q

Check for
updates

PErrCas: Process Error Cascade Mining
in Trace Streams

Anna Wimbauer®™), Florian Richter, and Thomas Seidl

Ludwig-Maximilians-Universitat Miinchen, Munich, Germany
a.wimbauer@campus.lmu.de, {richter,seidl}@dbs.ifi.lmu.de

Abstract. Efficient and quick detection of problems is an essential task
in online process monitoring. Many anomaly detection approaches excel
in finding local deviations. We propose a novel approach that tracks local
deviations over multiple process instances and visualizes correlations of
deviation points. PErrCas provides knowledge about current cascades
of deviations to give process analysts a starting point for rational root-
cause analysis if processes leave their in-control parameters. PErrCas
monitors deviations online and maintains cascades of varying timespans.
Hence, our approach avoids defining an observation window beforehand,
which is a significant advantage due to its impracticability to predefine
expected cascade properties in exploratory scenarios.

Keywords: Anomaly Detection - Cascades - Trace Streams

1 Introduction

Anomaly detection has multiple applications in process mining. The most promi-
nent scenario is conformance checking, where misbehavior of process instances
is measured against a reference process model by techniques like token replay
or alignments. The identified anomalies represent structural non-compliances in
comparison to previous or planned executions. Temporal deviations are another
focus for process anomaly detection since detecting unexpected delays or speed-
ups often provides a starting point for thorough investigations. Fraud, failures,
or inefficient resource usage are only a few root causes for deviations.

While the research community has published a rich collection of techniques
to detect various anomalies, most works focus explicitly on correlations within
cases and neglect interferences between different cases. Whether it be customer
journeys, production cycles, or sequences of administrative actions, cases are
handled as independent process executions, and explanations for anomalies in a
case are usually expected to be caused by previous events in the same case. How-
ever, cases share a resource pool containing staff, machinery, or infrastructure.
Restricting a root cause analysis to singular cases might fail if another instance
has caused an issue and subsequent cases are affected by its effects. We differ
between local anomalies, isolated within a singular case, and global anomalies,
which originate in a particular case of an event and spread through the process
using common tie points between cases.

© The Author(s) 2022
J. Munoz-Gama and X. Lu (Eds.): ICPM 2021 Workshops, LNBIP 433, pp. 224-236, 2022.
https://doi.org/10.1007/978-3-030-98581-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98581-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-98581-3_17

PErrCas: Process Error Cascade Mining in Trace Streams 225

This work presents a novel online approach to identify process error cascades
in a trace stream. Error cascades are typically not artificially implemented in
processes. Since many processes contain a dynamic resource scheduling, e.g., the
staff is assigned depending on current situations like workload or environmental
influences, static cascade knowledge has limited value. Error cascades have two
additional properties besides their various lifetimes, defined as the timespan
between the actual event and the last moment that the cascade influences events.

Many cascades affect only structurally subsequent events according to the
process. E.g., delayed transporters in logistic processes delay following trans-
ports, which might delay further transports waiting for the first segment. In
specific processes, deviations may cause feedback in the process. Delays in pro-
duction processes often cause previous and following actors to traverse into idle
states. Depending on the process design, this allows preponing of cases in con-
trast to their scheduled execution. If the processes do not allow resources real-
location, previous actors also switch to a delay status.

The remaining important property of cascades is complexity. Typically, most
cascades contain only a few correlated actions. Complex cascades with long cor-
relation chains of affected actions are infrequent but provide valuable insights
for later investigations. Large distances between root causes and detected devi-
ations are typical scenarios where manual analysis fails to establish the causal
connection.

