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Abstract. The RoboCup competition was started in 1997, and is known
as the oldest RoboCup league. The RoboCup 2D Soccer Simulation
League is a stochastic, partially observable soccer environment in which
24 autonomous agents play on two opposing teams. In this paper, we
detail the main strategies and functionalities of CYRUS, the RoboCup
2021 2D Soccer Simulation League champions. The new functionalities
presented and discussed in this work are (i) Multi Action Dribble, (ii)
Pass Prediction and (iii) Marking Decision. The Multi Action Dribbling
strategy enabled CYRUS to succeed more often and to be safer when
dribbling actions were performed during a game. The Pass Prediction
enhanced our gameplay by predicting our teammate’s passing behavior,
anticipating and making our agents collaborate better towards scoring
goals. Finally, the Marking Decision addressed the multi-agent matching
problem to improve CYRUS defensive strategy by finding an optimal
solution to mark opponents’ players.

Keywords: Feature engineering · RoboCup · Soccer marking ·
Multi-agent matching · Dribble · 2D soccer simulation

1 Introduction

The idea of robotic soccer games was proposed as a novel research topic in 1992.
Since then, the RoboCup has been considered the annual international competi-
tion for developing new ideas in A.I. and robotics. This competition is comprised
of various leagues such as Rescue, Soccer Simulation, and Standard Platform
leagues. Team CYRUS has participated in the annual RoboCup competitions
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and placed first, second, third, fourth, and fifth in RoboCup 2021, 2018, 2019,
2017, 2014. In RoboCup 2021, Cyrus played 21 games in total, winning nineteen
games, and drawing two times. CYRUS also won first place in the IranOpen in
2021, 2018, and 2014; first place in RoboCup Asia-Pacific 2018; and second place
in the Japan Open 2020 competition.

The rest of this paper is organized as follows. In Sect. 2, we present a new
dribbling system and opponent behavior prediction. Afterwards, we describe our
new Pass Prediction module (Sect. 3) which is used to predict the action of a ball
holder teammate. In Sect. 4, we detail the improvements of CYRUS’ defensive
strategy. Finally, we conclude our work and point to some directions for future
works in Sect. 5.

1.1 Previous Works

Sixteen teams qualified for the 2D soccer simulation league in the 2021 RoboCup
competition, including teams from Brazil, Canada, China, Germany, Iran, Japan,
and Romania. In recent years, most of the teams have employed artificial intel-
ligence algorithms to improve their game performance. For example, Helios has
developed an algorithm called Player’s MatchUp for exchanging players’ posi-
tions [6]. FRA-UNIted has released a new 2D soccer simulation Python-based
framework for performing reinforcement learning experiments [7]. ITAndroids
optimized its field evaluator algorithm using Particle Swarm Optimization (PSO)
and improved the goalkeeper performance for penalty kicks [8]. Persepolis pro-
posed an evolutionary algorithm to improve their offensive strategy [9] and
YuShan applied Half Field Offense framework to build overall portraits of a team
[10]. CYRUS has concentrated its efforts on creating and applying machine learn-
ing techniques to improve its gameplay [2–5]. In general terms, the improvements
made in CYRUS are on the defensive decision-making method using Reinforce-
ment Learning (RL), the opponents’ behavioral analysis and prediction, and
players’ shooting skills.

1.2 Release

In this subsection we list several of our contributions towards increasing the
popularity and improvement of 2D Soccer Simulation league competition.

Cyrus 2014 Source. As a part of our contribution to the development of the
2D Soccer Simulation league, we have released the Cyrus 2014 [2] source code
to encourage new teams to participate in the competitions. The source code can
be found in github1.

1 Cyrus 2014 Source https://github.com/naderzare/cyrus2014.

https://github.com/naderzare/cyrus2014
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CppDNN. The C++ Deep Neural Network (CppDNN) library was developed
by CYRUS team members to facilitate the implementation of Deep Neural Net-
works in the 2D Soccer Simulation environment. This library stores the weights
of a neural network trained using the Keras library. The developed script within
CppDNN transforms the trained weights of a deep neural network into a plain
text file that is subsequently loaded to recreate the original deep neural network
in C++. In CYRUS, we use CppDNN to enhance our goalie performance, to pre-
dict opponent’s movements against our dribbling agent, and to improve passing
prediction between teammates. The library can be found in our github2.

