
Linac: A Smart Environment Simulator
of Human Activities

Gemma Di Federico(B) , Erik Ravn Nikolajsen, Mamuna Azam,
and Andrea Burattin

Technical University of Denmark, Kgs. Lyngby, Denmark
gdfe@dtu.dk

Abstract. The identification and construction of datasets of human
activities is an extremely time-consuming and resource intensive task,
yet researchers cannot refrain from such datasets. The publicly available
datasets may not reflect all the researchers’ requirements and are not
scrupulously documented. In addition, these datasets can cope with just
a limited and predefined set of behaviors. To address these challenges, we
developed an instrument that allows to simulate the behavior of agents
interacting with an environment. The environment is a customized con-
figuration, equipped with sensors. The simulation generates as output
a stream of events stemming from activated sensors. In addition, the
agents behavior is not fully deterministic, so as to reflect the dynamic
nature of human beings and to be as realistic as possible.

1 Introduction

In this work we describe Linac, a smart environment simulator. The simulator
combines the non-deterministic behavior of human beings with a controlled sim-
ulation system, with the aim of generating data streams for research purposes.
During the last decade there has been a notable diffusion of sensor systems.
These systems allow the collection and analysis of data in real time, gaining
the attention of researchers in the field of process mining [11,14]. As a result,
the application of sensor systems has spread to many fields with the aim of col-
lecting data, opening up the opportunity to derive new processes. One of the
most attractive and innovative application is the derivation of processes related
to human behavior [13], paving the way into the world of industry and health-
care [9]. In order to include human beings in process analysis, algorithms need
to consider all the specific characteristics derived from this new application. To
evaluate, extend, develop and test process mining algorithms, data is needed.
There are several ways to collect real-life data, but they are expensive and time
consuming. As well as there are scenarios that cannot be replicated (such as
accidents or borderline situations). In addition, a thorough understanding of the
underlying data as well as its underlying execution is required, and the most
appropriate way to do the work is by generating ad hoc data (i.e., where the
ground truth is known beforehand). The simulation and data generation instru-
ment proposed in this paper allows the configuration of a custom and controlled
c© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 60–72, 2022.
https://doi.org/10.1007/978-3-030-98581-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98581-3_5&domain=pdf
http://orcid.org/0000-0002-2487-1164
http://orcid.org/0000-0002-0837-0183
https://doi.org/10.1007/978-3-030-98581-3_5

Linac: A Smart Environment Simulator of Human Activities 61

simulation. Different agents populate a smart environment, and the process to
be carried out is defined by the user. The scenario is equipped with sensors. The
simulation consists of the behavior of the agents interacting with the system.

The rest of the paper is organized as follows: existing solutions, the problems
of testbeds, public datasets and simulators are presented in Sect. 2. In Sect. 3
we describe our proposed solution, and in Sect. 4 its implementation. In Sect. 5
an evaluation of the approach is presented, and Sect. 6 concludes the paper.

2 Existing Solutions

To evaluate process mining algorithms, data is needed [18]. In particular, when
the process comprises the analysis of human behavior, the construction of a
dataset becomes an extremely time-consuming and resource intensive task [20].
Three solutions can be considered: testbeds, public datasets and simulators.

The first option consists of constructing a physical testbed. Testbeds are
physical environments equipped with sensors, controllers and network compo-
nents, capable of capturing the state of the environment. Once the testbed has
been constructed, a participant performs a predefined list of activities. The acqui-
sition of such datasets is subject to limitations related to the cost and configura-
tion of the actual environment. The layout of the environment must be carefully
studied and verified, then all the necessary materials must be acquired, con-
figured and installed. After the construction, the real execution process could
start. This process is usually long-lasting, since participants need time to carry
out the activities. Large datasets acquired with these techniques are therefore
very complicated and expensive to obtain.

