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Abstract. Nowadays, a lot of data regarding business process execu-
tions are maintained in event logs. The next activity prediction task
exploits such event logs to predict how process executions will unfold up
until their completion. The present paper proposes a new approach to
address this task: instead of using traces to perform predictions, we pro-
pose to use the instance graphs derived from traces. To make the most
out of such representation we train a message passing neural network,
specifically a Deep Graph Convolutional Neural Network to predict the
next activity that will be performed in the process execution. The exper-
iments performed show promising performance hinting that exploiting
information about parallelism among activities in a process can induce
a performance improvement in highly parallel process.

Keywords: Deep Learning · next activity prediction · Predictive
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1 Introduction

Nowadays, many business processes maintain a significant amount of data
regarding their executions in the form of events logs. The predictive process
monitoring field is concerned with the exploitation of such event logs to predict
how such executions will unfold up until their completion. Predictive process
monitoring includes various tasks: one of them is the next activity prediction,
that is concerned with the prediction of what will next happen in an execution.

In the last years predictive process monitoring, and particularly next activity
prediction, is receiving an ever-increasing attention, and researchers are tackling
the problem using various deep learning approaches [3,4,13–15,19,21]. It is also
known that using graphs is an extremely convenient way of representing process
executions [6,20]. Recently, a new type of neural network architecture is gaining
ground in the deep learning community: the graph neural network [16,24]. Still,
there is almost no work in the literature that evaluates the possibility of exploit-
ing such family of networks for the predictive process monitoring tasks. Driven
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by this lack of studies, we introduce a methodology to properly exploit the graph
representation of processes executions [6] for the next activity prediction task.

In particular, our proposal requires a business process event log and a model
of such process, which are used to build for each trace a proper corresponding
instance graph. From this graph representation, the dataset is then created and
the Deep Convolutional Graph Neural Network [25] is trained to perform the pre-
diction for next activity. Experimental results show that information contained
in instance graphs, in particular concerning the parallelism among activities, can
improve the prediction accuracy.

The rest of the paper is organized as follows: in Sect. 2 a review of the task-
relevant literature is performed. Section 3 describes the proposed methodology.
In Sect. 4 a comparison with the results from the relevant literature is performed
and commented. Finally, in Sect. 5 we draw some conclusions and list further
directions of research.

2 Related Work

In the scientific community there is an ever-increasing interest in the application
of deep learning techniques to predictive process monitoring tasks. In [18] the
authors proposed to adopt an LSTM architecture for the one step ahead event
prediction and the suffix prediction, using the one-hot encoding of the associated
activity and three temporal features related to the event’s timestamp. The LSTM
architecture has also been used by [3,8,13]. The approach in [8] predicts only
the next activity type, while [13] predicts the next activity and all the associated
categorical attribute. The authors of [3] combine both [8] and [18] approaches
to extend [8] to the next completion time prediction, using an abstract notion
of class resource, i.e. group of resources that usually perform similar activities.
Recently, in [14] a CNN architecture has been proposed: the authors convert the
sequential temporal data in the log into a spatial representation to then treat
data as images. In [15] the approach has been further extended by the authors.

The of use Generative Adversarial Nets (GANs) is proposed in [19] to address
the next event prediction task, tackling in this way the lack of sufficient training
data that often impact performances. In the GAN approach the authors used
LSTM networks for both the generator and discriminator. For this reason they
trained various networks, each one over sub-sequences of processes of specific
length, thus producing more than one prediction model for each process, the
same limit of the other LSTM based approaches.

In 2008 Scarselli et al. introduced “The Graph Neural Network Model”
(GNN) [16], a neural network model capable of processing data in graph domains.
Since their definition, graph neural networks have been increasingly used in sev-
eral fields. In a recent survey [24] it has been proposed a new taxonomy to divide
the state-of-the-art GNNs into four categories, namely, recurrent GNNs, con-
volutional GNNs, graph autoencoders, and spatial-temporal GNNs. In the same
work the authors also outline the various application fields.

