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Abstract The current digital transformation of many businesses and the exponen-
tial growth of digital data are two of the key factors of digital revolution. For the
successful meeting of high expectations, the data platforms need to employ the
recent theoretical, technological, and methodological advances in contemporary
computing and data science and engineering. This chapter presents an approach to
address these challenges by combining logical methods for knowledge processing
and machine learning methods for data analysis into a hybrid AI-based framework.
It is applicable to a wide range of problems that involve both synchronous operations
and asynchronous events in different domains. The framework is a foundation for
building the GATE Data Platform, which aims at the application of Big Data tech-
nologies in civil and government services, industry, and healthcare. The platform
implementation will utilize several recent distributed technologies such as Internet
of Things, cloud, and edge computing and will integrate them into a multilevel
service-oriented architecture that supports services along the entire data value
chain, while the service orchestration guarantees a high degree of interoperability,
reusability, and automation. The platform is designed to be compliant with the open-
source software, but its open architecture supports also mixing with commercial
components and tools.
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1 Introduction

Europe is home to more than 50 Big Data Centers of Excellence (CoE), participating
in the European Network of National Big Data Centers of Excellence [1]. Big Data
for Smart Society Institute at Sofia University (GATE) is building the first Big Data
CoE in Eastern Europe. Its advanced infrastructure and unique research ecosystem
aim to create data services and analytical and experimentation facilities to deal with
the challenge of contemporary digital revolution. The GATE Data Platform will
enable high-quality research with wide scope and big impact along the entire data
value chain. The platform will also support data-driven innovations and will serve
the needs of multiple projects within different application domains—Future City,
Smart Industry, Intelligent Government, and Digital Health. As a by-product of
these activities, the GATE Data Platform will create an advanced and sustainable
ecosystem for both application developers and nontechnical businesses to exploit
the full potential of the available services and acquired knowledge and data. For this
purpose, the GATE Data Platform will also enable creating Data Spaces with high-
quality pre-processed and curated data sets, aggregating and semantically enriching
data from heterogeneous sources. The acquired knowledge for management and
usage of data will be made available through reusable intelligent cross-domain data
models and data processing services. The GATE Data Platform will enable start-
ups, SMEs, and large enterprises, as well as other organizations in a wide range of
societal sectors, to build advanced data-driven services and vertical applications.
This way, the GATE Data Platform will become a focal point for sharing data,
services, technology, and knowledge that eases the creation of an ecosystem of
diverse stakeholders, adds value to the businesses, and facilitates creation of new
business and commercial models for digital transformation of the industry and the
society.

These ambitious goals can be achieved effectively only with wider employment
of the achievements of contemporary computing and data science and technologies.
To utilize their potential, the data platforms must adopt a hybrid approach in order
to address the data processing from theoretical, technological, engineering, and
organizational standpoint. Artificial Intelligence allows to utilize many powerful
concepts, to build complex models, to automate difficult tasks, and to manage the
complexity of technical projects through knowledge representation and problem
solving, decision making, and action planning, execution monitoring, and explana-
tion. This article presents a framework for developing a hybrid data platform, which
embodies many AI techniques adding intelligence along the entire data value chain.

The chapter relates to the data management, data processing architectures, data
analytics, and data visualization technical priorities of the European Big Data Value
Strategic Research and Innovation Agenda [2]. It addresses the respective horizontal
concerns of the BDV Technical Reference Model as well as the vertical concerns of
the development perspective— engineering and DevOps, cybersecurity, and data
sharing. The chapter also relates to the data, knowledge, and learning, reasoning
and decision making, action, interaction, and explainable AI, and systems, hard-
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ware, methods, and tools enablers of the recent AI, Data and Robotics Strategic
Research, Innovation and Deployment Agenda [3].

The rest of the chapter is organized as follows. Firstly, it reviews some of the
relevant reference architectures, component models, and data platforms, existing
within the European Big Data space. Next, it presents the requirements for the
GATE Data Platform considering the complex role of GATE CoE as an academic
and innovation hub as well as business accelerator in several domains. After these
preliminaries, the next section presents the multi-layer approach to hybridization,
adopted for building the GATE Data Platform. In a subsequent section, the
implementation of this concept is discussed and the final chapter presents one of
the flagship projects of GATE, which will leverage from the GATE Data Platform.
Finally, conclusions and directions for future work are presented.