2 Related Work

Correlations between different database objects have been extensively researched
in the domain of sequential pattern mining [5]. Regarding sequential pattern
mining on data streams, traditional SPM algorithms are required to overcome
memory and performance restrictions and are therefore not always suitable to be
applied on data streams directly. Marascu and Masseglia [9] propose an approx-
imate algorithm called SMDS (Sequence Mining in Data Streams) primarily
designed for Web usage data streams that can handle the complexity of stream-
ing data. In their approach, user transactions are processed in batches. For each
batch, the users are clustered based on their surfing behavior adding users to
the most similar cluster or creating a new cluster. In [7,14] research on online
sequential pattern mining is continued. However, this research direction focuses
on totally ordered sequences. Event-based processes allow concurrent executions
of events, and anomalies are propagated non-linearly due to the process com-
plexity. Moreover, we consider if two anomalies happen close in time to declare
a correlation, while temporal intervals are usually neglected in sequence mining.
In the field of spatio-temporal data mining deep learning methods are used
to learn traffic flow correlations to predict future traffic flow [6,13]. Since those
methods depend on the spatial features and processes mostly neglect spatial
data while focusing on structural positions in the process, the approaches are not
directly applicable for our use case. Even if event logs include spatial data, this
information might not be relevant for the causal relationship between outliers.

226 A. Wimbauer et al.

In Liu et al. [8] the authors aim at finding causal interactions between traffic
outliers by constructing outlier causality trees and running a frequent subtree
mining algorithm on them. Toosinezhad et al. [12] applied these ideas for process
mining. The authors are the first to solve a significant task, as the origins of
process failures are not always found within the same process instance since the
real world is interconnected. Their approach does not consider anomalies for each
case individually but anomalies over various cases and their correlations. Hence,
Toosinezhad et al. proposed a method to tackle this challenge and introduce a
novel perspective of process anomaly detection.

As cases proceed in a process, their irregular behavior might disrupt the entire
system causing further anomalies. Toosinezhad et al. divide the dataset into
batches and construct one cascade graph per batch. The partitioning into spe-
cific intervals, like weeks, requires prior knowledge of certain cascade properties.
Instead, we expand our cascades incrementally without batch restrictions. We
create new cascades when incoming outlier events are not correlated to already
identified cascades. Finally, we cluster the constructed cascades to give general-
ized cascade patterns, allowing quicker analysis by emphasizing the prominent
structures.

The Performance Spectrum miner presented in [3] uses a descriptive analysis
to reviel performance patterns. In [11] Senderovich et al. use both intra- and
inter-case features to predict case properties. However, to the best of our knowl-
edge, Toosinezhad et al. proposed the only work on detecting anomaly cascades
in processes so far.

3 Preliminaries

The proposed method is applied to trace streams. A trace stream S : N — N
is a mapping from natural numbers to the case identifier domain. Such a trace
stream can be efficiently generated from an event stream, as already described
n [10]. On case-level, each case contains finitely many events.

Definition 1 (Case-Level Event). A case-level event e is a tupel e = (¢, a,
t) containing a case identifier #cqse(€) = ¢, an activity label #qctivity(€) = a
and a timestamp F#ime(e) = t. The case-level event may also contain additional
attributes.

Regarding intervals between case-level events, we define segment-level events.
These are then aggregated into cascades which are modelled as graphs and rep-
resent the causal dependencies on the process level.

Definition 2 (Segment-Level Event). A segment-level event s is a tupel s
= (sn, ¢, st, et) containing a segment-name #segment(S) = sn, a case identi-
fier #case(s) = ¢, a start-time #giqrt(8) = st and an end-time #ena(s) = et.
Every segment-level event s is composed of two case-level events e; and e, where
#case(ei) = #case(ej) = ¢, (#activity(ei)a#activity(ej>) = sn, #time(ei) = st
and #iime(€j) = et. It must hold that #iime(€i) < #time(€j) and there is no ey,
with #case(ek) = c such that #time(ei) < #time(ek) < #time(ej)~

PErrCas: Process Error Cascade Mining in Trace Streams 227

Activity A (!

