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Abstract. Heart failure is one of the leading causes of hospitalization
and rehospitalization in American hospitals, leading to high expenditures
and increased medical risk for patients. The discharge location has a
strong association with the risk of rehospitalization and mortality, which
makes determining the most suitable discharge location for a patient a
crucial task. So far, work regarding patient discharge classification is lim-
ited to the state of the patients at the end of the treatment, including
statistical analysis and machine learning. However, the treatment pro-
cess has not been considered yet. In this contribution, the methods of
process outcome prediction are utilized to predict the discharge location
for patients with heart failure by incorporating the patient’s department
visits and measurements during the treatment process. This paper shows
that, with the help of convolutional neural networks, an accuracy of 77%
can be achieved for the hospital discharge classification of heart failure
patients. The model has been trained and evaluated on the MIMIC-IV
real-world dataset on hospitalizations in the US.
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1 Introduction

With a rehospitalization rate of up to 45% within six months of discharge, heart
failure is the leading cause of rehospitalization and a significant cause of hos-
pitalization for patients over the age of 65 in American hospitals [2,4]. This
constitutes a high medical risk for the patients and leads to high expenditures
and workload for hospitals and other treatment facilities patients are discharged
to after treatment in the hospital. However, as the rehospitalization rate varies
depending on the discharge location, the decision on the most suitable discharge
location is of high importance [7].

Up to now, determining characteristics and actual prediction models for the
discharge location are primarily based on statistical methods, which mainly look
at the patient’s state at the end of hospitalization [2,12]. The idea of this contri-
bution is to incorporate the treatment process of heart failure patients to make
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the final decision about the discharge location based on the whole treatment pro-
cess. Therefore, this paper applies process outcome prediction, a business pro-
cess management technique, using machine learning to predict hospital discharge
locations. In practice, this approach can serve as a decision support system to
choose the appropriate discharge location more accurately, as we consider the
treatment process instead of merely looking at the patient’s state at the end of
treatment.

The remainder of the paper is structured as follows: Sect. 2 lays the theoretical
foundation on heart failure, process outcome prediction, and convolutional neural
networks, followed by an overview of related work. The specifics of the MIMIC-
IV dataset, which we used as a foundation for the subsequent work, are covered
in Sect. 3. In Sect. 4, we describe our approach and elaborate on the discharge
location prediction using convolutional neural networks trained on the MIMIC-
IV dataset. Results and a discussion are part of the evaluation in Sect. 5. Section 6
summarizes our contribution and outlines future work.

2 Preliminaries and Related Work

This section provides an overview of the domain of heart failure and introduces
the concepts used in the remainder of this paper. Additionally, we present related
work regarding patient discharge classification and process outcome prediction.

2.1 Heart Failure

Following the American Heart Association (AHA)/American College of Cardiol-
ogy guidelines [10], Roger defines heart failure as “a complex clinical syndrome
that can result from any structural or functional cardiac disorder that impairs
the ability of the ventricle to fill or eject blood” [17]. Heart failure was chosen
as the application area as this is the leading cause of rehospitalization for peo-
ple older than 65 years with a rehospitalization rate within six months of up to
45% [2,4,18]. According to Howie et al., the rehospitalization risk strongly varies
depending on the discharge location [2,7]. In their study, heart failure patients
discharged to home or home health care had a 2.6 times higher risk of rehospi-
talization than those discharged to skilled nursing facilities (SNF), emphasizing
the importance of the decision on the discharge location.

2.2 Process Outcome Prediction

“Business Process Management (BPM) includes concepts, methods, and tech-
niques to support the design, administration, configuration, enactment, and anal-
ysis of business processes” [21]. The area of business process monitoring as a
branch of business process management provides means to analyze events occur-
ring during process executions, allowing for insights on the overall process and
how to improve it. A subfield of business process monitoring, predictive business
process monitoring, aims at making predictions about future states of current
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process executions based on the activities performed so far and other previously
executed process instances.

One technique emerging from that field in recent years is process outcome
prediction. According to Teinemaa et al., it can be defined as “classifying each
ongoing case of a process according to a given set of possible categorical out-
comes” with case in this context referring to a single process execution [19].
The advantages of this technique are better predictability and the potential
to improve the decision-making during process executions [22]. Approaches to
process outcome prediction are settled in the fields of statistics and supervised
machine learning as a classification problem [8,19].