2 Brief Overview of Architectures, Frameworks,
and Platforms

This section provides a brief overview of some of the most prominent reference
models and component frameworks for data processing across Europe. Several
examples of platforms operating at other European Big Data centers are also
presented.

2.1 Reference Architectures for Big Data Processing

The European Big Data Value Association (BDVA) has proposed a reference
architecture for Big Data systems [2]. It has a two-dimensional structure with
components structured into horizontal and vertical concerns (Fig. 1). The horizontal
concerns cover the entire data processing value chain together with the supporting
technologies and infrastructure for data management, analysis, and visualization.
The main sources of Big Data, such as sensors and actuators, are presented along the
horizontal dimension. The vertical concerns include cross-cutting issues, relevant
to all horizontal concerns—data types and formats, standards, security, and trust.
Communications, development, and use are other important vertical concerns which
add engineering to the vertical concerns.

This reference model provides a very high-level view of data processing without
imposing any restrictions on the implementation, regardless of the area of appli-
cability. There are more specific reference architectures developed with particular
application areas in focus, such as the hierarchical model Industrie 3.0 and the
three-dimensional model Industrie 4.0, which account for more detailed relationship
between the business processes, but they are focused entirely on the needs of
industry.
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Fig. 1 Big Data Value Association reference architecture

One of the more generic enhancements of the BDVA reference architecture
has been developed under the EU Horizon 2020 project OPEN DEI [4]. It aligns
the reference architecture of BDVA with the requirements of open platforms and
large-scale pilots for digital transformation. The OPEN DEI reference architecture
framework (RAF) is built upon six fundamental principles which are generally
applicable to digital platforms for data-driven services:

• Interoperability through data sharing
• Openness of data and software
• Reusability of IT solutions, information, and data
• Security and privacy
• Avoiding vendor lock-in
• Supporting a data economy

OPEN DEI reference architecture is three-dimensional (Fig. 2), with the third
dimension providing directions for implementation according to the underlying
philosophy of the framework. The horizontal layers include Field Level Data
Spaces, Edge Level Data Spaces, and Cloud Level Data Spaces
in which data is shared. The Smart World Services included in the Field
Level Data Spaces enable interaction with IoT, automation systems, and
humans. The Edge Level Data Spaces provide services for data acquisi-
tion, brokering, and processing.Cloud Level Data Spaces include different
operations on the cloud such as data storage, data integration, and data intelligence.
These Data Spaces offer the services to the main orthogonal dimension of the
RAF—the X-Industry Data Spaces. The X-Industry Data Spaces
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Fig. 2 OPEN DEI reference architecture
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provide trustful and secure communication, data sharing, and data trading through
appropriate technical infrastructure and development frameworks. All these Data
Spaces support the implementation of Digital Transformation X-Industry Pilots for
specific business scenarios. The main enhancement of the BDVA reference archi-
tecture by OPEN DEI RAF is in embedding the innovation and commercialization
directly into the architecture through the concepts of Data Spaces, smart services,
and industry pilots.

2.2 Component Frameworks

One of the most significant efforts to provide support for building data platforms
has been undertaken by FIWARE Foundation. The FIWARE framework comprises
open-source software components which can be assembled together and with other
third-party components to accelerate the development of smart solutions [5]. The
FIWARE component model is broker-based and provides an API for utilizing
the functionality of the components. For this purpose FIWARE offers the so-
called Generic Enablers, which provide support for common and specific
operations for interfacing with data sources, processing, analysis, and visualization
of context information, as well as usage control, publishing, and monetizing of
data. The key enabler is the Context Broker which integrates all platform
components and allows applications to update or consume the context information in
a highly decentralized and large-scale manner. The Context Broker is the only
mandatory component of any platform or solution which builds upon the FIWARE
platform. A number of applications in the areas of smart agriculture, smart cities,
smart energy, and Smart Industry are built upon FIWARE components.

