic programming · s-semantics · Program correctness ·
Program completeness · Declarative programming · Specification

1 Introduction

The s-semantics for definite logic programs [FLPM89,BGLM94,Bos09] deals
explicitly with variables in program answers. So such semantics may seem suit-
able for reasoning about programs which use nonground data structures, like
open lists. This paper applies the s-semantics to establish correctness and com-
pleteness of the n queen program of Frühwirth [Frü91]. The program uses open
lists with possibly nonground members. Due to the importance of nonground
data structures for the program, it may even seem that the standard seman-
tics is not sufficient here. This is not the case, another paper [Dra21] presents
correctness and completeness proofs for the program, based on Herbrand inter-
pretations and the standard semantics. So those proofs can be compared with the
ones presented here. Maybe surprisingly, it turns out that the standard seman-
tics is preferable, as it leads to substantially simpler specifications and proofs. It
should be added that many ideas from the former paper [Dra21] are used here.

It is difficult to find applications of s-semantics to reasoning about particular
programs. (The author is not aware of any.) Thus the proofs presented here
provide a, hopefully useful, example.
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The paper is organized as follows. This introduction is concluded with pre-
liminaries. The next two sections present, respectively, the s-semantics (together
with sufficient conditions for correctness and completeness) and the n queens
program. Section 4 discusses correctness of the program, first constructing a
specification for correctness, then presenting a correctness proof. Section 5 dis-
cusses completeness in a similar way. The next section contains some comments,
and compares the presented proofs with those based on the standard semantics.
The last section summarizes the paper.

Preliminaries. This paper considers definite clause logic programs. It uses the
standard notation and terminology, following [Apt97]. So we deal with queries
(conjunctions of atoms) instead of goals. We assume a fixed alphabet (of predi-
cate and function symbols, and variables). The set of variables will be denoted
by Var , the set of terms (over the alphabet) by T U , and the set of atoms by T B;
N stands for the set of natural numbers. Given a program P , a query Q such that
P |= Q is called an answer (or correct answer) of P . We will use answers, to avoid
dealing with computed (or correct) answer substitutions. (In [Apt97], answers are
called correct instances of queries.) By a computed (or SLD-computed) answer
Q′ for a query Q we mean an answer obtained by means of SLD-resolution (so
Q′ is a computed instance [Apt97] of Q, in other words Q′ = Qθ for a computed
answer substitution θ). By the relation defined by a predicate p in P we mean
{ t ∈ T Un | P |= p(t ) }.

An expression (term, atom, sequence of terms, etc.) is linear if no variable
occurs in it twice. Expressions E1, . . . , En (n > 0) are variable disjoint if for
each 0 < i < j ≤ n no variable occurs in both Ei and Ej . As in Prolog, each
occurrence of in an expression denotes a distinct variable.

We use the standard list notation of Prolog. An open list (a list) of length
n ≥ 0 is a term [t1, . . . , tn|v] ∈ T U where v ∈ Var (resp. [t1, . . . , tn] ∈ T U); v is
the open list variable of [t1, . . . , tn|v]. The term ti (0 < i ≤ n) is called the i-th
member of the (open) list. For n = 0, [t1, . . . , tn|t] stands for t. So an empty open
list (i.e. of length 0) is a variable. The tail of a list l will be denoted by tl(l), so
tl([t|u]) = u. By the tail of an empty open list, tl( ) we mean a new variable,
distinct from any other variable in the context.

2 S-semantics

The s-semantics [FLPM89] was introduced to capture the phenomenon that
logically equivalent programs may have distinct sets of computed answers for a
given query. Consider an example [DM87,DM88] of two programs

p(f(X)).
p(f(a)).

p(f(X)).

They are logically equivalent, have the same set of logical consequences (thus the
same set of answers), and have the same least Herbrand model (for any alphabet
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containing p, f, a). However for a query p(Y ), the SLD-resolution produces two
answers for the first program, while only one answer is produced for the second
one. (The answer p(f(a)) is not produced)1.

The s-semantics captures such differences by describing the answers produced
for most general atomic queries.

Definition 1 (S-semantics). Let P be a program. Its s-semantics is given by
the set

O(P ) =

⎧
⎪⎪⎨

⎪⎪⎩

A ∈ T B

∣
∣
∣
∣
∣
∣
∣
∣

A is an SLD-computed answer
for a query p(V1, . . . , Vn),where
p is a predicate symbol of arity n,
and V1, . . . , Vn are distinct variables

⎫
⎪⎪⎬

⎪⎪⎭

.

In other words, A = p(V1, . . . , Vn)θ where θ is an SLD-computed answer substi-
tution for query p(V1, . . . , Vn).

We use here a slight simplification of the original s-semantics. There, the
members of O(P ) are not atoms but equivalence classes of atoms under the equiv-
alence relation ≈ of variable renaming.2 Obviously, the set of ground instances
of O(P ) is the least Herbrand model of P . This is a main property of the s-
semantics:

Lemma 2. Let P be a program. A query Q = B1, . . . , Bn has an SLD-computed
answer Q′ iff there exist A1, . . . , An ∈ O(P ) such that

the n + 1 expressions Q,A1, . . . , An are variable disjoint,
Q′ = Qγ for an mgu γ of Q and A1, . . . , An.

The s-semantics is the ⊆-least fixed point of a specific immediate consequence
operator.

Definition 3. The s-semantics immediate consequence operator for a pro-
gram P is the function Tπ

P : 2T B → 2T B defined by

Tπ
P (I) =

⎧
⎪⎪⎨

⎪⎪⎩

Hθ

∣
∣
∣
∣
∣
∣
∣
∣

θ is an mgu of (B1, . . . , Bn) and (A1, . . . , An) for
some n ≥ 0, (H ← B1, . . . , Bn) ∈ P, A1, . . . , An ∈ I
such that A1, . . . , An, (H ← B1, . . . , Bn) are variable
disjoint

⎫
⎪⎪⎬

⎪⎪⎭

.

1 The observation (that logically equivalent programs may have distinct sets of com-
puted answers for the same query) is sometimes [BGLM94, p. 151] [Bos09, p. 4695]
incorrectly attributed to [FLPM89]. However, it was previously presented in Pisa
[DM87]. The author is not aware of any earlier appearance of such observation.

2 Both versions are equivalent. Let O′(P ) be the original s-semantics of P . Then
O(P ) =

⋃ O′(P ), and O′(P ) is the quotient set O(P )/≈ of O(P ) w.r.t. ≈.
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In the definition and in Lemma 2 it is important that n + 1 expressions are
pairwise variable disjoint.3 Also, note that an mgu of two ground expressions is
any renaming substitution. So Tπ

P (I) includes all unit clauses of P .
For any I ⊆ T B, Tπ

P (I) is closed under variable renaming (as for any renam-
ing γ, if θ is an mgu of B and A then θγ is an mgu of B and A too [Apt97,
Lemma 2.23]). The operator is continuous in the lattice (2T B,⊆), its least fixed
point is (Tπ

P )ω(∅), and we have

O(P ) = (Tπ
P )ω(∅).

By a specification (for s-semantics) we mean a set S ⊆ T B, a program P is
correct w.r.t. S when O(P ) ⊆ S. Here are sufficient conditions for correctness.

Theorem 4 (Correctness). Let P be a program and S ⊆ T B.
If Tπ

P (S) ⊆ S then O(P ) ⊆ S.
If Tπ

{C}(S) ⊆ S for each clause C ∈ P then O(P ) ⊆ S.

Proof. The least fixed point O(P ) of Tπ
P is the least I ⊆ T B such that

Tπ
P (I) ⊆ I. The premises of both implications are equivalent, as Tπ

P (I) =⋃
C∈PT

π
{C}(I). �

The notion of correctness in logic programming differs from that in imper-
ative and functional programming. Due to the nondeterministic nature of logic
programming, it is not sufficient that a program is correct; e.g. the empty pro-
gram is correct w.r.t. any specification. We also need that the program produces
the required answers; we are interested in program completeness. A program p
is complete w.r.t. a specification S when S ⊆ O(P ).

To deal with completeness, let us introduce an auxiliary notion. By a level
mapping we mean a function | | : S → N assigning natural numbers to atoms
from a set S ∈ T B, such that if A,A′ ∈ T B are variants then |A| = |A′|. (Note
that usually one considers level mappings defined on ground atoms [Apt97]).

Theorem 5 (Completeness). Let P be a finite program and S ⊆ T B. Assume
that there exists a level mapping | | : S → N such that for each A ∈ S

A ∈ Tπ
C({A1, . . . , An}) for some clause C ∈ P and some variable disjoint

A1, . . . , An ∈ S such that |A| > |Ai| for i = 1, . . . , n.
Then S ⊆ O(P ).

It is sufficient to consider only n that is the number of body atoms in C. As S
may be not closed under renaming, it is sometimes useful to generalize condition
“A1, . . . , An ∈ S” to “A1, . . . , An are variants of some atoms from S ”.

3 The wording used in [FLPM89,BGLM94,Bos09] may be incorrectly understood
as requiring that (H ← B1, . . . , Bn) is variable disjoint with (A1, . . . , An). Cf.
e.g. “[atoms] are renamed apart w.r.t. the clause” in the definition of Tπ

P in
[Bos09, p. 4696]. For instance, such reading would lead to incorrect conclusion that
P (Z, Z) ∈ (Tπ

P )2(∅) = O(P ) for a program P = { p(X, Y )←q(X), q(Y ). q(V ).} (by
taking A1 = A2 = q(V )).
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Proof (of the more general version of Theorem 5). By induction on i we show
that Si = {A ∈ S | |A| < i } ⊆ (Tπ

P )i(∅).
For i = 0 the thesis holds vacuously. Assume that it holds for some

i ∈ N and consider an A ∈ Si+1. For some clause C ∈ P we have A ∈
Tπ

C({A1, . . . , An}), where for k = 1, . . . , n atom Ak is a variant of some A′
k ∈ S

and i+ 1> |A|> |Ak|= |A′
k|. Hence A′

k ∈ Si and, by the inductive assumption,
A′

k, Ak ∈ (Tπ
P )i(∅). As A ∈ Tπ

C({A1, . . . , An}), we have A ∈ (Tπ
P )j+1(∅). �

The sufficient conditions for correctness and completeness of Theorems 4, 5
are similar to those related to the standard semantics [Cla79,DM93], (see [Dra16]
for comments and references).

3 The n Queens Program

Thom Frühwirth presented a short, elegant and efficient Prolog program for the
n-queens problem [Frü91]. However the program may be seen as rather tricky
and one may be not convinced about its correctness. We apply the s-semantics
to prove its correctness and completeness. This section, based on a former paper
[Dra21], presents the program and introduces some notions used later in the
specifications and proofs.

The problem is to place n queens on an n × n chessboard, so that no two
queens are placed on the same row, column, or diagonal. The main idea of the
program is to describe the placement of the queens by a data structure in which it
is impossible that two queens violate the restriction (there are some exceptions,
this will be clear later on). In this way all the constraints of the problem are
treated implicitly and efficiently. Here is the program, in its simplest version not
using Prolog arithmetic, with predicate names abbreviated (qu for queensp, gl
for gen listp, pq for place queen, and pqs for place queensp).

qu(N,Qs) ← gl(N,Qs), pqs(N,Qs, , ).
gl(0, [ ]).
gl(s(N), [ |L]) ← gl(N,L).
pqs(0, , , ). (1)
pqs(s(I ),Cs,Us, [ |Ds]) ← pqs(I ,Cs, [ |Us],Ds),

pq(s(I ),Cs,Us,Ds).
(2)

% pq(Queen,Column,Updiagonal ,Downdiagonal) places a single queen
pq(I , [I | ], [I | ], [I | ]). (3)
pq(I , [ |Cs], [ |Us], [ |Ds]) ← pq(I ,Cs,Us,Ds). (4)

Its main predicate qu provides solutions to the problem, in an answer qu(n, qs),
n is a number and qs encodes a solution as a list of length n. The interesting part
of the program consists of clauses (1),. . . ,(4). So this fragment is our program
of interest, it will be called nqueens.

Solutions to the n queens problem are provided by the answers of program
nqueens of the form pqs(n, qs, t1, t2), where n > 0 and qs is a list of length n.
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−→

1 2

1 · · ·

3 − i

· · ·

i+ 1
i · · ·

i+1

1 2 1 2

−→

1 2

1 · · ·

2 − i

· · ·

i+ 2
i · · ·

i+1

0 1 2 3

Fig. 1. [Dra21] Numbering of rows and columns. Numbering of up ( | ) diagonals and
down ( | ) diagonals in the context of row i (left), and i + 1 (right).
The board with two queens is represented in the context of row i as follows: the columns
by [i, 1| . . .], the up diagonals by [i| . . .], the down diagonals by [i, . . . , 1| . . .] (where 1 is
the member number i + 1). Diagonals with non-positive numbers are not represented.
In the context of row i+1, the down diagonals are represented by [t, i, . . . , 1| . . .] (where
1 is the member number i + 2, and t is arbitrary).

(The remaining arguments may be understood as internal data.) So an initial
query pqs(n, qs0, , ), where qs0 is a list of n distinct variables can be used to
obtain the solutions.

To understand a logic program from a declarative point of view we need to
understand the relations defined by the predicates of the program. This can be
done abstracting from any operational semantics. Such possibility is an advan-
tage of declarative programming, and of logic programming in particular. We
first explain the relations informally and then construct a formal specification.
We begin with discussing the data of the program.

The natural numbers are represented by terms in a standard way, a number
n as sn(0). Assume that columns and rows of the chessboard are numbered
from the left/top. Each queen is identified by its row number. The chessboard is
represented as a (possibly) open list, with number i appearing as the j-th member
when the queen (of row) i is in column j. Empty column j is represented as a
variable being the j-th member (or the length of the list being < j).

An up (respectively down) diagonal consists of the fields with the same sum
(difference) of the row and column number. Diagonals intersecting a given row
are numbered from the left (Fig. 1). In contrast to the numbering of rows and
columns, this numbering is not fixed. It depends on the context, namely on which
row we focus. Diagonal j includes the j-th field of the row. Thus, in the context
of row number i, its queen i is in the column and in the up and down diagonals
of the same number. The up (the same for down) diagonals are represented by
an open list of numbers, a number i as the j-th member of the list means that
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the j-th diagonal contains the queen i. If no queen is placed in the diagonal
number j, the j-th member of the list is a variable (or does not exist). This
representation guarantees that at most one queen can be placed in each column
and diagonal (except for those with non-positive numbers).

Now let us outline (rather superficially) the semantics of nqueens. The idea
is that pqs defines a relation consisting of tuples (i, cs, us, [t|ds′]), where i > 0
and cs describes a placement of queens number 1, . . . , i in the columns, and
us, ds′ describe their placement in the diagonals (numbered in the context of
row i). Moreover, in the chessboard fragment of rows 1, . . . , i, each row, each
column, and each diagonal contains at most one queen.4 Additionally, the rela-
tion contains all tuples of the form (0, cs, us, ds).

The relation defined by pq consists of tuples (i, cs, us, ds) where i is the
number of a row, and cs, us, ds are (possibly open) lists and, for some j > 0,
the j-th member of each list is i. This represents placing queen i on the column,
up-diagonal and down-diagonal of the same number j.

4 Correctness of nqueens

4.1 Specification for Correctness

For discussing program correctness it is reasonable to use a specification which
is a suitable superset of the actual semantics O(nqueens) of the program. The
specification should imply the program properties of interest. (More precisely,
correctness w.r.t. the specification should imply them). Also, it is useful when a
specification neglects unnecessary details of the semantics of the program. This
may make simpler both the specification and the correctness proof.

Our specification for pq is

Spq = { pq( v, [c1, . . . , ck, v|c0], [u1, . . . , uk, v|u0], [d1, . . . , dk, v|d0] ) ∈ T B |
k ≥ 0, v, c0, . . . , ck, u0, . . . , uk, d0, . . . , dk are distinct variables }

Here all the variables occurring in the three open lists are distinct, except for v,
which occurs in the three lists at position k + 1, to represent the same queen in
the column, up diagonal, and down diagonal number k + 1.

For a formal specification of pqs, let us introduce some auxiliary notions.
Assume that a queen j ∈ N\{0} (i.e. the queen of row j) is placed in column
k (i.e. j is the k-th member of a possibly open list cs representing columns).
Then, in the context of row i (say i ≥ j), the queen j is on the up diagonal with
number k + j − i; we say k + j − i is the up diagonal number of queen j in cs
w.r.t. i [Dra21]. Similarly, k + i − j is the down diagonal number of queen j
(in cs w.r.t. i), as this is the number of its down diagonal in the context of row
i. Consider, for instance, the queen i−3 placed in column 2. Then its up (down)
diagonal number w.r.t. i is, respectively, −1 and 5.

4 Notice that the last statement follows from the previous one, but only for the diag-
onals represented by us, ds′ (i.e. those with positive numbers w.r.t. row i).
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Writing that some queens have distinct up (or down) diagonal numbers, we
will usually skip “w.r.t. i”, as the numbers are distinct w.r.t. any i ∈ N.

We say that a term t ∈ T U is a g.v.d. (ground-or-variable open list with
distinct members) if t

is linear,
is an open list with distinct members,
and each its member is ground or is a variable.

Note that unification of two (unifiable) variable disjoint g.v.d.’s which do not
have a common ground member results in a g.v.d..

We say that an open list cs represents a correct placement up to row m (in
short: is correct up to m) when 0 ≤ m and

cs is a g.v.d.,
the ground members of cs are 1, . . . ,m,
their up diagonal numbers in cs are distinct,
their down diagonal numbers in cs are distinct,

We have to take care that the placement of the queens on the diagonals is
properly reflected in the open lists us, ds representing the diagonals. Actually,
we do not need to specify that us, ds are open lists. Let us generalize the notion
of list membership: A term s is the k-th member of a term t if t is of the
form t = [t1, . . . , tk−1, s|t0] (where 0 < k). We say that a pair of terms (us, ds)
is correct (represents a correct placement) up to m w.r.t. a row i ∈ N and an
(open) list cs when

for each j ∈ {1, . . . , m},
j is a member of cs, and
if the up (down) diagonal number of j in cs w.r.t. i is l > 0
then the l-th member of us (respectively ds) is j.

This notion will be used when m ≤ i, so l > 0 holds for each down diagonal
number l. Note that

if (us, ds) is correct up to m w.r.t. i and cs (where m ≤ i)
then (tl(us), [ |ds]) is correct up to m w.r.t. i + 1 and cs

(5)

(as the up diagonal number l w.r.t. i means the up diagonal number l − 1 w.r.t.
i + 1, for the down diagonal number l this is l + 1).

Now the specification for pqs is Spqs = Spqs1 ∪ Spqs2 where

Spqs1 =

⎧
⎨

⎩
pqs(i, cs, us, [ |ds])

∣
∣
∣
∣
∣
∣

i > 0, cs is correct up to i,
(us, ds) is correct up to i w.r.t. i and cs,
terms cs, us, ds are variable disjoint.

⎫
⎬

⎭

Spqs2 =
{
pqs(0, cs, us, ds) | cs, us, ds are distinct variables

}
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and the whole specification for nqueens is5

S = Spq ∪ Spqs .

For a specification to be useful, it should imply the program property of
interest. (Each program is correct w.r.t. T B, but this implies nothing.) Indeed,
any answer for a query Q = pqs(n, qs0 , , ) is a result Aθ of unification of Q and
an atom A ∈ O(nqueens). If qs0 is a list of length n and nqueens is correct
w.r.t. S (thus A ∈ S) then the second argument of the answer, qs0θ, is a solution
to the n queens problem.6

Note that the specification is approximate (formally, that it is a proper super-
set of the s-semantics of nqueens). For instance it allows multiple occurrences
of an element in us or ds (in Spqs1), and does not require that us, cs are open
lists. Note also that S is closed under renaming.

4.2 Correctness Proof for nqueens

The proof of correctness of nqueens w.r.t. S is based on Theorem 4. The proof
for the unary clauses

pq(I, [I| ], [I| ], [I| ]).
pqs(0, , , ).

is immediate, as both are members of S (and hence any their variants are).
Consider clause (4):

pq(I, [ |Cs], [ |Us], [ |Ds]) ← pq(I, Cs,Us ,Ds).

It is easy to check that unifying the body of (4) with any atom from S (thus
from Spq) and applying the mgu to the head of (4) results in an atom from Spq,
provided that the clause and the atom are variable disjoint. Hence Tπ

{(4)}(S) ⊆
Spq ⊆ S.

The nontrivial part of the proof is to show that Tπ
{(2)}(S) ⊆ S. Remember

that clause (2) is

pqs(s(I), Cs,Us , [ |Ds]) ← pqs(I, Cs, [ |Us],Ds), pq(s(I), Cs,Us ,Ds).

5 As a specification for the whole original program one can use S ∪ Sgl ∪ Squ , where

Sgl =

{

gl(i, [v1, . . . , vi]) | i ≥ 0, v1, . . . , vi are distinct variables

}

,

Squ =

⎧
⎨

⎩
qu(i, cs)

∣
∣
∣
∣
∣
∣

i ≥ 0, cs is a list of length i,
its members are 1, . . . , i,
their up (down) diagonal numbers are distinct

⎫
⎬

⎭
.

6 Detailed justification: As A ∈ Spqs , A = pqs(n, cs, us, [ |ds]) where cs is correct up
to n, and thus the ground members of cs are 1, . . . , n. Hence they are members of
qs0θ = csθ. So qs0θ is a permutation of [1, . . . , n], as the length of list qs0 is n. The
up (down) diagonal numbers of 1, . . . , n in qs0θ are those in cs, thus distinct.



S-Semantics–an Example 69

Let H stand for the head of the clause, and B1, B2 for its body atoms. To find
Tπ

{(2)}(S) consider the unification of B1, B2 with a pair of atoms

A1 = pqs(i, cs1, us1, ds1) ∈ Spqs and A2 = pq(v, cs2, us2, ds2) ∈ Spq .

(where A1, A2, (H ← B1, B2) are variable disjoint and i ≥ 0). Note that if i > 0
then us1 is of the form [t|t′], as there are i distinct up diagonal numbers (in cs1
w.r.t. i) and each is ≥ 2−i, hence some of them must be positive.

We have to show that if (B1, B2) and (A1, A2) are unifiable then applying
the mgu to H results in a member of S. So assume they are unifiable. It is
sufficient to consider a single mgu of (B1, B2) and (A1, A2) (as S is closed under
renaming).

We perform the unification in two steps, first unifying (B1, s(I)) and
(A1, v), then the remaining arguments of B2 and A2. (Formally, Lemma
2.24 of [Apt97] is applied here). For i > 0 the first step produces ϕ =
{I/i, Cs/cs1, /h,Us/tl(us1), Ds/ds1, v/s(i)} (where h is the head of us1). For
i = 0 we obtain ϕ = {I/0, Cs/cs1, us1/[ |Us], Ds/ds1, v/s(0)}.

We show that pair (Us,Ds)ϕ is correct up to i w.r.t. i+1 and Csϕ = cs1. This
holds vacuously for i = 0; for i > 0 it follows by (5) as (us1, tl(ds1)) is correct
up to i w.r.t. i and (Us,Ds)ϕ = (tl(us1), ds1). Hence for any substitution ψ

(Us,Ds)ϕψ is correct up to i w.r.t. i + 1 and Csϕψ. (6)

In the second step, the remaining three arguments of B2ϕ are to be uni-
fied with those of A2ϕ, this means obtaining an mgu ψ for (Cs,Us,Ds)ϕ and
(cs2, us2, ds2) = ( [c1, . . . , ck, s(i)|c0], [u1, . . . , uk, s(i)|u0], [d1, . . . , dk, s(i)|d0] ),
where k ≥ 0, and c0, . . . , ck, u0, . . . , uk, d0, . . . , dk are distinct variables. This gives
ϕψ as an mgu of B1, B2 with A1, A2. As the termsCsϕ,Usϕ,Dsϕ, cs2, us2, ds2 are
variable disjoint, unifier ψ can be represented as a union of three mgu’s

ψ = ψc ∪ ψu ∪ ψd, where
ψc is an mgu of Csϕ and cs2,
ψu is an mgu of Usϕ and us2,
ψd is an mgu of Dsϕ and ds2,

Csϕψ = Csϕψc, Usϕψ = Usϕψu, Dsϕψ = Dsϕψd,

and ψc, ψu, ψd are variable disjoint. Hence Csϕψ, Usϕψ and Dsϕψ are variable
disjoint.

Note that Csϕψ is a g.v.d. (as the result of unification of two variable disjoint
g.v.d.’s with disjoint sets of ground members), and its ground members are
1, . . . , s(i).

In the rest of this proof we consider diagonal numbers in Csϕψ w.r.t. i + 1.
To show that Csϕψ = cs1ψ is correct up to i+1, it remains to show that for

i > 0 the up (respectively down) diagonal numbers of s(0), . . . , s(i) are distinct.
The up (resp. down) diagonal number for s(i) is k + 1, and the k+1-th element
of Us (resp. Ds) is s(i). So by (6) no up (down) diagonal number of s(0), . . . , i
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is k +1. Moreover the up (down) diagonal numbers of s(0), . . . , i are distinct (as
Csϕ is correct up to i).

To show that (Us,Ds)ϕψ is correct up to i + 1 w.r.t. i + 1 and Csϕψ, it
remains to show that for each each j ∈ {s(0), . . . , s(i)} the condition on the up
(down) diagonal numbers from the definition holds. For j ≤ i this follows from
(6). For j = s(i) this holds, as s(i) is the k+1-th member of Csϕψ, Usϕψ, and
Dsϕψ, and this k + 1 is its up (and down) diagonal number.

Now applying the mgu to the head H of the clause results in Hϕψ =
pqs(s(i), Csϕψ,Usϕψ, [ |Dsϕψ]). From what was shown above, by the defini-
tion of Spqs1, it follows that Hϕψ ∈ S. We showed that Tπ

{(2)}(S) ⊆ S. This
completes the correctness proof.

5 Completeness

5.1 Specification for Completeness

Obviously, program nqueens is not complete w.r.t. specification S. To construct
a specification for completeness for nqueens, we need to describe (a set of)
atoms from Spqs which actually are answers of the program.

We first introduce some auxiliary notions. Let us say that a g.v.d. s =
[t1, . . . , tn|v] is short if tn is a ground term, or n = 0. Consider the short g.v.d.
s and a k ∈ {1, . . . , n} such that tk is ground and tk+1, . . . , tn−1 are variables; if
all t1, . . . , tn−1 are variables then let k = 0. Now the g.v.d. s with tn removed
is s′ = [t1, . . . , tk|v]. For an i ∈ {1, . . . , n − 1}, the g.v.d. s with a ground ti
removed is obtained from s by replacing ti by a new variable. Note that in
both cases a short g.v.d. with a ground member removed is a short g.v.d.

Now this is our specification for pqs for completeness:

S0
pqs =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

pqs(i, cs, us, [ |ds])

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

i > 0, cs is correct up to i,
(us, ds) is correct up to i w.r.t. i and cs,
terms cs, us, ds are variable disjoint,
cs, us, ds are short g.v.d.’s,
if j is a ground member of us or ds
then j ∈ {1, . . . , i},
if j is a ground member of us then its
up diagonal number in cs w.r.t. i is > 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

So here we require us and ds to have only such ground members that are neces-
sary for correctness of (us, ds). Note that S0

pqs ⊆ Spqs .
Such specification makes sense, as its atoms describe all the solutions to

the i queens problems. So completeness of nqueens (w.r.t. S0
pqs) implies

that each solution is contained in an answer to the initial query considered
previously.

We are interested in completeness of nqueens w.r.t. S0
pqs . However this can-

not be proved using Theorem 5. We need to strengthen the specification, to
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describe requirements on pq and on the answers for pqs with the first argu-
ment 0. Fortunately, relevant fragments of the specification for correctness can
be reused here. Our specification for completeness of nqueens is

S0 = S0
pqs ∪ Spqs2 ∪ Spq .

Note that this is a proper subset of the specification S for correctness.

5.2 Completeness Proof

Now we apply Theorem 5 to prove completeness of the program, i.e. that S0 ⊆
O(nqueens). Let us define, similarly to [Dra21], a level mapping | | : S0 → N by

| pqs(i, cs, us, ds) | = |i| + |cs|,
| pq(i, cs, us, ds) | = |cs|, where

| [h|t] | = 1 + |t|,
| s(t) | = 1 + |t|,
|f(t1, . . . , tn)| = 0,
|v| = 0,

where i, cs, us, ds, h, t, t1, . . . , tn ∈ T U , v ∈ Var and f is any n-ary function
symbol (n ≥ 0) distinct from s and from [ | ]. Note that for an (open) list l,
its length is |l|. Note also that if s′ is a short g.v.d. s with a ground member
removed then |s′| ≤ |s|.

The atoms from Spqs2 and those of the form pq(v, [v| ], [v| ], [v| ]) ∈ Spq are
variants of unary clauses of nqueens, thus obviously they are in, respectively,
Tπ

{(1)}(∅) and Tπ
{(3)}(∅).

The nontrivial part of the proof is to show that the sufficient condition from
Theorem 5 holds for the elements of S0

pqs .
Consider an atom A = pqs(s(i), cs, us, [v|ds]) ∈ S0

pqs . Let j be the (both
up and down) diagonal number of s(i) in cs w.r.t. s(i). So s(i) is the j-
th member of each short g.v.d.’s cs, us, ds. We find A1, A2 ∈ S0 such that
A ∈ Tπ

{(2)}({A1, A2}), Remember that clause (2) is

pqs(s(I), Cs,Us , [ |Ds]) ← pqs(I, Cs, [ |Us],Ds), pq(s(I), Cs,Us ,Ds).

Below we choose the variables in A1, A2 so that (2),A1, A2 are variable disjoint.
As A2 we choose A2 = pq(v′, cs′′, us′′, ds′′) ∈ Spq , where v′ ∈ Var is the j-th

member of each cs′′, us′′, ds′′. For i = 0 we choose A1 = pqs(0, v1, v2, v3) ∈
Spqs2. Let ρ = {v′/s(0)}. A most general unifier of A1, A2 and the body
of clause (2) is θ = ρ ∪ {I/0,Cs/cs ′′ρ,Us/us ′′ρ,Ds/ds ′′ρ, . . .}. Note that
cs′′ρ, us′′ρ, ds′′ρ are short g.v.d.’s. Applying θ to the head of the clause results in
pqs(s(0), cs ′′, us ′′, [ |ds ′′])ρ. This is a variant of A. Thus A ∈ Tπ

{(2)}({A1, A2}).
If i > 0 then as A1 we choose A1 = pqs(i, cs′, [t|us′], ds′), where cs′ (respec-

tively us′, ds′) is cs (us, ds) with s(i) removed, and t is as follows. If 1 is the up
diagonal number in cs w.r.t. i of some k ∈ {s(0), . . . , i} then t = k. Otherwise t
is a variable such that A1 is linear.
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Note that the diagonal numbers of 1, . . . , i in cs are the same as those in cs′.
So a pair of terms is correct up to i w.r.t. l and cs iff it is correct up to i w.r.t.
l and cs′ (for any l ≥ i).