2.3 CNN

Convolutional Neural Networks (CNNs) are deep neural networks that are com-
monly used for sequence classification tasks and process outcome prediction
[14,20,22]. Originally, CNNs became popular for pattern recognition in, for
example, computer vision tasks, i.e., the analysis of images. A CNN architec-
ture comprises three elements: convolutional layers, pooling layers, and fully-
connected layers. Convolutional layers perform convolutions using kernels of dif-
ferent sizes to extract relevant high-level features from the input data, reduc-
ing dimensionality. Pooling layers are used to perform down-sampling to reduce
the complexity for subsequent layers. In fully-connected layers, each node has
a direct connection to every node in the next layer up to the final layer, that
finally produces the output [1].

2.4 Related Work

Research has been conducted on determining factors leading to patients being
discharged to different discharge locations using statistical approaches. In [12],
Kobewka et al. performed a systematic review to identify models and variables
with predictive power for discharge location decisions after stays in intensive care
units. Their results show that age, impaired physical function, and the absence
of an informal caregiver are of high importance. Similarly, Allen et al. conducted
an observational analysis of heart failure patients at the age of 65 or above to
determine the most relevant aspects of patients and hospitals associated with
discharge to SNF [2]. Their most influential predictors are the total length of stay,
patient age, different comorbidities, and gender. Apart from statistical analysis,
machine learning has been applied to classify the discharge location of patients
by incorporating the patient’s temperature, blood pressure, comfort, and more
at the end of the treatment process [6].

In the field of process outcome prediction, Teinemaa et al. present a system-
atic review and taxonomy of process outcome prediction methods together with
a comparative experimental evaluation of a subset of these methods [19]. The
approaches taken into account primarily focus on features that are not changing
throughout the process. In contrast, Le et al. introduced an approach they call
Markov sequence alignment, which focuses on temporal features. Their method is
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an extension of Markov models that uses temporal categorical features extracted
from past process executions to predict the following steps during process execu-
tion, as well as the process outcomes [13]. Leontjeva et al. present a multi-class
sequence classification approach to incorporate constant and temporal features
where a hidden Markov model or Long Short-Term Memory (LSTM) is trained
on the temporal features followed by a random forest model trained on the con-
stant features enriched by the temporal model’s results [14]. Recent research has
evaluated the application of CNNs in the field of process outcome prediction.
In their comparison of CNN with LSTM architectures, Weytjens et al. conclude
that “CNNs deliver the same results as the state-of-the-art LSTMs at a fraction
of the time and can therefore be recommended as the first choice for practition-
ers” [22].

Applying process outcome prediction to the discharge location classification
of heart failure patients allows for early resource allocation for the discharge
facilities due to the improved predictability during a patient stay. Patients cur-
rently undergoing treatment in a hospital can be assigned the most probable
discharge location, allowing treatment facilities and services, such as SNF, to
predict their workload better and adjust their resource planning and staffing
accordingly. Furthermore, process outcome prediction enables a process oriented
decision-making by making the decision not only based on the patient’s state
at the end of the treatment but also on the development of the patient’s state
during the treatment process.

3 Dataset

We use the Medical Information Mart for Intensive Care (MIMIC)-IV database
[11] as a data foundation for the discharge location prediction. The database
is publicly available on PhysioNet [5] (authorized access due to privacy regula-
tions - see license1) and contains information on over 40,000 patients admitted
to the Beth Israel Deaconess Medical Center in Boston, Massachusetts, from
2008 to 2019. The data is stored in a relational database format. All informa-
tion was de-identified by obfuscating the exact time of events while retaining
their chronological order, which allows for the application of process mining and
process outcome prediction.

The MIMIC-IV dataset consists of 35 tables in which, amongst other informa-
tion, the following patient data is stored: Demographic information on patients,
such as their age and marital status, transfers between departments during their
stay, as well as the medications they received in each of them. Furthermore,
various information on diagnoses is provided, e.g., International Classification
of Diseases (ICD) codes, Diagnosis-related Group (DRG) codes, and laboratory
values resulting from laboratory tests for patients, e.g., hemoglobin, creatinine,
and urea nitrogen values.

1 https://physionet.org/content/mimiciv/view-license/0.4/.

https://physionet.org/content/mimiciv/view-license/0.4/
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4 Contribution

The contribution is presented in three steps. First, we describe the process of
selecting the cohort. Second, the steps of feature selection and preprocessing are
explained. Lastly, we describe the architecture of the prediction model.

