
Chapter 12
Deep Learning and Its Environmental
Applications

Ahmed R. Nasser and Ali M. Mahmood

Abstract The rapid development of technologies brings a new set of challenges and
difficulties in scientific studies and research in different fields. These challenges
arose due to the considerable increment in the amount of data produced and the
complexity of mathematical problems. Consequently, machine learning
(ML) approaches, particularly deep learning (DL), receive enormous attention
from academia recently. DL is a subfield of ML, which is intended to solve high
complexity problems and address complex mathematical models accurately. This
chapter explores DL algorithms from viewpoints including mathematical theories
description of DL algorithms, the advantages of DL with its challenges, the present
state of the art of DL applications, and future fields of knowledge, particularly
solving complex problems of environmental systems. The focus is on three key
issues including earthquake prediction, weather forecasting, and environment pro-
tection and sustainability. The reader of this chapter can gain comprehensive knowl-
edge regarding DL with potential research issues and challenges to be solved in
environmental systems.
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12.1 Introduction

We introduce artificial intelligence and embellish its main subfields of machine
learning and deep learning.

A. R. Nasser (*) · A. M. Mahmood
Control and Systems Engineering Department, University of Technology-Iraq, Baghdad, Iraq
e-mail: ahmed.r.nasser@uotechnology.edu.iq; Ali.M.Mahmood@uotechnology.edu.iq

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. N. Furze et al. (eds.), Earth Systems Protection and Sustainability,
https://doi.org/10.1007/978-3-030-98584-4_12

293

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98584-4_12&domain=pdf
mailto:ahmed.r.nasser@uotechnology.edu.iq
mailto:Ali.M.Mahmood@uotechnology.edu.iq
https://doi.org/10.1007/978-3-030-98584-4_12#DOI


12.1.1 Artificial Intelligence

Artificial intelligence (AI) can be defined as the science of creating intelligent
machines (McCarthy et al. 1959). AI is a general name for technologies that make
any guess or decision process. Contrary to the general view, AI can be an algorithm
that works with or without a deep learning process. Up until the emergence of
machine learning algorithms, AI studies were based on a structure that was described
as “hard-coded,” where all logical and mathematical operations were coded by the
developer. The first AI chess game was simply an artificial intelligence algorithm,
solely learning without the help of human knowledge via solving complex, multistep
problems. This type of AI is called symbolic artificial intelligence (Hernández-
Orallo 2017). Studies in the science of AI date back to the 1950s. Later, AI involved
different subfields such as machine learning and deep learning as shown in Fig. 12.1,
which illustrates the correlation of AI and its subdivisions (Goodfellow et al. 2016).

12.1.2 Machine Learning

Machine learning (ML) has been defined as a “field of study that gives computers the
ability to learn without being explicitly programmed” (Samuel 1988). ML is a form
of AI that allows a system to learn from data. ML employs data-learning algorithms
to identify data and repetitively predict data-related results. Algorithms receive
training data, which makes it possible to produce models with more accurate results.

Fig. 12.1 Overview of
artificial intelligence and its
main subdivisions
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Once a system has been trained, it is expected to produce meaningful output when an
input is given to the trained model (Franklin 2005). A prediction algorithm is created
and once trained, providing the model with data returns a prediction based on
educational data. The two main tasks for machine learning algorithms are prediction
and classification (Ahmed and Hayri 2018; James et al. 2013). Prediction is used in
the case of quantitative system output in models learned from data. In cases where
the input data is qualitative, the methods used to determine or classify which class
each data instance belongs to.

The intensive study of machine learning has led to many strategies and algorithms
being proposed. Learning strategies used in ML are supervised, unsupervised, semi-
supervised, reinforced, and deep learning (James et al. 2013). The taxonomy of
machine learning approaches is shown in Fig. 12.2 (Dey 2016). Models created by
supervised learning aim to train the relationship between target values through a
group of input values and to produce the outputs closest to the target values. The best
model obtained will give the closest output for the new input values. In unsupervised
learning, the relationship between input values without target values is revealed.
With the help of these relationships, close values are grouped, as in clustering
algorithms. A new entry will belong to a set, depending on whichever one of the
sets it links. Semi-supervised learning algorithm premise between the former two
concepts, using a larger part of unlabeled data compared to the labeled data. In the
reinforced learning algorithm, instead of a consultant, a criterion evaluates the
obtained output as good or bad versus the given input and is used to give the target
output. Deep learning is a more powerful method to solve data analytics and learning
problems found in large datasets and will be discussed further in subsequent
sections.

Fig. 12.2 The taxonomy of machine learning approaches
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12.1.3 Deep Learning

Deep learning (DL) is a component of the machine learning family that is capable of
performing feature extraction, classification, and transformation operations using
large amounts of data; its structure and capabilities mimic the human brain to solve
complex problems. Each DL algorithm can be called a machine learning algorithm
as it performs learning from data. In contrast, not every machine learning algorithm
is a DL algorithm, since DL is a specific kind of machine learning. The structure of
DL methods is based on artificial neural networks (ANN) calculation with an
additional deep network structure. The ability of DL to solve complex problems
derives from the ability of ANN to solve nonlinear problems. In deep learning,
increasing numbers of layers represent the depth of the model that provides a basis
for solving complex problems (Patterson and Gibson 2017).

Historically, the elementary learning algorithm of the supervised multilayer deep-
feed perceptron was introduced by Ivakhnenko and Lapa (1966). In this study,
the best features of each layer were selected by statistical methods and transmitted
to the next layer, where the applied learning algorithm was the least-squares method.
The first DL architecture was introduced by Fukushima in 1979 as depicted in
Fig. 12.3. A self-organizing network was developed with “teacherless learning” in
the structure that is inspired from visual nervous systems. Fukushima’s nets included
multiple interconnected layers similar to modern neural nets (Fukushima 1980). The
lack of learning in deep architectures is manifested in the backpropagation of errors
in multiple layers. Although backpropagation algorithms have been proposed in
previous years, the first successful deep neural network application was developed
by LeCun et al. (1989). However, it was found that this method is unsuitable for
critical time applications since training lasted approximately 3 days. Later authors

Fig. 12.3 The first deep network architecture
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(LeCun et al. 1990) applied coiled backpropagation to classify handwriting numbers.
In 1995, the wake-sleep algorithm was developed (Hinton et al. 1995). In this
method, network training with six interconnected layers and hundreds of hidden
layers was formed, with training over 2 days. In 1997, recurrent neural networks
such as long short-term memory was proposed, which made important improve-
ments (Hochreiter and Schmidhuber 1997).