It is relevant to note that very recently a proposal of usage of Graph Con-
volutional Neural Network in the next activity and timestamp predictions has
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Fig. 1. The BIG-DGCNN methodology pipeline

been formulated by [21]. Their approach differs from the one proposed in the
present paper as they propose to use a Directly Follows Graph representation to
model the traces while our approach adopts an Instance Graph representation.
Furthermore, the network architecture used in this work and in [21] are different.
In [21] a single graph convolutional layer followed by two fully connected layers
are used, while in the present paper a more elaborated architecture is adopted
as described in Sect. 3. Also lately, in [23] the author explored the opportunity
of exploiting gated graph neural network for the next activity prediction. In the
work different graph representations are tested but are only compared with self
implemented baselines, focusing the work exclusively on network architecture.

3 Methodology

In this Section we discuss the proposed methodology, first explaining the ratio-
nale of the whole pipeline shown in Fig. 1, then delving into its relevant aspects.

The goal of the present work is to define a robust approach that makes use of
information about the parallelism among activities in the next activity prediction
task. To this end, we propose to represent each trace with its corresponding
Instance Graph (IG), and to process IGs by graph neural networks, that are
designed to natively manage graph structures.

It is known that replaying a trace on a Petri net it is possible to produce an
instance graph representing the process execution [6]. The starting point of our
methodology is thus an event log and a model of the process expressed as Petri
net. The model can be given by a domain expert, opening to the possibility to
provide the desired perspective over the process, or a Petri net can be derived
by some process discovery algorithm. In both cases, a problem arises with highly
variable processes whose event log includes many non-conforming traces. This
situation often occurs when an a-priori model has been defined for a process
that rapidly evolves thus making the model obsolete; or in decision-intensive
processes where only a high-level model can be defined and executions vary
from case to case (e.g. care process in a hospital). When process discovery is
exploited to synthesize a process, lossy algorithms may be adopted (e.g. Heuristic
Miner, infrequent Inductive Miner) that discard uncommon behaviours to ensure
simpler and more meaningful models. In the presence of non-conforming traces a
simple replay will lead to not valid IGs, e.g. disconnected graphs, or graphs with
more than one terminal node. To deal with this issue, our approach also provides
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a repairing of non-conforming traces by the adoption of the BIG algorithm [5].
This prevents the loss of data and grants to our system the possibility to predict
also uncommon events. From BIG-generated IGs the dataset is then created and
the graph neural network trained to perform the prediction of the next activity.
Among the different architectures existing in the literature, the Deep Graph
Convolutional Neural Network (DGNN) [25] has been chosen. In the following
we will refer to our methodology as BIG-DGCNN.

3.1 Building Instance Graphs

An Instance Graph (IG) is a graph that describes a specific execution of some
process model. In an IG each node represents an activity, and an edge between
activity A and activity B denotes the existence of a causal relation between
A and B, namely the fact that B cannot be executed until A is terminated; in
other words, the execution of B depends on the execution of A. For a more formal
definition of instance graphs and causal relations see [6]. In an instance graph
parallelisms are shown besides causal relations, while choices are not represented.
This is obvious, since in each single execution choices have already been made.
Activities that can be done in parallel within one instance can appear in any
order in the trace without changing the resulting instance graph. Hence, an
execution is represented by an unique IG, which in turn represent different traces.

Instance graphs can be built from a set of traces in an event log and the
corresponding process model. In this paper we refer to the Building Instance
Graph (BIG) algorithm proposed in [5]. Unlike other approaches in the literature,
BIG enables the representation of parallel behaviors and is able to handle traces
that do not conform to the model. BIG is a two-steps algorithm: first an IG is
extracted for each trace, then IGs from non-conforming traces are repaired. In
the first step, a node is created in the IG for each event of the trace and the
node is labeled with both the activity associated with the given event and the
position of the event in the trace. For each pair of events (ei, ej) with i < j such
that causal relation exists between the corresponding activities in the model, an
edge is inserted between the corresponding nodes in the IG if and only if between
the pair of events there is neither another causal successor of ei, nor a causal
predecessor of ej .

It is worth noting that, if the trace does not fit the model, the corresponding
IG is affected by several issues, e.g. being a disconnected graph and having
multiple terminal nodes. From a semantic point-of-view these IGs represent many
more behaviours than the model actually allows for, namely they over-generalize.
Hence, the representation of the process behavior provided by these IGs is very
poor. In order to mitigate these issues, in [5] a procedure for the repair of IGs is
proposed.