More recent effort to provide technical support for assembling applications
based on existing components is undertaken by the International Data Space
Association (IDSA). Its component model elaborates further the broker architecture
by standardization of two additional elements of the broker pattern—the data
provider and the data consumer [6]. On the data provider side IDSA architecture
is based on the concept of Data Space together with an associated Connector,
while on the consumer side it operates through DataApps and AppStore.
Similarly to FIWARE, the IDSA framework has an open architecture and supports
large-scale system integration. IDSA has mainly in focus B2B industrial channels
with extensive communications or distributed networks of institutions involved in
collaborative work such as national and international government or public systems.
As a member of IDSA Gate Institute considers building its own platform so that it
can expose and integrate IDSA-compatible components.
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2.3 Data Platforms

Platforms operating at other European Big Data Centers of Excellence include
general-purpose as well as application-specific ones. The most relevant to the task
of developing the GATE Data Platform, built specifically to provide support for Big
Data and AI projects regardless of their application domain, are briefly presented
here.

Teralab is an open Big Data and AI platform hosted by Institut Mines-Telecom
(IMT)—a leading French institute of technology [7]. The platform aims to support
and accelerate projects in Big Data and AI by providing technical, legal, and
infrastructure tools and services as well as an ecosystem of specialists in those fields.
The main asset toward providing various services is the diverse expertise hold by the
Teralab teams that elaborate the best solution for each specific project.

ICE, the infrastructure and cloud research and test environment, is hosted by the
RISE research institutes of Sweden and provides technical infrastructure, research
data, and expert support [8]. As part of its services, ICE offers a tailor-made data
platform that supports Big Data analytics and ML. The platform provides both Big
Data services and customized development environment.

The Swiss Data Center has implemented RENKU platform as an open-source
standalone solution with the aim of making the collaboration in data science teams
more effective, trustful, and easy [9]. The RENKU platform can be deployed on a
Kubernetes cluster within an organization. It supports versioning of data and code
and allows customization of the environment. It enables traceability and reusability
of all the artifacts developed in a data science project.

The discussed background provides a steppingstone for designing the GATE
Data Platform and in particular for specifying the requirements for the platform,
which are outlined in the next section. Presented reference architectures and
component frameworks for data processing are designed to be general enough to
support various usage scenarios and application domains and to provide common
understanding of the architectural components and connections between them. By
adhering to these reference architectures, the GATE platform will ensure high
level of reusability of artifacts and processes, as well as of standardization and
interoperability. On the other hand, the presented data platforms are a good example
of different styles of utilization to be followed—from standalone instances, through
service-oriented mode, to customized solutions. In addition, they demonstrate how
various technologies provide support for the vast landscape of Big Data and AI
projects.
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3 Requirements for the GATE Data Platform

The complex role of GATE CoE as a scientific and innovation hub and business
accelerator in several domains leads to multidimensional requirements:

• To empower the research on AI and Big Data technologies conducted within
GATE CoE

• To enable development and exploitation of data-driven innovations
• To support the education and training activities on MSc, PhD, and professional

level
• To facilitate creation of a Big Data ecosystem within the country, in the region,

and in Europe

To reflect these objectives, the platform requirements were considered to be holistic,
symbiotic, open, evolving, and data-driven [10], which fully aligns with the
fundamental principles of BDVA and OPEN DEI reference architectures. Here we
are briefly specifying them.

3.1 Requirements from Research Perspective

To support simultaneous work on research projects across the entire data value chain
in different application areas, the following is required:

RR1 Vertical hybridization: Combining symbolic, statistical, and numerical AI
methods with semantic technologies and Knowledge Graphs to derive value from
domain knowledge

RR2 Horizontal integration: Combining multiple technologies to provide flexi-
bility in the implementation of data services

RR3 Modularization and reusability: Integration of generic domain-indepen-
dent components and data with domain-specific and problem-specific compo-
nents and data for enabling the use and reuse of third-party components and
APIs, such as the Fireware and Geospatial components

RR4 Synchronization and orchestration: Control over the execution of data
services to support simultaneous use of the resources when working on different
projects while executing the individual data services in an isolated and safe
environment

RR5 Robustness and security: Coping with a wide range of problems, caused
by human errors, technical faults, or external interventions

RR6 Multilevel explainability: Transparency of both the data and the operations
in mapping the solutions to the problems by uncovering the circumstances and
dependencies behind decisions, plans, processes, and events and thus explaining
the specific results during data processing
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3.2 Data-Driven Requirements