We first show that A1 ∈ S0
pqs . Note that cs′, us′, ds′ are short g.v.d.’s. They

are variable disjoint, as cs, us, ds are. Also, cs′ is correct up to i (as cs is correct
up to s(i)), and (us′, ds′) is correct up to i w.r.t. s(i) and cs (as (us, ds) is, up to
s(i)). Thus ([t|us′], tl(ds′)) is correct up to i w.r.t. i and cs′. A ground member
m of [t|us′] or of tl(ds′) is k or a member of us′ or ds′. Hence m ∈ {1, . . . , i}.

It remains to show that the diagonal numbers of the ground members of
[t|us′] w.r.t. i are positive. In this paragraph we consider diagonal numbers and
correctness w.r.t. cs′, so we skip the phrases “in cs′”, “w.r.t. cs′”. Consider a
ground member m of [t|us′]. If m = t then its up diagonal number w.r.t. i is 1.
If m is a member of us′ then m �= s(i) and m is a member of us. As us is the
third argument of pqs in A ∈ S0

pqs , m ∈ {1, . . . , i} and the up diagonal number
of m w.r.t. i + 1 is positive. Thus the up diagonal number of m w.r.t. i is > 1.
This completes a proof that A1 ∈ S0

pqs .
Now we show that A1, A2 are unifiable with the body atoms B1, B2 of the

clause (2) and the resulting mgu produces (a variant of) A. Similarly as in the
previous proof, let us perform unification in two steps. An mgu of (A1, v

′) and
(B1, s(I)) is ϕ = {I/i, Cs/cs′, /t,Us/us′, Ds/ds′, v′/s(i)}. The rest of unifica-
tion is unifying three variable disjoint short g.v.d.’s cs′, us′, ds′ with three short
g.v.d.’s cs′′ϕ, us′′ϕ, ds′′ϕ, the latter are cs′′{v′/s(i)}, us′′{v′/s(i)}, ds′′{v′/s(i)}
(as v′ is the only variable from ϕ that occurs in cs′′, us′′, ds′′). Remember that
cs′ is cs with its j-th member s(i) removed, and cs′′{v′/s(i)} is a short g.v.d.
with its j-th member s(i), and this is the only nonground member of the g.v.d.
Hence unifying cs′ and cs′′{v′/s(i)} results in cs. The same holds for us′ and
ds′. Applying the resulting mgu of A1, A2 and B1, B2 to the head of the clause
results in A.

This completes our proof that A ∈ Tπ
{(2)}({A1, A2}), where A1, A2 ∈ S0.

Note now that |A2| = |cs′′| = j. For i = 0, |A1| = 0; for i > 0 we have
|A1| = i + |cs′| ≤ i + |cs| (as cs′ is the short g.v.d. cs with a ground member
removed). Also, |A| = i + 1 + |cs| ≥ i + 1 + j (as the g.v.d. cs has at least j
members). Hence |A| > |A1| and |A| > |A2|. So we have shown that the sufficient
condition for completeness from Theorem 5 holds for any A ∈ S0

pqs .
It remains to show that the sufficient condition holds for any atom Bk =

pq( v, [c1, . . . , ck, v|c0], [u1, . . . , uk, v|u0], [d1, . . . , dk, v|d0] ) ∈ Spq, where k > 0.
Note that |Bk| = k + 1. We skip (simple) details of showing that Bk ∈
Tπ

{(4)}({B′
k−1}) for some variant B′

k−1 ∈ Spq of Bk−1. This completes the proof.

6 Comments

The correctness and completeness proofs presented here can be compared with
those based on Herbrand interpretations and the standard semantics of definite
logic programs [Dra21]. The specifications used there are Herbrand interpre-
tations (sets of ground atoms) and program correctness means that the least
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Herbrand model of the program is a subset of the specification. Similarly, com-
pleteness means that this model is a superset of the specification.

To deal with correctness of nqueens in the framework of the standard seman-
tics, a difficulty had to be overcome: some answers of nqueens have instances
which are in a sense wrong. For example, elements of Spqs1 have ground instances
in which the same queen is placed in two columns. The main idea of solving the
difficulty was to allow (i.e. to include in the specification) all ground atoms
pqs(i, cs, us, [t|ds]) in which cs is not a list of distinct members. Thus the spec-
ification neglects the atoms with such cs and describes the other arguments of
pqs only when cs “makes sense”, i.e. is a list with distinct members [Dra21].
Such specification is not more complicated than the one used here.

The specification for completeness from Sect. 5 was difficult to construct and
is substantially more complicated than that based on the standard semantics.
This is mainly because each element of the specification has to be an exact
answer for a most general query.

The reader may compare the proofs based on Herbrand interpretations with
those presented here. The former turn out substantially simpler. Note that the
presentation of the former proofs [Dra21] is more detailed than that of Sects. 4.2
and 5.2, where many details were skipped. For instance we have not proved that
(under the given conditions) unification of two g.v.d.’s results in a g.v.d. Despite
of this, the proofs of Sects. 4.2, 5.2 above are longer and seem more complicated.

The author began with a correctness proof based on the s-semantics, before
it turned out that employing the standard semantics was preferable.

A well founded comparison of the volume of the two proofs could be obtained
by formalizing the specifications and the proofs, using some proof assistant. This
is however outside of the scope of this work.

Comparing two pairs of proofs may not be a convincing argument that s-
semantics is less suitable for proving program correctness or completeness than
the standard semantics. However an undeniable fact is that when dealing with
the standard semantics one employs simpler mathematical objects. Basically,
such specifications and proofs refer only to ground atoms, ground instances of
atoms and clauses, sets of ground atoms, and inclusion of such sets. In the
context of the s-semantics we additionally have to deal with arbitrary atoms,
variables, substitutions, substitution composition, and unification. Reasoning
about properties of substitutions and mgu’s is known to be difficult and error
prone. Formalizing the proofs dealing with the standard semantics should be
simpler, at least due to no need of formally describing the definitions and basic
properties of substitutions, unification etc.

The discussion of this section suggests that the standard semantics may be
preferable to the s-semantics in reasoning about program correctness and com-
pleteness, even for programs that employ nonground data.

7 Summary

This paper presents correctness and completeness proofs (together with suitable
specifications) of program nqueens. It is a definite clause program, working on
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non-ground terms. The specifications and proofs are based on the s-semantics
[FLPM89,BGLM94,Bos09]. The employed approach is declarative; the speci-
fications/proofs abstract from any operational semantics. Our specification is
approximate, it consists of distinct specifications for correctness and complete-
ness.

The proposed sufficient condition for completeness seems to be a contribution
of this work. The employed simplification of the s-semantics may be of separate
interest. The author is not aware of any published examples of applying the
s-semantics to reasoning about properties of particular programs.

The program works on nonground data, and the s-semantics explicitly deals
with variables in program answers. Thus the choice of this semantics seems rea-
sonable. However comparison (Sect. 6) with analogical specifications and proofs
[Dra21] based on the standard semantics and (ground) Herbrand interpretations
shows that the latter are simpler.
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Abstract. Delimited control is a powerful mechanism for programming
language extension which has been recently proposed for Prolog (and
implemented in SWI-Prolog). By manipulating the control flow of a pro-
gram from inside the language, it enables the implementation of powerful
features, such as tabling, without modifying the internals of the Prolog
engine. However, its current formulation is inadequate: it does not cap-
ture Prolog’s unique non-deterministic nature which allows multiple ways
to satisfy a goal.

This paper fully embraces Prolog’s non-determinism with a novel
interface for disjunctive delimited control, which gives the programmer
not only control over the sequential (conjunctive) control flow, but also
over the non-deterministic control flow. We provide a meta-interpreter
that conservatively extends Prolog with delimited control and show that
it enables a range of typical Prolog features and extensions, now at the
library level: findall, cut, branch-and-bound optimisation, probabilistic
programming, . . .

Keywords: Delimited control · Disjunctions · Prolog ·
Meta-interpreter · Branch-and-bound

1 Introduction

Delimited control is a powerful programming language mechanism for control
flow manipulation that was developed in the late ’80s in the context of functional
programming [2,5]. Schrijvers et al. [12] have recently ported this mechanism to
Prolog.

Compared to both low-level abstract machine extensions and high-level global
program transformations, delimited control is much more light-weight and robust
for implementing new control-flow and dataflow features. Indeed, the Prolog port
has enabled powerful applications in Prolog, such as high-level implementations
of both tabling [3] and algebraic effects & handlers [8]. Yet, at the same time,
there is much untapped potential, as the port fails to recognise the unique nature
of Prolog when compared to functional and imperative languages that have pre-
viously adopted delimited control.
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Indeed, computations in other languages have only one continuation, i.e., one
way to proceed from the current point to a result. In contrast, at any point in a
Prolog continuation, there may be multiple ways to proceed and obtain a result.
More specifically, we can distinguish 1) the success or conjunctive continuation
which proceeds with the current state of the continuation; and 2) the failure or
disjunctive continuation which bundles the alternative ways to proceed, e.g., if
the conjunctive continuation fails.

The original delimited control only accounts for one continuation, which
Schrijvers et al. have unified with Prolog’s conjunctive continuation. More specif-
ically, for a given subcomputation, they allow to wrest the current conjunctive
continuation from its track, and to resume it at leisure, however many times as
desired. Yet, this entirely ignores the disjunctive continuation, which remains as
and where it is.

In this work, we adapt delimited control to embrace the whole of Prolog and
capture both the conjunctive and the disjunctive continuations. This makes it
possible to manipulate Prolog’s built-in search for custom search strategies and
enables clean implementations of, e.g., findall/3 and branch-and-bound. This
new version of delimited control has an executable specification in the form of
a meta-interpreter (Sect. 3), that can run both the above examples, amongst
others. Appendices to this paper are available in the extended version [18].

2 Overview and Motivation

2.1 Background: Conjunctive Delimited Control

In earlier work, Schrijvers et al. [12] have introduced a Prolog-compatible inter-
face for delimited control that consists of two predicates: reset/3 and shift/1.

Motivation. While library developers and advanced users typically do not build
in new language features in Prolog, they have traditionally been able to add var-
ious language extensions by means of Prolog’s rich meta-programming and pro-
gram transformation facilities. Examples are definite clause grammars (DCGs),
extended DCGs [17], Ciao Prolog’s structured state threading [7] and logical
loops [11]. However, there are several important disadvantages to non-local pro-
gram transformations for defining new language features: A transformation that
combines features can be quite complex and is fragile under language evolution.
Moreover, existing code bases typically need pervasive changes to, e.g., include
DCGs.

Delimited continuations enable new language features at the program level
rather than as program transformations. This makes features based on delimited
continuations more light-weight and more robust with respect to changes, and
it does not require pervasive changes to existing code.

Behavior. The precicate reset(Goal,ShiftTerm,Cont) executes Goal, and, 1.
if Goal fails, reset/3 also fails; 2. if Goal succeeds, then reset/3 also succeeds
and unifies Cont and ShiftTerm with 0; 3. if Goal calls shift(Term), then
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the execution of Goal is suspended and reset/3 succeeds immediately, unifying
ShiftTerm with Term and Cont with the remainder of Goal.

The shift/reset pair resembles the more familiar catch/throw predicates,
with the following differences: shift/1 does not copy its argument (i.e., it does
not refresh the variables), it does not delete choice points, and also communicates
the remainder of Goal to reset/3.

Example 1. Consider Definite Clause Grammars (DCGs), a language extension
to sequentially access the elements of an implicit list. It is conventionally defined
by a program transformation that requires special syntax to mark DCG clauses H
--> B and to mark non-DCG goals {G}. The delimited control approach requires
neither. It introduces two new predicates: c(E) consumes the next element E in
the implicit list, and phrase(G,Lin,Lout) runs goal G with implicit list Lin
and returns unconsumed remainder Lout. For instance, the following predicate
implements the grammar (ab)n and returns n.

ab(0).
ab(N) :- c(a), c(b), ab(M), N is M + 1.

?- phrase(ab(N),[a,b,a,b],[]).
N = 2.

The two DCG primitives are implemented as follows in terms of shift/1
and reset/3.

c(E) :- shift(c(E)).

phrase(Goal,Lin,Lout) :-
reset(Goal,Cont,Term),
( Cont == 0 ->

Lin = Lout
; Term = c(E) ->

Lin = [E|Lmid],
phrase(Cont,Lmid,Lout)

).

In words, phrase/3 executes the given goal within a reset/3 and analyzes the
possible outcomes. If Cont == 0, this means the goal succeeds without consum-
ing any input. Then the remainder Lout is equal to the input list Lin. Alterna-
tively, the execution of the goal has been suspended midway by the invocation
of a shift/1 because it wants to consume an element from the implicit list
with c/1. In that case, Term has been instantiated with a request c(E) for an
element E. This request is satisfied by instantiating E with the first element of
Lin. Finally, the remainder of the suspended goal, Cont (the continuation), is
resumed with the remainder of the list Lmid.

Other examples of language features implemented in terms of delimited con-
trol are co-routines, algebraic effects [8] and tabling [3].
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Obliviousness to Disjunctions. This form of delimited control only captures the
conjunctive continuation. For instance reset((shift(a),G1),Term,Cont) cap-
tures in Cont goal G1 that appears in conjunction to shift(a). In a low-level
operational sense this corresponds to delimited control in other (imperative and
functional) languages where the only possible continuation to capture is the
computation that comes sequentially after the shift. Thus this approach is very
useful for enabling conventional applications of delimited control in Prolog.

In functional and imperative languages delimited control can also be char-
acterised at a more conceptual level as capturing the entire remainder of a
computation. Indeed, in those languages the sequential continuation coincides
with the entire remainder of a computation. Yet, the existing Prolog approach
fails to capture the entire remainder of a goal, as it only captures the con-
junctive continuation and ignores any disjunctions. This can be illustrated by
the reset((shift(a),G1;G2),Term,Cont) which only captures the conjunctive
continuation G1 in Cont and not the disjunctive continuation G2. In other words,
only the conjunctive part of the goal’s remainder is captured.

This is a pity because disjunctions are a key feature of Prolog and many
advanced manipulations of Prolog’s control flow involve manipulating those dis-
junctions in one way or another.

2.2 Delimited Continuations with Disjunction

This paper presents an approach to delimited control for Prolog that is in line
with the conceptual view that the whole remainder of a goal should be captured,
including in particular the disjunctive continuation.

For this purpose we modify the reset/3 interface, where depending on Goal,
reset(Pattern,Goal,Result) has three possible outcomes:

1. If Goal fails, then the reset succeeds and unifies Result with failure. For
instance,

?- reset(_,fail,Result).
Result = failure.

2. If Goal succeeds, then Result is unified with success(PatternCopy,
DisjCont) and the reset succeeds. Here DisjCont is a goal that represents
the disjunctive remainder of Goal. For instance,

?- reset(X,(X = a; X = b),Result).
X = a, Result = success(Y,Y = b).

Observe that, similar to findall/3, the logical variables in DisjCont have
been renamed apart to avoid interference between the branches of the com-
putation. To be able to identify any variables of interest after renaming, we
provide PatternCopy as a likewise renamed-apart copy of Pattern.
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3. If Goal calls shift(Term), then the reset succeeds and Result is uni-
fied with shift(Term,ConjCont,PatternCopy,DisjCont). This contains in
addition to the disjunctive continuation also the conjunctive continuation.
The latter is not renamed apart and can share variables with Pattern and
Term. For instance,

?- reset(X,(shift(t),X = a; X = b),Result).
Result = shift(t,X = a, Y, Y = b).

Note that reset(P,G,R) always succeeds if R is unbound and never leaves choi-
cepoints.

Encoding. findall/3 Sect. 4 presents a few larger applications, but our encoding
of findall/3 with disjunctive delimited control already gives some idea of the
expressive power:

findall(Pattern,Goal,List) :-
reset(Pattern,Goal,Result),
findall_result(Result,Pattern,List).

findall_result(failure,_,[]).
findall_result(success(PatternCopy,DisjCont),Pattern,List) :-

List = [Pattern|Tail],
findall(PatternCopy,DisjCont,Tail).

This encoding is structured around a reset/3 call of the given Goal followed by
a case analysis of the result. Here we assume that shift/1 is not called in Goal,
which is a reasonable assumption for plain findall/3.

Encoding. !/0 Our encoding of the !/0 operator illustrates the use of shift/1:

cut :- shift(cut).

scope(Goal) :-
copy_term(Goal,Copy),
reset(Copy,Copy,Result),
scope_result(Result,Goal,Copy).

scope_result(failure,_,_) :-
fail.

scope_result(success(DisjCopy,DisjGoal),Goal,Copy) :-
Goal = Copy.

scope_result(success(DisjCopy,DisjGoal),Goal,Copy) :-
DisjCopy = Goal,
scope(DisjGoal).

scope_result(shift(cut,ConjGoal,DisjCopy,DisjGoal),Goal,Copy) :-
Copy = Goal,
scope(ConjGoal).
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The encoding provides cut/0 as a substitute for !/0. Where the scope of regular
cut is determined lexically, we use scope/1 here to define it dynamically. For
instance, we encode

p(X,Y) :- q(X), !, r(Y).
p(4,2). as

p(X,Y) :- scope(p_aux(X,Y)).
p_aux(X,Y) :- q(X), cut, r(Y).
p_aux(4,2).

The logic of cut is captured in the definition of scope/1; all the cut/0 pred-
icate does is request the execution of a cut with shift/1.

In scope/1, the Goal is copied to avoid instantiation by any of the branches.
The copied goal is executed inside a reset/3 with the copied goal itself as the
pattern. The scope result/3 predicate handles the result:

– failure propagates with fail;
– success creates a disjunction to either unify the initial goal with the now

instantiated copy to propagate bindings, or to invoke the disjunctive contin-
uation;

– shift(cut) discards the disjunctive continuation and proceeds with the con-
junctive continuation only.

3 Meta-interpreter Semantics

We provide an accessible definition of disjunctive delimited control in the form
of a meta-interpreter. Broadly speaking, it consists of two parts: the core inter-
preter, and a top level predicate to initialise the core and interpret the results.

3.1 Core Interpreter

Figure 1 defines the interpreter’s core predicate, eval(Conj, PatIn, Disj,
PatOut, Result). It captures the behaviour of reset(Pattern,Goal,Result)
where the goal is given in the form of a list of goals, Conj, together with the
alternative branches, Disj. The latter is renamed apart from Conj to avoid con-
flicting instantiations.

The pattern that identifies the variables of interest (similar to findall/3)
is present in three forms. Firstly, PatIn is an input argument that shares the
variables of interest with Conj (but not with Disj). Secondly, PatOut outputs the
instantiated pattern when the goal succeeds or suspends on a shift/1. Thirdly,
the alternative branches Disj are of the form alt(BranchPatIn,BranchGoal)
with their own copy of the pattern.

When the conjunction is empty (1–4), the output pattern is unified with
the input pattern, and success/2 is populated with the information from the
alternative branches.

When the first conjunct is true/0 (5–6), it is dropped and the meta-
interpreter proceeds with the remainder of the conjunction. When it is a compos-
ite conjunction (G1,G2) (7–8), the individual components are added separately
to the list of conjunctions.
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When the first conjunct is fail/0 (9–10), the meta-interpreter backtracks
explicitly by means of auxiliary predicate backtrack/3.

backtrack(Disj,PatOut,Result) :-
( empty_alt(Disj) ->

Result = failure
; Disj = alt(BranchPatIn,BranchGoal) ->

empty_alt(EmptyDisj),
eval([BranchGoal],BranchPatIn,EmptyDisj,PatOut,Result)

).

empty_alt(alt(_,fail)).

If there is no alternative branch, it sets the Result to failure. Otherwise, it
resumes with the alternative branch. Note that by managing its own backtrack-
ing, eval/5 is entirely deterministic with respect to the meta-level Prolog system.

1 eval([],PatIn,Disj,PatOut,Result) :- !,

2 PatOut = PatIn,

3 Disj = alt(BranchPatIn,BranchGoal),

4 Result = success(BranchPatIn,BranchGoal).

5 eval([true|Conj],PatIn,Disj,PatOut,Result) :- !,

6 eval(Conj,PatIn,Disj,PatOut,Result).

7 eval([(G1,G2)|Conj],PatIn,Disj,PatOut,Result) :- !,

8 eval([G1,G2|Conj],PatIn,Disj,PatOut,Result).

9 eval([fail|_Conj],_,Disj,PatOut,Result) :- !,

10 backtrack(Disj,PatOut,Result).

11 eval([(G1;G2)|Conj],PatIn,Disj,PatOut,Result) :- !,

12 copy_term(alt(PatIn,conj([G2|Conj])),Branch),

13 disjoin(Branch,Disj,NewDisj),

14 eval([G1|Conj],PatIn,NewDisj,PatOut,Result).

15 eval([conj(Cs)|Conj],PatIn,Disj,PatOut,Result) :- !,

16 append(Cs,Conj,NewConj),

17 eval(NewConj,PatIn,Disj,PatOut,Result).

18 eval([shift(Term)|Conj],PatIn,Disj,PatOut,Result) :- !,

19 PatOut = PatIn,

20 Disj = alt(BranchPatIn,Branch),

21 Result = shift(Term,conj(Conj),BranchPatIn,Branch).

22 eval([reset(RPattern,RGoal,RResult)|Conj],PatIn,Disj,PatOut,Result):- !,

23 copy_term(RPattern-RGoal,RPatIn-RGoalCopy),

24 empty_alt(RDisj),

25 eval([RGoalCopy],RPatIn,RDisj,RPatOut,RResultFresh),

26 eval([RPattern=RPatOut,RResult=RResultFresh|Conj]

27 ,PatIn,Disj,PatOut,Result).

28 eval([Call|Conj],PatIn,Disj,PatOut,Result) :- !,

29 findall(Call-Body,clause(Call,Body), Clauses),

30 ( Clauses = [] -> backtrack(Disj,PatOut,Result)

31 ; disjoin_clauses(Call,Clauses,ClausesDisj),

32 eval([ClausesDisj|Conj],PatIn,Disj,PatOut,Result)

33 ).

Fig. 1. Meta-interpreter core
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When the first conjunct is a disjunction (G1;G2) (11–14), the meta-
interpreter adds (a renamed apart copy of) (G2,Conj) to the alternative
branches with disjoin/3 and proceeds with [G1|Conj].

disjoin(alt(_,fail),Disjunction,Disjunction) :- !.
disjoin(Disjunction,alt(_,fail),Disjunction) :- !.
disjoin(alt(P1,G1),alt(P2,G2),Disjunction) :-

Disjunction = alt(P3, (P1 = P3, G1 ; P2 = P3, G2)).

Note that we have introduced a custom built-in conj(Conj) that turns a list of
goals into an actual conjunction. It is handled (15–17) by prepending the goals to
the current list of conjuncts, and never actually builds the explicit conjunction.

When the first goal is shift(Term) (18–21), this is handled similarly to an
empty conjunction, except that the result is a shift/4 term which contains Term
and the remainder of the conjunction in addition the branch information.

When the first goal is a reset(RPattern,RGoal,RResult) (22–27), the
meta-interpreter sets up an isolated call to eval/5 for this goal. When the call
returns, the meta-interpreter passes on the results and resumes the current con-
junction Conj. Notice that we are careful that this does not result in meta-level
failure by meta-interpreting the unification.

Finally, when the first goal is a call to a user-defined predicate (28–33), the
meta-interpreter collects the bodies of the predicate’s clauses whose head unifies
with the call. If there are none, it backtracks explicitly. Otherwise, it builds an
explicit disjunction with disjoin clauses, which it pushes on the conjunction
stack.

disjoin_clauses(_G,[],fail) :- !.
disjoin_clauses(G,[GC-Clause],(G=GC,Clause)) :- !.
disjoin_clauses(G,[GC-Clause|Clauses], ((G=GC,Clause) ; Disj)) :-

disjoin_clauses(G,Clauses,Disj).

An example execution trace of the interpreter can be found in [18, Appendix C].

Toplevel. The toplevel(Goal)-predicate initialises the core interpreter with a
conjunction containing only the given goal, the pattern and pattern copy set to
(distinct) copies of the goal, and an empty disjunction. It interprets the result by
non-deterministically producing all the answers to Goal and signalling an error
for any unhandled shift/1.

toplevel(Goal) :-
copy_term(Goal,GoalCopy),
PatIn = GoalCopy,
empty_alt(Disj),
eval([GoalCopy],PatIn,Disj,PatOut,Result),
( Result = success(BranchPatIn,Branch) ->

( Goal = PatOut ; Goal = BranchPatIn, toplevel(Branch))
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; Result = shift(_,_,_,_) ->
write(’toplevel: uncaught shift/1.\n’), fail

; Result = failure ->
fail

).

4 Case Studies

To illustrate the usefulness and practicality of our approach, we present two case
studies that use the new reset/3 and shift/1.

4.1 Branch-and-Bound: Nearest Neighbour Search

Branch-and-bound is a well-known general optimisation strategy, where the solu-
tions in certain areas or branches of the search space are known to be bounded.
Such branches can be pruned, when their bound does not improve upon a pre-
viously found solution, eliminating large swaths of the search space in a single
stroke.

We provide an implementation of branch-and-bound (see Fig. 2) that is
generic, i.e., it is not specialised for any application. In particular it is not spe-
cific to nearest neighbour search, the problem on which we demonstrate the
branch-and-bound approach here.

bound(V) :- shift(V).

bb(Value,Data,Goal,Min) :-

reset(Data,Goal,Result),

bb_result(Result,Value,Data,Min).

bb_result(success(BranchCopy,Branch),Value,Data,Min) :-

( Data @< Value -> bb(Data,BranchCopy,Branch,Min)

; bb(Value,BranchCopy,Branch,Min)

).

bb_result(shift(ShiftTerm,Cont,BranchCopy,Branch),Value,Data,Min) :-

( ShiftTerm @< Value ->

bb(Value,Data,(Cont ; (BranchCopy = Data,Branch)),Min)

; bb(Value,BranchCopy,Branch,Min)

).

bb_result(failure,Value,_Data,Min) :- Value = Min.

Fig. 2. Branch-and-Bound effect handler.
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nn((X,Y),BSP,D-(NX,NY)) :-

( BSP = xsplit((SX,SY),Left,Right) ->

DX is X - SX,

branch((X,Y), (SX,SY), Left, Right, DX, D-(NX,NY))

; BSP = ysplit((SX,SY),Up,Down) ->

DY is Y - SY,

branch((X,Y), (SX,SY), Up, Down, DY, D-(NX,NY))

).

branch((X,Y), (SX,SY), BSP1, BSP2, D, Dist-(NX,NY)) :-

( D < 0 -> % Find out which partition contains (X,Y).

TargetPart = BSP1, OtherPart = BSP2, BoundaryDistance is -D

;

TargetPart = BSP2, OtherPart = BSP1, BoundaryDistance is D

),

( nn((X,Y), TargetPart, Dist-(NX,NY))

; Dist is (X - SX) * (X - SX) + (Y - SY) * (Y - SY),

(NX,NY) = (SX,SY)

; bound(BoundaryDistance-nil),

nn((X,Y), OtherPart,Dist-(NX,NY))

).

run_nn((X0,Y0),BSP,(NX,NY)) :-

toplevel(bb(10-nil,D-(X,Y),nn((X0,Y0),BSP,D-(X,Y)),_-(NX,NY))).

Fig. 3. 2D nearest neighbour search with branch-and-bound.

The framework requires minimal instrumentation: it suffices to begin every
prunable branch with bound(V), where V is a lower bound on the values in the
branch.1

1. If the Goal succeeds normally (i.e., Result is success), then Data contains a
new solution, which is only accepted if it is an improvement over the existing
Value. The handler then tries the next Branch.

2. If the Goal calls bound(V), V is compared to the current best Value:
– if it is less than the current value, then Cont could produce a solution

that improves upon the current value, and thus must be explored. The
alternative Branch is disjoined to Cont, and DataCopy is restored to Data
(ensuring that a future reset/3 copies the right variables);

– if it is larger than or equal to the current value, then Cont can be safely
discarded.

3. Finally, if the goal fails entirely, Min is the current minimum Value.

Nearest Neighbour Search. The code in Fig. 3 shows how the branch and bound
framework efficiently solves the problem of finding the point (in a given set) that
is nearest to a given target point on the Euclidean plane.

1 The framework searches for a minimal solution.
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(1,0.1)
(0,0)

(0.5,0.5)

(-0.5,0.5)

(-0.75,-0.5)

Fig. 4. Nearest-neighbour search using a BSP-tree

The run nn/3 predicate takes a point (X,Y), a Binary Space Partitioning
(BSP)-tree2 that represents the set of points, and returns the point, nearest to
(X,Y). The algorithm implemented by nn/3 recursively descends the BSP-tree.
At each node it first tries the partition to which the target point belongs, then
the point in the node, and finally the other partition. For this final step we can
give an easy lower bound: any point in the other partition must be at least as
far away as the (perpendicular) distance from the given point to the partition
boundary.

As an example, we search for the point nearest to (1, 0.1) in the set {(0.5, 0.5),
(0, 0), (−0.5, 0), (−0.75,−0.5)}. Figure 4 shows a BSP-tree containing these
points, the solid lines demarcate the partitions. The algorithm visits the points
(0.5, 0.5) and (0, 0), in that order. The shaded area is never visited, since the
distance from (1,0.1) to the vertical boundary through (0, 0) is greater than the
distance to (0.5, 0.5) (1 and about 0.64). The corresponding call to run nn/3 is:

?- BSP = xsplit((0,0),
ysplit((-0.5,0),leaf,xsplit((-0.75,-0.5),leaf,leaf)),
ysplit((0.5,0.5),leaf,leaf)),

run_nn((1,0.1),BSP,(NX,NY)).
NX = NY, NY = 0.5.

4.2 Probabilistic Programming

Probabilistic programming languages (PPLs) are programming languages
designed for probabilistic modelling. In a probabilistic model, components
behave in a variety of ways—just like in a non-deterministic model—but do
so with a certain probability.
2 A BSP-tree is a tree that recursively partitions a set of points on the Euclidean plane,

by picking points and alternately splitting the plane along the x- or y-coordinate of
those point. Splitting along the x-coordinate produces an xsplit/3 node, along the
y-coordinate produces a ysplit/3 node.
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Instead of a single deterministic value, the execution of a probabilistic pro-
gram results in a probability distribution of a set of values. This result is pro-
duced by probabilistic inference [6,19], for which there are many strategies and
algorithms, the discussion of which is out of scope here. Here, we focus on one
concrete probabilistic logic programming languages: PRISM [10].

A PRISM program consists of Horn clauses, and in fact, looks just like a
regular Prolog program. However, we distinguish two special predicates:

– values x(Switch,Values,Probabilities) This predicate defines a proba-
bilistic switch Switch, that can assume a value from Values with the prob-
ability that is given at the corresponding position in Probabilities (the
contents of Probabilities should sum to one).