First, non-synchronous movements in the trace, which lead to issues in the IG,
are identified by using aligned-based conformance checking technique [2], which
returns the kind of non-synchronous movements and their position in the trace.
This information is used to repair each move-in-the-model and each move-in-the-
log occurring in the alignment. The former leads to disconnected graphs, which
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are repaired by identifying nodes corresponding to activities that are in a causal
relation with the move-in-the-model and properly connecting them. For each
move-in-the-log, the repair procedure changes the edges connecting the nodes
corresponding to the events before and the events after the non-synchronous
event; the causal relations among the activity corresponding to move-in-the-log
and activities related to its predecessors and successors in the trace are used to
build new edges.

3.2 Data Preprocessing

This Section describes the processing of the log to obtain the dataset for training
and testing. First of all, since a log not necessarily has single specific ending
and starting activities, we introduce such artificial events in the logs. This is
done to guarantee that a trace always has a termination activity and to ensure
that parallelism at the beginning and end of a process execution are properly
represented in the IG. Second, BIG is applied to obtain an IG for each trace.

The approach of this paper learns a function that, given a graph prefix τg
of dimension g, returns a label a that can be interpreted as the next performed
activity in the process execution. Hence, the third step of the proposed method-
ology is to build the pairs (τg, a) from an IG for any g ∈ {2, . . . , N − 1} where N
is the number of nodes in the IG (i.e. the trace length). Therefore from one IG,
we produce N − 2 pairs. The procedure is repeated for every IGs in the dataset.

Each node in an IG has a progressive index associated with it that represents
its position in the trace. This index determines an order of the nodes, which we
use to progressively build the graph prefixes from the full IG. We denote by ai,
i = 1, . . . , N the activity associated with the node of index i.

Given an IG, the graph prefix τ2 is obtained by selecting the first two nodes
and the edges between them. This prefix is labelled with the activity a3 of the
next node (Fig. 2). The next prefix is simply derived by τ2, extending it with
the node of index 3 and the edges connecting it to τ2. The associated label is a4

(Fig. 3). Iteratively, the procedure re-build the whole instance graph until the
last node is selected as label.

We adopt the one-hot encoding representation for the set of activities in the
log.

3.3 Deep Graph Convolutional Neural Network

In this paper, we use a variant of the Deep Graph Convolutional Neural Network
(DGCNN) proposed in [25]. The DGCNN is composed of three sequential stages.
In Fig. 4, we show a representation of the overall neural network architecture.
First it has several graph convolution layers which extract the features from
the nodes local substructure and define a consistent vertex ordering. Second it
has a SortPoolingLayer which sorts the vertex features according to the order
defined in the previous stage, selecting the top nodes. In this way the dimension
of the input is unified. At last, a 1-D convolution layer and a dense layer take
the obtained representation to perform predictions.
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Fig. 2. First labelling step

Fig. 3. Second labelling step

The graph convolution layer adopted by DGCNN is represented by the fol-
lowing formula:

Z = f(D̃−1ÃXW ) (1)

where Ã = A + I is the adjacency matrix (A) of the graph with added
self-loops(I), D̃ is its diagonal degree matrix with D̃ii =

∑
j Ãij , X ∈ R

n×c is
the graph nodes information matrix (in our case the one-hot encoding of the
activity labels associated to the nodes), W ∈ R

c×c′
is the matrix of trainable

weight parameters, f is a nonlinear activation function, and Z ∈ R
n×c′

is the
output activation matrix. In the formulas, n is the number of nodes of the input
graph (in our case the graph prefix), c is the number of features associated to a
node, and c′ is the number of features in the next layer tensor representation of
the node.