Pyrus - Python 2D Soccer Simulation Base. Most 2D soccer simulation
teams exploit the Helios [1], Gliders2d [11], WrightEagle [12] or Oxsy [13] bases
which are all developed in C++. Although those have shown fast processing and
execution time, developing machine learning algorithms using C++ would be a
time-consuming process. Due to the fast growth and popularity of the Python
programming language among students and scientists and its plethora of libraries
containing machine learning algorithms, the CYRUS team members have started
developing an open-source python base for the 2D soccer simulation league. This
base is currently available in the CYRUS github3 and it will support all features
of the current 2D soccer simulation server in the Full-State mode in the near
future.

2 Multi-action Dribble

In soccer games, it is usual that the opponent’s players tries to block the path
of our ball holder, and a dribbling action can be helpful to escape from such
situations. Dribbling also helps a player lead the ball forward and/or move it to a
safer position. Besides, some teams employ heavy defensive strategies that make
the ball’s movement extremely challenging. Therefore, dribbling is an essential
skill to tackle harsh defensive strategies, and at the same time, to find a good
spot for passing or shooting.

Our team implemented an algorithm called Multi-Action Dribble (MAD) for
improving our dribbling skills in SS2D games. MAD uses a Deep Neural Network
(DNN) for predicting the opponents’ movements so that the kickable player can
find better positions to dribble. Before detailing MAD, we will first explain the
agent 2D offensive algorithm known as Chain Action and the Basic Dribble.
Once this background is given, we will detail how MAD works.

2.1 Chain Action Algorithm

The Chain Action algorithm [1] employs the Breadth First Search (BFS) to
make decisions for a kickable player. First, the Chain Action algorithm creates

2 CppDNN Source Code https://github.com/Cyrus2D/CppDNN.
3 Pyrus Base Source Code https://github.com/Cyrus2D/Pyrus.

https://github.com/Cyrus2D/CppDNN
https://github.com/Cyrus2D/Pyrus
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a decision tree with the root node of the game’s current state. Afterwards, sim-
ulated actions (e.g., Shoot, Pass, Dribble, etc.) change the state of each node
and create new children for this node. Then, a Field Evaluator analyzes every
node in the tree by the ball’s predicted position. Finally, the best node is the
node which has the maximum value of the evaluation and the action that leads
the current state to this state is selected.

2.2 Agent 2D Dribble Action Generator

In the Agent2D base [1], dribbling was developed in order to find a safe position
for the kickable player to go without losing the ball or having an opponent
intercept them. The Agent 2D Dribble Action Generator can only be evaluated
on the game’s current state (i.e., at the first level of the decision tree). To evaluate
the dribbling action, this agent first simulates turning in different directions
(−180 to +180 with steps of 30◦) and dashing in each direction in order to
create candidates for each position. In addition, for each point that the simulated
agent has reached, the ball’s velocity is calculated based on the cycles needed to
reach that position so the agent can kick it before starting to dribble. The cycles
required for each candidate position is detailed in Eq. 1 and is equal to the sum
of the number of turns and dashes plus one cycle for kicking the ball.

dribbleCycle = turnCycle + dashCycle + 1 (1)

Next, for each player’s dribbling candidate position, the opponent’s players
are evaluated to determine if they can reach the position before the agent or
intercept the ball in the middle of the dribbling action. If any of these two situ-
ations occur, the candidate action is removed; otherwise, a new predicted state
is created where the kickable player and the ball are now in the new position.
Finally, a list of dribbles and predicted states are returned to the chain action
tree. Depending on the neck angle chosen by the agent, it might not have vision
access to all of the field; therefore, the agent might not be able to see all oppo-
nents in every cycle. The number of cycles that an opponent has not seen is called
their pos-count . The agent should consider the pos-count and the last position
of the opponent and an area is created which will likely contain the opponent.
Therefore, a significant number of available candidates may be removed (Fig. 1)
since there’s always uncertainty in some areas not seen by the agent.

2.3 MAD Generator

Our team created a new dribble generator that inserts a simple action such as
Kick, Dash, and Turn before the start of dribbling actions. This generator makes
a one-step action before the basic dribble generator, and its goal is to deceive
the opponent to a wrong position so that the kickable agent may generate a
better dribbling action. Therefore, the MAD generator only creates new child
nodes from the current state (root of the tree). As previously mentioned, the
basic dribble generator only runs in the first layer. If the action of a parent state
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Fig. 1. Effecting pos-count on dribbling. Blue dots are possible candidates, red dots
are candidates removed since they are impossible to be reach, and yellow dots are the
possible candidates which are removed incorrectly because of the pos-count. (Color
figure online)

is generated by MAD, the basic dribble generator runs in the second layers as
well.