– msw(Switch,Value) This predicate samples a value Value from a switch
Switch. For instance, if the program contains a switch declared as values x(
coin, [h,t], [0.4,0.6]), then msw(coin,V) assigns h (for heads) to V
with probability 0.4, and t (for tails) with probability 0.6. Remark that
each distinct call to msw leads to a different sample from that switch. For
instance, in the query msw(coin,X),msw(coin,Y), the outcome could be
either (h,h),(t,t), (h,t) or (t,h).

Consider the following PRISM program, the running example for this section:

values_x(coin1,[h,t],[0.5,0.5]).
values_x(coin2,[h,t],[0.4,0.6]).
twoheads :- msw(coin1,h),msw(coin2,h).
onehead :- msw(coin1,V), (V = t, msw(coin2,h) ; V = h).

This example defines two predicates: twoheads which is true if both coins are
heads, and onehead which is true if either coin is heads. However, note the spe-
cial structure of onehead: PRISM requires the exclusiveness condition, that is,
branches of a disjunction cannot be both satisfied at the same time. The simpler
goal msw(coin1,heads) ; msw(coin2, heads) violates this assumption.

The code in Fig. 5 interprets this program. Line 1 defines msw/2 as a simple
shift. Lines 6–9 install a reset/3 call over the goal, and analyse the result. The
result is analysed in the remaining lines: A failure never succeeds, and thus
has success probability 0.0 (line 9). Conversely, a successful computation has a
success probability of 1.0 (line 10). Finally, the probability of a switch (lines
11–15) is the sum of the probability of the remainder of the program given each
possible value of the switch multiplied with the probability of that value, and
summed with the probability of the alternative branch.

The predicate msw prob finds the joint probability of all choices. It iterates
over the list of values, and sums the probability of their continuations.

msw_prob(_,_,[],[],Acc,Acc).
msw_prob(V,C,[Value|Values],[Prob|Probs],Acc,ProbOfMsw) :-

prob((V = Value,C),ProbOut),
msw_prob(V,C,Values,Probs,Prob*ProbOut + Acc,ProbOfMsw).
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1 msw(Key,Value) :- shift(msw(Key,Value)).

2 prob(Goal) :-

3 prob(Goal,ProbOut),

4 write(Goal), write(’: ’), write(ProbOut), write(’\n’).

5 prob(Goal,ProbOut) :-

6 copy_term(Goal,GoalCopy),

7 reset(GoalCopy,GoalCopy,Result),

8 analyze_prob(GoalCopy,Result,ProbOut).

9 analyze_prob(_,failure,0.0).

10 analyze_prob(_,success(_,_),1.0).

11 analyze_prob(_,shift(msw(K,V),C,_,Branch),ProbOut) :-

12 values_x(K,Values,Probabilities),

13 msw_prob(V,C,Values,Probabilities,0.0,ProbOfMsw),

14 prob(Branch,BranchProb),

15 ProbOut is ProbOfMsw + BranchProb.

Fig. 5. An implementation of probabilistic programming with delimited control.

Now, we can compute the probabilities of the two predicates above:

?- toplevel(prob(twoheads)).
twoheads: 0.25
?- toplevel(prob(onehead)).
onehead: 0.75

In [18, Appendix B.3] we implement the semantics of a definite, non-looping
fragment of ProbLog [6], another logic PPL, on top of the code in this section.

5 Properties of the Meta-interpreter

In this section we establish two important correctness properties of our meta-
interpreter with respect to standard SLD resolution. Together these establish
that disjunctive delimited control is a conservative extension. This means that
programs that do not use the feature behave the same as before.

The proofs of these properties are in [18, Appendix A]. The first theorem
establishes the soundness of the meta-interpreter, i.e., if a program (not contain-
ing shift/1 or reset/3) evaluates to success, then an SLD-derivation of the
same answer must exist.

Theorem 1 (Soundness). For all lists of goals [A1, . . . , An], terms α, β, γ, ν,
variables P,R conjunctions B1, . . . , Bm; C1, . . . , Ck and substitutions θ, if

? − eval([A1, . . . , An], α, alt(β, (B1, . . . , Bm)), P,R).
P = ν,R = success(γ,C1 , . . . ,Ck ).
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and the program contains neither shift/1 nor reset/3, then SLD-resolution3

finds the following derivation:

← (A1, . . . , An, true); (α = β,B1, . . . , Bm)
...
�

(with solution θ s.t. αθ = ν)

Conversely, we want to argue that the meta-interpreter is complete, i.e., if
SLD-derivation finds a refutation, then meta-interpretation—provided that it
terminates—must find the same answer eventually. The theorem is complicated
somewhat by the fact that the first answer that the meta-interpreter arrives at
might not be the desired one due to the order of the clauses in the program. To
deal with this problem, we use the operator ?-p, which is like ?-, but allows a
different permutation of the program in every step.

Theorem 2 (Completeness). For any goal ← A1, . . . , An, if it has solution
θ, then

?-p eval([A1, . . . , An], α, alt(β, (B1, . . . , Bm)), P,R).
P = success(γ, (C1, . . . , Ck)), R = αθ.

Together, these two theorems show that our meta-interpreter is a conservative
extension of the conventional Prolog semantics.

6 Related Work

Conjunctive Delimited Control. Disjunctive delimited control is the culmination
of a line of research on mechanisms to modify Prolog’s control flow and search,
which started with the hook-based approach of Tor [13] and was followed by
the development of conjunctive delimited control for Prolog [12,14].

The listing below shows that disjunctive delimited control entirely subsumes
conjunctive delimited control. The latter behaviour is recovered by disjoining
the captured disjunctive branch. We believe that Tor is similarly superseded.

nd_reset(Goal,Ball,Cont) :-
copy_term(Goal,GoalCopy),
reset(GoalCopy,GoalCopy,R),
( R = failure -> fail
; R = success(BranchPattern,Branch) ->

( Goal = GoalCopy, Cont = 0
; Goal = BranchPattern, nd_reset(Branch,Ball,Cont))

; R = shift(X,C,BranchPattern,Branch) ->
( Goal = GoalCopy, Ball = X, Cont = C
; Goal = BranchPattern, nd_reset(Branch,Ball,Cont))

).

3 Standard SLD-resolution, augmented with disjunctions and conj/1 goals.
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get(Interactor,Answer) :-

get_engine(Interactor,Engine), % get engine state

run_engine(Engine,NewEngine,Answer), % run up to the next answer

update_engine(Interactor,NewEngine). % store the new engine state

return(X) :- shift(return(X)).

run_engine(engine(Pattern,Goal),NewEngine,Answer) :-

reset(Pattern,Goal,Result),

run_engine_result(Pattern,NewEngine,Answer,Result).

run_engine_result(Pattern,NewEngine,Answer,failure) :-

NewEngine = engine(Pattern,fail),

Answer = no.

run_engine_result(Pattern,NewEngine,Answer,success(BPattern,B)) :-

NewEngine = engine(BPattern,B),

Answer = the(Pattern).

run_engine_result(Pattern,NewEngine,Answer,S) :-

S = shift(return(X),C,BPattern,B)

BPattern = Pattern,

NewEngine = engine(Pattern,(C;B)),

Answer = the(X).

Fig. 6. Interoperable Engines in terms of delimited control.

Abdallah [1] presents a higher-level interface for (conjunctive) delimited con-
trol on top of that of Schrijvers et al. [12]. In particular, it features prompts,
first conceived in a Haskell implementation by Dyvbig et al. [4], which allow
shifts to dynamically specify up to what reset to capture the continuation. We
believe that it is not difficult to add a similar prompt mechanism on top of our
disjunctive version of delimited control.

Interoperable Engines. Tarau and Majumdar’s Interoperable Engines [16] pro-
pose engines as a means for co-operative coroutines in Prolog. An engine is an
independent instance of a Prolog interpreter that provides answers to the main
interpreter on request.

The predicate new engine(Pattern,Goal,Interactor) creates a new
engine with answer pattern Pattern that will execute Goal and is identified
by Interactor. The predicate get(Interactor,Answer) has an engine execute
its goal until it produces an answer (either by proving the Goal, or explicitly
with return/1). After this predicate returns, more answers can be requested,
by calling get/2 again with the same engine identifier. The full interface also
allows bi-directional communication between engines, but that is out of scope
here.

Figure 6 shows that we can implement the get/2 engine interface in terms of
delimited control (the full code is available in [18, Appendix B.2]). The opposite,
implementing disjunctive delimited control with engines, seems impossible as
engines do not provide explicit control over the disjunctive continuation. Indeed,
get/2 can only follow Prolog’s natural left-to-right control flow and thus we can-
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not, e.g., run the disjunctive continuation before the conjunctive continuation,
which is trivial with disjunctive delimited control.

Tabling without Non-bactrackable Variables. Tabling [9,15] is a well-known tech-
nique that eliminates the sensitivity of SLD-resolution to clause and goal order-
ing, allowing a larger class of programs to terminate. As a bonus, it may improve
the run-time performance (at the expense of increased memory consumption).

One way to implement tabling—with minimal engineering impact to the
Prolog engine—is the tabling-as-a-library approach proposed by Desouter et
al. [3]. This approach requires (global) mutable variables that are not erased by
backtracking to store their data structures in a persistent manner. With the new
reset/3 predicate, this is no longer needed, as (non-backtracking) state can be
implemented in directly with disjunctive delimited control.

7 Conclusion and Future Work

We have presented disjunctive delimited control, an extension to delimited control
that takes Prolog’s non-deterministic nature into account. This is a conservative
extension that enables implementing disjunction-related language features and
extensions as a library.

In future work, we plan to explore a WAM-level implementation of disjunc-
tive delimited control, inspired by the stack freezing functionality of tabling
engines, to gain access to the disjunctive continuations efficiently. Similarily, the
use of copy term/2 necessitated by the current API has a detrimental impact on
performance, which might be overcome by a sharing or shallow copying scheme.

Inspired by the impact of conjunctive delimited control, which has brought
tabling to SWI-Prolog, we believe that further development of disjunctive delim-
ited control is worthwhile. Indeed, it has the potential of bringing powerful dis-
junctive control abstractions like branch-and-bound search to a wider range of
Prolog systems.
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Abstract. We propose to extend property-based testing to substruc-
tural logics to overcome the current lack of reasoning tools in the field.
We take the first step by implementing a property-based testing system
for specifications written in the linear logic programming language Lolli.
We employ the foundational proof certificates architecture to model var-
ious data generation strategies. We validate our approach by encoding a
model of a simple imperative programming language and its compilation
and by testing its meta-theory via mutation analysis.

Keywords: Linear logic · Property-based testing · Focusing ·
Semantics of programming languages

1 Introduction

Since their inception in the late 80’s, logical frameworks based on intuitionis-
tic logic [43] have been successfully used to represent and animate deductive
systems (λProlog) as well as to reason (Twelf ) about them. The methodology
of higher-order abstract syntax (HOAS) together with parametric-hypothetical
judgments yields elegant encodings that lead to elegant proofs, since it delegates
to the meta-logic the handling of many common notions, in particular the repre-
sentation of contexts. For example, when modeling a typing system, we represent
the typing context as a set of parametric (atomic) assumptions: this tends to
simplify the meta-theory since properties such as weakening and context sub-
stitution come for free: in fact, they are inherited from the logical framework,
and do not need to be proved on a case-by-case basis. For an early example,
see the proof of subject reduction for MiniML in [35], which completely avoids
the need to establish intermediate lemmas, as opposed to more standard and
labor-intensive treatments [15].

However, this identification of meta and object level contexts turns out to
be problematic in state-passing specifications. To fix ideas, consider specifying
the operational semantics of an imperative programming language: evaluating

This work has been partially supported by the National Group of Computing Science
(GNCS-INdAM) within the project “Estensioni del Property-based Testing di e con
linguaggi di programmazione dichiarativa”.

c© Springer Nature Switzerland AG 2022
E. De Angelis and W. Vanhoof (Eds.): LOPSTR 2021, LNCS 13290, pp. 92–112, 2022.
https://doi.org/10.1007/978-3-030-98869-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98869-2_6&domain=pdf
http://orcid.org/0000-0003-0942-4777
https://doi.org/10.1007/978-3-030-98869-2_6


Towards Substructural Property-Based Testing 93

an assignment requires taking an input state, modifying it and finally returning
it. A state (and related notions such as heaps, stacks, etc.) cannot be adequately
encoded as a set of intuitionistic assumptions, since it is intrinsically ephemeral.
The standard solution of reifing the state into a data structure, while doable,
betrays the whole HOAS approach.

Luckily, linear logic can change the world [51]—Linear logic being of course
the main example of substructural logics, i.e., those non-classical logics charac-
terized by the absence of some structural rules [41]. Linearity provides a notion
of context which has an immediate reading in terms of resources. A state can
be seen as a set of linear assumptions and the linear connectives can be used to
model in a declarative way reading and writing said state. In the early 90’s this
idea was taken up in linear logic programming and specification languages such
as Lolli [22], LLF [7] and Forum [36].

In the ensuing years, given the richness of linear logic and the flexibility of
the proof-theoretic foundations of logic programming [37], more sophisticated
languages emerged, with additional features such as order (Olli [46]), subexpo-
nentials [40], bottom-up evaluation and concurrency (Lollimon [29], Celf [49]).
Each extension required significant ingenuity, since it relied on the development
of appropriate notions of canonical forms, resource management, unification etc.
At the same time, tools for reasoning over such substructural specifications did
not materialize. Meta-reasoning over a logical framework, in fact, asks for formu-
lating appropriate meta-logics, which, again, is far from trivial, the more when
the framework is substructural; in fact no implementation of the latter have
appeared. The case for the concurrent logical framework CLF [8] is particularly
striking, where, notwithstanding a wide and promising range of applications, the
only meta-theoretic analysis available in Celf is checking that a program is well-
moded. Compare this with the successful deployment of dedicated HOAS-based
intuitionistic proof assistants such as Beluga [45] and Abella [1].

If linear verification is too hard, or just while we wait for the field to catch up,
this paper suggests validation as a useful alternative, in particular in the form
of property-based testing [24] (PBT). This is a lightweight validation technique
whereby the user specifies executable properties that the code should satisfy and
the system tries to refute them via automatic (typically random) data generation.

Previous work [4] gave a proof-theoretic reconstruction of PBT in terms of
focusing and foundational proof certificates (FPC) [12], which, in theory, applies
to all the languages mentioned above. The promise of the approach is that we
can state and check properties in the very logic where we specify them, with-
out resorting to a further meta-logic. Of course, validation falls rather short of
verification, but as by now common in mainstream proof assistants, e.g., [5,42],
we may resort to testing not only in lieu of proving, but before proving, so as
to avoid pointless effort in trying to prove false theorems or true properties over
bugged models.

In fact, the two-level architecture [19] underlying the Abella system and the
Hybrid library [17] seems a good match for the combination of testing and prov-
ing over substructural specifications. In this architecture we keep the meta-logic
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fixed, while making substructural the specification logic. Indeed, some case stud-
ies have been already carried out, as we detail in Sect. 6.

In this paper we move the first steps in this programme implementing PBT
for Lolli and evaluating its capability in catching bugs by applying it to a mid-
size case study: we give a linear encoding of the static and dynamic semantic of
an imperative programming language and its compilation into a stack machine
and validate several properties, among which type preservation and soundness of
compilation. We have tried to test properties in the way they would be stated and
hopefully proved in a linear proof assistant based on the two-level architecture.
That is, we are not arguing (yet) that linear PBT is “better” than traditional
ones for state-passing specifications. Besides, in the case studies we have carried
out so far, we generate only persistent data (expressions, programs) under a given
linear context. Rather, we advocate the coupling of validation and (eventually)
verification for those encoding where linearity makes a difference in terms of
drastically simplifying the infrastructure needed to prove the main result: one of
the original success stories of linear specifications, namely type preservation of
MiniML with references [7,34], still stands and nicely extends the cited one for
MiniML: linearly, the theorem can be proven from first principles, while with a
standard encoding, for example the Coq formalization in Software foundations1,
one needs literally dozens of preliminary lemmas.

The rest of the paper is organized as follows: we start in the next Sect. 2 with
a short example of model-based testing of a linear specification. Section 3 gives a
short introduction to the proof-theory of intuitionistic linear logic programming,
while Sect. 4 applies the notion of FPC to our reconstruction of PBT. Next
(Sect. 5), we validate our approach with a case study concerning the meta-theory
of a basic imperative language including an experimental evaluation (Sect. 5.2).
We conclude in Sect. 6 with a short review of related and future work.

We assume in the following a passing familiarity with linear logic and with
the proof-theoretic foundations of logic programming [37].

2 A Motivating Example

To preview our methodology, we present a self-contained example where we use
PBT in the guise of model-based testing: we test an implementation against a
trusted version. We choose as trusted model the linear encoding of the impli-
cational fragment of the contraction-free calculus for propositional intuitionistic
logic, popularized by Dyckhoff. Figure 1 lists the rules for the judgment Γ � C,
together with a Lolli implementation. Here, and in the following, we will use
Lolli’s concrete syntax, where the lollipop (in both directions) is linear impli-
cation, x is multiplicative conjunction (tensor), & is additive conjunction and
erase its unit �. The of-course modality is bang.

As shown originally in [22], we can encode provability with a predicate pv
that uses a linear context of propositions hyp for assumptions, that is occurring

1 https://softwarefoundations.cis.upenn.edu/plf-current/References.html.

https://softwarefoundations.cis.upenn.edu/plf-current/References.html
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Γ, A � B

Γ � A → B
R→

Γ, A � A
init

Γ, B, a � C

Γ, a → B, a � C
La

→
Γ, A2 → B � A1 → A2 Γ, B � C

Γ, (A1 → A2) → B � C
Li

→

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pv(imp(A,B)) o- (hyp(A) -o pv(B)).

pv(A) o- hyp(A) x erase.

pv(C) o- hyp(imp(A,B)) x bang(atom(A)) x hyp(A) x

(hyp(B) -o hyp(A) -o pv(C)).

pv(C) o- hyp(imp(imp(A1,A2),B)) x

(hyp(imp(A2,B) -o pv(imp(A1,A2))) &

(hyp(B) -o pv(C))).

Fig. 1. Rules for contraction free LJF→ and their Lolli encoding

at the left of the turnstile; this is shown in the first clause encoding the implica-
tion right rule R→ via the embedded implication hyp(A) -o pv(B). In the left
rules, the premises are consumed by means of the tensor and new assumptions
(re)asserted. The fact atom(A) lives on thanks to the bang, since it may need
to be reused. Note how in the encoding of rule Li

→, the context Γ is duplicated
through additive conjunction. The init rule disposes via erase of any remaining
assumption since the object logic enjoys weakening. By construction, the above
code is a decision procedure for LJF→.

Taking inspiration from Tarau’s [50], we consider next an optimization where
we factor the two left rules for implication in one:

... % similar to before

pvb(C) o- hypb(imp(A,B)) x pvbi(A,B) x
(hypb(B) -o pvb(C)).

pvbi(imp(C,D),B) o- hypb(imp(D,B)) -o pvb(imp(C,D)).
pvbi(A,_) o- hypb(A).

Does the optimization preserve provability? Formally, the conjecture is
∀A : form. pv(A) ⊃ pvb(A). We could try to prove it, although, for the rea-
sons alluded to in the introduction, it is not clear in which (formalized) meta-
logic we would carry out such proof. Instead, it is simpler to test, that is to
search for a counter-example. And the answer is no, the (encoding of the)
optimization is faulty, as witnessed by the (pretty printed) counterexample
A => ((A => (A => B)) => B): this intuitionistic tautology fails to be prov-
able in the purported optimization. We leave the fix to the reader.

3 A Primer on Linear Logic Programming

In this section we introduce some basic notions concerning the proof-theoretic
foundations of intuitionistic linear logic programming. We follow quite closely
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B � B
id

Δ � � �-R

Δ, Bi � C

Δ, B1 & B2 � C
&-Li (i = 1, 2) Δ � B Δ � C

Δ � B & C
&-R

Δ, B1, B2 � C

Δ, B1 ⊗ B2 � C
⊗-Li

Δ1 � B Δ2 � C

Δ1, Δ2 � B ⊗ C
⊗-R

Δ1 � B Δ2, C � E

Δ1, Δ2, B � C � E
�-L

Δ, B � C

Δ � B � C
�-R

Γ, B � C

Δ, !B � C
!-D

!Δ � B
!Δ � !B !-R

Δ � E
Δ, !B � E

!-W
Δ, !B, !B � C

Δ, !B � C
!-C

Δ, B[t/x] � C

Δ, ∀x.B � C
∀-L Δ � B[y/x]

Δ � ∀x.B
∀-R

provided that y is not free in the lower sequent.

Fig. 2. A sequent calculus for a fragment of linear logic.

the account by Miller and Hodas [22], to which we refer for more details and
motivations. It is possible, although slightly more technically involved, to give a
more general and modern treatment of the proof-theory in terms of focusing [28].

A substructural logic differs from classical and intuitionistic logic by restrict-
ing or even dropping from its proof-theory one of the usual structural rules,
namely weakening, contraction, and exchange. Linear logic [21] is probably the
most well-known: by controlling the use of contraction and weakening we can
view logical deduction no longer as an ever-expanding collection of persistent
“truths”, but as a way of manipulating resources that cannot be arbitrarily
duplicated or thrown away.

A linear logic programming language such as Lolli extends conservatively the
logic behind λProlog, that is (first-order) Hereditary Harrop formulæ (HHF),
which can be seen as the language freely generated by �, ∧, ⇒ and ∀. Therefore
it is natural to refine HHF via the connectives �,&,⊗,�, !,∀. We present the
proof-theory of this language as a two-sided sequent calculus (Fig. 2) based on
the judgment Δ � B2, where B is a formula over the above connectives and Δ is
a multi-set of formulas. We use “,” to denote both multi-set union and adding a
formula to a context; further, with !Δ we mean the multiset {!B | B ∈ Δ}. Con-
traction and weakening are allowed only on unrestricted assumptions (rules !-W
and !-C). Linear logic induces a related distinction between connectives, which
now come in two flavors: additive and multiplicative. The former duplicate the
context, e.g., additive conjunction (&-R), the latter split it, e.g., multiplicative
conjunction (⊗-R).

2 We overload “�” to denote provability for all the sequent systems in this paper,
counting on the structure of antecedent and consequent to disambiguate.
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Δ � G1 Δ � G2

Δ � G1 & G2 · � 1

Δ1 � G1 Δ2 � G2

Δ1, Δ2 � G1 ⊗ G2 Δ � �
Δ, α � G

Δ � α � G

· � G

· � !G
Δ, !A, A � G

Δ, !A � G

!Δ, A � A

Δ � G G � A ∈ grnd(P)
Δ � A

Fig. 3. Uniform proofs for second order LHHF

While this calculus is well-understood, it cannot be seen as an abstract logic
programming language in the sense of [37], since it does not enjoy the uniform
proof property: the latter allows one to see a cut-free sequent derivation Γ � G
as the state of an interpreter trying to establish if G follows from Γ . More
technically, a proof is uniform if every occurrence of a sequent with non-atomic
succedent is the conclusion of a right introduction rule.

For the fragment in Fig. 2, the problem boils down to the non-permutability
of the right rules for tensor and of-course over the left rules. Miller & Hodas’ solu-
tion was to limit the occurrences of those troublesome operators. We go a little
bit further, following large part of the literature [4,17,19], and adopt an addi-
tional minor restriction of linear Hereditary Harrop formulæ: we limit ourselves
to implications with atomic, possibly banged, premises. We also drop universal
goals, since our term language is first-order (as opposed to λProlog), making
universal goals essentially useless. On the other hand, we introduce as goals (not
as first class connectives) the tensor and the of-course modality. This allows us
to view, as usual, intuitionistic implication as defined: A ⇒ B is mapped to
!A � B. Having both forms (linear and unrestricted) of hypothetical judgments
is an essential ingredient in the art of linear logic specifications. Programs are
sets of the universal closure of clauses of the form G � A, which are fixed and
implicitly banged, since they can be used as many times as needed. The grammar
of second-order LHHF follows:

Goals G ::= A | � | 1 | α � G | !G | G1 ⊗ G2 | G1 & G2

Clauses D ::= ∀(G � A)
Programs P ::= · | P,D
Assumption α ::= A | !A
Context Δ ::= · | Δ,α
Atoms A ::= . . .

This reformulation of LHHF leads to the calculus in Fig. 3, which is closer to
our intuition of a logic programming interpreter since the left rules have been
replaced by backchaining (last rule) over all the ground instances (grnd) of a
program. Note how the additive unit � allows one to discard any remaining
assumption, while 1 holds only if all resources have been consumed. Similarly,
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ΔI \ ΔO � G1 ΔI \ ΔO � G2

ΔI \ ΔO � G1 & G2 ΔI \ ΔI � 1

ΔI \ ΔM � G1 ΔM \ ΔO � G2

ΔI \ ΔO � G1 ⊗ G2

ΔO ⊆ ΔI

ΔI \ ΔO � �
ΔI , α \ ΔO, � � G

ΔI \ ΔO � α � G

ΔI \ ΔI � G

ΔI \ ΔI � !G

ΔI , A \ ΔI , � � A ΔI , !A \ ΔO, !A � A

ΔI \ ΔO � G G � A ∈ grnd(P)
ΔI \ ΔO � A

Fig. 4. The IO system for second order LHHF.

a bang can hold only if it does not depend on any resource. In the axiom rule,
A is the only ephemeral assumption. Unrestricted assumptions can be copied at
will.

By adapting the techniques in [22], we can show that second-order LHHF has
the uniform proof property. However, the latter does not address the question
of how to perform proof search in the presence of linear assumptions, a.k.a. the
resource management problem [6]. The problem is firstly caused by multiplicative
connectives that, under a goal-oriented strategy, require a potentially exponen-
tial partitioning of the given linear context, case in point the tensor right rule.
Another source of non-determinism is the rule for �, since it puts no constraint
on the required context.

A solution to the first issue is based on lazy context splitting and it is known
as the IO system: it was introduced in [22], and further refined in [6]: when we
need to split a context (in our fragment only in the tensor case), we give to one
of the sub-goal the whole input context (ΔI): some of it will be consumed and
the leftovers (ΔO) returned to be used by the other sub-goal.

Figure 4 contains a version of the IO system for our language as described
by the judgment ΔI \ ΔO � G, where \ is just a suggestive notation to separate
input and output context. Following the literature and our implementation, we
will signal that a resource has been consumed in the input context by replacing
it with the placeholder “�”.

The IO system is known to be sound and complete w.r.t. uniform provability:
ΔI \ΔO � G iff ΔI −ΔO � G, where “−” is context difference modulo � (see [22]
for the definition). Given this relationship, the requirement for the linear context
to be empty in the right rules for 1 and ! is realized by the notation ΔI \ ΔI . In
particular, in the linear axiom rule, A is the only available resource, while in the
intuitionistic case, !A is not consumed. The tensor rule showcases lazy context
splitting, while additive conjunction duplicates the linear context.

The handling of � is sub-optimal, since it succeeds with any subset of the
input context. As well known, this could be addressed by using the notion of
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slack [6] to remove �-non determinism. However, given the preferred style of our
encodings (see Sect. 5), where additive unit is called only as a last step, this has
so far not proved necessary.

4 The Proof-Theory of PBT

While PBT originated in a functional programming setting [14], at least two
factors make a proof-theoretic reconstruction fruitful:

1. it fits nicely with a (co)inductive reading of rule-based presentations of a
system-under-test;

2. it easily generalizes to richer logics.

If we view a property as a logical formula ∀x[(τ(x) ∧ P (x)) ⊃ Q(x)] where
τ is a typing predicate, providing a counter-example consists of negating the
property, and therefore searching for a proof of ∃x[(τ(x) ∧ P (x)) ∧ ¬Q(x)].

Stated in this way the problem points to a logic programming solution, and
this means uniform proofs or more generally, proof-search in a focused sequent
calculus [28], where the specification is a set of assumptions (typically sets of
clauses) and the negated property is the query.

The connection of PBT with focused proof search is that in such a query
the positive phase is represented by ∃x and (τ(x) ∧ P (x)). This corresponds
to the generation of possible counter-examples under precondition P . That is
followed by the negative phase (which corresponds to counter-example testing)
and is represented by ¬Q(x). This formalizes the intuition that generation may
be arbitrarily hard, while testing is just a deterministic computation.

How do we supply external information to the positive phase? In particular,
how do we steer data generation? This is where the theory of foundational proof
certificates [12] (FPC) comes in. For the type-theoretically inclined, FPC can
be understood as a generalization of proof-terms in the Curry-Howard tradi-
tion. They have been introduced to define and share a range of proof structures
used in various theorem provers (e.g., resolution refutations, Herbrand disjuncts,
tableaux, etc.). A FPC implementation consists of

1. a generic proof-checking kernel,
2. the specification of a certificate format, and
3. a set of predicates (called clerks and experts) that decorate the sequent rules

used in the kernel and help to process the certificate.

In our setting, we can view those predicates as simple logic programs that guide
the search for potential counter-examples using different generation strategies.
The following special case may clarify the idea: consider two variations of the
beloved Prolog vanilla meta-interpreter, where in the left-hand side we bound
the derivation by its height and in the right-hand side we limit the number of
clauses used (size): for the latter, N is input and M output, so the size will be
N − M . For convenience we use numerals.
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Ξ1 : ΔI \ ΔO � G1 Ξ2 : ΔI \ ΔO � G2 &e(Ξ, Ξ1, Ξ2)
Ξ : ΔI \ ΔO � G1 & G2

1e(Ξ)
Ξ : ΔI \ ΔI � 1

Ξ1 : ΔI \ ΔM � G1 Ξ2 : ΔM \ ΔO � G2 ⊗e(Ξ, Ξ1, Ξ2)
Ξ : ΔI \ ΔO � G1 ⊗ G2

ΔI ⊇ ΔO �e(Ξ)
Ξ : ΔI \ ΔO � �

Ξ ′ : ΔI , α \ ΔO, � � G �e (Ξ, Ξ ′)
Ξ : ΔI \ ΔO � α � G

Ξ ′ : ΔI \ ΔI � G !e(Ξ, Ξ ′)
Ξ : ΔI \ ΔI � !G

inite(Ξ)
Ξ : ΔI , A \ ΔI , � � A

init! e(Ξ)
Ξ : ΔI , !A \ ΔO, !A � A

Ξ ′ : ΔI \ ΔO � G (G � A) ∈ grnd(P) unfolde(Ξ, Ξ ′, A, G)
Ξ : ΔI \ ΔO � A

Fig. 5. FPC presentation of the IO system for second order Lolli

demo(_,true). demo(N,N,true).
demo(H,(G1,G2)) :- demo(N,M,(G1,G2)) :-
demo(H,G1),demo(H,G2). demo(N,T,G1),demo(T,M,G2).

demo(s(H),A) :- demo(s(N),M,A) :-
clause(A,G),demo(H,G). clause(A,G),demo(N,M,G).

