
Enabling Modern Application
Development with Swift

on the Nao/Pepper Robots

Callum McColl1(B), Vladimir Estivill-Castro2, Eugene Gilmore1,
Morgan McColl1, and René Hexel1

1 MiPal, Griffith University, Brisbane, QLD, Australia
callum.mccoll@griffithuni.edu.au

2 MiPal, Universitat Pompeu Fabra, Barcelona, Spain

Abstract. We show the advantages of using Swift as the program-
ming language for behaviours on the Pepper and Nao robots as used
with the RoboCup Standard Platform League and the RoboCup@Home
- Social Standard Platform. We show that Swift is not only incorpo-
rating modern features of object-oriented programming and functional
programming, but is also now a stable systems programming language
that enables both high-level development as well as fine hardware control.
Deterministic memory management makes Swift suitable for real-time,
embedded systems, and thus for robotic applications. Moreover, we show
in this paper we can apply model-driven software-development by deploy-
ing behaviours coded as executable arrangements of logic-labelled finite-
state machines (LLFSMs). We also show LLFSMs are not only suitable
for reactive architectures, but also for deliberative architectures.

Keywords: Functional programming languages · Logical
programming languages · Model-driven software development ·
Deliberative architectures

1 Introduction

While there have been long-ranging debates on the most relevant programming
language for Software Engineering as well as robotics [29,31,38], there is agree-
ment on important characteristics that a programming language for robotics
and embedded systems needs to satisfy. Number one is to be Turing complete1.
Importantly, it should be a systems programming language, able to provide
fine grained, standardised control over devices, hardware drivers, and commu-
nication mechanisms, with predictable performance to enable integration across
hardware, from sensors to actuators. The capability to have control over the tem-
poral domain in execution, task control, and parallelism is crucially important.
1 This formally means that it should be as expressive as a Turing machine, including

sequencing, conditionals, and iteration found in most imperative languages [17].

c© Springer Nature Switzerland AG 2022
R. Alami et al. (Eds.): RoboCup 2021, LNAI 13132, pp. 15–27, 2022.
https://doi.org/10.1007/978-3-030-98682-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98682-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-98682-7_2

16 C. McColl et al.

We argue here that such a language should also enable a seamless transition to
higher behaviour-based descriptions and model-driven development.

We port Swift and its supporting environment to the virtual machine devel-
opment environment associated with the SoftBank Pepper and Nao robots, as
well as to the robots themselves. Swift has long produced fast and predictable
executables for iOS and macOS, but is Open Source and features modern and
safe language concepts. Complex data testbeds show Swift code to be about
two times faster than Objective-C [39] and four to eight times faster than
Python [1], while being similarly discoverable to programmers (e.g. through Play-
grounds that facilitate interactivity during development and enable programmers
to quickly test new algorithms). Swift’s modern features include closures, gener-
ics, and type inference, which have been shown to result in higher productivity
and more adherence to common software patterns.

The clean syntax of Swift is a major factor for its higher readability [40] and
thus maintainability, while its semantics make it harder to make mistakes com-
mon to systems programming languages and add a layer of quality control during
development. Functional language features that provide referential transparency
and avoid implicit state or mutable data allow writing performant code in more
functional style [8]. This also facilitates pure functions and idempotence (i.e.
lack of side-effects and the same output regardless how many times a function
is called), enabling parallelisation as function calls become independent.

With Swift being Open Source, while being a relatively young language,
and still somewhat of a moving target [33], it has become popular very quickly,
including on the server side and cloud computing. The Swift language won
first place for Most Loved Programming Language in the Stack Overflow Devel-
oper Survey 2015 and second place in 2016. Three years ago, Swift became the
12th most popular language, overtaking Objective-C, Go, Scala, and R. Now,
in 2021, the reviews of the full-stack academy place Swift second just below
JavaScript. For robotics, Swift provides the capability dynamic libraries and,
vitally, a low memory footprint through value types and Automatic Reference
Counting (ARC) that offers similar convenience as tracing garbage collectors,
but vastly superior and deterministic performance. This is in contrast to lan-
guages such as Python, Java, C�, or Go, whose lack of ability to bound memory
usage and garbage collection performance implies unpredictability of CPU usage,
suggesting that every single thread on board of the robot could be denied vital
CPU time, potentially resulting in catastrophic consequences. For example, what
would be the use of a Kalman filter if the time-stamp of the sensor reading was
unpredictable or seriously jeopardised? The literature has plenty of discussion [3]
why, e.g., the versions of Java for real-time and/or embedded systems are not
completely satisfactory.