The second option to obtain data consists of using publicly available datasets.
The main issue is to find a dataset that describes exactly the scenario needed.
Additionally, the understanding of a dataset is limited to the documentation pro-
vided by authors. Since datasets are usually made up of thousands of events, it is
hard to have a detailed description of their content. Consequently, it takes a long
time to understand it. Orange4Home and CASAS are two datasets widely used in
the literature for the analysis of routines and daily activities. The Orange4Home
dataset [7] reports the activities of daily living in a smart apartment, for 4 weeks
of recording. The dataset contains recording from 236 data sources. The log is
not annotated, and the documentation is limited to the routine plan followed by
the occupant during the experiment. The CASAS project [6] provides 66 differ-
ent datasets, describing labeled and unlabeled activities performed in a smart
environment such as assisted care apartments or box offices. The data refers to
both single and multi-resident. The documentation provides the list of activi-
ties performed and the list of sensors. For the labeled datasets, authors do not
specify how the activities were recognized. In addition to what has been said
so far, datasets publicly available usually describe common scenarios, charac-
terized by the execution of regular activities. However, we may be interested
into processes related to extreme or anomalous cases both for a case study and
to include all possible scenarios. Based on the experiment under investigation,

62 G. Di Federico et al.

there might be the need to examine specific cases that are difficult or expen-
sive to replicate in reality or that may rise ethical concerns: an accident in an
industry or an elderly person falling to the ground. Additionally, to verify the
correctness of an algorithm we might want to evaluate it against as many cases
as possible. A ready-to-use dataset hardly includes borderline cases, limiting the
testing possibility.

The most effective way to obtain data is by using a simulator that replicates
each specific use case. In this way we could have a complete control over the
environment and the actions, a complete knowledge of the activities carried out
and the data produced, i.e., the ground truth. Synonott et al. [19] distinguish
between model-based and interactive approaches. Model-based approaches [3,
12,17] consist of the specification of the reference model that the simulation
should follow. The abstraction level in the definition of the activities describes
the accuracy of the modeled behavior. Renoux et al. [17] propose a model-based
approach in which inhabitants interact with a “sensorized” apartment. The user
does not script out the actions that need to be carried out but rather provides
an idea of how the simulated world works. The abstraction of the model does not
allow to represent subtle but significant differences in the behaviors execution.
To one hand they are suitable for long running simulations, on the other hand
they do not provide clock simulation. Interactive approaches [2,5] consist of a
virtual environment (2D or 3D scenario) where the user can operate: the agent
interacting with the environment is an “avatar” guided by the user who can
interact with each individual sensor. The simulation is precise and realistic,
since there is a real human behind the movements. However, the generation
of large amounts of data is very expensive as it requires a great effort by the
user: these approaches are suitable for testing single activities or short runs.
An example is the work of Buchmayr et al. [5] which presents a 2D floor map
equipped with sensors. The main objective of the tool is to generate and visualize
sensors behavior, in particular the simulation of faulty or unexpected cases. The
simulation is performed by the user interacting with the sensors via the mouse.

The majority of the simulators cannot be adapted to simulate several different
environments. For example, it is challenging to represent a smart factory scenario
with a 3D smart home simulator as it would become very complex in terms of
dimensions and objects to have integrated [2]. Or it would be impossible to be
able to replicate exact behaviors when the simulator only requires a general
behavioral model as input [17]. The tools provided to draw the environment are
often limited to the intended objective [3]; as well as they are not always oriented
to the generation of datasets. Furthermore, there is a lack of simulators capable
of reproducing, in a realistic way, the behavior of a human being [8] interacting
with an environment. For this reason, we have developed a simulator capable of
representing different environments and scenarios. The agent’s behavior is the
central focus of the tool. The behavior of the agent is as realistic as possible
by introducing different walking speeds and non-deterministic movements. The
process carried out by the agent is defined by the user, and it controls the
expected result of the simulation.

Linac: A Smart Environment Simulator of Human Activities 63

3 Proposed Simulation Solution

To study processes related to human beings, process mining algorithms need to
be evaluated. The data used in the evaluation phase should faithfully represent
the reality and the human behavior. During the development of Linac, we have
identified several key features that a simulator must consider. The most relevant
is that human beings are flexible in their movements [8]: they do not perform
movements in a fixed way but introducing variability. Furthermore, we cannot
assume that human beings are all equal, i.e. elderly are slower in the movements,
while young people are faster. Another factor that gains the attention of our
analysis is the amount of data generated: sensors systems tend to produce large
amount of data. In the following sections we explain how these challenges have
been addressed.