@
Activity B —(0@) s

Activity C @—

Activity D DONA

2021-01-07T 2021-01-08T 2021-01-08T 2021-01-08T

Fig. 1. Example process time line

Definition 3 (Error Cascade). An error cascade is a directed graph g = (V,
E), where each node n in V represents a set of outliers S = s1,--+ , 8 in one
segment H#segment(51) = -+ = Fsegment(Sk). There is an edge from node n; to
n;, if outliers in n; are correlated to preceding outliers in n,;.

Each node has a heat value that gives information about the last time an
outlier occurred in this segment. It is computed as an exponentially moving
average to consider all past segment-level event outliers aggregated in this node.
We declare a node as active if the time difference between the starting time of
the current outlier and the heat value of the node is lower than a predefined
activity threshold th,. The activity threshold defines the time span in which we
assume two outliers to be correlated. If the activity threshold is one day, an
outlier can affect the process performance for one day. Henceforth, if the time
difference between the heat value and a new outlier is greater than the activity
threshold, a causal relationship between the outlier set of that node and the new
outlier is impossible. We call a cascade active as long as at least one of its nodes
is still active.

4 Online Cascade Mining

In this section, we define the three main steps of our method. Our approach oper-
ates on trace streams. We first scan for process segments that take an unusually
long (or short) time for each incoming trace. We then check for each outlier if
it is correlated to an already existing active cascade, in which case we add the
outlier to the correlated cascade. If it is not correlated to an existing cascade, the
outlier forms the start of a new cascade. These first two steps are performed on
each trace consecutively. The last step is carried out in an offline phase once a set
of cascades has accumulated. We cluster the cascades and compose all cascades
in one cluster to a cascade pattern.

4.1 Outlier Segment-Level Events

For each incoming trace, we generate the segment-level events from consecu-
tive case-level events and search for temporally deviating segment-level events.
Figure 1 shows an example process with four activities A, B, C, and D. Cases

228 A. Wimbauer et al.

c1,co and c3 arrive shortly after one another and traverse through the process
at different paces. Every circle on the timeline symbolizes a case-level event. It
means, e.g., that case ¢; underwent activity A at 12:35 on the seventh of Jan-
uary 2021. Since there are four successive activities, we have three segment-level
events per case: A:B, B:C' and C:D. All three cases transition from activity A
to activity B fairly quickly, then ¢ gets delayed in segment B:C'. This leads to
further delays of case co in segment C:D and case c3 in segment B:C. We can
already see that segment-level events B:C - ¢;, C:D - ¢ and B:C - c3 will be
marked as outliers.

Formally we declare a segment-level event an outlier if its z-score Z(s) =
Al —fsegment g higher than a certain outlier threshold th,. With At = #.p,4(s) —

OTsegment

H#start(s) being the duration of the segment-level event. The mean Hsegment, the
variance U?egmem and the number of events per segment Ksegment are stored for
each segment and updated with every incoming segment-level event.

4.2 Error Cascade Construction

When a new outlier arrives, we check whether it correlates to any currently active
cascades. In this case, it is “added” to this cascade. If an outlier is not correlated
to an active cascade, a new cascade is started. Over time older cascades become
inactive node by node, and new cascades are started and built up. If an outlier
segment-level event s and a cascade fulfill one of the two following cases we
assume that they are correlated.

1. Segment-level event s belongs to the same segment as a node n in the cas-
cade and #start(S) — #neat(n) < the. The cascade already includes a set
of outliers in the same segment that is still active, in a sense that the
time difference between heat value and starting time of the outlier does
not exceed the activity threshold. In this case, outlier s is added to node
n by increasing the event counter by one and updating the heat value:

ng)t(n) = #stm’t(s) - [0'25 : (#start(s) - Zle(fzt(n))]

2. Segment-level event s and a node n in the cascade share a common activ-
ity and #start(S) — #reat(n) < th,. Since outlier segment-level event s and
the outliers of node n are close in time and overlap in their segments, we
assume that the anomalous behaviour of s is correlated to the segment-level
events aggregated in node n. In this case a new node ny,., for segment
Hsegment(s) is appended to the cascade such that event counter = 1 and
Hheat Mnew) = #start (). An edge is added from n to mny,e, symbolizing the
correlation between n and n,eqp.

