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Preface

This book is the result of many years of effort in trying to develop an efficient and
effective approach for large-scale UAS traffic management. The methods we present
apply to a future of air mobility that imagines a dense network of autonomous
aircraft, transporting people and things within and between cities. Throughout the
book, we make connections to the ground transportation network, and we take
inspiration from the engineering that has developed there over the last century. We
combine aspects of ground traffic engineering with the latest research in advanced
air mobility.

At the time of writing of this book, advanced air mobility is still in its infancy.
This is apparent by the absence of low-altitude vehicles flying overhead, but also by
the lack of standardization and the pervasive questioning of whether such a future is
yet possible. Among all the problems that motivate this skepticism, the problem
of automating air traffic control is particularly interesting to the authors of this
book. It is an engineering problem that is susceptible to catastrophic consequences
due to computational intractability, and so demands the attention of researchers in
computer science and robotics. The current iteration of the autonomous air traffic
control system proposed by NASA and the FAA draws heavily from current human
air traffic control practices.

Both ground transportation and air traffic control systems incorporate many
trade-offs when it comes to safety, reliability, and innovation. However, they share
the characteristic of relying on human cognition to make critical decisions. If
advanced air mobility requires aircraft to fly autonomously, then it follows that
those critical decisions must be made predictably by machines. Just as roundabouts
can replace signalized intersections, thereby reducing the coordination complexity
for humans, the lane-based approach is an attempt to simplify the environment for
autonomous vehicles.
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viii Preface

Much remains to be done, and we have tried to point out research directions at the
end of each chapter. Thus, this book should provide some guideposts to the future
of UAS traffic management as well as an exposition of the current state of the art.
We look forward to participating in discovering that future!

Salt Lake City, UT, USA David Sacharny
Salt Lake City, UT, USA Thomas C. Henderson
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Chapter 1
Current State of Affairs:
Economic Impact

1.1 Motivation

Our research team entered the Advanced Air Mobility (AAM) arena in August
of 2018, when Andrew W. Buffmire, Research Corporate Ambassador for the
College of Engineering at University of Utah, invited our research team to a meeting
titled “UAS Modeling and Management,” held in the Halverson Conference Room
in the Warnock Engineering Building. Among the twelve attendees was Jared
Esselman, the Director of Aeronautics at the Utah Department of Transportation
(UDOT), as well as a representative from the Governor’s Office of Economic
Opportunity, the University of Utah Hospital System, the university’s Entertainment
Arts Engineering program, and Fortem Technologies. Before the meeting, an invitee
from Utah’s Automated Geographic Reference Center (AGRC) sent an email to
the group apologizing in advance and providing some data that foreshadowed the
discussion:

Hello all,

I am unable to attend the meeting this Friday, but
wanted to send out a few maps that may be helpful while
having this discussion and let you know that we have
access to several GIS datasets that may be helpful in
putting together the air space model.

Please let me know how I can help.

Sean

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Sacharny, T. C. Henderson, Lane-Based Unmanned Aircraft Systems Traffic
Management, Unmanned System Technologies,
https://doi.org/10.1007/978-3-030-98574-5_1
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*Sean Fernandez, PLS*
State Cadastral Surveyor/Division Manager
State of Utah AGRC/DTS

In one attachment (Fig. 1.1), a map of features and the Salt Lake valley included
locations of GPS sensors for Real-Time Kinematic (RTK) positioning, liquor
stores, libraries, post offices, correctional facilities, and schools. At the meeting,
we discussed how the GPS network could be used by autonomous vehicles to
accurately report their telemetry and maintain safe separation. The other features
on the map were endpoints in an imagined airspace network that transported cargo
and passengers quickly, quietly, and efficiently between locations within city limits.
We treated the availability of vehicles that could meet the challenges of urban
air mobility (UAM) as an inevitability, and we focused on how our city could
become a platform for developing this new transportation system. In Utah, a well-
established and growing aeronautics and technology industry, research institutions
with a running start on robotics, and a forward-looking governmental body at UDOT
provided a means for making serious contributions to this vision of the future.

Fig. 1.1 Map of selected features in Utah for urban airspace modeling
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However, it was also clear that this vision entailed considerable technical, logistical,
and business challenges to overcome.

Advanced Air Mobility describes an emerging aviation market for local, regional,
intraregional, and urban use-cases, supported by a set of disruptive technologies.
The most salient technologies are the vehicles, and the promise that they will
fly themselves effortlessly throughout the city has generated billions of dollars in
private and public investment. Just a few of the publicly traded companies in this
space, Joby Aviation, Lilium, Archer, and Volocopter represent over $4 Billion
in market cap and have yet to transport a single paying customer. With so much
investment and engineering effort going into vehicle development, it is no wonder
that early adopters and innovators are bullish, and it is easy to imagine, given
the state of traffic in many cities, that a scenic ride inside a Tesla-like aircraft
would be popular (assuming the price was right). Within each vehicle also exist
numerous other disruptive technologies, electric and hybrid propulsion systems,
energy storage systems, guidance and control software, advanced materials, etc.
Each of these systems must interoperate or contend with an ecosystem of other
vehicles and disruptive technologies in infrastructure, simulation, monitoring, and
air traffic management. The minimum set of disruptive technologies necessary to
enable this vision of urban air mobility is a subject of debate, and in the United
States, it will be determined by the businesses that are commercially successful.
Disruptive technologies are innovations that alter the way people and industries
operate, and the technologies that transform urban mobility are as certain to be
disruptive as when selective availability was discontinued for GPS in the year
2000. Unlike GPS, however, the trajectory to enable mass adoption and commercial
viability is much less clear.

In 2018, NASA hired two companies, Crown Consulting, Inc., and Booz Allen
Hamilton, to study the market viability of urban air mobility. A couple of months
after our first meeting with UDOT and local stakeholders, NASA published the
reports that identified key technologies and barriers. In one figure [67], Crown Con-
sulting identified 34 technologies on the critical path of development and divided
them into 15 categories: autonomy, sensing, cybersecurity, propulsion, energy
storage, emissions, structures, safety, pilot training, certification, communications,
controls, operations, traffic management, and infrastructure. This categorization is
not to say that these technologies do not depend on each other, and there are complex
relationships that must be managed between them during both development and
production. Additionally, the airspace is heavily regulated, particularly in the United
States where regulations have been developed over the past 100 years; this increases
the barrier of entry for innovators due to the capital requirements and consequences
of liability. The National Aerospace and Aeronautics Administration (NASA) and
the Federal Aviation Administration (FAA) have stepped in to help facilitate the
coördination between industry and government; a mission statement from NASA’s
AAM website (https://www.nasa.gov/aam/overview) provides a concise description
of how they see their role:

https://www.nasa.gov/aam/overview
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NASA’s vision for Advanced Air Mobility (AAM) Mission is to help emerging aviation
markets to safely develop an air transportation system that moves people and cargo between
places previously not served or underserved by aviation—local, regional, intraregional,
urban—using revolutionary new aircraft that are only just now becoming possible. AAM
includes NASA’s work on urban air mobility and will provide substantial benefit to U.S.
industry and the public.

The Aeronautics Research Mission Directorate (ARMD) initiated the AAM Mission
Integration Office during the 2020 fiscal year with the objective to promote flexibility and
agility while fostering AAM mission success and to promote teamwork across ARMD
projects contributing to the AAM Mission. The AAM Mission will address a broad set
of barriers necessary to enable AAM that will be accomplished with the contributions made
by projects across the mission directorate.

Aside from governmental players, large corporations with institutional reputa-
tions have also stepped in to offer commercial solutions that revolve around an
ecosystem product concept, a location for providers of services for AAM to market
their products.

1.2 Visuals and Concepts

After the first meeting with UDOT, our research group produced a conceptual
simulation of airspace corridors over Salt Lake City. One of the issues that we had
discussed was the problem of where low-altitude aircraft would fly and how the
public concerns about privacy and noise might be addressed. At the state level, the
roads are public property, and so the idea was floated that aircraft should simply
fly over the roads. Presented as a short video with a camera that rotated over
the city, we demonstrated how 3D semi-transparent rectangular corridors could be
constructed from geographic information system (GIS) data that was available from
state agencies. Although the simulation lacked precise placement of corridors and
their merge points, the visualization had the effect of catalyzing more conversation
in the state and generating interest from multiple industry stakeholders, including
GE (AirXOS), AirMap, and Bell Aircraft.

Airspace visualizations and simulations are a powerful tool to guide conversation
and facilitate coordination. Visit any website of the major players, Joby Aviation,
Uber, Google, AirBus, etc., and you are bound to find an animated visualization
depicting the future of air travel. However, simulations are normally constructed
to answer more specific engineering problems, rather than as a marketing tool to
generate interest. Our initial visualization was constructed using an open-source
library called NASA Worldwind. This is a 3D geospatial visualization library with
bindings for Java and web technologies such as Javascript. The video that we shared
with UDOT and others was a Java program that read GeoJSON data describing the
road network around the University of Utah and then constructed three-dimensional
corridors at a fixed height above the ground. A small applet with 3D controls then
allowed the user to pan and rotate around the area of interest. A movie was then
created by programming incremental rotations about a fixed center and storing
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frames from the applet at a rate of 15 frames per second (fps). The width and
height of these corridors were chosen arbitrarily to make the visualization appealing.
Additionally, several spherical objects, representing aircraft, were programmed to
“fly” through the corridors.

That same year, NASA announced that it would end support for Worldwind, so
our team looked elsewhere for a visualization tool. Most of our rapid prototyping
efforts utilize MATLAB, with visualization presented on a generic 3D canvas
(using the plot3 function). However, there is also a sense, garnered through many
conversations with stakeholders, that to make AAM research palatable to a large
audience, it would require more specialized geospatial visualization tools. To this
end, a business opportunity arose: a platform for AAM related products could
support and accelerate advanced air mobility by making it easier to pitch, develop,
test, and deploy research and software technology.

1.3 Technology Opportunity

In the push to adopt Advanced Air Mobility, stakeholders include governmental
bodies charged with overseeing airspace utilization, as well as Providers of Services
for Urban Air Mobility (PSU), and UAS Service Suppliers (USS). UAS operators
such as Amazon, UPS, hospitals, etc. are anxiously awaiting operational Unmanned
Aircraft System (UAS) Traffic Management (UTM), which will enable package
and drug delivery, as well as unmanned air taxi services. The Global UTM
Association defines UAV Traffic Management as a system of stakeholders and
technical systems collaborating in certain interactions, and according to certain
regulations, to maintain safe separation of unmanned aircraft, between themselves
and from Air Traffic Management, at very low level, and to provide an efficient and
orderly flow of traffic [43]. Companies such as AirMap, Bell Helicopter, GE, and
others have expressed great interest in exploiting such a system. NASA has done
market surveys that indicate that by 2030 there may be 750M air taxi flights and
500M package deliveries per year in 15 major cities. In addition, this work may
allow efficient integration and synergy between ground and air vehicles. Finally, the
existence of such a system will also enable the acquisition of a whole new source of
big data (flight data, sensor data, communications data, weather data, etc.) that may
form the basis for a wide variety of new services.

Current research and product development aim to catalyze the adoption cycle
that underlies the nascent industry of urban air mobility (UAM). In its 2020 forecast
publication [37], the FAA acknowledges that “it is extremely difficult to put a floor
on the growth of the commercial UAS sector due to its composition and the varying
business opportunities and growth paths.” However in the same study, they say,
“if, for example, professional grade small UAS (sUAS) meet feasibility criteria of
operations, safety, regulations, and satisfy economics and business principles and
enter into the logistics chain via small package delivery, the growth in this sector will
likely be phenomenal;” phenomenal, relative to the forecast of about one million
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non-model aircraft operating for commercial reasons in 2024, each registering
multiple flights per day [37]. This fleet does not include the vehicles expected to
deliver about one million express packages in that same year, according to a study
conducted by NASA [67, 78]. The FAA also estimates between 12,000 and 23,000
passenger-carrying autonomous aircraft operating within urban environments by the
year 2030. As the FAA suggested in their assessment however, these estimates rely
on the assumption that UAM technology will be adopted and that efficient concepts
of operations (CONOPS) can be developed.

Consulting reports and conversations with industry stakeholders indicate that
most believe regulation to be the highest inhibiting factor to growth of the UAM
industry. However, NASA’s own funded study regarding the barriers to adoption
indicates a much more complex landscape, including technical factors as well as
market conditions. Therefore, the more realistic view sees regulation as an outcome
of progress in the technological development of this industry. The more realistic
characterization is where conflicts exist between every pair of stakeholders, and it is
the complexity of these relationships that inhibits growth.

One of the authors, D. Sacharny, has developed the GeoRq platform that
addresses these complexities by providing a collaborative integrated development
environment with specialized system development tools and by structuring the
problem in terms of system-level policies and agent behaviors (see Fig. 1.2)
using the lane-based approach described throughout the book. Three organizational
components form the platform: tools to create and store requirements (specifically
geospatial–temporal requirements), tools to create impact and benchmark metrics,
and tools to create real or simulated deployments. Both the lane-based approach
and the platform are critical components because one provides the conceptual

Fig. 1.2 The core component of the GeoRq platform
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and computational framework for analysis, and the other provides a vehicle for
collaborative engineering and commercialization.

Example Business Model
The main revenue streams for such a product include subscription to cloud services
(deployed and secured platform workspaces) and access to APIs and microservices
such as the Lane-Based UAS Management System, licensing, and data-access fees.
For example, the GeoRq Workspace is a cloud deployment consisting of multiple
connected instances of virtual machines (VM), databases, and configurations. A
GeoRq Workspace may feature an instance of a flight scheduling system, an instance
of Eclipse Theia with GeoRq extensions, GeoServer to provide web map services,
two instances of GeoRq’s PSU, an OIDC security server, and 2TB of Google-
backed storage. This setup supports designing, testing, and deploying large-scale
logistics operations: one PSU communicates with the region’s UTM, while the
other forms a digital twin to simulate deployments, and the Eclipse Theia instance
with GeoRq extensions serves both the end-user as an Air Traffic Operations Center
(ATOC) and the developers as an integrated development environment. Workspace
configurations can be updated dynamically with fine-grained resource pricing, and
each workspace supports multiple users (contingent upon resource requirements).

In a nascent industry such as UAM, companies must replicate a similar structure
of computational instances to conform to UAM system policies. However, the
intense competition between current players to develop, and become the standard
bearer of UTM software, has forced much of the common architecture into
proprietary silos. The result is that non-recurring engineering (NRE) in this space,
such as required by new-product development, is expensive and compounds with
each new engineer that must climb the same hill.

Open-source development, as with GeoRq, overcomes this problem by packaging
up the common architecture, making it configurable, extensible, and deployable,
and by providing an integrated open-source systems development tool. Product
developers can then repackage proprietary APIs, datasets, microservices, user
interfaces, etc., and deploy the white-labeled GeoRq Workspaces as a new product
for their clients. Reducing NRE by building products using open-source and
collaborative software enlarges the pool of qualified designers, engineers, and users,
and it can have dramatic effects on the growth of industries.

In the case of a minimal GeoRq Workspace, not including strategic deconfliction
or PSU deployments, a standard software estimation tool applied to the current code
base estimates approximately 17 months and 8 engineers to complete this common
architecture. The cost estimate of $1.6M assumes an average wage of $56,286;
however, a higher average wage is likely due to the narrow expertise required.

After many discussions with potential subscribers, industry stakeholders, and
government, our observation is that the drive to create products for the UAM
industry exists across many disciplines. Table 1.1 shows a sample of the companies
interviewed during our research of this problem. For example, a company might
acquire a patent for advanced trajectory generation. After integrating the capability
into a web-based API, they would spend considerable NRE developing visualiza-
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Table 1.1 Stakeholders
interviewed

Firm name

Crown Castle

Crown Consulting

Skytelligence

SmartSky Networks

AiRXOS (GE)

UPS

Aerial Transportation Solutions (ATS)

AirMap

ANRA Technologies

University of North Texas

Camel Works Design (Dubai Road Transit Authority)

Anne Arundel Hospital System

Alakaí Technologies

Westinghouse Electric Company

Fortem Technologies

CogniTech Corporation

University of Utah Health

tions using, for example, NASA’s WorldWind libraries for marketing purposes.
Given the chance to use a tool such as the GeoRq workspace and the visualization
capabilities available there, the API strategy might change considerably. The
realization would be that packaging a company’s technical capability within a
platform such as GeoRq provides a powerful channel to market their product as
part of a deployable system. Another example would be a developer engaged in
the NASA AAM national campaign in order to commercialize communications
research. This would require the development of a PSU for a valid simulation and the
necessary infrastructure to deploy a production instance of their technology—this is
a costly endeavor considering the NRE required. Access to a GeoRq-like system
could accelerate their research. Integration of UAM infrastructure would allow
product developers across industry to demonstrate the feasibility and potential for
commercial investment. It would not be necessary to spend a considerable amount
of NRE developing a web-based system for exploring and visualizing their data,
including updates for changes in the AAM framework as this industry develops;
systems such as GeoRq are a cost-effective alternative.

A viable business model emerged through these discussions: offer product devel-
opers a configurable, cloud-deployable package containing the prerequisites for any
UAM product. A basic set of features would be included, with additional cloud
capabilities and deployments (such as large-scale publish/subscribe frameworks)
available through fine-grained resource pricing. An open-source tier is provided
to generate community engagement and sustainable commitment to the platform,
allowing developers to customize the platform as the UAM industry evolves. An
Individual tier addresses the needs of smaller firms, individual entrepreneurs, and
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researchers. The Enterprise tier is for firms that plan to develop multiple products
or to deliver the white-labeled platform as a product to downstream clients.

To estimate potential revenue given this pricing model, a sample list of potential
subscribers was collected from pre-certified consulting firms for several state
departments of transportation (U.S. based). The list was narrowed to consulting
firms with the following capabilities, having a high likelihood of serving UAM
requirements: surveying and mapping, geotechnical services, traffic operations
design, traffic engineering and operations studies, and environmental studies. This
compiled list included 1383 firms with an estimated median of 32 technical staff
per firm. We expect that technical staff will be drivers, as well as end-users,
for adopting a platform such as GeoRq. As an example, the total number of
technical staff present in one dataset (the most descriptive dataset) was 158,286
people. For this sample of the total addressable market, if 0.3% of the technical
staff see potential in serving UAM requirements with their capabilities and each
adopts a single enterprise tier package, then the total annual revenue exceeds
$28M. This figure considers the first workspace adopted by these developers, and it
becomes compounded as more products are developed, white-labeled, and adopted
by downstream clients. Furthermore, this sample market represents a fraction of the
developers that will enter this industry in the next few years. The total addressable
market for a GeoRq-like tool is likely orders of magnitude above this sample,
especially if complementary markets (GIS, programming IDEs, cloud computing)
are considered.

The margins on selling this type of NRE are large, the marginal cost to run
the enterprise tier in the cloud runs annually about $362. For a firm, or even an
individual, deciding whether to venture into product development in this nascent
UAM industry, the value proposition is dramatic: a GeoRq-like product reduces the
necessary investment by at least $2M and accelerates development by at least 1.5
years.

Commercialization Approach
The GeoRq platform is an example vehicle for commercializing research. Research
efforts produce software to perform simulations, record and validate benchmarks,
and test assumptions. Source code can be delivered directly as part of a workspace
configuration or wrapped in a microservice. Front-end code is engineered by pro-
grammers using GeoRq extensions and then included with individual or enterprise
tiers. The commercial feasibility of each product is measured by the value (the
marginal price of selecting this feature with a GeoRq workspace) over the cost of
the computational resources required to run that feature in the cloud (e.g., required
datasets, storage requirements, etc.) and the NRE required to produce it.

Developers of systems such as GeoRq can apply for a variety of assistance
from state and local entities to assist with portions of business development and
commercialization. It is usually possible to work with the state agencies to identify,
bid, and win procurement opportunities with federal, state, and local government
entities. Furthermore, it is possible to seek assistance from the appropriate Small
Business Development Center (SBDC) to receive business counseling and assis-
tance in business plan development.



Chapter 2
Introduction to UAS Traffic Management

2.1 Introduction

In early 2018, the director of the division of aeronautics at the Utah Department of
Transportation (UDOT) invited our research team to a working group discussion
about enabling Urban Air Mobility (UAM) in the Salt Lake Valley in Utah. At
the time, we had been working on a program sponsored by the Air Force Office
of Scientific Research (AFOSR) to develop a Dynamic Data-Driven Application
System (DDDAS) for Geospatial Intelligence [94, 96].1 Our research into data
fusion techniques were relevant to UAM since they involved unmanned aircraft
systems (UASs), weather, and decision making. Representatives from industry,
such as Fortem Technologies Inc., raised practical concerns about the positioning
of radar systems for tracking low-altitude aircraft, while urban planners discussed
constraints for zoning, and local government stakeholders addressed public funding
and perception. Over the course of that year, we met with vehicle designers like
Bell Textron Inc., designers of the concept Bell Nexus, and system designers like
General Electric AiRXOS and AirMap. At the same time, NASA and other industry
partners were gearing up for Technical Capability Level-4 (TCL4) flight tests for
enabling small UAS (sUAS) (55 lbs. or less) operations in low-altitude airspace
(typically uncontrolled or Class G airspace under 400 feet above ground level
(AGL)), conducted at a Nevada, USA test site [53, 63]. While the operational
requirements for sUAS (usually small business or hobby use-cases) differ from
medium to large UAS at higher altitudes, the methods proposed by NASA and
the FAA for distributed coördination rest on the same basic architecture, shown
in Fig. 2.1. This architecture describes the roles and responsibilities of agents in the
UTM system, as well as the delegation of authority. However, questions about the

1 This chapter is based in part on enhanced versions of [89].
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Fig. 2.1 NASA/FAA proposed UTM architecture (from [85])

inherent safety, predictability ,and scalability of the system require a deeper look
into the algorithms and behaviors that define the individual agents.