Due to the cost of computation in the traditional ANN, from the 1990s to the
2000s, the application of vector machines has become a popular choice. Conse-
quently, major advances were made owing to the faster processing of computers and
the emergence of graphics processing units (GPUs). Computational speed has
increased 1000-fold over 10 years. The neural network has begun to replace support
vector machines (Schmidhuber 2015). GPUs have been used to increase training
speed and have proven efficacy with a normalized method called “dropout” (Hinton
et al. 2012) that was prepared later to reduce overfitting in fully connected layers
(Krizhevsky et al. 2012). Large companies such as Google, Facebook, and Microsoft
have realized this trend and utilize deep learning (Şeker et al. 2017).

12.1.4 Differences Between Machine Learning and Deep
Learning

The presence of automatic feature extraction signifies the main difference between
traditional machine learning and DL. To extract features, DL algorithms need a big
dataset. The traditional machine learning model specifies the characteristics or
(features) of each class before training and classifying (Fig. 12.4), while in deep
learning these features are automatically extracted and learned (Vieira and Ribeiro
2018). Deep learning does not require an extra feature extraction stage because the
network learns to extract features while training. In the multilayered perceptron
structure, less than two hidden layers can be used, whereas a deep learning neural
network makes use of many hidden layers. Although both networks have error-based

Fig. 12.4 Machine learning versus deep learning
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learning, supervised learning is done in the multilayered perceptron structure, while
DL performs potentially unrestrained learning (Goodfellow et al. 2016).

The main feature that distinguishes deep learning network structure from a simple
artificial neural network is that it has multiple hidden layers and a more complex
network structure as can be seen in Fig. 12.5.

In Table 12.1, machine learning and deep learning are compared in terms of data
dependence, hardware dependencies, feature extraction, and training time. For deep
learning algorithms to perform well compared to standard machine learning, data
and powerful hardware may be required (Kin 2019).

Fig. 12.5 Comparison between a simple neural network and deep learning neural network

Table 12.1 Comparing machine learning and deep learning

Comparison
parameter Machine learning Deep learning

Data
dependency

Excellent performance in
small/medium dataset

Excellent performance in a large dataset

Hardware
requirements

It can work on a relatively
low-end machine

It requires a powerful machine, preferably GPU:
it needs hardware capable of performing multiple
matrix multiplications

Feature
extraction

They need to know the char-
acteristics that data represent

It does not need to know the best feature
representing data

Training
time

It may take from a few
minutes to hours

It may take up to weeks. This is because the
artificial neural network needs to calculate a sig-
nificant amount of weight
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12.2 Deep Learning Processes

The main process of DL involves the stages of definition, selection, and testing.
Definition of the problem and determination of the suitability of the solution with
deep learning leads to the definition of related datasets and being ready for analysis.
Consequently, the appropriate deep learning architecture is chosen, followed by
training of the system using the dataset and selected deep learning architecture.
These steps enable the final process of testing the performance of the trained system
with test data that was not used for the training.

12.3 Theories of Deep Learning Algorithms

Deep learning consists of three main algorithms: deep neural network (DNN),
convolutional neural networks, and recurrent neural networks. The theories of
each deep learning algorithm are illustrated in subsections.

12.3.1 Deep Neural Network

Artificial neural networks are an artificial intelligence technique developed by
modelling the processing structure of the human brain. Biological nerve cell neurons
form the nervous system. ANNs are also called neurons. The neural network
architecture includes the number of neurons, the number of layers, and the types
of interlayer connections. The human brain consists of a complex network connec-
tion of neurons. These neurons serve to transmit information from the brain to the
body. According to scientific studies, the human brain may have an average of
100,000,000,000 neurons (Gurney 2014). Each of these neurons is connected to
others, with an average of 6000 connections each. These networks of connections are
responsible for our perception and learning of everything around us. Artificial neural
network neurons consist of input, weights of inputs, bias, activation function, and
output. Figure 12.6 illustrates the artificial neural network neuron and its
connections.

By adding bias b value to the sum of the product of a neuron’s output-input values
(x1, x2, . . ., xn) and their weights, (w1,w2, . . .,wn) are obtained by passing

(z ¼ Pn
1
xi � wi þ b) through the activation function α.

DNNs are a type of multilayer perceptron (MLP) artificial neural network with a
large number of hidden layers (Patterson and Gibson 2017). Multilayer artificial
neural networks are an example of DNN.
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12.3.2 Multilayer Artificial Neural Networks

The human brain has a layered structure. Data from the senses is transferred from
one layer to another and transformed into information. This data is processed by
transferring from the bottom layer of the visual cortex to the top layer. The last layer
determines which object is visible in the image. This layered structure in the human
nervous system is modelled to create an artificial neural network, called a multilayer
artificial neural network. The first layer on the left is called the input layer, and the
neurons in the input layer are called input neurons. The middle layer is called the
hidden layer, and the right layer is called the output layer (Schmidhuber 2015).
Multilayer structure is shown in Fig. 12.7

Fig. 12.7 Multilayer artificial neural network

Fig. 12.6 Artificial neural
network from the 1990s to
the 2000s
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12.4 Convolutional Neural Networks

In the last decade, convolutional neural networks (CNN) have shown significant
development in research and applications. Convoluted neural networks can work
with large amounts of data produced today. In general, CNNs show very high
accuracy images and video classification applications. The success of CNN is seen
in self-driving vehicles and online services offered by large companies such as Tesla
or Google. The high level of data, new-generation CNN algorithms, and high-
performance GPUs led to create a new trend in the industrial revolution (Hu et al.
2015).

