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Abstract. This paper uses two commercial datasets of IP addresses
from smartphones, geolocated through the Global Positioning System
(GPS), to characterize the geography of IP addresses from mobile and
broadband ISPs. Datasets that geolocate IP addresses based on GPS
offer superlative accuracy and precision for IP geolocation and thus pro-
vide an unprecedented opportunity to understand both the accuracy of
existing geolocation databases as well as other properties of IP addresses,
such as mobility and churn. We focus our analysis on three large cities
in the United States.

After evaluating the accuracy of existing geolocation databases, we
analyze the circumstances under which IP geolocation databases may
be more or less accurate. Within our sample, we find that geolocation
databases are more accurate on fixed-line than mobile networks, that IP
addresses on university networks can be more accurately located than
those from consumer or business networks, and that often the paid ver-
sions of these databases are not significantly more accurate than the free
versions. Addresses on /24 subnets that are geographically concentrated
are geolocated more accurately. We then characterize how quickly /24
subnets associated with fixed-line networks change geographic locations,
and how long residential broadband ISP subscribers retain individual IP
addresses. We find, generally, that most IP address assignments are sta-
ble over two months, although stability does vary across ISPs. Finally, we
evaluate the suitability of existing IP geolocation databases for under-
standing Internet access and performance in human populations within
specific geographies and demographics. Although the median accuracy
of IP geolocation is better than 3 km in some contexts – fixed-line con-
nections in New York City, for instance – we conclude that relying on IP
geolocation databases to understand Internet access in densely populated
regions such as cities is premature.

1 Introduction

IP geolocation is a longstanding problem in computer networking, with both an
active academic research and a wide array of commercial solutions and applica-
tions. IP geolocation is used for a variety of purposes, including mapping clients
to nearby content delivery network (CDN) replicas, personalization of search
results and advertising, and customization of content (e.g., weather or language
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localization). In a legal context, IP geolocation is used for digital rights man-
agement (e.g., geographic licensing restrictions), compliance with the laws and
regulations of a region or country (e.g., gambling, sales taxes, privacy regula-
tions), and to assist with law enforcement (e.g., determining jurisdictions or
collecting evidence). In security contexts, government and commercial entities
use it for counter-terrorism, attack attribution, monitoring access to private net-
works, and detecting potential fraud. It facilitates operations and site reliability
(e.g., monitoring packet loss from a location), and informs infrastructure invest-
ments by both industry and policymakers [2,9,12,19,25,29]. Computer science
researchers also use IP geolocation to study the properties and evolution of the
network itself, such as the structure and graph parameters of networks [6,28].

Increasingly, IP geolocation is being used to address various problems in pol-
icy and social science that entail drawing inferences about various demographics
and geographies based on inferred locations of IP addresses. Social scientists have
noted the potential to use “big data” as a lens on human behaviors and interac-
tions [18], and as modern society is increasingly mediated through the Internet,
many of our interactions are associated with IP addresses. Server logs and speed
measurements, for instance, show who accesses resources and the quality of their
connections. This allows aggregate statistics or time trends. But associating these
behaviors and network conditions with human populations ultimately requires a
way to map IP addresses to physical locations. A natural approach would be to
use IP geolocation with census tract-scale precision to link IP addresses to phys-
ical locations. In this paper, we leverage reference locations of unprecedented
geographic precision to evaluate whether free and paid IP geolocation databases
can achieve this level of accuracy in large cities in the United States. We also
extend past work by analyzing the determinants of IP geolocation accuracy –
the IP addresses for which geolocation is or is not reliable. We then interpret
these findings with a view towards social research, describing who gets lost from
a näıve reliance on IP geolocation, and what the consequences might be for
academic or policy analysis.

The accuracy of IP geolocation databases has practical implications for the
answers to a wide range of social and public policy questions. One area of partic-
ular timeliness is that of the so-called “digital divide.” Calls for digital equity and
inclusion, already urgent, have reached a fever pitch during the COVID-19 pan-
demic. Prominent studies of broadband performance from Microsoft and M-Lab
rely on IP geolocation to associate Internet throughput and latencies with zip
codes [17,24]. Ganelin and Chuang studied whether or not geolocation databases
could reliably indicate socioeconomic status of MOOC registrants with known
physical addresses. That study ultimately concluded, as will we, that answering
such questions based on existing IP geolocation databases is premature [7].

We revisit this problem now, due both to its practical implications, and
thanks to the availability of two highly-accurate and large-scale groundtruth
datasets of GPS-located IP addresses. These datasets, from Unacast and Ookla R©

Speedtest Intelligence R©, afford us a view of consumer behaviors on both fixed-
line and mobile networks, that is markedly different from the geolocation targets
used in past work.
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Table 1. Main findings, with pointers to sections.

§ Main findings

4.1 GPS reports are a credible groundtruth of IP locations

4.2 MaxMind’s GeoIP2 service provides the lowest median error among tested
services and cities: 2.62 km on fixed-line addresses in NYC

5.1 IP geolocation performs better on fixed-line consumer networks and
universities, and worse on mobile broadband and businesses

5.2 The physical size of subnets is correlated with the accuracy with which
they are IP geolocated

5.3 On the two-month time-scale, the median fixed-line /24 IPv4 subnet in
US cities moves less than 1 km

5.4 Churn of individual IP addresses on fixed-line networks in major US cities
takes months

6 Access modalities – mobiled vs fixed – differ between demographic
groups. Even on fixed-line networks, relying on IP geolocation to identify
neighborhoods would lead to biased results

Table 1 lists our main findings. The rest of this paper is organized as follows.
Section 2 discusses related work in IP geolocation, both in research and in com-
mercial product offerings. Section 3 describes the datasets that we use for the
analysis in this paper. Section 4 evaluates the quality of the datasets that we
are using, in particular exploring the suitability of using GPS data as a “ground
truth” for evaluating IP geolocation databases. Section 5 presents the result of
our study, including findings about the circumstances under which IP geoloca-
tion is more or less accurate. In Sect. 6, we interpret and extend our results in the
context of research on human populations and privacy. We conclude in Sect. 7.

2 Related Work

Past work on IP geolocation generally takes three approaches, as outlined by
Padmanabhan and Subramanian [23]. Their IP Geolocation work, IP2Geo, com-
pared the complementary strengths of active latency measurements (GeoPing),
active traceroutes paired with DNS hints (GeoTrack), and static databases of
outside information (GeoCluster). Each of these approaches has evolved. Pad-
manabhan and Subramanian concluded that database-driven methods held the
greatest promise. Commercial products have accordingly built databases with
proprietary methods that include registry information, outside data, and active
methods. On the other hand, academic work has tended to focus on active and
DNS-based measurements.

IP Geolocation Methods. Starting with DNS, Spring et al. developed tech-
niques in their Rocketfuel project to map infrastructure (i.e., routers) to physical
locations. A significant contribution was to optimize traceroute targets to min-
imize redundancy and ensure that each path will traverse its target ISP [28],
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although their use of the DNS to geolocate routers was pioneering at the time.
Their subsequent approach to DNS hint identification was largely manual –
“browsing through the list of router names” – but the resultant undns tool has
proven influential and enduring. Freedman et al. extended undns’ coverage [6].
These projects were driven by questions about properties of the network, specif-
ically the topology of large ISPs and the efficiency of block assignments in BGP
routing tables. More recently, Dan et al. [2] attempted to enumerate all possible
DNS city name hints and finalize location decisions with machine learning. Like
IP2Geo, the authors relied on a large dataset from Microsoft for their ground
truth, although the ground truth data was from Bing instead of Hotmail.

In the latency-based space, Gueye et al. [12] and Katz-Bassett et al. [15]
introduced constraint-based geolocation (CBG) and topology-based geolocation
(TBG). CBG is essentially the intersection of several latency-derived distance
buffers, while TPG also localizes intermediate hosts so that targets can be con-
strained by their relation to passive landmarks rather than just active probes.
Subsequently, Octant incorporated both positive and negative constraints (the
IP address is not within a certain radius) [30].

In addition to this “geometric” approach are several statistical strate-
gies. Eriksson and colleagues, developed first a Bayesian approach and then a
likelihood-driven choice among possibilities with the CBG-derived regions [3,4].
Other work presents strategies using kernel density and maximum likelihood
estimation [1,31]. It is also possible to constrain location from the covariance
matrix of latency measurements with locations.