3.1 Configuration of the Smart Environment

The simulation platform allows the configuration of a smart environment. The
application is not limited to represent specific domains since it offers a blank
canvas where to build up the floor plan, in form of a grid. The drawing tools are
walls, entities and sensors. Walls are used to physically constrain the environ-
ment, while entities are objects that are part of the environment (that are not
sensors). The agent can interact with these objects. An example of entity is a
chair: the agent can move around such an object, but if she is instructed to go to
it, then she can “stand” on top of it. Both sensors and entities have a physical
and an interact area. Fig. 1a shows an example of floor plan designed as two
rooms and two agents (agents represented with green tiles). The purple tiles are
non-walkable sensors, while the blue tiles are entities. The walkable sensors are
not shown on the map, but they can be inspected on the application. A pre-build
selection of sensors is included, but new sensors could easily be defined as Java
classes. Sensors can be active or passive. While active sensors are activated by
the direct interaction by the agent, passive sensors are continuously running to
detect changes in their statuses, producing an output at fixed time intervals.
How the agent interacts with the sensor is defined via a command in the agent
instructions. The trigger frequency of each sensor is configurable.

3.2 Configuration of the Agents’ Behavior – AIL Language

The simulation consists of human beings moving and interacting with the objects
of the smart environment. The simulation is carried out by one or more agents,
each of them representing a person. Sensors and entities are shared among the
agents. During the configuration it is possible to define a specific movement speed
(i.e. meters per second) for each agent. The definition of the speed allows the
simulation of the behavior of people with different ability levels. Furthermore,
each agent has a specific set of activities to perform. The list of instructions is
specified by the user during the configuration phase, using an application specific

64 G. Di Federico et al.

script language called Agent Instruction Language (AIL). AIL has been imple-
mented in order to facilitate the definition of a list of activities to be performed.
In fact, the definition of a long set of instructions is a time consuming and
complex task. In addition, human behavior is characterized by the repetition of
activities, always performed following the same set of actions. As a consequence,
the list of instructions is composed by redundant code, e.g., the procedure for
preparing a cup of tea will always be executed in the same way. To facilitate the
task, we introduced primitive instructions that and can be grouped into macros.
The AIL language comprises four primitive instructions which describe basic
behaviors:

– goto(x,y): instructs the agent to move to a specific position;
– goto(name), where name refers to an entity or an active sensor: instructs the

agent to move to a random tile in the interaction area of the entity/sensor;
– wait(seconds): instructs the agent to remain stationary for the specified

amount of seconds;
– interact(activeSensor, command): instructs the agent to move to a ran-

dom tile within the interact area of sensor activeSensor, and interact with
it as specified by the command. The command of interaction is reflected in
the data produced when the sensor triggers.

Macro instructions describe complex behaviors. These instructions include a
sequence of primitive and/or macro instructions. Macros are a powerful tool to
avoid errors, limit redundant code and establish groups of activities that form
richer behavior. These instructions are defined as follows:

– macro(m) {list of primitive instructions}: defines the macro;
– m(): executes the macro m.

Figure 1b shows an example of primitives and macro. For each agent, a list of
instructions is reported, and both agents share the macro called makeTea. Then
the macro is then used only by agent a1. The language is designed to be intu-
itive: an external application can be used to automatically generate instructions
starting from an ideal behavior.

3.3 Simulation Execution

The simulation models human behavior, which consists of movements and inter-
actions with the objects. The movements, in turns, comprise journeys between
the agent’s current position and the target position. To find the path the agent
must follow, we implemented a path-finding algorithm. To comply with the flex-
ibility and stochasticity of human behavior, we extended the A* path-finding
algorithm [10], constructing a sub-optimal and non-deterministic version of it.
Actually, we started from an optimal and deterministic implementation of A*:
since we defined the floor plan as a grid of tiles, it is easy to translate the grid
of tiles into a graph of nodes needed for the A* algorithm. The A* algorithm
uses a heuristic function to calculate a path between two nodes on a graph.

