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Abstract. We present a dataset specifically designed to be used as a
benchmark to compare vision systems in the RoboCup Humanoid Soc-
cer domain. The dataset is composed of a collection of images taken in
various real-world locations as well as a collection of simulated images. It
enables comparing vision approaches with a meaningful and expressive
metric. The contributions of this paper consist of providing a compre-
hensive and annotated dataset, an overview of the recent approaches to
vision in RoboCup, methods to generate vision training data in a simu-
lated environment, and an approach to increase the variety of a dataset
by automatically selecting a diverse set of images from a larger pool.
Additionally, we provide a baseline of YOLOv4 and YOLOv4-tiny on
this dataset.

Keywords: Computer vision · Vision dataset · Deep learning

1 Introduction

In recent years, similar to other domains, the approaches for computer vision
in the RoboCup soccer domain moved nearly completely to deep learning based
methods [2]. Still, a quantitative comparison between the different approaches
is difficult, as most approaches are evaluated using their custom-made dataset.
The presented performance of the approaches is therefore not only related to
its detection quality but also the specific challenge posed by the used dataset.
Especially, if images are only from a single location or without natural light,
they can hardly be an indicator for actual performance in a competition.

Outside of the RoboCup domain, this problem is addressed by creating stan-
dardized datasets for various challenges in computer vision [7,9,20,32]. These
datasets are used as a benchmark when comparing existing approaches with each
other, allowing a quantitative evaluation (e.g. [4]). Tsipras et al. investigated how
well results of evaluations with the ImageNet dataset [7] reflect the performance
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of approaches in their actual tasks [31]. They observed that in some cases, the
scores achieved in the ImageNet challenge poorly reflect real-world capabilities.
In the RoboCup domain, participants are challenged with restricted hardware
capabilities resulting in computer vision approaches specifically designed for the
given environment (e.g. [28]). Thus, existing datasets are even less applicable to
evaluate the vision pipelines designed for RoboCup soccer.

We propose a standardized dataset for the RoboCup Humanoid Soccer
domain consisting of images of the Humanoid League (HSL) as well as the
Standard Platform League (SPL). We provide two image collections. The first
one consists of images from various real-world locations, recorded by different
robots. It includes annotations for the ball, goalposts, robots, lines, field edge,
and three types of line intersections. The second collection is generated in the
Webots simulator [22] which is used for the official RoboCup Virtual Humanoid
Soccer Competition1. Additionally to the labels of the first collection, labels for
the complete goal, crossbar, segmentation images for all classes, depth images,
6D poses for all labels, as well as the camera location in the field of play, are
provided. For both collections, we give a baseline using YOLOv4 [4].

Most of the existing popular image datasets are only designed to compare
image classification approaches. In RoboCup Soccer, object localization, as well
as segmentation, are also commonly used (see Table 1).

While the creation and sharing of datasets were already facilitated by the
ImageTagger platform [13], it did not help increase the comparability of vision
pipelines since teams use different parts of the available images. Furthermore,
many teams published the datasets that they used in their publications (see
Table 1). Still, none of these papers have compared their work directly to others.

While this lack of using existing datasets could simply result from missing
knowledge about their existence, since they are often only mentioned briefly as
a side note in the publications, this is not probable. In our experience, we chose
to create a new dataset for our latest vision pipeline publication [14] since the
other datasets did not include the object classes required. Another issue is a lack
of variety in some sets, e.g. only including the NAO robot or being recorded in
just one location. Furthermore, the label type of the dataset may also limit its
uses, e.g. a classification set is not usable for bounding box based approaches.

The remainder of this paper is structured as follows: Our methods of image
collection and annotation are presented in Sect. 2 and Sect. 3 respectively. We
evaluate and discuss the proposed dataset in Sect. 4 followed by a conclusion of
our work in Sect. 5.