This book presents a structured airspace for UTM systems to help answer
practical questions about expected system behavior. The lane-based approach is an
effective organizational strategy because it allows efficient strategic deconfliction as
well as the determination of the impact on contingency analysis and handling due
to the interaction between agent behaviors and UTM policies. Complex systems
deployed in the real world are bound to experience contingencies: i.e., possible
future events, usually causing problems or making further plans and arrangements
necessary. Planning for contingencies, including conflict management, is a core
computational issue underlying large-scale autonomous systems because computing
optimal plans is an intractable problem (for both software systems and human
operators). Therefore, the interplay between UTM policies (including airspace
structure, communications, etc.) and UAS behaviors, which encode individual
preferences and autonomy, can have a dramatic effect on contingency handling.

The lane-based approach to conflict management structures the airspace with
one-way volumes and special constraints on intersections and represents both a
practical organizational strategy and a tool for analyzing individual and system
behaviors. It is neither completely decentralized nor centralized, allowing system
designers to make explicit compromises between preferences, and design for contin-
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gencies. Through agent based modeling and simulation (ABMS), new applications
of spatial measures and analytical tools, and a comprehensive review of related
research, the effectiveness of this approach will be shown.

2.2 NASA/FAA UTM Background

NASA’s proposed architecture for UAS traffic management (UTM), shown in
Fig. 2.1, draws inspiration from the current national airspace system (NAS). It is
a distributed computing system, where operators are individually responsible for
planning their flights, ensuring they do not conflict with any other planned flights,
and obtaining the requisite permissions to fly from authorities. The overarching
governing authority, represented by the Flight Information Management System
(FIMS), delegates authorization to UAS service suppliers (USS),2 which are
certified automated systems that ensure flights are strategically deconflicted3 before
authorized. USS may then authorize flights for multiple operators or vehicles and
could represent an organization such as Amazon or Google, which may serve
thousands of aircraft, or a smaller entity with one or a few aircraft. The main
constraint that this proposed architecture applies is in terms of interfaces between
the high-level operating agents (namely the PSUs, operators, and regulators). The
sequences of interactions between them are still mostly undefined and flexible. For
example, there is no rule that inhibits PSU from designing a structured airspace
for its operators and then scheduling them using a proprietary protocol. There is
also nothing stopping state regulators from imposing a structured airspace within
which all PSU must operate. Consequently, these engineering questions remain
open-ended and experimented by NASA, and industry is underway.

In particular, there still remains the question of exactly how safe separation is
achieved across all operations at all times. The FAA and NASA have delegated
the responsibility of ensuring strategic deconfliction to the USS, but the specific
methods for trajectory planning within this system are left unspecified. During
several developmental test efforts held by NASA and the FAA, the concept of a
Discovery and Synchronization Service (DSS) was invented to address the problem

2 In this book, USS and Providers of Services for UAM (PSU) will be used interchangeably. At the
time of this writing, PSU was a relatively new acronym for a functionally similar role as the USS,
with specific interface requirements for mid-to-large autonomous aircraft.
3 Strategic deconfliction, or strategic conflict management, refers to the first of three layers of
conflict management defined by the International Civil Aviation Organization (ICAO), “achieved
through the airspace organization and management, demand and capacity balancing, and traffic
synchronization” [49]. This is generally understood to mean that before an operation takes flight,
its planned trajectory does not violate minimum separation constraints with any other planned
flight. The next layers are applied in order of the shrinking conflict horizon, and they are tactical
in nature and termed “separation provision” and “collision avoidance.”
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of locating other operations within an area. This role is critical to ascertain the state
of the airspace and acts as a centralized database. The internal representation of the
DSS is not a specific requirement; however, the interfaces are being developed as an
industry standard [8]. A prototype DSS has been constructed by Google’s Project
Wing, called InterUSS [45], that has been used by NASA’s developmental efforts.
The internal representation of InterUSS utilizes S2 cells at a fixed zoom level (see
Fig. 2.2). The unit sphere is decomposed into a hierarchy of cells by a framework
called the S2 library, where four geodesics bound each cell of a quadrilateral. The
cell hierarchy is created by projecting the faces of a cube onto the unit sphere
and then recursively dividing cells into 4 sub-cells. When an operation is planned,
the USS queries these cells to find other USSs operating in the area, as well as
a unique token to mark the current state of operations in the environment. The
other USSs are then contacted to find the operational volumes they have reserved
in order to deconflict the planned operation. Once deconflicted, the USS creates a
unique reference to the new operation and registers it with the DSS, along with the
previously obtained state token. If the airspace state has mutated during trajectory
deconfliction (a process that is not standardized), then the DSS rejects the new
operation reference, and the USS is required to restart the process. To date, there

Fig. 2.2 S2 cells covering a portion of New York
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is no published work on specific guarantees offered by this approach—one can
conceive of a situation in which the environment state mutates so often and so
quickly that a particular agent may never be able to fly.

2.3 UTM Scheduling Problem

The online-over-time aspect of the UTM problem means that any algorithm,
currently known to computer science, can only be an approximation of an algorithm
that produces globally optimal solutions (for the most desired cost formulations,
such as maximum delay). In other words, trade-offs between different types of UTM
systems are essentially trade-offs between algorithmic heuristics. A number of prob-
lem formulations, developed for different application areas, provide a foundation for
understanding the heuristic trade-offs, as well as different perspectives represented
as quantifiable aspects of the system. The following subsections describe some of
the comparable problem formulations.

2.3.1 The Air Traffic Flow Management Problem

A natural problem model comes from research into the Air Traffic Flow Manage-
ment Problem (TFMP) [14]. In this model, the airspace is partitioned into sectors
that are controlled by regional regulators who provide separation services. The
sectors are characterized by capacities that represent the maximum number of
aircraft that may be in a sector at any time, and depend on factors such as weather.
TFMP implements two control strategies to ensure that sector capacity constraints
are not violated: ground-holding and speed adjustment. Ground-holding shifts the
entire flight in time by delaying the departure of an aircraft. Speed adjustment is
applied to each sector in flight and represents an “air delay.” Optimal ground-hold
time and speeds for every planned flight are calculated, but each operation does not
deviate spatially (this is called the Air Traffic Flow Management Rerouting Problem
(TFMRP) [14]).

Rios and Lohn [83] compare techniques for finding a solution to the Bertsimas
and Stock-Patterson (BSP) model: binary integer programming, genetic algorithms,
and simulated annealing. They also compare a greedy scheduler that schedules
flights on a “first-come, first-serve basis by finding the first available departure
time for each flight in turn that will not violate sector capacities when combined
with previously scheduled flights.” The greedy scheduler is so named because it is
locally optimal for the flight in question, but it does not guarantee globally optimal
solutions. Solutions to the BSP model provide time intervals during which a flight
must enter each segment, and the solution is guaranteed to minimize the total delay.
Although the size of the problem formulation is bounded by a linear relationship
between the number of intervals, the number of flights, and the number of sectors,
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the integer linear programming formulation suggests that there is no known time-
polynomial algorithm to solve it [73].

Despite its non-deterministic features, this representation is appealing because it
supports the goals of strategic conflict management, namely “airspace organization”
via sectors, and “demand and capacity balancing, and traffic synchronization” via
ground-holding and speed adjustment. What it lacks is an explicit representation for
the intersection of routes in 4-D space. The primary issue is that the sectors are large,
and there is no way to tell if routes intersect. One way to adapt this representation
is to shrink the size of each sector such that capacity is fixed to one aircraft per
sector. Bertsimas and Patterson explored this assumption and determined that the
computational complexity of the TFMP is NP-hard [14]. Also, reducing the size of
the sectors dramatically increases the space complexity.

2.3.2 The Job-Shop Scheduling Problem

By shrinking sector capacities to one, the TFMP can be reformulated as a scheduling
problem (see [73, 75] for a definition of the general scheduling problem, and [7] and
[54] for an overview of the job-shop scheduling problem). Bertsimas and Patterson
[14] reformulate the problem as follows: for each job, create an aircraft, and for
each processor, associate a sector (sectors include airports). Each job is composed
of tasks that represent a flight segment (time spent in a sector). A solution to this
formation is a total ordering of sectors for every job, and a list of flight times for
each task such that the total delay is minimized, and all flights are performed by a
deadline. This formulation guarantees that no aircraft will occupy the same sector
at the same time and therefore satisfies the non-intersection requirement.

There are, however, several practical issues with this formulation. To begin with,
the job-shop scheduling problem is NP-hard—this makes it a poor choice for USS
that may need to contest with tens of thousands of “jobs.” Furthermore, it is not clear
what the sector size should be, given the variation of UAS sizes expected to utilize
the airspace. Too large a sector could result in an unreasonable amount of tactical
separation maneuvers, while too small a sector could become computationally
intractable. To account for uncertain speeds, the scheduling model can incorporate
probabilistic durations. This formulation still suffers from the time complexity as
before (and likely worse if the durations are not assumed to be independent random
variables) [26].

2.3.3 The Multi-Robot Motion Planning Problem

Strategic deconfliction may be cast as a multi-robot motion planning problem. The
key concept for any motion planning problem is the configuration space, which
combines the kinematic constraints of the robot and the environment. Multiple
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robots may be combined into a conceptual “composite robot” [119], and the motions
are planned in a joint configuration space. Centralized, or coupled, algorithms
provide a path for every robot, while decentralized, or decoupled, algorithms usually
provide solutions for a subset of the robots. In [119], the authors decompose a
multiple robot planning problem into partitions of robots that are planned together.
While this approach does reduce the complexity of the joint configuration space, it
does not guarantee a reduced complexity of the problem because each partition can
still be very complex. Other approaches, such as incremental coördination [102],
combine the centralized and decentralized algorithms into a single iteration.

Multi-robot motion planning is also a more natural representation for
autonomous vehicle coördination because solution methods, such as rapidly
exploring random trees, can incorporate dynamic constraints and uncertainty
directly. The desire for optimality, however, results in a worse-case time complexity
comparable to the job-shop scheduling problem. The two-phase decoupled approach
[102] involves first computing a path for each robot individually while ignoring
other robots, and then operations are applied to the resulting path set to avoid
collisions. The advantage of this approach is that the “search space explored by
the decoupled planner has lower dimensionality than the joint configuration space
explored by the centralized planner” [102]. The drawback is that it is an incomplete
algorithm, meaning it is not guaranteed to find a solution even if one existed by
considering the system as a whole. This approach resembles the greedy, first-come,
first-serve algorithm described by Rios in the sense that previously planned paths
are considered as static obstacles and each new flight is delayed until the capacity
constraints are met [84].

2.3.4 The Traffic Assignment Problem

The traffic assignment problem (TAP) is a sub-problem in the transportation
planning process that models the route-choice behavior of travelers given a set
of possible routes [74]. This problem is mentioned here because prior research
such as [22] measures the performance of the airway system by simulating
origin-destination data from population centers. When determining the capacity
of a particular network configuration, the traffic assignment problem should be
considered separately because its benefit is mainly to predict the demand on the
system. Solutions to TAP result in aggregate measures, “a macroscopic description
or prediction of the traffic volume” [74]. The relationship between volume of
travelers and their average travel time is modeled by link performance functions
[74]. Queuing models also play a role in the development of link performance
functions.
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2.3.5 The Optimization Problem

The FAA expects tens of thousands of UAS to utilize the airspace in close proximity;
therefore, the problem model composition is important to ensure that minimum
separation requirements are met. There are two ways in general to represent the
safety requirements, as a constraint and as an objective function. The objective is
to maximize the separation (or headway) between UASs. Assuming the solution is
optimal, the question of whether it meets the safety requirement is determined by
a threshold, e.g., “the minimum separation is at least 10 meters,” or “the minimum
separation is at least 10 meters with 99.9% probability.” Given the complexity of
the UAS strategic deconfliction problem, we propose to constrain consideration to a
linear ordering model, that is, well-separated flow along lanes. Thus, the general 4-
dimensional space–time trajectory problem becomes one of the deconflicting flights
through a connected set of one-way lanes. This approach is developed in the rest of
the book.



Chapter 3
Lane Networks

3.1 Introduction

There are many reasons to fly UAS in an urban environment. Several expected
high usage applications are package delivery (e.g., food, medical supplies, general
goods), inspection (e.g., buildings, bridges, power infrastructure, etc.), and air taxi
service. Major companies such as Amazon, UPS, the Postal Service, etc., may
deploy hundreds or thousands of UAS regionally per day. Every one of these UAS
will follow some trajectory according to a specified time schedule; this is a 1-
dimensional curve in a 4-dimensional space. If every UAS creates an individual
and arbitrary 4-D curve, then every pair of trajectories must be checked to ensure
safety (i.e., minimal separation at all times) and to meet the strategic deconfliction
requirements proposed by NASA and the FAA. Moreover, given thousands of
densely located UAS in the air at one time, ensuring safe operation may be
too complex to allow for human pilots, and system-wide monitoring may be too
complex for human air traffic controllers. This means that to enable large-scale
UAS flight coordination flights must be autonomous and scheduled so as to avoid
conflicts.

3.2 Lane-Based Urban Airways

An alternative to a set of arbitrary trajectories is to create a pre-defined set of lanes
through the air and to require that all UAS flights follow these lanes. Each flight must
consist of a set of lanes; this starts with a launch lane that takes the UAS from the
ground to the air, followed by a sequence of lanes through the air, and terminating
with a landing lane that takes the flight from the air to the ground. To ensure safety,
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a time slot through each lane (i.e., a lane entry time and a lane exit time) must be
reserved for each flight so that at no time are any two flights too close. This is called
strategic deconfliction, and an efficient method for lane-based networks is provided
in the next chapter. To make such a method possible, some constraints are placed on
the network:

• Each lane is one-way (i.e., the network is a directed graph).
• The direction of an edge is related to compass heading (except those in a

roundabout that are always counterclockwise).
• Each lane is at least as long as the headway distance.
• No two disjoint lanes are within headway distance.
• Either the in-degree or out-degree of every vertex is less than two.

Multi-Altitude Airways
An easy way to obtain the basic layout of the airways over a given urban area is
to begin by defining an undirected graph at ground level. For example, a simple
grid may be affixed to ground locations, or the existing ground road network may
be used, wherein every road intersection or termination point is a vertex, and road
segments between vertexes are edges. To achieve travel in both directions between
air vertexes corresponding to a ground vertex, the air lanes must be placed either
side by side at the same altitude above the ground level, or one above the other.
The convention used here is that lanes with travel in opposite directions will be
vertically separated; moreover, travel in directions [0, π) will be at one altitude and
in directions [π, 2π) in the other.

To implement this, there are two levels of airways. In addition, a roundabout is
created at each level above a ground vertex. Lanes to enter the airways from the
ground are called launch lanes and connect a ground location to the lower altitude
airway level. A landing lane connects the lower altitude airway level to a ground
location. Both of these ground locations are near the ground network vertex. To
achieve these connections, a vertex is placed in the roundabout to connect to a
corresponding launch or lane location, respectively.

Figure 3.1 shows a 2 × 2 ground grid network (an undirected graph with four
nodes and four edges) and the corresponding air network (a directed graph with
40 nodes and 56 edges). Note that there are lanes connecting the two roundabouts
(separated by altitude) at a vertex location—one up and one down. This allows a
flight to enter an air vertex at either altitude and exit along any lane leaving the
vertex. Each ground vertex has an associated distinct ground location for its launch
and landing lanes, if they exist. As can be seen in the figure, these launch and
lane ground vertexes connect directly to corresponding vertexes in the low altitude
roundabout above the ground vertex.

The lane-based approach defines a set of one-way lanes where each lane is
defined by an entry point, an exit point, and a one-dimensional curve between the
two (here we use straight line segments). UASs travel in three dimensions, and
thus lanes are understood to be virtual 3D corridors (e.g., cylindrical-like tubes).
The shape of corridors may change dynamically and should be constructed to
account for the idiosyncrasies of the vehicles that they are meant to support; for
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Fig. 3.1 A simple 2 × 2 grid network

example, smaller aircraft in windy environments may require a larger corridor radius
than a heavier vehicle with better control dynamics. Further design constraints can
be defined in terms of the headway—or safe separation distance—between UAS.
The combination of headway and corridor design can support a range of vehicle
trajectory constraints, while the directed graph (digraph) imposed on the airspace
presents agents with a structured environment for computation (the lanes represent
a complete model of the airspace under ideal conditions). Lanes may also have
other associated properties (e.g., speed restrictions) specified by the UTM, enabling
regulators to communicate requirements effectively to all agents in the system.

Lanes are connected, so that every vertex has either in-degree or out-degree equal
to one (except launch lanes that have in-degree 0 and land lanes that have out-degree
0). This permits scheduling to be based on lanes as opposed to vertexes since all
flights may be deconflicted based on one incoming or outgoing lane, and simplifies
the analysis of congestion because various graph-based measures can be utilized
to determine most likely high congestion parts of the network. This contrasts with
zone-based deconfliction that presumes vehicles can enter and exit in any direction,
and the entire zone must be reserved (inefficient for large areas), and cell-based
deconfliction that combines zone reservation with general motion planning within
each cell (similar to the two-phase decoupled approach in [102]). The choice of
the lane spatial layout is key to operational performance. As previously described,
several alternatives exist:

1. Airways modeled from ground road networks
2. Regular grid networks
3. Networks with specific properties (e.g., Delaunay networks)

We now give a more detailed account of the lane creation process. Lane creation
starts with a ground network defined as a graph, G = (V ,E), where V is a set of
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Fig. 3.2 Three types of road layouts over the same locale: actual San Francisco roads (left); grid
layout (middle); Delaunay triangulation (right)

ground position vertexes, and E is a set of undirected edges between the vertexes.
Figure 3.2 shows example road, grid, and Delaunay networks for a small set of
roads from San Francisco, CA. The grid and Delaunay vertexes are within the same
geographic area; the Delaunay vertex locations are randomly generated. As will be
shown later, the type of network impacts the spatial network measures of the graph.
To create the two-level airways between vertexes, the ground network is duplicated
as a set of airway lanes at two altitudes: one for travel in direction [0, π), and
the other in direction [π, 2π). Since ground vertexes are road intersections, each
is represented by two roundabouts in the air centered over the vertex; these ideas are
demonstrated in Fig. 3.3.

Consider now, the creation of a roundabout for a vertex p with neighbors Q =
{qi |i = 1 . . . n}. A set of vertexes will be placed on a circle of radius r with center
p, where r is chosen so that lanes connecting the vertexes on the circle will be at
least headway distance, h, apart. A vertex, vi , is created for every neighbor where
the line between p and qi intersects the circle. To determine the value for r , consider
Fig. 3.4. Let d be the distance between two consecutive points on the roundabout.
Then:

d2 = r2 + r2 − 2r2cos(θ)
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Fig. 3.3 An example two-level grid lane layout of San Francisco roads

Fig. 3.4 Geometry for determination of minimum required radius. A is the point of intersection
of the circle and the line between the vertex and one neighbor; B is the point of intersection of the
circle and the line between the vertex and the other neighbor; r is the circle radius; θ is the angle
between the neighbors
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where θ is the angle between the two neighbors. In order to obtain d ≥ h, set

r = h√
4cos(θ)

In addition to vertexes to connect to other vertexes, roundabout vertexes are needed
to allow launch and/or land lanes. Finally, since there is a roundabout at each of
the two altitudes of the airway, there must be a lane going up from the lower to the
upper, and a lane going down from the upper to the lower. These extra vertexes are
added midway between the neighbor generated vertexes (e.g., like A and B).

Single Altitude Airways
For some purposes, a multi-altitude airway is undesirable; e.g., people in air taxis
may be discomfited by frequent altitude changes. Thus, it is better to provide a
single altitude airway. Such an airway must still satisfy the lane constraints given at
the start of the chapter. There are several ways to achieve this goal, and two of them
are described here. In addition, one further constraint is added: the digraph must
be strongly connected (except for landing lanes that terminate on the ground); this
means that there must be a path from every vertex to every other vertex.