Not only is this code repetitious, but it reflects just two specific derivations
strategies. We can abstract the pattern by replacing the concrete bounds with
a variable to be instantiated with a specific certificate format and add for each
case/rule a predicate that will direct the search according to the given certificate.

demo(Cert,true) :-
trueE(Cert).

demo(Cert,(G1,G2)) :-
andE(Cert,Cert1,Cert2),
demo(Cert1,G1),demo(Cert2,G2).

demo(Cert,A) :-
unfoldE(Cert,Cert1),
clause(A,G),demo(Cert1,G).

Then, it is just a matter to provide the predicates, implicitly fixing the certificate
format:

trueE(height(_)).
trueE(size(N,N)).
andE(height(H),height(H),height(H)).
andE(size(N,M),size(N,T),size(T,M)).
unfoldE(height(s(H)),height(H)).
unfoldE(size(s(N),M),size(N,M)).

With this intuition in place, we can take the final step by augmenting each
inference rule of the system in Fig. 4 with an additional premise involving an
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expert predicate, a certificate Ξ, and possibly resulting certificates (Ξ ′, Ξ1, Ξ2),
reading the rules from conclusion to premises. Operationally, the certificate Ξ is
an input in the conclusion of a rule and the continuations are computed by the
expert to be handed over to the premises, if any. We sum up the rules in Fig. 5.

As we have said, the FPC methodology requires to describe a format for the
certificate. Since in this paper we use FPC only to guide proof-search, we fix the
following three formats and we allow their composition, known as pairing :

Certificates Ξ ::= n | 〈n,m〉 | d | (Ξ,Ξ)

Following on the examples above, the first certificate is just a natural number
(height), while the second consists of a pair of naturals (size). In the third case,
d stands for a distribution of weights to clauses in a predicate definition, to be
used for random generation; if none is given, we assume a uniform distribution.
Crucially, we can compose certificates, so that for example we can offer random
generation bounded by the height of the derivation; pairing is a simple, but
surprisingly effective combinator [3].

Each certificate format is accompanied by the implementation of the predi-
cates that process the certificate in question. We exemplify the FPC discipline
with a selection of rules instantiated with the size certificates. If we run the
judgment 〈n,m〉 : ΔI \ ΔO � G, the inputs are n, ΔI and G, while ΔO and m
will be output.

〈n − 1,m〉 : ΔI \ ΔO � G (A ← G) ∈ grnd(P) n > 0
〈n,m〉 : ΔI \ ΔO � A 〈n, n〉 : ΔI \ ΔI � 1

〈i,m〉 : ΔI \ ΔM � G1 〈m, o〉 : ΔM \ ΔO � G2

〈i, o〉 : ΔI \ ΔO � G1 ⊗ G2

〈n,m〉 : ΔI \ ΔO � G1 〈n,m〉 : ΔI \ ΔO � G2

〈n,m〉 : ΔI \ ΔO � G1 & G2

Here (as in all the formats considered in this paper), most experts are rather
simple; they basically hand over the certificate according to the connective. This
is the case of & and 1, where the expert copies the bound and its action is
implicit in the instantiation of the certificates in the premises. In the tensor
rule, the certificate mimics context splitting. The unfold expert, instead, is more
interesting: not only it decreases the bound, provided we have not maxed out on
the latter, but it is also in charge of selecting the next goal: for bounded search
via chronological backtracking, for random data generation via random back-
tracking: every time the derivation reaches an atom, we permute its definition
and pick a matching clause according to the distribution described by the certifi-
cate. Other strategies are possible, as suggested in [18]: for example, permuting
the definition just once at the beginning of generation, or even randomizing the
conjunctions in the body of a clause.
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Note that we have elected not to delegate to the experts resource manage-
ment: while possible, it would force us to pair such certificate with any other
one. As detailed in [4], more sophisticated FPC capture other features of PBT,
such as shrinking and bug-provenance, and will not be repeated here.

We are now ready to account for the soundness property from the example in
Sect. 2. By analogy, this applies to certificate-driven PBT with a liner IO kernel
in general. Let Ξ be here the height certificate with bound 4 and form( ) a
unary predicate describing the syntax of implicational formulæ, which we use
as a generator. Testing the property amounts to the following query in a host
language that implements the kernel:

∃F. (Ξ : · \ · � form(F)) ∧ (Ξ : · \ · � pv(F)) ∧ ¬(Ξ : · \ · � pvb(F))

In our case, the meta-language is simply Prolog, where we encode the kernel with
a predicate prove/4 and to check for un-provability negation-as-failure suffices,
as argued in [4].

C = height (4), prove(C,[],[], form(F)),
prove(C,[],[],pv(F)),\+ prove(C,[],[],pvb(F)).

5 Case Study

IMP is a model of a minimalist Turing-complete imperative programming lan-
guage, featuring instructions for assignment, sequencing, conditional and loop.
It has been extensively used in teaching and in mechanizations (viz. formalized
textbooks such as Software Foundations and Concrete Semantics3). Here we fol-
low Leroy’s account [27], but add a basic type system to distinguish arithmetical
from Boolean expressions.

IMP is a good candidate for a linear logic encoding, since its operational
semantics is, of course, state-based, while its syntax (see below) is simple enough
not to require a sophisticated treatment of binders.

expr ::= var variable
| i integer constant
| b Boolean constant
| expr + expr addition
| expr − expr subtraction
| expr ∗ expr multiplication
| expr ∧ expr conjunction
| expr ∨ expr disjunction
| ¬ expr negation
| expr == expr equality

val ::=

| vi integer value
| vb Boolean value

ty ::=

| tint integers type
| tbool Bool type

3 softwarefoundations.cis.upenn.edu and concrete-semantics.org.

http://softwarefoundations.cis.upenn.edu/
http://concrete-semantics.org/
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cmd ::= skip no op
| cmd ; cmd sequence
| if expr then cmd else cmd conditional
| while expr do cmd loop
| var = expr assignment

The relevant judgments describing the dynamic and static semantics of IMP
are:

σ � e ⇓ v big step evaluation of expressions;
(c, σ) ⇓ σ′ big step execution of commands;
(c, σ) � (c′, σ′) small step execution of commands and its Kleene closure;
Γ � e : τ well-typed expressions and v : τ well-typed values;
Γ � c well-typed commands and Γ : σ well-typed states;

5.1 On Linear Encodings

In traditional accounts, a state σ is a (finite) map between variables and values.
Linear logic takes a “distributed” view and represents a state as a multi-set of
linear assumptions. Since this is central to our approach, we make explicit the
(overloaded) encoding function �·� on states. Its action on values is as expected
and therefore omitted:

σ ::= · | σ, x �→ v
�·� = ∅

�σ, x �→ v� = �σ�, var(x , �v�)

When encoding state-based computations such as evaluation and execution
in a Lolli-like language, it is almost forced on us to use a continuation-passing
style (CPS [47]): by sequencing the computation, we get a handle on how to
express “what to compute next”, and this turns out to be the right tool to
encode the operational semantics of state update, the more when the modeled
semantics has side-effects, lest adequacy is lost.

Yet, even under the CPS-umbrella, there are choices: e.g., whether to adopt
an encoding that privileges additive connectives, in particular when using the
state in a non-destructive way. In the additive style, the state is duplicated with
& and then eventually disposed of via � at the leaves of the derivation.

This is well-understood, but it would lead to the reification of the continua-
tion as a data structure and the introduction of an additional layer of instruc-
tions to manage the continuation: for an example, see the static and dynamic
semantics of MiniMLR in [7]4.

Mixing additive and multiplicative connectives asks for a more sophisticated
resource management system; this is a concern, given the efficiency requirements
that testing brings to the table: the idea behind “QuickCheck”, and hence its
name, is that an outcome should be produced quickly.
4 This can be circumvented by switching to a more expressive logic, either by inter-

nalizing the continuation as an ordered context [46] or by changing representation
via forward chaining (destination-passing style) [29].
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A solution comes from the notion of logical continuation advocated by Chir-
imar [13], which affords us the luxury to never duplicate the state. Logical
continuations need higher-order logic (or can be simulated in an un-typed set-
ting such as Prolog). Informally, the idea is to transform every atom A of type
(τ1 ∗ · · · ∗ τn) → o into a new one Â of type (τ1 ∗ · · · ∗ τn ∗ o) → o where we accu-
mulate in the additional argument the body of the definition of A as a nested
goal. Facts are transformed so that the continuation becomes the precondition.

For example, consider a fragment of the rules for the evaluation judgment
σ � m ⇓ v and its CPS-encoding:

x �→ v ∈ σ
σ � x ⇓ v

e/v
σ � n ⇓ n

e/n

σ � e1 ⇓ v1 σ � e2 ⇓ v2 plus v1 v2 v
σ � e1 + e2 ⇓ v

e/p

eval(v(X),N,K) o- var(X,N) x (var(X,N) -o K).

eval(i(N),vi(N),K) o- K.

eval(plus(E1,E2),vi(V),K) o-

eval(E1 ,vi(V1),eval(E2,vi(V2),bang(sum(V1 ,V2 ,V,K)))).

In the variable case, the value for X is read (and consumed) in the linear context
and consequently reasserted; then we call the continuation in the restored state.
Evaluating a constant i(N) will have the side-effect of instantiating N in K. The
clause for addition showcases the sequencing of goals inside the logical continu-
ation, where the sum predicate is “banged” as a computation that does not need
the state.

The adequacy statement for CPS-evaluation reads: σ � m ⇓ v iff the sequent
�σ� � eval(�m�, �v�,�) has a uniform proof, where the initial continuation �
cleans up �σ� upon success. As well-know, we need to generalize the statement
to arbitrary continuations for the proof to go through.

It is instructive to look at a direct additive encoding as well:

ev(v(X),V) o- var(X,V) x erase.
ev(i(N),vi(N)) o- erase.
ev(plus(E1 ,E2),vi(V)) o- ev(E1 ,vi(V1)) &

ev(E2 ,vi(V2)) &
bang(sum(V1 ,V2 ,V)).

While this seems appealingly simpler, it breaks down when the state is updated
and not just read; consider the operational semantics of assignment and its CPS-
encoding:

σ � m ⇓ v

(σ, x := m) ⇓ σ ⊕ {x �→ v}

ceval(asn(X,E),K) o-
eval(E,V, (var(X,_) x (var(X,V) -o K))).
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The continuation is in charge of both having something to compute after the
assignment returns, but also of sequencing in the right order reading the state via
evaluation, and updating via the embedded implication. An additive encoding
using & would not be adequate, since the connective’s commutativity is at odd
with side-effects.

At the top level, we initialize the execution of programs (seen as a sequence of
commands) by using as initial continuation a predicate collect that consumes
the final state and returns it in a reified format.

main(P,Vars ,S) o- ceval(P,collect(Vars ,S)).

We are now in the position of addressing the meta-theory of our system-
under-study via testing. We list the more important properties among those
that we have considered. All statements are universally quantified:

srv subject reduction for evaluation: Γ � m : τ −→ σ � m ⇓ v −→ Γ : σ −→
v : τ ;

dtx determinism of execution: (σ, c) ⇓ σ1 −→ (σ, c) ⇓ σ2 −→ σ1 ≈ σ2;
srx subject reduction for execution: Γ � c −→ Γ : σ −→ (σ, c) ⇓ σ′ −→ Γ : σ′;
pr progress for small step execution: Γ � c −→ Γ : σ −→ c = skip ∨

∃c′ σ′, (c, σ) � (c′, σ′);
eq equivalence of small and big step execution (assuming determinism of both):

(σ, c) ⇓ σ1 −→ (c, σ1) �∗ (skip, σ2) −→ σ1 ≈ σ2.

We have also encoded the compilation of IMP to a stack machine and (muta-
tion) tested forward and backward simulation of compilation w.r.t. source and
target execution [27]. We have added a simple type discipline for the assembly
language in the spirit of Typed Assembly Languages [39] and tested preserva-
tion and progress, to exclude underflows in the execution of a well-typed stack
machine. Details can be found in the accompanying repository5.

5.2 Experimental Evaluation

A word of caution before discussing our experiments: first, we have spent almost
no effort in crafting nor tuning custom generators; in fact, they are simply FPC-
driven regular unary logic programs [52] with a very minor massage. Compare
this with the amount of ingenuity poured in writing generators in [23] or with
the model-checking techniques of [48]. Secondly, our interpreter is a Prolog meta-
interpreter and while we have tried to exploit Prolog’s indexing, there are obvious
ways to improve its efficiency, from partial evaluation to better data structures
for contexts.

Of the many experiments that we have run and are available in the dedicated
repository, we list here only a few, with no pretense of completeness. In those,
we have adopted a certain exhaustive generation strategy (size), then paired it

5 https://github.com/Tovy97/Towards-Substructural-Property-Based-Testing/tree/
master/Lolli/Assembly.

https://github.com/Tovy97/Towards-Substructural-Property-Based-Testing/tree/master/Lolli/Assembly
https://github.com/Tovy97/Towards-Substructural-Property-Based-Testing/tree/master/Lolli/Assembly
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Fig. 6. Testing property eq with certificate 〈n, 〉

dtx srx srv pr eq cex

M1 pass pass pass pass pass
M2 found pass pass pass found w := 0 - 1

M3 pass pass pass pass pass
M4 pass found found pass pass x := tt /\ tt

M5 pass pass pass pass pass
M6 found pass pass pass found if x = x then {w := 0} else {w := 1}

M7 pass pass pass pass pass
M8 pass pass pass pass pass
M9 pass pass pass pass pass

Fig. 7. Mutation testing

with height. We have used consistently certain bounds that experimentally have
shown to be effective in generating enough interesting data.

To establish a fair baseline, we have also implemented a state-passing version
of our benchmarks driven by a FPC-lead vanilla meta-interpreter.

We have run the experiments on a laptop with an Intel i7–7500U CPU and
16 GB of RAM running WSL (Ubuntu 20.04) over Windows 10, using SWI-
Prolog 8.2.4. All times are in seconds, as reported by SWI’s time/1. They are
the average of five measurements.

First we compare the time to test a sample property (“eq”, the equivalence of
big and small step execution) over a bug-free model both with linear and vanilla
PBT. On the left of Fig. 6 we plot the time proportionally to the certificate size.
On the right we list the number of generated programs and the percentage of
those that converge within a bound given by a polynomial function over the
certificate size (column “coverage”). The linear interpreter performs worse than
the state-passing one, but not dramatically so. This is to be expected, since the
vanilla meta-interpreter does not do any context management: in fact, it does
not use logical contexts at all.

Next, to gauge the effectiveness in catching bugs, we use, as customary, muta-
tion analysis [25], whereby single intentional mistakes are inserted into the sys-
tem under study. A testing suite is deemed as good as its capability of detecting
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those bugs (killing a mutant). Most of the literature about mutation analysis
revolves around automatic mutant analysis for imperative code, certainly not
linear logical specifications of object logics. Therefore, we resort to the manual
design of a small number of mutants, with all the limitations entailed. Note,
however, that this is the approach taken by the testing suite6 of a leading tool
such as PLT-Redex [16].

We list in Table 1 a selection of the mutations that we have implemented,
together with a categorization, borrowed from the classification of mutations for
Prolog-like languages in [38]. We also report the judgment where the mutation
occurs.

Clause mutations: deletion of a predicate in the body of a clause, deleting the
whole clause if a fact.

Operator mutations: arithmetic and relational operator mutation.
Variable mutations: replacing a variable with an (anonymous) variable and

vice versa.
Constant mutations: replacing a constant by a constant (of the same type),

or by an (anonymous) variable and vice versa.

Table 1. List of mutations

M1 (eval, C) mutation in the definition of addition

M2 (eval, Cl) added another clause to the definition of subtraction

M3 (eval, O) substitution of − for ∗ in arithmetic definitions

M4 (eval, O) similar to M1 but for conjunction

M5 (exec, V) bug on assignment

M6 (exec, Cl) switch branches in if-then-else

M7 (exec, Cl) deletion of one of the while rule

M8 (type, C) wrong output type in rule for addition

M9 (type, C) wrong input type in rule for disjunction

Figure 7 summarizes the outcome of mutation testing, where “found” indi-
cates that a counter-example (cex) has been found and “pass” that the bound
has been exhausted. In the first case, we report counter-examples in the last col-
umn, after pretty-printing. Since this is accomplished in milliseconds, we omit
the precise timing information. Note that counter-examples found by exhaustive
search are minimal by construction.

The results seem at first disappointing (3 mutants out of 9 being detected),
until we realize that it is not so much a question of our tool failing to kill mutants,
but of the above properties being too coarse. Consider for example mutation M3:
being a type-preserving operation swap in the evaluation of expressions, this will

6 https://docs.racket-lang.org/redex/benchmark.html.

https://docs.racket-lang.org/redex/benchmark.html


108 M. Mantovani and A. Momigliano

certainly not lead to a failure of subject reduction, nor invalidate determinism
of evaluation. On the other hand all mutants are easily killed with model-based
testing, that is taking as properties soundness (L → C) and completeness (C →
L) of the top-level judgments (exec/type) where mutations occur w.r.t. their bug-
free versions executed under the vanilla interpreter. This is reported in Fig. 8.

exec: C → L exec: L → C cex
No Mut pass in 2.40 pass in 6.56

M1 found in 0.06 pass in 6.45 w := 0 + 0

M2 pass in 2.40 found in 0.04 w := 0 - 1

M3 found in 0.06 found in 0.06 w := 0 * 1

M4 found in 0.06 found in 0.04 y := tt /\ tt

M5 found in 0.00 pass in 5.15 w := 0; w := 1

M6 pass in 2.34 found in 0.17 if y = y then {w := 0} else {w := 1}

M7 found in 0.65 pass in 0.82 while y = y /\ y = w do {y := tt}

type: C → L type: L → C cex
No Mut pass in 0.89 pass in 0.87

M8 found in 0.03 pass in 0.84 w := 0 + 0

M9 found in 0.04 pass in 0.71 y := tt \/ tt

Fig. 8. Model-based testing of IMP mutations

6 Related Work and Conclusions

The success of QuickCheck has lead many proof assistants to adopt some form
of PBT or more in general of counterexamples search. The system where proofs
and disproofs are best integrated is arguably Isabelle/HOL, which offers a com-
bination of random, exhaustive and symbolic testing [5] together with a model
finder [2]. A decade later QuickChick [42] has been added to Coq as a port-
ing of PBT compatible with the severe constraints of constructive type theory.
However, these PBT tools tend to be limited to executable total specifications,
while many judgments are partial and/or non-terminating. An exception is the
approach in [31], which brings relational PBT to Coq.

As far as the meta-theory of programming languages is concerned, PLT-
Redex [16] is an executable DSL for mechanizing semantic models built on top of
the programming environment DrRacket. Its usefulness has been demonstrated
in several impressive case studies [26]. αCheck [10,11] is a close ancestor of the
present work, since it is based on a proof-theoretic view of PBT, although it wires
in a fixed generation strategy. Moreover, the system goes beyond the confine of
classical or intuitionistic logic and embraces nominal logic as a way to give a
logical account of encoding models where binding signatures matter [9].

While substructural logics are a recurring thread in current PL theory (see
for example session types and separation logic) and while linear logic program-
ming languages have been extensively used to represent such models [20,44,49],
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formal verification via linear logic frameworks, as we have mentioned, is still
in its infancy. Schürmann et al. [33] have designed L+

ω , a linear meta-logics
conservatively extending the meta-theory of Twelf and Pientka et al. [20] have
introduced LINCX, a linear version of contextual modal type theory to be used
within Beluga.

However most case studies, as elegant as they are, are still on paper, viz.
type soundness of MiniML with references and cut-elimination for (object) linear
logic (LLF [7,33]). Martin’s dissertation [32] offers a thorough investigation of
the verification of the meta-theory of MiniML with references in Isabelle/HOL’s
Hybrid library, in several styles, including linear and ordered specifications. A
more extensive use of Hybrid, this time on top of Coq, is the recent verification of
type soundness of the proto-Quipper quantum functional programming language
in a Lolli-like specification logic [30].

In this paper we have argued for the extension of property-based testing to
substructural logics to overcome the current lack of reasoning tools in the field.
We have taken the first step by implementing a PBT system for specifications
written in linear Hereditary Harrop formulæ, the language underlying Lolli. We
have adapted the FPC architecture to model various generation strategies. We
have validated our approach by encoding the meta-theory of IMP and its com-
pilation with a dimple mutation analysis. With all the caution that our setup
entails, the experiments show that linear PBT is effective w.r.t. mutations and
while it under-performs vanilla PBT over bug-free models, there are immediate
avenues for improvement.

There is so much future work that it is almost overwhelming: first item,
from the system point of view, is abandoning the meta-interpretation approach,
and then a possible integration with Abella. Theoretically, our plan is to extend
our framework to richer linear logic languages, featuring ordered logic up to
concurrency, as well as supporting different operational semantics, to begin with
bottom-up evaluation.

Source code can be found at https://github.com/Tovy97/Towards-Substruct
ural-Property-Based-Testing.
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Abstract. In this paper, we describe a hierarchy of program transform-
ers, capable of performing fusion to eliminate intermediate data struc-
tures, in which the transformer at each level of the hierarchy builds on
top of those at lower levels. The program transformer at level 1 of the
hierarchy corresponds to positive supercompilation, and that at level 2
corresponds to distillation. We give a number of examples of the appli-
cation of our transformers at different levels in the hierarchy and look at
the speedups that are obtained. We determine the maximum speedups
that can be obtained at each level, and prove that the transformers at
each level terminate.

Keywords: transformation hierarchy · supercompilation ·
distillation · speedups

1 Introduction

It is well known that programs written using functional programming languages
often make use of intermediate data structures and thus can be inefficient. Sev-
eral program transformation techniques have been proposed to eliminate some of
these intermediate data structures; for example partial evaluation [14], deforesta-
tion [30] and supercompilation [27]. Positive supercompilation [26] is a variant of
Turchin’s supercompilation [27] that was introduced in an attempt to study and
explain the essentials of Turchin’s supercompiler. Although strictly more pow-
erful than both partial evaluation and deforestation, Sørensen has shown that
positive supercompilation (without the identification of common sub-expressions
in generalisation), and hence also partial evaluation and deforestation, can only
produce a linear speedup in programs [24]. Even with the identification of com-
mon sub-expressions in generalisation, superlinear speedups are obtained for
very few interesting programs, and many obvious improvements cannot be made
without the use of so-called ‘eureka’ steps [4].

Example 1. Consider the function call nrev xs shown in Fig. 1. This reverses
the list xs, but the recursive function call (nrev xs′) is an intermediate data
structure, so in terms of time and space usage, it is quadratic with respect to
the length of the list xs. A more efficient function that is linear with respect to
the length of the list xs is the function qrev shown in Fig. 1.

A number of algebraic transformations have been proposed that can perform
this transformation (e.g. [29]), making essential use of eureka steps requiring
c© Springer Nature Switzerland AG 2022
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nrev xs
where
nrev xs = case xs of

Nil ⇒ Nil
Cons x xs ⇒ append (nrev xs ) (Cons x Nil)

append xs ys = case xs of
Nil ⇒ ys
Cons x xs ⇒ Cons x (append xs ys)

qrev xs
where
qrev xs = qrev xs Nil
qrev xs ys = case xs of

Nil ⇒ ys
Cons x xs ⇒ qrev xs (Cons x ys)

Fig. 1. Alternative Definitions of List Reversal

human insight and not easy to automate; for the given example this can be
achieved by appealing to a specific law stating the associativity of the append
function. However, none of the generic program transformation techniques men-
tioned above are capable of performing this transformation.

The distillation algorithm [9,11] was originally motivated by the need for auto-
matic techniques that avoid the reliance on eureka steps to perform transforma-
tions such as the above. In positive supercompilation, generalisation and folding
are performed only on expressions, while in distillation, generalisation and fold-
ing are also performed on recursive function representations (process trees). This
allows a number of improvements to be obtained using distillation that cannot
be obtained using positive supercompilation.

The process trees that are generalised and folded in distillation are in fact
those produced by positive supercompilation, so we can see that the definition
of distillation is built on top of positive supercompilation. This suggests the
existence of a hierarchy of program transformers, where the transformer at each
level is built on top of those at lower levels, and more powerful transformations
are obtained as we move up through this hierarchy. In this paper, we define such
a hierarchy inductively, with positive supercompilation at level 1, distillation
at level 2 and each new level defined in terms of the previous ones. Each of
the transformers is capable of performing fusion to eliminate intermediate data
structures by fusing nested function calls. As we move up through the hierarchy,
deeper nestings of function calls can be fused, thus removing more intermediate
data structures.

The remainder of this paper is structured as follows. In Sect. 2, we define
the higher-order functional language on which the described transformations are
performed. In Sect. 3, we give an overview of process trees and define a number
of operations on them. In Sect. 4, we define the program transformer hierarchy,
where the transformer at level 0 corresponds to the identity transformation, and
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each successive transformer is defined in terms of the previous ones. In Sect. 5,
we give examples of transformations that can be performed at different levels in
our hierarchy. In Sect. 6, we consider the efficiency improvements that can be
obtained as we move up through this hierarchy. In Sect. 7, we prove that each
of the transformers in our hierarchy terminates. In Sect. 8, we consider related
work and Sect. 9 concludes and considers possibilities for further work.

2 Language

In this section, we describe the call-by-name higher-order functional language
that will be used throughout this paper.

Definition 1 (Language Syntax). The syntax of this language is as shown
in Fig. 2.

prog ::= e0 where h1 = e1 . . . hn = en Program

e ::= x Variable
| c e1 . . . en Constructor Application
| λx .e λ-Abstraction
| f Function Call
| e0 e1 Application
| case e0 of p1 ⇒ e1 . . . pn ⇒ en Case Expression

h ::= f x1 . . . xn Function Header

p ::= c x1 . . . xn Pattern

Fig. 2. Language Syntax

Programs in the language consist of an expression to evaluate and a set of func-
tion definitions. An expression can be a variable, constructor application, λ-
abstraction, function call, application or case. Variables introduced by function
definitions, λ-abstractions and case patterns are bound; all other variables are
free. We assume that bound variables are represented using De Bruijn indices.
An expression that contains no free variables is said to be closed. We write e ≡ e′

if e and e′ differ only in the names of bound variables.
Each constructor has a fixed arity; for example Nil has arity 0 and Cons has

arity 2. In an expression c e1 . . . en , n must equal the arity of c. The patterns
in case expressions may not be nested. No variable may appear more than
once within a pattern. We assume that the patterns in a case expression are
non-overlapping and exhaustive. It is also assumed that erroneous terms such
as (c e1 . . . en) e where c is of arity n and case (λx.e) of p1 ⇒ e1 . . . pk ⇒ ek
cannot occur.
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Definition 2 (Substitution). We use the notation θ = {x1 �→ e1, . . . , xn �→
en} to denote a substitution. If e is an expression, then eθ = e{x1 �→ e1, . . . , xn �→
en} is the result of simultaneously substituting the expressions e1, . . . , en for
the corresponding variables x1, . . . , xn, respectively, in the expression e while
ensuring that bound variables are renamed appropriately to avoid name capture.
A renaming denoted by σ is a substitution of the form {x1 �→ x′

1, . . . , xn �→ x′
n}.

Definition 3 (Shallow Reduction Context). A shallow reduction context C
is an expression containing a single hole • in the place of the redex, which can
have one of the two following possible forms:

C ::= • e | case • of p1 ⇒ e1 . . . pn ⇒ en

Definition 4 (Evaluation Context). An evaluation context E is represented
as a sequence of shallow reduction contexts (known as a zipper [13]), representing
the nesting of these contexts from innermost to outermost within which the redex
is contained. An evaluation context can therefore have one of the two following
possible forms:

E ::= 〈〉 | 〈C : E〉

Definition 5 (Insertion into Evaluation Context). The insertion of an
expression e into an evaluation context κ, denoted by κ•e, is defined as follows:

〈〉•e = e
〈(• e′) : κ〉•e = κ•(e e′)
〈(case • of p1 ⇒ e1 . . . pn ⇒ en) : κ〉•e

= κ•(case e of p1 ⇒ e1 . . . pn ⇒ en)

Definition 6 (Language Semantics). The normal order reduction semantics
for programs in our language is defined by Np[[p]] as shown in Fig. 3, where it
is assumed the program p contains no free variables. Within the rules Ne, κ
denotes the context of the expression under scrutiny and Δ is the set of function
definitions. We always evaluate the redex of an expression within the context κ.

Np[[e0 where h1 = e1 . . . hn = en]] = Ne[[e0 ]] h1 = e1, . . . , hn = en}

Ne[[c e1 . . . en ]] Δ = c (Ne[[e1 ]] Δ) . . . (Ne[[en ]] Δ)
Ne[[c e1 . . . en ]] (case • of p1 ⇒ e1 . . . pk ⇒ ek ) : κ Δ =

Ne[[ei{x1 e1 , . . . , xn en}]] κ Δ
where ∃i ∈ {1 . . . k}.pi = c x1 . . . xn

Ne[[λx .e]] Δ = λx.(Ne[[e]] Δ)
Ne[[λx .e]] (• e ) : κ Δ = Ne[[e{x e }]] κ Δ
Ne[[f ]] κ Δ = Ne[[λx1 . . . xn .e]] κ Δ

where (f x1 . . . xn = e) ∈ Δ
Ne[[e0 e1 ]] κ Δ = Ne[[e0]] (• e1 ) : κ Δ
Ne[[case e0 of p1 ⇒ e1 . . . pn ⇒ en ]] κ Δ =

Ne[[e0]] (case • of p1 ⇒ e1 . . . pn ⇒ en ) : κ Δ

Fig. 3. Language Semantics
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3 Process Trees

The output of each of the transformers in our hierarchy are represented by process
trees, as defined in [25]. Within these process trees, the nodes are labelled with
expressions. We write e → t1, . . . , tn for a process tree where the root node is
labelled with the expression e, and t1, . . . , tn are the sub-trees of this root node.
We also write e → ε for a terminal node that has no sub-trees. We use root(t)
to denote the expression labelling the root node of process tree t. Process trees
may also contain three special kinds of node:

– Unfold nodes: these are of the form h → t, where h is a function header and t
is the process tree resulting from transforming an expression after unfolding.

– Fold nodes: these are of the form h → ε, where folding has been performed
with respect to a previous unfold node and the corresponding function headers
are renamings of each other.

– Generalisation nodes: these are of the form (x0 x1 . . . xn) → t0, t1, . . . , tn.
This represents the result of a process tree generalisation, where the sub-
trees t1 . . . tn have been extracted and replaced by the corresponding variables
x1 . . . xn in the process tree t0 that is represented by x0.

Variables introduced by λ-abstractions, case patterns and generalisation nodes
in process trees are bound; all other variables are free. We assume that bound
variables are represented using De Bruijn indices. We use fv(t) to denote the
free variables of process tree t.

Definition 7 (Renaming of Process Trees). If t is a process tree, then the
renaming tσ is obtained by applying the renaming σ to the expressions labelling
all nodes in t, while ensuring that bound variables are renamed appropriately to
avoid name capture.