Traditional CNN architecture includes five main layers, the input layer followed
by the convolution layer, then the pooling layer, the fully connected layer, and
finally the output layer. Researchers are working with CNN architectures such as
“AlexNet,” “ResNet,” “Inception,” and “VGG,” which are created with different
layouts of these five layers. In this section, the three main layers of CNN architecture
will be examined in more detail. An example of CNN structure is shown in Fig. 12.8
(Hu et al. 2015).

12.4.1 Convolution Layer

The concept of convolution was first introduced by LeCun et al. (1990). Convolution
is a customized linear process. These networks are simply networks that perform
convolution instead of matrix multiplication in one layer (Goodfellow et al. 2016).
The discrete-time convolution of CNNs is expressed by Eq. (12.1) (Goodfellow et al.
2016):

st ¼ x � wð Þt ¼
X1
i¼�1

xi � wt�i ð12:1Þ

Fig. 12.8 Example of convoluted neural network structure

12 Deep Learning and Its Environmental Applications 301



In Eq. (12.1), filter (kernel) w, input x, time t, and s are expressed as a result. When a
two-dimensional input such as a picture is used as the input convolution process,
Eq. (12.2) is expressed by Goodfellow et al. (2016):

si,j ¼ I � Kð Þi,j ¼
X
m

X
n

Ii,jKi�m,j�n ð12:2Þ

In Eq. (12.2), the terms i and j refer to the positions of the new matrix to be obtained
as a result of the convolution process. In many cases, the center of the filter is
positioned at the origin (Goodfellow et al. 2016).

12.4.2 Pooling Layer

In pooling operations, the output size is reduced by using functions, such as average
or maximum value, to summarize the subregions. The pooling process subtracts a
value by averaging or calculating the maximum of values within a specified area.
The pooling process is implemented by the sliding window method. The sliding
window creates value from the corresponding input field according to the pooling
method determined each time and adds it to the output layer (Dumoulin and Visin
2016). Through pooling layers in a convolutional neural network, small portions of
the aforementioned input are reduced to a single constant value according to the
preferred method. Accordingly, pooling layer calculations are less costly than
convolution layer calculations.

The output size (o) of the pooling layer, the relationship between the input size (i),
the window (part) size (k), and the number of steps (s) on which operations will be
performed are shown in Eq. (12.3) (Dumoulin and Visin 2016).

o ¼ i� k
s

� �
þ 1 ð12:3Þ

The relationship in Eq. (12.3) applies to all types of docking (Dumoulin and Visin
2016).

12.4.3 Fully Connected Layer

This layer works as an artificial neural network. The values generated as a result of
convolution and pooling operations are processed by this layer as input, and the
result is generated by the number of classes in the output layer.
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12.4.4 Network Hyperparameters

To achieve the best results for convolutional networks as well as basic neural
networks, hyperparameters should be ideally adjusted. Hyperparameter details
include depth, number, and input size.

The depth is the number of filters that are applied; each filter looks for different
attributes in the input. For example, when the convolution layer receives an image as
input, different neurons in each filter will be active due to the corner or different
colors present in that input. All neurons that look at a certain part of the input and
look for different characteristics are called depth columns (Goodfellow et al. 2016).

The number of steps is the hyperparameter that specifies how many pixels the
filter will shift over the input.

Padding is the process of filling the input with zeros. The reason for padding is to
control the size of the output after convolution. The effect of the fill on the output
size is determined using Eq. (12.4) for the input size (i), filter size (k), number of
strides (unit strides), and any fill (p) value (Dumoulin and Visin 2016; Goodfellow
et al. 2016).

o ¼ i� kð Þ þ 2pþ 1 ð12:4Þ

Given the input size and output size are the same as the result of convolution, the fill
value should be 1. This is called half padding and can be expressed mathematically.
For any value i and (k¼ 2n + 1, n2N), the result is calculated with (o¼ i), where the
number of strides (s) ¼ 1 and the padding p ¼ [k/2] (Dumoulin and Visin 2016;
Goodfellow et al. 2016).

Although convolution generally decreases the size of the output relative to the
input, it is sometimes necessary to reverse it. The appropriate fill value should be
preferred to increase the output size. For any value i and k, the number of strides is
1, and the padding is calculated with Eq. (12.5), where p ¼ k � 1 (Dumoulin and
Visin 2016; Goodfellow et al. 2016).

o ¼ iþ k þ 1ð Þ ð12:5Þ

Generally, the result for any input size (i), filter size (k), padding value ( p), and some
strides (s) is calculated by Eq. (12.6) (Dumoulin and Visin 2016; Goodfellow et al.
2016):

o ¼ iþ 2p� k
s

� �
þ 1 ð12:6Þ

In artificial neural networks, the pooling layer ensures the output does not change
against minor deflection of the input. The most common type is maximum pooling,
which breaks up the input and takes only the maximum value of each segment. Since
the docking process is the continuous application of the input to different parts like
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the convolution process, the expression defined in Eq. (12.6) can be used. Since the
fill value is zero in the pooling process ( p ¼ 0), the result is calculated by Eq. (12.7)
(Dumoulin and Visin 2016; Goodfellow et al. 2016):

o ¼ i� k
s

� �
þ 1 ð12:7Þ

Equation (12.7) can be used in any kind of pooling operation that applies to any i, k,
and s value (Dumoulin and Visin 2016; Goodfellow et al. 2016).

12.5 Recurrent Neural Networks

Recurrent neural networks (RNN) represent a class of artificial neural networks with
connections among units with a directed loop (Goodfellow et al. 2016). RNN is a
feedforward type of neural network reinforced through the addition of edges
extending along with adjacent time steps, which gives the concept of time to the
normal neural network model. Similar to feedforward networks, RNN may not have
loops between conventional edges. However, the repetitive edge connecting adjacent
time steps can form loops, including length loops that are self-connecting from an
edge. At time t, repetitive edges are retrieved from the current data point xt and the
hidden node values h(t � 1) from the previous state of the network (LeCun and
Bengio 1995).