The first option considered uses roundabouts, although they are constructed in a
different way to multi-altitude airways. Given an undirected graph consisting of a
set of ground vertexes and the edges between them, then a set of new vertexes is
created for each. There are two cases to consider:

1. If a vertex, v1, has only one neighbor in the undirected graph, then Fig. 3.5 shows
how a set of lanes can be defined, which satisfies the lane constraints. This does
not require a full roundabout but must have two vertexes around each neighbor
that allow lanes back and forth, as well as lanes to the interior of v1.

2. If v1 has more than one neighbor, then Fig. 3.6 shows a representative example
of how this is handled. A pair of vertexes is created for each neighbor to allow
back and forth travel, and lanes to and from v1. All of the local cycles between
v1 and its neighbors run clockwise.

Fig. 3.5 Single altitude lane connections for a vertex with one neighbor
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Fig. 3.6 Single altitude lane connections for a vertex with more than one neighbor

This method corresponds to the semantics of roads on the ground in that UASs
travel in opposite directions in neighboring lanes in the same horizontal plane. The
safety of such a structure requires adequate control of the UAS to avoid crossing
into the neighboring lane. Another complication of this approach is the necessity to
introduce new vertexes.

An alternative approach is to take the given undirected graph, G = (V ,E) as
the starting point, and to define a strongly connected directed graph, G′ = (V ′, E′),
where V ′ = V ∪ VL and E′ are defined below. VL is a set of ground vertexes for
launch and land lanes, which are the only required additional vertexes. One way to
achieve this is as follows. Assign P ← V ′ be the set of points under consideration.
Initialize E′ = ∅. Next, set k = 1 and find the set of points, Hk , in the convex hull
of P given in counterclockwise order; define a set of edges, Ek = {(pi, pi+1) |
pi and pi+1 are consecutive points in Hk}. Then define Rk ← (Hk,Ek), as the kth

ring for the airway. Now, set P ← P − Hk and k ← k + 1 and repeat the process
so long as P �= ∅. This will produce a set of convex polygon rings with a path from
every node in the ring to every other node in the ring. Next, a set of edges must be
defined to connect the rings. The basic idea behind this is to run a ray from the center
of the rings out and create an edge between the pairs of neighboring rings using the
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Fig. 3.7 Rings must be connected so as to satisfy the lane constraints

points where the line intersects the rings. There are three separate cases to consider:
the innermost ring may have (1) three or more points (i.e., it is a regular ring), (2)
two points, or (3) a single point. In case 1, the mean of the locations of the innermost
ring points is used to create the line. For case 2, the two points need to be connected
by an edge—call it (p1, p2); then p2, the head of the edge, is connected to the next
outer ring, and some point on the next outer ring is connected to the p1, the tail
of the edge. If there is a single point, then an edge is created from the next outer
ring to it and an edge from it to the next outer ring. The edges connecting the rings
must maintain the lane constraints, and in particular, every node must have either
in-degree or out-degree less than two; Fig. 3.7 shows how this can be accomplished.
The algorithm is:

Algorithm convex hull single altitude airway
P ← V ′
E ← ∅
k ← 0
while P �= ∅

k ← k + 1
Ek ← ∅
Hk ← convex hull of P

Ek ← Ek ∪ {(hi, hi+1) | hi, hi+1 ∈ Hk are consecutive points}
P ← P − H

end while
maxRings ← k
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if |Hk| > 2
p ← mean(Hk)

line1 ← line through p and [px − py]T
I+ ← intersections ofline1with Ek in π

4 directions
I− ← intersections of line1with Ek in − π

4 directions
elseif |Hk| == 2

p1 ← first point in Hk

p2 ← second point in Hk

E ← E ∪ {(p1, p2)}
line1 ← line throughp1 and p2
I+ ← intersections of line1with Ek in π

4 directions
I− ← intersections of line1 with Ek in − π

4 directions
E ← E ∪ {(p2, q1)}, where q1 is an appropriate intersection point with Hk−1
E ← E ∪ {(q2, p1)}, where q2 is an appropriate intersection point with Hk−1

elseif |Hk| == 1
p = point in Hk

line1 ← line through p with direction π
4

I+ ← intersections of line1 with Ek in π
4 directions

I− ← intersections of line1 with Ek in − π
4 directions

E ← E ∪ {(p, q1)} where q1 is appropriate intersection point in Hk−1
E ← E ∪ {(q2, p)} where q2 is appropriate intersection point in Hk−1

end
E ← E ∪ {(qi, qj )} where qi, qj are intersection points on the ith and j th rings

Using this method, a single altitude airway may be constructed (without round-
abouts), which is strongly connected. Figure 3.8 shows an airway developed from a
set of vertexes from a grid, while Fig. 3.9 shows an airway developed from a set of
random points.

3.3 Spatial Network Measures

Given a specific airway network of lanes, it is important to be able to measure the
effectiveness and efficiency of the network. To this end, a variety of measures have
been developed (see [13] for a detailed discussion of spatial network measures for
road, railway, and other ground networks). Two types of measures are of interest:
static and dynamic. Static measures depend directly on the structure of the graph
and the spatial layout of the nodes. For example, a star graph (one node in the center
with edges to a set of nodes distributed around it) has a strong point of congestion
at the central node since all paths must go through it. On the other hand, dynamic
properties (e.g., spatial flow—the number of UASs passing a given point per time
unit) depend not only on the network structure, but also on the job mix of the flights
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Fig. 3.8 A single altitude airway developed from a set of grid points

and the scheduling algorithm. Generally speaking, static properties are useful when
defining the network, and dynamic properties help determine the UTM policies and
scheduling algorithm parameters.

3.3.1 Static Spatial Network Measures

Static spatial network measures have been defined to evaluate the quality of a
given (ground) transportation network (see [13, 74, 100, 114] for a detailed set of
measures), and a set of flow measures (see [100]) as well. A subset of these have
been selected to analyze the various road networks used as the basis for airways.
A number of spatial network measures have been used to evaluate the quality of
ground transportation networks, and they can be applied to airway networks as well.
If a ground road network is the starting point for the creation of an air network, then
the measures can be applied to the ground network for initial consideration and
then applied to the subsequent air network as well. The results on these seem well
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Fig. 3.9 A single altitude airway developed from a set of random points

correlated. Note that, in general, the ground network is a planar, undirected graph,
while the air network is a 3D directed graph.

Let G = (V ,E) be an undirected graph with |V | = N ; then the set of static
spatial network measures used here includes:

• Density: | E | / | N |; the ratio of the number of edges to the number of vertexes
• Total Length:

∑
i �=j dij , where dij is the distance from node i to j ; i.e., the sum

of all edge lengths
• Minimum Path Length: (in steps) L(i, j); minimum number of edges from vertex

vi to vertex vj

• Minimum Path Distance: D(i, j) (Euclidean distance); minimum distance trav-
eled along the edges from vertex vi to vertex vj

• Graph Diameter: maxi,jL(i, j); longest path in graph
• Cyclomatic Number: τ = |E| − |N | + 1; the number of reduced circuits in the

graph
• Meshedness (also called α-index): τ

2N−5 ; the number of cycles vs. total possible

• Density (also called γ -index): |E|
3|N |−6 ; percent of existing routes to total possible

routes
• Organicness (also called rn):

N(1)+N(3)∑
k �=2 N(k)

; N(k) is the number of vertexes with

degree k
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• Route Factor: Q(i, j), i �= j ; for each minimal path from i to j , the number of
steps over distance

• Minimum Spanning Tree (MST) Cost: sum of all edge lengths of MST in G
• Overall Cost: Total Length

MST Cost

• Efficiency:
∑

i,j ( 1
L(i,j)

)

N(N−1)

• Detour Index: pairwise ratio of straight line distance over minimum path distance
• Betweenness Centrality: bc(v) = ∑

s �=v �=t
σst (v)
σst

, where σst is the number of
shortest paths from s to t and σst (v) is the number of shortest paths from s to
t through v

• Closeness Centrality: CC
i = N−1

∑N
j=1,i �=j dij

, where i is the vertex index, and dij is

the shortest path distance between vertexes i and j ; measures how close a node
is to the other nodes in the network

• Straightness Centrality: CS
i = 1

(N−1)

∑N
j=1,i �=j

dEucl
ij

dij
; captures how straight the

shortest paths through a node are

Most of these measures can be used in a similar way to road analysis. However,
the last three are some of the most useful measures (for example, see the recent
work of Ahmadzai et al. [1] who proposed the use of the Integrated Graph of
Natural Road Network (IGNRN) and measured the three types of centrality on
it to show how various hierarchies in the network can be determined). Even the
application to the 2D road network that gives rise to the 3D airway provides insight
into possible congestion points (betweenness centrality), centrally located launch
centers (closeness centrality), and nodes through which fewer turns (due to lanes)
are necessary (straightness centrality). In addition, these measures provide a visual
mechanism to compare different network layouts. For example, Fig. 3.10 allows
comparison of grid and Delaunay layouts: brighter nodes are likely more congested.
Also, note that the grid network betweenness values are about double those of the
Delaunay network.

Table 3.1 gives the values for some of these measures for three Salt Lake City,
Utah graphs; the values are indicative of the performance using the graph. In
particular, the betweenness centrality (BC) is useful in locating bottlenecks. Now
consider the betweenness centrality of the airways over the East Bench area of Salt
Lake City, UT. Figure 3.11 shows this measure for the airway constructed from the
underlying road network. Figure 3.12 shows the betweenness centrality for the grid
network, and Fig. 3.13 displays that of the Delaunay triangulation.

These measures provide clear insight into how the graph affects performance;
the Detour Index can help a user select a path, and the last three provide useful
information about congestion and flow through the graph. A high measure of
betweenness centrality (BC) indicates that a node is prone to congestion since many
shortest paths pass through it; high closeness centrality reveals a good site for a
launch or land site since the node is close to many nodes; finally, straightness
centrality means that shortest paths through this node do not require many turns,
which can be important for UAS platforms. For example, Figs. 3.11, 3.12, and 3.13
show the BC measure for three lane networks, and high BC measure corresponds to
higher congestion parts of the network.
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Fig. 3.10 (a) The betweenness centrality of the grid network; (b) Delaunay network (right). Note
that the nodes in the center of the grid are likely to be pinch points

Table 3.1 Some measures
for the three network types
used in the earthquake
scenario simulation

Measure Delaunay Grid GIS

Density 2.95 1.91 1.23

Total Len 31.73 32.59 31.01

Graph Diam 30 45 73

Cyclomatic No. 978 483 109

Meshedness 0.98 0.46 0.12

rn 0.006 0.160 0.786

L_T 4.5915e5 2.525e5 1.006e5

L_MST 9.1041e4 1.3175e5 7.7962e4

Cost 5.04 1.92 1.48

Efficiency 0.1074 0.0840 0.0642

Detour Index 0.94 0.80 0.73

Betweenness Cen. See graph See graph See graph

Closeness Cen. See graph See graph See graph

Straightness Cen. See graph See graph See graph

3.3.2 Dynamic Spatial Network Measures

We have also defined a number of network flow measures (adapted from a standard
ground transportation framework—see [74, 100, 114]). These include the max UAS
per lane:

nmax = 
 d

hd

�
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Fig. 3.11 The betweenness centrality of an airway created from the ground road network

Fig. 3.12 The betweenness centrality of an airway created from a grid
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Fig. 3.13 The betweenness centrality of an airway created from a Delaunay triangulation of a set
of random points above the same area

where d is the length of the lane, and hd is the headway distance; the time occupancy
of a lane:

� = nk

tmax

where nk is the total number of UASs through the lane, and tmax is the max time
considered; spatial occupancy per lane:

ks = μ

d

where μ is the average number of UASs in the lane per time unit; and spatial flow:

qs = ks · s

where s is the average speed of the UAS.
For the simulations performed here, most of these measures are low given the

traffic patterns for supply delivery; however, one interesting result is time occupancy
shown in Fig. 3.14. As can be seen, this measure correlates rather directly with the
betweenness centrality of the spatial network.

The behavior of requests and the strategy for scheduling can have a significant
impact on the average density of lanes. Consider a single lane system of length
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Fig. 3.14 The time occupancy measure for the supply delivery scenario

x, with one entry and one exit. Further assume that vehicles consume a one-unit
spatial interval within the lane, and requests arrive over time independently for a
uniformly random unit interval. In the first scenario, assume that each vehicle either
obtains the requested reservation or drops out, a “failure.” This scenario mirrors a 1-
dimensional sequential interval packing problem, also known as Renyi’s parking
problem [80]. Renyi showed that as the length of the lane approaches infinity,
the mean filling density approaches 0.7476. This property also holds for the lane
scheduling approach given here.

The dynamic measures described above may be used to predict the behavior of
lane networks and aid in the design of structured airspaces. However, to compare the
lane-based approach with unstructured airspace approaches, such as that proposed
by the FAA and NASA, some direct metrics can include:

• Delay Time: absolute difference between the desired and actual launch times
• Deconfliction Time: wall-clock time required for deconfliction
• Failures: the number of flights that could not be scheduled due to conflicts.



Chapter 4
Strategic Deconfliction

4.1 Introduction

The Federal Aviation Administration (FAA) and NASA have provided guidelines
for Unmanned Aircraft Systems (UASs) to ensure adequate safety separation of
aircraft and, in terms of UAS Traffic Management (UTM), have stated [82]:

A UTM Operation should be free of 4-D intersection with all other known UTM Operations
prior to departure and this should be known as Strategic Deconfliction within UTM ... A
UTM Operator must have a facility to negotiate deconfliction of operations with other UTM
Operators ... There needs to be a capability to allow for intersecting operations.

The latter statement means that UTM Operators must be able to fly safely in the
same geographic area. The current FAA-NASA approach to strategic deconfliction
is to provide a set of geographic grid elements and then have every new flight
pairwise deconflict with UTM Operators with flights in the same grid elements.
Note that this imposes a high computational burden in resolving these 4D flight
paths and has side effects in terms of limiting access to the airspace (e.g., if a new
flight is deconflicted and added to the common grid elements during a proposed
flight’s analysis period, then the proposed flight must start the deconfliction analysis
all over).

We have proposed a lane-based approach to large-scale UAS traffic management
[90, 91] that uses one-way lanes, and roundabouts at lane intersections to allow a
much more efficient analysis and guarantee of separation safety.1 We present here
the results of an in-depth comparison of FAA-NASA strategic deconfliction (FNSD)
and Lane-Based Strategic Deconfliction (LBSD) and demonstrate that FNSD suffers
from several types of complexity that are generally absent from the lane-based
method.

1 This chapter includes portions of [98, 99].
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Small Unmanned Aircraft Systems (sUASs) are to be integrated into the low-
altitude (Class G) airspace, and initial concepts have been provided by the NASA
UAS Traffic Management (UTM) project [85]. A set of four Technical Capability
Levels (TCL) have been defined, and TCL 4 addresses “an urban environment and
includes handling of high density environments, large-scale off-nominal conditions,
vehicle-to-vehicle communications, detect-and-avoid technologies, communication
requirements, public safety operations, airspace restrictions, and other related
goals.” Figure 2.1 shows the UTM framework proposed by NASA. The UAS
Service Suppliers (USSs) provide key functions for managing the airspace, and in
particular, they are charged with ensuring strategic deconfliction (SD) of flights, and
other services usually provided by the Air Navigation Service Provider (ANSP) in
manned aviation. In addition, USSs are charged with monitoring flight operations.
All of these functions are to be achieved in a distributed, coöperative manner.
NASA’s vision is that USSs perform SD by making sure that any proposed flight has
no 4D (space and time) conflict with any scheduled flight in its area of operation.
This also permits arbitrary flight paths.

The FAA-NASA SD approach has some glaring problems, including the com-
putational complexity of arbitrary 4D path planning, as well as its susceptibility to
monopoly control by organizations with large-scale resources. We have proposed an
alternative approach using well-defined lanes [90, 91] in which a (generally) fixed
set of lanes (airways) are established, and then flights are scheduled through these
lanes. This means that SD becomes a 1D problem that is solved much the same as
with manned flight, that is by delay of the takeoff time.

We provide the first detailed set of experimental results that allows analysis and
comparison of the two alternative approaches. The results indicate that the lane-
based approach is superior in most aspects.

4.2 FAA-NASA Strategic Deconfliction

The FNSD is based on a gridded approach in which the area of flight operations is
divided into a number of grid elements, and each flight scheduled by a USS keeps
track of the grid elements over which it operates. Then when a new flight is being
scheduled, it only needs to deconflict with the flights with which it has common grid
elements. The current approach proposed by the FAA/NASA is shown in Fig. 4.1,
where USS1 and USS2 have a number of scheduled flights (USS1 flights in green
and USS2 in blue). These flights have already been deconflicted for operation over
some time interval. USS3 wants to schedule a flight (red dashed line), but in order to
do so, must deconflict flights pairwise with both USS1 and USS12, which means all
flight paths must be shared. If some other USS manages to deconflict and schedule
a flight in this space–time before USS3, then USS3 must start the process all over
from the beginning [45]. Note that thousands of flights a day are envisioned, thus
making the complexity of strategic deconfliction overwhelming. Figure 4.2 shows
an example grid layout with a 4 × 4 set of grid elements (i.e., about 1320 feet on
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Fig. 4.1 Sketch of the current FAA-NASA proposed strategic deconfliction

Fig. 4.2 The basic experimental layout with a 4 × 4 grid

a side). For FNSD analysis, we consider a flight path to consist of a polyline with
three line segments:

1. Segment 1: [pt1, pt2], a segment going straight up from a launch site to a chosen
altitude

2. Segment 2: [pt2, pt3], a segment going across the workspace at a fixed altitude
3. Segment 3: [pt3, pt4], a segment going straight down to the ground

Each flight path is comprised of a user selected launch site, land site, and flight
altitude. In addition, each flight has a designated start time and fixed speed for the
entire flight. Note that this may be relaxed to allow mixed speeds without much
modification of the structure of the deconfliction procedure.

Given a set of flights, the convention is that they are requested and deconflicted
in the order of the list. That is, the first flight is scheduled as specified since there are
no flights scheduled before it, the second flight must only deconflict with the first,
etc. The deconfliction strategy used is based on ground delay of the flight until it has
no conflicts with scheduled flights in its grid elements; this allows a fair comparison
to the lane-based method that is also based on setting a conflict free launch time;
moreover, this is the way standard air traffic control is accomplished. The FNSD
algorithm used here is:
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On input: scheduled_flights,
flight_request,
delta_t,
headway_distance

On output: new_flight

if flight_request shares no grid
elements with scheduled_flights

then new_flight is requested flight
(earliest time); return

if there are no flight segments in the
scheduled_flights within headway
distance of the flight_request
segments

then new_flight is requested flight
(earliest time); return

pinch_pts = all segment pairs of
scheduled flights that are within
headway distance of the flight
request segments

while (any pinch point segments have the
two flights within headway distance
during their traversal of the segment)

shift the start time of the flight
end

Although this is just an example of a deconfliction method, the statistics accumu-
lated will be somewhat independent of the particular method. This is due to the
fact that the complexity is related to the number of scheduled flights that share grid
elements with the flight request and the nature of the segment interactions in the
grid element. This method first eliminates from consideration any scheduled flight
that shares no grid elements. Next, it eliminates any that share grid elements, but
none of whose flight segments are within headway distance of the flight request
segments. Finally, to determine whether segment pairs that are within headway
distance actually pose a problem, the time of passage of the two flights must be
considered. For example, if the entry–exit time through the scheduled flight pinch
segment does not overlap the entry–exit time interval of the flight request segment,
then there is no conflict. Finally, if these time intervals overlap, then an analysis
is performed to see if the flights get within headway distance while crossing their
respective segments; if so, the start time for the flight request is delayed a fixed
amount, and the impact re-analyzed.
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The pinch point segments are determined as follows. Let P0 ∈ �3 and P1 ∈ �3

be the endpoints of segment 1, s ∈ [0, 1], and Q0 and Q1 be those of segment 2.
Define

P(s) = P0 + s(P1 − P0) (4.1)

Q(t) = Q0 + t (Q1 − Q0) (4.2)

w(s, t) = P(s) − Q(t) (4.3)

Then the distance squared between P(s) and Q(t) is

| w(s, t) |2= w(s, t) · w(s, t) (4.4)

When the distance is less than the allowed headway, then the pair of segments is
recorded.

4.2.1 A Detailed Analysis of Strategic Deconfliction

As described above, a framework is being developed to support large scale
(thousands) of UAS flights per day over urban areas, and NASA has proposed a UAS
deconfliction strategy that requires service providers (UAS Service Suppliers or
USSs) to exchange full flight path information and to mutually find a deconflicted set
of flights. This approach has high complexity and sacrifices UAS operator privacy.
We propose a lane-based deconfliction strategy that reduces the shared information
to be simply lane entry and exit times and UAV speed through the lane. Then given
a requested launch time interval, it is possible to determine the set of all allowable
(deconflicted) time intervals within the requested interval.