If a segment-level event s is not correlated to a cascade, we assume that none
of the preceding events are correlated to this outlier. As stated above, the new
outlier event s then marks the start of a new cascade. We start a new cascade
by generating a new cascade graph with one node. In the same way as a new
node is added to an existing cascade, the first node of the new cascade has
H#segment(s) as segment and event counter = 1 and #neqt(n) = #stare(s). If
the cascade still contains one node once it becomes inactive, we delete it and

PErrCas: Process Error Cascade Mining in Trace Streams 229

B:C
event counter: 1
heat value: 2021-01-07T13:35:00

B:C CD
event counter: 1 event counter: 1

heat value: 2021-01-07T13:35:00 heat value: 2021-01-07T16:00:00 | A . B

s b (b) Cascades going from B:C to C:D and
ovent counter: 2 event courter: 1 i from B:C to A:B were clustered together
heat value: 2021-01-07T15:20:00 heat value: 2021-01-07T16:00:00 H .
and composited to a cascade pattern

(a) Example cascade building process

Fig. 2. Example Cascade Mining

regard the corresponding outlier (or outliers) as standalone. Figure 2a describes
the incremental cascade building process for our example. B:C' is the first node
of the new cascade, because outlier B:C - ¢ could not be added to an existing
cascade. Next comes outlier C:D - ¢9 which is correlated to node B:C' because
they overlap in activity C' and are temporally close. A new node C:D with
an edge from B:C to C:D is added to the cascade. The third outlier B:C - c3
is correlated to both existing nodes. Since there is already an active node for
segment B:C' the outlier is added to this node by updating the event counter
and heat value.

4.3 Cascade Patterns

In the first two steps, we process the traces and the outliers within these traces
consecutively. Every time a specific time has passed, and a set of cascades could
be collected within this period, the last step is carried out. We then cluster
these cascades in an offline phase to search for patterns within the cascades,
i.e., patterns of correlated segments. Alternatively, one of the various online
clustering algorithms (see [15]) could be applied to every error cascade that is
no longer active. This however is not in the scope of this paper.

We first cluster the cascade set by applying DBSCAN [4]. We chose the
DBSCAN clustering algorithm [4], because it can find clusters of arbitrary shapes
and can handle noise. The clustering provides a grouping into similar cascade
graphs and filters out noisy or rare cascades simultaneously. To apply the algo-
rithm, we define a distance measure within the cascade space. For the distance
between two cascade graph we use the maximum common subgraph metric as
presented in [1]. To get more representative clustering results, we assign an addi-
tional weight to every cascade. If a cascade weights 2, the clustering algorithm
handles the cascade as if it was contained in the set twice. As weights, we choose
the average number of segment-level event outliers that nodes in this cascade
contain. Adding weights is necessary because there might be cascades that stay
active for a long time. If correlated outliers come in at frequent intervals, we

230 A. Wimbauer et al.

Activity_O

Fig. 3. Underlying process model for the synthetic data

always add them to the same cascade. This continuously prolongs the cascades
activity, and no new cascades with the same cascade pattern are generated.
Without adding any weights, DBSCAN would declare these cascade graphs as
noise, even though they represent many segment-level event outliers.

Finally, we compose all cascade graphs within a cluster into one cascade
pattern. Composing the cascades means we summarize all nodes and edges from
the individual graphs in one graph, the cascade pattern. The cascade pattern
provides a good overview of the various cascades in the respective cluster.

Clustering and composing the cascades aims at generating a relatively small,
manageable and easy to interpret result set. Different cascade patterns represent
distinct groups of outlier correlations. The compression is a significant advantage
compared to [12], where the number of resulting frequent cascades tends to be
very large, and there are often large groups of very similar frequent cascades.