4.1 Cohort Selection

The cohort of patients was selected based on the diagnosis, and the DRG of the
hospital stay to identify patients where heart failure was treated. The dataset
stores diagnoses as so-called ICD codes. Thus, we selected all patients who had
a heart failure related diagnosis as their primary diagnosis. Today, two ICD
coding systems co-exist in hospitals, which are ICD-9 and ICD-10. For ICD-9,
the codes starting with 428 are related to heart failure, whereas for ICD-10, the
codes starting with I50 are heart failure related.

Second, we used DRG codes to identify only those patients whose primary
reason for hospitalization was heart failure. DRG codes correspond to the main
reason for a patient’s stay at the hospital. All cardiac related DRG codes2 were
considered, which can be seen in the script for data extraction from the MIMIC-
IV database3.

With the combination of a heart failure primary diagnosis and a cardiac-
related DRG, it is known that the patients suffered from heart failure and that
this was the primary reason for their hospitalization. Filtering for these charac-
teristics, the dataset provides a total of 12,306 stays of 7,693 patients.

The discharge location is stored for each patient stay, with 13 different dis-
charge locations available. The three most frequent discharge locations for heart
failure patients found in the MIMIC-IV dataset are home (3,430 stays, 27.9%),
home health care (4,982 stays, 40.5%), and SNF (2,323 stays, 18.9%). As the
other discharge locations have a frequency of less than 4%, we decided to focus
on the discharge locations listed above to have a sufficient sample size for each
class for model training and testing.

Since the discharge to SNF is associated with high costs and workload for
medical personnel, we also decided to make predicting discharge to SNF the
primary goal of our classification models. Additionally, there is a need to better
characterize the patient population being discharged to SNF [2]. This reduces the
complexity to binary classification where we predict SNF vs. others (representing
discharge to home or home health care).

Considering only heart failure patients discharged to the three most frequent
discharge locations, the resulting number of patient stays serving as data points
for model training, validation, and testing is 10,725.

2 https://www.hcup-us.ahrq.gov/db/nation/nis/APR-DRGsV20Methodology
OverviewandBibliography.pdf.

3 https://github.com/christianwarmuth/treatment-based-patient-discharge-
classification.

https://www.hcup-us.ahrq.gov/db/nation/nis/APR-DRGsV20MethodologyOverviewandBibliography.pdf
https://www.hcup-us.ahrq.gov/db/nation/nis/APR-DRGsV20MethodologyOverviewandBibliography.pdf
https://github.com/christianwarmuth/treatment-based-patient-discharge-classification
https://github.com/christianwarmuth/treatment-based-patient-discharge-classification
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4.2 Feature Selection and Data Preprocessing

In order to represent the process behind the data, i.e., the order of departments
each patient visits during a stay, the data is required to be in a three-dimensional
shape. We consider the different features across multiple time steps for each
patient stay individually. A visualization of the data’s shape is shown in Fig. 1.
This allows us to combine features that do not change during a patient’s stay,
such as age and gender, with features that may be different for every depart-
ment visit, such as the length of stay there and laboratory values measured in a
department.

Initially, the features taken into account were selected based on the litera-
ture presented in Sect. 2.4. This selection included the total length of stay in
the hospital, patient age, and gender, which do not change during a stay. Fur-
thermore, the selection of variables included the stay duration, the med count
representing the number of medications received, and the lab count representing
the number of laboratory values resulting from analyses conducted, which are
different for each stay in a department. Starting with these features, we tested
and compared multiple combinations with additional features and their impact
on the predictive performance, resulting in the final feature selection shown in
Table 1. In addition to the aforementioned features, incorporating information
on the patient’s insurance situation, marital status, ethnicity, and the number
of ICD codes associated with them, meaning the number of different diagnosed
disease patterns, lead to improved predictive performances. Also, taking labo-
ratory values such as creatinine, hemoglobin, red blood cells, glucose, and urea
nitrogen into account resulted in higher accuracy.

Fig. 1. Visualization of the data shape

Given the set of features, the raw data had to be preprocessed to fulfill
the shape and data type requirements of the models to train. Categorical fea-
tures such as the department visited, gender, and marital status were one-hot
encoded to represent them as numerical values that can serve as input for
machine learning analyses. This also prevents the introduction of non-existent
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ordering between the items [16]. To avoid potential biases from different value
ranges, all numerical features were standardized by scaling them to zero mean
and unit variance. In addition, many model architectures require each sequence
of departments to have the same length. Therefore, each sequence shorter than
a specified length was padded with null values while longer sequences were cut
off. The value of the sequence length was derived from the distribution of the
number of departments visited by patients during a single stay.