Notable in Eriksson’s Bayesian work is the insight that outside information
can help constrain or inform geolocation. They used population as a measure of
places’ importance, as have later researchers [2]. Other forms of information help
as well. In trace-based work reminiscent of TPG, Wang et al. performed extensive
webscraping and analysis to identify and confirm businesses with locally-hosted
sites that they could “enlist” as passive landmarks. They used those landmarks
to identify the locations of routers near the geolocation target [29].

Scalability has long been a limitation of active measurements. Since locations
are most-constrained by the closest locations, Hu et al. developed methods to pri-
oritize measurements from nearby hosts, effectively by localizing avatars from
subnets [13]. Alternatively, Li et al. “flip” the standard infrastructure of active
geolocation with GeoGet: the targets to be localized measure the latency them-
selves, through javascript, rather than generating pings through an API [19].
This reduces the number of servers and traffic required, and it is also help-
ful since clients’ devices or networks may fail to respond to pings or complete
traceroutes.

Evaluating Commercial Services. These advances notwithstanding, com-
mercial geolocation tends to be implemented through databases, which are inex-
pensive to distribute and can aggregate historical observations across many
sources. The leading services—MaxMind, IP2Location, Akamai, or NetAcuity—
all use proprietary methods. A number of papers assess the performance of these
databases, comparing with the preceding active methods [11], points-of-presence
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paired with routing tables from a large ISP [25], DNS lookups paired with ground
truth rules from domain operators [8], from RIPE ATLAS built-in measure-
ments, or PlanetLab nodes, or against each other, sometimes with a majority
logic applied. The databases are themselves often taken as the ground truth for
latency-based measurements often with a sort of majority logic. Shavitt and Zil-
berman employ that strategy in evaluating the databases themselves, but also
focus on consistency among addresses determined to share a point-of-presence,
based on an earlier algorithm [5,27]. Similarly, Huffaker et al. assess the agree-
ment of country determinations and distances from a centroid, from majority
votes (supplemented by PlanetLab ground-truth and limited round-trip time
measurements) [14].

On the whole, both the formal literature and “popular wisdom” paint a fairly
pessimistic picture of geolocation performance. Research studies from about ten
years ago assessed median accuracy of these services at 25 km in Western Europe
and 100 km in the United States. On the commercial side, Poese et al. quote
median accuracies between tens and hundreds of kilometers for MaxMind and
IP2Location [25]. Other early works present distributions with ranges between
hundreds or thousands of kilometers [27]. Gharaibeh et al. present results for
routers in particular, with median accuracies between 10 km for NetAcuity and
1,000 km for IP2Location, on either extreme of the free and paid versions of
MaxMind. More recently, Dan et al. presented medians between 10 and 30 km,
depending on the sample and service. [2] They present results in 10 km bins and
do not differentiate performance at the very bottom of the range.

Studies of How Internet Infrastructure Affects Geolocation Accu-
racy. A persistent though somewhat more subtle current of the literature has
explored the physical structure of the Internet and its relation to geolocation
accuracy. Padmanabhan and Subramanian anticipated the interplay between
network infrastructure and geolocation accuracy in 2001 [23]. They noted the
impact of the geographical concentration of AOL’s login nodes on accuracy, and
showed that clusters of addresses that were physically larger were associated
with poorer performance for the GeoCluster (database) method. This point was
echoed in 2007 by Gueye et al. [11] Similarly, Freedman et al. measured the phys-
ical scale of autonomous systems. Later, Gharaibeh et al. probed the common
assumption of databases that /24 subnets are co-located [11] Those papers show
that systems, subnets, and IP prefixes advertised by the Border Gateway Proto-
col (BGP) can span large physical distances. In this paper, we seek to extend this
work, aiming to identify the circumstances when they are large or small. Huf-
faker et al. characterized accuracy according to carriers’ network role; we extend
that line of exploration in this research, exploring how accuracy varies between
commercial ISPs, large companies, and universities. We categorize addresses by
“Doing-Business As” names reported in IP address registries; to our knowledge,
such a characterization is unprecedented, at least in the current era where mobile
devices are significantly more prevalent than they were a decade ago.

In addition to work on IP address locations, our data also shed light on the
persistence of dynamically assigned IP addresses, itself an active area of anal-
ysis. Recent works have used RIPE Atlas probes [16,21], javascript-based user
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monitoring by a large CDN [22], and browser extensions [20] to study address
retention times. Times range from nearly-ephemeral on mobile networks, to many
months for fixed-line connections in the North America. The retention times we
observe are broadly consistent with previous findings for North America.

Finally, our project is informed by recent work on Carrier-Grade Network
Address Translation (CG-NAT). CG-NATs are increasingly common across all
ISPs, but almost ubiquitous on mobile carriers [26]. Since we geolocate public IP
addresses, it stands to reason that the geolocation accuracy of devices behind a
CG-NAT cannot be more precise than the basic spatial scale over which a public
address is used. Nevertheless, the physical extent of CG-NATs’ structures have
not been studied. Public IP addresses could map to limited geographic locations
like antennas, or to larger ones like cities.

How this Paper Extends Past Work. Past work that evaluates IP geolo-
cation accuracy has tended to rely either on active measurements of somewhat
coarse precision, or on a fairly consistent set of (unrepresentative) benchmarks:
specifically, PlanetLab sites and university clusters. The dataset we rely on for
this paper of course has its own peculiarities—it is a non-random sample of
mobile devices— but this view from the access network, including mobile devices,
is critical and distinctive from past studies. It is a large sample, indicative of
realistic consumer geolocation targets in major cities in the United States. The
Global Positioning System (GPS) has long served as a counterpoint to IP geolo-
cation, both as a benchmark of accuracy and as an analog in multilateration.
Historically, its deployment and use for Internet measurement felt impossibly far
off [3,4,15], but the future has now arrived.

This paper complements and extends previous work as a result of its large
sample of consumer smartphone locations on diverse networks. The primary
dataset was provided by Unacast; we confirm our basic findings with a smaller,
Chicago-only sample of GPS-located Speedtest R© data from Ookla R©. Similar
datasets are readily available for commercial applications and academic research.
We exploit this sample to understand how IP geolocation accuracy varies by
geography, carrier, mode of access, and other factors. In contrast to previous
work, which has tended to question the overall reliability of geolocation even at
country-level accuracy, we find that it works fairly well in predictable and well-
defined contexts. Nevertheless, the imperfect accuracy and context-specific per-
formance still currently constrain the applicability of IP geolocation for studying
Internet access by human populations.

3 The Data

This paper relies on two commercial datasets with GPS-tagged IP addresses to
analyze the geography of consumer IP addresses. We also evaluate and analyze
the performance of databases for IP geolocation from two popular, commercial
services: IP2Location and MaxMind from the same time periods. Table 2 lists
the datasets that we use, and Fig. 1 illustrates how these datasets are joined and
augmented in our analysis.
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Table 2. Data sources: geographic and temporal coverage, and data volumes (for GPS
data only).

Geography Date Location reports

Unacast Clusters NYC, Chi., Phl Aug-Oct 2020 248M

+ 40 mi buffer Apr 2021 9.5M

Speedtest Intelligence Chicago Region 2020 4M

MaxMind Free Global Aug 2020 –

Global Apr 2021 –

MaxMind Paid North America Apr 2021 –

IP2Location Free Global Aug 2020 –

Global Apr 2021 –

IP2Location Paid Global Apr 2021 –

Fig. 1. Simplified illustration of the data augmentation process, for Unacast data. The
fundamental data consist of device identifiers, times, locations, and IP addresses. Clus-
ters (see text) are also labelled by type, for instance, TRAVEL or LONG AREA DWELL. The
time and duration are used to construct a flag for night-time clusters. The IP address is
used with the ARIN whois resource to construct Doing Business As (DBA) names, and
database-defined locations are retrieved from up to four databases by MaxMind and
IP2Location. Vincenty distances are calculated between database and GPS locations

The GPS data were delivered anonymized and remain so. The data were
collected in accordance with local laws and opt-out policies (GDPR), and ana-
lyzed with approval from our university’s Institutional Review Board (IRB). The
IRB approved analysis of reconstructed “home locations” for earlier work, but
emphasized the sensitivity of doing so. For that reason, we avoided geographic
analysis of individual devices in this project, and proxied “residence” simply as
activities recorded at night.
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3.1 Unacast GPS Smartphone Locations

The primary dataset used for the analysis is from Unacast, a location intelligence
firm. This dataset contains GPS locations reported by mobile devices, along
with timestamps and unique, anonymous identifiers. Unacast aggregates multiple
location data streams from other firms; they perform extensive data validation,
de-duplication, and processing on those streams. The exact applications that
generate locations are not provided. The share of data reporting IANA reserved
or private addresses is low, at 0.5%, and the share of addresses associated with
foreign Internet registries totals just 0.2% (mostly RIPE, breakdown shown in
the Appendix). The traffic observed in the Unacast dataset is overwhelmingly
IPv4, at 99.6%.