In a graph, the convolution operation aggregates node information in local
neighborhoods so to extract local structural information. In order to extract
multi-scale structural features, multiple graph convolution layers (Eq. 1) are
stacked as follows:

Zk+1 = f(D̃−1ÃZkW k) (2)

where Z0 = X, Zk ∈ R
n×ck is the output of the kth convolution layer, ck is

the number of features of layer k, and W k ∈ R
ck×ck+1 maps ck features to ck+1

features.
The graph convolution outputs Zk, k = 1, ..., h are then concatenated in

a tensor Z1:h := [Z1, ..., Zh] ∈ R
n×∑h

1 ck which is then passed to the Sort-
PoolingLayer. It first sorts the input Z1:h row-wise according to Zh, and then
returns as output the top m nodes representations, where m is a user-defined
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parameter. This way, it is possible to train the next layers on the resulting fixed-
in-size graph representation.

In the original proposal the DGCNN includes a 1-D convolution layer, fol-
lowed by several MaxPooling layers, one further 1-D convolution layer followed
by a dense layer and a softmax layer.

In the present paper we simplify the architecture leaving only one 1-D con-
volution layer with dropout [17] followed by a dense and a softmax layer. This is
because the process mining domain tend to present smaller graphs in comparison
with those of typical application domains of graph neural networks [24].

For further information on the architecture we refer the interested reader to
[25].

Fig. 4. DGCNN architecture. Taken from [25].

4 Experiments

4.1 Experimental Setup

In this Section, we characterize the benchmark datasets used, then we discuss
the setting of parameters for the algorithms used in the experiments.

Datasets. In order to be comparable with the literature [3,14,18,21], we tested
our approach on 2 commonly used benchmark datasets, namely Helpdesk and
BPI12W.

The Helpdesk dataset [22] contains traces from a ticketing management pro-
cess of the help desk of an Italian software company. In this process all execution
instances start with the insertion of a new ticket into the ticketing management
system.
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Table 1. Overview of benchmark dataset. |σ| is used to represent the trace length.

Dataset N.traces Tot.events N.act.types Min |σ| Max |σ| Avg |σ|
Helpdesk 3804 13710 9 1 14 3.60

BPI12W 9658 72413 6 1 74 20.03

The BPI12 dataset [7] is taken from a Dutch Financial Institute. The process
represents a personal loan or overdraft applications within a global financing
organization. The event log is a merge of three intertwined sub processes, related
to the evolution of the status of the loan/draft application (BPI12A), of the
work items belonging to the application (BPI12W ), and of the offer belonging to
the application (BPI12O) respectively. We considered the BPI12W sub-process.
Furthermore, as usually done, we retained only the completed events in the log.
Table 1, shows the characteristics of both datasets.

We hasten to note that BPI12W execution instances show no parallel activ-
ities, while some level of parallelism exists in Helpdesk Thus the selection of
these datasets allows us to better appreciate the impact of parallelisms on per-
formance.

Finally, in order to be as much comparable as possible with the literature,
we split each log keeping the first (chronologically ordered) 67% of the traces for
training and the remaining part for testing.

Parameter Settings. In the BIG-DGCNN methodology there are two main
algorithms that require the setting of parameters: the infrequent Inductive Miner
(iIM) [12] used to derive the Petri net representing the process models requested
for the execution of the BIG algorithm, and the DGCNN. Regarding iIM, the
noise threshold must be set. This threshold is used to determine how much
infrequent behaviour will be filtered out when building the model. In choosing
such parameter we tested the fitness of the resulting model (i.e. the extent to
which the discovered model can accurately reproduce the cases recorded in the
log). We changed the noise threshold with 10% step from 0% to 100% and
selected the smallest noise threshold that granted at least a 90% fitness. In this
way, we obtain processes that are capable of modeling a vast majority of traces
while still maintaining a good degree of generalization, thus emulating a model
provided by an expert, and putting us in a close-to-real setting.

Regarding the parameters of the DGCNN, as stated before we set the number
of 1-D convolution layers to one, followed by a dense layer, both with 32 neurons.
We used ADAM [10] as optimization algorithm and trained the network for 100
epochs with an early stopping. We used as loss function the categorical cross
entropy. For both datasets we varied the following parameters:

– the number of nodes selected by the SortPooling layer (m), in {3, 5, 30}
– the number of stacked graph convolution layer (h), in {2, 3, 5, 7}
– the batch size (bs), in {16, 32, 64, 128}
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– the initial learning rate (lr), in {10−2, 10−3, 10−4}
– the dropout percentage (do), in {0.1, 0.2, 0.5}
The configurations that provide the best accuracy are shown in Table 2.