While IDE integration is not as mature as with other languages and despite
some blogs criticising Swift, suggesting that Objective-C can use C and C++
libraries more smoothly, we demonstrate that we can use in-memory middleware
for module/package/node communication quite effectively, integrating applicable
C and C++ libraries for robotics applications.

Modern Application Development with Swift 17

2 Cross Compiling

The goal of cross-compilation is to be able to build a program for a specific
platform on a different platform. When compiling for the Nao and Pepper robots,
SoftBank Robotics provides GNU tools commonly found in linux systems for C
and C++ which have been specifically built to allow cross-compilation. The tools
include binutils [15] which contains tools such as the linker (ld), glibc [16]
which contains the C standard library, and the gcc project [14] which contains
the C compiler (gcc) as well as other compilers such as the C++ compiler g++.
This, for example, allows us to build Nao-robot applications from a 64-bit Linux
or macOS. We note that the Nao and the Pepper use some version of the linux
kernel (for us, we use version 2.6). The kernel is simply a C program, thus a C
compiler is needed to compile the kernel.

When cross-compiling, two things are required on the host (the system exe-
cuting the cross-compiler): the tools (the cross-compiler and linker), and, the
sysroot folder containing all necessary files needed for compilation for the tar-
get platform, such as the Nao. The sysroot folder is usually setup to mimic the
folder structure of the target and generally contains headers and libraries which
are needed at runtime by the programs being compiled. When using the GNU
tools (as Aldebaran did originally), a compiler must be provided for each host
and target combinations. So in order to build for the Pepper and Nao robots
on two separate hosts—for example macOS and linux—then you need a total of
four compilers. Two compilers for each host which build for the Nao and Pepper
respectively. However, we can use alternatives to this approach.

Our Swift project is built using LLVM [20], built on top of the GNU stack
and provides compilers (clang for the C language and clang++ for C++) that
allow programs to be cross-compiled without having to build a separate cross-
compiler. In other words, the same compiler that is built for the host is able
to cross-compile for other targets (as already utilised, e.g., for iOS and tvOS
applications). We potentiate this further here for Swift, which already leverages
LLVM, by creating an environment that allows us to cross-compile for Nao robots
using only one cross-compiler.

3 Swift for the Pepper

To enable Swift for a new host system and target system, such as the Pepper,
we need to build the Swift compiler (and libraries), often passing platform-
specific flags to the C/C++ compilers to fix compiler errors or warnings. To
ensure consistency, alleviate setup-specific issues, and document the process, we
provide a Docker container which builds the Swift project [27]. Docker allows
OS-level virtualisation in what is called containers, similar to virtualisation;
however, rather than a host OS emulating the hardware in favour of a guest
OS [37], containers share the host kernel. Containers are now a de-facto standard
to share the environment for a package of applications.

18 C. McColl et al.

Another challenge when building for the Pepper is the fact the Swift project
does not support compiling for 32-bit linux targets. That is, none of the build
scripts that are provided by the Swift project will allow such cross-compilation.
Instead, we release our own scripts that our Docker container [27] automatically
downloads and uses.

To cross-compile Swift for the Pepper, we need to replace existing binutils
with gold enabled binutils (--enable-gold), build the LLVM tools for the
host and the target, and then build the Swift standard library for the target.
This allows us to create a swiftenv toolchain that enables building vital infra-
structure libraries for the target such as libdispatch and Foundation.

3.1 Replacing Binutils and Building the LLVM Toolchain

SoftBank’s toolchain provides an older ld linker that does not have the capa-
bilities required by more modern languages such as Swift. The Swift project
requires the gold linker [41], ld.gold, a more modern alternative to ld. Our
scripts download binutils and recompile them, enabling the gold linker and
allowing it to be executed on the 64-bit host, but cross-compile for the 32-bit
Pepper.

The Swift project uses a series of git repositories, utilising a consistent
version tag, to distribute a specific version of the language and the tools that
are used within the Swift toolchain. The version of Swift that we have built is
version 5.1.4 (tagged as swift-5.1.4-RELEASE).