Techniques proposed for flight planning include full mix and layered methods
[106, 108] for which safe separation is maintained by tactical collision avoidance
methods in otherwise unconstrained flights. While several heuristic methods have
been developed for this problem (e.g., [11]), it is still possible that the number
of conflicts may overwhelm the algorithms (see [52] for an analysis of cascading
effects of conflict resolution). There has been a large amount of research into
quantifying the risk of conflict in this type of system (e.g., [16, 22, 52, 108, 113]),
indicating that there are numerous risk factors that an operator would need to con-
sider in order to reduce the risk of collision. Lane-based airways were analyzed in
[51]; however, the UAS operations were not deconflicted pre-flight and instead were
simulated much like car-following models (e.g., [70]). Recently, a report published
by NASA detailed the negotiations among stakeholders regarding requirements for
USS SD. Furthermore, they discuss the requirement that any scheme for strategic
deconfliction must be mandated by the airspace regulator.
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The Strategic Deconfliction Problem is to produce a set of scheduled flight
paths such that no two aircraft ever get closer than a specified safety distance
(specified either in space or time).

Strategic deconfliction, or strategic conflict management, refers to the first of
three layers of conflict management defined by the International Civil Aviation
Organization (ICAO), “achieved through the airspace organization and manage-
ment, demand and capacity balancing, and traffic synchronization” [49]. The next
layers are applied in order of the shrinking conflict horizon and are tactical in nature
and termed “separation provision” and “collision avoidance.” Broadly speaking,
strategic conflict management deals with planning collision-free paths, which in
the most general case of planning for multiple agents is P-SPACE-hard [60]. Even
the more narrow problem of tuning velocity profiles is NP-hard [3]. We consider
the simpler, but more realistic scenario, given the UTM architecture, of scheduling
UAS in real-time within lanes, reducing the configuration space of the UAS to a
single dimension for each flight. The result is a practical, computationally tractable
algorithm for strategic conflict management. The theoretical contribution here is an
efficient algorithm for strategic deconfliction. We also provide experimental results
that take into account the capacity constraints imposed by the system and enable
airspace regulators to make informed decisions about how to address user demand.

The majority of motion planning algorithms relies on some form of discretiza-
tion, e.g., cell decomposition or probabilistic sampling such as Rapidly Exploring
Random Trees (RRT) [25, 60]. The algorithms that do not rely on discretization
either assume a functional representation of trajectory (e.g., a spline) or are tactical
because they apply to controls directly. The decisions related to discretization are
vital in determining the effectiveness and complexity of a motion planning problem.
For instance, in the RRT algorithm, the line connecting sampled locations must be
discretely sampled to determine if any conflicts exist. If the sample resolution is too
fine, then computation resources suffer. If the sample resolution is too coarse, then
there is the possibility that a conflict exists that would not be discovered until it was
too late.

The strategic conflict management problem shares characteristics with many
application areas, as well as theoretical work in discrete mathematics (see [38] in
the context of scheduling) and topology (see the chapter on configuration spaces in
[25]). This includes the Air Traffic Flow Management Problem (TFMP) [14, 73, 83],
The Job-Shop Scheduling Problem [7, 26, 54, 73, 75], The Multi-Robot Motion
Planning Problem [84, 102, 119], The Traffic Assignment Problem [22, 74], and
Optimization Problems [69, 121]. The FAA expects tens of thousands of UAS to
utilize the airspace in close proximity over urban areas; therefore, the problem
model composition is important to ensure that safety requirements are met. There
are two ways in general to represent the safety requirements: using constraints, or
with an objective function. The objective is to maximize the separation (or headway)
between UAS. Assuming the solution is optimal, the question of whether it meets the
safety requirement is determined by a threshold, e.g., “the minimum separation is
at least 10 m,” or “the minimum separation is at least 10 m with 99.9% probability.”
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We only consider the constraint model that casts the objective as a function of the
time between desired release times and scheduled release times.

Lanes, as we propose them, are created by an authorized party (e.g., the
Department of Transportation) and may allow USS proposed lanes that can be
approved by the UTM authorities. Each lane has an entry point and an exit
point and allows one-way travel from entry to exit. Where lanes intersect, we
introduce an airspace structure inspired by roadway roundabouts. In addition,
we provide a computationally tractable trajectory scheduling algorithm for UAS
Service Suppliers (USS) within this structure. A capacity analysis follows the
description of the airway structure to provide a baseline for further research.
Prior research into the capacity of airspaces does not simultaneously consider the
complexity of planning the operations; however, both concepts must be considered
together since the airspace regulator is expected to manage both. We analyze the
relationship between airspace capacity and such a lane-based structure. Over dense
urban areas that are of primary concern here, there will most likely be a limited set
of lanes possible, and understanding the capacity of the lane system is important to
urban planners.

The lane-based method proposed here can be seen as an extension of Victor
and Jet Airways used in manned air traffic management [34]. However, these
were rigidly defined off of VOR systems (Very High Frequency Omnidirectional
Range) in the 1960s. Moreover, such routes were under visual flight rules and
at intersections required human deconfliction. The innovation in our approach is
the dynamic nature of lane creation and deletion, as well as the introduction of
roundabouts that permit efficient strategic deconfliction. Finally, we note that in the
following, it is not assumed that UASs have the same speed in a lane, multiple levels
(altitudes) are used in the lanes, and although lanes may be above roadways, this is
not required; on the latter subject, it should be noted that NASA has stated (emphasis
added) [112]:

With regard to the routes that UAM will traverse between two vertiports, a natural starting
point for emergent UAM operations is to fly along defined helicopter routes ... These
helicopter routes tend to overlay highways and freeways on the ground to mitigate societal
concerns

In the experiments described here, shortest route lane sequences are generated over
urban areas (although arbitrary lane sequences may be used), but these are not large
distance interstate routes, and the altitudes of lanes are somewhat arbitrary but are
safely separated.

4.3 Lane-Based Strategic Deconfliction

Given a set of lanes created as described in Chap. 3, then UAS Service Suppliers
(USS) will receive requests from UAS operators who want to obtain authorization
to travel from a specific launch location through the lane network to a specific land
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Fig. 4.3 Space–time lane diagram (STLD) for two UASs in a lane. The abscissa is time, and the
ordinate is distance along the lane. ht is the time headway (distance between UASs in time in
lane), and hx is the space headway (distance between UASs in lane). Note that ht and hx are
linearly related due to the constant speed. The two trajectories in this scenario intersect at t = 4
and x = 2; however, they violate space headway before then

location. The launch and land locations will be the entry and exit points of the launch
and land lanes, respectively. An approved flight plan for the UAS will consist of a
sequence of lanes and corresponding lane entry and exit times. Given a sequence,
L = {L1,L2, . . . ,Ln}, then the exit point of Li is the entry point of Li+1, and the
exit time from lane Li is the entry time to lane Li+1. L must be specified as part
of the UAS request; however, it is possible that UAS Traffic Management (UTM)
systems may handle lane sequence selection differently.

In order to understand the interaction of flights in a lane, we have proposed the
Space–Time Lane Diagram (STLD); this is similar to those used for ground road
networks. Figure 4.3 shows a simple example of an STLD with two flights indicated
by sloped line segments. The x-axis is for time, while the y-axis gives the distance
along the lane. We assume that flights through the lane can be represented by their
average speed through the lane. Thus, a flight, fi , through the lane is indicated by a
line segment with endpoint1 at (ti1, 0), and endpoint 2 at (ti,2, dk), where ti,1 is the
time flight fi enters the lane, ti,2 is the time it exits the lane, and dk is the length of
lane k.

The other main issue is the determination of whether a proposed flight conflicts
with any scheduled flight. An airway lane constrains the trajectory of the UAS
to the center line of the airway, referred to as the longitudinal direction of the
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aircraft trajectory in prior research (e.g., [52]). The vertical and lateral directions
are assumed to be under control to remain inside the lane. Uncertain altitude and
lateral movements should be compensated for in the design of the width and height
of the airway; this is a subject of ongoing research. Also, a constant velocity
is assumed within a segment; this constraint will also be relaxed in subsequent
research. Suppose that there exists a set of scheduled flights that are represented
in terms of lane enter–exit times and speed through each lane (the speed of a UAS
is assumed constant along a lane, but speeds may differ across UASs).

The Label Method
Let F(c) be the set of scheduled flights through lane c defined as

F(c) ≡ {
r1
t1
, r1

t2
, s1

g; ...; rn
t1
, rn

t2
, sn

g

}

where ri
t1

is the lane entry time for flight i and ri
t2

is the lane exit time, and si
g is

the speed of the flight through the lane. Furthermore, let a flight request interval be
specified as

R ≡ [q1, q2, s
r
g]

where q1 is the first possible launch time, q2 is the latest possible launch time, and
sr is the proposed speed. What must be determined is the set of (possibly disjoint)
intervals in R that are possible launch times (i.e., strategically deconflicted). In order
to determine this, the requested launch time interval is put in the Lane 1 STLD as
shown in Fig. 4.4a, where d1 is the length of Lane 1, q3 is q2 + d1

sr
g

, and q4 is q1 + d1
sr
g

.

Each flight in Lane 1 is considered separately to ensure that the time headway, ht ,
is respected.

Fig. 4.4 Space–time lane diagrams: (a) trajectory boundaries for requested launch time interval
[q1, q2]. (b) The headway boundary trajectories for a scheduled flight that enters the lane at time
p and exits at time p′



44 4 Strategic Deconfliction

Fig. 4.5 Space–Time Lane Diagram Labels. 1,2,3,4,5 indicate intervals and times at the entry to
the lane, and A,B,C,D,E indicate times at the lane exit

To determine safe launch time intervals, first consider the labeling of the STLD
shown in Fig. 4.5. The labels are defined as follows:

• Label 1: The interval [0, q1)

• Label 2: The point q1
• Label 3: The interval (q1, q2)

• Label 4: The point q2
• Label 5: The interval (q2,∞)

• Label A: The interval [0, q1 + d1
sr
g
)

• Label B: The point q1 + d1
sr
g

• Label C: The interval (q1 + d1
sr
g
, q2 + d1

sr
g
)

• Label D: The point q2 + d1
sr
g

• Label E: The interval (q2 + d1
sr
g
,∞)

The two trajectories arising from the scheduled flight are labeled according to
where their endpoints lie with respect to the requested launch interval. For example,
if pi,2 < q1 and ri

t1
+ d1/s

i
g < q1 + d1/s

r
g , then the label for that trajectory is 1A

since both start point and endpoint are in the first intervals at distances 0 and d1,
respectively. The relation of a previously scheduled flight in a lane to the requested
launch time interval is determined by the labels of the two scheduled flight headway
trajectories; the requested launch interval is shown in red. Figure 4.6 shows the first
13 possible combinations. For example, 1A,1A is the case where both headway
trajectories are completely to the left (i.e., before in time) the first possible launch
time trajectory through the lane. Note that in the figures, p1 is ri

t1
−ht , p2 is ri

t1
+ht ,
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Fig. 4.6 Space–time lane diagrams for the first 13 possible label combinations

p3 is ri
t2

+ d1
si
g

, and p4 is ri
t1

+ d1
sc
i

, and ts is the time for the requested flight to cross

the lane. Also, the square brackets ([]) in the figure indicate the empty interval.
Although there are 625 total label combinations, only 139 are physically possible;
for example, no start time can be greater than the end time (see Appendix A for a
complete enumeration and Appendix B for a Matlab program that determines the
correct combination and returns the correct interval set). For each combination, it is
possible to give the safe launch intervals contained in the requested interval (see the
figure for some examples). In some cases, there is no possible safe launch time (e.g.,
1A,1E in the figure). For other combinations, the resulting safe intervals depend on
the relative speeds of the two UASs. An example of this is 1A,3C where a scheduled
flight slower than the requested flight has a different interval as when the scheduled
flight is equal or greater in speed. It can also happen that multiple intervals result as
shown by the 2B,3C case in Fig. 4.7. To determine the viability of a flight through
the complete sequence of lanes, each lane is considered in order as described by the
Label Method Algorithm.

Algorithm 1: Label method
On input:

lanes: lane sequence for requested flight
[q1, q2]: requested launch interval
nc: number of lanes
flights: flights per lane
ht : maximum required headway time
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Fig. 4.7 Space–time lane diagrams for possible label combinations 57 through 71

On output:
Safe time intervals to launch

begin
possible_intervals ← [q1, q2]
for each lane c ∈ lanes

time_offset ← time to get to lane c

possible_intervals ← possible_intervals + time_offset
for each flight, f , in lane c

new_intervals ← ∅
for each interval in possible_intervals

[t1, t2] ← interval i

label ← get_label(rf
t1

, r
f
t2

, s
f
g , t1, t2, s

r
g, ht )

f_interval ← get_interval(label,rf
t1

, r
f
t2

, s
f
g , t1, t2, s

r
g, ht )

new_intervals ← merge(new_intervals,f_intervals)
end

end
possible_intervals ← new_intervals

end
possible_intervals ← possible_intervals - time to last lane

The key computational cost of this algorithm is the determination of f_int; each
instance of this can be done in constant time; call it operation I. Then given n lanes,
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fk flights in lane k, and f is the total number of flights in the lane sequence, then
the total number of I operations is less than or equal to

n∑

k=1

fk +
∑

i �=j

fifj

The second sum dominates the complexity, and assuming fk is on average f
n

, and

since there are

(
n

2

)

terms, then the big O complexity is O(f 2).

An important point is that the lane-based formulation can apply in all cases where
the trajectory is reduced to a single dimension. It is not required that lanes follow
the road network on the ground; lanes may be organically created by operators and
reused by other operators. The critical aspect of this formulation is that there are no
crossing conflicts.

In general, we assume that the headway distance, hd , is a known quantity.
However, there are some constraints on how it is determined. Note that in the
scheduling problem, the headway distance is converted into a headway time. The
relation between the two is given by

ht = hd/s

where ht is headway time and s is the speed of the UAS under consideration. The
value for hd is further complicated by the angle formed by two merging lanes (see
Fig. 4.8). If UAS1 is moving along lane i and UAS2 along lane j , and they are to
stay at least hd apart, then there is a distance from the merge point, Q, of the two
lanes that the other craft should remain outside. This distance, d, is given by

Fig. 4.8 Required distance
along lane to avoid violating
headway constraint
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d = hd

2sin( θ
2 )

The UAS speed, s, to use is the slower of the speeds in its current or previous lane.

4.3.1 The Backprojection Method

The kinematic motion of the UASs may be described as follows:

uas1 : x1 = s1
g

(
t1 − r1

t1

)
(4.5)

uas2 : x2 = s2
g

(
t2 − r2

t1

)
(4.6)

where xy is the longitudinal position (meters) within an airway segment for uasy ,
s
y
g is the ground speed (meters/second), ty is the time along the segment (seconds),

and r
y
t is the release time, i.e., the time at which the UAS begins its trajectory across

the segment. Also note from Fig. 4.4 that x0 and xf represent the start and end of the
segment, so that xf −x0 = length(segment). The time headway (distance between
UASs in time) and the space headway (distance between UASs in space, sometimes
referred to as spacing) are given by ht and hx , respectively.

The error bars in Fig. 4.4 represent the required spacing between UASs, also
known as well-clear in the UAS literature. The vertical distance from a point on the
line to the error bar is the well-clear and is denoted h

y
x for uasy . Due to the linear

nature of the problem, h
y
t and h

y
x are related by

h
y
t = h

y
x

sg,y

(4.7)

This equation mirrors the relationship between density (or occupancy in space),
speed, and flow (or occupancy in time) described in the Highway Capacity Manual
[68]. This is important because it connects the concepts of road capacity, well known
in road-traffic engineering, to airway capacity, which is explored in the following
sections.

The separation constraints for any two UASs may be described as follows:

hx = |x1 − x2| > max(h1
x, h

2
x),∀xy : xy ∈ [xy

0 , x
y
f ] (4.8)

ht = |t1 − t2| > max(h1
t , h

2
t ),∀t (4.9)

Since h
y
t and h

y
x are linearly related, it suffices to consider only one constraint.

These separation constraints are more general than the one considered in [52] to
describe the capacity analysis in a foundational way. UAS operators may prescribe
a required headway as needed by their vehicle and other operational considerations.
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Consider the case where uas2 is already scheduled and now a USS is presented with
uas1 to schedule. Since v1

g is considered constant, r1
t (the release time for uas1) is

the only decision variable. Let ht,max = max(h1
x, h

2
x) and r1

t < r2
t ; we can describe

the first position at which well-clear is violated by the following equation:

xv

(
s1
g − s2

g

) + s1
gs2

g

(
r2
t1

− r1
t1

− ht,max

) = 0 (4.10)

where xv is the position along the segment where a violation first occurs. When the
velocities are equal, then this equation reduces to the simple relationship,

r1
t1

= r2
t1

− ht,max (4.11)

The corresponding constraint for planning purposes is then

r1
t1

< r2
t1

− ht,max (4.12)

This assumption of uniformity of velocities is assumed in the experimental section
to make network capacity constraints more visible. In the general case, however,
when s1

g > s2
g , then xv is negative for all r1

t1
< r2

t1
, and therefore, the only constraint

is the same as Eq. 4.12. When s1
g < s2

g , then the violation point may lie within the
segment (this is the case in Fig. 4.3). The constraint is therefore

r1
t1

< r2
t1

− ht,max − xf

m
, m = −s1

gs2
g

s1
g − s2

g

(4.13)

4.3.2 Backprojection Algorithm

The algorithm based on backprojection given here is a greedy scheduler (Algo-
rithm 2):

Algorithm 2: Backprojection method

Require: rd, re, rl, path, sg
rd ← desired release time
re ← earliest release time
rl ← latest release time
path ← requested segment ids
sg ← speed
seats ← available time slots
ls ← 0 {The segment length}
for each segment in path do

seatssegment ← seats on segment at t ∈ [re, rl] + ls
sg
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seats ← seatssegment | seats {Binary OR}
ls ← segment length

end for
rt ← open seat closest to rd
return rt

It is called “greedy” because the scheduler only considers the currently requested
operation and minimizes the distance between the scheduled and desired release
times. In other words, it is locally optimal with respect to the desired release time. It
is not globally optimal, in the sense that there may have been a better solution if all
operations were considered simultaneously. In the UTM system, where operations
are scheduled online and desired release times are unknown to the scheduler until
the request is made, a globally optimal algorithm may not exist. To see why, this
problem may be cast in terms of what Pinedo would describe as an online job-shop
scheduling problem with no-wait constraints [75]. Specifically, this is an online-
over-time problem because the scheduler “does not know at any point in time during
the process how many more jobs are going to be released in the future and what their
release dates are going to be” [75]. It is also classified as clairvoyent because all
relevant information, such as speed, are available to the scheduler. It may be possible
that a USS knows when its operations will be requested; however, it is still true that
it will not know when another USS’s operations will be requested (at least not in the
currently envisioned UTM system). The no-wait constraint refers to the fact that, in
the scenarios considered in this system, UASs cannot wait (park or hover) between
successive segments. The problem of minimizing maximum lateness (a measure of
the worst violation of due-dates), for a single machine with requested release dates
(in Pinedo’s nomenclature 1|rj |Lmax), is NP-hard [75]. A polynomial-time online
algorithm therefore represents an approximation of the optimal algorithm.

This algorithm applies equally well to homogeneous and heterogeneous veloci-
ties; however, only the homogeneous setup is considered here. The heterogeneous
version of this algorithm applies additional time headway as required by the term
xf

m
in Eq. 4.13.

4.3.3 FAA-NASA vs. Lane-Based SD Comparison

Given the FNSD and LBSD approaches, the goal is to perform simulation exper-
iments to better understand their respective advantages and disadvantages. To
achieve this, some performance measures are defined. In addition to providing
comparison metrics for the two methods, a set of measures for evaluation of different
lane-based strategies is also described. Both of these are studied in terms of the
following framework. A 100 × 100 unit area is considered, where 1 unit corresponds
roughly to 10 feet. For the lane-based system, a 6 × 6 grid of ground locations
is defined, and the subsequent airways based on that; nearest eight neighbors are
connected, and every ground vertex has both launch and land lanes. For the FAA-
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Fig. 4.9 The lane-based (blue) and FAA-NASA (red) routes from ground vertex 1–36

NASA flights, a 5 × 5 grid is defined (i.e., grid elements are 20 × 20 square units).
UAS speeds are in the interval [0.1,0.31], as these correspond to 3–10 mph. The
altitude for the lanes is between 10 and 12 units, while for the FAA-NASA flights, it
is set to 11 units. All flights are specified as between two ground vertexes, and lane-
based flights take a shortest route through the lanes, while the FAA-NASA flights
follow a 3-polyline trajectory of up, over, and down. Note that this makes these latter
routes shorter than the lane-based routes. A set of 1000 flights is scheduled in each
scenario; however, if the deconfliction takes more than 30 seconds for some flight,
then data from the first 75 flights is used to interpolate a result for all 1000 flights.

Within this context, we consider three scenarios:

• Scenario 1: The launch and land ground vertexes are selected to be the two most
distant (i.e., 1 and 36). Figure 4.9 shows the lane-based and direct routes for
this. The speed of every flight is fixed to be 0.12, and all flights follow the same
trajectory. The start times interval for these flights is [0,2000]; that is, a flight
should be assigned the earliest possible launch time in this interval. Finally, the
minimum headway distance is set at 1 unit.