When transforming an expression with a function in the redex at level k +1, the
expression is first transformed using a level k transformer. The resulting process
tree is then compared to previously encountered process trees generated at level
k. If it is a renaming of a previous one, then folding is performed, and if it is an
embedding of a previous one, then generalisation is performed. The use of process
trees in this comparison allows us to abstract away from the number and order
of the parameters in functions, and instead focus on their recursive structure.
We therefore define renaming, embedding and generalisation on process trees.

Definition 8 (Process Tree Renaming). Process tree t is a renaming of
process tree t′ if there is a renaming σ (which also renames functions) such that
tσ ∼= t′, where the relation ∼= is defined as follows:

(φ(e1 . . . en) → t1, . . . , tn) ∼= (φ(e′
1 . . . e′

n) → t′1, . . . , t
′
n), if ∀i ∈ {1 . . . n}.ti ∼= t′i

Two process trees are therefore related by this equivalence relation if the pair
of expressions in the corresponding root nodes have the same top-level syntactic
constructor φ (a variable, constructor, lambda-abstraction, function name, appli-
cation or case), and the corresponding sub-trees are also related. This includes
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the pathological case where the nodes have no sub-trees (such as free variables
which must have the same name, and bound variables which must have the same
de Bruijn index).

In order to ensure the termination of our transformation, we have to perform
generalisation. This generalisation is performed when a process tree is encoun-
tered that is an embedding of a previous one. The form of embedding which we
use to determine whether to perform generalisation is known as homeomorphic
embedding. The homeomorphic embedding relation was derived from results by
Higman [12] and Kruskal [19] and was defined within term rewriting systems [5]
for detecting the possible divergence of the term rewriting process. Variants of
this relation have been used to ensure termination within positive supercompila-
tion [25], partial evaluation [21] and partial deduction [3,20]. The homeomorphic
embedding relation is a well-quasi-order.

Definition 9 (Well-Quasi Order). A well-quasi order on a set S is a reflexive,
transitive relation ≤S such that for any infinite sequence s1, s2, . . . of elements
from S there are numbers i, j with i < j and si ≤S sj .

The homeomorphic embedding relation on process trees is defined as follows.

Definition 10 (Process Tree Embedding). Process tree t is embedded in
process tree t′ if there is a renaming σ (which also renames functions) such that
tσ � t′, where the relation � is defined as follows:

(φ(e1 . . . en) → t1, . . . , tn) � (φ(e′
1 . . . e′

n) → t′1, . . . , t
′
n), if ∀i ∈ {1 . . . n}.ti � t′i

t � (e → t1, . . . , tn), if ∃i ∈ {1 . . . n}.t � ti

The first rule is a coupling rule, where the pair of expressions in the root nodes
must have the same top-level syntactic constructor φ, and the corresponding
sub-trees of the root nodes must also be related to each other. This includes the
pathological case where the root nodes have no sub-trees (such as free variables
which must have the same name, and bound variables which must have the same
de Bruijn index). The second rule is a diving rule; this relates a process-tree with
a sub-tree of a larger process tree. We write t  t′ if t � t′ and the coupling rule
can be applied at the top level.

The use of this embedding relation ensures that in any infinite sequence of
process trees t0, t1, . . . encountered during transformation there definitely exists
some i < j where ti is embedded in tj , so an embedding must eventually be
encountered and transformation will not continue indefinitely without the need
for generalisation or folding.

Definition 11 (Non-Decreasing Variable). Variable x is non-decreasing
between process trees t and t′ if there is a renaming σ such that tσ  t′ and
(x �→ x) ∈ σ.
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Example 2. Consider the two process trees in Fig. 4 that are produced by our
level 1 transformer for the expressions append xs (Cons x Nil) and append
(append xs′ (Cons x′ Nil)) (Cons x Nil) respectively. The renaming {f �→
f ′, x �→ x, xs �→ xs′} can be applied to process tree (1) so that it is embedded
in process tree (2) by the relation . The variable x is therefore non-decreasing
between these two process trees.

(1) f x xs

case xs of Nil ⇒ . . . Cons x xs ⇒ . . .

Cons x . . .

f x xsx

Cons x Nil

Nilx

xs

(2) f x x xs

case xs of Nil ⇒ . . . Cons x xs ⇒ . . .

Cons x . . .

f x x xsx

Cons x (Cons x Nil)

Cons x Nil

Nilx

x

xs

Fig. 4. Embedded Process Trees

The generalisation of a process tree involves replacing sub-trees with gener-
alisation variables and creating process tree substitutions.

Definition 12 (Process Tree Substitution). We use the notation ϕ =
{X1 �→ t1, . . . , Xn �→ tn} to denote a process tree substitution. If t is an
process tree, then tϕ = t{X1 �→ t1, . . . , Xn �→ tn} is the result of simultane-
ously substituting the sub-trees t1, . . . , tn for the corresponding tree variables
X1, . . . , Xn, respectively, in the process tree t while ensuring that bound vari-
ables are renamed appropriately to avoid name capture.

Definition 13 (Process Tree Instance). Process tree t′ is an instance of
process tree t if there is a process tree substitution ϕ such that tϕ ∼= t′.
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Definition 14 (Generalisation). A generalisation of process trees t and t′ is a
triple (tg, ϕ, ϕ′) where ϕ and ϕ′ are process tree substitutions such that tgϕ ∼= t
and tgϕ

′ ∼= t′.

Definition 15 (Most Specific Generalisation). A most specific generalisa-
tion of process trees t and t′ is a generalisation (tg, ϕ1, ϕ2) such that for every
other generalisation (t′g, ϕ

′
1, ϕ

′
2) of t and t′, tg is an instance of t′g. When a process

tree is generalised, sub-trees within it are replaced with variables which implies a
loss of information, so the most specific generalisation therefore entails the least
possible loss of information.

Definition 16 (The Generalisation Operator � ). The most specific gen-
eralisation of two process trees t and t′, where t and t′ are related by , is given
by t � t′, where the following rewrite rules are repeatedly applied to the initial
triple (X, {X �→ t}, {X �→ t′}):

⎛
⎝

tg,
{X �→ (φ(e1 . . . en) → t1, . . . , tn)} ∪ ϕ,
{X �→ (φ(e′

1 . . . e′
n) → t′1, . . . , t

′
n)} ∪ ϕ′

⎞
⎠

⇓⎛
⎝

tg{X �→ (φ(e′
1 . . . e′

n) → X1, . . . , Xn)},
{X1 �→ t1, . . . , Xn �→ tn} ∪ ϕ,
{X1 �→ t′1, . . . , Xn �→ t′n} ∪ ϕ′

⎞
⎠

(tg, {X �→ t,X ′ �→ t} ∪ ϕ, {X �→ t′,X ′ �→ t′} ∪ ϕ′)
⇓

(tg{X �→ X ′}, {X ′ �→ t} ∪ ϕ, {X ′ �→ t′} ∪ ϕ′)

In the first rule, if the process trees associated with the same variable in each
environment have the same top-level syntactic constructor φ, then the root node
of one of the process trees is added into the generalised tree. New generalisation
variables are then added for the corresponding sub-trees of these root nodes. Note
that it does not matter which of the original two process trees the expressions
in the resulting generalised process tree come from, so long as they all come
from one of them (so the corresponding unfold and fold nodes still match);
the resulting residualised program will be the same. The second rule identifies
common substitutions that were previously given different names.

Theorem 1 (Most Specific Generalisation). If process trees t and t′ are
related by , then the generalisation procedure t � t′ terminates and calculates
the most specific generalisation.

Proof. To prove that the generalisation procedure terminates, we show that
within each rewrite rule, either the size of the environments ϕ and ϕ′ is reduced,
or the size of the terms contained in these environments is reduced. Since the
values are well-founded, the rewrite rules can only be applied finitely many times.

The proof that the result of the procedure is indeed a generalisation is by
induction. The initial triple is trivially a generalisation, and for each of the
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rewrite rules, if the input triple is a generalisation, then the output triple must
also be a generalisation.

The proof that the result of the procedure is a most specific generalisation is
by contradiction. If the resulting triple (t, ϕ1, ϕ2) is not a most specific generali-
sation, then there must exist a most specific generalisation (t′, ϕ′

1, ϕ
′
2) and a tree

substitution ϕ such that tϕ ∼= t′, but no tree substitution ϕ′ such that t′ϕ′ ∼= t.
This will be the case if either ϕ is not a renaming, so contains a substitution of
the form X �→ (φ(e1 . . . en) → t1, . . . , tn, or it identifies two variables within t. In
the first case, the first rewrite rule would have been applied to further generalise,
and in the second case, the second rewrite rule would have been applied to iden-
tify the variables. Thus there is a contradiction, so the generalisation computed
by the procedure must be the most specific.

Example 3. The result of generalising the two process trees in Fig. 4 is shown in
Fig. 5, with the mismatched nodes replaced by the generalisation variable X.

f x x xs

case xs of Nil ⇒ . . . Cons x xs ⇒ . . .

Cons x . . .

f x x xsx

Cons x . . .

Xx

xs

Fig. 5. Generalised Process Tree

Definition 17 (Generalisation Node Construction). The construction of
a generalisation node for process tree t′, where there is a process tree t such that
t  t′, is given by t ↑ t′, which is defined as follows.

The rules Gn return an environment {x0 �→ t0, x1 �→ t1, . . . , xn �→ tn} from
which the corresponding generalisation node (x0 x1 . . . xn) → t0, t1, . . . , tn is
constructed. The rules are applied to the triple (t0, ϕ, ϕ′) resulting from the
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generalisation of the process trees t and t′. They work through each of the
corresponding generalisation variables in the environments ϕ and ϕ′ in turn.
In the first rule, when both generalisation environments are exhausted, we are
left with the generalised process tree t0 in which appropriate values have been
substituted for the generalisation variables; this is associated with the fresh
variable x0. In the final rule, the extracted sub-tree is abstracted over its variables
(so that these are not extracted outside of their binders), and associated with
the fresh variable xk; the generalisation variable in the generalised process tree
is replaced with a corresponding application of xk. In the second rule, if we have
an instance of the application of the variable x, and x is non-decreasing, then
the same variable is reused in the generalisation.

Example 4. The result of applying the generalisation node constructor to the
result of generalising the two process trees in Fig. 4 is shown in Fig. 6.

x0 x1

Cons x Nil

Nilx

f x x xs

case xs of Nil ⇒ . . . Cons x xs ⇒ . . .

Cons x . . .

f x x xsx

Cons x . . .

x1x

xs

Fig. 6. Generalised Process Tree With Generalisation Node

We now show how a program can be residualised from a process tree.

Definition 18 (Residualisation). A program can be residualised from a pro-
cess tree t as Rp[[t ]] using the rules as shown in Fig. 7.

Within the rules Re, the parameter ρ contains the unfold node function
headers and the corresponding new function headers that are created for them.
The rules return a residual expression along with a set of newly created function
definitions. In rule (2), on encountering an unfold node, a new function header
is created, associated with the unfold node function header, and added to ρ.
Note that this new function header may not have the same variables as the one
in the unfold node, as new variables may have been added to the sub-tree as a
result of generalisation. In rule (3), on encountering a fold node, a recursive call
of the function associated with the unfold node function header in ρ is created.
In rule (9), on encountering a generalisation node, the sub-trees of the node are
residualised separately, and then the expressions residualised from the extracted
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(1) Rp[[t ]] = e0 where h1 = e1, . . . , hn = en

where Re[[t]] {} = (e0, {h1 = e1, . . . , hn = en})

(2) Re[[h → t ]] ρ = (h , {h = e} ∪ Δ)
where Re[[t ]] (ρ ∪ {h = h }) = (e, Δ)

h = f x1 . . . xn (f is fresh, {x1 . . . xn} = fv(t))
(3) Re[[h → ]] ρ = (h σ, {})

where (h = h ) ∈ ρ ∧ h ≡ h σ
(4) Re[[x → ]] ρ = (x, {})
(5) Re[[(c e1 . . . en ) → t1 , . . . , tn ]] ρ = (c e1 . . . en,

n

i=1
Δi)

where ∀i ∈ {1 . . . n}.Re[[ti ]] ρ = (ei, Δi)
(6) Re[[(λx .e) → t ]] ρ = (λx .e , Δ)

where Re[[t ]] ρ = (e , Δ)

(7) Re[[(e0 e1 ) → t0 , t1 ]] ρ = (e0 e1,
2

i=1
Δi)

where ∀i ∈ {0 . . . 1}.Re[[ti ]] ρ = (ei, Δi)
(8) Re[[(case e0 of p1 ⇒ e1 . . . pn ⇒ en ) → t0 , . . . , tn ]] ρ =

(case e0 of p1 ⇒ e1 . . . pn ⇒ en ,
n

i=0
Δi)

where ∀i ∈ {0 . . . n}.Re[[ti ]] ρ = (ei, Δi)

(9) Re[[(x0 x1 . . . xn) → t0, t1, . . . , tn]] ρ = e0{x1 e1, . . . , xn en},
n

i=0
Δi)

where ∀i ∈ {0 . . . n}.Re[[ti ]] ρ = (ei, Δi)

Fig. 7. Rules For Residualisation

sub-trees t1 . . . tn are substituted back into the result of residualising the main
body t0.

Example 5. The program shown in Fig. 8 is obtained by applying the residuali-
sation rules to the process tree shown in Fig. 6.

f x xs (Cons x Nil)
where
f x xs ys = case xs of

Nil ⇒ Cons x ys
Cons x xs ⇒ Cons x (f x xs ys)

Fig. 8. Result of Residualisation

4 A Hierarchy of Program Transformers

In this section, we define our hierarchy of transformers. The level k transformer
is defined as T k

p [[p]], where p is the program to be transformed. It is assumed



124 G. Hamilton

that the input program contains no λ-abstractions; these can be replaced by
named functions. The output of the transformer is a process tree from which the
transformed program can be residualised.

4.1 Level 0 Transformer

Level 0 in our hierarchy just maps a program to a corresponding process tree
without performing any reductions as shown in Fig. 9.

(1) T 0
p [[e0 where h1 = e1, . . . , hn = en]] = T 0

e [[e0]] {} {h1 = e1, . . . , hn = en}

(2) T 0
e [[x ]] ρ Δ = x →

(3) T 0
e [[c e1 . . . en ]] ρ Δ = (c e1 . . . en) → (T 0

e [[e1 ]] ρ Δ), . . . , (T 0
e [[en ]] ρ Δ)

(4) T 0
e [[λx .e]] ρ Δ = (λx.e) → (T 0

e [[e]] ρ Δ)

(5) T 0
e [[f ]] ρ Δ =

⎧⎨
⎩

f → if f ∈ ρ
f → (T 0

e [[λx1 . . . xn .e]] (ρ ∪ {f}) Δ), otherwise
where (f x1 . . . xn = e) ∈ Δ

(6) T 0
e [[e0 e1 ]] ρ Δ = (e0 e1) → (T 0

e [[e0 ]] ρ Δ), (T 0
e [[e1 ]] ρ Δ)

(7) T 0
e [[case e0 of p1 ⇒ e1 . . . pk ⇒ ek ]] ρ Δ =

(case e0 of p1 ⇒ e1 . . . pk ⇒ ek) → (T 0
e [[e0 ]] ρ Δ), . . . , (T 0

e [[ek ]] ρ Δ)

Fig. 9. Level 0 Transformation Rules

Within the rules T 0
e , ρ is the set of previously encountered function calls

and Δ is the set of function definitions. If a function call is re-encountered, no
further nodes are added to the process tree. Thus, the constructed process tree
will always be a finite representation of the program.

4.2 Level k + 1 Transformers

Each subsequent level (k + 1) in our hierarchy is built on top of the previous
levels. The rules for level k + 1 transformation of program p are defined by
T k+1

p [[p]] as shown in Fig. 10.
Within these rules, κ denotes the context of the expression under scrutiny and

ρ contains memoised process trees and their associated new function headers.
For most of the level k+1 transformation rules, normal order reduction is applied
to the current term, as for the semantics given in Fig. 3.

In rule (3), if the context surrounding a variable redex is a case, then infor-
mation is propagated to each branch of the case to indicate that this variable
has the value of the corresponding branch pattern.
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(1) T k+1
p [[e0 where h1 = e1, . . . , hn = en]] = T k+1

e [[e0]] h1 = e1, . . . , hn = en}

(2) T k+1
e [[x ]] ρ Δ = x →

(3) T k+1
e [[x ]] (case • of p1 ⇒ e1 . . . pn ⇒ en ) : κ ρ Δ =

T k+1
κ [[x → ]] (case • of p1⇒ (κ•e1){x p1} . . . pn⇒ (κ•en){x pn}) : ρ Δ

(4) T k+1
e [[x ]] (• e) : κ ρ Δ = T k+1

κ [[x → ]] (• e) : κ ρ Δ

(5) T k+1
e [[c e1 . . . en ]] ρ Δ =

(c e1 . . . en ) → (T k+1
e [[e1 ]] ρ Δ), . . . , (T k+1

e [[en ]] ρ Δ)
(6) T k+1

e [[c e1 . . . en ]] (case • of p1 ⇒ e1 . . . pk ⇒ ek ) : κ ρ Δ =
T k+1

e [[ei{x1 e1 , . . . , xn en}]] κ ρ Δ
where ∃i ∈ {1 . . . k}.pi = c x1 . . . xn

(7) T k+1
e [[λx .e0 ]] ρ Δ = (λx .e0 ) → (T k+1

e [[e0 ]] ρ Δ)
(8) T k+1

e [[λx .e0 ]] (• e1 ) : κ ρ Δ = T k+1
e [[e0 {x e1}]] κ ρ Δ

(9) T k+1
e [[f ]] κ ρ Δ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

hσ → if ∃(h = t ) ∈ ρ, σ.t σ ∼= t

T k+1
ϕ [[t σ ↑ t ]], if ∃(h = t ) ∈ ρ, σ.t σ t

h → T k+1
e [[λx1 . . . xn .e]] κ (ρ ∪ {h = t}) Δ, otherwise

where (f x1 . . . xn = e) ∈ Δ
h = f x1 . . . xk (f is fresh, {x1 . . . xk} = fv(t))

where t = T k
e [[f ]] κ {} Δ

(10) T k+1
e [[e0 e1 ]] κ ρ Δ = T k+1

e [[e0 ]] (• e1 ) : κ ρ Δ

(11) T k+1
e [[case e0 of p1 ⇒ e1 . . . pn ⇒ en ]] κ ρ Δ =

T k+1
e [[e0 ]] (case • of p1 ⇒ e1 . . . pn ⇒ en ) : κ ρ Δ

(12) T k+1
κ [[t ]] ρ Δ = t

(13) T k+1
κ [[t ]] (κ = (• e) : κ ) ρ Δ =

T k+1
κ [[(κ•root(t)) → t, (T k+1

e [[e]] ρ Δ)]] κ ρ Δ

(14) T k+1
κ [[t ]] (κ = (case • of p1 ⇒ e1 . . . pn ⇒ en ) : κ ) ρ Δ =

(κ•root(t)) → t, (T k+1
e [[e1]] κ ρ Δ), . . . , (T k+1

e [[en]] κ ρ Δ)

(15) T k+1
ϕ [[(x0 x1 . . . xn) → t0, t1, . . . , tn]] = (x0 x1 . . . xn) → t0, t1, . . . , tn

where ∀i ∈ {0 . . . n}.ti = T k+1
p [[Rp[[ti]]]]

Fig. 10. Level k + 1 Transformation Rules

In rule (6), if the context surrounding a constructor application redex is a
case, then pattern matching is performed and the appropriate branch of the
case is selected, thus removing the constructor application. This is where our
transformers actually remove intermediate data structures.

In rule (9), if the redex of the current term is a function, then it is transformed
by the transformer one level lower in the hierarchy (level k) producing a process
tree; this is therefore where the transformer builds on all the transformers at
lower levels. This level k process tree is compared to the previous process trees
produced at level k (contained in ρ). If the process tree is a renaming of a previous
one, then folding is performed, and a fold node is created using a recursive call
of the function associated with the renamed process tree in ρ. If the process tree
is an embedding of a previous one, then generalisation is performed; the result of
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this generalisation is then further transformed. Otherwise, the current process
tree is memoised by being associated with a new function call in ρ; an unfold
node is created with this new function call in the root node, with the result of
transforming the unfolding of the current term as its sub-tree.

The rules T k+1
κ are defined on a process tree and a surrounding context.

These rules are applied when the normal-order reduction of the input program
becomes ‘stuck’ as a result of encountering a variable in the redex position. In
this case, the surrounding context is further transformed.

The rule T k+1
ϕ is applied to a newly constructed generalisation node; all the

sub-trees of the node are residualised and further transformed.

5 Examples

In this section, we look at some examples of the transformations that can be
performed at different levels in our program transformation hierarchy.

Example 6. Consider the following program from [6]:

f x x
where
f x y = case x of

Zero ⇒ y
Succ(x ) ⇒ f (f x x ) (f x x )

This program takes exponential time O(2n), where n is the size of the input
value x. If we transform this program at level 1 in our hierarchy, we obtain the
following program:

f x
where
f x = case x of

Zero ⇒ Zero
Succ(x ) ⇒ f (f x )

This program takes linear time O(n) on the same input, so an exponential
speedup has been achieved. If we transform the original program at level 2 in
our hierarchy, we obtain the following program:

f x
where
f x = case x of

Zero ⇒ Zero
Succ(x ) ⇒ f x

A very slight further improvement has therefore been obtained. No further
improvements are obtained at higher levels in the hierarchy.
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Example 7. Consider the transformation of the näıve reverse program shown
in Fig. 1, which has O(n2) runtime where n is the length of the list xs. If
we transform this program at level 1 in our hierarchy, we obtain the following
program:

f xs
where
f xs = case xs of

Nil ⇒ Nil
Cons x xs ⇒ case (f xs) of

Nil ⇒ Cons x Nil
Cons x ′ xs ⇒ Cons x ′ (f ′ xs x )

f ′ xs x = case xs of
Nil ⇒ Cons x Nil
Cons x ′ xs ⇒ Cons x ′ (f ′ xs x )

There is very little improvement in the performance of this program over the
original; it still has O(n2) runtime. However, if we transform the näıve reverse
program at level 2 in our hierarchy, we obtain the following program:

case xs of
Nil ⇒ Nil
Cons x xs ⇒ f xs x Nil

where
f xs x ys = case xs of

Nil ⇒ Cons x ys
Cons x ′ xs ⇒ f xs x ′ (Cons x ys)

This program takes linear time O(n) on the same input, so a superlinear speedup
has been achieved. No further improvements are obtained at higher levels in the
hierarchy.

Example 8. Consider the following program:

map inc (qrev xs)
where
map f xs = case xs of

Nil ⇒ Nil
Cons x xs ⇒ Cons (f x ) (map f xs)

inc n = Succ n
qrev xs = qrev ′ xs Nil
qrev ′ xs ys = case xs of

Nil ⇒ ys
Cons x xs ⇒ qrev ′ xs (Cons x ys)
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This program requires 2n allocations, where n is the length of the list xs. If
we transform the original program at level 1 in our hierarchy, we obtain the
following program:

f xs Nil
where
f xs ys = case xs of

Nil ⇒ f ′ ys
Cons x xs ⇒ f xs (Cons x ys)

f ′ xs = case xs of
Nil ⇒ Nil
Cons x xs ⇒ Cons (Succ x ) (f ′ xs)

This program also requires 2n allocations, and not much improvement has been
made. If we transform the original program at level 2 in our hierarchy, we obtain
the following program:

f xs Nil (λxs.f ′ xs)
where
f xs ys g = case xs of

Nil ⇒ g ys
Cons x xs ⇒ f xs (Cons x ys) g

f ′ xs = case xs of
Nil ⇒ Nil
Cons x xs ⇒ Cons (Succ x ) (f ′ xs)

This program still requires 2n allocations, so again not much improvement has
been made. However, if we transform this program at level 3 in our hierarchy,
we obtain the following program:

f xs (λxs.xs)
where
f xs g = case xs of

Nil ⇒ g Nil
Cons x xs ⇒ f xs (λxs.Cons (Succ x ) (g xs))

This program now requires n allocations, so we can see that improvements can
still be made as high as level 3 in our hierarchy (and indeed even higher in some
cases). For this example, no further improvements are obtained at higher levels
in the hierarchy.

6 Speedups

In this section, we look at the efficiency gains that can be obtained at different
levels in our program transformation hierarchy.
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Theorem 2 (Exponential Speedups). Exponential speedups can only be
obtained above level 0 in our hierarchy if common sub-expression elimination
is performed during generalisation.

Proof. An exponential speedup can only be obtained if a number of repeated
computations are identified, so the computation need only be performed once.
This can only happen in our transformations if the repeated computations are
identified by the common sub-expression elimination that takes place during
generalisation.

If we consider the transformation of the program at level 1 in our hierarchy
given in Example 6, the term (f x x) is extracted twice during generalisation, but
then identified by common sub-expression elimination, thus allowing an expo-
nential speedup to be achieved. In practice, we have found that such exponential
improvements are obtained for very few useful programs; it is very uncommon
for the same computation to be extracted more than once during generalisation
to facilitate this improvement. It is also very unlikely that a programmer would
write such an inefficient program when a much better solution exists.

We now look at the improvements in efficiency that can be obtained without
common sub-expression elimination.

Theorem 3 (Non-Exponential Speedups). Without the use of common sub-
expression elimination, the maximum speedup factor possible at level k > 0 in
our hierarchy for input of size n is O(nk−1).

Proof. The proof is by induction on the hierarchy level k. For level 1, the proof
is as given in [24]; since there can only be a constant number of reduction steps
removed between each successive call of a function, at most a linear speedup is
possible. For level k + 1, there will be a constant number of calls to functions
that were transformed at level k between each successive call of a level k + 1
function. By the inductive hypothesis, the maximum speedup factor for each
level k function is O(nk−1), so the maximum speedup factor at level k + 1 is
O(nk).

Consider the transformation of the näıve reverse program at level 2 in our hier-
archy given in Example 7. During this transformation, we end up having to
transform a term equivalent to the following at level 1:

append (append xs ′ (Cons x ′ Nil)) (Cons x Nil)

Within this term, the list xs′ has to be traversed twice. This term is transformed
to one equivalent to the following at level 1 (process tree (2) in Fig. 4 is the
process tree produced as a result of this transformation):

append xs ′ (Cons x ′ (Cons x Nil))

Within this term, the list xs′ has only to be traversed once, so a linear speedup
has been obtained. This linear improvement will be made between each successive
call of the näıve reverse function, thus giving an overall superlinear speedup and
producing the resulting accumulating reverse program.
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7 Termination

In order to prove that each of the transformers in our hierarchy terminate, we
need to show that in any infinite sequence of process trees encountered during
transformation t0, t1, . . . there definitely exists some i < j where ti  tj , so an
embedding must eventually be encountered and transformation will not continue
indefinitely without folding or generalising. This amounts to proving that the
embedding relation  is a well-quasi order.

Lemma 1 ( is a Well-Quasi Order). The embedding relation  is a well-
quasi order on any sequence of process trees that are encountered during trans-
formation at level k > 0 in our hierarchy.

Proof. The proof is by induction on the hierarchy level k.
For level 1, the proof is similar to that given in [15]. This involves showing

that there are a finite number of syntactic constructors in the language. The
process trees encountered during transformation are those produced at level
0, so the function names will be those from the original program, so must be
finite. Applications of different arities are replaced with separate constructors;
we prove that arities are bounded, so there are a finite number of these. We also
replace case expressions with constructors. Since bound variables are defined
using de Bruijn indices, each of these are replaced with separate constructors;
we also prove that de Bruijn indices are bounded. The overall number of syntactic
constructors is therefore finite, so Kruskal’s tree theorem can then be applied to
show that  is a well-quasi-order at level 1 in our hierarchy.

At level k +1, the process trees encountered during transformation are those
produced at level k and must be finite (by the inductive hypothesis). The num-
ber of functions in these process trees must therefore be finite, and the same
argument given above for level 1 also applies here, so  is a well-quasi-order at
level k + 1 in our hierarchy.

Since we only check for embeddings for expressions which have a named function
as redex, we need to show that every potentially infinite sequence of expressions
encountered during transformation must include expressions of this form.

Lemma 2 (Function Unfolding During Transformation). Every infinite
sequence of transformation steps must include function unfolding.

Proof. Every infinite sequence of transformation steps must include either func-
tion unfolding or λ-application. Since we do not allow λ-abstractions in our
input program, the only way in which new λ-abstractions can be introduced
is by function unfolding. Thus, every infinite sequence of transformation steps
must include function unfolding.

Theorem 4 (Termination of Transformation). The transformation algo-
rithm always terminates.
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Proof. The proof is by contradiction. If the transformation algorithm did not
terminate, then the set of memoised process trees in ρ must be infinite. Every
new process tree which is added to ρ cannot have any of the previous process
trees in ρ embedded within it by the homeomorphic embedding relation , since
generalisation would have been performed instead. However, this contradicts the
fact that  is a well-quasi-order (Lemma 1).

8 Related Work

The seminal work corresponding to level 1 in our hierarchy is that of Turchin on
supercompilation [27], although our level 1 transformer more closely resembles
positive supercompilation [26]. There have been several previous attempts to
move beyond level 1 in our transformation hierarchy, the first one by Turchin
himself using walk grammars [28]. In this approach, traces through residual
graphs are represented by regular grammars that are subsequently analysed and
simplified. This approach is also capable of achieving superlinear speedups, but
no automatic procedure is defined for it; the outlined heuristics and strategies
may not terminate.

A hierarchy of program specialisers is described in [7] that shows how pro-
grams can be metacoded and then manipulated through a metasystem transition,
with a number of these metasystem transitions giving a metasytem hierarchy in
which the original program may have several levels of metacoding. In the work
described here, a process tree can be considered to be the metacoding of a
program. However, we do not have the difficulties associated with metasystem
transitions and multi-level metacoding, as our process trees are residualised back
to the object level.

Distillation [9,11] is built on top of positive supercompilation, so corresponds
to level 2 in our hierarchy, but does not go beyond this level. Klyuchnikov and
Romanenko [16] construct a hierarchy of supercompilers in which lower level
supercompilers are used to prove lemmas about term equivalences, and higher
level supercompilers utilise these lemmas by rewriting according to the term
equivalences (similar to the “second order replacement method” defined by Kott
[18]). Transformers in this hierarchy are capable of similar speedups to those in
our hierarchy, but no automatic procedure is defined for it; the need to find and
apply appropriate lemmas introduces infinite branching into the search space,
and various heuristics have to be used to try to limit this search.

Preliminary work on the hierarchy of transformers defined here was presented
in [10]; this did not include analysis of the efficiency improvements that can be
made at each level in the hierarchy. The work described here is a lot further
developed than that described in [10], and we hope simpler and easier to follow.

Logic program transformation is closely related, and the equivalence of par-
tial deduction and driving (as used in supercompilation) has been argued by
Glück and Sørensen [8]. Superlinear speedups can be achieved in logic program
transformation by goal replacement [22,23]: replacing one logical clause with
another to facilitate folding. Techniques similar to the notion of “higher level
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supercompilation” [16] have been used to prove correctness of goal replacement,
but have similar problems regarding the search for appropriate lemmas.