We then build the LLVM project, creating C/C++ compilers that are capable
of running on the host, but also cross-compile for the Pepper. We recommend
building the C/C++ compilers using our Swift project since subsequent cross-
compilation of robotic applications with Swift is simpler and more convenient.
In particular, fewer flags are necessary for cross-compilation than with the GNU
cross-compilers provided by the original SoftBank toolchain.

Using the host tools built in the previous step, a second build cross-compiles
the LLVM toolchain for the Pepper delivering pre-requisites for the Swift cross-
compiler and standard library. This requires several flags that inform the host
C/C++ compiler where the shared objects, headers and C standard library exist
within the Pepper toolchain. This is necessary to redirect the compiler away from
the usual locations in the 64-bit host environment.

3.2 Building the Swift Environment for the Pepper

As we cross compile, we can skip building a Swift compiler to run on the Pepper,
but, the Swift standard library must still be built, which is now possible with
our cross-compilers. However, The Swift standard library consists of several
modules written in different languages, some are C/C++ while others (such as
the main standard library) are written in Swift itself and needs to be compiled
and installed into the sysroot. Importantly here, since the standard library is
written in Swift, a Swift compiler with a specific version is needed within the
Docker container. We use swiftenv [13] in order to download the appropriate
compiler for the version of Swift that we are compiling, to ensure that the host

Modern Application Development with Swift 19

Swift compiler and all the other tools that exist within the toolchain match the
versions of the tools that we are building for the Pepper.

The Swift project follows a folder structure where the actual Swift standard
library folders are placed within a Swift folder under the installation directo-
ries lib folder (typically /usr/lib for a normal installation). The installation
folder that our scripts use is $SYSROOT/home/nao/swift-tc where $SYSROOT
represents the absolute path of the sysroot directory on the build system. The
reason why we use this installation prefix is to follow Pepper’s security policy
where the only folder with write access is the /home/nao folder. This swift
directory follows the following format:

$SYSROOT/home/nao/swift-tc/lib/swift
<os>

<arch>
Swift.swiftdoc
Swift.swiftinterface
Swift.swiftmodule
glibc.modulemap
...

libswiftCore.so
libswiftGlibc.so
...

In this folder structure <os> and <arch> represent the target operating sys-
tem and architecture (e.g. linux and i686 for the Pepper). These folders contain
the Swift standard library files, consisting of the shared objects or dynamic
libraries required by the compiler. The glibc.modulemap file includes the C
standard library which allows developers to import into their programs by a
simple import statement, for example (import Glibc).

This folder structure is important because when building the Pepper Swift
toolchain, some of these files need to change. Recall that we leverage swiftenv
to install a version of Swift that matches the version of Swift that we are
building for the host. This makes it so that we can use the host Swift compiler
to cross-compile Swift programs. However, the host Swift toolchain contains
the standard library for the host 64-bit linux. We copy this toolchain into a new
Pepper toolchain folder, and replace the Swift folder contents with the cross-
compiled toolchain that was installed into the sysroot, replacing the 64-bit
standard library with the 32-bit standard library built for the Pepper. Then we
patch the glibc.modulemap file to correct the hardcoded paths to point to the
Pepper C standard library within sysroot.

3.3 Building Libdispatch and Foundation for the Pepper

Once the Pepper swiftenv toolchain has been created, we can use it to build
the remaining projects that make up the required Swift infrastructure. The
libdispatch project is a C project, but the Swift variant contains wrappers
that enable simple access to libdispatch from Swift programs. The Founda-
tion framework was once written in Objective-C, but has since been rewritten
in pure Swift. This allows it to be deployed to linux platforms, adding extra
functionality on top of the Swift standard library. By using the swiftenv, we
are able to compile these components and install them within the sysroot.

20 C. McColl et al.

4 Swift on Legacy Robots

Older versions of the Nao (version 5 or earlier) use older versions of the C com-
piler and standard library that fail to meet the minimum system requirements
for cross-compiling the swift toolchain. To overcome this issue, we need to take
the extra step of installing an entirely separate root directory within the home
directory of the Nao that will contain all files required for a newer linux system
containing a suitable version of glibc. However, we avoid installing an entire
linux system. Instead, we install the minimum amount of software that Swift
needs in order to minimise disk space.