Getting back to our example, let us assume that we retrieved a few more cas-
cades from B:C' to C:D. Additionally, cascades from B:C to A:B were detected.
These cascades were grouped into the same cluster by the clustering algorithm,
and we compose these cascades into the cascade pattern shown in Fig. 2b. This
cascade pattern visualizes in an intuitive way that delays in segment B:C were
correlated to delays in both segment C:D and A:B. The final cascade pattern
then forms a good basis for possible process improvements.

5 Evaluation

5.1 Synthetic Data

In the following we present our results from testing our method on synthetic and
real life data. We first tested our approach on synthetic data, as this way, we
could verify the results we obtained from our method. For DBSCAN clustering
we use the following parameters: € = 0.4 and min Pts is set to the 75%-quantile of
the cascade weights, but at least 4. For the synthetic data we used the processes
and logs generator PLG2 [2] to generate an eventlog, based on the process model
shown in Fig.3. We then spread all traces over one year and introduced noise
by randomly delaying every event (normally distributed with p = 30, 02 = 25
minutes). Finally, we incorporated the three cascades shown in Fig. 4, by delaying
events in the corresponding segments. The cascades occur 300, 50 and 12 times
and have an approximate length of one day, one week and one month.

PErrCas: Process Error Cascade Mining in Trace Streams 231

(b) Detected Cascade Pattern 1

(c) Incorporated cascade 2 (d) Detected Cascade Pattern 2

Activity_P:Activity_O H Activity_P:Activity_Q

(f) Detected Cascade Pattern 3

O——{ Activity_P:Activity_O H Activity_P:Activity_Q H Activity_Q:Activity_P m

(e) Incorporated cascade 3

Fig. 4. Induced and detected cascades in the synthetic log with activity_threshold =
1, outlier _threshold = 5 and € = 0.4

We tested our approach with different parameters, achieving the best results
with an activity threshold of 1 day and an outlier threshold of 5. During the cas-
cade detection phase 882 segment-level event outliers were detected and assigned
to 167 cascades graphs. Out of these 167 graphs 121 were deleted before clus-
tering because they contained only one node. In the end we received 46 cascade
graphs, which were then grouped into 3 clusters (and some outliers) and com-
posited to the 3 cascade patterns shown in Fig. 4. This complies with the number
of cascades from the ground truth. Cascade 1 and 2 are nearly identical to the
induced cascades and also have a maximum common subgraph (mcs) similarity
of 1.00 with the ground truth cascade. Cascade 3 is missing its last segment
node, which leads to a mcs similarity of 0.67.

To test our approach on datasets with different quality we increased noise
in our dataset. As described earlier we first generated an event log without any
noise (using PLG2) and induced the three cascades in a second step. To create
synthetic logs with increasing noise, we introduced noise to the control flow of
the initial event log using PLG2. To this end, we chose increasing parameters
(0 to 40 promille) for the trace missing head, trace missing tail, trace missing
episode, perturbed event order probability. We generated five logs for each noise
parameter and averaged the results over these five logs, since the results varied
due to randomness in the event log creation process.

The tested parameters and corresponding results are shown in Fig. 7. The F1-
score was calculated by comparing each detected cascade pattern with the ground
truth cascade it was most similar to. F1 nodes only considers correctly /wrong
assigned nodes, whereas the total F1-score considers nodes and edges. The overall
recall and the Fl-score for nodes are significantly higher than the overall F1-
score, which is mainly due to additional edges in the detected cascade patterns
(Compared to the incorporated cascade patterns, the detected cascades contain
more undirected instead of directed edges.). These additional edges are detected
since the cascades were incorporated into the data in close intervals. Because of
this, a cascade might still be active when delays of a subsequent cascade start.

232 A. Wimbauer et al.

Permit FINAL_APPROVED by SUPERVISOR:Start trip

!