• Scenario 2: This is the same as Scenario 1, except that the launch and land ground
vertexes are chosen randomly.

• Scenario 3: In this scenario, the launch and land ground vertexes are chosen
randomly, as are the UAS speeds, and the start times interval. Each UAS has its
own speed that is constant across the whole flight, and the initial start time is
randomly selected in the interval [0,1000].
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Table 4.1 Results of
experiments

LSD FAA-NASA

Scenario 1

Avg delay 494.97 583.61

Max delay 989.95 1167.20

Avg flight time 1527.00 1318.00

Avg comparisons 1249.50 1.49 × 107

Avg decon time 0.0063 138.53

Scenario 2

Avg delay 19.87 10.73

Max delay 67.72 917.60

Avg flight time 879.49 705.68

Avg comparisons 61.20 27.40

Avg decon time 0.0212 0.2524

Scenario 3

Avg delay 1.65 16.85

Max delay 30.39 325.20

Avg flight time 532.88 451.65

Avg comparisons 49.84 28.62

Avg decon time 0.0014 0.3579

Note that Scenario 3 is closest to a real situation.
Table 4.1 gives the data collected from the experiments. As can be seen, the lane-

based method does better in Scenarios 1 and 3, while the FAA-NASA approach
performs better on average delay, but not maximum delay, on Scenario 2. Scenario
1 represents the scheduling problem on a heavily used route, while Scenario 3
is more representative of a random arrival process; thus, we believe that these
are more reflective of actual operational situations. Another observation is that
these results are achieved in the context of all flights being nominal, that is, no
contingencies occur. Since the lane-based approach has a distinct advantage with
respect to contingencies, then these results indicate the overall superiority of the
lane-based approach. Also, note that cost of deconfliction in the lane-based approach
in Scenarios 1 and 3 is two to four orders of magnitude lower.

Another advantage of the lane-based method is that it is possible to easily
visualize the flight schedules through the lanes. Let us consider an example from
each scenario. First, consider flight 10 in Scenario 1. Figure 4.10 shows the complete
lane sequence for the flight with all other scheduled flights. Flight 10 is shown in red,
and since all the flights follow the same lane sequence and have the same speed, they
are all represented as parallel line segments where the lower endpoint represents the
launch time, and the upper endpoint represents the landing time. It is also clear that
this representation makes it easy for a flight operations center controller to visually
determine if flights are off course by overlaying telemetry data on top of this graph.
Figure 4.11 shows the corresponding Space–Time Lane Diagram for Scenario 2.
Here it can be seen that Flight 10 is the only flight scheduled along this specific
route, but that other flights are scheduled at various times on some of the lanes in
the route. Finally, Fig. 4.12 demonstrates how readily system-wide type information
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Fig. 4.10 The stacked set of space–time lane diagrams for flight 10 in scenario 1

is made evident by these graphs; note that the number of segments in the upper lanes
(later part of the flight) indicates that there may be some congestion in that region,
and it might be wise to find alternate routes so as to avoid that. The variety of slopes
in the graph indicates the different speeds of the flights through the lanes.

4.3.4 Lane Stream Properties

We now define properties specific to the lane-based approach. To do so, we assume
an airway lane of length d and consider a time interval of length tmax , call it
[0, tmax]. Also assume that all UASs fly through the lane with a constant speed,
s. A flight scheduler assigns start times for flights to go through the lane; let S be
a set of such start times. Then, to satisfy constraints, it must be the case that no
two start times are closer than headway time, ht , of each other. This is equivalent to
packing segments of length ht into the lane (time) interval. Note that hx = s · ht is
the headway distance. The maximum number of UASs possible in the lane at one
time, nt

max , is then

nt
max ≡ 
 d

s · ht

� + 1

Clearly, achieving nt
max depends on obtaining a perfectly packed requested start

time sequence.
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Fig. 4.11 The stacked set of space–time lane diagrams for flight 10 in scenario 2

Fig. 4.12 The stacked set of space–time lane diagrams for flight 10 in scenario 3

Suppose that flight request start times are sampled from a uniform distribution
across the given time interval [0, tmax]. The time occupancy, �t(A), is a function
of the scheduling algorithm A and is defined as
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�t(A) ≡ μA
nt

max

where μA is the mean number of flights through the lane during the time interval
[0, d

s
] of several trials with algorithm A. If the scheduler has no choice but to

assign the requested start time if possible and otherwise reject the request (call this
algorithm A0), then this is an example of Renyi’s Parking Problem [27, 39, 80],
and �(A0) → 0.74759 as tmax → ∞. In the experiments below, we compare
algorithms and lane parameter sets by means of their observed time and space
occupancy measures.

Next consider standard ground traffic stream properties: density, occupancy, and
flow (see [114] for a detailed discussion). The spatial density of the lane at time t ,
ks(t) is defined as

ks(t,A) ≡ μA
d

(4.14)

that is, the average number of vehicles in the lane over the length of the lane. Spatial
occupancy can then be defined as

�s(t,A) ≡ �t(A) · nd
max

d
(4.15)

Finally, spatial flow, qs(t,A), is defined as

qs(t,A) ≡ ks(t,A) · s (4.16)

These traffic stream properties are used to characterize the performance of a set of
algorithms compared in the experimental section.

These measures are given as a means of comparing the effectiveness of alter-
native lane scheduling algorithms. Since that problem is not addressed here where
we compare the FAA-NASA approach to lanes, we simply give the values for these
measures for Scenario 1, where the flights are most densely packed. The following
values result for Scenario 1 for the launch lane:

nt
max = 8 (4.17)

since hx = 1.41

�t(A) = 8

8
= 1 (4.18)

looking at the time interval [0,83.333] (since μA = 8 and 83.333 = 10
0.12 ).

ks(t,A) = 8

10
= 0.8 (4.19)
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�s(t,A) = 1 · 8

10
= 0.8 (4.20)

qs(t,A) = 0.8 · 0.12 = 0.096 (4.21)

A direct comparison of performance characteristics has been made between
the FAA-NASA and lane-based UAM approaches. A variety of scenarios were
examined, and measures defined on the computational and other requirements over
a set of flights. The lane-based method was found to outperform the FAA-NASA
approach in the most likely actual conditions that will be encountered in large-
scale UAS traffic management. Although the lane-based method requires flights of
slightly longer route, there are multiple advantages in terms of management. Finally,
the incorporation of manned drones in this system is possible so long as the human
pilots follow the assigned flight path; in addition, human pilots would be in a better
position to handle contingencies.

In Chap. 8, we describe the use of Agent Based Modeling and Simulation
(ABMS) to determine more optimal UAM parameters related to lane properties
and their layout, as well as lane speeds, and auxiliary lane support structures (e.g.,
emergency lanes alongside regular lanes, emergency landing lanes). In addition,
Chapter 6 looks into real-time adaptive lane scheduling by the UAS themselves. This
may be particularly useful locally in contingency situations. We are exploring the
formal verification of the safety aspects of such protocols. Finally, we are working
with the Utah Department of Transportation to realize a version of lane-based UAS
traffic management in urban regions (e.g., the Salt Lake City Valley) in order to
effectively meet the challenge of large-scale UAS deployment for deliveries and
other services.



Chapter 5
Air Traffic Operations Center

5.1 Introduction

The AAM community, including UAS service providers, operators, and relevant
government authorities, aims to provide a wide number of services (e.g., package
delivery, air taxi, etc.) by means of robust and safe UAS Traffic Management (UTM)
systems that achieve large-scale (i.e., thousands per day) operations in urban areas
without human control, but with reliable communications and contingency planning
(see [82]).1 UAS Service Suppliers, for example AirMap [2], have dealt with
the operational interfaces, integration of Geographic Information Systems (GIS),
registration of flights, UAS communications, and monitoring UAS activity. These
capabilities are all developed to operate as described in the strategic deconfliction
context defined by NASA [85] that is defined in terms of a geographic grid (a set of
cells). Each new flight must be deconflicted pairwise in terms of grid cells that have
other scheduled flights. The trajectory of a UAS flight is a curve in 4-dimensional
space (x,y,z,t). Given a set of such curves, strategic deconfliction (i.e., make sure
that no two flights are ever within a specified minimum distance called spatial
headway) necessitates a pairwise comparison of the curves with motion constrains,
and determining a good or optimal trajectory in this configuration space is in general
PSPACE hard. Moreover, the FAA and NASA have yet to specify contingency
protocols, and some research suggests that all flights simply return to base in these
scenarios (e.g., lost-link).

In previous chapters, we have proposed and studied various aspects of a lane-
based approach [89, 92, 97–100]. This lane-based approach reduces strategic
deconfliction complexity (to 1D from 4D) and makes the handling of contingencies
a spatially local problem [90]. The use of lanes for commercial flights (Victor and

1 This chapter was co-authored by Vista Marston.
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Fig. 5.1 Lane-based airway lanes above downtown San Francisco, CA

Jet Routes) has a long-standing history [12]. However, human air traffic controllers
manage commercial airway lanes, and this management function that must be
automated if a large number of autonomous flights are to take place daily over major
metropolitan areas.

Given a lane-based UTM system, then lanes are created as a static structure
(much like ground road networks), and all scheduled flights will follow a sequence
of assigned (reserved) lanes from launch to landing. Figure 5.1 shows a lane-based
airway over downtown San Francisco, CA.

If all UAS flights performed in the lane-based system as planned, and no
unexpected events occurred (e.g., unplanned flights entering), then there would be
no need to monitor the airspace. But since unexpected things do happen, some sort
of traffic management center is necessary to help mitigate the effects of unforeseen
events. In addition, an air traffic control operations center (ATOC) can serve to
apply UTM policies and enforce the rules as necessary. ATOC operators can monitor
activity in the lanes and use existing conditions as part of the flight plan approval
process. For example, if there are strong winds in part of the airspace, the ATOC
can provide advisories and route flights away from the impacted area. In addition,
the ATOC can gather airway performance data and modify policies accordingly to
improve things.

It is also possible that existing ground transportation infrastructure can be
leveraged to support ATOC operations. For example, if road intersections already
provide power (say for cameras at traffic lights) and network access, then upward
looking radars can be placed there to observe the airways. It may also be useful to
have close coördination of the ATOC and ground traffic management operations,
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Fig. 5.2 ATOC business plan (from [20])

especially if UASs fly over roads. This allows rapid dissemination of disruptive
events like an emergency landing on a road.

It is most likely that ATOCs will improve transportation performance. Certainly,
this has been the case with ground transportation management systems (GTMS).
For example, the TransStar system in Houston, Texas helped reduce traffic delay by
over eleven million hours per year. In Utah, the CommuterLink system decreased
intersection delay by 27% and increased freeway speed by 20% [110].

A full-blown GTMS for a large metropolitan area can be a costly proposition,
and the cost for an ATOC would presumably be similar. A ball-park cost projection
given by [20] is about $3M for a building, and another $3M annually for operation
and maintenance. Of course, monitoring or provisioning hardware infrastructure
imposes more cost. The same study gives a Business Plan Development Guide
that shows the steps necessary to develop a Traffic Management Business Plan
(see Fig. 5.2). Planning for an ATOC would have a similar set of considerations.
However, one major additional requirement would be for some form of interaction
with both the FAA and also directly with UAS flights. Working with the FAA is
necessary to maintain the safety of simultaneous manned and unmanned air activity.
Communication with UAS operators is necessary to receive real-time telemetry data
from UAS flights.
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5.1.1 Example ATOC Requirements by Utah Department
of Transportation

The Utah Department of Transportation2 (UDOT) has been studying the issues of
Urban Air Mobility since 2018 with their prime focus on the airspace of the Provo
to Ogden corridor. The main two use-cases considered here are small package
delivery and air taxis. A major goal is to exploit UAS to reduce ground traffic
congestion. Other pertinent factors include the push by industry (e.g., Airbus, etc.) to
have full integration of autonomous vertical takeoff and landing vehicles for human
transportation.

The hardware infrastructure deemed necessary for a reliable urban airway system
includes:

• Automatic Dependent Surveillance-Broadcast (ADS-B) with links to unmanned
aircraft

• GPS Real-Time Kinetics (RTK) for precision vertical operations
• Dedicated Short-Range Communications (DSRC) for seamless connectivity
• Active Radar to provide detection and avoidance capabilities

Figure 5.3 shows the radar and other coverage proposed by UDOT. Figure 5.4
shows the GPS coverage network and example hardware. Figure 5.5 shows the
current ATMS and fiber network capable of supporting UAM in the main Salt
Lake Valley corridor. Finally, UDOT proposed the acquisition of (1) several
more GPS-RTK reference stations for safety redundancy, (2) Mini-radar/ADS-B
with an estimated 40 stations needed covering about 1267 km2 with power and
network connections already available through UDOT, and (3) DSRC wireless. The
estimated cost for this infrastructure system was estimated as about $200K for GPS
reference stations and $12.7M for mini-radar/ADS-B hardware.

In terms of ATOC UTM capabilities, UDOT established goals to:

• Manage low-altitude air traffic
• Provide real-time notification of flight plan changes
• Communicate hazards or priority routing
• Account for traffic load, impact of skyport placement, weather, rogue, and

emergency air traffic

UDOT also proposed that UAM traffic be routed over existing roads and along
planned flight corridors with pre-approved flight plans, with assigned altitudes
related to direction of flight and with speed and location constraints. Figure 5.6
shows the proposed air layout. Of course, complete UAM systems will most
likely be built up incrementally as technology, demand, and resources converge to
make it possible. Current UAS platforms require a great deal of improvement and
demonstrated robustness in order to meet the stringent safety requirements of air

2 We would like to thank Jared Esselman for this material.
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Fig. 5.3 Radar and other sensing capabilities proposed by UDOT

Fig. 5.4 GPS coverage and example hardware

transportation. UAS management software is not yet available, the package and air
taxi industries are not yet at scale, and air monitoring and enforcement mechanisms
have yet to be developed and demonstrated.

Thus, the development of Advanced Air Mobility (AAM) systems requires not
only a robust and safe approach to planning flights, but also a way to monitor
UAS flights in real time to determine whether flights are deviating from their
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Fig. 5.5 ATMS and fiber network for Salt Lake Valley airway corridor

Fig. 5.6 Proposed airspace layout for the Salt Lake Valley airway corridor

nominal flight paths or if there are rogue (i.e., unplanned) flights in the area. We
have proposed a lane-based airways methodology for lane creation, scheduling,
and strategic deconfliction, and here we describe Nominal vs. Anomalous Behavior
(NAB) in an efficient and effective way to monitor flight trajectories to determine
normal versus anomalous behavior.

5.2 Lane-Based Monitoring

The basic problem addressed here is how a lane-based UTM system supports the
recognition of rogue flights of a variety of sorts: amateur recreational hobbyists,
UAS operators making an unscheduled up, over and down flight, malicious opera-
tors, etc. In order to detect such rogue flights, we propose the analysis of trajectories
based on their deviation from the lane structure, including both location in space
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Fig. 5.7 The set of airway lanes created over Salt Lake City, UT

and direction of flight at that location. The basic idea is that a model can be
produced directly from the lane structure and compared to any flight individually.
The alternative FAA approach would require knowledge of all 4-dimensional flight
trajectories, as well as multi-target tracking to monitor the flights along those curves
and a comparison of an unidentified flight to all of those curves. Thus, the proposed
lane-based method is much more efficient and effective.

5.2.1 NAB Modeling

Given a set of UTM lanes, a convenient model is just a set of point samples on the
lanes, each with an associated direction of the travel in the lane. Figure 5.7 shows
a lane-based airway over the East Bench area of SLC, UT. Figure 5.8 shows a set
of sample points from the lanes. These provide a good model since any nominal
flight (i.e., following its assigned lane sequence) should be near a lane and headed
in the direction of the (one-way) lane. As part of the model, the direction vectors
can also provide significant information about a flight. Figure 5.9 shows a subset of
the trajectory direction vectors used in the model.
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Trajectory Model Lane Point Samples
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Fig. 5.8 Trajectory point set model of airway lanes over East Bench of Salt Lake City, UT. Red
circles are lane endpoints; blue points are samples along lane

Trajectory Model Lane Direction Samples
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Fig. 5.9 Trajectory direction vector model of airway lanes over East Bench of Salt Lake City, UT

5.2.1.1 The Lane-Based Trajectory Model

A trajectory is a sequence of 4-tuples (x,y,z,t) that provides a representation of the
actual UAS motion through space and time. Trajectories can be divided into two
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basic types: expected and unexpected. An expected trajectory is one that results
from a planned flight trajectory perhaps combined with some error due to contextual
influences (e.g., weather, power, etc.). An assigned trajectory in terms of the lane
structure is a sequence of straight line segments, but when exiting one lane to
enter another, the actual flight path deviates from the sharp corner turn. Wind and
precipitation may also cause a flight to be off-course. To account for this, lanes
are viewed as having an enclosing 3D volume (e.g., a tube structure) containing the
straight line segment, and this allows room for error. In addition, the spatial headway
constraint provides more cushion for speed changes, etc.

Trajectories may arise from various flights, but a scheduled UAS is required to
provide telemetry data at a set update rate; this data comes from onboard sensors.
Alternatively, radar or other sensors may be used to monitor flights and provide an
independent source for trajectory data.

Next, consider a planned flight and its associated trajectory. When the UAS sends
telemetry data, it also sends its ID. This makes it possible to determine if the flight
is off-course and by how much. It is also possible to monitor the airspace and
produce locations of airborne objects. We assume that it is possible to determine
which objects are UAS with high probability (as opposed to birds, etc.). Given such
data, it is possible to corroborate UAS telemetry location data. The result is that
planned flights have expected trajectories in that they are near the planned path or
their reported locations are consistent with ground sensor data.

On the other hand, a flight that has not been planned produces a trajectory
that corresponds to the type of the flight, and, in general, the trajectory will not
correspond to any planned flight, will not be corroborated by sensor data, and
will not follow a sequence of connected lanes. This is an unexpected trajectory.
Of course, there are ways that UAS can insert themselves into the lane structure
and mimic a scheduled flight (e.g., by following a scheduled flight), but this can
also be detected in that they do not provide telemetry data. Unscheduled flights
in the airspace are called rogue flights, whereas unexpected trajectories are called
anomalous. In practice, the ATOC needs to detect rogue flights as robustly as
possible. The NAB method is one such approach.

NAB operates as described in Fig. 5.10. The lane data is made available along
with the UTM policy parameters and the set of scheduled flights. Based on this,
a spatial database is constructed consisting of a set of 3D points sampled along
the lane and, to each of these points, is associated the direction of travel vector at
each of those points (recall that lanes are one-way). The lane model consists of this
data organized so as to be efficiently exploited. The inter-sample distance must be
selected so to keep the number of points down while at the same time allowing
adequate discriminatory power to determine if a flight is near a lane and headed the
right direction.

For example, consider the Salt Lake City East Bench airways shown previously.
If an inter-sample distance of 2 m is chosen, it produces a set of 454,331 points. In
order to keep the computational complexity low, the points are organized as a kd-tree
using the 3D points. A kd-tree divides the points at the median of each of the vector
dimensions in turn (or picking the dimension with the greatest spread in values in
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Fig. 5.10 The nominal vs. anomalous behavior (NAB) method

turn) and thus achieves a relatively well-balanced tree that allows O(log(n)) search
time to find the closest points in the spatial data to a query point. Any nominal flight
should be near one of the sample points and headed in the appropriate direction.
Of course, a temporal analysis can be performed by checking the associated Space–
Time Lane Diagram (see [92]) that specifies the position of each flight in a lane at
each time instant. Also, with the FAA-NASA approach, there is no fixed set of lanes,
and therefore, every existing flight would require target tracking against the set of all
flights. Since this approach requires large-scale sensing and computing resources, it
is not considered further here.

Next a set of NAB measures are determined, which allow the discrimination of
the different types of flights, both nominal and rogue. These are computed either by
comparing the UAS trajectory to the lane data, or simply in terms of the trajectory
itself. For example, two lane related measures are:

1. Mdist : minimum distance to a lane at each time step
2. Mdir : cosine of the angle between the UAS direction of travel and the lane

direction of travel at each point

These measures are applied at each point in the trajectory to produce a temporal
signature to represent the flight. An example of a measure based solely on the
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Fig. 5.11 NAB measures for a nominal flight

trajectory data would be the amount of time spent hovering (i.e., staying for some
minimal duration in time in one place in space). Given a characterization of the types
of flights of interest, then a set of trajectory signature templates can be constructed
and used as class models. Such templates can be the result of a set of simulations
or produced from datasets of actual flight trajectories. Given a new trajectory, its
measured features are compared to the flight signature templates and matched to the
closest in order to classify the type of trajectory (i.e., nominal or anomalous).

Consider a nominal flight that does not perfectly follow the lane but rather has
some noise associated with it. Figure 5.11 top row shows the x values of a nominal
flight trajectory (with a Gaussian noise of 0.16 variance) and a smoothed version of
that data (in red). The middle row shows the distance to the closest lane, and the
bottom row gives the cosine of the angle between the direction of flight and the lane
direction. This distance and direction difference are NAB measures. For the distance
measure, over 96% of the trajectory points are within 1 unit of the lane, and for the
angle difference measure, 70% are within 10◦. The large angle differences arise at
lane changes.