Installing a newer version of glibc is particularly challenging, it is an integral
part of the system, i.e., there is a mutual inter-dependence between the kernel
and the GNU C compiler (gcc) on the one hand and glibc on the other hand.
This circular dependency creates close coupling, and if the newer version of glibc
breaks ABI (application binary interface) stability (meaning that symbols within
the library have changed), programs that have already been compiled will stop
working. Since the linux kernel is itself a C program which links against glibc,
this means that nothing will work. Upgrading an existing glibc to a newer
version is therefore only possible if the new glibc version does not break ABI
stability. In our illustration (Nao V5), the minimum version of glibc supported
by the swift toolchain does break ABI stability.

An additional challenge is that the glibc version that is needed for the swift
toolchain does not compile under the Nao kernel. For our approach of a parallel
system root, the new toolchain must not depend on anything outside of this
parallel system root. If we were to simply compile glibc using the existing gcc
compiler, then the new glibc would link against libgcc.so which is outside of
the system root directory. Hence, we needed to compile an entirely new linux
systems from source, following [2]. This book provides a comprehensive guide for
creating new Linux distributions without any prior knowledge, particularly, the
details for compiling a self-contained system root [2]. Akin to this approach, we
created a parallel system root containing the new glibc, kernel and gcc, taking
the opportunity to upgrade the gcc compiler to a more modern version. From
this point, the same steps as in Sect. 3 apply.

5 Efficient Robot Software Architectures Through Swift

5.1 Behaviour-Based Architectures

Finite-State Machines are ubiquitous models of behaviour. In robotics, they have
been used in several forms, perhaps most notably with the introduction of the
subsumption architecture [4] and therefore, in behaviour-based control by the
seminal description of Toto [22–24]. Finite-state machines are typically associ-
ated with reactive software architectures for robotics, because of the prevalence
of the state-chart format introduced by Harel [18]. However, Harel’s semantics
of finite-state machines is event-driven, implying that the driver of any activity
is the environment who generates events to state-charts waiting and expecting

Modern Application Development with Swift 21

events [7]. Harel’s vision was the creation of mechanisms to compose more sophis-
ticated behaviours by hierarchies of state-charts as nesting one sub-machine in
a parent sub-machine created an appealing mechanism nesting behaviours from
other behaviours. This idea gained acceptance in OMT [35] and latter became
the dominant semantics of UML’s model for describing behaviour [32]: that is
the semantics of run until completion [7,36].

However, the original time-augmented finite-state machines of the subsump-
tion architecture were essentially logic-labelled; that is, what labels a transition
between two states is a Boolean expression. In such models, the machine runs
at its own pace, evaluating the expressions of the transitions and performing
a transition only when the expression evaluates to true. Expressions labelling
transitions can be as sophisticate as decision trees [21,34]. Logic-Labelled Finite
State Machines (LLFSMs) use this alternative paradigm of execution enabling
much safer elaboration of behaviours [30]. Rather than using nesting, LLFSMs
can use stacking like the subsumption architecture [4] or create versatile dynamic
executions by suspend, resume and restart calls. Concurrency of arrangements
of LLFSMs is achieved by a sequential pre-defined schedule of execution, enabling
smaller state-spaces for formal verification and model checking [12].

5.2 Formal Verification

Implementations of LLFSMs were based on interpreters until clfsm [12] offered
their compilation into loadable libraries in C++. However, doing so left them
unverifiable as the C++ language does not posses any means of being able to
query the state of the variables making up the LLFSM at run time. Our porting
of Swift to the SoftBank robots enables efficient execution on board of the
robot of compiled swift LLFSMs while still enabling formal verification. Here
we argue for the use of swiftfsm [25,26]: a scheduler for LLFSMs enabling
formal verification.

Monitor
onEntry
overheating = false
onExit

internal

Overheating
onEntry
overheating = true
onExit

internal

External Variables
var LKneePitch: Bool
var LAnklePitch: Bool
var LAnkleRoll: Bool
var RKneePitch: Bool
var RAnklePitch: Bool
var RAnkleRoll: Bool
var overheating: Bool

LKneePitch

LAnklePitch
|

LAnkleRoll
||

RKneePitch
|||

RAnklePitch
||||

RAnkleRoll
|||||

after(1) && !LKneePitch && !LAnklePitch && !LAnkleRoll
&& !RKneePitch && !RAnklePitch && !RAnkleRoll

Fig. 1. The temperature monitor LLFSM

We now present a small illustration of the efficacy and usefulness of our
Swift toolchain. We use swiftfsm to perform verification of a small piece of
infrastructure: a module which monitors the temperature levels of the motors
on the robot. The corresponding LLFSM is presented in Fig. 1. For the sake of

22 C. McColl et al.

this example, we represent the temperature sensors as Boolean values. This is
to minimise the resulting Kripke Structure from the verification for this simple
example. Each Boolean variable in the external variables represents whether or
not that particular sensors is overheating. If the sensor is overheating, then the
value is true, otherwise the value is false. The overheating external variable
represents a control message which notifies any other modules that a joint is
overheating. Thus, this LLFSM simplifies the process of checking whether the
robot is overheating by distilling the sensors into one overheating message.