9 Conclusion and Further Work

We have presented a hierarchy of program transformers, capable of performing
fusion to eliminate intermediate data structures, in which the transformer at each
level of the hierarchy builds on top of those at lower levels. We have proved that
the transformers at each level in the hierarchy terminate, and have characterised
the speedups that can be obtained at each level. Previous works [1,2,17,24,31]
have noted that the unfold/fold transformation methodology is incomplete; some
programs cannot be synthesised from each other. It is our hope that this work
will help to overcome this restriction.

There are many possible avenues for further work. Firstly, we need to deter-
mine what level in the hierarchy is sufficient to optimise a program as much
as is possible using this approach. We have seen that it is not sufficient to just
transform a program until no further improvement is obtained; improvements
may still be still possible at higher levels. We would therefore like to find some
analysis technique which would allow us to determine what level in the hier-
archy is required. Ultimately, we would like the process trees produced by our
transformers to be in what we call distilled form t{}, which is defined as follows:

tρ ::= (x0 x1 . . . xn) → t
(ρ∪{x1,...,xn})
0 , tρ1, . . . , t

ρ
n

| (case x0 of p1 ⇒ e1 . . . pn ⇒ en) → (x0 → ε), tρ1, . . . , t
ρ
n (x0 /∈ ρ)

| φ(e1 . . . en) → tρ1, . . . , t
ρ
n

Within this definition, generalisation variables are added to the set ρ, and cannot
be used in the selectors of case expressions, so the resulting programs must not
create any intermediate data structures. Each of the example programs that we
transformed using our transformation hierarchy are ultimately transformed into
distilled form before no further improvement is obtained. We could therefore
apply successively higher levels in our hierarchy until a process tree in distilled
form is obtained. However, at present, we have no proof that this must eventually
happen. Work is continuing in this area.

If we can obtain process trees that are in distilled form, then there are many
areas in which our work can be applied, as distilled form is much easier to anal-
yse and reason about. These areas include termination analysis, computational
complexity analysis, theorem proving, program verification and constructing pro-
grams from specifications. Work is also continuing in all of these areas.
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Abstract. Event definitions in Complex Event Processing systems are
constrained by the expressiveness of each system’s language. Some sys-
tems allow the definition of instantaneous complex events, while others
allow the definition of durative complex events. While there are excep-
tions that offer both options, they often lack of intervals relations such as
those specified by the Allen’s interval algebra. In this paper, we propose
a new logic based temporal phenomena definition language, specifically
tailored for Complex Event Processing. Our proposed language allows the
representation of both instantaneous and durative phenomena and the
temporal relations between them. Moreover, we demonstrate the expres-
siveness of our proposed language by employing a maritime use case
where we define maritime events of interest. We analyse the execution
semantics of our proposed language for stream processing and finally, we
introduce and evaluate on real world data, Phenesthe, our open-source
Complex Event Processing system.

Keywords: Event definition language · Temporal logic · Stream
processing · Event recognition

1 Introduction

There are numerous event description languages, each with its own formal
description and expressiveness. Event description languages allow the representa-
tion and the specification of temporal phenomena. They have been used widely
in, among others, Complex Event Processing and Recognition [3,5,7,12], and
System Analysis and Verification [8,14]. In the case of Complex Event Process-
ing, which is the focus of this paper, users with expert knowledge, or machine
learning algorithms, provide definitions of events of interest i.e., complex events
that are represented in an event definition language. The Complex Event Pro-
cessing system accepts as input a single or multiple streams of low level events,
such as the timestamped transmitted values of a sensor and by continuously
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applying temporal queries that involve the provided event definitions, it will
produce a stream of complex events associated with some temporal information.

However, the set of events that can be represented in the language of a Com-
plex Event Processing system is constrained by the expressiveness of its event
definition language. For example, languages with a point-based temporal model
associate facts to instants of time while languages with an interval-based tempo-
ral model associate facts with intervals [11]. Consequently, the representation of
durative and instantaneous entities in each case respectively is sometimes impos-
sible or not straightforward. Event Calculus [16] approaches [5,10,15] allow the
representation of both instantaneous and durative entities, however they lack of
interval relations such as those specified by the Allen’s interval algebra [2].

In this paper, we formally present a logic based language for Complex Event
Processing that allows the description of both instantaneous and durative tem-
poral phenomena and the relations between them. We demonstrate the expres-
siveness of the language by employing a maritime use-case scenario where the
goal is to describe maritime activities of interest. Moreover, we present the exe-
cution semantics for stream processing. Finally, we introduce and evaluate the
Phenesthe1 Complex Event Processing system. Thus, the contributions of this
paper are the following:

– a formally described language for the representation of both instantaneous
and durative temporal phenomena and their relations,

– a demonstration of the expressiveness of the language in the maritime use
case,

– the execution semantics for stream processing,
– and finally, the open-source Complex Event Processing system Phenesthe that

utilises the language of this paper.

The paper is organised as follows, in Sect. 2 we present the syntax, the
grammar and the semantics of our language. Next, in Sect. 3 we demonstrate its
expressiveness by formalising a set of maritime activities. In Sect. 4 we present
the execution semantics for stream processing, while in Sect. 5 we present and
evaluate empirically the Phenesthe Complex Event Processing system. Next, in
Sect. 6 we compare our language with relevant works. Finally, in Sect. 7 we
summarise our approach and discuss our future directions.

2 Language

The key components of our language are events, states and dynamic temporal
phenomena. In what follows, ‘temporal phenomena’ includes all of the three
aforementioned entities. Events are true at instants of time, while states and
dynamic temporal phenomena hold on intervals. Events are defined in terms of
logical operations between instantaneous temporal phenomena, states are defined

1 Phenesthe corresponds to the Greek word ‘Φάινεσϑαι’ which means ‘to appear’.
Phenesthe (Φάινεσϑαι) and phenomenon (ϕαινóμενoν) are different forms of the
ancient Greek verb ‘Φάινω’ meaning ‘I cause to appear’.
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using the operators of maximal range, temporal union, temporal intersection and
temporal complement; finally, dynamic temporal phenomena are defined in terms
of temporal relations that involve the basic seven of Allen’s interval algebra [2].
In this Section, we present the syntax, the semantics and the grammar of our
language.

2.1 Syntax

Formally, our language is described by the triplet 〈P, L, Φ〉, where

– P is a set of Predicates (atomic formulae), that may be of three types, event,
state or dynamic temporal phenomenon predicates;

– L is a set defined by the union of the set of logical connectives {∧,∨,¬},
the set of temporal operators, {�,�,�, \}, the set of temporal relations
{before,meets, overlaps, finishes, starts, equals, contains} and finally the set of the
{start, end} operators.

– Φ is the set of formulae defined by the union of the formulae sets Φ•, Φ− and
Φ=, that we will present below.

Formulae of Φ• describe instantaneous temporal phenomena, formulae of Φ−

describe durative temporal phenomena that hold (are true) in disjoint maximal
intervals, finally formulae of Φ= describe durative temporal phenomena that may
hold in non-disjoint intervals. Atomic formulae of Φ� where � ∈ {•,−,=} are
denoted as Φ�

o . Terms are defined as follows:

– Each variable is a term.
– Each constant is a term.

Events, states and dynamic temporal phenomena are expressed as n-ary predi-
cate symbols, of the corresponding type (event, state or dynamic temporal phe-
nomenon), P(a1 , ..., an), where P is the associated name and a1, ..., an are terms
corresponding to atemporal properties. Moreover, we assume that the set of
predicate symbols includes those with atemporal and fixed semantics, such as
arithmetic comparison operators etc., however for simplification reasons in what
follows we omit their presentation. The set of formulae Φ• is defined as follows:

– (Event predicate) If P is an n-ary event predicate and a1, ..., an are terms
then P (a1, ..., an) is a formula of Φ•.

– (Negation) If φ is a formula of Φ• then ¬φ is a formula of Φ•.
– (Conjunction/disjunction) If φ and ψ are formulae of Φ• then φ op ψ, where

op is the conjunction (∧) or disjunction (∨) connective, is a formula of Φ•.
– (start/end) If φ is a formula of Φ− then start(φ) and end(φ) are formulae of Φ•.

Following, we define the set of formulae Φ−:

– (State predicate) If P is an n-ary state predicate and a1, ..., an are terms then
P (a1, ..., an) is a formula of Φ−.

– (Maximal range) If φ and ψ are formulae of Φ• then φ � ψ is a formula of Φ−.
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– (Temporal union, intersection & complement) If φ and ψ are formulae of Φ−

then φ � ψ, where � ∈ {�,�, \}, is a formula of Φ−. The temporal opera-
tors �,� and \ correspond to temporal union, intersection and complement
respectively.

Finally, we define the set of formulae Φ= as follows:

– (Dynamic temporal phenomenon predicate) If P is an n-ary dynamic temporal
phenomenon predicate and a1, ..., an are terms then P (a1, ..., an) is a formula
of Φ=.

– (Temporal relation)
• If φ and ψ are formulae of Φ− ∪ Φ= then φ tr ψ, where tr ∈ {meets,

overlaps, equals}, is a formula of Φ=.
• If φ is a formula of Φ• ∪ Φ− ∪ Φ= and ψ is a formula of Φ− ∪ Φ= then

φ tr ψ, where tr ∈ {finishes, starts}, is a formula of Φ=.
• If φ is a formula of Φ− ∪ Φ= and ψ is a formula of Φ• ∪ Φ− ∪ Φ= then

φ contains ψ is a formula of Φ=.
• If φ is a formula of Φ• ∪ Φ− ∪ Φ= and ψ is a formula of Φ• ∪ Φ− ∪ Φ= then

φ before ψ is a formula of Φ=.

2.2 Grammar

In addition to the elements described above, our language includes temporal
phenomena definitions that specify new event, state and dynamic temporal phe-
nomena predicates. The production rule-set (1) presents the complete grammar
of the language in the Extended Backus-Naur Form (EBNF).

〈event〉 ::= eventName(...);
〈state〉 ::= stateName(...);
〈dynamic〉 ::= dynamicPhenomenonName(...);

〈temporalExpression〉 ::= 〈instantExpression〉 | 〈intervalExpression〉;
〈instantExpression〉 ::= ‘(’〈instantExpresstion〉‘)’ | ¬ 〈instantExpression〉

| 〈instantExpression〉 (‘ ∧ ’ | ‘ ∨ ’) 〈instantExpression〉
| 〈startEndOp〉 | 〈event〉;

〈intervalExpression〉 ::= 〈intervalOperation〉 | 〈intervalRelation〉;
〈intervalOperation〉 ::= 〈intervalOperation〉 (‘ � ’ | ‘ � ’ | ‘ \ ’) 〈intervalOperation〉

| 〈instantExpression〉 ‘ � ’ 〈instantExpression〉
| ‘(’〈intervalOperation〉‘)’ | 〈state〉;

〈intervalRelation〉 ::= 〈temporalExpression〉 ‘before’ 〈temporalExpression〉
| 〈intervalExpression〉 ‘overlaps’ 〈intervalExpression〉
| 〈intervalExpression〉 ‘meets’ 〈intervalExpression〉
| 〈temporalExpression〉 ‘finishes’ 〈intervalExpression〉
| 〈temporalExpression〉 ‘starts’ 〈intervalExpression〉
| 〈intervalExpression〉 ‘contains’ 〈temporalExpression〉
| 〈intervalExpression〉 ‘equals’ 〈intervalExpression〉
| ‘(’〈intervalRelation〉‘)’ | 〈dynamic〉;

〈startEndOp〉 ::= (‘start’ | ‘end’)‘(’〈intervalOperation〉‘)’;
〈definitions〉 ::= 〈eventDefinition〉 | 〈stateDefinition〉

| 〈dynamicDefinition〉;
〈eventDefinition〉 ::= ‘event phenomenon’ 〈event〉‘ : ’ 〈instantExpression〉‘.’;
〈stateDefinition〉 ::= ‘state phenomenon’ 〈state〉‘ : ’〈intervalOperation〉‘.’;
〈dynamicDefinition〉 ::= ‘dynamic phenomenon’ 〈dynamic〉‘ : ’〈intervalRelation〉‘.’;

(1)
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Phenomena definitions are specified by the production rule 〈definitions〉 of
the grammar. Event predicates are defined using expressions on instants of time,
expressed via formulae of Φ•, while state predicates are defined in terms of for-
mulae of Φ−. Finally, dynamic temporal phenomena predicates are defined in
terms of temporal relations on intervals and instants, therefore specified via for-
mulae of Φ=. Note, that the set of definitions allowed in the language is subject
to an additional constraint: no cyclic dependencies in the definitions of temporal
phenomena are allowed. A temporal phenomenon A depends from phenomenon
B if B is a sub-formula of the definition of A.

2.3 Semantics

We assume time is represented by an infinite non empty set T = Z
+
0 of non-

negative integers ordered via the ‘<’ relation, formally T = 〈T,<〉. For the
formulae sets Φ•, Φ− and Φ= we define the model M = 〈T, I,<, V •, V −, V =〉
where V • : Φ.

o → 2T , V − : Φ−
o → 2I , V = : Φ=

o → 2I are valuations of atomic
formulae and I = {[ts, te] : ts < te and ts, te ∈ T} ∪ {[ts,∞) : ts ∈ T} is the set
of the accepted time intervals of T . Given a model M, the validity of a formula
φ ∈ Φ• at a timepoint t ∈ T (in symbols M, t |= φ) is determined by the rules
below:

– M, t |= P (a1, ..., an) where P is an n-ary event predicate symbol iff t ∈
V •(P (a1, ..., an));

– M, t |= ¬φ where φ ∈ Φ• iff M, t �|= φ;
– M, t |= φ ∧ ψ where φ, ψ ∈ Φ• iff M, t |= φ and M, t |= ψ;
– M, t |= φ ∨ ψ where φ, ψ ∈ Φ• iff M, t |= φ or M, t |= ψ;
– M, t |= start(φ) where φ ∈ Φ− iff ∃te ∈ T and M, [t, te] |= φ, where

M, [t, te] |= φ denotes the validity of formula φ ∈ Φ− at an interval [t, te]
as defined below;

– M, t |= end(φ) where φ ∈ Φ− iff ∃ts ∈ T and M, [ts, t] |= φ;

Given a model M, the validity of a formula φ ∈ Φ− at a time interval [ts, te] ∈ I
(in symbols M, [ts, te] |= φ) is defined as follows:

– M, [ts, te] |= P (a1, ..., an) where P is an n-ary state predicate symbol iff
[ts, te] ∈ V −(P (a1, ..., an));

– M, [ts, te] |= φ � ψ where φ, ψ ∈ Φ• iff:
1. ts ∈ T and M, ts |= φ,
2. te ∈ (ts,∞) ⊂ T and M, te |= ψ ∧ ¬φ,
3. ∀ts′ ∈ [0, ts) ⊂ T,∃te′ ∈ (ts′, ts) where M, ts′ |= φ and M, te′ |= ψ ∧ ¬φ,
4. and finally, �te′′ ∈ (ts, te) ⊂ T where M, te′′ |= ψ ∧ ¬φ.

Essentially, φ � ψ holds for the disjoint maximal intervals that start at the
earliest instant ts where φ is true (conditions 1, 3) and end at the earliest
instant te, te > ts (condition 4) where ψ is true and φ is false (condition 2, 4).

– M, [ts,∞) |= φ � ψ where φ, ψ ∈ Φ• iff conditions (1) and (3) from above
hold and �te ∈ (ts,∞) ⊂ T such that M, te |= ψ ∧ ¬φ. Therefore a formula
φ � ψ may hold indefinitely if there does not exist an appropriate instant
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after ts at which φ∧¬ψ is satisfied. This effectively implements the common-
sense law of inertia [20]. For simplification reasons in the semantics below
we omit intervals open at the right to infinity since they can be treated in a
similar manner.

– M, [ts, te] |= φ � ψ where φ, ψ ∈ Φ− iff one of the cases below holds:
• ∃ a sequence of length k > 1 of intervals i1, ..., ik ∈ I where ik = [tsk, tek],

ts = ts1 and te = tek s.t.:
1. ∀α ∈ [1, k − 1]: teα ∈ iα+1, tsα < tsα+1 and teα < teα+1 ,
2. ∀β ∈ [1, k]: M, [tsβ , teβ ] |= φ or M, [tsβ , teβ ] |= ψ, and
3. �iγ = [tsγ , teγ ] ∈ I − {i1, ..., ik} where M, [tsγ , teγ ] |= φ or

M, [tsγ , teγ ] |= ψ and ts1 ∈ iγ or tek ∈ iγ
• M, [ts, te] |= φ or M, [ts, te] |= ψ and �iγ = [tsγ , teγ ] ∈ I − {[ts, te]}

where M, [tsγ , teγ ] |= φ or M, [tsγ , teγ ] |= ψ and ts ∈ iγ or te ∈ iγ .
For a sequence of intervals, conditions (1–2) ensure that intervals, at which
φ or ψ are valid, overlap or touch will coalesce, while condition (3) ensures
that the resulting interval is maximal. In the case of a single interval, the
conditions ensure that at the interval [ts, te] φ or ψ is valid, and that [ts, te]
is maximal. In simple terms, the temporal union φ � ψ holds for the intervals
where at least one of φ or ψ hold. The above definition of temporal union
follows the definitions of temporal coalescing presented in [9,13].

– M, [ts, te] |= φ \ ψ where φ, ψ ∈ Φ− iff ∃[ts′, te′] ∈ I where M, [ts′, te′] |= φ,
[ts, te] ⊆ [ts′, te′] (i.e., [ts, te] subinterval of [ts′, te′]), ∀[tsψ, teψ] ∈ I where
M, [tsψ, teψ] |= ψ, [ts, te] ∩ [tsψ, teψ] = ∅ and finally [ts, te] is maximal. In
plain language, the temporal difference of formulae φ, ψ holds for the maximal
subintervals of the intervals at which φ holds but ψ doesn’t hold.

– M, [ts, te] |= φ � ψ where φ, ψ ∈ Φ− iff ∃[tsφ, teφ], [tsψ, teψ] ∈ I where
M, [tsφ, teφ] |= φ, M, [tsψ, teψ] |= ψ and ∃[ts, te] ∈ I where [ts, te] ⊆
[tsφ, teφ], [ts, te] ⊆ [tsψ, teψ] and [ts, te] is maximal. In other words, the tem-
poral intersection of two formulae of Φ− holds for the intervals at which both
formulae hold.

Given a model M, the validity of a formula φ ∈ Φ= at a time interval [ts, te] ∈ I
(in symbols M, [ts, te] |= φ) is defined as follows:

– M, [ts, te] |= P (a1, ..., an) where P is n-ary dynamic temporal phenomenon
predicate symbol iff [ts, te] ∈ V =(P (a1, ..., an));

– M, [ts, te] |= φ before ψ iff:
• (interval - interval) for φ, ψ ∈ Φ− ∪ Φ=, ∃a, b ∈ T , a < b, M, [ts, a] |= φ,

M, [b, te] |= ψ and all of the conditions below hold:
* �[ts′, a′] ∈ I where M, [ts′, a′] |= φ and a < a′ < b,
* �[b′, te′] ∈ I where M, [b′, te′] |= ψ and a < b′ < b.

• (instant - interval) for φ ∈ Φ•, ψ ∈ Φ− ∪ Φ=, M, ts |= φ, ∃a ∈ T, a > ts,
M, [a, te] |= ψ and all the conditions below hold:

* �ts′ ∈ T where M, ts′ |= φ and ts < ts′ < a,
* �[a′, te′] ∈ I where M, [a′, te′] |= ψ and ts < a′ < a.

• (interval - instant) for φ ∈ Φ− ∪ Φ= and ψ ∈ Φ•, ∃a ∈ T , a < te,
M, [ts, a] |= φ, M, te |= ψ and all the conditions below hold:
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* �[ts′, a′] ∈ I where M, [ts′, a′] |= φ and a < a′ < te,
* �te′ ∈ T where M, te′ |= ψ and a < te′ < te.

• (instant - instant) for φ ∈ Φ• and ψ ∈ Φ•, M, ts |= φ, M, te |= ψ and all
the conditions below hold:

* �ts′ where M, ts′ |= φ and ts < ts′ < te,
* �te′ where M, te′ |= ψ and ts < te′ < te.

In our approach the ‘before’ relation holds only for intervals where the pair
of instants or intervals at which the participating formulae are true or hold,
are contiguous. For example, for the intervals [1, 2], [1, 3] and [5, 6] only [1, 3]
is before [5, 6].

– M, [ts, te] |= φ meets ψ iff φ, ψ ∈ Φ− ∪ Φ=, ∃a ∈ T , M, [ts, a] |= φ and
M, [a, te] |= ψ.

– M, [ts, te] |= φ overlaps ψ iff φ, ψ ∈ Φ− ∪ Φ=, ∃a, b ∈ T , ts < b < a < te,
M, [ts, a] |= φ and M, [b, te] |= ψ.

– M, [ts, te] |= φ finishes ψ iff:
• (interval - interval) for φ, ψ ∈ Φ− ∪ Φ=, ∃a ∈ T , ts < a, M, [a, te] |= φ

and M, [ts, te] |= ψ,
• (instant - interval) for φ ∈ Φ• and ψ ∈ Φ− ∪ Φ=, M, te |= Φ and

M, [ts, te] |= ψ.
– M, [ts, te] |= φ starts ψ iff:

• (interval - interval) for φ, ψ ∈ Φ− ∪ Φ=, ∃a ∈ T , a < te, M, [ts, a] |= φ
and M, [ts, te] |= ψ,

• (instant - interval) for φ ∈ Φ•, ψ ∈ Φ− ∪ Φ=, M, ts |= φ and M, [ts, te] |=
ψ.

– M, [ts, te] |= φ equals ψ iff for φ, ψ ∈ Φ−∪Φ=, M, [ts, te] |= φ and M, [ts, te] |=
ψ.

– M, [ts, te] |= φ contains ψ iff:
• (interval - interval) for φ, ψ ∈ Φ− ∪ Φ=, M, [ts, te] |= φ, ∃[a, b] ∈ I,

ts < a < b < te and M, [a, b] |= ψ,
• (interval - instant) for φ ∈ Φ− ∪ Φ=, ψ ∈ Φ•, M, [ts, te] |= φ, ∃a ∈ T ,

ts < a < te and M, a |= ψ.

3 Maritime Use Case Examples

Maritime situational awareness (MSA) is of major importance for environmental
and safety reasons. Maritime monitoring systems contribute in MSA by allowing
the detection of possibly dangerous, or unlawful activities while also monitoring
normal activities. Typically, maritime monitoring systems—as in the case of this
paper—use data from the Automatic Identification System (AIS) a system that
allows the transmission of timestamped positional and vessel identity data from
transceivers on vessels. Additionally, they may use contextual static information
such as areas of interest or historical vessel information. Logic based approaches
have already been used for Maritime Monitoring. Works such as [21,25] demon-
strate that maritime activities can be expressed as patterns written in some
form of an event definition language and be efficiently recognised. However, as
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mentioned earlier the definitions of temporal phenomena are constrained by
the expressiveness of each language. In this section, we present definitions of
maritime situations of interest written in our temporal phenomena definition
language.

3.1 Stopped Vessel

A vessel is stopped when its speed is between a range e.g., 0−0.5 knots. Consider
the definition for stopped vessels below:

event phenomenon stop start(Vessel) :
ais(Vessel ,Speed ,Heading ,CoG) ∧ Speed ≤ 0.5 .

event phenomenon stop end(Vessel) :
ais(Vessel ,Speed ,Heading ,CoG) ∧ Speed > 0.5 .

state phenomenon stopped(Vessel) :
stop start(Vessel) � stop end(Vessel).

(2)

ais(Vessel ,Speed , ...) is an input event that contains the vessel id (Maritime
Mobile Service Identity), its speed (Knots), its heading (degrees) and its course
over ground (degrees). Heading is the direction of the vessel’s bow while course
over ground is the actual path of a vessel with respect to the earth. stop start and
stop end are user defined events that happen when an AIS message is received for
a Vessel and its speed is either ≤ 0.5 or > 0.5 respectively. stopped/1 is a state
defined using the maximal range operator (�) between the events stop start
and stop end , that holds true for the maximal intervals a vessel’s speed is con-
tinuously ≤ 0.5 knots. Note that the stop start and stop end events are optional,
since their definition could be integrated in the definition of the stopped state
directly.

3.2 Moored Vessel

A vessel is considered moored when it is stopped near a port. The knowledge
of the times and the locations vessels are moored is especially important in
historical track analyses, law enforcement, etc. Below we provide the definition
for moored vessels:

state phenomenon in port(Vessel ,Port) :
enters port(Vessel ,Port) � leaves port(Vessel ,Port).

state phenomenon moored(Vessel ,Port) :
stopped(Vessel) � in port(Vessel ,Port).

(3)

We define first the in port/2 state using the maximal range operator (�)
between the two input events enters port/2 and leaves port/2 denoting respec-
tively that a Vessel enters or leaves a Port . moored/2 is a state defined
using the interval operator of intersection (�) between the stopped/2 and
the in port(Vessel ,Port) states. Therefore, according to the rule-set (3), the
state moored(Vessel ,Port) holds for the maximal intervals at which a Vessel is
stopped inside a Port (recall the semantics of the intersection operator as defined
in Sect. 2.3).
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3.3 Vessel Trips

In order to ensure abidance to regulations and safety, authorities must monitor
vessel trips. A trip starts when a vessel stops being moored at a port, gets under-
way, and finally reaches its destination port. We define vessel trips as follows:

dynamic phenomenon trip(Vessel ,PortA,PortB) :
end(moored(Vessel ,PortA)) before

(underway(Vessel) before

start(moored(Vessel ,PortB))).

(4)

trip(Vessel ,PortA,PortB) is defined as a dynamic temporal phenomenon, while
underway is a user defined state that holds for the intervals a vessel’s speed is
greater than 2.7 knots. The definition of underway is omitted as it is defined in a
similar manner with the stopped state. Therefore, the trip(Vessel ,PortA,PortB)
dynamic temporal phenomenon holds for the intervals that start when a Vessel
stops being moored at a PortA, next the Vessel is underway, and finally end
when the vessel starts being moored at a PortB .

3.4 Fishing Trips

Monitoring of the fishing areas a fishing vessel has been through is important
for sustainability and safety reasons. Similar to regular trips, a fishing trip can
be described as a series of certain maritime activities that are arranged over a
long period of time. Fishing vessels leave from a port, then they are underway,
they start a fishing activity in a fishing area, and then they return to the same
or another port. A definition of the fishing trip temporal phenomenon is the
following:

dynamic phenomenon fishing trip(Vessel ,PortA,AreaID ,PortB) :
end(moored(Vessel ,PortA)) ∧ type(V essel, F ishing) before

(underway(Vessel) contains in fishing area(Vessel ,AreaID))
before start(moored(Vessel ,PortB)).

(5)

Similar to the in port state of rule-set (3), in fishing area(Vessel ,AreaID) is a
user defined state that holds for the intervals a Vessel is within a fishing area
with id AreaID . fishing trip(Vessel ,PortA,AreaID ,PortB) as defined in rule (5),
holds for the intervals that start when a fishing Vessel stops being moored at
a PortA, next the Vessel gets underway, during that period it passes through a
fishing area with id AreaID , and finally end when the fishing Vessel starts being
moored at a PortB .

4 Executable Semantics

Complex Event Processing refers to the processing of one or multiple streams
of atomic low level entities by continuously applying temporal queries and pro-
ducing a stream of time associated complex event detections. In our case, the
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input stream comprises time associated temporal phenomena and the detection
stream comprises the detections of the user defined temporal phenomena. Below,
we provide the executable semantics that describe the recognition mechanics for
stream processing.

4.1 Stream Processing

A stream is an arbitrary long sequence of time associated low level entities i.e.,
atomic predicates of Φ•, Φ− and Φ=. A stream σ that contains time associated
atomic formulae ‘occurring’ from the start of time t0 up to a time tσ can be
expressed by the model Mσ = 〈Tσ, Iσ, <, V •, V −, V =〉, where Tσ = [t0, tσ] ⊂ T
and Iσ = {[ts, te] : ts < te and ts, te ∈ Tσ} ∪ {[ts,∞) : ts ∈ Tσ} and as in
Sect. 2.3 V • : Φ•

o → 2Tσ , V − : Φ−
o → 2Iσ , V = : Φ=

o → 2Iσ are valuations.
Note that in the case of streams, a valuation of an atomic formula provides
the ordered set of instants or intervals that the atomic formula is associated
with. Sets of instants are ordered via the less than relation, while interval sets
are totally ordered, in other words the ordering is applied first on the starts
of intervals then the ends. This ordering allows, as discussed later, for efficient
computations of the instants or the intervals at which formulae hold.

Similar to other approaches [5,19], for efficiency reasons, we choose to use a
sliding window approach, whereby recognition of user-defined temporal phenom-
ena happens with temporal queries on a dynamically updated working memory
WM that is specified by a temporal window ω. A temporal window ω is a
finite sub-sequence of a stream σ, that contains low level entities with associ-
ated temporal information that falls within a time period ω = (ti, tj ], ti < tj
with ti, tj ∈ T . We denote the number of time instants included in a temporal
window ω, i.e., its size, as |ω| = tj − ti. In what follows, we present the method-
ology for computing the evaluation order of phenomena and the sliding window
mechanics of our approach.

Evaluation Order of Temporal Phenomena. The evaluation of the tem-
poral phenomena must be performed in an order that does not allow unmet
dependencies during processing. Recall that cyclic dependencies are forbidden
(see Sect. 2.2), therefore, the dependencies between a set of temporal phenomena
can be represented by a directed acyclic graph Gd = {E,D} where E is the set
of input and user defined phenomena, and D ⊆ E ×E is the set of dependencies.
Consequently, the processing order of a set of temporal phenomena relies on find-
ing a valid evaluation order, that is a numbering n : E → N of the phenomena
so that n(A) < n(B) ⇒ (A,B) �∈ D, meaning that A will be evaluated before B,
and that A does not depend on B. A numbering that satisfies these constraints
can be acquired by applying topological sort on Gd. Phenomena in level 0—these
are the input phenomena—of the topological order, have no dependencies, while
phenomena in higher levels have at least one direct dependency to phenomena of
the previous level, or more to phenomena of lower levels. Figure 1 illustrates the
topologically sorted dependency graph of the phenomena presented in Sect. 3.
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ais(Vessel,Speed,Heading,CoG)

in_port(Vessel,Port)stop_start(Vessel)stop_end(Vessel)

stopped(Vessel)

moored(Vessel, Port)

fishing_trip(Vessel, PortA, FArea, PortB)

Level 0

Level 1

Level 2

Level 3

Level 4

in_fishing_area(Vessel,FArea)underway(Vessel)

enters/leaves_port(Vessel,Port) enters/leaves_fishing_area(Vessel,FArea)

trip(Vessel, PortA, PortB)

Fig. 1. Topologically sorted dependency graph of the phenomena presented in Sect. 3.