Now consider rogue flights. Five categories are explored here:

• Hobbyist Type I: Flies up from one place and makes a few moves above the
launch site and then eventually lands at the same site.
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Fig. 5.12 Examples of the five anomalous flight trajectories

• Hobbyist Type II: Flies up from one place and makes a few moves above the
launch site, hovers after each move, and then eventually lands at the launch site.

• Hobbyist Type III: Flies up in a circular motion to some highest point and then
flies down in a circular motion to land.

• Rogue Type I: Flies up over and down as for a delivery.
• Rogue Type II: Flies up to a lane, flies along the lane to the end, then flies to

another lane (not necessarily connected), and eventually flies down to land.

These anomalous flight patterns are representative of the types of flights to be
expected. Figure 5.12 shows an example of these types.

5.2.1.2 Sensor Data to Track Rogue Flights

Radar is used to scan the airspace lane network so as to make sure that scheduled
flights adhere to their flight plans and to detect unscheduled flights. Here we
provide an overview of the considerations necessary to employ radar sensors in
airspace monitoring. Although the description addresses radar in the context of the
simulation system, the actual exploitation of radar systems would require a similar
analysis.
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Radar Field From Simple Simulation

400

300

A
lti

tu
de

 L
ev

el

200

100

North - South Cordinates
West - East Cordinates

0

0

400
300

200
100 100

350

300200

Fig. 5.13 Demonstrates how a vertical radar field would be placed in a grid layout lane system
simulation

In order to analyze flights in the simulation, there first needs to be a monitoring
system that can detect UAS flights and report flight information back to the Air
Traffic Operations Center (ATOC). The monitoring system that was selected was
Radar. The structure and performance of the radar’s objects was to imitate real radar
systems. One can think of the system as the radar sending signals to detect objects
over certain time intervals. If an object is detected, it will be reflected through
broadcasting to those that are watching the scanner. This section will discuss the
mechanism used to achieve this performance and structure.

Figure 5.13 shows a single radar field in the grid layout lane-based simulation.
One might notice that the radar’s detection field is conical in shape as the field
progresses through the atmosphere, and this is due to the natural occurrence of
refraction. In real life, this radar field would not contain distinct lines as a result
of attenuation, meaning that the radar’s signals on the outer edges are weaker than
those closer to the center. One can think of it similar to a flashlight shining in a dark
room, where the center is the brightest and gets dimmer moving to the outer edges.
However, in our simulation, we excluded these weaker areas and created distinct
edges for simpler computations that are discussed later in the chapter.

Radar Placement

Radar systems can be selectively placed within city coördinates in order to provide
the most coverage of a given airspace region that surrounds the lanes. There is a
lot of variability in the creation of the radar objects that can affect the coverage
(see Fig. 5.14). For example, some of these features are the maximum range of the
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Fig. 5.14 Displays a couple of different packing arrangements for conical shapes. The image on
the left is the optimal conical packing but not the most realistic solution. The middle image is
the easiest solution to optimize coverage, but it is too costly of a solution to be implemented.
The rightmost image is our solution, which provides a high percentage of coverage with minimal
overlaps

radar field, the direction of the radar field, the beam angle, and the placement of the
radar itself. Our goal is to find radar placements that provide the best coverage while
minimizing the amount of radar field overlaps.

First let us make an assumption that the area we wish to cover is a cube that
encapsulates the total area around the lane structure. The reason we chose to
maximize the radar fields’ coverage of a cube instead of the actual lane structure
was because we wanted to ensure additional coverage beyond the lane system that
would allow for the detection of rogue flights. In addition, turning the region of
interest into a cube allows us to solve our problem by using packing optimizations
for conical structures. The best solution would be to set the length of the radar’s
field to the length of the cube. Then alternating the radar field direction in the
vertical direction while alternating which edge of the cube to place the radar on,
which is shown in the figure below. However, this solution is not really practical
for a real life scenario, because it has radar systems that are floating in the air.
Unfortunately, it would be impractical to suspend radar systems in midair like this.
A more practical solution is to mount the radar systems to other objects that are
on the ground such as on buildings, light posts, or the ground itself. Therefore, the
arrangement of radar systems must also take into account their physical mounting
requirements. The easiest solution would be to place radar systems away from each
other at small increments. This would provide significant coverage but would also
come with a significant price tag if it were to be implemented in the real world.

Our solution takes a different approach; instead of placing several radar systems
on top of one another, we spaced them based on the height and radius of the radar
fields. No matter how many lanes are stacked on top of one another, we decided to
use the lower lane height as the point where the radar fields are okay to overlap;
this ensures that the entire lane system will be covered. To find the distance between
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Fig. 5.15 The basic
components of a conical
shape; these are used to
establish the required distance
between radar placements

radar systems, we take the radius of the radar field at the lower lane’s height and
then double this radius. The final result is the distance between the radar systems.
Figure 5.15 shows the basic parameters of a cone, and given that

tan(θ) = radius

height

then we have

radius = height × tan(θ)

Let us shift the attention to how to measure the coverage of a set of radar systems.
Getting an exact measurement is quite difficult; therefore, an approximation of
coverage is calculated using Monte Carlo experiments. In these experiments,
randomly generated samples, which are bound to the cube area around the lane
system, will be used to count the number of points detected by the radar systems. To
approximate the volume of coverage, we can simply divide the number of detected
samples over the total samples in the experiment. It is through these experiments
that we can determine the differing factors that help maximize coverage. Figure 5.16
shows the effects of changing the beam angle through the Monte Carlo experiments.

Due to the conical shape of the radar fields, most of the coverage that is gained
when using this method is in the upper altitude lane structures; however, there are
some regions that are left uncovered, which happens to correspond to areas that
could contain launch and landing lanes, which must have coverage if this system is
to function safely in the real world. There are two potential solutions: first, placing
radar systems at every launch and land lane, or second, including more horizontally
directed systems.
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Fig. 5.16 Difference comparison between varying beam angles in the Monte Carlo experiment
of 100,000 randomly generated sample points. This displays the inverse relationship between the
angle size and the number of radar systems that would be needed for coverage. The image on the
left uses a significantly smaller angle, resulting in more radars to cover the given area, whereas the
image on the right uses a larger angle of detection. The green dots represent the sample points that
were within the radar fields. The empty spaces are areas in the lane system that are not covered by
the radar systems that have been placed

There will be a crossover point between placing radar systems at every launch
and land sites and just placing horizontally directed radars. If there are a significant
number of launch and landing sites relatively close to one another, there will also
be more radar systems close to each other, leading to greater overlap between
radar fields. In contrast, strategic placement of a few horizontally directed radar
systems could cover a larger area while also reducing the amount of overlap between
systems, meaning the number of radar systems needed will be lower to maintain the
same amount of coverage. For example, consider the lane structure in the figure
above with a radar angle of π

16 , and it contains 6 launch and 6 land sites for a total
of 12 sites that should be covered. Therefore, 12 additional radar systems would
be needed to cover all of these sites using the first approach, whereas the second
approach would only need one horizontal radar system to cover the remaining area,
if it were placed in the same location as the other original radar.

Now consider how these radar systems detect objects during the simulation.
When detecting objects, the main goal is to determine whether the object falls
within at least one individual radar field. When determining if an object is within a
radars field, one must consider a couple of factors: distance away from the radar, the
relative angle from the radar, and the radar’s maximum range.

To simulate a more realistic scenario, every radar and object have to be looped
over to check which object falls into which radar field. Therefore, the time
complexity of this check would be O(RO), where R is the number of radar
systems and O is the number of objects in flight during a time step. Therefore,
since there could be a significant amount of radar systems and objects to detect,
the calculation must be simple enough to ensure that the time complexity does not
become excessive. To keep the time complexity manageable, there are only two
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Fig. 5.17 Properties that are used to determine if an object is within the radar’s field of view.
These properties include the radar’s maximum range, and the angle between the object and the
radar. The left drawing shows a vertical radar field, and the right drawing shows a more horizontal
radar field

checks involved when determining if a given object is within an individual radar’s
field. The first check is to see if the object is within the radar’s range, and this is done
by calculating the Euclidean distance from the object itself to the radar. The second
check is to find the relative angle between the object and the middle of the radar field
(Fig. 5.17). For this, two directional vectors are created: one to represent the radar
field itself using the middle of the beam, and the other to represent the directional
vector between the object and the radar itself. Then using the dot product to find the
angle between the two directional vectors allows for the comparison between this
angle and the radar beam angle.

During each simulation step, each radar object will receive a list of objects that
are in flight. Then each radar will perform a detection step for each individual object.
Each radar object contains a list that is clear at the beginning of each simulation step
and then replenished with all of the objects that were detected. Once the radar object
has gone through all of the objects in flight, it will then broadcast to any listeners
that it has detected objects in the given simulation step. Any subscribers that are
listening will have access to this list of objects, and they can proceed to handle the
information according to their guidelines.

Each simulation will contain an individual lane system, radar system, the number
of flights, and an individual ATOC. As the simulation is running, information
between all of these components is hard to capture until the entire simulation is
completed. Therefore, each of these classes contains functions that allow you to
gain some insights, while the simulation is running in order to prevent a complete
black box of the simulation process. The radar systems method is to display the
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Fig. 5.18 Visualization of the radar detection process during a simulation. The colorful circle
represents the radar field, and the red dot represents the location of the detected object within the
field. The first number in the title represents the time step and is followed by the radar identification
number

region it covers, along with a red dot to represent the location of any detected object
at that given simulation step. Figure 5.18 above displays the graph.

This is a useful tool for many reasons, one being able to target locations that
might contain a higher density, or an area that potentially contains a lot of anomaly
flight behaviors. The user can then see directly what is happening, and be able to
make necessary changes if possible.

In summary, the main goal for the radar systems in the simulation is to gather
information that is happening in the lane system and the surrounding area through
scanning and reporting any detect behaviors. The structure and performance that
were designed was intended to imitate real life radar systems. In addition, these
radar systems are dynamic, meaning their locations and specific features can be
changed in each simulation based on their designated purpose and the goal of the
simulation.

5.2.2 NAB Analysis

The two NAB measures given previously allow the discrimination of nominal
from anomalous flight trajectories in almost all cases. This is due to the fact that
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anomalous flights, generally speaking, do not stay near the lanes nor do they fly
in the same direction as the nearest lane. However, trajectories (i.e., x,y,z,t 4-
tuple sequences) are of variable length depending on the distance of the flight and
the sampling rate. Thus, in order to compare trajectories, it may be necessary to
normalize the length of each trajectory to some standard length.

The nominal flights can be distinguished from the anomalous flights by means of
a simple feed forward neural network. First, the trajectory lengths are normalized.
Next, the NAB measures are computed at every point on the trajectory, and finally,
the measures are concatenated into one vector (in this case, distance measure
followed by cosine measure). A trajectory generator is created for each flight
type based on random launch–land sites (uniformly selected over flight area) and
appropriate parameters for the type of flight. Noise is added to the trajectory as
follows (the same type of noise is added to all trajectories). First, the ideal trajectory
is created. Then starting with the first point and moving to the second point, the
error is defined by a circle around the goal point (the circle in the plane normal to
the vector from the first point to the second point). A point in the circle (uniformly
selected) is chosen as the target point. Next, a point on the line between the starting
point and the circle point is chosen using a half Gaussian distribution centered at
the circle point; this is the next point in the modified trajectory. When the circle
has radius zero, and the Gaussian has zero mean and variance, then the resulting
trajectory is the same as the original.

A set of 100 sample trajectories was generated for each flight type, including
nominal, for a total of 600 trajectories; half of these were used to train the network
to classify nominal versus anomalous flights (two classes), and half were used to
validate the result. Figure 5.19 shows the training performance (from Matlab) as
well as the 100% correct classification results on the test set.

Fig. 5.19 Results of feed forward neural net classification of flight trajectories into two classes:
nominal (first fifty) and anomalous (remaining 250). On the left is the network learning perfor-
mance data and on the right is the classification result
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Table 5.1 Classification
results. The 6 trajectory types
are (1) nominal, (2) hobbyist
type I, (3) hobbyist type II,
(4) hobbyist type III, (5)
rogue type I, and (6) rogue
type II

1 2 3 4 5 6

1 100 0 0 0 0 0

2 0 92 0 3 2 3

3 0 0 100 0 0 0

4 0 4 0 83 10 3

5 0 0 0 0 100 0

6 0 14 0 0 0 86

Once an anomalous flight has been identified, it is possible to develop more
refined and model-based techniques to distinguish between the sub-classes. Some
characteristics of anomalous flights are:

• Hobbyist Type I: not on lanes, not in correct direction, change of altitude in non-
vertical direction, launches and lands near the same site

• Hobbyist Type II: not on lanes, not in correct direction, change of altitude in non-
vertical direction, launches and lands near the same site, hovers for short periods
of time

• Hobbyist Type III: not on lanes, not in correct direction, change of altitude in
non-vertical direction, launches and lands near same site, makes circular motion

• Rogue Type I: not on lanes, only goes up, over and down, middle segment may
not align with lane, may not be at normal lane altitude, launch and land sites may
not be near lanes

• Rogue Type II: not on lanes some of the time, not in correct direction some of
the time, lanes followed may not be connected in lane network, some changes of
altitude not vertical

These characteristics are used to develop models of the various trajectories, and a
classifier is built based on them. Using the same set of simulated trajectories already
described, the classification confusion matrix given in Table 5.1 is achieved. From
these results, it can be seen that the trajectories of the Hobbyist Type I and the Rogue
Type II are similar and require further refinement for discrimination.

Now, suppose that there is another type of flight, for example, an amateur
just flying circles above some location in the city. Figure 5.20 shows an example
trajectory with respect to the ground, and Fig. 5.21 shows it with respect to the
airways.

Figure 5.22 shows the distance measure for the amateur flight compared to the
noisy data from a nominal scheduled flight. It is clear that the error for such an
unscheduled flight is much larger and that flying in circles introduces a noticeable
frequency component to the distance signature.

Next, consider the trajectory direction measure. Figure 5.23 shows the signatures
for the noisy trajectories of the regular flight. Although it is difficult to see, the mean
angles for these are: 26, 31, and 59◦ for variances of 0.1, 1, and 10, respectively.
Now consider the signature for the amateur flight (see Fig. 5.24). The values are all
close to 0 indicating that the direction is usually perpendicular to the lane direction.
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Trajectory of Amateur Flight
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Fig. 5.20 Amateur trajectory flying in circles with respect to the ground

Location of Amateur Flight with respect to the Airways
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Fig. 5.21 Amateur flight with respect to airway network
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Distance Trajectory Measure
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Fig. 5.22 Amateur flight distance signature compared to those of noisy flights
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Fig. 5.23 Noisy flights vector cosine w.r.t. lanes
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Trajectory Direction Signature for Amateur Flight
1

-1
0 500 1000

Fig. 5.24 Amateur flight vector cosine w.r.t. lanes

This make sense in that for the first few hundred feet, the lane is directed up, while
the circular flight is mainly in the x or y direction.

This particular amateur flight is always near a single lane. Figure 5.25 shows the
distance signature from a more densely packed lane area as shown in Fig. 5.26, and
a similar oscillating distance is observed.

Next, consider a rogue flight that simply takes the shortest route between launch
and land sites (see Fig. 5.27). Figures 5.28 and 5.29 show the distance and direction
errors signatures, respectively.

5.3 Next Steps

The lane-based UAS traffic management approach supports efficient and effective
trajectory analysis of UAS flights in the airspace. This allows the straightforward
detection of unplanned flights through the airspace without having to compare
to every existing flight at the time of occurrence. In addition, it is possible to
distinguish different types of rogue flights according to the trajectory distance and
direction measures.

Several new avenues of investigation are under consideration:

• model Updates due to dynamic lane creation and deletion
• How to exploit knowledge of UTM parameters (e.g., UAS speed limits, lane

network topology, 3D corridor constraints, etc.)
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Fig. 5.25 Amateur flight distance signature in a more dense lane area

Fig. 5.26 Amateur flight location in a more dense lane area
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Fig. 5.27 Example rogue flight path

Fig. 5.28 Rogue flight distance error

• Any influence on trajectory measures due to weather, congestion, or other
environmental or contingency effects

• The constraints on sensor data to ensure effective identification of anomalous
flight patterns

• The role of communications in UAS flight trajectory analysis
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Fig. 5.29 Rogue flight direction error



Chapter 6
UAS Belief–Desire–Intention Agent
Architecture

6.1 Introduction

The coming wave of autonomous, semi-autonomous, and human-operated vehicles
in low-altitude airspace over densely populated areas requires a new system to auto-
mate air traffic control (ATC). The current system relies heavily on the intuition of
human pilots and controllers who benefit from over one-hundred years of recorded
trials and errors. Even after millions of test cases per year, contingencies occur that
confound experts and result in disastrous outcomes (e.g., the failure of coördination
that resulted in a mid-air collision over Uberlingen, Germany in 2002 [41]). The
computational intractability of enumerating all possible sequences of actions and
outcomes that lead to contingencies is the root cause for these disasters; if engineers
had known the Uberlingen scenario was possible, they would have avoided it (after
the accident, TCAS software was patched to handle it, albeit at great expense due to
the complexity of the software and subsequent testing [56]). However, the density
and dynamism of the anticipated low-altitude air traffic mandates an automated
approach; it is difficult to imagine human controllers managing the separation
of thousands of flights per hour. This is the conclusion of most professionals in
aerospace across the United States, particularly the Federal Aviation Administration
(FAA) and the National Aeronautics and Space Administration (NASA), as well as
in Europe and Asia, where UAS Traffic Management systems are being developed
rapidly. However, if current ATC systems still experience contingencies after a
hundred years, and millions of flights per year, what hope do engineers have in
constructing a safe automated traffic management system? This question lies at
the heart of this research, and it not only applies to the safe coördinated access
of airspace (i.e., maintaining safe separation between aircraft), but also to a plethora
of other issues that air traffic controllers face.

The issues that require human intervention, and that make experts nervous
about automated air traffic systems, are typically contingency scenarios. Situations
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that require safe separation and unplanned priority, for example medical rescue,
temporary flight restrictions (TFR) due to wildfires, low-fuel, electronics failure, etc.
The scenarios, and the combinations or sequences of events that lead to them, are
difficult to enumerate, and therefore difficult to plan for. They are difficult because
in a concrete sense, the determination of whether a solution exists to return to a
nominal state may be as difficult as, or likely more difficult than, the Satisfiability
(SAT) problem. In the language of computer science, the public relies on pilots and
controllers to heuristically search for solutions that maintain our safety. It is likely
that humans perform these searches at a high level, using abstraction (and perhaps
analogies) to reduce the space of possible solutions. So far, no one has shown that the
brain, or any part of the nervous system, routinely and exactly solves NP-complete
problems [32]. For this reason, the problem of air traffic control, when considering
the automation of what human operators are currently responsible for, falls squarely
within the purview of computer science. This problem is fundamentally an issue of
cognition and computation.

Considering the cognitive and computational nature of the UTM problem, a good
strategy for constructing a system to replace human pilots and controllers becomes
clear: reduce computational complexity on all fronts. A direct effect of this strategy
is the reduction of the number of possible contingencies because by definition there
are fewer states to consider (and by implication, fewer undesirable states). It is our
contention that this strategy should be executed via two channels. First is through
structure and deconfliction; since safe separation is a constraint that must be satisfied
in any contingency scenario, it serves to reason that this problem should be easy to
solve, and hence low complexity. This is the foundation that the lane-based approach
provides. Second, complexity in cognition should be reduced via abstraction, which
we explore using agent based modeling and simulation (ABMS), and the Belief–
Desire–Intention (BDI) architecture. With this strategy, we expect that the resulting
system design will be more robust in the face of contingencies than anything else
currently proposed.

6.2 Knowledge Representation and Inference

A UAS agent must analyze a combination of heterogeneous information expressed
in logical form (as sentences or statements), computational form (as numerical
models of physics or other processes), and sensor data (as measurements from
transducers). Each of these forms has its own way to describe uncertainty or
error: e.g., frequency models, algorithmic truncation, floating point round-off error,
Gaussian distributions, etc. We use our Probabilistic Sentence Satisfiability (PSSAT)
method (called NILS) that receives information as logical sentences from humans,
simulations (e.g., weather or environmental predictions), and sensors (e.g., cameras,
weather stations, microphones, etc.), where each piece of information has an
associated uncertainty; NILS then provides responses to user queries based on
PSSAT that determines a coherent overall response to the query and the probability
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of that response; this new method avoids the exponential complexity of previous
approaches. In addition, NILS can be used to identify concrete mechanisms (pro-
posed actions) to acquire new data dynamically in order to reduce the uncertainty
of the query response. The basis for this is a novel approach to probabilistic
argumentation analysis [47].1

Most knowledge-based systems do not incorporate a broad notion of uncertainty
quantification (UQ), although such a capability would allow a UAS to make more
informed decisions, or to acquire more data before coming to conclusions. In
addition, it would be better if system responses provided an explanation of how
they were derived, as well as how the uncertainty was determined. This can be the
result of sensor error, computational error, human error, etc., and the best models
should be selected at each time step in order to reduce the variance on quantities of
interest. In addition, UAS operating in a lane-based UTM should generate dynamic
path planning solutions that can include constraints on time, energy, or uncertainty
reduction. The automatic generation of constraints arising from the various models
can be used to inform the deployment of data measurement systems. The application
studied here is UAV (Unmanned Aerial Vehicle) surveillance and reconnaissance in
urban areas. Some work has been done in this general area (e.g., see [58] for a
novel guidance law in windy urban environments combining pursuit and line-of-
sight laws, and [109] for a multi-cost UAV mission path planner).