Permit APPROVED by ADMINISTRATION:Permit FINAL_APPROVED by SUPERVISOR

/

Permit APPROVED by ADMINISTRATION:Request For Payment SUBMITTED by EMPLOYEE

.

Permit APPROVED by ADMINISTRATION:Permit APPROVED by BUDGET OWNER

(a) cascade pattern 1

[e e vED b ADAINISTRATION s R |

o

[P SUBMITTED by EMPLOYEE P AFPROVED b ADMINSTRATION

/

it APPROVED by ADMINISTRATION:Perit REJECTED by BUDGET OWNER [\

\

[e eV b apssTR ATION e L AprROVED b SuvisoR | st $AVED b EnIPLOVEE DsaionsumITTED b EvLONES |

i !

[e AL APPROVED b SUPERVISOR et SUBNITTED by ENPLOYER | Do APPROVED by ADMINISTRATION Dshrion SUBNITTED b ENPLOYE |

(b) cascade pattern 2

Fig. 5. Exemplary cascade patterns retrieved from BPI 2020 dataset

Figure 7 shows that even though the quality of the results decreases slightly with
increasing noise, it still stays at a pretty high level and our approach can deliver
meaningful results.

To compare our results, we slightly adapted the method from [12] to our
use case and implemented it using python. We tested the approach on our syn-
thetic log with different parameters and achieved the best results (i.e. all cas-
cades were detected, with minimum result set size) with outlier threshold = 5,
time interval = 60 (batch length in days) and minimum support = 3 (for fre-
quent subgraph mining). The resultset consisted of 153 cascades, where each cas-
cade covered parts of the incorporated cascade patterns, and every cascade pattern
was represented entirely by at least one frequent subgraph. Even though all incor-
porated cascade patterns were detected, the size of the result set was considerable,
making it very difficult to interpret it. Furthermore, many frequent subgraphs dif-
fered from other subgraphs in only one node or edge and thus did not contribute
any new valuable information. We observed that the size of the result set could
vary significantly for different time intervals. At the same time, it is challenging to
choose an appropriate time interval because it cannot be derived from the struc-
ture of the process. The size of the time interval defines the maximum duration of
a cascade. However, this information is not given in a real-life cascade mining sce-
nario, which means that by choosing a too small time interval, one might neglect

PErrCas: Process Error Cascade Mining in Trace Streams 233

0.91
0.8

0.74

0.6 \
— F1
0 0.5 Recall
—— Precision
° —— F1 nodes

N o0 N o0 o0 g o0
AP 8P LA LN
Iy A A A A A A
2 SV o o o A0 N
3 o 3 P NS Y 0 5 10 15 20 25 30 35 40
Date Noise in promille

o

Number of active cascades
©

w

Y 2%

Fig. 6. Number of active cascades, Fig. 7. Results on synthetic data with
travel permit log of BPI 2020 dataset increasing noise

longer-lasting cascades. At the same time, a smaller time interval might be desir-
able, as it leads to a smaller result set. Cascades of cascade pattern 3 (see Fig. 4e)
have an approximate length of 30 days. This cascade pattern was only detected
entirely from a time interval of 30 days onward. For a bi-weekly interval, 3 of 106
frequent cascades had an mcs-similarity of 0.67 to cascade 3. For all the lower inter-
vals, cascade 3 was not detected at all.

In conclusion, our approach yielded a far smaller result set (3 vs. 153 detected
cascade patterns) that still contained the same amount of information. At the
same time, we achieved good results even in a streaming scenario (compared to
an event log), where we had to process traces consecutively.