We were provided with data for three major cities in the United States:
New York, Chicago, and Philadelphia. Data were drawn from a 40 mile buffer
of each city’s boundaries; this large buffer encompasses both urban and rural
populations. Two samples were provided in time. The first was from August–
October 2020. A second, shorter period from April 2021 was provided to align
with licenses for paid geolocation databases, allowing us to evaluate the accuracy
of those services. As discussed below, the IP address from which a physical
location is reported is recorded for about half of clusters in the 2020 sample,
although this falls to just 15% in the 2021 sample. Data are used only when they
contain an IP address, and the full dataset thus offers IP addresses recorded at
over 248 million locations. Of course, individual IP addresses may be reported
many times.

The data also report an estimate of the GPS-based location accuracy; the
median reported accuracy is 17 meters on the 2020 sample and 11 meters on
the 2021 sample. A small fraction of data (1.7%) are recorded with four or fewer
decimal points of coordinate precision, corresponding to a physical distance of
about 10 m. We exclude these data from subsequent analyses, along with location
reports with estimated accuracy worse than 50 m. We also exclude the small
fraction of addresses associated with private IP ranges and foreign NICs. These
requirements do change the “Universe” of data included in the analyses that
follow, and may impact CDFs.

Location Clustering and Classifications. Each line of data represents a
cluster of location reports, called bumps. Clusters are built by combining bumps
from an individual device that are close in both time and space, using Unacast’s
proprietary algorithm. That algorithm uses machine learning to account for vari-
ation in physical scale among locations: a mall is larger than a coffee shop or a
home. Clusters are labelled according to their durations, which are also reported.
Locations recorded during movement are labelled as TRAVEL. See the Appendix
for a listing of cluster frequencies. This clustering reduces the data volume by a
factor of 20 while retaining most of the information. Just as important, Unacast’s
data licenses with its suppliers often preclude re-licensing the raw, un-clustered
data.

The clustering entails some subtlety: a single physical location and IP address
is reported per cluster, and thus the centroid of a TRAVEL cluster may not exactly
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coincide with the moment that the reported IP address was used. Indeed, the
physical location of a consumer IP address is often not fixed; for instance, con-
sumers can roam freely through their home while connected to their Wi-Fi. In
practice, individual IP addresses are recorded at many physical locations—and
these locations may be close or distant from each other.

Flagging Night-time Activity. We augment the provided data in several
ways, illustrated in Fig. 1. As a means of selecting residential location reports, we
flag clusters generated at night. Night-time clusters are those for which the period
between the first and last bumps extends into the hours between midnight to 6am
of any day. These clusters represent just 4.7% of clusters but 26% of bumps. Only
18% of devices have at least one night-time cluster, but those devices generate
the vast majority of the data: 80% of clusters and 88% of bumps. In short,
weighted by data volume, most devices have observations at times when they
can reasonably be assumed to be at home. For the set of devices with night-time
clusters, the ratio of devices to the population of the study region is about one
device for every 20 people.

Identifying ISPs. To investigate the determinants of geolocation accuracy,
we also identify ISPs. Each address is associated with its /24 subnet, whose
organization is retrieved from the ARIN whois registry, on September 1 2020, or
April 25 2021. If the prefix size of the associated CIDR block exceeds 24 on IPv4
or 48 on IPv6, we follow whois’ link to the “parent” network. This strategy is
similar in intent to an ASN lookup, and we include an ASN-based breakdown of
ISPs in the Appendix. The whois look-up differs in practice primarily in superior
coverage of the Department of Defense NIC and wireless carriers (AT&T and
T-Mobile), especially for the RouteViews databases from August 2020. Further,
the ASN lookup also “fractures” organizations like small city governments or
businesses from their providers. We associate large and common organizations
with standardized “Doing Business As” (DBA) names, taking particular care to
capture the major ISPs in each market (Comcast, Charter, etc.). We separate
AT&T’s and Verizon’s mobile broadband from their fixed offerings based on the
words “Mobility” or “Wireless” in the organization name. This may not be a
perfect division: “Verizon Business” and “AT&T Services” may include mobile
offerings, but examining the ASN tables suggests this is not their primary use.
It is worth noting that the sample is dominated by locations recorded while
connected through mobile providers: there are ten times as many locations on
AT&T mobile than AT&T fixed-line services, and more than five times as many
on Verizon mobile than Verizon fixed-line. However, as we will separate addresses
by ISP, this sample volume effect is largely “partitioned out.” Ultimately, each
address is associated with a single DBA name for analysis.

These procedures also identify large companies and institutions, in particu-
lar, universities. We flag addresses from universities with at least ten thousand
students, and Fortune 100 companies. University clusters are “classic” targets
for academic work on geolocation, since they have meaningful and well-known
locations, but they are not representative of the consumer space. We exclude
ISPs, including Google, from the Fortune 100 set. We tabulate IANA special use
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and non-ARIN addresses, as checks on the underlying data, but exclude these
from subsequent analysis.

3.2 Geolocated Ookla Speedtest Data

In addition to the data from Unacast, we have obtained Speedtest data from
Ookla. The data are for tests performed on smartphones, again with locations
from GPS. This dataset is substantially smaller, and is limited in geographic
extent to the counties surrounding Chicago. We appeal to these data as a cross-
check of the Unacast data that, though more voluminous, were not designed for
this work.

We have received over 4 million individual Speedtest measurements for 2020,
though only 270 thousand match the period of the study (August 2020). Unlike
Unacast data, each location comes from a single moment in time (it is not a
cluster). On the other hand, the Speedtest data include only the first three
bytes of the IP address, due to privacy restrictions. We rely on Ookla’s coding
of Internet Service Providers.

3.3 Geolocation Databases and Distances

We obtain the free versions of the MaxMind and IP2Location databases, for
August 1, 2020. We also acquire both the free and paid versions of these
databases from April 26, 2021. The NetAcuity and Akamai geolocation services,
which are much more expensive, are not included in this work. Using these
databases, we geolocate IP addresses from the GPS sample. Per the license, this
is done only for the months of GPS data matching the databases (August 2020
and April 2021). A recent review showed that MaxMind is by far the most-used
database in the academic literature. It also found that databases change non-
negligibly over short periods and emphasized that precision with respect to dates
is imperative [10].

We then measure the Vincenty distance (on the ellipsoid of Earth) from each
IP-geolocated point to the location recorded by the GPS-enabled device. For
most of what follows, we take the centroids of the GPS clusters as the “ground
truth” and call the entire distance the “accuracy” or “error.” Since the database
providers acknowledge their limited resolution and in certain cases quantify
it accurately, this language is perhaps unfair: it is different for a database to
acknowledge a location as unknown or indeterminate (as in reserved, private
addresses) than to be “wrong” about the location. Moreover, the GPS data
themselves do have some limitations, noted below. Semantics aside, the balance
of this work tabulates distances with respect to the ground truth and seeks to
explain their heterogeneity.

4 Evaluating Data Quality

Before coming to questions about the properties of consumer IP addresses, we
analyze the quality of our data. We first explore the consistency of the GPS-
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based location data we obtain from Unacast and Ookla by comparing the data
against each other, with respect to geolocation databases.

4.1 Are GPS Data a Credible Ground Truth of IP Address
Locations?

The accuracy of IP geolocation is central to Unacast’s core business, and the com-
pany dedicates enormous resources to validating and maintaining their incoming
data streams. While GPS data from smartphones is generally understood to be
accurate, datasets from smartphone-based services do often incorporate addi-
tional data to assist with locating devices in circumstances where GPS does not
work (e.g., indoors). Thus, while we expect these GPS-based datasets to be rea-
sonably accurate in general, it behooves us to explore the quality of these datasets
before proceeding with other questions. Since we aim to use these datasets as
“ground truth”, this analysis may seem a bit circular. Our strategy is to compare
the consistency of IP geolocation results for different GPS contexts and across
independent GPS samples (Unacast and Ookla). Of course, this analysis does
not exclude the possibility of systematic errors arising in both GPS datasets, or
across all datasets, but given the lack of further ground truths, we are left with
consistency checks.