Due to the disparity in the number of samples between patient stays result-
ing in a discharge to SNF and those resulting in other discharge locations, we
also decided to use balancing techniques. On the one hand, we applied over-
and downsampling, which were found to be effective methods in dealing with
class imbalance [9]. That means we randomly duplicated patient stays where the
patient was discharged to SNF and randomly removed patient stays resulting
in another discharge location until both cases were represented equally. On the
other hand, we introduced class weighting to model training. Thereby, instances
of the underrepresented class, i.e., discharge to SNF, are multiplied with a
weighting factor in the loss function, increasing the penalty for misprediction.
While both techniques improved the predictive performance of our model, espe-
cially with regard to the confusion matrix, class weighting yielded better results
in our case, which is why we chose this technique for our final model.

Table 1. Final selection of features incorporated in the CNN model

Demographic Information Lab Values Stay Information

• Patient age • Creatinine • Department

• Gender • Hemoglobin • Admission Location

• Insurance • Urea Nitrogen • Transfer duration

• Marital Status • Glucose • No. of medications received

• Ethnicity • Red Blood Cells • No. of lab values measured

• No. of ICD codes

4.3 Model Selection and Training

We chose CNNs as our model architecture and trained all models on the prepro-
cessed data for patient discharge classification. In order to get the best model, we
then applied hyperparameter tuning. We defined multiple hyperparameters such
as the kernel sizes of the convolutional layers, the size of the fully connected lay-
ers and pooling layers, and the intermediate activation functions. Each of these
hyperparameters was assigned a range of possible values. Multiple models were
trained with the hyperparameter optimization approach tree-structured Parzen
estimator [3]. The best model parameters were chosen based on the F1-score on
the validation part of the dataset. Afterwards, the models were analyzed using
accuracy, precision, recall, and confusion matrices.
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The final model consists of two 1D-convolutional layers followed by a dropout
and a max-pooling layer. The result is flattened and then serves as input for a
sequence of four fully connected layers and the output layer using the sigmoid
activation function.

5 Evaluation and Discussion

The evaluation starts with the results of model training and validation, followed
by a discussion about the resulting model’s feature importance and limitations.

5.1 Results

The code to reproduce our results, including the result of the hyperparameter
search, can be found on GitHub4. Please note that due to data privacy restric-
tions for the MIMIC-IV database, you will have to get access to the database.
The solution is implemented in Python, and the README of the linked repos-
itory provides instructions on how to run the experiments.

We split our preprocessed dataset into a train and a test set, with the lat-
ter accounting for 25% of the dataset (2684 patient stays). The metrics used
to compare the models resulting from our hyperparameter tuning were calcu-
lated on a validation set consisting of 10% of the train set after training on the
remaining part of the train set. They comprise the following: The accuracy rep-
resents the proportion of data points assigned to the correct discharge location.
Precision reflects the fraction of correct predictions of discharge to SNF over all
predictions of discharge to SNF. In contrast, recall shows the percentage of how
many of the patient stays that resulted in discharge to SNF were predicted as
such. The F1-score then is the harmonic mean of precision and recall. Another
metric, the Area Under ROC Curve (AUROC) is the probability of a randomly
chosen positive data point (discharged to SNF) being ranked higher by the model
than a randomly chosen negative data point. Confusion matrices show for each
true label on the y-axis the distribution of the correctly or incorrectly predicted
labels on the x-axis. If the model predicted everything correctly, the diagonal
from upper left to bottom right would contain only values of 1.0.

The final model reaches an accuracy of 77% with a weighted precision of 81%
and a weighted recall of 77%, respectively. The F1-score is 0.78, and the AUROC
is 0.73. As shown in the confusion matrix in Fig. 2, there is a discrepancy of about
14% between the accuracy of predicting SNF as discharge location on the one
hand and the accuracy of predicting other discharge locations on the other hand.

Figure 3 shows the feature importance of our model as a beeswarm plot using
SHAP values (SHapley Additive exPlanations) [15]. The graph was generated
using the SHAP library5. It shows the impact of the 18 most influential features.
Each dot for each feature corresponds to a single patient stay. The x-axis shows
4 https://github.com/christianwarmuth/treatment-based-patient-discharge-
classification.