The specific requirements toward the data are:

DR1 Integration of diverse data sources: Mixing data coming from multiple
data sources over different transport protocols

DR2 Support for data variability: To ensure possibility for processing data in
structured, unstructured, and semi- structured formats

DR3 Multi-mode data processing: Support for different modes of data
processing—batch, messaging, and streaming in both discrete and continuous
flows

DR6 Scalability: Scaling out for processing large amounts of data without
compromising the performance

DR5 End-to-end velocity: Capability to handle data through processing in par-
allel and mitigating bottlenecks and latency within the existing infrastructure

The produced datasets and metadata will be integrated into Data Spaces. A key
step in realizing GATE data space is data acquisition, including public and private
data. Data sharing will be realized by adhering to FAIR (findability, accessibility,
interoperability, and reuse) principles:

FR1 Findability: Support of rich machine-readable metadata for automatic dis-
covery of datasets and data services

FR2 Accessibility: Strict mechanisms for control, based on consumer profiling
for both data and metadata

FR3 Interoperability: Well-defined data models, common vocabularies, and
standardized ontologies for data processing

FR4 Reusability: Clear usage of licenses, detailed provenance information, and
domain-relevant community standards

3.3 Service Provisioning Requirements

Currently, there is a wide variety of open-source and commercial products which
can be used to implement the platform [11]. They need to be chosen in accordance
with the service provisioning objectives and integrated to achieve the following:

SR1 Openness: Building on open standards, providing APIs and public data
SR2 Integration of open-source and commercial technologies: Exploiting

open-source solutions as a cheaper alternative, providing for better customization
and extendability, but also leveraging mature concepts, established methodolo-
gies, and stable commercial technologies to minimize migration and to foster
quick innovation and commercialization

SR3 Technological agnosticism: Through relying on proven industrial and
open-source solutions which support modularization, isolation, and interop-
erability without dependence on the underlying technology of implementation
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SR4 Explainability: Through dedicated services to be able to provide for rational
explanation at different level of operation, abstraction, and granularity

3.4 Data Governance Requirements

The Big Data is seen as an asset that needs to be effectively managed. This
requires governance for the decentralized and heterogeneous data sharing and data
processing. It should also facilitate building trust in AI as a key element for Data
Spaces as defined by the recent European AI Data and Robotics Partnership [3]:

GR1 Data sovereignty and privacy: By implementing data connectors with
guaranteed level of control following various compliance requirements such as
GDPR, RAF, IDS, etc.

GR2 Non-repudiation and auditability: Enabling responsible development
through maintenance of versioning, tracing, and auditing at all levels of operation

GR3 Trustfulness: Building trust between organizations in partnership and col-
laboration through enhanced data sovereignty and privacy, transparency, explain-
ability, auditability, security, and control of the access and operation

As a conclusion, we can say that the GATE Data Platform must be open,
extendible, and very flexible to improve the comprehensiveness of the different pro-
cesses and enhance the transparency of its operation at theoretical, methodological,
technological, and engineering levels. The architecture which can support all these
requirements will need to strike a fine balance which cannot be achieved by simply
endorsing the reference architectures or repeating the experience of other Big Data
CoE.

4 Hybridization of Data Platforms

This section presents the theoretical, technological, and methodological choices
behind the hybrid approach adopted for the GATE Data Platform.

4.1 Multilevel and Service-Oriented Architectures

Traditionally, AI as an area of advanced research and development has been divided
into several sub-domains: knowledge representation, automated inference, problem
solving, decision making, machine learning, etc. Although most of them are relevant
to data processing, only a few are directly present in data platforms. There is an
urgent need to bridge the different AI sub-domains on theoretical, methodological,
technological, and engineering levels in order to add intelligence to data processing
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Fig. 3 Vertical layering of the GATE Data Platform

along the entire value chain and on all levels. Our approach, multilevel concep-
tualization, allows for a seamless integration of several AI technologies as shown
in Fig. 3. The backbone of the architecture is the mapping between the levels.
The ontological, logical, analytical, operation, explanation, and linguistic levels
are based on a common foundation—the theory of situations and actions, which
allows to model both the statics and the dynamics in a single framework [12].
Technological support for the mapping between the layers comes from the “layered
cake” of the Semantic Web serialized languages. The software implementation is
based on the service-oriented architectures (SOA), which utilize the containerization
and orchestration capabilities of contemporary cloud technology.