The machine starts in the Monitor state indicated by the initial pseudo-state
icon. The Monitor sets overheating to false and contains a number of transi-
tions to the Overheating state. We have labelled each of these transitions with
a check for each external variable. Therefore, if any of these external variables
evaluate to true, then the machine will transition to the Overheating state. Our
machine takes advantage of the LLFSM semantics [10] implemented by swiftfsm
to continuously poll the external variables throughout its execution. This sim-
ple fact also demonstrates the advantages of swiftfsm in handling issues of
concurrency without any overhead created by the user. Lastly, if the machine
transitions to the Overheating state, then the overheating external variable is set
to true. After a second and when all sensors are not overheating, the machine
transitions back to the Monitor state thus setting overheating back to false.

One of the advantages of using Swift and swiftfsm is that swiftfsm utilises
an extensive set of protocols to enforce its semantics. A protocol in Swift is a
construct similar to an interface in Java, but more powerful. This protocol ori-
ented design (a paradigm widely used in the Swift community) establishes the
desired semantics of the scheduler which enables formal verification. Only by
enforcing LLFSMs to follow these semantics—through the use of protocols—is
a verification possible [28]. Performing the actual verification is only possible
because of the reflection capabilities of the language. As stated earlier, the C++
variants of LLFSMs were only able to verify LLFSMs through the implemen-
tation of an interpreter. With Swift, we are able to verify LLFSMs natively
without having to implement a custom interpreter. Not only does the tempera-
ture monitor LLFSM demonstrate these features of Swift, it also demonstrates
one of the necessary features for robotics: interoperability with C.

In the temperature monitor, each external variable maps to a message within
a middleware implemented in C: the gusimplewhiteboard [12]. Through the use
of this middleware, any Swift LLFSM (and by extension any Swift program)
is able to communicate with any other modules within the system. Many lan-
guages support C bindings making the use of a middleware a key step in being
able to communicate between modules written in different languages including
C++. The temperature monitor demonstrates that the use of Swift does not
demand that existing modules must be rewritten. Swift modules can add extra
functionality and coexist with existing modules written in different languages.
Other LLFSMs written in C++ or Swift can now use the output of the Swift
machine in Fig. 1 through the use of the same middleware. Moreover, using
LLFSMs enables Model-Driven Software Development. That is, the LLFSMs

Modern Application Development with Swift 23

can be defined using a language agnostic meta-model and editor. Then, model-
to-text transformation produces the equivalent behaviour for C++, Swift, and
LISP [5]. More importantly for formal verification, a model-to-text transforma-
tion produces the equivalent NuSMV model (see coming up example in Fig. 3b)
which can be co-simulated by the model-checker (that is, by NuSMV) as well as
verifying properties against it.

5.3 Deliberative Architectures

Importantly, LLFSMs enable the ability to create declarative and deliberative
architectures, as the expression labelling the transitions can be a query to a
reasoning agent [11] or a task planning system [9].

We now illustrate LLFSMs capability to describe behaviours beyond a reac-
tive architecture. Our example is part of an application of a social robot that
plays the game of Spanish dominoes with a human partner against another pair
of players [19]. Figure 2 shows a small Prolog program that defines whether a
player can play one of the tiles in their hand or must pass. Figure 3a shows an
executable (compiled, not interpreted) of deliberative LLFSMs of a player that
plays with the most naive strategy, play the first tile playable in the hand or pass.
A more sophisticated player can be produced by sophistication of the Prolog
program of Fig. 2. Nevertheless, the current version is sufficient to implement
the server of the game that monitors players following the rules to play valid
tiles and not revoke (claim to pass when it is possible to play).