Direct cross-checks of IP addresses’ locations between the two samples are
not possible, because the Ookla data report /24 subnets rather than unique
addresses. Many IP addresses are recorded at multiple physical locations, and
in general a different set of addresses may be reported per subnet, in the two
samples. Notwithstanding, the distance can be calculated between the medioids
(the median of the x and y directions) observed for a subnet, in the two datasets.
We do this for fixed-line providers in Chicago, on subnets with at least 10 distinct
addresses and 10 distinct devices in the Unacast sample. If we weight subnets
by the geometric mean of the number of observations in the two samples, the
distance between their medioids is less than 2.5 km for 58% of subnets and less
than 5 km for 83% of subnets.

Evaluating Cluster Types. The correspondence between GPS coordinates
and the physical location of its IP address may not be perfect. For example,
we expect that the clustering procedures could affect the “compatibility” of the
IP address and GPS location. Further, if a GPS location is recorded when no
network is available, it may be subsequently reported at a different physical
location where an IP address can be obtained. We would expect these effects
to be most severe for TRAVEL clusters, as previously discussed. The flip side
of this argument is that navigation applications are more likely to be active
during TRAVEL. These apps record location more frequently, which could improve
accuracy.

To evaluate the effects of imperfect knowledge of locations, stemming from
these effects, we contrast TRAVEL clusters with others. We will show below that
geolocation performance differs by network. Obviously, it is easier to “travel”
when connected to a mobile than fixed-line network. We therefore focus this
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Fig. 2. Geolocation error of GPS location targets in Chicago, on both Unacast and
Ookla Speedtest IntelligenceR© data, (Based on the authors’ analysis of OoklaR©

Speedtest IntelligenceR© data for August 2020 in Chicago. Ookla trademarks used under
license and reprinted with permission.) using the free versions of the MaxMind and
IP2Location databases for August 2020.

check on a single, mobile network: AT&T Mobility. We do observe that accuracy
is worse for travel than non-travel data, but the difference at the median is only
about 2.5%, for either IP2Location or MaxMind. As can be seen in the Appendix,
the cumulative distribution functions for travel and non-travel clusters are fairly
close across their entire domain.

Analysis of Independent Samples. To further validate the GPS data, we con-
trast data from Unacast with Ookla, for fixed-line broadband ISPs, in Chicago
and August 2020, where both datasets are available and aligned with the free
versions of the geolocation databases. Figure 2 shows these results: the CDF of
location reports as a function of geolocation accuracy. MaxMind performs some-
what better on Comcast addresses from the Ookla dataset than the Unacast
data, and somewhat worse on AT&T; RCN and WOW! are very consistent. Dis-
crepancies are somewhat larger on IP2Location as is comparative performance
by the two databases.

One notable feature in the 2020 Unacast dataset is a small but non-negligible
share of the data with IP geolocation “error” very close to zero. Depending on
the ISP, that share is 4–5% of the fixed-line locations on MaxMind and 1–2% of
those on IP2Location. On close inspection, these appear to be locations reported
by applications relying on the IP Geolocation services themselves, rather than
true GPS coordinates. For example, these ultra-“accurate” locations are not at
residences, as one might expect for fixed-line ISPs, but in parks, as is MaxMind’s
practice for default locations [16,20]. The share of “too-close” locations is smaller
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Table 3. Quantiles of accuracy in kilometers, for each database and city.

Quantiles New York Chicago Philadelphia

MaxMind IP2Loc. MaxMind IP2Loc. MaxMind IP2Loc.

Paid Free Paid Free Paid Free Paid Free Paid Free Paid Free

0.10 0.7 0.8 3.0 3.0 1.0 1.0 4.6 4.7 1.1 1.2 4.2 4.2

0.25 1.4 1.5 6.1 6.1 1.8 1.9 9.8 9.9 2.1 2.3 9.0 9.0

0.50 2.6 2.8 12.0 12.1 3.3 3.6 24.0 24.3 4.0 4.3 20.9 21.0

0.75 5.0 5.5 30.1 30.5 6.4 7.1 45.6 45.7 7.6 8.2 39.6 39.7

0.90 9.7 11.0 61.8 63.0 13.0 16.1 196.4 202.9 13.5 15.0 78.3 78.8

on the 2021 clusters; however, the IP address field is populated for a lower share
of those data.

However, the basic features of Fig. 2 are consistent in the completely separate
sample from Ookla, which does not exhibit this feature.

4.2 Which Database Provides the Lowest Error in Location?

The practical question is which database to use, and how well it should be
expected to perform. This analysis, uniquely, is performed using the April 2021
sample from Unacast, for which the paid geolocation databases were licensed.
Since Sect. 5.1 will show that geolocation on mobile broadband is very poor, this
analysis focusses on fixed-line broadband.

The short answer is that MaxMind’s paid database, GeoIP2, provides the
best accuracy, in terms of geolocation error on all quantiles. The traditional way
of reporting this is the median error, which is 2.62 km in New York City, 3.31 km
in Chicago, and 4.02 km in Philadelphia. Other quantiles and the other three
databases are shown in Table 3. Figure 3 shows the distribution of distances by
city and database. We use “city” to refer to the city itself along with the 40-mile
buffer around it. Because the distance from Staten Island to North Philadelphia
is only 46 miles, some data are included in the curves for both New York and
Philadelphia.

Although the paid databases are more accurate in each city and at every
quantile, the relative improvements in accuracy are modest. An important limi-
tation of this particular study is our focus on urban areas in the United States.
In particular, we do not test accuracy of these databases outside of major metro
areas, and global or national performance may of course be different. Nonethe-
less, it would be possible to perform the analysis we have presented in this section
for other datasets, if and when they are made available.

5 The Geography of Consumer Subnets

We now turn from an initial assessment of the dataset and databases, to mea-
surements of the geography of the underlying networks.
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Fig. 3. Cumulative distribution function by geolocation database and city. Colors ref-
erence databases, and line styles denote paid and free versions. (Color figure online)

5.1 Under What Circumstances are IP Geolocation Databases
Accurate?

The basic results of Sect. 4.2 mask extreme but unsurprising heterogeneity.
Figure 3 already shows that geolocation performs better in New York than
Chicago, and better in Chicago than Philadelphia. But the largest source of
heterogeneity stems from providers, which deploy different physical infrastruc-
tures (and serve different cities). This entire section relies entirely on the free
databases.

Fixed-Line and Mobile Networks. Figure 4 shows accuracies observed in
New York, Chicago, and Philadelphia for major broadband carriers in each mar-
ket. Again the CDF is the share of location reports. In the best cases, such
as either RCN or Comcast on MaxMind in Chicago, the median error is less
than 5 km. In each city/database pair, the accuracy is good for fixed broadband
and poor for any mobile broadband. This Figure, and others in the main text,
rely on ISP classification via whois, as described in Sect. 3.1. A version of this
Figure based on an IP addresses’ ASNs, is included in the appendix, and is very
consistent.

In Chicago, MaxMind is more accurate with fixed-line (AT&T, RCN, WOW,
and Comcast) than on mobile (AT&T Mobile, T-Mobile, Sprint, Verizon Mobile)
carriers. (IP2Location performs poorly with RCN.) Similarly in New York, Char-
ter, Cablevision, Comcast and Verizon are better localized than AT&T Mobile,
Sprint, T-Mobile, and Verizon Mobile; and in Philadelphia, geolocation is more
accurate on Comcast than Verizon, T-Mobile, AT&T Mobile, or Verizon Mobile.
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Fig. 4. Geolocation performance by city, database provider, and ISP. Free versions of
the database are used in each case. ISPs are shown by their “brand” colors, according
to the whois database, which leaves the Sprint and T-Mobile networks distinguishable.
Fixed-line networks are denoted by solid lines while mobile networks shown by dashed
lines. (Color figure online)

Quantitatively, the share of Comcast data in New York that MaxMind’s free
service locates within 10 km of the GPS location is 67%. At the other extreme,
87% of T-Mobile location reports from the New York region are IP geolocated
to just two distinct locations representing New York itself and Newark; 98% are
assigned either to those two, or to one of six other locations in Philadelphia
(3), Providence, Boston, and Washington. As a result, only 18% of devices are
assigned within 10 km of their true location. In fairness, it must be emphasized
that MaxMind does not claim to assign these devices within 10 km: almost all
of the T-Mobile addresses assigned to the New York and Newark locations are
in the 200 km accuracy class.