2 Image Collection

The dataset presented in this work is composed out of images recorded in the
real world as well as in simulation using the Webots simulator. In the following,
we describe the methods of image collection and also our method to reduce the
number of similar images for greater variety in the dataset.
1 https://humanoid.robocup.org/hl-2021/v-hsc/ (last accessed: 2021/06/14)

https://humanoid.robocup.org/hl-2021/v-hsc/
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Table 1. Comparison of approaches to vision in RoboCup Humanoid Soccer leagues.
Detection types are abbreviated as follows: classification (C), bounding box (B), seg-
mentation (S), keypoints (K). Detection classes are abbreviated as follows: ball (B),
goal (G), goalpost (P), field (F), robot (R), obstacles (O), lines (L), line intersec-
tions (I). The ◦ sign means the data is publicly available, but the specific dataset is
not specified. (�) means it is partially publicly available. The sources are as follows:
ImageTagger (IT), SPQR NAO image dataset (N), self created (S), not specified (?).
The locations are competition (C), lab (L), and not specified (?).

2.1 Reality

To create a diverse dataset, we collected images from multiple sources. First, from
our recordings during different RoboCup competitions and our lab. Second, we
investigated the data other teams uploaded publicly to the ImageTagger. Finally,
we asked other teams to provide images especially from further locations, and
for situations that were not already represented in the existing images. While
this provided a large set of images, most of them had to be excluded to prevent
biasing the final dataset. First, the number of images from the SPL was limited,
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as these only include the NAO robot and this could have easily lead to an over-
representation of the robot model. Many imagesets were excluded to limit one
of the following biases: the ball is always in the image center, the camera is
stationary, there are no robots on the field, other robots are not moving, or
the camera always points onto the field. Generally, the selection focus was on
including images that were recorded by a robot on a field, rather than images
that were recorded by humans from the side of the field. Using images recorded
by different teams is also crucial to include different camera and lens types,
locations, and perspectives.

2.2 Simulation

As the RoboCup world championship in the HSL is held virtually in 2021, we
deemed a data collection recorded in a simulated environment necessary. Diverse
data can be generated as required. We chose the Webots simulator because
it is used for the official competition. The official KidSize environment of the
competition including the background, ball, goals, and turf as well as lighting
conditions was used. During data generation, we used six robot models (including
our own) which were published for this year’s competition in the league.

Four setups are used per matchup of these robots. These vary by the robot
team marker color and the team from whose perspective the image is captured.
Scenes were generated in four scenarios per setup. In the first one, images are
taken at camera positions uniformly distributed over the field. To prevent a bias
of always having the ball included, we created a second scenario without a ball,
but the same distribution of camera positions. Similar to the previous two, we
also include two scenarios with the camera position normally distributed around
a target on the field with and without a ball present. These last two scenarios
imitate a robot that is contesting the ball.

We generated 100 images for each of the presented scenarios resulting in a
total of:

(
6
2

) · 2 · 2 · 4 · 100 images = 24000 images. The data is split into a 85%
training and 15% test set.

For each image, a new scene is generated. The scenes are set up randomly by
first sampling a target position. The ball is placed at the target position or out
of sight depending on the scenario. Then the field players are placed by sampling
from a normal distribution around the target position since it occurs often that
multiple robots are grouped. To prevent robots from standing inside of each
other, we resample the robot’s position in the case of a collision. The heading of
each robot is sampled from a normal distribution around facing the ball for the
images where the ball is at the target position and from a uniform distribution
otherwise. We assume each team to have a goalie, which stands on a random
position on the goal line with its heading sampled from a normal distribution
with the mean being the robot looking towards the field. The postures of the
robots with our own robot model are each sampled from a set of 260 postures.
These were recorded while the robot was performing one of six typical actions.
The sampling is weighted by the estimated probability of an action occurring in
a game (walking: 50%, standing: 20%, kicking: 10%, standup: 10%, falling: 5%,
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fallen: 5%). We chose these samplings to cover the majority of situations a robot
could realistically face in a match.