The output yt is calculated by the values of the hidden node ht at time t. The input
x(t � 1) at time t � 1 can affect the output yt and the other repetitive connections at
time t; x input at time b can affect output at time t y and later through repetitive
connections. In a simple RNN, all calculations required are shown for calculation at
any time step forward as in Eqs. (12.8) and (12.9) (LeCun and Bengio 1995):

ht ¼ σ whxxt þ whhht�1 þ bhð Þ ð12:8Þ

yt ¼ softmax wyhht þ by
� � ð12:9Þ

Here, whx refers to the conventional weight matrix between the hidden layer and the
input, while whh is the repetitive weights matrix between the hidden layer in the
adjacent time steps and itself. The bias parameters bh and by allow each node to learn
the offset. In Fig. 12.9, a block diagram of a simple RNN structure is given.

In Sect. 12.7, long short-term memory is detailed with RNN.
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12.6 Long Short-Term Memory

One of the common structures that use components of RNN architecture is long
short-term memory (LSTM) (Goodfellow et al. 2016). The structure of LSTM
networks consists of memory blocks with memory cells and gate units. There are
three special doors in the LSTM memory block: entry, forget, and exit. The core
structure of the LSTM is demonstrated in Fig. 12.10. The data input flow to the
memory cell is controlled by the input port. The output port manages the output flow
from the memory cell to the rest blocks. Forget gate determines the extent to which
the former block outputs are effective in the current block. This gate is managed by a
simple single-layer neural network. In this gate, the activation is determined in the
Eq. (12.10) following Chen and Wang (2017).

f t ¼ σ W xt, ht�1, ct�1½ � þ b f

� � ð12:10Þ

Fig. 12.9 Recurrent neural network structure

Fig. 12.10 The internal structure of long short-term memory (LSTM)
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Here, xt forms the former block output ht � 1, the former LSTM block memory ct�1,
and the bias vector bf. W is the weight vector of the inputs. The sigmoid activation
function represents the output of the forget gate and is implemented by multiplying
the previous block memory. Thus, the extent that which the earlier block memory
will be effective for the current network is calculated. When the activation of the
output vector includes values near zero, the prior memory is forgotten.

Another gate represents the section in which the new memory is formed by a
simple neural network (NN) with the “tanh” activation function and the former block
memory effect. The mathematical expressions of these operations are shown in
Eqs. (12.11) and (12.12), following Chen and Wang (2017).

it ¼ σ W xt, ht�1, ct�1½ � þ bið Þ ð12:11Þ

ct ¼ f t � ct�1 þ it � tanh W xt, ht�1, ct�1½ � þ bcð Þ ð12:12Þ

Finally, the exit door is the section where the output of the existing LSTM block is
produced. These outputs are calculated as in Eqs. (12.13) and (12.14) (Chen and
Wang 2017):

ot ¼ σ W xt, ht�1, ct�1½ � þ boð Þ ð12:13Þ

ht ¼ tanh ctð Þ � ot ð12:14Þ

As with other networks, deep learning structures have become widespread, and the
design of LSTM networks to include many layers has revealed the deep structures of
these networks.

12.7 A Comparison Between Deep Learning Algorithms

A comparison between DNNs, CNNs, and RNNs deep learning methods is
presented in Table 12.2.

12.8 Advantages and Challenges of Deep Learning

The following subsections describe the main advantages of using DL over other ML
techniques and the recent challenges that face researchers using DL.
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12.8.1 Advantages of DL

The main advantages of DL over regular machine learning are given according to
Alom et al. (2019) and Pouyanfar et al. (2018).

• Similar to neural network-based approaches, DL can be utilized in many different
applications and data types.

• DL can automatically extract features from the data; therefore, no pre-feature
extraction process is required.

Table 12.2 Comparison between DNNs, CNNs, and RNNs

Features Deep neural networks
Convolutional neural
networks

Recurrent neural
networks

Definition DNNs are a type of MLP
with a large number of
hidden layers

CNNs are a type of neu-
ral network with different
special-purpose layers
that have been designed
to map image data to an
output variable

RNNs are a type of
neural network with
feedback loops in the
recurrent layer which act
as memory and used to
work with sequence
prediction problems

Architecture DNNs include different
interconnected layers
such as an input layer,
one or more hidden
layers, and an output
layer

The architecture of
CNNs is similar to feed-
forward artificial neural
networks with several
different special-purpose
layers such as convolu-
tion, pooling, and fully
connected layers

The architecture of
RNNs consists of dif-
ferent interconnected
recurrent layers with
feedback loops that act
as internal memory to
process arbitrary
sequences of inputs

Input/output
size

Both input and output
size are fixed

CNN uses inputs with
fixed size and generates
outputs with a fixed size

RNN can handle arbi-
trary input/output sizes

Suitability of
classification/
regression
problems

DNNs are suitable for
classification and regres-
sion prediction problems

CNNs are suitable for
classification and regres-
sion prediction problems

RNNS are suitable for
Classification problems
and Regression predic-
tion problems

Type of data DNNs can be used on
Tabular data or time-
series data

CNNs can be used on
spatial data or image data

RNNs can be used on
temporal data or
sequential data

Applications Applications deal with
image data, text data, and
time-series data

Applications deal with
image data and video
data

Applications deal with
Text data, Speech data,
and Generative models.
However, RNNs are not
appropriate for tabular
and image data

Complexity Complexity depends on
data size and number of
hidden layers

Complexity depends on
data size, filter size,
number of layers, as well
as setting the
hyperparameters

Complexity depends on
data size, number of
layers, and amount of
required memory
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• DL is able to drive new feature sets to form a dataset with a limited series of
features.

• DL can automatically adapt to overcome the natural variations in the
training data.

• With the usage of GPUs, DL can perform a massive amount of computations that
can be achieved in a parallel manner. Therefore, DL can be used to generate
complex models from large volumes of training data.