We describe here two major novel research results: (1) the combination of
formal probabilistic logic methods with state-of-the-art physics-based uncertainty
quantification methods and (2) uncertainty driven active information data acquisi-
tion, demonstrated by UAV path planning, to optimize performance or to resolve
contradictory information. The probabilistic logic method is a re-formulation of
the approach described in [71] (although Boole [18] first proposed it); see [46] for
details. Basically, Nilsson’s method requires first solving the SAT problem (i.e., find
all consistent truth assignments) to set up a set of linear equations and then the use
of numerical methods to solve them. We, on the other hand, create a set of nonlinear
equations and solve them directly [46].

We have previously applied this framework to geospatial intelligence systems
in an implementation called BRECCIA [95]. BRECCIA is designed using a well-
documented multi-agent, Belief–Desire–Intention (BDI) framework called Jason
[21]. Jason includes an interpreter for an extended version of the AgentSpeak(L)
[77] language, which provides a Prolog-like grammar. Both the style, resembling
a natural language application, and the operational semantics of the extended lan-
guage that enable a data-driven architecture fit well with the proactive and reactive
goals of BRECCIA. Each agent in the BRECCIA system is composed of a backward
chaining inference module (see [72] for a formal justification of modularity in
BDI programming languages) with a probabilistic logic component. This module,
and probabilistic component, forms the most abstract fusion implementation in the

1 This material is based upon work supported by the Air Force Office of Scientific Research under
award number FA9550-17-1-0077 (DDDAS Geospatial Intelligence).
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BRECCIA system. To elaborate, this system may include many functional fusion
modules that agents specialize for a particular application. For example, an agent
that specializes in managing a particular Unmanned Air Vehicle (UAV) requires
a fusion module for estimating target detection. However, the human agent, a
“user” in BRECCIA, requires information in more abstract terms to support the
decision process. For example, a user may query the system by asking for the
probability of mission success. Once the list of probabilities has compiled, the
nonlinear probabilistic logic algorithm is executed to calculate the probability for the
inferred belief. Finally, the inferred belief is added to the agent’s knowledge base.
The process of belief-revision (when probabilities of antecedents change) currently
utilizes the same algorithm, except first a list of justifications, stored in the belief
annotations, is compiled until the most abstract inference is located. Belief-revision
in the BRECCIA system is an active area of research.

6.2.1 Probabilistic Logic

Here we address the problem of finding a suitable representation for uncertainty
associated with logical sentences. Although several approaches have been proposed
in the past (see [4, 31, 33, 44, 48, 61, 81, 111]), they generally have some significant
drawbacks. Usually, these have to do with the computational complexity of the
semantics of the sentences (i.e., finding the set of consistent truth assignments is
exponential in the number of sentences, or for Domingos, exponential in the number
of cliques in the Markov graph [15]).

We have developed a new approach that computes the probabilities of the atoms
in the sentences and, in terms of these, provides a solution for Pr(Q | KB), where
Q is the query and KB is the knowledge base set of sentences (see [46] for details).
Moreover, the knowledge of the probabilities of the atoms allows us to determine
where the most uncertain part of the argument lies and to allocate resources to
lower that uncertainty, thus decreasing the uncertainty of the query. This is done by
exploiting the probability of a disjunctive clause and developing a set of equations
from the sentences and their probabilities, and then solving those equations (the
number of equations equals the number of sentences).

Our approach to probabilistic logic starts with an analysis of Nilsson’s method
[71].2 Given a set of n sentences (conjunctions from a Conjunctive Normal Form
well-formed formula), S = {S1, S2, . . . , Sn}, in the propositional calculus, where
{S1, . . . , Sn−1} is the KB and Sn is the query, he first finds the set of models of the
sentences (i.e., the set of truth value assignments to the sentences that are consistent
using the general semantic tree [59] for a set of sentences). In our new approach [46],

2 Note that Nilsson’s method for propositional calculus is the same as that proposed by George
Boole in the 1800s [18, 19].
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we trade the exponential complexity of most other algorithms for the convergence
cost of solving for the logical variable (atom) probabilities directly as follows.

First, we assume that the sentences are given in Conjunctive Normal Form. This
means that each sentence is a disjunction of literals (a literal is an atom or its
negation). Our second assumption is that Pr(P ∧ Q) = Pr(P )P r(Q) (i.e., they
are independent variables); note that if this assumption is violated, our methods also
allow the bounds on the probability to be determined. Next, we find the set of logical
atoms (i.e., variables) in S; let A = {A1, A2, . . . , Ak} be this set. In this case, the
probability of a sentence can be computed from the probability of its literals as
follows:

Pr(L1 ∨ L2 ∨ . . . ∨ Lp) =

Pr(L1) + Pr(L2 ∨ . . . ∨ Lp)

−Pr(L1)P r(L2 ∨ . . . ∨ Lp),

where the probabilities of clauses on the right hand side are computed recursively.
Assuming that the logical (random) variables are independent, each sentence

gives rise to a (usually) nonlinear equation defined by the recursive probability of
the disjunctive clause as defined above. The resulting set of equations can be solved
using standard nonlinear solvers (e.g., fsolve in Matlab) and a set of consistent
values for the probabilities of the atoms determined. Of course, one problem with the
nonlinear solver approach is that it may not find a solution, even when one or more
exist. Thus, our current approach is to solve all equations that have a single unknown
(recursively) and then use an iterative method to find a set of atom probabilities that
produce the correct sentence probabilities.

6.3 Reinforcement Learning

Reinforcement learning provides engineers with a tool for generating complex
decision making programs from high-level requirements. Traditionally, engineers
receive high-level requirements, such as “UAS should avoid rain” and then proceed
to define all the behavioral rules necessary to fulfill that goal. The effort required
to define this program logic is a complex function of the software technology,
development cycle, and requirements. Estimating the effort required is itself a large
topic of software engineering research [17], and changes to requirements or logic
errors can have dramatic costs. Reinforcement learning, however, does not require
a manual development of the program logic for the desired behavior. It does require
a careful definition of possible states, available actions, and rewards, but it is not
necessary to consider all the possible combinations of states and actions.
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Fig. 6.1 Example scenario: ground communication disrupted for multiple UASs

Consider a scenario in which ground infrastructure supporting UAS communica-
tions is disrupted during normal operations (see Fig. 6.1). Currently, the published
protocol for handling this contingency is for every UAS to fly back to base if
communications cannot be re-established within a given amount of time [10].
Since this is a pre-defined policy, it is worth considering whether such a policy is
robust. For example, depending on how many UAS communications are disrupted,
the number of conflicts that result from the simultaneous replanning of multiple
agents may have negative cascading effects [52]. As the complexity of the UTM
system increases, it becomes harder for experts to enumerate all the failure modes
and effects; assigning liability and performing post-failure diagnoses will also be
difficult.

A comparison between Traffic Alert and Collision Avoidance System (TCAS),
which is currently in widespread use by airlines, and a new system called the
Airborne Collision Avoidance System X (ACAS X) offers a compelling analogy.
TCAS has been described as an “ad hoc rule-based specification” [56]. Limits to
its robustness arise primarily because programmers are unable to anticipate the
spectrum of operational scenarios, one of which caused a collision over Uberlingen,
Germany in 2002. ACAS X, in contrast, adopts a process of modeling and
optimization that improves robustness. Kochenderfer describes an early prototype of
ACAS X, in which the anti-collision problem is formulated as a partially observable
Markov decision process (POMDP) [56]. In this way, collision and alert preferences
are treated as inputs and the system logic as an output.
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6.3.1 Complexity and Cognitive Structure

When the number of possible states and actions is large, it forces engineers to
carefully create abstractions of states and actions (e.g., object-oriented software);
otherwise, the program logic becomes fragmented across a large and flat organiza-
tional structure. A fragmented program is undesirable because the conceptual links
between a high-level requirement and low-level actions are buried in the program
logic. On the other hand, a hierarchical structure of states and actions encodes
conceptual links explicitly and enables efficient searching through a categorical
index (e.g., Desires in the BDI architecture).

The Belief–Desire–Intention architecture [40] is a hierarchical organization of
states and actions (grouped into plans) that was designed specifically for agent
models. The architecture not only defines the conceptual structure of a program,
but also a process structure that enables dynamic planning, similar to a Markov
Decision Process (MDP) [79, 104, 105, 107]. Organizing the program in this way
supports both reasoning by the autonomous agent as well as reasoning by human
operators. The structure of desires, intentions, beliefs, and plans coincides well with
the reasoning of the human operator. For example, a human observer could ask
a BDI agent directly, “What is your current plan?”, and the agent could respond,
“Correcting my heading to get back in the lane.”

6.3.2 Complexity and Airspace Structure

In previous work, we outlined the structure and analytical capabilities made
available by the lane-based airspace structure [89, 91]. From a cognitive perspective,
the environment in which autonomous agents operate is dynamic and uncertain, and
agents are resource-constrained and have only a local view of the world. The lane-
based structure provides autonomous agents with more information about the state
of the airspace while requiring less computational effort to reason about it. The
primary basis for this is that agents only need to consider the schedule on each lane,
as opposed to the entire trajectory of other aircraft in a free-flight airspace structure.

In the free-flight model, where any trajectory is allowed, agents must sample
other trajectories and their own to ensure safe separation. The sampling resolution
necessary to ensure safe separation, i.e., the discretization of trajectories, depends
on how trajectories are specified and the available time and resources to perform the
sampling. Each agent must perform this computation every time it considers a new
or altered path. The lane-based approach, however, pre-calculates safe separation in
the spatial domain, so agents only need to consider the schedule.
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6.3.3 Learning and BDI

UAS agents have a Belief–Desire–Intention architecture that functions as shown in
Fig. 6.2a. The BDI cycle involves updating the beliefs, determining the desires,
choosing an intention (goal), and then selecting an appropriate plan to achieve
that goal. A belief is represented as a disjunction of logical variable literals, and
the entire belief set is a conjunction of such beliefs (in Conjunctive Normal Form
(CNF)). A desire is a belief that the agent would like to make true, and an intention
is a belief that is a current goal (of which only one is active at a time). The selection
of a plan is the action at the cognitive level, and optimal cognitive policies pick
the best plan for a given state. Focus 1 in Fig. 6.2b is where the cognitive learning
takes place; i.e., the actions are a set of possible plans to achieve a specific goal,
and an optimal policy chooses the best plan for a given state. The selected plan is
then executed until either completion or preemption. Focus 2 concerns policies at
the physical level (i.e., moving through space).

For example, given cognitive states S = {S1 ≡ GoT oDestination −
NoDrif t, S2 ≡ GoT oDestination − Drif t, S3 ≡ Fail, S4 ≡ Succeed}, where
there may be several plans to achieve a goal (e.g., shorter or safer routes), and the
action is to select one of these plans. Rewards are associated with states and actions,

Fig. 6.2 (a) BDI architecture (taken from [50]). (b) Reinforcement learning Focus 1: cognitive-
level plan selection to achieve goal, and Focus 2: actions in the individual plan (this figure is
adapted from [23])
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Fig. 6.3 MDP representation of BDI architecture (this figure was adapted from [9])

and reinforcement learning is applied to find optimal policies. This is done over a
large number of environmental and UTM conditions. Actions are parameterized by
considerations like estimated required time, risk, communications connectivity, etc.

At the physical level, a plan may consist of a sequence of lanes with associated
entry–exit times. Alternatively, a plan may consist of a sequence of GPS waypoints
and times. We have already performed a preliminary study of this aspect of UAS
plan optimization (see [88]), and shown how optimal policies (for moving through
space) can be determined in the context of environmental conditions (e.g., wind).
Cognitive-level reinforcement learning follows the same process as traditional
reinforcement learning (Fig. 6.3) [101].

6.3.4 Experiments

6.3.4.1 Learning at a Low Level

The goal here is to determine an optimal action selection policy for a UAV
with a given destination goal and a set of specific environmental conditions that
defines the state space. The agent must operate successfully in this environment
by learning a utility function on the state of the world and from those utilities
determine an optimal action policy for each state. We consider an agent in a fully
observable environment. Once a policy, π , is learned to maximize utility, U(s), then
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it deterministically specifies the action for each state, and the agent will always
choose action π(s) for state s. The goal is to maximize the expected utility (see [86]
for details). The utility for each state is defined by the Bellman equation:

U(s) = R(s) + γmaxa∈A(s)

∑
P(s′ | s, a)U(s′) (6.1)

where U(s) is the utility of state s, a is an action, A(s) is the set of actions possible
for state s, and P is the probability of state s′ given state s and action a. We use
value iteration to solve for the state utilities; i.e., the above equation is iterated,
updating the utility of each state until convergence is achieved. Once the utilities are
known, the optimal policy at each state corresponds to the action that maximizes the
expected utility from the action:

π∗(s) = argmaxa∈A(s)

∑

s′
P(s′ | s, a)U(s′) (6.2)

State Representation In order to solve for the optimal policy for UAV control, we
define the state space as

S = Z3 × �3 × �+ × �

where the space is composed of three integer grid coördinates, a real-valued 3D wind
vector (whose magnitude is the wind speed), a precipitation value, and a temperature
value. Note that although the wind, precipitation, and temperature values have
different dimensions, their values are represented by indexes that designate intervals
in the appropriate range. For the study here, the grid consists of a 4×4×4 set
of voxels (representing airspace volumes where the specific dimensions of the
air volumes are determined by the problem under consideration; here we assume
reasonably large volumes), 2 values are used to indicate the wind (none, high),
precipitation is binary (raining or not), and 3 values for temperature (cold, normal,
hot). Thus, the state vector is a 6-tuple, where the number of values for each element
is [4,4,4,2,2,3], resulting in a total of 768 distinct states.

Possible Actions The action set for this problem is simply the selection of a
neighboring air volume; in particular, one of the 6 orthogonal direction cells. These
actions will be labeled {X,−X, Y,−Y,Z,−Z}, so that these actions align with a
standard frame in the center of the cell (see Fig. 6.4).

State Transition Function Next, a probabilistic state transition function,
P(s′|s, a), is defined, which provides the probability that state s′ results from
choosing action a while in state s. The particular function used here is based on the
physics of the state transitions, accounting for the impact of motion based on wind,
temperature, and precipitation.
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Fig. 6.4 Actions for UAS low-level reinforcement learning. (a) Airspace volumes. (b) Action
directions

Reward Function Finally, a reward function is defined as follows:

R(s) =
⎧
⎨

⎩

−0.04 s �= goal,excluded state
−1 excluded state
+1 goal state

The goal state has grid location [4,4,4] and reward value 1, while excluded cells
have a value of −1.

Results In order to better understand the method, a specific example will be
considered here. First, a 4×4×4 grid of 64 air volumes as shown in Fig. 6.3 will
be indexed by either their grid coördinates or by a simple index. E.g., cell [3,2,4]
will also be identified by the index 31. In addition to the grid location, each volume
also has temperature, wind, and precipitation information. This latter aspect will be
considered below.

The actions available are directly tied to moving to one of the neighboring
(closest) six neighbors. Figure 6.5 shows the states. Note that when a cell is on
the boundary, then the UAV is not allowed to exit the 4×4×4 grid, and so if that
direction is chosen, the UAV will remain in the same cell with some probability.

In order to solve the value iteration problem, the neighbors of each cell in each
action direction are first determined. A few of these are given in Table 6.1.

Next it is necessary to define the probability of moving into each neighboring cell
given the desired action. This is provided in terms of Table 6.2. Note that we assume
it is more likely that motions in the X–Y plane will have a certain probability and
that moving up is more uncertain than moving down. Although we have assigned
likely values here, these are also parameters that may be learned over time.
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Fig. 6.5 States for UAS low-level reinforcement learning

Given this information, it is possible to run the value iteration algorithm and find
the utilities for the states. Figure 6.6 shows the utilities produced at each state as well
as the path through the highest probability sequence of states. Note that this may not
match the optimal actions selected since it does not take into account the maximal
expected utility of the action. It does show however that the UAS will most likely
move up and then over in such a way as to avoid the excluded air volume (index 60,
cell [4,4,3]). Figure 6.7 shows how the utility values converge for this problem.

An optimal policy can then be determined for each state and produces the result
shown in Table 6.3. These results are also shown in Fig. 6.8. Note that the red arrows
indicate a move in the Y direction. Of course, the actions are not deterministic, and
in order to better understand the impact of this policy, 1000 trials were run with
start location cell [1,1,1], index 1, and with goal location cell [4,4,4], index 64.
One cell is excluded, cell [4,4,3], index 60; if the UAS enters that cell, it must land
and terminates the mission. Figure 6.9 shows the number of times each cell in the
airspace was traversed by the 1000 trials. As can be seen, much information may be
gleaned from these results as to the probability that a UAS will be in the assigned
air volume (we have not included temporal aspects, but that is readily available, if
desired). Also, note that a half a percent of the trials resulted in failure.

Next, consider the impact of a stiff wind blowing in the Y -axis direction.
This information is easily added to the model by simply providing the state
transition probability for motions impacted by the wind. This is called context-
based probabilistic state transition. In the case of a strong wind in the Y -axis
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Table 6.1 State transitions for UAS low-level reinforcement learning

Table 6.2 State transition probabilities for UAS low-level reinforcement
learning

direction, say produced by afternoon canyon winds in Salt Lake City, a set of state–
action probabilities are provided (either by learning over time or by physics-based
simulation). Figure 6.10 shows the values used here.

Running value iteration with these probabilities gives rise to the convergence
values shown in Fig. 6.11. The policy determined for these utilities is shown in
Fig. 6.12. Some interesting observations may be made. For example, the policy
never chooses a Y -axis action. Figure 6.13 shows the number of times each airspace
volume is traversed over 1000 trials. Note that there are a significantly higher
number of failures (39) due to the strong wind. Of course, this policy is the result of
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Fig. 6.6 The state utilities and path through the highest utility states. (a) State utility trace. (b)
Flight path trace

Fig. 6.7 The convergence of the state utilities
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Table 6.3 Optimal policies for the states

a certain level of tolerance for failure vs. energy expenditure. It is possible to vary
these parameters and produce policies less likely to fail by entering excluded zones.
Finally, it is important to note that the method can be considered having a learning
part and an application part.

6.3.4.2 Learning at a Cognitive Level

To demonstrate the BDI reinforcement learning at the cognitive level, a simulation
was run to determine the optimal policies for UAS agents in an environment that
contains rain and wind. The cognitive state of each UAS before the simulation
begins is represented by a knowledge base containing the clauses in Table 6.5. The
initial goal is for the UAS to be assigned a mission, so the intention stack is started
with the desire to be ASSIGNED. Once assigned, the UAS selects intentions from
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Fig. 6.8 Optimal policies for the states (pictorially). (a) Action numbers. (b) Directions

Fig. 6.9 The number of times each cell is traversed in 1000 trials
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Fig. 6.10 The context-based probabilistic state transition probabilities for the case of a strong
wind in the Y -axis direction

Fig. 6.11 The convergence of value iteration with the context-based method
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Fig. 6.12 The policy produced by the context-based state transition method. (a) Action numbers.
(b) Directions

Fig. 6.13 The number of times each space volume is traversed over 1000 trials



6.3 Reinforcement Learning 101

Fig. 6.14 Combined sequence and state diagram showing agent architecture

the precedence list shown in Table 6.6 (i.e., after being assigned, the next desire is
to remain IN_LANE).

A combined state and sequence diagram outlining a single reasoning cycle is
shown in Fig. 6.14. When the UAS agent receives a percept from the simulator,
containing both state information as well as messages from other agents, it parses
the data and updates its knowledge base. In the Analyze state, the agent considers
its desires and updates its current intention. The Filter state involves selecting the
optimal plan for the current intention, and in Execute Plan, the required low-level
actions are taken.

The process for generating and assigning flights follows the general design
proposed by NASA where a UAS Service Supplier (USS) is responsible for
deconflicting flights with other USSs in the system. To accommodate the ABMS
setup, the USS is also responsible for generating random flight requests and
auctioning them to UAS agents. This process is diagrammed in Fig. 6.15.