5.2 Travel Reimbursement Process

In addition to the synthetic data, we also tested our approach on real-world
process data that was published for the BPI Challenge 2020". The data was col-
lected from the travel reimbursement process at TU/e in 2017 and 2018 and con-
tained files for different subprocesses. Travel reimbursement is a process present
in nearly every company and thus forms a good basis for our evaluation. For
international trips, employees have to request a travel permit before starting
the trip. At the end of the trip, they can request reimbursement of their costs.
We chose this process for our tests because here, an array of delays can, in the
worst-case, risk the entire trip. For our experiments we used the travel permits
log, which contains the described process, and reduced it to traces in 2018.
With an activity threshold of 7 days and an outlier threshold of 5, we detected
12 cascade patterns, showing two examples in Fig.5. 528 segment-level event
outliers were grouped into 124 cascades (+ 19 deleted cascades with one node).
As Fig. 6 shows, the number of active cascades changed in waves and decreased

! https://icpmconference.org/2020 /bpi-challenge/
DOI: https://doi.org/10.4121 /uuid:52fb97d4-4588-43c9-9d04-3604d4613b51.

https://icpmconference.org/2020/bpi-challenge/
https://doi.org/10.4121/uuid:52fb97d4-4588-43c9-9d04-3604d4613b51

234 A. Wimbauer et al.

—— num. cascade patterns
80{ —— num. cascade pattems avg. num. nodes/cascade pattern
avg. num. nodes/cascade pattern

L
10 \/¥ ,

0 2 3456 7 8 91011121314 1516 17 18 19 20
0 20 40 60 80 100 120 140 MinPts
Activity Thresholds

(b) Results for different values of minPts
with a constant activity threshold of 7
days

(a) Results for different activity thresh-
olds with a constant minPts of 4

Fig. 8. Parameter Sensibility (constant outlier threshold of 5)

over the year. A maximum number of 18 cascades was active at the beginning of
the year, which might be due to many requests regarding trips later in the year.

Figure 8 shows how the results vary for different parameters. We observed
that with an increasing activity threshold, the number of detected cascade pat-
terns decreases while the average number of nodes per cascade pattern increases
(Fig. 8a). For a large activity threshold, e.g. 150 days, cascade nodes stay active
for a very long time. New incoming outliers are declared correlated to exist-
ing cascades for a longer time, and no new cascades are started. This leads to
larger cascades and thus also larger cascade patterns. New cascades are started
more frequently for smaller activity thresholds, resulting in more cascades and
fewer nodes per cascade. At this point, it needs to be mentioned that an activ-
ity threshold of 150 days or even 60 days is probably very unrealistic for this
kind of process. The activity threshold resembles the time in which an anomaly
can affect process performance. A proper value for the activity threshold can
be picked in the context of the process structure, and in contrast to the time
interval from [12] no prior knowledge of the cascades is needed.

The number of cascade patterns also decreases with an increasing minPts
(input parameter DBSCAN) (Fig. 8b). The minPts parameter can be used as an
importance regulator. The higher it is, the fewer cascade patterns are detected
and the more cascades each pattern represents.

6 Conclusion

With our novel approach PErrCas, we are able to track correlated outliers over
multiple process instances by continuously adding outliers to existing cascades
and creating new cascades. We differentiate between two different correlations:
accumulations of outliers in one segment and correlated outliers in different seg-
ments. The set of cascades can be analyzed in regular intervals to create cascade
patterns and get an overall picture of the cascades. This continuous approach

PErrCas: Process Error Cascade Mining in Trace Streams 235

avoids defining an observation window beforehand. Instead, we consider how
long an outlier can affect future process performance and track cascades as long
they influence process performance. A useful extension of our work would be to
discover a good candidate threshold for this automatically.

So far, our method only works on trace streams because we need entire traces
to build segment-level events and detect outliers. Future work could examine how
error cascades can be detected in event streams. Another issue for future work
is the correlation between outliers. We declare outliers to be correlated if they
are close in time and their segments overlap. However, there are also many other
ways in which two anomalies could be correlated.