Hence, the flexible architecture of DL can be adapted to new problems relatively
easily. The extreme performance of DL over other solutions makes DL preferable for
different applications such as speech recognition, computer vision, natural language
processing, and games.

12.8.2 Challenges of DL

There are several challenges for DL including Alom et al. (2019) and Pouyanfar
et al. (2018).

• Data availability and quality: DL performance increases with the amount of
available training data. In most industrial applications, large amounts of training
data are not often easily available. This becomes a big challenge for DL to work
with this small amount of training data and provides high performance. Another
challenge for DL is the quality of the training data. When the data is used for
training, DL models contain high noise, which can lead DL to degrade and reduce
its performance.

• Security: DL is often used to improve and strengthen cybersecurity applications.
However, DL networks are vulnerable to malicious attacks by modifying the
input to security DL models.

• Higher processing power: When working with large amounts of training data, DL
algorithms perform intensive computations and require a huge amount of
processing power. Providing powerful computation platforms while keeping the
cost down becomes an important challenge for DL.

• Hyperparameter optimisation: DL performance depends on identifying the opti-
mal hyperparameters which are the network parameters required to be initialized
before the training process. Identifying the optimal values of DL networks,
hyperparameter is the most important challenge for DL, and setting these param-
eters incorrectly can impact the performance of DL and cause overfitting
problems.
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12.9 Utilization of DL in Environmental Systems
Applications

Natural phenomena affecting planet Earth represent one of the hottest global topics.
These phenomena lead to an increase in natural disasters and threaten humans and
other life on Earth. Hence, the prediction of changes in environmental systems could
be interpreted in reality as protecting thousands of human lives as well as saving
resources and money. The losses of facts and statistics regarding natural disasters
can be found in the Insurance Information Institute (https://www.iii.org/ accessed
12 May 2021). This topic has attracted the attention of decision-making leadership
and the scientific community. Several factors contribute to disasters. In this context,
the application of deep learning in predicting different phenomena has been applied.
The prediction of earthquakes, rainfall, and environmental protection is discussed in
subsections.

12.9.1 Application of DL in Earthquake Prediction

Earthquakes cause great and sudden destruction; these natural disasters negatively
affect the lives of thousands of people. Severe earthquakes cause many psycholog-
ical and negative effects as well as loss of life and property. Every year, there are a
large number of earthquakes in different locations with various magnitudes.
Figure 12.11 shows the number of earthquakes across the world that occurred in
the last decade for the period 2009–2019 according to the United States Geological
Survey (https://earthquake.usgs.gov/earthquakes/map/?extent¼-55.77657,-520.
66406&extent¼84.16085,-183.16406) Retrieved 2019.

Natural disasters such as earthquakes do not provide any obvious warning before
occurrence; associated losses cannot be prevented. The prediction of earthquakes has
always been an interesting subject, and the success of the prediction may save many

Fig. 12.11 The number of earthquakes worldwide for 2009–2019
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thousands of human lives. There are earthquake studies based on mathematical
analysis and machine learning algorithms like decision trees and support vector
machines, ANNS, and precursors signal in the literature (Sobolev 2015). However,
due to the unpredictable complex and, dynamic nature of earthquakes, these methods
do not provide consistently accurate results (Sobolev 2015). Deep learning algo-
rithms such as RNN and CNN can capture the complex nonlinear correlations among
data with high performance and, therefore, receive huge attention from researchers
on the subject of earthquake prediction.

12.9.2 Using RNN Deep Learning for Earthquake Prediction

The work presented by Wang et al. (2017) exploits the DL method of RNN for
earthquake prediction. In earthquake prediction, regular machine learning methods
are incapable of providing respectable results due to the unpredictable and the
dynamic nature of earthquake data. Deep learning methods such as RNNs have the
advantage of capturing the complex nonlinear relations in data and so are suitable for
complex time-series prediction required in earthquake prediction. Due to crust
movement in earthquakes, spatiotemporal correlations of earthquake history data
are considered to increase the accuracy of predictions. LSTM variation of RNNs has
a strong capability of learning and capturing the nonlinear correlation in earthquake
data with long-term intervals.

To improve earthquake prediction, earthquakes have been modelled based on
spatiotemporal correlations dividing the area of interest into different subregions.

The model was built based on the raw information of earthquakes such as events
(E¼ {e1, e2, . . .}), time (t), latitude (La), longitude (Lo), and magnitude (Ma) (Wang
et al. 2017). The first step of building the earthquake model is selecting the area of
interest in a rectangle shape with four vertices expressed as View, Vsw, Vne, and
Vse. The whole area is designated M equal to mh (horizontal edge) multiplied by mv

(vertical edge); this may be divided into multiple subregions (SR) using Eqs. (12.15)
and (12.16).

SRve ¼ La Vnwð Þ � La Vsw,ð Þj j=mh ð12:15Þ

SRhe ¼ Lo Vnwð Þ � Lo Vneð Þj j=mv ð12:16Þ

where SRve is the vertical edged subregion and SRhe is the horizontal edged
subregion. Each earthquake event is allocated its corresponding subregion as in
Eqs. (12.17) and (12.18):
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i ¼ Lo eð Þ � Lo Vneð Þj j
SRhe

� 	
ð12:17Þ

j ¼ La eð Þ � La Vswð Þj j
SRve

� 	
ð12:18Þ

Consequently, a temporal segmentation method may be applied to produce the
events frequency of each subregion in each time interval Δt. This results in the
multi-hot input vector with dimension Mx 1 (M is the total number of subregions)
which is later combined with earthquake time series vector L to generate a
two-dimensional vector called X and used as an input to the LSTM deep learning
algorithm.

For earthquake prediction, LSTM deep learning algorithm is used for training the
two-dimensional vector X. At each LSTM layer, ht is calculated using the following
equation:

ht ¼ ot:∅ ctð Þ ð12:19Þ

The dropout operation is applied to prevent overfitting issues. Then, the results pass
through dense network layers to calculate hDt ¼ WDWPh

L
t þ b which passed to

softmax activation function and then calculate the loss function based on cross-
entropy. The network is learned by minimizing the loss function using a gradient
descent scheme.