Sliding Window Mechanics. In order to deal efficiently with the input load,
we adopt a sliding temporal window approach. With this approach, user defined
temporal phenomena are detected using information inside a working memory
set WM that contains: time associated phenomena of the input stream that
take place within the current temporal window ω, time associated phenomena
of previous windows that have been classified as non-redundant and finally the
detections of the current query.

Recognition occurs at equally distanced times tq ∈ T , where tq+1 − tq = s
is the sliding step. At each tq, the instants and the intervals at which temporal
phenomena are true or hold are computed according to the evaluation order
specified by the topological sorting of the Gd graph and the current working
memory WM . Algorithm 1 describes the recognition process of a set of user
defined phenomena ‘Definitions’, at a query time tq with working memory WM ,
window size |ω| and sliding step set to s. The instants and intervals at which user
defined temporal phenomena are true or hold are computed for each level using
‘process/2’—we will describe processing of phenomena definitions in Sect. 4.2—
and are asserted in the current working memory; this ensures that they will be
computed only once per recognition query (lines 2–10). During the processing of
the user defined temporal phenomena some instants or intervals in the WM are
classified as non-redundant. We will discuss the redundancy handling mechanism
shortly. When all the temporal phenomena levels have been processed, the WM
is updated (lines 11–12). During this step, all redundant information that falls
outside the next window, i.e., within [t0, tq − ω + s], will be removed from the
working memory WM and the processing of the next query at tq +s will be able
to commence.

A time associated phenomenon included in WM at tq is redundant if it
holds (a) for an instant or an interval that is not included or overlaps the next
window (tq +s−ω, tq +s] and (b) does not participate in incomplete or complete
evaluations of formulae that hold for intervals that overlap the next window.
Consider for example the intervals of Fig. 2. During the window ω = (tq −|ω|, tq],
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Algorithm 1: Querying process for working memory WM .
Input: Definitions; DependencyGraphLevels; tq; WM ; |ω| ; s

1 allNonRedundant=[];
2 for level in [1,DependencyGraphLevels] do
3 currentPhenomena = phenomenaOfLevel(Definitions, level);
4 for phenomenon in currentPhenomena do
5 intervals, instants, nonRedundant = process(phenomenon, WM );
6 if type(phenomenon==‘event’) then
7 WM .assert(detections(phenomenon, instants));
8 else
9 WM .assert(detections(phenomenon, intervals));

10 allNonRedundant.add(nonRedundant)

11 for element in WM.period(t0, tq − ω + s) do
12 if element not in allNonRedundant then WM.remove(element);

the states moored(v , a), moored(v , b) hold for the intervals [t0, t1] and [t6, t7]
respectively, the underway(v) state holds for the intervals {[t2, t5], [t8,∞)}, the
input state in fishing area holds for the interval [t3, t4] and finally the dynamic
temporal phenomenon fishing trip(v , a, f , b) holds for the interval [t1, t6]. As
the window advances, all the intervals that are redundant (dashed underlined)
can be discarded since they can no longer contribute in a future query and fall
outside the window. However, the interval [t6, t7] where moored(v , b) holds must
be retained, since at window ω it participates in the incomplete evaluations of the
dynamic temporal phenomena fishing trip(v , a, f , b) and fishing trip(v , b, f , b).
In other words, it may participate in a detection of fishing trip(v , a, f , b) or
fishing trip(v , b, f , b) in a future query.

Incomplete evaluations can only occur for dynamic temporal phenomena as
per the fact that their detection requires information that sometimes is not yet
available. However, this is not the case for evaluations of events and states; since
at any given query time and a working memory WM the instants or intervals
at which they are true or hold can always be determined. Note though that
intervals may be updated if new information allows it. For example, a formula
φ � ψ can be true at an interval [ts,∞) at query time tq while at a query time
t′q > tq the interval may get updated to [ts, te] if there is a satisfaction of ψ ∧¬φ
at te > tq.

The feasibility of an incomplete evaluation of a user defined dynamic tempo-
ral phenomenon is determined by propagating the temporal constraints imposed
by its definition and by also taking into account the information of the current
WM . If the evaluation status of a formula φ ∈ Φ= at query tq is unknown then
all the participating time associated phenomena should be retained for the re-
evaluation of φ in future queries. Consequently, at each query time, in order to
label WM elements as redundant or not, apart from evaluations of temporal
phenomena that can be determined to be true or false, incomplete evaluations
whose validity status is unknown must also be computed.
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ω
ω′

T

tq − |ω|
t0 t1 t2 t3 t4 t5 t6 t7

tq′ − |ω|
t8

tq
t9 t10 t11 t12 t13

fishing˙ trip(v , b, f , b)

fishing˙ trip(v , a, f , b)

in˙ fishing˙ area(v , f )

underway(v)

moored(v , b)

moored(v , a)

Fig. 2. Example of redundant (dashed underlined) and non redundant intervals, after
the transition from window ω to ω′. Horizontal black bold and hollow lines correspond
to evaluations of phenomena with all the required information, while grey lines cor-
respond to evaluations with incomplete information. Bold black lines denote intervals
that are computed during ω, while hollow black lines denote intervals that are com-
puted during ω′.

In order to present the mechanism that classifies redundancy we introduce
the concept of incomplete intervals. An incomplete interval iinc = [t, t◦] is a
pair of a known time instant and an unknown value2 t◦ with a known domain
Dt◦ ⊂ T . Incomplete intervals are produced when the evaluation status of a
φ ∈ Φ= formula is unknown, while the domains of the unknown instant values
are created by propagating the formula constraints. Given a working memory
WM the validity status of a formula of Φ= is unknown iff one of the following
cases is true:

– the evaluation status of a formula φ before ψ is unknown iff for the last ending
interval(s) {[ts1, t], ..., [tsk, t]} where φ holds (φ ∈ Φ− ∪Φ=) or the last instant
t where φ is true (φ ∈ Φ•), there not exists an instant t′ (ψ ∈ Φ•) or an interval
[t′, te′] (ψ ∈ Φ− ∪ Φ=) with t′ > t where ψ is true or holds respectively, in
which case the associated incomplete intervals are [tsi, t◦], i ∈ [1, k] when
φ ∈ Φ− ∪ Φ= or [t, t◦] when φ ∈ Φ• with Dt◦ = [t + 2,∞),

– the evaluation status of a formula φ contains ψ is unknown iff φ holds for an
interval [ts,∞) and there not exists an instant t, t > ts (ψ ∈ Φ•) or an interval
[ts′, te′] with ts < ts′ (ψ ∈ Φ− ∪ Φ=) where ψ is true or holds respectively, in
which case the associated incomplete interval is [ts, t◦] with Dt◦ = (tq,∞).

– the evaluation status of a formula φ relation ψ where relation ∈ {equals, starts}
is unknown iff φ and ψ hold for an interval [ts,∞) in which case the associated
incomplete interval is [ts, t◦] with Dt◦ = (tq,∞).

– the evaluation status of a formula φ relation ψ where relation ∈
{before,meets, overlaps, finishes}, φ ∈ Φ− ∪ Φ= and ψ ∈ Φ is unknown iff φ
holds for an interval [ts,∞), in which case the associated incomplete interval
is [ts, t◦] with Dt◦ = [tq + 2,∞).

2 We extend the set of all allowed values with t◦ denoting a time instant that is
currently not known but the domain of its possible values is known.
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– the evaluation status of a formula φ relation ψ where relation is a temporal
relation and φ, ψ ∈ Φ− ∪Φ=, is unknown, iff the evaluation status of φ or ψ is
unknown and the domains of the unknown instants allow a feasible solution
to the φ relation ψ formula’s constraints.

At a query time tq, intervals or instants at which a formula φ ∈ Φ is true,
ending or occurring before the start of the next window tq − ω + s, and par-
ticipating in evaluations with unknown validity are classified as non-redundant
since their presence will be possibly required in the re-evaluations of the formu-
lae with unknown validity in future recognition queries. Moreover, intervals or
instants that hold or occur before the start of the next window tq − ω + s are
also retained if they participate in complete evaluations of formulae that hold
for intervals that overlap tq − ω + s, therefore ensuring that recognised entities
that hold on intervals that overlap the next window will also be available for
processing in the next recognition query.

4.2 Processing of Temporal Phenomena

The set of time instants or intervals at which input phenomena are true or hold is
provided by the input. In the case of user defined phenomena the corresponding
sets have to be computed by processing their definitions. From a logical perspec-
tive, the task here is the evaluation of fixed formulae of Φ on a finite structure;
since our language does not use any second or higher order logic elements, this
problem is decidable and can be accomplished using polynomial time algorithms
in the length of the structure [17]. In this section we present the methodology
for processing the formulae that comprise temporal phenomena definitions.

Events. Events are defined by means of φ ∈ Φ• formulae. The methodology for
computing the set of time instants at which a formula φ ∈ Φ• is true is described
below.

– Conjunction (Disjunction) If φ and ψ are Φ• formulae and are true respec-
tively at the time instants sets J and K ⊆ ω then their conjunction (disjunc-
tion) is described by the set C = J ∩ K (C = J ∪ K).

– Negation If φ is a formula of Φ• and J is the set of instants where φ is true
in ω, then ¬φ is true in the set of instants C = ω \ J .

– Start (end) Start (end) accept a formula φ of Φ− and return the starting
(ending) points of the intervals the formula φ holds.

Recall that sets of instants at which formulae are true are ordered, consequently
the computation of the above operations can be accomplished in linear time
relative to the evaluations of φ and ψ.

States. User-defined states are expressed via the formulae of Φ−. By definition
the intervals at which a state may hold are disjoint and maximal; this is because
formulae of Φ− utilise the temporal operators �,�,� and\which, as defined in
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T
t0 t1 t2 t3 t4 t5

φ \ ψ

φ � ψ

φ � ψ

ψ

φ

Fig. 3. Example of the resulting intervals for the temporal operators �, � and\between
fomulae φ and ψ of Φ−.

Sect. 2.3, will always hold on disjoint maximal intervals. Below we describe the
computation of these intervals for each operator.

– Maximal range. Given a working memory WM a formula φ � ψ for φ, ψ ∈
Φ holds for the intervals that start at the instant ts where φ is true and
continue to hold indefinitely unless at an instant te > ts, ψ ∧ ¬φ is true.
Computation of the intervals where φ � ψ can be efficiently achieved by
iterating over the instants where φ, ψ are true. In simple words, this process
can be described as follows. The algorithm iterates over the instants at which
formulae φ and ψ ∧ ¬φ are true. The start of an interval is created at the
first occurrence of an instant ts at which φ is true. The interval remains open
at right to infinity, unless at an instant te > ts the formula φ ∧ ¬ψ is true,
in which case an interval [ts, te] is created. In [23] we present in detail the
single-scan algorithm that computes the intervals at which a formula φ � ψ
for φ, ψ ∈ Φ• holds.

– Temporal union, intersection and complement. In plain language, for
φ and ψ formulae of Φ− the temporal operators are defined as follows. The
temporal union φ � ψ, holds for the maximal intervals where at least one of
φ and ψ holds. The temporal intersection of φ � ψ formulae holds for the
maximal intervals where both formulae hold together. Finally, the temporal
complement φ\ψ holds for the maximal sub-intervals of the intervals where φ
holds and ψ does not hold. Figure 3 illustrates an example of these operations.
The computation of the intervals resulting from temporal union, intersection
and complement can be computed efficiently using single-scan, sorting-based
or index-based algorithms [13]. For our setting and our implementation which
we introduce below, we use single-scan algorithms, however since these algo-
rithms appear widely in related bibliography [9,13] we omit their presentation
here.

Dynamic Temporal Phenomena. Dynamic temporal phenomena are defined
using formulae of Φ= and may hold in non-disjoint intervals. Given a working
memory WM , the intervals at which dynamic temporal phenomena hold can be
computed using the declarative semantics. When the formulae participating in
a temporal relation are either of Φ• or Φ− efficient linear complexity algorithms
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are possible since the instants or the disjoint set of intervals at which they hold
are ordered. In [23] we present the linear complexity algorithm that computes
the intervals where φ before ψ with φ, ψ ∈ Φ− holds. When the participating
formulae involve those of Φ=, that may hold on non-disjoint intervals, a naive
approach that checks all pairs of the participating time entities requires poly-
nomial time. However, with indexes such as range trees, the intervals at which
temporal relations with participating formulae of Φ= hold can be computed in
linearithmic time [18].

5 Implementation

In the previous Sections, we formally presented the syntax, the semantics and
the executable semantics of our proposed language. Moreover we presented some
phenomena definitions inspired from the maritime domain demonstrating the
usage and the expressiveness of our language. In this section we introduce and
evaluate Phenesthe [22], our Complex Event Processing system that utilises the
language and the executable semantics presented in this paper.

5.1 Architecture

The Complex Event Processing system Phenesthe is implemented in Prolog and
follows the architecture illustrated in Fig. 4.

Input Information. The input is of two kinds; static and dynamic informa-
tion. Static input refers to a set of phenomena definitions written in the language
of this paper along with a declaration of the expected input phenomena. Static
information may also include atemporal information such as predicates storing
information regarding the elements of a specific use-case. For example in the
maritime use-case an atemporal predicate can be used for storing the ship types
of vessels. Dynamic input information refers to the input stream which contains
input phenomena associated with some temporal information. The phenomena
definitions and declarations pass through a transformation step, during which
they are transformed into a standard Prolog language representation. Addition-
ally, the dependencies between phenomena are computed and a valid evaluation
order is produced as outlined in Sect. 4.1 (see ‘Dependency Graph Computation’
in Fig. 4).

Temporal Querying. When the transformation and the computation of the
evaluation order of the user defined phenomena is complete, processing of the
input stream is able to commence. As already described in Sect. 4, processing of
the input stream happens in the form of temporal queries at equally distanced
times specified by the value of step. During a temporal query the instants and
the intervals at which user defined phenomena are true or hold are computed
and printed in the output stream. Additionally, during each temporal query
redundant information is discarded and non-redundant information is retained
until classified otherwise via the redundancy handling mechanism.
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Fig. 4. Architecture of Phenesthe. Grey rectangles correspond to static information,
green partial rectangles denote streams of phenomena, parallelograms correspond to
offline (bold perimeter) and online (dashed perimeter) operations. (Color figure online)

Dependency-Aware Parallelisation. User defined phenomena can be pro-
cessed in a sequential manner by following the evaluation order produced by the
topological sort of the directed acyclic graph they form. However, if possible they
can also be executed in parallel. In Phenesthe we implement dependency-aware
parallelisation whereby phenomena definitions that have no pending dependen-
cies are processed in parallel via a master-worker paradigm. Here, the master
checks for phenomena definitions that do not have any unmet dependencies and
inserts them in the processing queue. Workers remove phenomena definitions
from the processing queue, process them, and notify the master as soon as they
complete. This process goes on until all the user defined phenomena are pro-
cessed. For example, in the dependency graph of Fig. 1 the master will first
insert in the processing queue all the phenomena of Level 1, since those don’t
have any unmet dependencies. Next, as soon as both stop start and stop end
are processed the master will add stopped in the processing queue and a worker,
if available, will process it. It has to be noted, that the performance of the
dependency-aware parallelisation cannot be better than the time required to
execute the critical path, that is the longest chain of phenomena with sequen-
tial dependencies. For example in the graph of Fig. 1 one critical path is ais/4,
stop end/1, stopped/1, moored/2 and fishing trip/4. Consequently, phenomena
definitions sets with dependency graphs that have few operations that can be
executed in parallel will have little to no gain from the dependency-aware par-
allelization.

5.2 Empirical Evaluation

We evaluate the efficiency of Phenesthe in the maritime use-case by performing
Complex Event Processing on real world maritime data. Below we present the
experimental setup and the results of our experimental evaluation.

Experimental Setup. For our experimental evaluation we used the maritime
phenomena definitions presented in Sect. 3. Table 2 summarises all the input and
output phenomena of our use-case. Note that the complete phenomena definition
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Table 1. Dataset characteristics.

Attribute Description

Period (months) 6

Vessels 5K

AIS messages 16M

Spatial events 89K

Fishing areas 263

Ports 222

Table 2. Description of the maritime phenomena.

Phenomenon Description

Input ais(V ,S ,H ,CoG) AIS transmitted values of speed S , heading H ,
and course over ground CoG for a vessel V

enters {port ,fishing area}(V ,A) A vessel V enters a port/fishing area A

leaves {port ,fishing area}(V ,A) A vessel V leaves a port/fishing area A

Output in {port ,fishing area}(V ,A) A vessel V is within a port/fishing area A

stop {start , end}(V ) A vessel V starts or ends a stop.

stopped(V ) A vessel V has speed less than 0.5 knots.

underway(V ) A vessel V is underway (Speed > 2.7 knots).

moored(V ,P) A vessel V is moored at a port P

trip(V ,D ,A) A vessel V traveled from port D to port A

fishing trip(V ,D ,FA,A) A vessel V starts a fishing trip from port D ,
passes over fishing area FA and reaches port A

set is available in [22]. Regarding the input stream, we used a publicly available
dataset containing AIS vessel data, transmitted over a period of 6 months, from
October 1st, 2015 to March 31st, 2016, in the area of Brest, France [24]. More-
over, we included spatial events that occur when vessels enter or leave specific
areas. These spatial events were produced by the Spatial Prepossessing module
described in [21]. Table 1 presents the characteristics of the dataset we used.
The experiments were conducted on a machine running macOS 10.15.7 with an
Intel(R) CORE(TM) i5-7360U CPU and 8 GB 2133 MHz RAM under SWI-
Prolog 8.2.4. The number of threads when running the multithreaded version of
Phenesthe was set to 4.

Experimental Evaluation. The results of our experimental evaluation are
presented in Fig. 5. Recall that processing of phenomena happens at equally
distanced query times. For the presented experiments, the sliding step has been
set to 2 h, while the window size |ω| varies from 2 to 32 h. For each window
size we report the average number of input phenomena, the average number of
instants and intervals at which user defined phenomena are true or hold and
finally the average processing time. Moreover, in order to assess the efficiency
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Fig. 5. Results of our evaluation. The experiments were conducted for |ω| =
{2, 4, 8, 16, 32} while the window sliding step was set to 2 h. Plots (a), (b) and (c) show
the average number of input events (thousands), the average number (thousands) of
instants and intervals detected for user defined phenomena, and the average processing
time (sec) per temporal query, respectively.

of the dependency-aware parallelisation we perform Complex Event Processing
using the sequential and the multithreaded version of Phenesthe. Figure 5(a)
shows that the average number of input events ranges from 7.5 K when |ω| = 2
h to 120 K input events when |ω| = 32 h. Figure 5(b) shows the average number
of instants or intervals at which user defined phenomena are true or hold per tem-
poral query. In Figure 5(c) it can be seen that Phenesthe completes a temporal
query on a 2 h window in approximately 0.9 (sequential) and 0.6 (multithreaded)
seconds, while for a 32 h window it takes approximately 1.6 (sequential) and 1.1
(multithreaded) seconds to perform a temporal query. Expectedly, results from
Fig. 5(c) show that dependency-aware parallelisation improves significantly the
performance of Phenesthe. All in all, in both sequential and multithreaded ver-
sion, Phenesthe is capable of providing near-instantaneous output, even when the
window size is set to 32 h, thus meeting the requirements of real-time maritime
monitoring applications.

6 Related Work

There are numerous languages for describing temporal phenomena with different
levels of expressiveness. For example, Balbiani et al. in [6] present a two-sorted
point-interval temporal logic framework where both instants and intervals can
be used in formulae. However, in P. Balbiani’s approach, operations such as the
maximal range, union, intersection and complement are not available, there-
fore phenomena that utilise these operators (e.g., the definition of moored/2 in
Sect. 3) are not directly, if at all, expressible in their language. Moreover, nei-
ther executable semantics nor applications of their temporal logic are discussed.
Ahmed et al. in [1] use point-based metric temporal logic that has limited interval
expressivity to specify stream queries for intrusion detection. Kowalski in [16]
presents the Event Calculus, a logic based formalism that deals with events
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(instantaneous) and their effects on inertive fluents (durative), i.e., time-varying
properties.

In the field of complex event processing or recognition, Cugola et al. in [12]
formally present an event specification language, TESLA, that allows the defini-
tion of possibly hierarchical complex event patterns that happen on instants of
time. In [4] D. Anicic et al. present ETALIS, a rule based system where complex
events are durative and their definition among others may involve sequences of
events, negation and some of the Allen’s algebra relations. Compared to TESLA
and ETALIS our language allows the description of both instantaneous and dura-
tive temporal phenomena. Efficient complex event recognition approaches using
the Event Calculus among others involve [5,10]. In [5] A. Artikis et al. present
the Event Calculus for Run-Time reasoning. Their approach allows the defini-
tion and processing of possibly hierarchical events and fluents that happen on
instants or hold on intervals. Compared to the Event Calculi approaches of [5,10]
our language allows the expression of temporal relations between durative and
instantaneous phenomena that may hold, additionally, in non-disjoint intervals.

7 Summary and Future Directions

We formally presented a language for the representation of temporal phenomena,
with declarative and operational semantics. Our language allows the represen-
tation of possibly hierarchical instantaneous and durative temporal phenomena.
Definitions of temporal phenomena may involve the standard logical connectives,
the temporal operators of maximal range, union, intersection and complement
and the seven basic temporal relations of Allen’s interval algebra. We introduced
the Phenesthe Complex Event Processing system and demonstrated that it can
efficiently process thousands of phenomena in near instantaneous time.

Our future directions involve a theoretical study of the expressiveness of our
language and a comparison with existing ones. Moreover, we plan to further
improve the efficiency of Phenesthe and compare it with state of the art Com-
plex Event Processing systems. Finally, we aim to integrate temporal stream
processing with process mining techniques for the discovery of dynamic tempo-
ral phenomena.
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Abstract. The execution of concurrent applications typically involves
some degree of nondeterminism, mostly due to the relative speeds of con-
current processes. An essential task in state-space exploration techniques
for the verification of concurrent programs consists in finding points in an
execution where alternative actions are possible. Here, the nondetermin-
istic executions of a program can be represented by a tree-like structure.
Given the trace of a concrete execution, one first identifies its branch-
ing points. Then, a new execution can be steered up to one of these
branching points (using, e.g., a partial trace), so that an unexplored
branch can be considered. From this point on, the execution proceeds
nondeterministically, eventually producing a trace of the complete exe-
cution as a side-effect, and the process starts again. In this paper, we for-
malize this operation—partially driving the execution of a program and
then producing a trace of the entire execution—, which we call prefix-
based tracing. It combines ideas from both record-and-replay debugging
and execution tracing. We introduce a semantics-based formalization of
prefix-based tracing in the context of a message-passing concurrent lan-
guage like Erlang. Furthermore, we also present an implementation of
prefix-based tracing by means of a program instrumentation.

1 Introduction

Message-passing concurrency mainly follows the so-called actor model. At run-
time, concurrent processes can only interact through message sending and receiv-
ing, i.e., there is no shared memory. In this work, we further assume that com-
munication is asynchronous and that each process has a local mailbox (a queue),
so that each sent message is eventually stored in the target process’ mailbox.
Moreover, we consider that processes can be dynamically spawned at runtime. In
particular, we consider a subset of the programming language Erlang [3] for our
developments. We note that, in practice, some Erlang built-in’s involve shared-
memory concurrency; nevertheless, we will not consider them in this work.
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In the context of a message-passing concurrent language, computations are
typically nondeterministic because of the relative speeds of processes. Consider,
for instance, three processes, p1, p2, and p3. If p1 and p2 both send a message
to process p3, the order in which these messages are received may not be fixed
(e.g., when the actions of p1 and p2 are unrelated). In such a case, we say that
the messages race (for p3). Exploring all alternatives for message races is a key
ingredient of state-space exploration techniques like stateless model checking [5]
or reachability testing [13].

In order to identify message races, state-space exploration methods usually
consider some kind of execution trace (e.g., interleavings in [1] or SYN-sequences
in [13]). An execution trace can be seen as an abstraction of an execution which
still contains enough information to identify sources of nondeterminism and, in
particular, message races. Every time a race is identified, alternative executions
are considered so that all feasible executions are systematically explored.1 A new
execution of the program should be driven in such a way that it reproduces the
previous execution up to the point where the race was found (as in record-and-
replay debugging techniques), then chooses a different message and, from this
point on, follows the usual nondeterministic semantics. Furthermore, a trace of
the new execution should be eventually produced as a side-effect, so that the
process can start again. In the following, we refer to this operation combining
replay and tracing as prefix-based tracing.

In this work, we formalize the notion of prefix-based tracing in the context of
a message-passing concurrent language like Erlang. Despite the fact that prefix-
based tracing is ubiquitous in state-space exploration methods, we are not aware
of any previous semantics-based formalization. In particular, a similar operation
is called prefix-based replay in [8], though no formal definition is given. Other
approaches, like [2] in the context of stateless model checking of Erlang programs,
insert preemptive points in the code and, then, force the program to follow a
particular scheduling up to a given point, then proceeding nondeterministically.
However, as in [8], no semantics-based formalization is presented.

We note that prefix-based tracing can be seen as a generalization of tradi-
tional tracing and replay techniques. In particular, when no input trace is pro-
vided, the technique boils down to standard tracing. On the other hand, if the
trace of a complete execution is provided, then it behaves as a replay debugger,
so that the entire execution follows the given trace. Therefore, both tracing and
replay can be seen as particular instances of the notion of prefix-based tracing.

Furthermore, besides the instrumented semantics, we also present an imple-
mentation of prefix-based tracing as a program instrumentation. In this case,
given a program, we produce an instrumented version that is parametric w.r.t.

1 In practice, dynamic partial order reduction techniques [4] are used to avoid explor-
ing alternative executions which are causally equivalent to an already considered
execution. Loosely speaking, two executions are causally equivalent if they produce
the same outcome no matter if the sequence of actions is different. See, e.g., [11,12]
for a formal definition of causal equivalence in the context of the language Erlang.
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a particular (possibly partial) trace.2 Then, given a particular trace, the pro-
gram can be executed in the standard runtime environment so that it follows
the actions in this trace and, then, proceeds nondeterministically, eventually
producing a trace of the complete execution as a side-effect.

The paper is organized as follows. Section 2 presents a summary of the con-
current features of the considered language and its semantics. Then, Sect. 3
introduces the notions of trace and log, and formalizes prefix-based tracing using
an instrumented semantics. In turn, Sect. 4 presents the details of an implemen-
tation of prefix-based tracing as a program instrumentation. Finally, Sect. 5
concludes and points out some directions for future work.

2 A Message-Passing Concurrent Language

In this section, we present the semantics of a message-passing concurrent lan-
guage which can be seen as a subset of the Erlang language [3]. Following [10,15],
we consider a layered semantics: an expression semantics and a system seman-
tics. The expression semantics is essentially a typical call-by-value functional
semantics defined on local states, which include an environment (i.e., a mapping
from variables to values), an expression (to be reduced) and a stack; see [6] for
more details. Since this is orthogonal to the topics of this paper, we will only
introduce the following notation: ls

z→ ls′ denotes a reduction step, where ls, ls′

are local states and z is a label with some information associated to the reduction
step.

So-called local steps are denoted with the label ι and do not perform any
side-effect at the system level. In contrast, the reduction of some—typically
concurrent—actions may require a side-effect at the system level. Here, we con-
sider the following global actions with side-effects:

– spawn(mod, fun, args): this expression dynamically creates a new process to
evaluate function fun (defined in module mod) with arguments args (a list).
E.g., spawn(test , client , [S, c1]) spawns a process that evaluates the expres-
sion client(S, c1), where function client is defined in module test .3 In the
expression semantics, a call to spawn reduces to a fresh identifier, called pid
(for process identifier), that uniquely identifies the new process. The step
is labeled with spawn(κ, ls0), where ls0 is the initial local state for the new
process and κ is a special variable (a sort of future) that will be eventually
bound—in the system semantics—to the pid of the spawned process.

– p ! v: it sends value v (the message) to process p (a pid). The expression
reduces to v and eventually stores this value in the mailbox of process p as
a side-effect. Sending a message is an asynchronous operation, so the process

2 Hence, the program is only instrumented once.
3 As in Erlang, functions and atoms (constants) begin with a lowercase letter while

variables start with an uppercase symbol. The language has no user-defined data
constructors, but allows the use of lists—following the usual Haskell-like notation—
and tuples of the form {e1, . . . , en}, n ≥ 1 (a polyadic function).
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main() ->

S = spawn(bank, [0]),

spawn(customer, [S]).

bank(B) ->

receive

{deposit,A}

-> bank(B+A);

{C,{withdraw,A}} when A=<B

-> C ! {ok,B-A},

bank(B-A);

_ -> C ! error, bank(B)

end.

customer(S) ->

S ! {deposit,120},

S ! {deposit,42},

S ! {self(),{withdraw,100}},

receive

{ok,B} -> io:format("Current balance: ~p~n",[B]);

error -> io:format("Insufficient balance")

end.

Fig. 1. A simple Erlang program.

continues immediately with the evaluation of the next expression. In this case,
the step in the expression semantics is labeled with send(p, v), which suffices
for the system semantics to perform the corresponding side-effect.

– receive p1 → e1; . . . ; pn → en end: this expression looks for the oldest message
in the process mailbox that matches some pattern pi and, then, continues
with the evaluation of ei. As in Erlang, messages are matched sequentially
against the patterns from top to bottom. When no message matches any
pattern, execution is blocked until a matching message reaches the mailbox of
the process. In this case, the step is labeled with rec(κ, cs), where cs are the
branches of the receive statement (i.e., p1 → e1; . . . ; pn → en above). Here,
κ will be bound to the expression ei of the selected branch in the system
semantics.

– self(): it reduces to the pid of the current process. Here, the step is labeled
with self(κ), so that κ is bound to the pid of the current process in the system
semantics.

Example 1. Consider the simple client-server program shown in Fig. 1. Here,
we consider that the execution starts with the call main(). Function main then
spawns two new processes that will evaluate bank(0) and customer(S), respec-
tively, where S is the pid of the first process (the server).
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Function bank implements a simple server that takes only two types of
requests: {deposit, A}, to make a deposit of amount A, and {C, {withdraw, A}},
to make a withdraw of amount A, where C is the pid of the customer that makes
the request. For simplicity, we assume that the bank has only one account (that
of the customer), which is initialized to zero.

Given a request of the form {deposit, A}, the server simply performs a recur-
sive call with the updated balance. If the request has the form {C, {withdraw, A}}
and the amount A is less than or equal to the current balance,4 it sends a mes-
sage {ok, B − A} back to the customer and calls function bank with the updated
balance. In any other case (denoted with the pattern “ ”), the message error is
sent back to the customer.

The implementation of the customer is very simple. It only performs three
requests to the server. Note that the third one simulates a synchronous com-
munication since it suspends the execution until a message from the server is
received. Here, the built-in function format (module io) is used for printing
messages.