Linac: A Smart Environment Simulator of Human Activities 65

Fig. 1. A floor plan and a possible list of instructions for two agents

The heuristic function can be either admissible or inadmissible: in the first case
it always calculates a distance that is shorter than or equal to the actual dis-
tance of reaching the goal node (optimal path); in the second case, it can calcu-
late a distance that is longer than the actual distance of reaching the goal node
(sub-optimal path). Furthermore, since neither the A* algorithm itself nor the
commonly used heuristic functions contains a random variable, the calculated
path is deterministic. However, a path-finding algorithm that is deterministic
and optimal is not a good model for human movement: (i) a human does not
take the same path every time between two points, (ii) a human does not take a
random walk between two points and (iii) humans do not always take a shortest
path between two points [4]. To tackle these problems, we defined an inadmissi-
ble heuristic function that includes a random variable. To obtain this heuristic
function H, we considered the Euclidean distance between the two points plus a
value R ∼ U(0, n ·L), randomly drawn from the uniform distribution between 0
and n ·L. In this case, L is the length of the sides of the tiles in the floor plan and
n is a parameter indicating the degree of sub-optimality (the higher the value
the less optimal the path). Adding the random variable to an otherwise admissi-
ble heuristic, overestimates the distance, thus making the heuristics inadmissible
and hence sub-optimal. Furthermore, since it contains a random variable, it will
be non-deterministic. We then experimented with increasing the threshold value
n as much as we could, while avoiding the agent making too many counterpro-
ductive movements. Here we defined counterproductive movements as a move
that leaves the agent at the same distance to the goal node or a longer distance
away from the goal node.

3.4 Clock Simulation

A fundamental aspect of Linac is the clock simulation. Being able to run the
simulation in real time is valuable when evaluating online algorithms and, on
the other hand, not practical when simulating multiple days, as this would take
multiple days in the real life as well. One way to lessen this impracticality is to
scale how fast time progresses in the simulation relative to the time progression

66 G. Di Federico et al.

Fig. 2. Screenshots of the Linac floor-plan page (left) and simulation (right)

in the reality. This can be achieved by defining how many real time seconds a
simulated second should take.

3.5 MQTT Output

The output produced by Linac is in the form of MQTT messages. The MQTT
protocol [15] is based on a publish/subscribe model that decouples the publisher
that sends the message from the subscribers that receive the message by the
use of a broker. This architecture involves one or more publishing clients that
publish messages under a topic. In our context each sensor would constitute a
publishing client. Using this system, we could also focus only on a specific sensor
by subscribing to a specific topic.

4 Implementation

Linac is implemented as a web application1. The application comprises a fron-
tend and backend. The latter2 is a server-side application implemented in Java.
The former3 is a web application implemented in TypeScript and Vue.js. The
web application communicates with the server using a restful interface. The
backend, in turns, exposes a set of APIs that can be triggered also from other
applications. For example, a script can be used to generate and execute mul-
tiple simulations by programmatically generating the corresponding AIL code.
The web application is organized in three main components: the floor plan, the
sensors/entities/agents pages and the simulation page. A screenshot of the main
page is shown in Fig. 2. The implementation allows the configuration and sim-
ulation of the environment. Once a simulation is running, it is possible to see
the movements of the agents on the map in real time. Further details on the
implementation are available on the report [16].

1 See http://linac.compute.dtu.dk.
2 Source code available at https://github.com/DTU-SPE/linac-backend.
3 Source code available at https://github.com/DTU-SPE/linac-frontend.

http://linac.compute.dtu.dk
https://github.com/DTU-SPE/linac-backend
https://github.com/DTU-SPE/linac-frontend

Linac: A Smart Environment Simulator of Human Activities 67

(a) Floor plan of CASAS [1] (b) Floor plan in Linac (floor sensors
not visible)

Fig. 3. The two floor maps

5 Evaluation

To evaluate the behavior of the simulator, we decided to replicate an existing
dataset, derived from a real scenario, and compare the results. The dataset
chosen is one from CASAS. The dataset represents sensor events collected in
a smart apartment testbed. The apartment has two residents performing their
normal daily activities. The dataset provides both the raw and the annotated
events, but we used the annotated one to recognize activities. Our evaluation
comprises three phases: in the first phase we tried to replicate the floor plan,
after that we analyzed the annotated dataset to identify how each activity has
been performed, concluding with a running simulation. Being able to successfully
replicate the CASAS dataset would allow us to show the capabilities of Linac
in terms of realism of the data, thus allowing us to derive new datasets where
specific situations or behaviors appear.