MAD generates three types of one-step action that are described below
(Fig. 2):

– Two-Step Kick: the agent kicks the ball so that it remains within the kick-
able area of the agent to distract opponent’s player. This action changes the
ball position and velocity.

– Move Before First Kick: The agent moves around the ball where the ball
stays in the kickable area of the agent. This action changes the position of
the player and updates the ball’s position according to its velocity.

– Turn Before First Kick: The agent turns towards a direction where it
causes some previous basic dribble candidates to become available after turn-
ing. However, it is important that the ball remains in the kickable area of the
agent in next cycle. This action changes the direction of the player’s body
and updates the ball’s position according to its velocity.

2.4 Opponent Movement Prediction

The Chain Action algorithm should predict the result of previous actions in the
tree to find possible actions in the next layers after the first one. A predictor
module in the Chain Action algorithm is available and is called State Predictor.
The State Predictor should forecast the position and velocity of every object in
the field after each action, but the implemented predictor in the Agent 2D base
simply updates the position and velocity of the ball and the receiver teammate.
We added one cycle to the pos-count of opponents because the predictor was
not forecasting the position of the closest opponents after MAD. Increasing the
pos-count eliminates possible dribbling actions that might be considered difficult
to perform. This problem led us to implement a position predictor module that
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Fig. 2. Types of MAD and basic dribble, blue dots stands for possible actions generated
by Basic Dribble, red dots show impossible dribbles, and orange dots demonstrate
possible actions that have been added after using MAD. (Color figure online)

receives information about an opponent and the ball, and then forecasts the
position of the opponent after one cycle using a Deep Neural Network.

We collected data for training our DNN model running games between Cyrus
and other teams. Each cycle was collected when a CYRUS player was kickable,
and at least one opponent was near the ball (i.e., within 10 m). The data set
included the ball’s position and the position of each opponent who was near
the ball. All the positions are relative to the kickable agent’s position and body
direction. Next, we implemented a DNN using the position and velocity of the
ball and the blocker, and the body direction of the blocker as input variables. The
DNN architecture includes four hidden layers with 128, 64, 32, and 16 neurons,
respectively. The output of this DNN is the opponent’s predicted position, and
its accuracy was ±0.01 m.

2.5 Results

We executed some early tests with MAD, and MAD with the DNN predictor
and verified their efficiency as follows. First, we trained DNNs to predict the
opponent’s position by running 1000 games against YuShan and Persepolis. The
results are shown in Table 1 where we present CYRUS’s winning probability,
without MAD and the DNN Predictor, with MAD but without the DNN Pre-
dictor, and with both when playing against Yushan and Persepolis. The results
show that our winning rate against both teams increases when using both MAD
and the DNN predictor when playing against both teams. One interesting result
is that using MAD alone actually decreases our winning rate (we believe this is
due to the use of the additional pos-count alone) against both teams. Once the
DNN predictor is included, we see that the rate increases.

3 Pass Prediction

As in real soccer, passing behavior in a 2D Soccer Simulation (SS2D) game plays
a critical role in increasing the chance of winning. A team with excellent passing
skills prevents opponents from scoring, may create better chances of scoring
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Table 1. Winning rate of CYRUS using MAD and DNN

Experiments Yushan Persepolis

CYRUS 77% 88%

CYRUS with MAD 76% 85%

CYRUS with MAD and DNN Predictor 80% 90%

themselves, and may conserve stamina. We believe that strengthening a team’s
passing decision-making algorithm will lead the team to have better performance
and to win games. However, the random noises from the environment in the
partial observation of the agents is a major challenge the players face while
choosing their actions since it creates uncertainty on the best action to take in
a given moment. Many approaches such as Monte Carlo or Kalman Filter were
used in the past to address this problem, but in CYRUS we took a different
route. In our work, we attempted to predict the action of the ball owner if our
agent had pure observation data (i.e., no noise generated by the simulator). We
used a full state action predictor from noisy observation that is detailed in [15]
and features engineered in [16] to improve the prediction of the behavior of our
ball owner player and are detailed below.

In [15], the full state action predictor from noisy observation is trained to
receive noisy observations from the server and to forecast the action of a player
if it gets an observation without noise. The soccer simulation server has another
option known as full-state mode which does not apply the random partial
noises observations to the agents’ vision. When this option is enabled, the server
also sends normal observation. We have also developed a module named Data
Extractor to create training data to feed machine learning models in an SS2D
game (more details are available in [15] and [16]). In summary, this module
collects the events of the game and transforms these events into training data
for machine learning models.