This basic dichotomy between mobile and fixed broadband is apparent even
within ISPs. AT&T offers both services in Chicago, and the CDFs for its fixed-
line and mobile services are widely separated. The individual /24 subnets with
the largest geolocation errors all belong to the AT&T Mobility organization.
In New York and Philadelphia, AT&T only operates mobile networks, and this
is reflected in those cumulative distributions. The observation that mobile and
fixed-line networks differ may appear obvious once stated, but it need not have
been true. Mobile carriers could have constructed networks and CG-NATs with
a fixed set of public IP addresses at each antenna. That does not appear to be
what they did.
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Fig. 5. Geolocation performance on consumer ISPs, contrasted with large universities
and Fortune 100 companies.

Universities, Businesses, and Consumer Networks. Before continuing, we
also contrast geolocation performance on consumer fixed-broadband, with large
universities and companies. We include universities with at least ten thousand
students, and Fortune 100 companies other than ISPs. Again, we note that we
are implicitly studying the Wi-Fi access points that these institutions operate
and which their employees, students, and clients connect to via mobile devices,
rather than wired connections or fixed infrastructures of servers. Universities
are a classic target in the academic literature on geolocation, but Fig. 5 shows
that they are in general more-accurately geolocated than either consumer ISPs
or companies. This is not surprising: they have large, physically-concentrated
networks, with registration addresses clearly spelled out in ARIN records. In
most cases, median geolocation error on MaxMind (free) is less than 2 km, though
a few institutes – DePaul in Chicago and the City University of New York – are
mislocated by upwards of 10 km. Note that the nominal sample period is August
2020, when students – and indeed many staff and faculty – were not on campus,
due to both summer vacation and the coronavirus pandemic.

Figures 3, 4 and 5 suggest that for a substantial share of traffic, IP geolocation
is quite accurate. However, this does not do us much good unless those locations
can be identified in advance. It is already clear that the picture is rosier with
fixed broadband. Those data can be easily identified, either via a whois look-up
or (in some cases) through the geolocation databases themselves. But mobile
and fixed is not the only lever. MaxMind is able to perform better on RCN than
on Comcast in Chicago, and better on Charter or Cablevision than Comcast in
New York. How are we to identify localizable blocks of addresses?
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Fig. 6. Cumulative distribution of geolocation accuracy on the MaxMind database, by
quoted accuracy bin.

We highlight two additional methods. MaxMind’s database provides an
“accuracy” field that successfully identifies the precision of entries. Figure 6
shows the CDF for successive bins of claimed accuracy on the free database. In
the most precise bin, accuracy of “1 km,” the median device in Chicago is geolo-
cated just 2.0 km from the GPS-based location. The “error” with respect to the
ground-truth degrades in-line with quoted accuracy, though there is enormous
spread in the least-precise, 500 km bin. It is thus possible to identify accurately-
located addresses – MaxMind does it. But this leaves an open question: why are
those addresses well or ill-located?

That brings us to the second method. Our hypothesis is that if /24 subnets
are geographically localized – small – then addresses within them are more-
likely to be accurately geolocated. If they are large, then precise locations would
require finer, address-level data. The question can then be re-posed: what is
the physical scale of /24 subnets, and is subnet scale in fact correlated with
geolocation accuracy?

5.2 What is the Geographic Scale of /24 Subnets?

What are the physical and network properties of accurately-located subnets? In
this section, we analyze /24 subnets; in high density cities, where all 255 client
addresses could credibly be assigned in a small area like a city block. Are they?
We require that subnets have at least 10 devices and 10 distinct IP addresses, and
focus on a single, fixed network – Comcast. Between the three cities, Comcast
has over twenty thousand /24 subnets satisfying these cuts; it carries over 40%
of the fixed-line traffic that we observe.

Constructing a Physical Scale. To quantify whether or not a subnet is local-
ized, we define a characteristic physical scale. Many subnets have some outliers,
perhaps with locations reported after the fact. To mitigate the impact of these
outliers, we must first identify them. We compute the medioid of locations in the
subnet, defined in this case simply as the median of the x and y coordinates in a
projected (flat) geometry (EPSG 2163). We then measure individual locations’
distances from that medioid. We select a configurable fraction f of the data that
is “closest” by that measure. For that subset of the data, we calculate the convex
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Fig. 7. Illustration of the procedure defining the physical scale of /24 subnets, for one
dispersed and one well-localized subnet in Chicago. Convex hulls wrap around f = 0.9
of the points within the subnet. The “scale” is the square root of this area. The linear
scale on the right-hand side (67.176.158.0/24) is a factor of 8 larger than on the right-
hand side. Gaussian noise has been added to the locations for illustrative purposes
only.

Fig. 8. Cumulative density of subnets’ distance scale as derived from the convex hull
of locations, as described in the text.

hull. If f = 1, then the convex hull covers all locations recorded on the subnet; if
f = 1/2, it covers the half of points closest to the medioid. Finally we take the
area of the convex hull, and “convert” this area to a distance by taking its square
root. That square root defines the length scale of the subnet. Figure 7 illustrates
this procedure for two subnets. (To preserve anonymity, random noise has been
added to the individual points in the illustration.)

Figure 8 shows this distance scale for /24 subnets with at least 10 devices
and addresses, for several choices of f . By construction, the scale is smaller or
larger when outliers are more or less suppressed, respectively. Setting f = 0.5
results in a median subnet scale of 4.3 km, and f = 0.9 leads to a scale of 9.9 km.
However, the proportion of subnets with scales exceeding 10 km is small for any
choice of f < 0.9.

The Relationship of Physical Scale and Accuracy. Armed with this scale,
we return to the earlier question: when can addresses be accurately located?
Discarding locations with geolocation error over 100 km, the correlation is 0.69
between the f = 0.75 scale of /24 subnets and mean address geolocation error, for



140 J. Saxon and N. Feamster

Fig. 9. The number of times a single device visits a single IP address on the subnet
(weighted by visits). On subnets with scale greater than 20 km (f = 0.75), nearly half
of visits device/IP pairs are unique.

MaxMind Free (GeoLite). However, that correlation is only 0.30 on IP2Location,
which has worse performance overall. We thus confirm the hypothesis that local-
ization and localizability are related, though strictly speaking, this analysis is
not causal.

Still, this analysis has delayed but not answered the question; it suggests that
geolocation fails on fixed-line addresses when their /24 subnets are geographically
dispersed, but this in turn raises the issue of why these disperse subnets exist
at all. Comcast has /24 subnets that are spatially concentrated and others that
are disperse. Are disperse ones used differently?

We hypothesize that the spatially-concentrated subnets are nearly static
whereas large ones provide a reserve of “ephemeral” addresses – perhaps for
devices awaiting assignment of a long-term address. A client assigned to an
“ephemeral” address would be unlikely to fall on that same address again,
whereas a “sticky” address granted to a home network would be used repeatedly.
The relevant variable is thus the number of times that a single client is observed
at each IP address (weighted by visits). Figure 9 confirms the hypothesis: for
subnets with scale greater than 20 km (f = 0.75) nearly half of visitors to an IP
address visit exactly once.

This behavior is reproduced on Charter, Cablevision, and RCN. It is true to
a lesser extent on AT&T, in the sense that devices register far fewer locations on
addresses from physically-disperse subnets than on concentrated ones, but the
mode at a single visit is not present. Verizon and WOW do not reproduce this
behavior.

5.3 How Persistent are the Physical Locations of /24 Subnets?

Geolocation providers are quick to point out that databases evolve continuously.
Clearly, the physical infrastructure of the Internet evolves over time, but how
quickly do subnets actually move? Because mobile networks subnets are already
physically very large, and addresses on them are not accurately located, we focus
this analysis on fixed-line broadband.
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Fig. 10. Distance moved by the medioids of /24 subnet on fixed-line networks, over a
two-month period from August to October 2020.

The Movement of Subnets. Figure 10 presents the physical distance between
the medioids of individual /24 subnets, as constructed in August and October
2020. As in Sect. 5.2, the medioid is the median of the x and y coordinates. To
enter into this figure, subnets must have at least ten unique devices and ten
unique addresses in each month. We consider only fixed-line broadband carriers,
for this exercise.

On each network considered, the median /24 subnet moves less than a kilo-
meter; There is some inherent variability in our construction of the medioid as
the “location” of the subnet in each period, and the Figure shows the difference
of these two “noisy” measurements. We thus suspect that this overstates move-
ment. In short, we conclude that on this time scale, subnet locations are quite
stable.

Is the Sample Biased? A substantial threat to this analysis is sample compo-
sition: by requiring 10 devices and 10 addresses, the subnet must be observed in
New York, Chicago, or Philadelphia in both months, to enter the sample at all.
However, it does not seem to be the case that subnets are moving out of sample.
Of the subnets satisfying the cuts in August, 92% also pass them in October (vice
versa, 96%). If we raise the thresholds to enter the sample, requiring 20 devices
and 20 addresses, 95% of /24 subnets passing these cuts in August also show up
with at least 10 devices in October (vice versa, 98%). Raising the thresholds yet
further to 50 devices and 50 addresses, the persistence from August to October
exceeds 99% (vice versa, 98%).