References

1. Bunke, H., Shearer, K.: A graph distance metric based on the maximal common
subgraph. Pattern Recogn. Lett. 19(3—4), 255-259 (1998)

2. Burattin, A.: PLG2: multiperspective process randomization with online and offline
simulations. In: BPM (Demos), pp. 1-6. Citeseer (2016)

3. Denisov, V., Fahland, D., van der Aalst, W.M.P.: Unbiased, fine-grained description
of processes performance from event data. In: Weske, M., Montali, M., Weber, 1.,
vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 139-157. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-98648-7_9

4. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp.
226-231 (1996)

5. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey of
sequential pattern mining. Data Sci. Pattern Recogn. 1(1), 54-77 (2017)

6. Guo, S., Lin, Y., Feng, N., Song, C., Wan, H.: Attention based spatial-temporal
graph convolutional networks for traffic flow forecasting. In: Proceedings of the
AAAT Conference on Artificial Intelligence, vol. 33, pp. 922-929 (2019)

7. Laur, P., Symphor, J., Nock, R., Poncelet, P.: Mining sequential patterns on data
streams: a near-optimal statistical approach. In: Proceedings of the 2nd Interna-
tional Workshop on Knowledge Discovery from Data Streams (2005)

8. Liu, W., Zheng, Y., Chawla, S., Yuan, J., Xing, X.: Discovering spatio-temporal
causal interactions in traffic data streams. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1010-1018 (2011)

9. Marascu, A., Masseglia, F.: Mining sequential patterns from temporal stream-
ing data. In: Proceedings of the 1st ECML/PKDD Workshop on Mining Spatio-
Temporal Data (MSTD 2005), pp. 1-13. Citeseer (2005)

10. Richter, F., Maldonado, A., Zellner, L., Seidl, T.: OTOSO: online trace ordering
for structural overviews. In: Leemans, S., Leopold, H. (eds.) ICPM 2020. LNBIP,
vol. 406, pp. 218-229. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-
72693-5_17

11. Senderovich, A., Di Francescomarino, C., Ghidini, C., Jorbina, K., Maggi, F.M.:
Intra and inter-case features in predictive process monitoring: a tale of two dimen-
sions. In: Carmona, J., Engels, G., Kumar, A. (eds.) BPM 2017. LNCS, vol. 10445,
pp. 306-323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65000-
518

https://doi.org/10.1007/978-3-319-98648-7_9
https://doi.org/10.1007/978-3-030-72693-5_17
https://doi.org/10.1007/978-3-030-72693-5_17
https://doi.org/10.1007/978-3-319-65000-5_18
https://doi.org/10.1007/978-3-319-65000-5_18

236 A. Wimbauer et al.

12. Toosinezhad, Z., Fahland, D., Koéroglu, 0., Van Der Aalst, W.M.: Detecting
system-level behavior leading to dynamic bottlenecks. In: 2020 2nd International
Conference on Process Mining (ICPM), pp. 17-24. IEEE (2020)

13. Wu, Y., Tan, H.: Short-term traffic flow forecasting with spatial-temporal correla-
tion in a hybrid deep learning framework. arXiv preprint arXiv:1612.01022 (2016)

14. Xu, C., Chen, Y., Bie, R.: Sequential pattern mining in data streams using the
weighted sliding window model. In: 2009 15th International Conference on Parallel
and Distributed Systems, pp. 886-890. IEEE (2009)

15. Zubaroglu, A., Atalay, V.. Data stream clustering: a review. Artif. Intell. Rev.
54(2), 1201-1236 (2020). https://doi.org/10.1007/s10462-020-09874-x

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://arxiv.org/abs/1612.01022
https://doi.org/10.1007/s10462-020-09874-x
http://creativecommons.org/licenses/by/4.0/

	PErrCas: Process Error Cascade Mining in Trace Streams
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Online Cascade Mining
	4.1 Outlier Segment-Level Events
	4.2 Error Cascade Construction
	4.3 Cascade Patterns

	5 Evaluation
	5.1 Synthetic Data
	5.2 Travel Reimbursement Process

	6 Conclusion
	References