The camera position is sampled in the field either from a uniform distribu-
tion or from a normal distribution around the target position depending on the
scenario. The camera floats freely in space instead of being mounted on a robot.
We chose to do this to be able to simulate various robot sizes. Thus, edge cases
such as the robot looking at its shoulder, are not included in this collection. The
camera is generally oriented towards the target position. To avoid a bias towards
the ball being in the center of the image, the camera orientation is offset so the
position of the target position is evenly distributed in the image space.

Since the robot sizes (and thereby camera height) and fields of view (FOVs)
are very different in the league, we decided to also model this in the dataset. We
collected these parameters from the robot specifications from the last RoboCup
competition. On this basis, we calculated the mean FOV and height as well
as its standard deviations (FOV: μ = 89.3◦, σ2 = 28.1, height: μ = 0.64 m,
σ2 = 0.12) for the HSL-KidSize. Based on this, for each image, we sample an
FOV and a camera height from a normal distribution around the mean and with
the standard deviation of the league. If the sampled FOV or height is smaller
or larger than the extreme values used by a team (FOV: 60◦ − 180◦, height:
0.45 m−0.95 m), we resample for a new value.

2.3 Avoiding Similarity

How well a dataset represents a domain is not only related to its size but also the
diversity between the images. In the Pascal VOC dataset [9] special attention
was put on removing exact and near-duplicate images from the set of images to
reduce redundancy and unnecessary labeling work. This approach worked well
on their raw data taken from a photo-sharing website. However, the RoboCup
domain poses additional challenges, as the images are typically recorded in a
sequence. Therefore, most images are similar to the one before, since the robots
only move slowly or are even standing (especially prevalent with goalkeepers).
While a naive approach of taking every nth image can address this problem, it
can also remove short events which rarely occur in the dataset. Additionally, the
robots typically have some version of capture bias such as continuously tracking
the ball or looking back to positions where they expect objects to be. Finally,
the position of the robot on the field is not evenly distributed. Positions like the
goal area, the center circle, and the sides of the field where the robots walk in
are more commonly represented than for example the corners.

To avoid these issues, we used unsupervised machine learning to train a
variational autoencoder. It was trained on a dataset consisting of low-resolution
images (128× 112 pixels) from the various imagesets we decided to include. The
autoencoder has 3, 416, 987 trainable parameters and is based upon the conv-
vae2 GitHub repository using the original model architecture. We trained it to
represent the images of this domain in a 300 dimensional latent space. To prune

2 https://github.com/noctrog/conv-vae (last accessed: 2021/06/14)

https://github.com/noctrog/conv-vae
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Fig. 1. Distribution of the reconstruction error from the variational autoencoder on
the unfiltered dataset (left) and exemplary images with distance to a reference point
in latent space (right). D describes the Euclidean distance in the latent space of the
N’th distant neighbor of the reference image.

similar images, we used this latent space representation to remove images with
close proximity to a given image. Neighbors within a given Euclidean distance
were determined using a k-d tree. During the greedy sampling process, we start
with the set E containing all the unfiltered images and a k-d tree representing
the latent space relations. An image is randomly selected from E and all its
close neighbors including the image itself are removed from E while the sampled
image itself is added to our filtered set O. We repeat this process until E is
empty and O contains our filtered imageset. This algorithm is based on the
assumption that the variational autoencoder can represent a given image in its
latent space. This may not be the case for edge cases. Therefore we check the
reconstruction performance of the autoencoder on a given image by comparing
the original image against the decoder output and calculating the mean squared
error between both of them. Outliers with an error of more than 1.64σ (which
equals 10% of the dataset) are added to O regardless of their latent space distance
to other images. The error distribution is shown in Fig. 1. Since a high error
implies that a situation is not represented significantly in our existing dataset to
be encoded into the latent space, it is assumed to be sufficiently distinct from the
other images in the set. To filter our real-world dataset, we used 44,366 images
as an input to this selection algorithm and reduced it to 10,464 images.