% Return what tile a player can play
% Can play on end with value X the tile [X,Y]
tile playable on end(X,[X,Y]).
tile playable on end(Y,[X,Y]).
% Can play on end with value X with a tile on
%the list that starts with a tile the given tile
can play on end(X,[T|R],T) :- tile playable on end(X,T).
can play on end(X,[T|R],O) :- can play on end(X,R,O).
%Can the player with hold H play on a chain with ends X and Y the tile T
can play low end(X,Y,H,T) :- can play on end(X,H,T).
can play high end(Y,X,H,T) :- can play on end(X,H,T).
can play(X,Y,H T) :- can play low end(X,Y,H,T).

can play(X,Y,H,T) :- can play high end(X,Y,H,T).

Fig. 2. Determine a tile to play in the players hand.

The experience of enabling Swift is crucial to port GNU-Prolog [6] to the
robots. Porting the interpreter gprolog and the compiler gplc for interfacing
with C amounts to downloading and patching the sources of a suitable version
and using out C/C++ cross-compilers. However, calling prolog from Swift LLF-
SMs requires cross-compiling a C/C++ wrapper. In our illustration we wrap the
querying whether a player holding a specific hand can lay a tile on the board and
must pass. This wrapper is now a C-function that is in itself wrapped and linked
by Swift and thus, we can invoked in the label of a transition of the LLFSM
defining the player’s behaviour. However, this is easier said than done. While

24 C. McColl et al.

Fig. 3. Small example of an LLFSMs that enables deliberation. LLFSMs use a cross-
action language semantics that enables automatic translation to NuSMV.

our earlier infrastructure enables to install gprolog on the host (the docker con-
tainer) and to cross-compile gprolog for the Pepper, the gplc compiler offers
no options to specify target architectures. Thus, although we can invoke our C
cross-compiler for the .c files in the prolog project, we need to compile the .pl
(the pure Prolog files) on the Pepper .s assembly files:

1. pl2wam -o step.wam step.pl
2. wam2ma -o step.ma step.wam
3. ma2asm -o step.s step.ma

We then copy the .s files back to the Docker host and continue with the cross
compilation of the .s files to .o (object) files using the Pepper cross-assembly
compiler. Now all files are linked in the host using our cross-linker and we have
an executable (binary) that once copied to the Pepper executes as expected.

6 Conclusions

Model-driven software development promises high levels of abstraction. In this
paper we have shown how to incorporate a modern systems programming lan-
guage, Swift, with the most advanced features of object orientation that enables
complete execution time control. We incorporated features of functional and
logic programming. All this enables a high-level of abstraction that define exe-
cutable behaviour models. Moreover, we can automatically produce input code
for a model-checker for formal verification. We believe that these paradigms
significantly improve the quality of the robotic behaviours and the facility to
produce correct code both in the value domain as well as the time domain. With
the combination of paradigms, we are not advocating just a choice of program-
ming language, we are enabling safety through adherence to widely accepted

Modern Application Development with Swift 25

design principles and philosophies. This is more important than the specific lan-
guage; however, we believe the experience reported in this paper for enabling
Swift as well as our Docker container constitute immediate, valuable contribu-
tions and pieces of knowledge for broadening the available tools in the RoboCup
community.

References

1. The computer language benchmarks game, April 2018. https://benchmarksgame-
team.pages.debian.net/benchmarksgame/compare/swift-gcc.html

2. Beekmans, G., Burgess, M., Dubbs, B.: Linux from scratch, April 2021. http://
www.linuxfromscratch.org/lfs/

3. Bouyssounouse, B., Sifakis, J.: Programming languages for real-time systems.
In: Bouyssounouse, B., Sifakis, J. (eds.) Embedded Systems Design. LNCS, vol.
3436, pp. 338–351. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-
540-31973-3 25

4. Brooks, R.: A robust layered control system for a mobile robot. IEEE J. Robot.
Autom. 2(1), 14–23 (1986)

5. Carrillo, M., Estivill-Castro, V., Rosenblueth, D.A.: Verification and simulation of
time-domain properties for models of behaviour. In: Hammoudi, S., Pires, L.F.,
Selić, B. (eds.) MODELSWARD 2020. CCIS, vol. 1361, pp. 225–249. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-67445-8 10

6. Diaz, D., Codognet, P.: The GNU prolog system and its implementation. In: ACM
Symposium on Applied Computing, SAC 2000, NY, USA, vol. 2, pp. 728–732
(2000). https://doi.org/10.1145/338407.338553