3.1 Experimental Setup

For the purposes of evaluating passing actions we used the data extractor mod-
ule as follows. The data extractor module generates a new data instance for each
cycle that one of our agents is the ball holder and the selected action is a pass.
For the early results showed in [15], we generated 794 features from these obser-
vations, but for playing in the Robocup 2021, we used the features presented in
[16]. In [16], each data instance contains 12 features for the ball, 42 for each one
of our players (42 × 11), and 24 for each of the opponent’s players (24 × 11),
totaling 738 features. The list of extracted features is divided into nine feature
subgroups that are measured for the ball, our players, or the opponents’ players.
These nine groups are Position, Kicker, Velocity, Body, Team, Player Type, Top
k high-risk opponents, Top k nearest opponents, and Goal. Since at each time
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step, the ball holder is responsible for generating a data instance, the module
creates all of these features for all agents in the field.

We used two labels for each data instance from the sorting module proposed
in [16] which are the Index Number and Uniform Number (Unum). The Uniform
Number is the unique number of a target agent (who may receive the ball) in
the game. Differently from Unum, the Index Number refers to the index of a
target agent in the sorted data. The sorting module is an essential component
in the data preparation step since it organizes the input features and creates
the training data set for our machine learning model. We have also used the
Kicker be First field which is a binary attribute that pushes the features of the
ball holder as the first element of data [16]. After sorting the data, this field
assigns a label to them that is based on the index of ball receiver. Therefore,
applying two sorting methods and changing the Kicker be First attribute (i.e.,
true or false), we generated four different experiments with a different order of
the input data.

3.2 Result

Differently from what was presented in [16], where we showed the effects of the
738 features when forecasting the player’s pass action using Agent2D as the base
team, we show in this paper the results of using CYRUS as our base team. In
Table 2, we compared the features used in [15] and the features used in [16] with
(Noisy) and without (Pure) the presence of noise when running matches. We
ran over 1000 games for collecting data and testing our methods using CYRUS
as the base team and the results are presented in Table 2. When using the
data without noise, we see that the features presented in [16] when combined
with the proposed strategies produces pass prediction accuracy rates ranging
from 76.23 to 80.51. Although these results are very promising, this setup using
data without noise is not the one used in the Robocup competitions. Therefore,
we tested the differences between the features shown in [15] and [16] using the
proposed strategies when noise was present. The results in Table 2 shows that the
738 features of [16] produces generally better accuracy values (e.g., a difference
ranging around 8% to 10%) when compared to the 794 features of [15].

Table 2. Accuracy of the two models for six datasets and three feature groups

Strategies Features

Sorting Kicker be first Features
[16] pure

Features
[15] noisy

Features
[16] noisy

Uniform False 80.51 57.90 67.86

Uniform True 79.60 58.74 67.63

X-Sorting False 76.23 53.64 63.86

X-Sorting True 77.48 57.60 65.13
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4 Improved Marking Decision

In a soccer game, marking is a defensive strategy that helps to prevent an oppos-
ing team member from taking control of the ball. Several marking strategies exist
in soccer such as man-marking and zonal-marking. In the man-marking strategy,
defenders have to mark a specific opponent player, and zonal-marking is a defen-
sive strategy where defenders have to cover an area of the field [14]. Defining a
marking strategy is one of the most challenging actions in defensive algorithms
for soccer 2D games. The challenge is mainly to be able to synchronize the
agents’ decisions, despite different and noisy partial observational views.

In this section we will first discuss some marking strategy algorithms that
are based on greedy strategies. Then we will explain how the CYRUS team
strives to minimize the effects of the challenges imposed by greedy strategies by
using strategies called “Optimized multi-agent matching” (OMAM) and
Player Grouping method.

4.1 Marking Algorithms

Proximity-Based Marking. Using Proximity-Based Marking, each player
simply selects their nearest opponent to mark. This algorithm is one of the
most rudimentary solutions and has several problems. For example, it is com-
mon when using this strategy that more than one player decides to mark a single
opponent, and as a consequence, several opponents are left unmarked.

Danger-Based Marking. A solution to solve the main problem of Proximity-
Based Marking which we explored was to rank opponents based on how danger-
ous they are using various attributes such as distance to our goal and distance
to the ball. After sorting them, we assign the closest player who is not marking
anyone to the most dangerous players. More specifically, the first most dangerous
opponent is marked by the closest teammate, and the second opponent is marked
by the closest teammate, which is not marking the most dangerous opponent, and
so on. This algorithm, while theoretically may avoid multiple players marking
a single opponent fails when each player is computing the dangerous opponents
and distances separately and each player has different and noisy observational
views of the game. An example is shown in Fig. 3, where the greediness of this
algorithm stops it from reaching a solution that is good for the team as a whole.