4.2 Levels of Intelligence

The multilevel architecture of the platform can enhance Big Data projects through
adding intelligence on several levels:

Ontological level: Models the metadata, the domain knowledge, the methods,
and algorithms for data processing as well as the parameters of the processes
they generate during execution. Fundamental concepts on this level in our
approach are the situations, which describe the static state of affairs; events,
which formalize the asynchronous results of completing the data processing; and
actions, which model the synchronous data operations. On this level the model
is represented as an OWL ontology.

Logical level: Specifies the heuristics which control the execution of data man-
agement operations, referring to the concepts and individuals on ontological
level. They are modeled using SWRL rules.

Analytical level: Integrates the two previous levels into operational workflows,
modeled as RDF graphs. These workflows are much simpler than BPEL work-
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flows as there is no need to use the web services API for remote orchestration of
the services.

Operational level: Controls the workflows for executing data processing oper-
ations such as collection, pre-processing, transportation, aggregation, storing,
analyzing, and interpretation of the data, together with the events associated with
the pathways during executing the data processing workflows. Each operation
will be implemented as a software component, configured and deployed to the
cloud containers using the metadata from the ontology, and controlled by the
workflow monitoring tools available on the platform.

Explanation level: Generates rational explanation based on the representations
of the causal dependencies and their logic on ontological, logical, and analytical
levels, plus the results of data processing on operational level. It is based on a
separate ontology, which can be extended to different domains and problems with
domain-specific and problem-specific concepts, roles, and heuristics especially
for explanation [13].

Linguistic level: The attributes of the various ontological concepts form a case-
based grammar. It can be used for template-based generation of the text narrative
of the explanation [14].

The top concepts of the ontological hierarchies are the OWL classes Problem,
Data, and Solution, which represent the domain-specific and problem-specific
information. The taxonomies of Infrastructure and Resource classes
describe the available software and hardware components and tools for data
processing on the platform. On logical level this model can be expanded further
with domain-specific, problem-specific, and application-specific heuristics. From
the OWL and SWRL representations, we can extract information to build a pure
RDF graph, which forms the basis for the models on the next levels (Fig. 4).

Figure 5 illustrates the analytical model of a possible scenario for data analysis in
the form of such an AND-OR graph. It can be expanded further on analytical level
based on additional logical analysis and heuristic decisions. Later on, this graph
can be used to control the execution of the workflow operations. The above multi-
layer model of the data platform has been designed to allow seamless integration
of knowledge and data representation, problem solving, data analytics, and action
planning in a single conceptual framework. On the other hand, it splits the domain-
specific from problem-specific and application-specific logics, which supports high
modularization, interoperability, and reusability on all levels of operation. Our
recent research also shows the possibility to integrate decision-making components
with it based on stochastic process control, thus adding further capability to the
framework [16]. The use of explicit representation of knowledge in OWL and
SWRL also allows to address the problem of explainability, which is important for
presenting the work of the platform in a rational way to both professionals and non-
specialists [3].
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Fig. 4 Ontology of data processing on the platform

4.3 System Architecture

Many of the requirements for data platform can be met by contemporary SOA
(Fig. 6). The cloud-based infrastructure for such an architecture is shown in Fig. 7.
Its distinctive feature is the horizontal integration of application components through
containerization and their orchestration using the service control languages of
the container management system. This perfectly meets the requirements for the
GATE Data Platform, supporting multiple different projects and activities in several
application areas on different level and using a variety of technologies.

The system architecture shown in Fig. 7 is based on public domain software.
However, this is not a limitation of the platform. Although it has been designed from
the ground up using public domain software in mind, it does not exclude the use
of commercial software. Nowadays the Big Data software vendors (IBM, Oracle,
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Microsoft, Hortonworks, Cloudera, MapR, etc.) also develop their own software
based on open platforms and this allows compatibility between open-source and
commercial technology stacks.

5 Implementation

The platform as presented can support a wide range of problems which involve both
synchronous operations and asynchronous events. Such problems are typical in most
of the application themes of GATE and especially in future cities and Smart Industry
where the potential projects will need to deal with production line fault recovery,
critical infrastructure protection, urban planning, public safety management, etc.