5.4 How Long Does a Consumer Connection Retain an IP Address?

The analyses above show that IP addresses identify physical locations at the
level of 2 km, under the best circumstances. On its own, the IP address clearly
does not identify individuals.

Of course, physical locations – geographic coordinates – are not the only
way in which IP addresses identify people. Linked to log-ins or other online
behaviors, IP addresses can be used to track users over time even without cookies



142 J. Saxon and N. Feamster

Fig. 11. Persistence of IP addresses. The Figure shows the share of night-time clusters
on a single ISP and device, separated by d days, for which the IP addresses are equal
on both clusters. Note that for visual clarity, the y axis begins at 0.5 instead of 0.

or fingerprinting (or as a component of a fingerprint). If the IP address is static
for a long time, it easier to link online behaviors. A critical concern is thus how
long fixed-line IP addresses remain with a single household.

Defining Churn. We define churn as the likelihood of a device returning to the
same IP address on an ISP, after a delay of d days. The denominator includes
every pair of night-time connections by a single device to one ISP, d days apart.
We select night-time activity, to focus on periods when devices can be reasonably
assumed “at home.” The numerator is the number of those pairs for which the
two nights’ connections are on the same IP address. Stated less formally: if I see
a device on Monday night (d = 0) and again on the same ISP Tuesday night
(d = 1), what are the chances that it will be on the same IP address? What
about next Monday (d = 7)?

Since the sample selection is somewhat peculiar – devices are necessarily
recorded on fixed-line broadband on multiple nights – one should take some
care in interpreting these results. This consideration is particularly acute at the
maximum of the range, since there are fewer opportunities for a device to be
observed 80 days apart (just 10) let alone 90 (just 1). This perhaps explains the
drop-off on the right-hand side.

Rates of Change, Over Two Months. Figure 11 shows the persistence of
IP-addresses on fixed-line broadband ISPs. It is clear that devices “leave” indi-
vidual IP addresses gradually, but at different rates on different ISPs. After one
month, more than 90% of devices observed reconnecting to AT&T, RCN, and
Cablevision do so on the same IP address. After two months, more than three-
quarters of devices return to the same IP address, for all major ISPs in the three
cities shown.

6 Can IP Geolocation Databases be Used to Study
Internet Access?

At this stage, we would usually turn to a general discussion of findings. Here,
we focus our discussion and extend our results, according to the question that
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originally motivated our work: assessing the potential for using IP-referenced
data in social science research on Internet access. Where and for what demo-
graphic groups is geolocation accurate? Can IP geography enable Internet demog-
raphy? To make this query concrete, imagine a study of the “homework gap”
– (in)equity in access to digital resources for education – based solely on server
logs from a site like Wikipedia. If we observe frequencies of use by IP subnet
alone, can we infer what groups do and do not access the site?

General Considerations. This question is non-trivial, since it confronts the
correlations of population density and demographics with geolocation accuracy,
along with the spatial patterns of connection modality (mobile vs fixed). Cities
have smaller subnets simply because they have higher density of people and
devices. They also tend to have larger minority populations. This alone leads to
a correlation between geolocation accuracy with demographics or disadvantage.
For Chicago and its buffer, the correlation between tract median geolocation
error on MaxMind (free) and population density is −0.09 (p < 0.0001); in turn,
population density is correlated with log median household income (r = −0.18,
p < 10−10). Both of these are small but significant. The flip side of better accu-
racy at higher density is that distance precision has to improve in dense envi-
ronments, to associate activity with the right population. It’s easier to “jump”
over many people when they are close together.

Accuracy also varies within the city, due to heterogeneity in the fraction of
people on mobile vs fixed broadband. There are two reasons for this. People
use mobile devices (1) when they are on the go, or (2) because they do not
have access to a fixed broadband connection at home. That means that devices
in the present sample observed in city centers appear to have “inaccurate” IP
geolocation, simply because the device users are more-likely on mobile on the way
to or at work. On the other hand, populations without fixed broadband access
are unlikely to be accurately IP geolocated, even in their home neighborhood.

As a final consideration before proceeding, one must not confound “unknown”
addresses with “mis-located” ones. For example, if a default database location
for T-Mobile addresses sits in a particular neighborhood, that neighborhood will
appear to have “accurate” geolocation, even though the locations are not known
any better than elsewhere. Performance will appear to “degrade” radially, with
distance from the default location. Since the default locations are usually in or
near cities, that would (ceteris paribus) give a false impression that IP addresses
in cities (or near the center of the United States, for instance) are accurately-
located.

Differences in Access Modality by Demographic Group. Returning to
the data, Fig. 12 presents the proportion of the night-time clusters in each tract
of Chicago, that are on fixed and mobile broadband. Note that the data are inher-
ently mobile devices with GPS chips; this does not include laptops, for instance.
This classifies AT&T, Comcast, WOW, and RCN, as fixed-line providers, and
T-Mobile, Sprint, Verizon, and AT&T Mobile as mobile. For those familiar with
Chicago, the results are no surprise: the proportion of night-time pings on mobile
networks is lower on the wealthier North Side of the city than on the West



144 J. Saxon and N. Feamster

Fig. 12. Proportion of night-time clusters in Chicago recorded on mobile networks.

or South Sides. Indeed, our eyes do not deceive us: the tract level correlation
between this constructed variable and share of households with a broadband con-
tract as reported to the Census is −0.25. The correlation between the proportion
of night-time pings on mobile networks and the proportion of a neighborhood
that is Hispanic is 0.23 (both p < 10−10). In other words, connection type is
correlated with demographic factors and broadband adoption. This would be
reflected in geolocation accuracy. In practice, this means that limiting analyses
of Internet activity to accurately-located, fixed-line IP addresses would dispro-
portionately drop traffic from lower-income and minority populations.

Fig. 13. Cumulative distribution of geolocation error for tracts with white, Black, and
Hispanic super-majorities. The first panel presents all data, while the second through
fourth restrict to Chicago, Chicago at night, and Chicago at night on Comcast.

The Influences of Density, Demographics, and Modality on IP Geolo-
cation Accuracy. Figure 13 offers an alternative view of this effect, disentan-
gling the countervailing forces of density, demographics, and access modality.
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It displays the CDF geolocation accuracy in hyper-segregated neighborhoods of
Chicago – ones where two-thirds of residents are white (only), Black (alone or
in combination with other races), or Hispanic (of any race). These classifications
are made based on data from the US Census’ American Community Survey
(ACS). Moving from left to right, we begin from the full dataset and layer the
cumulative requirements of devices in Chicago proper (not the 40 mile buffer), at
night (that is, likely at home), and on Comcast (i.e., on a single, fixed broadband
network). The CDF shows the share of location reports. The first plot shows an
enormous difference between geolocation in “white” tracts and other segregated
tracts – geolocation performs much worse. This effect appears to have more to
do with density than race: it reverses when focusing on the City of Chicago,
and zeroing in on a single network, the performance lines up quite closely. The
exception is at the very high end (above 10 km and 90% of the CDF), where
there is apparently an error for locations reported from “white” tracts. About
80% of points are within 5 km of the true location, for all three categories of
neighborhood.

Attenuation Bias, from Reliance on Mis-Attributed IP Addresses. The
analyses of device modalities above suggest that IP geolocation databases’ ability
to attribute online behaviors to populations will tend to fail more often for
disadvantaged groups. Still, if we were to persist, what errors might we expect
to “accrue,” by moving an observation from its GPS-based location to the IP-
based location? In essence, this question pits the scale of geolocation accuracy
against the physical scale of demographic segregation. If IP geolocation moves a
point among communities with similar demographics, the error does not directly
bias results.

This illustrative analysis is limited to fixed-broadband data from Comcast,
where geolocation has a chance of succeeding. Figure 14 presents the log median
household income as it would be imputed from a MaxMind look-up, against the
true median household income of the neighborhood (Census tract). This results
in an unsurprising regression to the mean: as is the usual case with measurement
error, the slope is simply attenuated. This suggests that even for fixed broad-
band, efforts to use IP address alone to “link” online behaviors with human
populations are inadvisable at this physical scale. They will in general yield
estimates whose magnitudes are biased down. In other words, measurements of
“who uses what” that rely on IP geolocation will tend to understate differential
access. This is consistent with Ganelin and Chuang’s work on the socioeconomic
status of MOOC registrants. They found that using IP geolocation to identify
users’ neighborhoods led to underestimates of inequity in adoption [7].
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Fig. 14. Quantiles of neighborhood log median household income as “imputed” from
MaxMind geolocation (y) as a function of the true neighborhood value (x).