The Hungarian Method. To find an optimal solution and eradicate the issues
found with acting in a greedy manner such as the one presented in Fig. 3, each
agent must also consider the difficulty of other agents marking each opponent.
The Hungarian Matching algorithm receives as input the number of agents, tasks
which must be completed, and the cost for each agent to do each task as input.
After, it assigns exactly one agent to each task, in a way that minimizes the
total cost of completing all of the tasks.
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Fig. 3. Improper defense strategy, leaving the leftmost player empty for a longer time,
while T1 should mark O1 and T2 should mark O2 for an optimal solution.

We used this method in the 2D soccer simulation league by assigning the
distance between agents and their opponents as their costs. The result is the
minimal total movement of the team towards covering all of the opponents.
However, this method does not improve the synchronization problem that arises
from our agents having different observations. In fact, the problem is worsened
as our solutions become more dependant on observation and require more infor-
mation about other players’ positions. As there are 10 factorial ways that an
entire team can mark their opponents (not including goalkeepers), even a little
noise can disrupt the synchronization of the agents. This results in our agents
calculating different solutions, which would lead to two or more agents marking
a single opponent and leaving some opponents unmarked. The number of agents
and the number of opponents that need to be covered are not always the same,
as the opposing defense does not need to be covered. Also, our offensive play-
ers should not mark any players to be ready for a counter-attack and to avoid
wasting stamina.

In summary, using Hungarian method has the following problems: (1) the
number of tasks and agents should be equal; (2) the method does not consider
the importance of each task; and (3) is very susceptible to observational noise,
as the number of candidate solutions is high.

Optimized Multi-Agent Matching (OMAM). The new method we used
in Robocup 2021 aims to avoid the first and second problems of the Hungar-
ian Method by combining ideas from Danger-Based Marking and Multi-Agent
Matching. This method handles synchronization by decreasing the total possible
candidate solutions that are considered using K-top tasks.

This algorithm contains multiple steps to find the best solution for assigning
agents’ tasks. In OMAM, a solution is a collection which includes pairs of agents
and tasks to be performed. The number of pairs are less than or equal to the
minimum number of tasks or agents. To compare two solutions, we assign two
values to each solution. The first value is the summation of the pairs’ cost in
the solution. To calculate the second value, we sort the tasks by using their
importance value, then we generate a string containing 0 and 1 (i.e., if a task
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has been assigned in the solution we add 1 for the task, otherwise we add 0).
A solution A is better than B if its second value is greater than B’s. If their
second values are the same, the solution with a lower first value is taken. To
decrease time complexity to find the best solution, we keep pairs in the best
k-tasks for each agent. In CYRUS, the value of k is set to be three, meaning
we remove all tasks except the best three ones for each agent. Any solution A
with an opponent with a higher value marked will have a higher second score
than any other solution such as B. We first process solutions that have the
more dangerous opponents covered since it will have a higher second value when
compared with any other solutions that only have less dangerous opponents.
We use this idea to optimize the time complexity of this algorithm since we
do not need to search for any other candidate with a lower score. Keeping k-
tasks helps our players to improve the synchronization of the agents and time
complexity. To further decrease the number of solutions, we separated our players
into three groups: Back, Middle, and Forward players. We also divided opponents
players into two groups: Attacker and Normal. In the CYRUS defense algorithm,
first, our Back players mark the opponent’s Attackers. Then our Middle players
mark unmarked Attackers’ opponents. Finally, our free players, including Middle
and Forwards except for Back players, try to mark other unmarked opponent’s
players. Therefore, the number of solutions decreases to 6 factorial.

4.2 Results

The effectiveness of OMAM can be seen comparing the average goals our team
has conceded in the main round over 28 games in 2019 and 2021. OMAM has
improved the Cyrus defense strategy from an average of 0.9 goals taken in main
round in 2019 competition to 0.33 in 2021. We do believe that the opponents’
offenses have improved as well within these 3 years so the results are interpreted
as even better from our perspective.

5 Conclusion

In this paper we detailed the major algorithms and innovations of our team
CYRUS that we believe led us to become the RoboCup 2021 champions in the
Soccer Simulation League 2D. In the past two years, and in in-between compe-
titions, we improved many algorithms in CYRUS and saw drastic improvements
in our positions in competitions. In the future, we will release the first official
version of PYRUS 2D base which is written in Python 3 and open several venues
to apply machine learning techniques in Soccer Simulation League 2D.
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