Two case studies are used for evaluating the performance of the system by
training the LSTM using a one-dimensional data vector and the second by training
the LSTM using a two-dimensional data vector.

To train the system, the one-dimensional earthquake data is obtained from USGS
(US Geological Survey) website for the period between 2006 and 2016 with a
1-month interval and magnitudes greater than 2.5. The results using
one-dimensional data show 63.50% for the overall prediction accuracy.

In the second case study, the two-dimensional earthquake data (spatiotemporal) is
obtained from USGS website for mainland China in the period 1966–2016 with a
1-month interval and magnitudes greater than 4.5.

The evaluation result for the second case study shows a prediction accuracy of
74.81%. Finally, to compare LSTM deep learning method with the regular machine
learning method, the two-dimensional earthquake data are used to train MLP neural
networks and obtained an accuracy of 66.99%, which is much lower than the results
obtained by using the LSTM deep learning method.
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12.9.3 Using CNN Deep Learning for Earthquake Prediction

The work presented by Perol et al. (2018) utilizes the CNN DL method for earth-
quake prediction. There are many human-induced non-natural causes of earth-
quakes. Injection of wastewater under the surface of the Earth has a major impact
on inducing a large number of moderate and small size earthquakes which can later
trigger large magnitude earthquakes. Many earthquake detection methods are
designed to detect earthquakes with large magnitudes and not consider the small
magnitude earthquakes covered by seismic noise. Detecting small size earthquakes
is the key to unlocking their causes to reduce future risks.

In deep learning, CNN (ConvNetQuake) is used to detect and locate earthquakes
based on seismogram data. CCN is trained on a big dataset of labeled raw seismic
waveforms and learns a compact representation that can discriminate seismic noise
from earthquake signals. A large number of raw seismic waveform data along with
labels are used to train CNN to discriminate earthquakes from seismic noise. Unlike
the regular detection methods, which detect earthquake waveforms based on simi-
larity to other waveforms, the used method is considered a nonlinear local filter that
is used to select features in the waveforms that are most relevant to classification.
This helps to detect earthquake signals which were missed during training and
increases the system performance.

In the modelling of earthquakes using CNN ConvNetQuake, the input of net-
works takes a three-channel window of waveform data with M number of classes,
represented as a two-dimensional tensor Z0

t,c where c is the number of channels and
t is 10 s sampling period. The input is fed into a feed-forward network consisting of
eight convolutional layers connected to a fully connected Z layer which outputs class
scores. Each convolution layer processes the data based on Eq. (12.20):

Zi
t,c ¼ σ bic þ

Xci
´c¼1

X3
´t¼1

Zi�1
´

c,stþ ´t�1
:Wi

cć

0
@

1
A i ¼ 1, 2, 3 ð12:20Þ

where σ is the activation function called nonlinear ReLU (rectified linear unit). The
output and input channels are indexed with c and ć, respectively, the time dimension
is indexed with t and t́, ci is the number of channels in layer i, and W represents the
weights of the network.

The output of the eighth layer is reshaped into a one-dimensional tensor called Z
8

which contains 128 features. The Z
8
features vector is followed by a fully connected

layer to compute class scores following Eq. (12.21).

zc ¼
X128
ć¼1

Z
8
ć :W

9
cć þ b9c ð12:21Þ

This fully connected layer enables the network to learn and combine multiple parts
of the signal to generate the final class score.
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Finally, the softmax normalization function is applied to the class scores to
generate the final prediction result. The L2-regularized cross-entropy loss function
is used as the cost function optimiser for training the ConvNetQuake.

For building the earthquake detection model using ConvNetQuake, continuous
ground velocity data records were used. This data was obtained from two local
stations GS.OK027 and GS.OK029 in the state of Oklahoma. This data consists of
2918 windows of labeled earthquakes and 831,111 windows of seismic noise for the
period 15 February 2014 and 16 November 2016. The training set contains 2709
events and 700,039 noise windows, and the test set contains 209 events and 131,072
windows of noise. The evaluation results of the earthquake detection model using
ConvNetQuake deep learning show 94.8% precision and 100% recall which leads to
a value of 97% of F-score.

ConvNetQuake earthquake detection method shows better and faster prediction
results compared to autocorrelation and “Fingerprint and Similarity Thresholding”
(FAST) earthquake detection methods.

12.9.4 Applications of DL in Climate and Weather
Forecasting

Predicting changes in climate and weather is a very important issue. Such predictions
aid the location of the best places to plant crops as well as prepare for emergency
conditions including floods and drought. Machine learning technology can be used
successfully to predict the behavior of the climate and the weather. The focus here
will be on the application of deep learning approaches to predict rainfall.

12.9.4.1 Rainfall Prediction Using DL

With the gradual increase in temperature of the world associated with global
warming, rainfall prediction is increasingly vital for the economy and daily life of
many countries. An efficient method of predicting rainfall is a key topic for scien-
tists. Input parameters/attributes which can be utilized to predict rainfall are shown in
Table 12.3. Deep learning is one of the promising computation tools that can be used
to predict rainfall by using more complex neural network architectures. Recurrent

Table 12.3 Input parameters/
attributes for the classifier
(Niu and Zhang 2015)

Parameters Attributes

Temperature Minimum and maximum values

Humidity Average value

Pressure Average, minimum, and maximum values

Evaporation Minimum and maximum values

Wind Average and maximum values

Sunshine Total time
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neural networks model changes in rainfall through time (Patterson and Gibson
2017). Figure 12.12 shows the general structure of rainfall prediction.

Several methods have been used for rainfall forecasting. Two of those commonly
used are empirical and dynamical methods. Regression, stochastic, artificial neural
network, and fuzzy logic are examples of empirical methods, which rely on the
analysis of available historical data of the weather with the correlation to different
atmospheric variables. The second approach for prediction is represented by
employing physical models, which are dependent on modeling equations of the
climate system based on the atmospheric conditions (Zaw and Naing 2008).