7. Drusinsky, D.: Modeling and Verification Using UML Statecharts: A Working
Guide to Reactive System Design, Runtime Monitoring and Execution-Based
Model Checking. Newnes (2006)

8. Eidhof, C., Kugler, F., Swierstra, W.: Functional Programming in Swift. Florian
Kugler (2014)

9. Estivill-Castro, V., Ferrer-Mestres, J.: Path-finding in dynamic environments with
PDDL-planners. In: 16th International Conference on Advanced Robotics, ICAR,
pp. 1–7. IEEE (2013)

10. Estivill-Castro, V., Hexel, R.: Arrangements of finite-state machines-semantics,
simulation, and model checking. In: International Conference on Model-Driven
Engineering and Software Development, pp. 182–189. SCITEPRESS (2013)

11. Estivill-Castro, V., Hexel, R., Ramirez Regalado, A.: Architecture for logic pro-
graming with arrangements of finite-state machines. In: 1st CPS Week Workshop
on Declarative Cyber-Physical Systems, DCPS, pp. 1–8. IEEE (2016)

12. Estivill-Castro, V., Hexel, R., Lusty, C.: High performance relaying of C++11
objects across processes and logic-labeled finite-state machines. In: Brugali, D.,
Broenink, J.F., Kroeger, T., MacDonald, B.A. (eds.) SIMPAR 2014. LNCS (LNAI),
vol. 8810, pp. 182–194. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11900-7 16

13. Fuller, K.: swiftenv documentation – release 1.4.0, 10 September 2018. http://
buildmedia.readthedocs.org/media/pdf/swiftenv/latest/swiftenv.pdf

14. GNU Project: GCC, the GNU Compiler Collection. https://gcc.gnu.org/
15. GNU Project: GNU Binutils. https://www.gnu.org/software/binutils/
16. GNU Project: GNU C Library (glibc). https://www.gnu.org/software/libc/

https://benchmarksgame-team.pages.debian.net/benchmarksgame/compare/swift-gcc.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/compare/swift-gcc.html
http://www.linuxfromscratch.org/lfs/
http://www.linuxfromscratch.org/lfs/
https://doi.org/10.1007/978-3-540-31973-3_25
https://doi.org/10.1007/978-3-540-31973-3_25
https://doi.org/10.1007/978-3-030-67445-8_10
https://doi.org/10.1145/338407.338553
https://doi.org/10.1007/978-3-319-11900-7_16
https://doi.org/10.1007/978-3-319-11900-7_16
http://buildmedia.readthedocs.org/media/pdf/swiftenv/latest/swiftenv.pdf
http://buildmedia.readthedocs.org/media/pdf/swiftenv/latest/swiftenv.pdf
https://gcc.gnu.org/
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/libc/

26 C. McColl et al.

17. Harel, D.: On folk theorems. Commun. ACM 23(7), 379–389 (1980)
18. Harel, D., Politi, M.: Modeling Reactive Systems with Statecharts: The Statemate

Approach. McGraw-Hill, New York (1998)
19. Javaid, M., Estivill-Castro, V.: Explanations from a robotic partner build trust

on the robot’s decisions for collaborative human-humanoid interaction. Robotics
10(1), 51 (2021)

20. The LLVM Project: The LLVM Compiler Infrastructure. https://llvm.org/
21. Lötzsch, M., Bach, J., Burkhard, H.-D., Jüngel, M.: Designing agent behavior

with the extensible agent behavior specification language XABSL. In: Polani, D.,
Browning, B., Bonarini, A., Yoshida, K. (eds.) RoboCup 2003. LNCS (LNAI),
vol. 3020, pp. 114–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-
3-540-25940-4 10

22. Mataric, M.J.: Behavior-based control: examples from navigation, learning, and
group behavior. J. Exp. Theor. Artif. Intell. 9, 323–336 (1997)

23. Mataric, M.J.: The Robotics Primer. MIT Press, Cambridge (2007)
24. Mataric, M.: Integration of representation into goal-driven behavior-based robots.