5.1 Configuration

Floor Plan Design. The Linac tool allows the configuration of an environ-
ment by means of a grid of variable size. On the grid, wall entities and sensors
are distinguished by colors: black, blue, and purple respectively. The CASAS
environment is composed of a 6 rooms apartment, equipped with more than 50
sensors (motion, item, door, water, temperature, electricity sensors). The floor
plan was designed by transforming the sensors layout into the form of a grid.
Then, all the sensors have been configured, and for each of them the physical
area, the interaction area and the trigger frequency have been defined. Once the
two maps matched, we moved on to the next phase. Figure 3 shows the two floor
plans: Fig. 3a illustrates the original map provided by CASAS while Fig. 3b
refers to the grid layout designed using Linac.

68 G. Di Federico et al.

Table 1. Datasets structure and results comparison

Duration # of sensors # of events

CASAS Linac CASAS Linac CASAS Linac

Simulation1 (Bed_to_Toilet) 2 min 2 min 12 13 47 51

Simulation2 (Meal_Preparation) 19 min 19 min 14 14 360 440

Agent Instructions. The CASAS dataset is labeled, but no information regard-
ing how the activities were carried out is provided. For this reason, we choose to
focus only on two activities, rather than analyzing all the 13 proposed. The activi-
ties are Bed_to_Toilet, referred as Simulation1, and Meal_Preparation, named
Simulation2. Starting from the list of triggered sensors in the CASAS dataset, we
reconstructed the path followed by the agent. At this point, we drawn up a list of
instructions that the agent had to follow to carry out the specific activity. A key
feature of our simulator is the goto primitive statement which allows to instruct
the agent to reach a specific tile, entity or active sensor, without having to provide
coordinates for each step. In this way, it is easier to define the activity list. Once
completed the list of instruction, we moved on the simulation phase.

The Simulation. The simulation tool of Linac allows for defining the date, the
relative time and the configuration of MQTT. The choice of date and time let
you to place the simulation at a specific moment in time. The simulation could
be performed in real time speed or in a specific relative time, that is how many
real seconds a simulated one should take. For this evaluation task, we performed
the two simulations (Bed_to_Toilet and Meal_Preparation) on the same floor
plan. The first simulation refers to a movement between two rooms, that is the path
followed to go from the bed to the kitchen. The second refers to the activity of meal
preparation. We used the relative time to run the simulations, which took less than
1 minute to execute. The data for both simulations is available for download4.

5.2 Results

The four datasets (2 simulations × 2 datasets) are structured as reported in
Table 1. For each couple of simulations, the durations are the same. The total
amount of unique sensors activated differs in Simulation1 and this is caused
by the non-deterministic path-finding algorithm implemented in Linac. In other
words, the path that agents follow is characterized by a certain random variabil-
ity, which led to the activation of an additional sensor. A gap could be observed
in the number of events generated, especially in Simulation2. This discrepancy
does not imply differences in the behavior: the index that causes this spread is
the trigger frequency of each sensor. In Linac, each sensor has a fixed trigger
frequency (for this simulation, configured to 5 seconds). In the CASAS dataset,

4 See https://doi.org/10.5281/zenodo.5386318.

https://doi.org/10.5281/zenodo.5386318

Linac: A Smart Environment Simulator of Human Activities 69

Casas

6:
53

6:
54

Time

14
13
12
11
10

9
8
7
6
5
4
3
2
1

Se
ns

or
 n

o.

Linac

6:
53

6:
54

Time

0
1
2
3
4
5
6
7
8
9

Fig. 4. Sensors triggered in Simulation1 in CASAS and Linac

Casas

15
:1

0
15

:1
1

15
:1

2
15

:1
3

15
:1

4
15

:1
5

15
:1

6
15

:1
7

15
:1

8
15

:1
9

15
:2

0
15

:2
1

15
:2

2
15

:2
3

15
:2

4
15

:2
5

15
:2

6
15

:2
7

15
:2

8

Time

14
13
12
11
10

9
8
7
6
5
4
3
2
1

Se
ns

or
 n

o.

Linac

15
:1

0
15

:1
1

15
:1

2
15

:1
3

15
:1

4
15

:1
5

15
:1

6
15

:1
7

15
:1

8
15

:1
9

15
:2

0
15

:2
1

15
:2

2
15

:2
3

15
:2

4
15

:2
5

15
:2

6
15

:2
7

15
:2

8

Time

0

2

4

6

8

10

12

Fig. 5. Sensors triggered in Simulation2 in CASAS and Linac

on the other hand, this information is not provided. To better evaluate the dif-
ferences between the two simulations, we plot them on heat maps.