7 Conclusion

Using a large sample of GPS-based smartphone locations this paper has quanti-
fied the performance of commercial geolocation databases in New York, Chicago,
and Philadelphia. The precision of this analysis far outstrips past work. The
analysis has demonstrated significant heterogeneity in geolocation accuracy. The
median error for MaxMind’s free service is well less than 10 km on fixed commer-
cial broadband networks and at Universities. On mobile networks, IP geolocation
is not accurate below the city level. While we consider that consumer devices in
large cities in the United States represents a particularly useful vantage point,
our conclusions concerning database accuracy and network structure are neces-
sarily limited to the setting that we have observed.

Our analysis has also sought to explain why some addresses are accurately
located whereas others are not. The physical size of/24 subnets is strongly
correlated with accuracy. Geographically disperse/24’s appear to be used for
“ephemeral” addresses, which clients do not use repeatedly.

Finally, we have contextualized these findings for applications to research
on human populations. Both the present data and existing surveys show that
disadvantaged populations are less likely to use a fixed broadband subscription
at home. Traffic originating from mobile broadband networks cannot be accu-
rately attributed to a neighborhood-level geography, and dropping this traffic
altogether would disproportionately remove from analysis the traffic associated
with poorer populations. Focussing on the fixed-line context where geolocation
is more reliable, the accuracy is still inadequate for associating online activities
with real-world geographies and demographics.

From a privacy perspective, a single IP address does not identify an individ-
ual, but it both localizes private networks and provides an “index” through time
that may be used to aggregate other indirect identifiers. We have shown that
the time for IP reassignment of fixed-line broadband consumers varies by ISP,
but is typically on the order of months.
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A Additional Plots and Tables

See Tables 4, 5 and Figs. 15, 16.

Table 4. Proportion of bumps and clusters according to the classification type assigned
by Unacast (cf Sect. 3.1).

Cluster class Bumps Clusters

Long Area Dwell 0.382 0.079

Travel 0.322 0.264

Area Dwell 0.193 0.173

Short Area Dwell 0.074 0.290

Potential Area Dwell 0.025 0.127

Ping 0.003 0.066

Large Variance 0.001 0.000

Moving 0.000 0.000

Split 0.000 0.000

Table 5. Proportion of clusters with IP addresses in foreign Internet registries (cf
Sect. 3.1).

NIC Frac.

AFRINIC 0.00011

APNIC 0.00015

LACNIC 0.00016

RIPE 0.00169

Fig. 15. Empirical cumulative distribution of geolocation accuracy, for travel and non-
travel clusters on AT&T’s mobile network, as evaluated on the free versions of the
MaxMind and IP2Location databases (cf Sect. 4.1).



148 J. Saxon and N. Feamster

Fig. 16. Geolocation performance by city, database provider, and ISP. The Figure
is identical to Fig. 4 of the text, except that ISPs are identified by ASN instead of
via whois. ASNs associated with each ISP are listed in Table 6. Free versions of the
database are used in each case. ISPs are shown by their “brand” colors, according to
the whois database, which leaves the Sprint and T-Mobile networks distinguishable.
Fixed-line networks are denoted by solid lines while mobile networks shown by dashed
lines. (Color figure online)

Table 6. Autonomous systems asssociated with each ISP, for the data within the
study region. This listing is a categorization of the ASNs seen most-frequently in the
data. It is not expected to be an exhaustive listing of all ASes corresponding to the
ISPs, even in the New York, Chicago, and Philadelphia regions. ASNs are ordered by
the number of /24 subnets observed in the data.

ISP ASNs

AT&T 7018, 2386, 6389, 2686, 4473, 4466, 797, 6431, 17225, 17227

AT&T Mobile 20057

Cablevision 6128, 13490, 32953, 14638, 19720

Charter 12271, 10796, 20115, 11351, 11426, 33363, 20001,
11427, 33588, 14065, 7843, 17359, 16787

Comcast 7922, 33491, 33659, 33287, 7016, 33657, 33651, 7725,
7015, 20214, 33661, 395980, 33652, 396019, 396021

RCN 6079

Sprint 10507, 1239

T-Mobile 21928

Verizon 701, 2828, 23148, 15133, 11486, 12079

Verizon Mobile 22394, 6256, 6167

WOW! 12083, 11693



GPS-Based Geolocation of Consumer IP Addresses 149

References

1. Arif, M.J., Karunasekera, S., Kulkarni, S., Gunatilaka, A., Ristic, B.: Internet
host geolocation using maximum likelihood estimation technique. In: 24th IEEE
International Conference on Advanced Information Networking and Applications,
pp. 422–429. IEEE, Perth (2010)

2. Dan, O., Parikh, V., Davison, B.D.: IP geolocation through reverse DNS. CoRR
abs/1811.04288, pp. 1–10 (2018)

3. Eriksson, B., Barford, P., Maggs, B., Nowak, R.: Posit: a lightweight approach for
IP geolocation. SIGMETRICS Perform. Eval. Rev. 40(2), 2–11 (2012). https://
doi.org/10.1145/2381056.2381058

4. Eriksson, B., Barford, P., Sommers, J., Nowak, R.: A learning-based approach
for IP geolocation. In: Krishnamurthy, A., Plattner, B. (eds.) PAM 2010. LNCS,
vol. 6032, pp. 171–180. Springer, Heidelberg (2010). https://doi.org/10.1007/978-
3-642-12334-4 18

5. Feldman, D., Shavitt, Y., Zilberman, N.: A structural approach for
pop geo-location. Comput. Netw. 56(3), 1029–1040 (2012). https://doi.org/
10.1016/j.comnet.2011.10.029. http://www.sciencedirect.com/science/article/pii/
S1389128611004191

6. Freedman, M.J., Vutukuru, M., Feamster, N., Balakrishnan, H.: Geographic local-
ity of IP prefixes. In: 5th ACM SIGCOMM Conference on Internet Measurement,
IMC ’05, pp. 153–158. USENIX Association, USA (2005). https://doi.org/10.5555/
1251086.1251099

7. Ganelin, D., Chuang, I.: IP geolocation underestimates regressive economic pat-
terns in MOOC usage. In: 11th International Conference on Education Technology
and Computers, pp. 268–272. Association for Computing Machinery, New York
City (2019). https://doi.org/10.1145/3369255.3369301

8. Gharaibeh, M., Shah, A., Huffaker, B., Zhang, H., Ensafi, R., Papadopoulos, C.: A
look at router geolocation in public and commercial databases. In: Internet Mea-
surement Conference, IMC ’17, pp. 463–469. Association for Computing Machinery,
New York (2017). https://doi.org/10.1145/3131365.3131380

9. Gill, P., Ganjali, Y., Wong, B., Lie, D.: Dude, where’s that IP? circumventing
measurement-based IP geolocation. In: 19th USENIX Conference on Security,
USENIX Security’10, p. 16. USENIX Association, USA (2010). https://doi.org/
10.5555/1929820.1929842

10. Gouel, M., Vermeulen, K., Beverly, R., Fourmaux, O., Friedman, T.: IP geolocation
database stability and implications for network research. In: Proceedings of the
Network Traffic Measurement and Analysis (TMA) Conference. Online (2021).
https://www.cmand.org/papers/geostable-tma21.pdf

11. Gueye, B., Uhlig, S., Fdida, S.: Investigating the imprecision of IP block-based
geolocation. In: Uhlig, S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007.
LNCS, vol. 4427, pp. 237–240. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71617-4 26

12. Gueye, B., Ziviani, A., Crovella, M., Fdida, S.: Constraint-based geolocation of
internet hosts. IEEE/ACM Trans. Netw. 14(6), 1219–1232 (2006). https://doi.
org/10.1109/TNET.2006.886332