IEEE Trans. Robot. Autom. 8(3), 304–312 (1992)
25. McColl, C., Estivill-Castro, V. Hexel, R.: An OO and functional framework for

versatile semantics of logic-labelled finite state machines. In: The 12th International
Conference on Software Engineering Advances, ICSEA, pp. 238–243 (2017)

26. McColl, C.: SwiftFSM - a finite state machines scheduler. Honours thesis (2016)
27. McColl, C., Gilmore, E.: Swift on Pepper. https://github.com/mipalgu/

SwiftOnPepper
28. McColl, C., Estivill-Castro, V., Hexel, R.: Versatile but precise semantics for logic-

labelled finite state machines. Int. J. Adv. Softw. 11(3 & 4), 227–238 (2018)
29. Nicolescu, M.: Lecture 6: Lecture notes autonomous mobile robots CPE 470/670

(2016). http://slideplayer.com/slide/5382727/
30. Nicolescu, M.N., Mataric, M.J.: Deriving and using abstract representation in

behavior-based systems. In: The 17th National Conference on Artificial Intelli-
gence and 12th Conference on on Innovative Applications of Artificial Intelligence,
p. 1087. AAAI Press (2000)

31. Owen-Hill, A.: What is the best programming language for robotics? (2016).
https://blog.robotiq.com/what-is-the-best-programming-language-for-robotics-0

32. Pilone, D., Pitman, N.: UML 2.0 in a Nutshell. O’Reilly Media, Inc. (2005)
33. Rebouças, M., Pinto, G., Ebert, F., Torres, W., Serebrenik, A., Castor, F.: An

empirical study on the usage of the swift programming language. In: 2016 IEEE
23rd International Conference on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, pp. 634–638 (2016)

34. Risler, M., von Stryk, O.: Formal behavior specification of multi-robot systems
using hierarchical state machines in XABSL. In: AAMAS08-Workshop on Formal
Models and Methods for Multi-Robot Systems, Estoril, Portugal (2008)

35. Rumbaugh, J., Blaha, M.R., Lorensen, W., Eddy, F., Premerlani, W.: Object-
Oriented Modelling and Design. Prentice-Hall, Englewood Cliffs (1991)

36. Samek, M.: Practical UML Statecharts in C/C++: Event-Driven Programming for
Embedded Systems, 2nd edn. Newnes, Newton (2008)

37. Scheepers, T.: Virtualization and containerization of application infrastructure: a
comparison. In: 21st Twente Student Conference on IT (2014)

38. Sheu, P.C.Y., Xue, Q.: Intelligent Robotic Planning Systems. World Scientific Pub-
lishing, River Edge (1993)

39. Singh, H.: Speed performance between swift and objective-C. Int. J. Eng. Appl.
Sci. Technol. 1(10), 185–189 (2016). http://www.ijeast.com

https://llvm.org/
https://doi.org/10.1007/978-3-540-25940-4_10
https://doi.org/10.1007/978-3-540-25940-4_10
https://github.com/mipalgu/SwiftOnPepper
https://github.com/mipalgu/SwiftOnPepper
http://slideplayer.com/slide/5382727/
https://blog.robotiq.com/what-is-the-best-programming-language-for-robotics-0
http://www.ijeast.com

Modern Application Development with Swift 27

40. Solt, P.: Swift vs. Objective-C: 10 reasons the future favors Swift. InfoWorld
(2015). https://www.infoworld.com/article/2920333/mobile-development/swift-
vs-objective-c-10-reasons-the-future-favors-swift.html

41. Taylor, I.L.: A new elf linker. In: Proceedings of the GCC Developers’ Summit, pp.
29–36 (2008). http://ols.fedoraproject.org/GCC/Reprints-2008/taylor-reprint.pdf

https://www.infoworld.com/article/2920333/mobile-development/swift-vs-objective-c-10-reasons-the-future-favors-swift.html
https://www.infoworld.com/article/2920333/mobile-development/swift-vs-objective-c-10-reasons-the-future-favors-swift.html
http://ols.fedoraproject.org/GCC/Reprints-2008/taylor-reprint.pdf

	Enabling Modern Application Development with Swift on the Nao/Pepper Robots
	1 Introduction
	2 Cross Compiling
	3 Swift for the Pepper
	3.1 Replacing Binutils and Building the LLVM Toolchain
	3.2 Building the Swift Environment for the Pepper
	3.3 Building Libdispatch and Foundation for the Pepper

	4 Swift on Legacy Robots
	5 Efficient Robot Software Architectures Through Swift
	5.1 Behaviour-Based Architectures
	5.2 Formal Verification
	5.3 Deliberative Architectures

	6 Conclusions
	References