5.1 Enabling Technologies

Contemporary cloud technology relies on several cornerstones—application con-
tainerization, container isolation, process synchronization, and service orchestra-
tion. Cloud deployment is especially attractive for data platforms due to the support
for SOA. Initially cloud hosting was pushed by big software vendors like Ama-
zon, Google, Microsoft, and Oracle, which introduces dependence on the service
providers. Hosting data platform on public cloud might not be feasible for project-
oriented organizations such as GATE due to the large running costs. Fortunately,
nowadays this computing paradigm can be implemented on the premises using
open-source software [15, 17], which allows to untangle the dependence from
the service providers. Of course, this introduces additional requirements for the
maintenance. At the same time it gives more opportunities for system integration,
software reuse, and optimization of the costs. Since the cloud service provision does
not differ in the case of public from private cloud hosting, it can be easily combined,
which would combine the benefits of both solutions.

The GATE Data Platform implementation relies on cloud software which exists
in both vendor-proprietary and open-source versions. The two scripting languages
for managing cloud resources supported by most container management systems—
YAML [18] and CWL [19]—are sufficient for specification, deployment, and
controlling the execution of the data services on the cloud and their orchestration in
data processing workflows. The control can be implemented using cloud dashboards
such as Apache Airflow [20], which monitors the deployment and execution
of containerized software components. Such an approach has the advantage of
reducing the requirements for the client and significantly simplifies the maintenance.

The layering of the GATE Data Platform allows additional automation of the
component deployment, service configuration, and workflow orchestration on the
cloud. The scripts needed can be generated directly from the OWL ontology, the
SWRL heuristics, and the Knowledge Graphs created on the previous levels. When
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the general task requires a local workflow of data processing operations, which has
to be executed directly within the data management system, it can also be generated
in the command language supported by it, like Oozie in Hadoop [21], JavaScript in
NoSQL, or stored procedures in SQL databases.

5.2 Data Services

The data services must support the data processing operations along the entire
Big Data value chain and will be the main focus of the research and innovation
projects of GATE. The process of developing containerized components for data
analysis on the cloud based on two popular methods for ML—SVM and NN—is
described in [22]. The GATE Data Platform does not impose any restrictions on the
programming languages, libraries, and tools, but will require parameterization to
support the interoperability and reusability.

The data services will run within separate containers under the control of the
container management system of the cloud. Each containerized component will
be developed according to a common methodology, which will be based on the
use of templates for configuration, deployment, and controlling the execution. This
will increase the productivity of the development and will support additionally the
automation of the deployment.

5.3 Engineering Roadmap

The major pathways supported by GATE Data Platform are the following:

Data warehousing and analysis of data at rest. Big Data requires powerful
infrastructure capable of running HDFS-compatible data management system
such as Hadoop [23], installed on cloud-enabled container management systems
and executing services within containers. The enterprise tools for transporting
the data are Kafka [24] and NiFi [25]. From platform perspective the analytical
engines, including machine learning tools, are parametrized black boxes and
their specifications will become part of the top-level ontology of the platform.
The analysis will be performed by containerized applications organized in data
processing workflows under the control of powerful tools such as Spark [26] or
ad hoc programs which include ML software libraries such as TensorFlow in
Python [27] or Deeplearning4j in Java [28].

Data streaming, integration, and analysis of data in motion. Using simple
IoT controllers such as ESP32 [29] or Arduino [30], over wireless protocols
such as MQTT [31], the sensor data can be transported and pre-processing in
real-time on the fly, can be stored to NoSQL databases [32] for later analysis
using suitable data analytics and machine learning tools.
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Conceptual modeling of the explanation. Using ontological editors such as
Protege the analysts and domain experts can develop problem-solving, machine
learning, decision-making, and operation models for explanation. They can
be then stored in graph databases such as GraphDB [33] for later use
during explanation of the entire data processing from conceptual, theoretical,
technological, and computational viewpoint.

Data services. As a by-product the cloud-based GATE Data Platform can
also support various data services offered to third parties—downloading of
datasets, broadcasting of live data streams, online and offline data pre- and
post-processing, data analytics on demand, etc.