13. Hu, Z., Heidemann, J., Pradkin, Y.: Towards geolocation of millions of IP
addresses. In: Internet Measurement Conference, IMC ’12, pp. 123–130. Asso-
ciation for Computing Machinery, New York (2012). https://doi.org/10.1145/
2398776.2398790

https://doi.org/10.1145/2381056.2381058
https://doi.org/10.1145/2381056.2381058
https://doi.org/10.1007/978-3-642-12334-4_18
https://doi.org/10.1007/978-3-642-12334-4_18
https://doi.org/10.1016/j.comnet.2011.10.029
https://doi.org/10.1016/j.comnet.2011.10.029
http://www.sciencedirect.com/science/article/pii/S1389128611004191
http://www.sciencedirect.com/science/article/pii/S1389128611004191
https://doi.org/10.5555/1251086.1251099
https://doi.org/10.5555/1251086.1251099
https://doi.org/10.1145/3369255.3369301
https://doi.org/10.1145/3131365.3131380
https://doi.org/10.5555/1929820.1929842
https://doi.org/10.5555/1929820.1929842
https://www.cmand.org/papers/geostable-tma21.pdf
https://doi.org/10.1007/978-3-540-71617-4_26
https://doi.org/10.1007/978-3-540-71617-4_26
https://doi.org/10.1109/TNET.2006.886332
https://doi.org/10.1109/TNET.2006.886332
https://doi.org/10.1145/2398776.2398790
https://doi.org/10.1145/2398776.2398790


150 J. Saxon and N. Feamster

14. Huffaker, B., Fomenkov, M.: kc claffy: geocompare: a comparison of public and
commercial geolocation databases. Technical report, Cooperative Association for
Internet Data Analysis (CAIDA), San Diego, CA (2011). https://www.caida.org/
publications/papers/2011/geocompare-tr/

15. Katz-Bassett, E., John, J.P., Krishnamurthy, A., Wetherall, D., Anderson, T.,
Chawathe, Y.: Towards IP geolocation using delay and topology measurements.
In: 6th ACM SIGCOMM Conference on Internet Measurement, IMC ’06, pp. 71–
84. Association for Computing Machinery, New York (2006). https://doi.org/10.
1145/1177080.1177090

16. Komosny, D., Rehman, S.U.: Survival analysis and prediction model of IP address
assignment duration. IEEE Access 8, 162507–162515 (2020). https://doi.org/10.
1109/ACCESS.2020.3021760

17. Lab, M.: M-lab visualizations (2021). https://www.measurementlab.net/
visualizations/

18. Lazer, D.: Computational social science. Science 323(5915), 721–723 (2009).
https://doi.org/10.1126/science.1167742

19. Li, D., et al.: IP-geolocation mapping for moderately connected internet regions.
IEEE Trans. Parallel Distrib. Syst. 24(2), 381–391 (2013). https://doi.org/10.
1109/TPDS.2012.136

20. Mishra, V., Laperdrix, P., Vastel, A., Rudametkin, W., Rouvoy, R., Lopatka, M.:
Don’t count me out: On the relevance of IP address in the tracking ecosystem. In:
Proceedings of The Web Conference 2020, WWW ’20, pp. 808–815. Association
for Computing Machinery, New York (2020). https://doi.org/10.1145/3366423.
3380161

21. Padmanabhan, R., Dhamdhere, A., Aben, E., Claffy, k., Spring, N.: Reasons
dynamic addresses change. In: Proceedings of the 2016 Internet Measurement Con-
ference, IMC ’16, pp. 183–198. Association for Computing Machinery, New York
(2016). https://doi.org/10.1145/2987443.2987461

22. Padmanabhan, R., Rula, J.P., Richter, P., Strowes, S.D., Dainotti, A.: DynamIPs:
analyzing address assignment practices in ipv4 and ipv6. In: Proceedings of the 16th
International Conference on Emerging Networking EXperiments and Technologies,
CoNEXT ’20, Association pp. 55–70. Association for Computing Machinery, New
York (2020). https://doi.org/10.1145/3386367.3431314

23. Padmanabhan, V.N., Subramanian, L.: An investigation of geographic mapping
techniques for internet hosts. In: Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications. SIGCOMM ’01, pp. 173–
185. Association for Computing Machinery, New York (2001). https://doi.org/10.
1145/383059.383073

24. Pereira, M., Kim, A., Allen, J., White, K., Ferres, J.L., Dodhia, R.: U.S. broadband
coverage data set: a differentially private data release, pp. 1–7 (2021)

25. Poese, I., Uhlig, S., Kaafar, M.A., Donnet, B., Gueye, B.: IP geolocation databases:
unreliable? SIGCOMM Comput. Commun. Rev. 41(2), 53–56 (2011). https://doi.
org/10.1145/1971162.1971171

26. Richter, P., et al.: A multi-perspective analysis of carrier-grade NAT deployment.
In: Proceedings of the 2016 Internet Measurement Conference, IMC ’16, pp. 215–
229. Association for Computing Machinery, New York (2016). https://doi.org/10.
1145/2987443.2987474

27. Shavitt, Y., Zilberman, N.: A geolocation databases study. IEEE J. Sel. Areas
Commun. 29(10), 2044–2056 (2011). https://doi.org/10.1109/JSAC.2011.111214

https://www.caida.org/publications/papers/2011/geocompare-tr/
https://www.caida.org/publications/papers/2011/geocompare-tr/
https://doi.org/10.1145/1177080.1177090
https://doi.org/10.1145/1177080.1177090
https://doi.org/10.1109/ACCESS.2020.3021760
https://doi.org/10.1109/ACCESS.2020.3021760
https://www.measurementlab.net/visualizations/
https://www.measurementlab.net/visualizations/
https://doi.org/10.1126/science.1167742
https://doi.org/10.1109/TPDS.2012.136
https://doi.org/10.1109/TPDS.2012.136
https://doi.org/10.1145/3366423.3380161
https://doi.org/10.1145/3366423.3380161
https://doi.org/10.1145/2987443.2987461
https://doi.org/10.1145/3386367.3431314
https://doi.org/10.1145/383059.383073
https://doi.org/10.1145/383059.383073
https://doi.org/10.1145/1971162.1971171
https://doi.org/10.1145/1971162.1971171
https://doi.org/10.1145/2987443.2987474
https://doi.org/10.1145/2987443.2987474
https://doi.org/10.1109/JSAC.2011.111214


GPS-Based Geolocation of Consumer IP Addresses 151

28. Spring, N., Mahajan, R., Wetherall, D.: Measuring ISP topologies with Rocket-
fuel. In: Conference on Applications, Technologies, Architectures, and Protocols
for Computer Communications, SIGCOMM ’02, pp. 133–145. Association for Com-
puting Machinery, New York (2002). https://doi.org/10.1145/633025.633039

29. Wang, Y., Burgener, D., Flores, M., Kuzmanovic, A., Huang, C.: Towards street-
level client-independent IP geolocation. In: 8th USENIX Conference on Networked
Systems Design and Implementation, NSDI’11, USA, pp. 365–379 (2011). https://
doi.org/10.5555/1972457.1972494

30. Wong, B., Stoyanov, I.: Octant: a comprehensive framework for the geolo-
calization of internet hosts. In: 4th USENIX Symposium on Networked Sys-
tems Design & Implementation (NSDI 07), pp. 313–326. USENIX Asso-
ciation, Cambridge (2007). https://www.usenix.org/conference/nsdi-07/octant-
comprehensive-framework-geolocalization-internet-hosts

31. Youn, I., Mark, B.L., Richards, D.: Statistical geolocation of internet hosts. In:
18th International Conference on Computer Communications and Networks, pp.
1–6. IEEE, San Francisco (2009). https://doi.org/10.1109/ICCCN.2009.5235373

https://doi.org/10.1145/633025.633039
https://doi.org/10.5555/1972457.1972494
https://doi.org/10.5555/1972457.1972494
https://www.usenix.org/conference/nsdi-07/octant-comprehensive-framework-geolocalization-internet-hosts
https://www.usenix.org/conference/nsdi-07/octant-comprehensive-framework-geolocalization-internet-hosts
https://doi.org/10.1109/ICCCN.2009.5235373

	GPS-Based Geolocation of Consumer IP Addresses
	1 Introduction
	2 Related Work
	3 The Data
	3.1 Unacast GPS Smartphone Locations
	3.2 Geolocated Ookla Speedtest Data
	3.3 Geolocation Databases and Distances

	4 Evaluating Data Quality
	4.1 Are GPS Data a Credible Ground Truth of IP Address Locations?
	4.2 Which Database Provides the Lowest Error in Location?

	5 The Geography of Consumer Subnets
	5.1 Under What Circumstances are IP Geolocation Databases Accurate?
	5.2 What is the Geographic Scale of /24 Subnets?
	5.3 How Persistent are the Physical Locations of /24 Subnets?
	5.4 How Long Does a Consumer Connection Retain an IP Address?

	6 Can IP Geolocation Databases be Used to Study Internet Access?
	7 Conclusion
	A Additional Plots and Tables
	References