Table 2. Best network parameters for the dataset.

Dataset m h bs lr do

Helpdesk 30 5 32 10−3 0.1

BPI12W 5 5 32 10−3 0.2

Tools and Hardware. All the experiments have been performed using pytorch
geometric [9] with torch version 1.8.1, on a Tesla T4 GPU, a Intel(R) Xeon(R)
CPU@2.20 GHz, and a 12 GB RAM.

4.2 Results

Table 3 shows the accuracy achieved on the selected datasets, by our approach
and other approaches exploiting different neural network architectures.

We can see that on Helpdesk BIG-DGCNN achieves the best performance.
It is worth noting that in all the competitor approaches instances are described
by a richer set of features, like time information, while our input graphs encode
only activity labels and flow information.

On the other hand, on the BPI12W dataset there is a relevant performance
degradation w.r.t. the other methods. As noted before, BPI12W shows no par-
allel activities. This seems to confirm our hypothesis that properly taking into
account information on parallelisms can be beneficial to the next activity predic-
tion, whilst graph neural networks do not develop their full potential on sequen-
tial processes. The hypothesis also gains confidence when the BIG-DGCNN per-
formances are compared against the results presented in [19] on the whole BPI12

Table 3. Literature comparison, measured accuracy

Dataset

Approach Helpdesk BPI12w

BIG-DGCNN 82.58% 62.43%

GCNN [21] 79.54% 65.69%

MLP [21] 82.01% 65.59%

CNN [14] 73.93 % 78.17%

CNN [15] - 82.20%

LSTM [18] 71.23% 76.00%

LSTM [3] 78.90% 77.80%
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dataset. There, plain CNN [14], and LSTM [3,18] approaches has been compared
to a LSTM trained in a GAN framework. BIG-DGCNN is able to achieve an
accuracy of 76.45% which is higher than the accuracy presented for all the plain
methods, although it is lower than that achieved by LSTM+GAN. We remark
that GAN is a novel learning framework, where any neural network architecture
can be adopted. It is possible that the adoption of graph neural networks like
those presented in this work could further improve performance, solving also a
limit of the LSTM network used in [19] which is constrained to fixed size pre-
fixes, hence forcing the training of a specialized network for every desired prefix
length. We plan to experiment the GAN framework with graph neural networks
in future work.

Since [21] also adopts a graph neural network architecture, one may want to
analyse the reasons under the different accuracy. Various factors can be respon-
sible for this: first, [21] adopts directly follows graphs, which are derived at a
process level, while we build and properly repair the instance graph for each
trace. Second, the representation of the graph is performed in a different way.
The approach described in [21] only takes into account the last occurred event of
a sequence of events with the same activity label when building the input graph.
On the contrary, our approach considers all passed events of the trace, including
the events relative to repeated actions. Third, the network used in this work is
endowed with several graph convolution layers, while that used in [21] is a single
layer graph convolutional neural network [11] variant.

5 Conclusions and Future Works

The main contribution of this work is the definition of BIG-DGCNN, a method-
ology to address the task of next activity prediction exploiting information about
parallelism among activities in a process. The methodology adopts BIG [5] to
repair non-conforming traces in order to always build a fully representative
instance graph. Then it uses a rather new kind of neural network architecture,
the Deep Graph Convolutional Neural Network [25], that is capable of effectively
using the structural information of a graph in its functioning. The comparison
with the literature highlights that BIG-DGCNN show promising performance
in datasets relative to process with a consistent presence of parallelism, while
performing less effectively in sequential datasets like BPI12W. Although it is
well known that parallelism is a characterizing feature of business processes [1],
variants of the approach that can better deal with sequential dataset can be
worth of investigation. Other interesting future research directions include:

– extending the BIG-DGCNN inputs to all the available features of every bench-
mark dataset, aspect neglected in this work so to isolate the structural con-
tribution of the process workflow,

– extending the experimentation to other datasets,
– testing the GAN training method using BIG-DGCNN thus “eliminating the
need for a large training data” [19] and avoiding the fixed prefix restriction
of GAN+LSTM.
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