To employ the GATE Data Platform, the project teams must complete several
steps:

1. Develop domain- and problem-specific ontologies to extend the ontology of data
processing.

2. Specify the problem-solving heuristics for solving particular problems on logical
level and index them against the ontologies.

3. Generate the working scenarios and extend them with decision-making heuristics
to control the execution on analytical level.

4. Develop domain- and problem-specific ontologies for explanation of the meth-
ods, algorithms, tasks, solutions, and results.

5. Develop software components implementing specific methods for data manage-
ment, data analysis, and data insight for various tasks on operational level.

6. Generate the containerization and orchestration scripts needed to deploy the
software components using the ontological representation and metadata.

The operations required for setting up a project may look demanding, but the
SOA of the platform allows to use design patterns. To leverage on this GATE
considers adopting a suitable model-centric methodology of working and dedicated
team training. On the other hand, the multi-layered architecture allows focusing
on a specific vertical level and/or horizontal component which will lower the staff
requirements.

After completing some project tasks the more universal components can be
incorporated in the library of platform services for further use. Such an incremental
development will allow the platform to grow and expand over time without the need
for changing its core.

6 City Digital Twin Pilot

This section presents one of the flagship projects of GATE which will benefit from
the use of data platform supporting hybrid AI. At the same time, it is a testbed of
the philosophy behind it. City Digital Twin is a large interdisciplinary pilot project
that aims at developing a Digital Twin platform for designing, testing, applying,
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Fig. 8 Multi-layer framework of city Digital Twin pilot

and servicing the entire lifecycle of the urban environment. The project is focused
on a spatially resolved exploration of a broad range of city-specific scenarios
(urban climate, mobility of goods and people, infrastructure development, buildings’
energy performance, air and noise pollution, etc.). The core of the platform is a
semantically enriched 3D model of the city. Simulation, analytical, and visualization
tools will be developed on top of it enabling the basic idea of the Digital Twin
“design, test, and build first digitally.” The technological framework used for initial
implementation of the platform is shown in Fig. 8.

The development has started with implementation of a CityGML-compliant 3D
model at ontological level, covering District Lozenets of Sofia. CityGML is an
official international standard of the Open Geospatial Consortium (OGC). It is
implemented as a GML application schema [34]. Because CityGML is based on
GML, it can be used with the whole family of GML-compatible web services
for data access, processing, and cataloguing, such as Web Feature Services, Web
Processing Services, and Catalogue Services. It allows to model the significant
objects in a city taking into account their 3D geometry, 3D topology, semantics,
and visual appearance. Explicit relationships and component hierarchies between
objects are supported and thus the 3D model is applicable to urban planning,
environment analysis, 3D cadastres, and complex simulations [35]. Table 1 presents
a mapping between the multi-layer framework of the GATE Data Platform and
the technological layered framework of city Digital Twin platform. The city digital
framework spans over several data pathways of the GATE Data Platform: (1) data
at rest, (2) conceptual explanation, (3) data services, and in the future—(4) data in
motion.
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Table 1 Mapping of pilot layers to GATE Data Platform levels

Modeling and
transformation Data storage

Analysis and
simulation Tiling Visualization

Explanation � �
Operation � � � �
Analytics � �
Logics �
Ontology � �

The 3D model is based on three main data sources: cadastral data, covering
most of thematic modules of CityGML standard, such as buildings, green spaces,
relief, road network, etc.; high-resolution satellite image; and point cloud data.
The satellite imaginary and point cloud data are used for semantic enrichment
of the 3D model as well as for urban analysis, such as cadastre validation and
urban change detection. Currently, the 3D model covers Building and Relief
thematic modules in CityGML 2.0, including information about the buildings
addresses as well as their intersection with the terrain. It is mainly developed
using FME software, which allows to create and reuse data integration workflows.
Additional transformations, related to the integration of the buildings and terrain,
are performed, using MathLab. At operational level, the 3D model is stored in a 3D
City Database [36], which can be implemented on either Oracle Spatial/Locator or
PostgreSQL/PostGIS. PostGIS database is chosen for the current implementation of
the platform.