The common forecasting processes of empirical methods to quantify the amount
of rainfall are as follows:

(i) Gathering data
(ii) Reduction explanatory predictors
(iii) Building a model using one of the empirical methods
(iv) Checking through the validation procedure

However, RNN DL algorithm is applicable for rainfall prediction problems as it
can model changes in data across time which is a property of rainfall data. Due to the
fact that RNNs are generally used for classification problems and rainfall prediction
problem is considered a regression problem, a regression output layer can be added
to a RNN. Figure 12.13 shows the architecture of RNN used for regression prob-
lems. The general equation of deep RNNs is shown in Eq. (12.22) (LeCun and
Bengio 1995).

Fig. 12.12 The general structure of rainfall prediction model based on historical data (Niu and
Zhang 2015)
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yt ¼ Why tanh Whhht�1 þWxhxtð Þ ð12:22Þ

where xt is input and yt is the output and W is the network weight.

12.9.5 Applications of DL in Environmental Protection
and Sustainability

Environmental issues such as air pollution or water contamination are global prob-
lems, requiring special efforts from governments and individuals. Hence, using DL
techniques, as part of information technology, in predicting conditions of the
environment is a key research topic. One of the research trends is to rely on Google
search data to expect the state of pro-environmental consumption, which can be
achieved by using the consumption index. This index has been determined as an
indication of pro-environmental consumption policy, calculated for each country by
international organizations. It is worth mentioning that there are different indexes
developed for specific purposes, including the Environmental Performance Index
(EPI) and the Environmental Sustainability Index (ESI). The values of indexes range
from 0 to 100. Calculation methods are of importance and can be achieved based on
the principle of proximity to target to find how close the policies of countries are in
environmental objectives recognized by international organizations (Lee et al.
2017). For forecasting the pro-environmental consumption index, a model is built
using a RNN deep learning algorithm. RNN is one of the deep learning technologies
that builds through the ANN model but can use prior relationships. In the operation
of the RNN model, the data of a previous period (ht � 1) is incorporated recursively
as input data, and the output (yt) for time (t) will be calculated as shown in
Eq. (12.23).

yt ¼ f ht�1 �Wh þ xt �Wx
� � ð12:23Þ

Fig. 12.13 RNN architecture for regression problems
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The RNN model consists of a Gompertz of activation function, 100 Epoch
repetitions, and the number of hidden layers and is 10 with 20 batch sizes and a
0.02 learning rate. The model was built using RNN for pro-environmental consump-
tion forecasting was tested and verified using 84 different datasets and provides
better results than traditional neural network methods (Lee et al. 2017).

Sustainability denotes the production of manufactured products through eco-
nomic processes that minimize negative environmental impacts while conserving
energy and natural resources (Lee et al. 2017). Hence, important points that should
be applied to maintain sustainable manufacturing are (Dincer and Acar 2015)
minimizing the reduction of natural resources and the possibility of fulfilling the
present and future energy requirements, providing products with high efficiency, and
avoiding or keeping toxic emissions including greenhouse gases emission to mini-
mum levels. DL shows its extreme power in many areas and applications. However,
sustainability and energy efficiency problems still require more investigation. DL is
a powerful tool that will provide the framework to work towards environmental
sustainability solutions in the future (Meng et al. 2018).

12.10 Conclusion

This chapter has focused on DL technology with environmental applications. DL can
be considered a promising tool in the field of environmental challenges including
both classifications and predictions. The chapter also discussed the main algorithms
of DL with a brief comparison revealing the advantages and the challenges of each.
There are several applications of DL in environmental systems; three of the most
common applications have been exemplified, earthquake prediction, rainfall predic-
tion, and environmental protection and sustainability. In environmental systems
applications, the advantage of using DL is that it achieves better accuracy and
reliability compared to regular ML techniques.

DL could be applied in earthquake prediction for both classification and regres-
sion problems, where it is used to predict the occurrence and magnitude of earth-
quakes. Rainfall prediction can be considered as a regression problem, and DL may
be used to predict the amount of rain in particularly vulnerable regions. In environ-
mental protection and sustainability applications, problems can be treated as classi-
fication and regression problems, and DL can be utilized to predict several issues
such as the amount of air pollution and water contamination. Regarding sustainabil-
ity applications, DL can be used to find proper solutions for production problems in
manufacturing, which may ensure the efficient consumption of natural resources.
Hence, DL is a powerful tool representing a key to unlocking complexity and
validating future applications of environmental systems.

316 A. R. Nasser and A. M. Mahmood



References

Ahmed RN, Hayri S (2018) A large-scale Arabic sentiment corpus construction using online news
media. J Eng Appl Sci 13:7329–7340

Alom MZ, Taha TM, Yakopcic C et al (2019) A state-of-the-art survey on deep learning theory and
architectures. Electronics 8(3):292

Chen J, Wang D (2017) Long short-term memory for speaker generalization in supervised speech
separation. J Acoust Soc Am 141(6):4705–4714

Dey A (2016) Machine learning algorithms: a review. Int J Comput Sci Inf Technol 7(3):
1174–1179

Dincer I, Acar C (2015) A review of clean energy solutions for better sustainability. Int J Energy
Res 39(5):585–606

Dumoulin V, Visin F (2016) A guide to convolution arithmetic for deep learning. arXiv. https://doi.
org/10.48550/arXiv.1603.07285

Franklin J (2005) The elements of statistical learning: data mining, inference and prediction. Math
Intell 27:83–85. https://doi.org/10.1007/BF02985802

Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT press. https://doi.org/10.1007/
s10710-017-9314-z

Gurney K (2014) An introduction to neural networks. CRC Press. https://doi.org/10.1117/3.633187
Hernández-Orallo J (2017) Evaluation in artificial intelligence: from task-oriented to ability-

oriented measurement. Artif Intell Rev 48(3):397–447
Hinton GE, Dayan P, Frey BJ et al (1995) The “wake-sleep” algorithm for unsupervised neural

networks. Science 268(5214):1158–1161
Hinton GE, Srivastava N, Krizhevsky A et al (2012) Improving neural networks by preventing

co-adaptation of feature detectors. arXiv. https://doi.org/10.48550/arXiv.1207.0580
Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780.