In the remainder of this paper, a process is denoted as follows:

Definition 1 (process). A process is denoted by a configuration of the form
〈p, ls, q〉, where p is the pid (process identifier) of the process, which is unique in
a system, ls is the local state and q is the process mailbox (a list).

A system is then defined as a pair Γ ;Π, where Γ represents the network (some-
times called the global mailbox [10] or the ether [16]) and Π is a pool of processes.
In the following, we often say “process p” to mean “process with pid p”.

The network, Γ , is defined as a set of queues, one per each pair of (not
necessarily different) processes. For instance, if we have two processes with pids
p1 and p2, then Γ will include four queues associated to the pairs (p1, p1), (p1, p2),
(p2, p1), and (p2, p2), representing all possible communications in the system. We
use the notation Γ [(p, p′) �→ qs] either as a condition on Γ or as a modification
of Γ , where p, p′ are pids and qs is a (possibly empty) queue; for simplicity, we
assume that queues are initially empty for each pair of processes. Queues are
denoted by (finite) sequences, which are denoted as follows: a1, a2, . . . , an, n ≥ 0,
where [ ] denotes an empty sequence. Here, es+ es′ denotes the concatenation of
sequences es and es′; by abuse, we use the same notation when a sequence has
only a single element, i.e., e1 + (e2, . . . , en) = (e1, . . . , en−1) + en = e1, . . . , en.

The second component, Π, is denoted as 〈p1, ls1, q1〉 | · · · | 〈pn, lsn, qn〉,
where “ |” represents an associative and commutative operator. We often denote
a system as Γ ; 〈p, ls, q〉 | Π to point out that 〈p, ls, q〉 is an arbitrary process of
the pool (thanks to the fact that “ | ” is associative and commutative).

The rules of the system semantics can be found in Fig. 2. They are similar
to the those in [10], with only a few differences:

4 Here, we consider the full syntax for receive statements, receive p1 [when g1] →
e1; . . . ; pn [when gn] → en end, where each branch might have a guard gi that must
be evaluated to true in order to select this branch.
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(Exit)
final(ls)

Γ ; p, ls, q → Γ ;Π

(Local)
ls

ι− →ls
Γ ; p, ls, q → Γ ; p, ls , q Π

(Self )
ls

self(κ)−−−−→ ls

Γ ; p, ls, q → Γ ; p, ls {κ p}, q Π

(Spawn)
ls

spawn(κ,ls0)−−−−−−−→ ls and p is a fresh pid
Γ ; p, ls, q → Γ ; p, ls {κ p }, q p , ls0, [ ] Π

(Send)
ls

send(p ,v)−−−−−−→ ls

Γ [(p, p ) qs]; p, ls, q → Γ [(p, p ) qs+v]; p, ls , q Π

(Deliver)
Γ [(p , p) v+qs]; p, ls, q → Γ [(p , p) qs]; p, ls, q+v Π

(Receive)
ls

rec(κ,cs)−−−−−→ ls and matchrec(ls , κ, cs, q) = (ls , q )
Γ ; p, ls, q → Γ ; p, ls , q Π

Fig. 2. System semantics

– The local state is abstracted in our semantics, so that it can be instantiated
to Core Erlang (as in [10]) but also to Erlang (as in [6]).

– The network, Γ , is defined as a set of queues, so that the order of the messages
between any two given processes can be preserved (while Γ was defined as
a set of triples (sender, target,message) in [10] and the order could not be
preserved).

Moreover, in contrast to the system semantics in [12], we have process’ mail-
boxes and a rule for message delivery, which are abstracted away in [12], where
messages are directly consumed from Γ by receive statements. We note that this
is not a limitation of [12] since this work focuses on replay (reversible) debugging
and the trace of an actual execution is always provided. Therefore, their system
semantics needs not implement the actual semantics of the language but may
rely on the order of message reception given in the considered trace.

Let us briefly explain the transiton rules of our system semantics (Fig. 2):

– Rule Exit removes a process from the pool when the local state is final,
i.e., when the expression to be reduced is a data term. If Γ contains some
nonempty queue for (p, p′), where p′ is the removed process, these messages
will never be delivered (which is coherent with the behavior of Erlang).

– Rule Local just updates the local state of the selected process according to a
transition of the expression semantics, while rule Self binds κ to the pid of
the current process.
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– Rule Spawn updates the local state, binds κ to the pid of the new process and
adds a new initial process configuration with local state ls0 as a side-effect.

– Rule Send updates the local state and, moreover, adds a new message to
the corresponding queue of the network as a side-effect. For simplicity, we
implicitly assume that Γ is extended with a new queue for the pair (p, p′)
whenever it does not already exist.

– Rule Deliver nondeterministically (since Γ might contain several nonempty
queues with the same target process p) takes a message from the network and
moves it to the corresponding process mailbox.

– Finally, rule Receive consumes a message from the process mailbox using the
auxiliary function matchrec that takes the local state ls′, the future κ, the
branches of the receive expression cs, and the queue q. It then selects the
oldest message in q that matches a branch in cs (if any), and returns a new
local state ls′′ (where κ is bound to the expression in the selected branch)
and a queue q′ (where the selected message has been removed).

Note that the tracing semantics has two main sources of nondeterminism: select-
ing a process to apply a reduction rule, and selecting the message to be delivered
from the network (rule Deliver). Regarding the first point, one can for instance
implement a round-robin algorithm that performs a fixed number of transitions
(assuming the process is not blocked), then moves to another process, etc. As
for the selection of a message to be delivered, there are several possible strate-
gies. For instance, the CauDEr debugger [6,9,10] implements both a user-driven
strategy (where the user selects any of the available messages) and a random
selection.

Given systems α0, αn, we call α0 ↪→∗ αn a derivation; it is a shorthand for

α0 ↪→ . . . ↪→ αn, n ≥ 0

One-step derivations are simply called transitions. We use δ, δ′, δ1, . . . to denote
derivations and t, t′, t1, . . . for transitions. A system α is said initial if it has the
form E ; 〈p, ls, [ ]〉, where E denotes a network with an empty queue for (p, p), p
is the pid of some initial process and ls is an initial local state containing the
expression to be evaluated. In the following, we assume that all derivations start
with an initial system.

3 Prefix-Based Tracing Semantics

In this section, we formalize the notion of prefix-based tracing for message-
passing concurrent programs. In order to trace a running application, [11] intro-
duces message tags, so that one can identify the sender and receiver of each
message, even if there are several messages with the same value. To be precise,
each message value v is now wrapped in a tuple of the form {	, v}, where 	 is a
message tag which is unique in the considered execution.

Following [7], we consider that an execution trace is a mapping from pids to
sequences of terms denoting global actions (so we often refer to these terms as
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p1 p2 p3 p4
s1 1

d1
s2 2

d2
r1
s33

d3
r2r3

s4 4
d4 s55

d5 r4
r5

Fig. 3. Processes (pi, i = 1, . . . , 4) are represented as vertical dashed arrows (time
flows from top to bottom). Message sending and delivery is represented by solid arrows
labeled with a message tag (�i), from a sending event (si) to a delivery event (di),
i = 1, . . . , 5. Receive events are denoted by ri, i = 1, . . . , 5. Note that all events
associated to a message �i have the same subscript i.

actions). These terms can be seen as an abstraction of the corresponding actions,
including only some minimal information (but still enough for our purposes):

Definition 2 (trace [7]). A trace is a mapping from pids to sequences of terms
of the form

– spawn(p), where p is the pid of the spawned process;
– exit, which denotes process termination;
– send(	, p), where 	 is the tag of the message sent (initially stored in the net-

work) and p is the pid of the target process;
– deliver(	), where 	 is the tag of the delivered message (i.e., moved from the

network to the mailbox of the target process);
– rec(	), where 	 is the tag of the message consumed from the local mailbox.

We note that deliver events are attributed to the target of the message. Given a
trace T , we let T (p) denote the sequence of actions associated to process p in T .
Also, T [p �→ as] denotes that T is an arbitrary trace such that T (p) = as; we
use this notation either as a condition on T or as a modification of T .

Let us consider the following trace:

[ p1 �→ spawn(p3), spawn(p2), spawn(p4), send(	1, p3), exit;
p2 �→ send(	2, p3), deliver(	3), rec(	3), send(	4, p3), exit;
p3 �→ deliver(	1), deliver(	2), rec(	1), send(	3, p2), rec(	2),

deliver(	4), deliver(	5), rec(	4), rec(	5), exit;
p4 �→ send(	5, p3), exit ]

(1)

The associated execution can be informally represented using a simple message-
passing diagram, as shown in Fig. 3, where we have skipped spawn actions for
clarity.
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Observe that we do not need to fix a particular (global) interleaving for all
the actions in the trace. Only the order within each process matters; i.e., a
trace represents a partial order on the possible interleavings (analogously to the
SYN-sequences of [13]).

We also consider a simplification of the trace, called log in [11,12], where
process exit and message delivery actions are skipped and message sending is
represented just by send(	), without the pid of the target process.

Definition 3 (log). A log is a mapping from pids to sequences of terms of the
form spawn(p), send(	), and rec(	), where p is a pid and 	 is a message tag. We
use the same notation conventions as for traces. Moreover, given a trace T , we
let log(T ) be the log, W, obtained from T by removing message delivery and exit
actions, as well as by replacing every action of the form send(	, p) by send(	).

For instance, the log obtained from the trace in Example 2 above is as follows:

[ p1 �→ spawn(p3), spawn(p2), spawn(p4), send(	1);
p2 �→ send(	2), rec(	3), send(	4);
p3 �→ rec(	1), send(	3), rec(	2), rec(	4), rec(	5);
p4 �→ send(	5) ]

(2)

Despite the simplification, the resulting log suffices to replay a given execution
[12, Theorem 4.22] or a causally equivalent one.5 Therefore, in the following, we
distinguish logs, which are useful to replay a given execution, and traces, which
can be used, e.g., to identify message races (as in [7]).

Consider, for instance, the execution of Fig. 3. Here, we might have a race for
p3 between messages 	1 and 	2 (assuming both messages match the constraints of
the receive statement r1). If we swap the delivery of these messages, we can have
a new execution which is not causally equivalent to the previous one and, thus,
may give rise to a different outcome. A similar situation occurs with messages 	4
and 	5. See [7] for more details on the computation of message races. A typical
state-space exploration method would follow these steps:

– First, one considers a random execution of the program and its associated
trace.

– The trace is then analyzed and its message races are identified (if any).
– For each message race, we construct a (partial) log that can be used to drive

the execution of the program to an execution point where a different choice is
made. Then, execution continues nondeterministically, eventually producing
a trace of the entire execution. We call this operation prefix-based tracing.

5 We say that two actions are causally related when one action cannot happen without
the other, e.g., message sending and receiving, spawning a process and any action
of this process, etc. Causality is often defined as the transitive closure of the above
relation. When two actions are not causally related, we say that they are independent.
Two executions are causally equivalent if they only differ in the order of independent
actions. Equivalently, two executions are causally equivalent if they have the same
log [12]. Actually, logs can be seen as a representation of so-called Mazurkiewicz
traces [14]. We refer the interested reader to [12] for more details.
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– The process starts again with the new executions, and so forth. Typically,
some backtracking algorithm is used in order to avoid considering the same
execution (or a causally equivalent one) once and again.

For instance, given the execution of Fig. 3 and the associated trace in (1), we
have a race for p3 between messages 	1 and 	2. Here, the following partial log
could be used to drive the execution to a different choice, where message 	2 is
delivered to process p3 before message 	1:

[ p1 �→ spawn(p3), spawn(p2), spawn(p4), send(	1);
p2 �→ send(	2);
p3 �→ rec(	2);
p4 �→ send(	5) ]

(3)

In the instrumented semantics, a logged system is now denoted by a triple
W;Γ ;Π, where W is a (possibly partial) log. We will simply speak of systems
when no confusion can arise between logged and non-logged systems. Further-
more, we also need some auxiliary functions. In prefix-based tracing, some steps
might be driven by a log while others might not (e.g., when all the actions of a
process have been already consumed). In order to deal with these two situations
in a uniform way, we introduce the following function next:

next(p,W) =

⎧
⎪⎪⎨

⎪⎪⎩

(p′,W) if W(p) = [ ] and p′ is a fresh identifier
(p′,W[p �→ as]) if W(p) = spawn(p′) + as
(	,W[p �→ as]) if W(p) = send(	) + as
(	,W[p �→ as]) if W(p) = rec(	) + as

Essentially, next(p,W) either consumes the first action of W(p) and returns the
corresponding pid p′ (if the first action is spawn(p′)) or a message tag 	 (if the first
action is send(	) or rec(	)), or returns fresh identifiers when W(p) is empty. It also
returns the log resulting from removing the consumed action (if any). Here, we
consider that pids and tags belong to the same domain for simplicity; otherwise,
one would need two different functions, next pid and next tag, depending on the
particular case.

Our second function, admissible, is used to check if delivering a message is
consistent with the current system. Note that message delivery is in principle
a nondeterministic operation in the standard semantics (Fig. 2) when we have
messages in different queues of Γ addressed to the same target process. On
the other hand, once messages are delivered, the order is fixed and the receive
statements will consume them in a deterministic manner. Therefore, we should
ensure that message deliveries follow the corresponding log. For this purpose,
we introduce the auxiliary function admissible. Given a log W, if W(p) is not
empty, we have admissible(p,W[p �→ as], q, 	) = true if rec(	1), . . . , rec(	n), n > 0,
are the receive actions in as, q contains messages 	1, . . . , 	i, 0 ≤ i < n, and
	 = 	i+1. When log(p) is empty or contains no rec actions, function admissible
simply returns true in order to proceed nondeterministically as in the standard
semantics. Otherwise, it compares the list of messages to be received by p and
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the list of messages already in p’s mailbox in order to determine if 	 is indeed
the next message that must be delivered in order to follow the order of message
receptions given by the log.

(Exit) final(ls)
W;Γ ; p, ls, q Π p:exit W;Γ ;Π

(Local) ls
ι− →ls

W;Γ ; p, ls, q Π W , Γ ; p, ls , q Π

(Self )
ls

self(κ)−−−−→ ls

W;Γ ; p, ls, q Π W;Γ ; p, ls {κ p}, q Π

(Spawn)
ls

spawn(κ,ls0)−−−−−−−→ ls and next(p, W) = (p , W )
W ;Γ ; p, ls, q Π p:spawn(p ) W ;Γ ; p, ls {κ p }, q p , ls0, [ ] Π

(Send)
ls

send(p ,v)−−−−−−→ ls and next(p,W) = ( W )
W;Γ [(p, p ) qs]; p, ls, q Π p:send( ) W ;Γ [(p, p ) qs+{ }]; p, ls , q Π

(Deliver)
admissible(p, W ) = true

W;Γ [(p , p) {v }+vs]; p, ls, q Π p:deliver( ) W;Γ [(p , p) vs]; p, ls, q+{v } Π

(Receive)

ls
rec(κ,cs)−−−−−→ ls matchrec(ls , κ, cs, q) = (ls , q ) and next(p, W) = ( W )

W ;Γ ; p, ls, q Π p:rec( ) W ;Γ ; p, ls , q Π

Fig. 4. Prefix-based tracing semantics

The instrumented semantics is defined by means of the labeled transition
system shown in Fig. 4. Now, each transition is labeled with an event of the
form p :a where p is the pid of a process and a is the action performed by this
process. Let us briefly explain the transition rules:

– The first three rules, Exit, Local and Self are similar to their counterpart in
the standard semantics (Fig. 2), since the log plays no role in these cases. The
only relevant difference is that we label the transition with the corresponding
action, p :exit, in the first rule, and ε (a null event) in the other two rules.

– Rules Spawn and Send proceed in a similar way: when W(p) is not empty,
the pid of the new process (rule Spawn) or the message tag (rule Send) are
taken from the log. Otherwise, fresh identifiers are used, as in the standard
semantics of Fig. 2. The transitions are labeled with the events p : spawn(p′)
and p :send(	, p′), respectively.

– Rule Deliver ensures that messages are delivered according to the order in
W(p). Observe that, given a process p, the order of message deliveries is now
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deterministic when W(p) is not empty and includes at least one rec action.
Here, the transition is labeled with the event p :deliver(	).

– Finally, rule Receive is similar to its counterpart in Fig. 2, with only a subtle
difference: now, function matchrec also returns the tag of the selected message,
since it is required for the label of the transition, p : rec(	). We note that
function next is only used to consume an action from the log (when W(p) is not
empty) but it imposes no actual restriction on the transition, since once the
messages are in the process queue, message reception becomes deterministic.
This is why function admissible checks the log in order to deliver messages in
the right order.

Given a sequence of events es = (p1 :a1, p2 :a2, . . . , pn :an), we let actions(p, es)
denote the sequence of actions a′

1, a
′
2, . . . , a

′
m such that p :a′

1, p :a′
2, . . . , p :a′

m are
all the events of process p in es and in the same order. Then, given a derivation
δ = (α0 �e1 α1 �e2 . . . �en αn+1), n > 0, the associated trace, in symbols
trace(δ), is a trace T such that T (pi) = actions(pi, es) for each pid pi occurring
in es = (e1, . . . , en).

Following [12], we say that two derivations are causally equivalent if their logs
are the same (cf. Theorem 3.6 in [12]).6 Now, we focus on two scenarios for prefix-
based tracing: “pure tracing” and “pure replay”. In the following, we say that
a logged system is initial if it has the form E ; E ; 〈p, ls, [ ]〉. By abuse of notation,
we let E denote both a log where pid p is mapped to an empty sequence and a
network where the queue of (p, p) is empty. Similarly to the previous section, we
assume that all derivations start with an initial logged system.

The following result states that prefix-based tracing is indeed a conservative
extension of the standard semantics:

Theorem 1 (pure tracing). Let α ↪→ . . . ↪→ α′ be a derivation with the stan-
dard semantics (Fig. 2). Then, there is a derivation δ = (E ;α �e1 . . . �en E ;α′)
with the prefix-based semantics of Fig. 4, where trace(δ) is its associated trace.

Proof. The proof is straightforward since function next always returns a fresh
pid/tag and function admissible always returns true when the log is empty. There-
fore, the only difference between the rules in Fig. 2 and those in Fig. 4 when the
log is empty is that the transitions are labeled with the corresponding event, so
that a trace can be obtained. �	

Let us now consider pure replay. In the following, we assume that all logs are
consistent, i.e., they have been obtained from the trace of a derivation. Moreover,
we say that a derivation consumes a log when it only performs a transition for
process p if W(p) is not an empty sequence. In other words, it performs a replay
of the execution represented by the log, and no more. The next result states
that, given the log of a derivation, prefix-based tracing with this log produces a
derivation which is causally equivalent to the original one.
6 To be precise, the semantics in [12] does not consider process mailboxes nor mes-

sage deliveries. Nevertheless, these actions are not observable in logs, and hence the
property carry over easily to our case.
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Theorem 2 (pure replay). Let W be a nonempty log and let δ = (W;α �e1

. . . �en E ;α′) be a derivation with the rules of Fig. 4 that consumes log W.
Then, log(trace(δ)) = W.

Proof (Sketch). The claim follows easily by induction on the length of the con-
sidered derivation. Since the base case is trivial, let us consider the inductive
case. Here, we make a case distinction on the applied rule to system W;α:

– If we perform a step with rules Exit, Local, Self or Deliver, the claim follows
trivially by induction since they have no impact on log(trace(δ)).

– Consider now a step with rule Spawn applied to a process p, and assume that
the log has the form W[p �→ spawn(p′) + as] and the step is labeled with the
event p : spawn(p′). Hence, trace(δ) associates an action spawn(p′) to process
p and so does log(trace(δ)). Then, the claim follows by applying the inductive
hypothesis on the derived system W[p �→ as];α′′. A similar reasoning can be
made with rule Receive.

– Finally, we consider rule Send applied to process p, and assume that the
log has the form W[p �→ send(	) + as]. Here, trace(δ) associates an action
send(	, p′) to process p and, thus, log(trace(δ)) will add send(	) to the sequence
of actions of process p. Then, the claim follows by applying the inductive
hypothesis on the derived system W[p �→ as];α′′. �	

In the next section, we introduce an implementation of prefix-based tracing by
means of a program instrumentation.

4 A Program Instrumentation for Prefix-Based Tracing

Now, we focus on the design of a program instrumentation to perform prefix-
based tracing in Erlang. In a nutshell, our program instrumentation proceeds as
follows:

– First, we introduce a new process, called the scheduler (a server), that will
be run as part of the source program.

– The scheduler ensures that the actions of a given log are followed in the
same order, and that the corresponding trace is eventually computed. It also
includes a data structure that corresponds to the network Γ introduced in
the previous section. In the instrumented program, all messages will be sent
via the scheduler.

– Finally, the sentences that correspond to the concurrent actions spawn, send
and rec are instrumented in order to interact with the scheduler. The remain-
ing code will stay untouched.

The scheduler uses several data structures called dictionaries, a typical key-value
data structure which is commonly used in Erlang applications. Here, we consider
the following standard operations on dictionaries:

– fetch(k, dict), which returns the value val associated to key k in dict. We
write dict[k] as a shorthand for fetch(k, dict).
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– store(k, val, dict), which updates the dictionary by adding (or updating, if
the key exists) a new pair with key k and value val. In this case, we write
dict[k] := val as a shorthand for store(k, val, dict).

In particular, we consider the following dictionaries:

– Pids, which maps the pid of each process to a (unique) reference, i.e., Pids[p]
denotes the reference of pid p. While pids are relative to a particular exe-
cution (i.e., the pid of the same process may change from one execution
to the next one), the corresponding reference in a log or trace is perma-
nent. This mapping is used to dynamically keep the association between pids
and references in each execution. For instance, an example value for Pids
is [{〈0.80.0〉, p1}, 〈0.83.0〉, p2}], where 〈0.80.0〉, 〈0.83.0〉 are Erlang pids and
p1, p2 are the corresponding references.

– LT, which is used to associate each process reference with a tuple of the form
{ls, as}, where ls is a (possibly empty) list with the events of a log and as
is a (possibly empty) list with the (reversed) trace of the execution so far.
The log is used to drive the next steps, while the second component is used
to store the execution trace so far. The list storing the trace is reversed for
efficiency reasons (since it is faster to add elements to the head of the list).
E.g., the initial value of LT for the partial log displayed in (3) is as follows:

[{p1, {[spawn(p3), spawn(p2), spawn(p4), send(	1)], [ ]}},
{p2, {[send(	2)], [ ]}}, {p3, {[rec(	2)], [ ]}}, {p4, {[send(	5)], [ ]}}]

– MBox, which represents the network Γ , also called global mailbox. The key
of this dictionary is the pid of the target process, and the value is another
dictionary in which the keys are pids (those of the sender processes) and the
values are lists of (tagged) messages. For instance, the value of MBox after
sending the first two messages of the execution shown in Fig. 3 could be as
follows:

{〈0.84.0〉, {〈0.80.0〉, [{	1, v1}]},
{〈0.83.0〉, [{	2, v2}]}}

where 〈0.80.0〉, 〈0.83.0〉, 〈0.84.0〉 are the pids of p1, p2, p3, respectively, v1 and
v2 are the message values and 	1 and 	2 are their respective tags.

Let us now describe the instrumentation of the source code. First, every
expression of the form spawn(mod , fun, args) is replaced by a call to a new func-
tion spawn inst with the same arguments. The implementation of this function
is essentially as follows:

spawn inst(M,F,A) →
Pid = self(),
SpawnPid = spawn(fun() →

sched ! {Pid , spawn, self()},
apply(M,F,A)

end),
receive ack → ok end,
SpawnPid .
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where spawn takes an anonymous function as argument (so that the new process
will evaluate the body of the anonymous function) and Erlang’s predefined func-
tion apply is used to compute the application of a function to some arguments.

Intuitively speaking, the new function (1) sends the message {P1, spawn, P2}
to the scheduler (here denoted by sched), where P1 is the pid of the current pro-
cess and P2 is the pid of the spawned process, and (2) inserts a receive expression
to make this communication synchronous. The reason for (2) is that every mes-
sage of the form {P1, spawn, P2} must add P2 to the data structure Pids, either
with a new reference or with the one in the current log. We require this operation
to be completed before either the spawned process or the one performing the
spawn can proceed with any other action. Otherwise, the scheduler could run
into an inconsistent state.

The instrumentation of message sending is much simpler. We just perform
the following rewriting:

e1 ! e2 ⇒ sched ! {self(), send, e1, e2}

where sched is the pid of the scheduler and self() is a predefined function that
returns the pid of the current process. Finally, the instrumentation of a receive
expression rewrites the code as follows:

receive p1 → e1; . . . ; pn → en end
⇒ receive {L1, p1} → sched ! {self(), rec, L1}, e1; . . . ;

{Ln, pn} → sched ! {self(), rec, Ln}, en end

where L1, . . . , Ln are fresh variables that are used to gather the tag of the
received message and send it to the scheduler.

The main algorithm of the scheduler can be found in Algorithm 1. First,
we have an initialization where the pid of the main process is associated with
the reference p1 in Pids, the initial logs are assigned to LT, and the mailbox is
initially empty. As is common in server processes, the scheduler is basically an
infinite loop with a receive statement to process the requests. Here, we consider
three requests, which correspond to the messages sent from the instrumented
source code. Let us briefly explain the actions associated to each message:

– If the message received has the form {p, spawn, p′}, where p, p′ are pids, we
look for the tuple associated to process Pids[p] in LT. If the log is empty,
we can proceed nondeterministically and just need to keep a trace of the
execution step. Here, we obtain a fresh reference, r′, add the pair {p′, r′} to
Pids, and update the trace in LT with the new action spawn(r′). If the log
is not empty, we proceed in a similar way but the reference is given in the
log entry. Finally, we have to acknowledge the reception of this message since
this communication is synchronous (as explained above).

– If the message received has the form {p, send, p′, v}, we again distinguish the
case where the process log is empty. In this case, we obtain a fresh reference 	
(the message tag) and update LT with the new action send(	). Finally, we use
the auxiliary function process new msg to check the log of the target process,
p′, and then it proceeds as follows:
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Algorithm 1. Scheduler
Initialization

Pids := [{self(), p1}]; LT := /∗ prefix logs ∗/; MBox := { };
repeat
receive

{p, spawn, p′} →
case LT[Pids[p]] of

{[ ], as} → /∗ trace mode ∗/
r′ := new unique ref ();
update pids(p′, r′,Pids);
LT[Pids[p]] := {[ ], [spawn(r′)|as]};

{[spawn(r′)|ls], as} → /∗ replay mode ∗/
update pids(p′, r′,Pids);
LT[Pids[p]] := {ls, [spawn(r′)|as]};

p ! ack;
try deliver(p);

{p, send, p′, v} →
case LT[Pids[p]] of

{[ ], as} → /∗ trace mode ∗/
� := new unique ref ();
LT[Pids[p]] := {[ ], [send(�)|as]};
process new msg({p, p′, �, v},MBox, LT);

{[send(�)|ls], as} → /∗ replay mode ∗/
LT[Pids[p]] := {ls, [send(�)|as]};
process msg({p, p′, �, v},MBox, LT);

try deliver(p);
{p, rec, �} →

case LT[Pids[p]] of
{[ ], as} → /∗ trace mode ∗/

LT[Pids[p]] := {[ ], [rec(�)|as]}
{[rec(�)|ls], as} → /∗ replay mode ∗/

LT[Pids[p]] := {ls, [rec(�)|as]}
try deliver(p)

until true

• If the log of Pids[p′] is empty, we add the action deliver(	) to the trace of
Pids[p′] and then send the message to the target process: p′ !{	, v}, i.e., we
apply an instant-delivery strategy, where messages are delivered as soon
as possible (this is the usual action in the Erlang runtime environment).

• If the log is not empty, we do not know when this message should be
received. Hence, we add a new (tagged) message {	, v} from p to p′ to
the mailbox MBox, and add an action deliver(	) at the end of the current
log. Note that computed logs (as in [11,12]) should not contain deliver
actions. This one is artificially added to force the delivery of message 	
as soon as possible (see function try deliver below).
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The pseudocode of function process new msg can be found below:

process new msg({p, p′, 	, v},MBox, LT) →
case LT[Pids[p′]] of

{[ ], as′} → p′ ! {	, v},
LT[Pids[p′]] := {[ ], [deliver(	)|as′]};

{as, as′} → add message(p, p′, {	, v},MBox),
LT[Pids[p′]] := {as+deliver(	), as′}

end

If the log is not empty, we proceed in a similar way but the message tag is
given by the log and we call the auxiliary function process msg instead. This
function checks the log of the target process, Pids[p′], and then proceeds as
follows:

• If the next action in the log is rec(	), we add the action deliver(	) to the
trace of Pids[p′] and send the message to the target process: p′ ! {	, v}.

• If the first action is not rec(	), we add a new (tagged) message {	, v}
from p to p′ to the mailbox MBox. Finally, if the log of Pids[p′] contains
an action rec(	), we are done; otherwise, an action of the form deliver(	)
is added to the end of the log of process Pids[p′], as before.

The pseudocode of function process msg can be found below:

process msg({p, p′, 	, v},MBox, LT) →
case LT[Pids[p′]] of

{[rec(	)|as], as′} → p′ ! {	, v},
LT[Pids[p′]] := {as, [deliver(	)|as′]};

{as, as′} → add message(p, p′, {	, v},MBox),
if not(member(rec(	), as))
then LT[Pids[p′]] := {as+deliver(	), as′}

end

– Finally, when the received message has the form {p, rec, 	}, we just update
the trace with the new action rec(	) and, if the log was not empty, we remove
the first action rec(	) from the log.

Each of the above cases ends with a call try deliver(p), which is basically used
to deliver messages that could not be delivered before (because it would have
violated the order of some log). For this purpose, this function checks the next
action in the log of process Pids[p]. If it has either the form rec(	) or deliver(	),
and the message tagged with 	 is the oldest one in one of the queues of MBox
with target p, then we send the message to p, remove it from MBox and add
deliver(	) to the trace of process Pids[p]. Furthermore, in case the element of
the log was deliver(	), we recursively call try deliver(p) to see if there are more
messages that can be delivered. In any other case, the function does nothing.

The implementation of the program instrumentation to perform prefix-based
tracing is publicly available from https://github.com/mistupv/cauder.

https://github.com/mistupv/cauder
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5 Concluding Remaks

In this work, we have formalized the notion of prefix-based tracing, an essential
component of state-space exploration methods, in the context of a message-
passing concurrent language that can be seen as a subset of Erlang. We have
proved that prefix-based tracing indeed subsumes traditional tracing and replay.
Furthermore, we have implemented this operation by means of a program instru-
mentation which is parametric on the given input log.

We consider several interesting avenues for future work. On the one hand,
we plan to extend prefix-based tracing to also consider several built-in’s of the
Erlang language that involve shared-memory concurrency. This extension will
significantly extend the class of considered programs. On the other hand, an
experimental evaluation will be carried over to determine the overhead intro-
duced by the program instrumentation.
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