3 Image Annotation

In the following, we define the label types we used in the dataset. Additionally, we
explain the process of image annotation for both the images gathered in the real
world and in simulation. We provide labels for the classes ball, robot, goalpost,
field area, lines, T-, L-, and X-line intersections. Only features that are relevant
for a robot in a RoboCup Soccer game were labeled. Thus, no balls or robots
outside of the current field and no other fields are labeled. Parts of the recording
robot, e.g. its feet, are not labeled. Additionally, each label might be marked
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as concealed or blurred. Concealed means that the object is partially covered
by another object that is in front of it. Labels of objects, that are truncated
as they are located on the border of the image, are not marked as concealed.
The exception to this are the line crossings, they are concealed if they are not
entirely visible. A blurred annotation is affected by either motion or camera blur,
resulting in a significantly changed appearance of the object, e.g. a ball might
appear oval rather than circular. A concealed or blurred object is significantly
harder to detect. For example, this information could be used in the calculation
of the loss function to specifically focus on also detecting blurred and concealed
objects. It could also be used to focus on them less since a team might have no
issues with motion blur because they use a different camera setup.
To avoid ambiguities, we define each object class in detail:

Ball: The ball is represented as a bounding box. It is possible to compute a near
pixel-precise ellipse from the bounding box [26]. In some images, multiple balls
are present on the field of play. We label all of them even though this would not
occur in a regular game.

Robot: We define robot labels as a bounding box. Unlike the ball, it is not
as easy to generate an accurate shape of the robot with just a bounding box,
because the form of a robot is not as easy to define. However, to make labeling
feasible, we compromise by using bounding boxes.

Goalpost: The label for goalposts is a four-point polygon. This allows to accu-
rately describe tilted goalposts. Because the polygon encompasses the goalpost
tightly, this method allows the computation of a segmentation image, the middle
point, and the lowest point, which is required for the projection of the goalpost
position from image space into Cartesian space. Only the goalposts on the goal
line are labeled, excluding other parts of the goal.

Field Area: The field area is relevant as everything outside of the field provides
no useful information for the robot. We define it with a series of connected lines,
the ends are connected to the right and left borders of the image, assuming the
end of the field area is visible there. A segmentation is computed from the area
between the lines and the bottom of the image.

Lines: We offer a segmentation image for lines as the ground truth because there
is no other option to annotate lines with sufficient precision, as their width in
image space is highly variable.

Field Features: We define the T-Intersections, L-Intersections, and X-
Intersections (including penalty mark and center point) of lines as field features.
For this feature, we only define a single point in the center of the intersection.

To create labels for the real-world images, we used the ImageTagger. It pro-
vides all the necessary labeling types we used, other than for the annotation of
lines. For these, we created a specialized tool. First, it allows the user to specify
smoothing and adaptive threshold parameters for a given image. Based on this,
a proposed segmentation mask is generated which can then be corrected manu-
ally. In the last step, all balls, robots, goalposts, and the area above the field are
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excluded from the line segmentation using the existing labels for these classes.
In general, features are only labeled when they are detectable by a human con-
sidering only the respective image (i.e. no context information from a previous
image should be necessary). Some imagesets were already labeled for some of
the classes. The rest of the labels were created by us. Additionally, we manually
verified all labels in the set.

One of the main advantages of training data generation in simulated environ-
ments is the availability of ground truth data. Webots offers the functionality to
generate bounding boxes and segmentation images for the objects present in a
scene. Each individual object has a distinct color in the segmentation image. Fur-
thermore, we provide bounding box annotations for the classes ball and robot,
four-point polygons for goalposts and the goal top bar, and a single image coor-
dinate for T-, L-, and X-intersections. Since the bounding boxes provided by
Webots were inaccurate in some cases, we computed the minimum enclosing
rectangle from the segmentation images. The bounding boxes for robots and the
ball are calculated from this. For goalposts, we used rotated bounding boxes
to account for the fact they may be tilted yielding similar annotations as the
4-point polygons used for manual annotation of real-world images. Line intersec-
tions were annotated by projecting their known positions into the image space
of the camera. To detect whether they are visible, we verify in the segmentation
image that lines are visible close to the intersection point. If the intersection is
occluded, we still include it in the annotations, but mark it as “not in image”.
The remaining classes (i.e. goal, field area, and lines) are only provided in the
segmentation images.