Regarding the second data pathway, a domain-specific city data model and a
corresponding ontology will be elaborated at ontological level for the purpose
of urban planning. Thus, the full potential for mixing symbolic and graphic
representation of information in Knowledge Graphs using graph databases, such as
Neo4j [37] or GraphDB [33], will be exploited at the operational level. The domain
model is needed to establish the basic concepts and semantics of the city domain
and help to communicate these to GATE stakeholders. NGSI-LD [38] is chosen
for its implementation, since it allows for specification of rules, which control the
execution of data management operations at the logical level. NGSI-LD supports
both the foundation classes which correspond to the core meta-model and the cross-
domain ontology. The core meta-model provides a formal basis for representing
a “property graph” model using RDF/RDFS/OWL. The cross-domain ontology
is a set of generic, transversal classes which are aimed at avoiding conflicting
or redundant definitions of the same classes in each of the domain-specific and
problem-specific ontologies.

The third data pathway is realized through sharing the 3D model for user
interaction through the web. The 3D model is currently uploaded to a Cesium
ion platform, which optimizes and tiles it for the web. Cesium ion serves the 3D
model in the cloud and streams it to any device. A web application is developed
for visualization of the building model (Fig. 9) which will become part of the
explanation level. It is currently hosted on a Node.js web server. Cesium.js is used
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Fig. 9 3D model visualization of Lozenets District in Sofia

for its implementation due to its extensive support of functionality, such as attribute
display and query, object handling, highlighting, map layer control, etc.

Several use cases in a process of implementation demonstrate the potential
of the GATE Data Platform in urban setting. The first one is related to urban
planning. The main idea behind it is to develop a tool for parametric urban design,
supporting urban planning by taking into account neighborhood indicators related
to population, green areas, transport connectivity, etc. The logic of the parametric
urban design and its implementation using genetic algorithms fit within the logical,
analytical, and operation level, respectively. The second use case deals with analysis
and simulation of air quality, focusing on pollution dispersion independent of
the wind direction and velocity, as well as the geometry of the buildings. In
collaboration with researchers from Chalmers University, the wind flow in an urban
environment is explored by applying computational fluid dynamics. The simulations
themselves are implemented on the operational level, while their visualization
corresponds to the explanation level of the GATE Data Platform.

The fourth, real-time data pathway of the GATE Data Platform will be fully
operational after GATE City Living Lab is completed. The Living Lab will generate
data for air, weather, and noise monitoring and will continuously deliver data to
the cloud for real-time data analysis. A pilot implementation for processing of data
about air pollution, generated by open air sensors across the city, is already on the
way. When the GATE Data Platform is fully operational, we plan to transfer the
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entire project to it, which would allow us to reuse various components in other
projects related to the analysis of the urban environment.

7 Conclusion and Future Work

The data platform under development for the GATE CoE is unique in the way it
combines theoretical, technological, and applied aspects in a simple but powerful
multi-layered hybrid framework, based on AI and empowered by the cloud tech-
nologies. The separation of domain-specific from problem-specific knowledge at
ontological, logical, and analytical levels allows detaching the tasks for specification
and modeling from the technical tasks for processing the data, which is the
cornerstone of the interoperability of both data and operations. At the same time, it
facilitates explanation on different level and with different granularity. Furthermore,
thanks to the containerization and the orchestration of data services, the platform
adds high degree of automation, reusability, and extendibility. Still, this hybrid
platform can be used in a uniform way, regardless of the mode of working—locally,
remotely, over network, or on the cloud.

The possibility for vendor-independent implementation of the platform, based on
open software, very well supports both academic teaching and professional training
practices, which is an additional advantage for GATE. In order to leverage the
full advantages of AI technologies for data processing presented in this chapter,
the software development for research, innovation, and commercialization requires
conceptual, methodological, and technological discipline which will gradually
become a practice at the GATE CoE.

GATE has already completed the development of the ontological level of its
data platform and currently proceeds with formulation of heuristics, which will
guide its operations. The immediate follow-up plans include developing of an
ontological model of explanation, which will complete its conceptual framework
as an explainable AI framework. GATE is relying on both its academic partners and
its industrial supporters to build the technical infrastructure needed to implement
this solution, and it is expected that by the end of the year, the GATE Data Platform
will be fully operational. Its belief is that this framework can be of interest to other
organizations with similar goals within the European Big Data space.
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