The first map, reported in Fig. 4 refers to Simulation1. The maps show the
number of times that each relevant sensor is triggered during the simulation
period (with a time grouping of 1 min). As we can notice from the color varia-
tions, the two maps seem to behave very similarly over the same sensors/time.
However, some discrepancies could be observed in the intensity color. Since the
simulation is spread over just two minutes, and the number of events generated
is small, we cannot consider the impact of sensors triggered only few times. In
fact, the agent did not spend long periods in those zones, but was only passing
through them, generating a single trigger for each sensor.

The second simulation lasts for 19 min, and this makes the heat maps in
Fig. 5 more accurate. In fact, the average amount of triggers for each sensor is
higher than the previous simulation. Therefore, as the simulation lasts longer,
the total number of events generated is much greater. Looking at the maps we
have to consider that the values on the x-axes are one minute units. Therefore,
there could be sensors activated a minute before or a minute after others (e.g.
15:11:58 and 15:12:01), which could be considered misalignment in the graphs
but, for simulation purposes, are absolutely tolerable. Both the maps in Fig. 5
intensify in colors in the time interval 15:15–15:23, suggesting that the main
behaviors occurred during that interval.

70 G. Di Federico et al.

To better evaluate the resulting simulations, we computed the Pearson’s coef-
ficient for the two scenarios. The Pearson’s coefficient is a measure of the strength
of a linear correlation between two variables. We computed the correlation for
each sensor, and then we calculated the average value for all sensors. Both Sim-
ulation1 and Simulation2 resulted in a coefficient of 0.93. These results depict a
strong correlation between the sensors activation during the simulations. There-
fore, we can state that, in both simulations, the behavior of the simulated sensors
(by Linac) and the behavior of the reference sensors (CASAS) agree and hence
we can conclude that Linac is capable of effectively mimicking a real dataset.

The objective of the simulations is to replicate the behavior of human beings
(in CASAS) as movements of agents (in Linac) through a simulation. The two
simulations conducted, and the resulting evaluation, highlighted that Linac is
able to replicate a real behavior such as that collected in the CASAS dataset.

6 Conclusions and Future Works

We presented a smart environment simulator for the generation of datasets, in
the form of streams. The simulator could be used to configure different envi-
ronments, thanks to its structure made up of walls, entities and sensors. The
behavior of the agents is composed of movements inside the environment and
of interactions with entities and sensors. The behavior is dictated by means
of a list of instructions that the agent must follow and that can be described
using the language AIL, that we created for this purpose. The simulation uses a
non-deterministic sub-optimal algorithm to replicate the stochasticity of human
behavior. The simulator, additionally, offers the functionality for setting the
speed of movement for each agent. A simulated clock is used to solve problems
related to the long running of the simulations. The clock is fully configurable,
and the emulation consists of running real simulations but in which time passes
much faster. The last aspect to be summarized is the output that uses the MQTT
protocol to stream the data, that is, sensors readings.

The behavior of the Linac simulator has been compared with a dataset
describing the behavior of an actual person inside a testbed environment. The
analysis gave very positive results suggesting that Linac is able to reproduce the
same movements.

All things considered, it can be said that the Linac simulator is suitable
for the generation of realistic datasets referring to the human behavior. The
data generated can be used to test and evaluate algorithms, thus resulting in a
valuable tool for researchers.

Aspects to improve comprise the definition of the library of sensors available
and the extension of the AIL language. For example, considering the wait state-
ment, used to instruct the agent to remain stationary for a certain period, there
are cases in which we want the agent should not remain exactly in the same
tile, but randomly move nearby. These aspects could contribute towards an ever
higher level of realism.

Linac: A Smart Environment Simulator of Human Activities 71

References

1. CASAS - Daily Life Spring 2009. http://casas.wsu.edu/datasets/twor.2009.zip
2. Alshammari, N., Alshammari, T., Sedky, M., Champion, J., Bauer, C.: OpenSHS:

open smart home simulator. Sensors 17(5), 1003 (2017)
3. Ariani, A., Redmond, S.J., Chang, D., Lovell, N.H.: Simulation of a smart home

environment. In: ICICI-BME 2013, pp. 27–32 (2013)
4. Banovic, N., Buzali, T., Chevalier, F., Mankoff, J., Dey, A.K.: Modeling and under-