https://doi.org/10.1162/neco.1997.9.8.1735
Hu W, Huang Y, Wei L et al (2015) Deep convolutional neural networks for hyperspectral image

classification. J Sens 2:1–12. https://doi.org/10.1155/2015/258619
Ivakhnenko AG, Lapa VG (1966) Cybernetic predicting devices (No. TR-EE66-5). Purdue Univ

Lafayette Ind School of Electrical Engineering
James G, Witten D, Hastie T et al (2013) An introduction to statistical learning. Springer Texts in

Statistics. Springer
Kin ZB (2019) Classification of Turkish sign language alphabet by deep learning method. Master’s

thesis, Başkent University Institute of Science and Technology
Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional

neural networks. In: NIPS’12 Proceedings of the 25th International Conference on Neural
Information Processing Systems – Vol 1. https://doi.org/10.5555/2999134.2999257

LeCun Y, Bengio Y (1995) Convolutional networks for images, speech, and time series. In: Arbib
MA (ed) The handbook of brain theory and neural networks. MIT Press

LeCun Y, Boser B, Denker JS et al (1989) Backpropagation applied to handwritten zip code
recognition. Neural Comput 1(4):541–551

LeCun Y, Boser BE, Denker JS et al (1990) Handwritten digit recognition with a back-propagation
network. In: Touretzky D (ed) Advances in neural information processing systems (NIPS 1989).
Morgan Kaufmann, Denver

Lee D, Kang S, Shin J (2017) Using deep learning techniques to forecast environmental consump-
tion level. Sustainability 9(10):1894. https://doi.org/10.3390/su9101894www.mdpi.com/
journal/sustainability

McCarthy JJ, Minsky ML, Rochester N (1959) Artificial intelligence. Research Laboratory of
Electronics (RLE) at the Massachusetts Institute of Technology (MIT)

12 Deep Learning and Its Environmental Applications 317

https://doi.org/10.48550/arXiv.1603.07285
https://doi.org/10.48550/arXiv.1603.07285
https://doi.org/10.1007/BF02985802
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1117/3.633187
https://doi.org/10.48550/arXiv.1207.0580
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1155/2015/258619
https://doi.org/10.5555/2999134.2999257
https://doi.org/10.3390/su9101894www.mdpi.com/journal/sustainability
https://doi.org/10.3390/su9101894www.mdpi.com/journal/sustainability


Meng Y, Yang Y, Chung H et al (2018) Enhancing sustainability and energy efficiency in smart
factories: a review. Sustainability 10(12):4779

Niu J, Zhang W (2015) Comparative analysis of statistical models in rainfall prediction. In: 2015
IEEE international conference on information and automation. IEEE, pp 2187–2190

Patterson J, Gibson A (2017) Deep learning: a practitioner’s approach. O’Reilly Media, Inc
Perol T, Gharbi M, Denolle M (2018) Convolutional neural network for earthquake detection and

location. Sci Adv 4(2):e1700578. https://doi.org/10.1126/sciadv.1700578
Pouyanfar S, Sadiq S, Yan Y et al (2018) A survey on deep learning: algorithms, techniques, and

applications. ACM Comput Surv 51(5):92
Samuel AL (1988) Some studies in machine learning using the game of checkers II – recent

progress. IBM J Res Dev 1967:601–617. Reprinted In: Levy DL (ed) Computer games.
Springer-Verlag

Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117.
https://doi.org/10.1016/j.neunet.2014.09.003

Şeker A, Diri B, Balık HH (2017) A review of deep learning methods and applications. Gazi J Eng
Sci 3(3):47–64

Sobolev GA (2015) Methodology, results, and problems of forecasting earthquakes. Her Russ Acad
Sci 85(2):107–111

Vieira A, Ribeiro B (2018) Deep learning: an overview. In: Viero A, Ribeiro B (eds) An
introduction to deep learning business applications for developers. Apress, Berkeley. https://
doi.org/10.1007/978-1-4842-3453-2_2

Wang Q, Guo Y, Yu L et al (2017) Earthquake prediction based on spatio-temporal data mining: an
LSTM network approach. IEEE Trans Emerg Top Comput 8(1):148–158

Zaw WT, Naing TT (2008) Empirical statistical modeling of rainfall prediction over Myanmar.
World Acad Sci Eng Technol 2(10):500–504

318 A. R. Nasser and A. M. Mahmood

https://doi.org/10.1126/sciadv.1700578
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1007/978-1-4842-3453-2_2
https://doi.org/10.1007/978-1-4842-3453-2_2

	Chapter 12: Deep Learning and Its Environmental Applications
	12.1 Introduction
	12.1.1 Artificial Intelligence
	12.1.2 Machine Learning
	12.1.3 Deep Learning
	12.1.4 Differences Between Machine Learning and Deep Learning

	12.2 Deep Learning Processes
	12.3 Theories of Deep Learning Algorithms
	12.3.1 Deep Neural Network
	12.3.2 Multilayer Artificial Neural Networks

	12.4 Convolutional Neural Networks
	12.4.1 Convolution Layer
	12.4.2 Pooling Layer
	12.4.3 Fully Connected Layer
	12.4.4 Network Hyperparameters

	12.5 Recurrent Neural Networks
	12.6 Long Short-Term Memory
	12.7 A Comparison Between Deep Learning Algorithms
	12.8 Advantages and Challenges of Deep Learning
	12.8.1 Advantages of DL
	12.8.2 Challenges of DL

	12.9 Utilization of DL in Environmental Systems Applications
	12.9.1 Application of DL in Earthquake Prediction
	12.9.2 Using RNN Deep Learning for Earthquake Prediction
	12.9.3 Using CNN Deep Learning for Earthquake Prediction
	12.9.4 Applications of DL in Climate and Weather Forecasting
	12.9.4.1 Rainfall Prediction Using DL

	12.9.5 Applications of DL in Environmental Protection and Sustainability

	12.10 Conclusion
	References