4 Evaluation

To evaluate the dataset, we performed a statistical analysis of the data and
assess the performance of a YOLOv4 on it. We focus our evaluation on the real-
world images since the images from simulation were generated as described in
Sect. 2.2. The real-world dataset contains 10,464 images and 101,432 annotations

Table 2. Detailed distribution of annotations (left) and general statistics (right) of
the real-world collection.
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Fig. 2. Examples from the dataset. First row from the real-world collection, second
row shows one image of the simulation collection with the corresponding segmentation
and depth images.

Fig. 3. Visualization of the position density of the respective annotations in the image
space over all images of the real-world collection.

in eight different classes. In Table 2 we showcase metadata about the images and
annotations present in the collection. Figure 2 shows exemplary annotations on
images from the dataset. Also, we investigated the positions of annotations in
image space. This was done by plotting the heatmaps shown in Fig. 3. Many of
the patterns evident in the heatmaps are caused by the typical positions of the
robots in the field and especially prominent by their head behavior as they are
often programmed to look directly at a ball.

Based on metrics used in related work, we decided to present detection results
using the mean average precision (mAP) and intersection over union (IoU) met-
rics. The IoU metric compares how well pixels of the ground truth and the detec-
tion overlap. Since the ball is round, but the labels are rectangular, we computed
an ellipse in the bounding box as the ground truth for the IoU. Similarly, the
line intersections are labeled as a single coordinate, but since the intersection
itself is larger, we assumed a bounding box with height and width as 5% of
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Table 3. Mean average precision of YOLOv4 and YOLOv4-tiny on this dataset. For
the intersections, we used a bounding box of 5% of the image size. The mAP values for
the goalpost and crossbar are calculated from a bounding box that fully encompasses
the polygon. The values are IOU, mAP with IOU threshold of 50%, mAP with IOU
threshold of 75%. The floating point operations (FLOPs) required by YOLOv4 and
YOLOv4-tiny per sample are 127 billion FLOPs and 6.79 billion FLOPs respectively.

the image height and -width respectively. In case of a true negative, we set the
value of the IoU to 1. With the IoU, pixel-precise detection methods can achieve
higher scores than bounding box based approaches. The mAP metric classifies a
detection as true positive if the ground truth and predicted bounding box have
an IoU of at least e.g. 75%. It also represents how many of the individual objects
were correctly found, especially when pixel-precise detection is less important.
We present exemplary results of a YOLOv4 on the dataset in Table 3.

We would like to note that the dataset does not include images of the HSL
AdultSize league. This is caused by the lack of available images and robot models
for simulation. However, we expect the dataset to be still usable as a benchmark
as the HSL KidSize and AdultSize leagues are visually very similar from a robot’s
perspective.

5 Conclusion

Efforts to share training data between teams have eased the transition to machine
learning based approaches and were a good starting point for new teams. How-
ever, as we have shown in Table 1, many of the existing and new approaches were
hard to compare quantitatively to each other as there was no common bench-
mark available. This work closes this gap by providing a benchmark dataset that
is specific to the RoboCup Humanoid Soccer domain. Additional contributions
of this paper are a system for vision training data generation in a simulated envi-
ronment and an approach to increase the variety of a dataset by automatically
selecting a diverse set of images from a larger pool.

The quality of the dataset is limited by the availability of images. Therefore,
we hope that more teams start recording images on their robots during games
and publish them so that future datasets can profit from this. Future datasets
could include image sequences to allow detection of robots’ actions, e.g. a kick,
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and include images of outdoor fields with real grass. This dataset could also be
used as a qualification metric for future competitions.

The dataset and tools used to create it are available at https://github.com/bit-
bots/TORSO 21 dataset.
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