standing human routine behavior. In: Proceedings of CHI, pp. 248–260 (2016)
5. Buchmayr, M., Kurschl, W., Küng, J.: A simulator for generating and visualizing

sensor data for ambient intelligence environments. Procedia 5, 90–97 (2011)
6. Cook, D.J., Crandall, A.S., Thomas, B.L., Krishnan, N.C.: CASAS: a smart home

in a box. Computer 46(7), 62–69 (2012)
7. Cumin, J., Lefebvre, G., Ramparany, F., Crowley, J.L.: A dataset of routine daily

activities in an instrumented home. In: Ochoa, S.F., Singh, P., Bravo, J. (eds.)
UCAmI 2017. LNCS, vol. 10586, pp. 413–425. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-67585-5 43

8. Di Federico, G., Burattin, A., Montali, M.: Human behavior as a process model:
Which language to use? ITalian forum on Business Process Management (2021)

9. Seoane, F., Traver, V., Hazelzet, J.: Value-driven digital transformation in health
and medical care. In: Fernandez-Llatas, C. (ed.) Interactive Process Mining in
Healthcare. HI, pp. 13–26. Springer, Cham (2021). https://doi.org/10.1007/978-
3-030-53993-1 2

10. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determina-
tion of minimum cost paths. IEEE SMCS 4(2), 100–107 (1968)

11. Janisch, C., et al.: The internet-of-things meets business process management. A
manifesto. IEEE Syst. Man Cybern. Mag. 6(4), 34–44 (2020)

12. Kormányos, B., Pataki, B.: Multilevel simulation of daily activities: why and how?
In: CIVEMSA, pp. 1–6. IEEE (2013)

13. Leotta, F., Mecella, M., Mendling, J.: Applying process mining to smart spaces:
perspectives and research challenges. In: Persson, A., Stirna, J. (eds.) CAiSE 2015.
LNBIP, vol. 215, pp. 298–304. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-19243-7 28

14. Mandal, S., Hewelt, M., Oestreich, M., Weske, M.: A classification framework for
IoT scenarios. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP,
vol. 342, pp. 458–469. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
11641-5 36

15. Naik, N.: Choice of effective messaging protocols for IoT systems: MQTT, CoAP,
AMQP and HTTP. In: ISSE, pp. 1–7 (2017)

16. Nikolajsen, E.R., Azam, M.: A platform to simulate agent interactions with IoT
devices to facilitate process mining algorithm research. Technical Report, DTU
(2021). https://findit.dtu.dk/en/catalog/2691894192

17. Renoux, J., Klugl, F.: Simulating daily activities in a smart home for data gener-
ation. In: WSC 2018, pp. 798–809 (2018)

18. Rozinat, A., De Medeiros, A., Günther, C., Weijters, A., van der Aalst, W.: Towards
an evaluation framework for process mining algorithms. BPMcenter.org (2007)

19. Synnott, J., Nugent, C., Jeffers, P.: Simulation of smart home activity datasets.
Sensors 15(6), 14162–14179 (2015)

20. Vinciarelli, A., et al.: Open challenges in modelling, analysis and synthesis of human
behaviour in human-human and human-machine interactions. Cogn. Comput. 7(4),
397–413 (2015)

http://casas.wsu.edu/datasets/twor.2009.zip
https://doi.org/10.1007/978-3-319-67585-5_43
https://doi.org/10.1007/978-3-319-67585-5_43
https://doi.org/10.1007/978-3-030-53993-1_2
https://doi.org/10.1007/978-3-030-53993-1_2
https://doi.org/10.1007/978-3-319-19243-7_28
https://doi.org/10.1007/978-3-319-19243-7_28
https://doi.org/10.1007/978-3-030-11641-5_36
https://doi.org/10.1007/978-3-030-11641-5_36
https://findit.dtu.dk/en/catalog/2691894192

72 G. Di Federico et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Linac: A Smart Environment Simulator of Human Activities
	1 Introduction
	2 Existing Solutions
	3 Proposed Simulation Solution
	3.1 Configuration of the Smart Environment
	3.2 Configuration of the Agents' Behavior – AIL Language
	3.3 Simulation Execution
	3.4 Clock Simulation
	3.5 MQTT Output

	4 Implementation
	5 Evaluation
	5.1 Configuration
	5.2 Results

	6 Conclusions and Future Works
	References