5 https://github.com/slundberg/shap.

https://github.com/christianwarmuth/treatment-based-patient-discharge-classification
https://github.com/christianwarmuth/treatment-based-patient-discharge-classification
https://github.com/slundberg/shap
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Fig. 2. Confusion Matrix of the final CNN model

how much impact those features had, with high negative values indicating a
high impact on the decision to SNF as discharge location, high positive values
indicating the opposite. The color of a dot represents the value of the feature,
red representing a high value, blue a low value. Since our data had a three-
dimensional shape, which could not be represented in this graph, we averaged
the SHAP values and the feature values for each patient stay. For example, the
distribution of dots for the patient age shows that a higher age often serves as a
predictor for discharge to SNF.

5.2 Discussion

This contribution suggests considering the treatment process in classifying the
discharge location of heart failure patients. Looking at the feature importance in
Fig. 3, features changing throughout the process have a significant effect on pre-
dicting the discharge location. For example, the development of the laboratory
values creatinine, hemoglobin, glucose, red blood cells, and urea nitrogen impact
the prediction. Furthermore, the number of medications received and the num-
ber of laboratory values measured per department are relevant. Interestingly, a
higher number of medications indicates a discharge to SNF, whereas a higher
number of laboratory values indicates a discharge to other locations.

The departments visited and the admission locations also affected the out-
come, as the admission from SNF resulted in a higher probability of being dis-
charged to SNF. Being referred by a physician to the hospital impacts the dis-
charge decision to home/home health care. A visit to the Medicine/Cardiology
department has only a slight influence on the prediction. The transfer duration,
representing the length of stay in each department, helps to predict the discharge
location.

Additionally, we were able to confirm relevant factors as proposed in current
literature, which includes age, insurance, length of stay, gender, and laboratory
values (creatinine, urea nitrogen, and hemoglobin). Information about the avail-
ability of an informal caregiver is provided in the form of the marital status in
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Fig. 3. Beeswarm plot for the final CNN model

the MIMIC database, which constitutes a relevant factor [2]. However, marital
status is only an indicator and does not represent the guaranteed availability.

With our process oriented approach, we emphasize to incorporate the devel-
opment of the patient’s state throughout the treatment process in the decision-
making. As we identified process characteristics in the different cohorts, a more
precise discharge classification can be achieved by incorporating the treatment
process. It should be noted that we identified patient characteristics regarding
discharge classification based on decisions made by healthcare professionals in
the past. Thus, we only reproduce the decision-making of healthcare profession-
als. Nevertheless, the identified characteristics can be further investigated to
improve the decision-making, for example, why patients with increased creati-
nine get discharged to home/home health care and not to SNF.

Looking at the results in Fig. 2, our model is better in predicting discharge to
other locations (80%) than to SNF (66%), resulting in an overall accuracy of 77%.
We assume that better predictive performance could have been achieved with a
larger sample size, as a sufficiently large sample size can significantly impact the
predictive performance of machine learning models [22]. We performed training
on other models, such as LSTM and XGBoost, while CNNs turned out to provide
the best results. Comparing our results to recent research is difficult, as the
discharge locations are different among the datasets. To our knowledge, there is
no respective model using the MIMIC dataset yet. However, we could confirm
the already identified patient characteristics as described above.
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Furthermore, a more detailed view of the process could improve the results of
our model, as we did not incorporate a comprehensive view of the patient’s diag-
noses, medications, laboratory values, and the procedures performed on them.
Additionally, the mental status and further sociodemographic information could
help to improve the model’s performance.

6 Conclusion and Future Work

This paper discusses the approach of predicting the discharge location for heart
failure patients by incorporating the treatment process.

We have shown that the development of the patient’s state during the pro-
cess and the respective visits in the hospital departments have a considerable
impact on the discharge location prediction. Therefore, taking into account the
treatment process instead of merely looking at the patient’s state at the point
of discharge can serve as a decision support for healthcare professionals.

An accuracy of 77% could be achieved in this contribution, which is a promis-
ing result, but still leaves room for improvement. Therefore, future work could
be conducted by combining the MIMIC-IV dataset with other datasets such
as the HiRID6 database to increase the sample size and improve the predic-
tion results. Furthermore, a more comprehensive representation of the treatment
process might help to increase the accuracy by adding detailed information on
medications received or procedures performed. Besides, it would be worthwhile
to consult domain experts who could point towards additional features not yet
considered.
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which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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