6.3.4.3 Environment Model

The environment used to train a policy is shown in Fig. 6.16, where solid circles
mark areas of rain and dashed circles mark areas of wind. Rain is modeled as a
scalar intensity value that decreases with distance from the center of the feature.
Rain affects the speed of UAS proportional to the amount of rain. Wind is similarly
defined, except it affects both speed and heading of a UAS in a direction tangential
to the radius of the wind feature.
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Fig. 6.15 Flight path
generation and assignment

Fig. 6.16 Wind and rain placement in for training

6.3.4.4 Actions

UAS agents in this simulated framework have the ability to set their velocity after
each reasoning cycle. In a scenario without wind or rain, the desires are selected in
order of precedence (lower precedence happens first). However, due to the dynamics
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Table 6.4 UAS high-level plans

Plan Description

CORRECT_HEADING Heading Optimized Controller

CORRECT_SPEED Speed Optimized Controller

FOLLOW_LANE Main Lane Following Control

GO_TO_LANE Take Immediate Action and Fly to Lane Segment

in the environment brought in by wind and rain, agents are affixed with logic that
requires replanning when the situation is not NOMINAL. In this case, the agent must
choose a contingency plan that returns the cognitive state to NOMINAL. There are a
number of plans that may achieve this, given in Table 6.4. The selection of plans is
determined by a policy obtained through reinforcement learning.

6.3.4.5 Transition Probabilities and Rewards

To generate the transition probabilities, a Monte Carlo simulation was run, and
a three-dimensional state–action transition matrix, representing the probability
P(s′|s, a), was generated from the data.

The reward model, R(s, a), considers only the eight states generated by the
Cartesian product of NOMINAL, RAIN, and WIND, and the four high-level plans in
Table 6.4. A state reward (Rs) of +6 was assigned to any state that was NOMINAL,
and −2 for any state that was not. Plan rewards were set as follows (reflecting their
cost to execute):

Ra(FOLLOW_LANE) = −1

Ra(CORRECT_SPEED) = −3

Ra(CORRECT_HEADING) = −5

Ra(GO_TO_LANE) = −8

6.3.5 Policy Selection

A policy was selected by running value iteration and generating state utilities. A
trace of the state utilities after each iteration (Eq. 6.1) is shown in Fig. 6.17. A slice
of the transition probability matrix for the plan FOLLOW_LANE is depicted by
the digraph in Fig. 6.18. The UAS agent then combines the state utilities and the
transition probabilities using Eq. 6.2 to select the optimal plan.

A graphical depiction of the behavior of a single UAS mission without rain or
wind contingencies is shown in the plan and state graph in Fig. 6.19. Figure 6.20
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Fig. 6.17 Value iteration trace. N-Nominal, W-Wind, R-Rain

Fig. 6.18 Transition probabilities for Follow Lane plan
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Fig. 6.19 Nominal behavior without contingencies

shows the behavior of a UAS navigating the same trajectory through a rain feature
with a learned policy. Finally, in Fig. 6.21, a behavior trace of a UAS navigating the
rain feature using a programmed policy that deals with the rain contingency directly
by correcting its speed.

6.3.6 Discussion

The experiments demonstrate that reinforcement learning at the cognitive level
is a viable option for programming agents in a UTM system. The program in
this instance was comprised of a number of plans that could be engineered
independently, in contrast to the currently proposed strategy of enumerating risk
factors and developing contingency plans in concert across the industry.

In this simple experiment, the resulting policy is guaranteed optimal with respect
to the rewards because dynamic programming was used. In a large-scale system,
the number of possible states and actions may be too large to pre-calculate utilities.
However, a plan can be engineered in which the UAS agent performs dynamic
programming over a narrowed set of states provided by the Analyze step in the



Fig. 6.20 Learned policy with rain contingency

Fig. 6.21 Programmed policy with rain contingency
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Table 6.5 UAS KB at initialization

ID Clause

1 IN_LANE ∧ ON_HEADING ∧ SPEED_OK → NOMINAL

2 LAST_LANE ∧ AT_NEXT_WAYPT → AT_FINISH

3 ¬IN_LANE

4 ¬ON_HEADING

5 ¬SPEED_OK

6 ¬ASSIGNED

7 ¬IN_FLIGHT

8 ¬AT_START

9 ¬AT_NEXT_WAYPT

10 ¬ADVANCE_LANE

11 ¬WRAP_UP

Table 6.6 UAS desires and
precedence

Desire Precedence

ASSIGNED 10

IN_LANE 20

ON_HEADING 30

SPEED_OK 40

AT_NEXT_WAYPT 50

ADVANCE_LANE 60

WRAP_UP 70

BDI architecture. Since the BDI architecture supports replanning when a plan fails
or when desires change, the agent can avoid over-committing to a plan that did not
consider a particular contingency.

This fact is demonstrated in the experimental output of Figs. 6.19, 6.20, and 6.21.
The explicitly programmed policy is brittle in the face of a rain contingency because
the speed correction causes the UAS to overshoot lane waypoints. The learned
policy selected a different plan, one that corrects heading and speed concurrently
and proves to be more robust.

6.3.7 Conclusion and Future Research

We have shown how states and actions at the cognitive level can be combined with
reinforcement learning to generate optimal policies for UAS agents. Additionally,
the BDI architecture provides a convenient structure for defining high-level states
and actions, while reducing the engineering complexity by allowing plans to
be designed independently. The benefit of this approach is that it reduces the
amount of programming logic required to build robust policies and utilizes a logic
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structure that supports operational insight since decisions are expressed in a human-
understandable form.

In upcoming research, our intention is to demonstrate the performance of the
combined cognitive-level reinforcement learning BDI architecture with respect to
contingency scenarios where a large number of states exist. In these scenarios, the
agent must replan when optimal plans do not produce the correct outcome due to
unforeseen states.

Also, the effects of replanning and contingency handling on the aggregate state
of all UAS agents in a UTM system must be understood. If it can be shown that
the best available policy for UAS agents includes dynamic replanning and the
proposed cognitive structure, then this strategy will enable a more rapid adoption
of autonomous agents due to the decreased engineering complexity.



Chapter 7
Contingency Handling

7.1 Introduction

NASA engineers have published a number of system requirements in an effort
to enable dense operations of unmanned aircraft systems (UAS) in urban envi-
ronments. These requirements describe a free-flight model, where operators are
afforded the maximum flexibility to design individually optimal trajectories, with
the caveat that all operations must be strategically deconflicted prior to flight. Strate-
gic deconfliction reduces the probability of having to perform tactical deconfliction
using onboard sensors and real-time algorithms. Such approaches require a common
protocol to guarantee that UAS do not collide, but do not scale well. Thus, UAS
Service Suppliers (USS) must deconflict their planned trajectories pairwise prior
to flight in order to achieve strategic deconfliction. However, sometimes flights are
not able to follow their plan and must handle some contingency; a contingency
is a future possible event, usually causing problems or making further plans
necessary. This chapter describes a communication-based protocol to coordinate
airspace during flight. This protocol was developed as part of the Air Force Office
of Scientific Research program on Dynamic Data-Driven Applications Systems
(DDDAS) [58, 67]. In a seminal article describing the purpose and scope of dynamic
data-driven applications systems, Darema [30] describes a motivating example
where injecting experimental data into a long-running computation (informing oil
exploration decisions) could be performed in an online manner to produce better
results. An online program in the DDDAS paradigm accepts data whenever it
is available and could also inform the measurement process to improve system
efficiency. The computational effort required to produce good decisions is also a
motivating factor for the development of a DDDAS approach to traffic management
described here.

NASA and the FAA are making a concerted effort to develop an Unmanned
Aircraft System (UAS) Traffic Management (UTM) system to enable large-scale
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UAS exploitation in urban environments. The UTM is organized in terms of UAS
operators who manage their flights through UAS Service Suppliers (USS). These
service suppliers must declare the geographic region of their flights (in terms of
4D trajectories of space–time), and moreover, must strategically deconflict their
flights pairwise with all other UAS flights in the region (we call this method FAA-
NASA Strategic Deconfliction or FNSD). This can easily lead to quite complex path
planning and coördination problems, and also requires USS to share data which
would best be kept private. We have introduced a lane-based organizational structure
for a UTM in which a set of lanes are defined (much like a ground road network),
and then a USS simply reserves a sequence of lanes from takeoff site to destination
site [90, 91]. In that work, we demonstrated a lane reservation system that efficiently
guarantees strategic deconfliction, however that only applies to flights that are yet to
be active in the airspace. Active flights experience a more dynamic situation, where
contingencies can occur.

Contingencies are communicated to agents in an online fashion, either by tactical
avoidance sensors such as radar and sonar, or as information from authorities
and other agents. Both sources can result in undesirable system responses, for
example cascading effects due to high-density operations [52] and unstable control
response due to the structure of the information flow [36]. We described earlier the
Lane Strategic Deconfliction algorithm (called LBSD) and showed that it has very
low complexity, and allows for quite acceptable lane stream properties. Overall,
contingencies that lead to a violation of safe separation represent the most critical
element to consider in the design of a large-scale traffic management system. Safe
separation requires agents to plan collision-free paths, which in the most general
case of multiple-agent planning is PSPACE-hard. Even the more narrow problem of
tuning velocity profiles is NP-hard [3].

We have given a lane-based airspace model that enables the propagation of
contingency information in a well-defined manner. UAS plan locally in real-time
within lanes, broadcasting contingencies (as deceleration events) to neighboring
lanes that are likely to be effected. Unlike car-following models [70], information
from a contingency can reach multiple agents at the same time, yet enabling agents
to react in a similarly predictable way. The theoretical contribution here provides
an efficient real-time algorithm for strategic deconfliction and applies a solution in
terms of ground-delay (delaying access to the airspace network) or air-delay. The
experimental section below demonstrates the ability to resolve conflicts within a
simulated environment.

7.1.1 Lane-Based UTM

A central issue concerning the DDDAS paradigm is the choice of model, and
how information is represented, distributed, and consumed. The lane-based airspace
structure is a model for the configuration of UAS in space and time and contrasts
with other proposed models, such as the grid-based structure proposed by NASA.
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For example, in a grid model UAS share position information (through a USS as
a proxy) within cells of a grid, and it is incumbent on USS to determine whether
changes to trajectories could impact operations in neighboring cells. In other words,
the flow of information between cells is not explicit in the model and represents a
major point of uncertainty in the system. This contrasts to the lane-based approach,
where impacts of trajectory changes (the dynamic data in this system) within a lane
propagate in a well-defined manner throughout the lane network. The lane-based
approach imposes a clear downstream and upstream direction to the information
flow because lanes form a graph structure that mirrors the possible paths by UAS.
The representation of trajectories in the lane-based approach is simple, as described
below, and limits the amount of information that must be shared between aircraft to
ensure safe separation. Finally, utilities can be defined in a straightforward way for
both the UTM and UAS; e.g., the distance between all flights is important for the
UTM, while maintaining desired speed and distance to destination characterize the
utility of a configuration for a UAS.

Given a set of ground launch and land sites, a set of one-way lanes is defined,
which provides a path from any launch to any land site. A lane is a directed 3D
vector with its tail as the entry point to the lane and its head as the exit point. A
flight path is a sequence of lanes starting with a vertical launch lane and ending with
a vertical land lane. A crucial constraint on lanes is that every vertex (entry or exit
point) has either in-degree 1 or out-degree 1; this allows the deconfliction of flights
by considering lanes as opposed to nodes in the network.

In order for two UAS to be safe, they must at no time be closer than some minimal
Euclidean distance, called dS . We assume that lanes are defined so that no two lanes
have points closer than dS unless the two lanes share an endpoint. Figure 7.1 shows
the simple lane layout used in the set of experiments described below. There are 51
lanes, along with 10 launch lanes and 10 land lanes.

7.1.2 Contingencies

Both approaches (FNSD and LBSD) are subject to the problem of contingencies
when a UAS flight departs from its nominal plan (e.g., slows down, goes off-
course, etc.). Due to the complexity of the UTM system, predicting the effects of
contingencies is a major impediment to the wide-spread integration of UAS into the
urban airspace. The currently published protocol for mitigating many contingencies
requires the UAS to try to return directly to its launch site [10]. However, this
trajectory may not be strategically deconflicted and requires obstacle detection and
avoidance along the way.

The lane-based model, together with the coördination protocol proposed here,
offers a method to mitigate such a contingency and also provides techniques to
analyze the possible outcomes of different contingencies. The well-defined structure
of lanes suggests that only a restricted set of contingency trajectories need to be
considered, those that follow the lane structure and those that do not. For example,
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Fig. 7.1 Set of UAS on airways during discrete event simulation. Red dots represent UAS in flight;
blue lanes are launch lanes

addressing contingencies where UAS must exit a lane could include designating
emergency side lanes where a UAS can wait, or dynamic landing lane creation to
go to the nearest safe landing site. In the case that the UAS can still follow lanes,
the simulations demonstrated in the experimental section below offer a method to
understand the possible outcomes. In [90] an analysis of the impact of lane density
on the delay of a requested lane reservation was shown to be an instance of a process
of random space filling, sometimes referred to as Renyi’s parking problem [80].
The lane-based structure imposes constraints on the network that make this analysis
possible and could inform what a safe operating density for the UTM should be.

The proposed real-time tactical deconfliction method described in this paper
simply modifies UAS speeds throughout the network in such a way as to avoid
conflict. This method effectively absorbs contingencies when the UAS agent is still
capable of following lanes. In the event of a contingency where a UAS cannot still
follow lanes, the impact is minimized because non-contingent operations remain
within the lane structure.

As long as all flights are strategically deconflicted and stick to their assigned
flight paths, then there will be no problems in the airspace. However, situations can
arise that cause a flight to deviate from its nominal path. Example include:

• Weather conditions: wind, rain, snow, etc. can cause a flight to slow down in
the direction of the lane or move off-course.

• Platform failures: Power, navigation, fuel, or structural damage, etc., can
prevent a flight from maintaining its speed, altitude, etc.,
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• Priority preemption: Emergency or other aircraft may be given authorization
to use a lane during the time allocated for a lower priority regularly scheduled
flight.

Note that these and other conditions may be statistically predictable, but it is not
possible to know exactly when they will occur.

There are a couple of ways to handle contingencies: pre-planned versus dynamic
mechanisms. Pre-planned mechanisms involve either modifying the design of the
airway lane structure so that flights may address contingencies by using those lanes,
or by establishing UTM parameters or policies that allow specific contingencies to
be overcome. Dynamic mechanisms are those that create structures on the fly or
provide for UAS to interact and modify their flight paths in order to stay safely
deconflicted.

7.1.3 Pre-planned Contingency Mechanisms

Consider how ground road networks provide ways for automobiles to handle
contingencies. On most roads if a vehicle breaks down or runs out of gas, etc., there
is a shoulder or emergency lane where the car can pull over and take care of the
problem. Moreover, in town there are usually many less-traveled side streets where
a car can pull off the main road. Similar to ground road networks, it is possible
to create emergency air lanes alongside every regular lane so that a UAS that has a
problem can pull into that emergency lane and address its problem. Such emergency
lanes can be defined when the airway lane network is constructed.

If a UAS is unable to continue its flight to destination, then it would need to land.
This can also be addressed when the air lane network is defined. For example, every
emergency lane can have an associated landing lane. In this case, the emergency
side lane could be comprised of two sub-lanes with opposite directions of travel
toward each other. A landing lane can have its entry point where the two emergency
sub-lanes meet. All this structure can be pre-defined.

Of course, multiple aircraft in the same lane may have problems, and therefore
their use of the emergency and landing lanes must be coördinated. If they retain
adequate platform control, then the reservation system can be used to schedule them
from their current positions through the emergency lane and down the landing lane.
Such coördination can take into account the remaining individual capabilities of the
aircraft involved. If some UAS is seriously incapacitated, but can still fly (i.e., it
is not deploying a parachute and falling from the sky!), then it can be cleared to
descend as needed. A multi-craft emergency in the same lane can also be resolved
dynamically (see below) by having the flights coördinate between themselves the
usage of the emergency and landing lanes.

It is also possible to implement UTM policies to help manage certain types of
contingencies as opposed to defining emergency lane structures. For example, if a
UTM requires all flights to fly at the same speed, say s, then if some flight slows
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down to speed s′, then the UTM can require all flights to slow to speed s′. At
this reduced speed the flights will remain deconflicted. To see this, consider first if
two flights are in the same lane when the speed reduction occurs, then the distance
between them will not change. Now consider two flights that are in lanes that merge
to a single lane. Let flight f1 be at distance d1 from the merge point (i.e., the exit
point for the current lane for f1 and the entry point for its next lane), with speed s

and scheduled arrival time t1. Similarly, let flight f2 be at distance d2 in its lane from
the merge point and moving with speed s and scheduled to arrive at the merge point
at time t2. Suppose that at time t both flights must reduce their speeds to s′ < s. It
must be shown that the headway distance is maintained at the lower speed. For the
scheduled flights we have

d1 = s(t1 − t)

d2 = s(t2 − t)

with the reduced speeds we have

d1 = s′(t ′1 − t)

d2 = s′(t ′2 − t)

which yields

t ′1 = t + d1

s′

t ′2 = t + d2

s′

Substituting the definitions of d1 and d2:

t ′1 = t + s(t1 − t)

s′

t ′2 = t + s(t2 − t)

s′

Subtracting the first from the second and rearranging gives

s′(t ′2 − t ′1) = s(t2 − t1)

Since the following holds for the headway distance dh:

dh ≤ s(t2 − t1)
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then

dh ≤ s(t2 − t1) = s′(t ′2 − t ′1)

and, in fact, the same headway distance is achieved.
There are other ways to pre-define solutions for contingencies. As one more

example, consider a flight that is informed that one of the lanes it is scheduled to
traverse in its flight path is no longer available. It is possible that the reservation
system actually reserves alternate paths to the destination so that the flight can
choose one of these alternates if necessary. In this case, the flight will choose a
reserved flight path that does not include the unavailable lane. As the flight passes
turning points to take alternate routes, it can inform the UTM that releases those
reservations and makes the lanes available for use by other flights.

7.1.4 Dynamic Contingency Mechanisms

Dynamic contingency handling allows more flexibility in responding to problems.
It also generally requires more communication or sensing capabilities for the
platforms (or agents) involved. The advent of 5G and beyond communication
techniques is opportune for the development of dynamic contingency handling
because of the increased bandwidth and the lower delay times. Consider first the
case in which a UAS cannot follow its assigned schedule, and it communicates
this to the UTM. At one extreme the UAS may be forced to land, and the UTM
can dynamically create a landing lane suitable for the specific UAS and location.
According to the type of UAS and the roads and buildings below it, a landing lane
may be created to allow the UAS to land on a building top, or in the emergency lane
of a road on the ground below it, or in an empty part of a nearby parking lot, etc.
Moreover, it is also possible for the UTM to monitor cell phone usage in the landing
area and choose a site with the fewest number of people.

Alternatively, if the flight is able to continue to its destination, but at a reduced
speed, then it may be possible to allow other UAS to continue on their scheduled
paths and for them to dynamically interact with the slowed flight in order to avoid
it. For example, if emergency side lanes are available in the air lane network,
then when a nominal UAS approaches the slowed flight, they can make sure
that the minimal headway distance is maintained by detect and avoid measures
(assuming the emergency air lane is close enough to the regular lane to warrant
that). Negotiation of a passing maneuver can be handled by direct communication,
intermediate communication through the UTM, or by using an established protocol.
As part of our work on UAS dynamic tactical deconfliction we developed the Closest
Point of Approach Deconfliction Algorithm (CPAD) [100]. CPAD was developed in
the context of the Dynamic Data-Driven Applications Systems program from the
Air Force Office of Scientific Research. This approach is described in detail below.
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7.2 Real-Time Tactical Deconfliction

Each lane has a set of connected lanes with which it shares an endpoint. A flight in
a given lane is tactically deconflicted if there is no point in its trajectory along the
lane such that it is within distance dS of any flight in a connected lane. This can be
efficiently checked using the Closest Point of Approach (CPA) algorithm as follows.

Let two lanes, L1 and L2, be defined by vectors S̄1 and S̄2, where S̄1 ≡ −−→
P̄1P̄2 and

S̄2 ≡ −−−→
Q̄1Q̄2. The trajectories of flights f1 and f2 in lane L1 and L2, with velocities

v̄ and w̄, are defined as P̄ (t) = P̄1 + t v̄ and Q̄(t) = Q̄1 + tw̄. Since the velocities
are v̄ = s1(P̄2−P̄1)

|P̄2−P̄1| and w̄ = s2(Q̄2−Q̄1)

|Q̄2−Q̄1| , where s1 and s2 are the respective speeds of

f1 and f2, then the time, tmin, when the two flights are closest in their trajectories is

tmin = −(P̄1 − Q̄1) · (v̄ − w̄)

| v̄ − w̄ |2

If tmin is found for t ∈ [tcurrent , tmin_T OA], where tmin_T OA is the minimum time
of arrival at the end of the lane for flights f1 and f2, then the minimum distance,
dmin, between the flights across these intervals is just | P̄ (tmin) − Q̄(tmin) |. If
dmin < dS , then a conflict exists between the two flights. Figure 7.2 illustrates the
CPA method.

If a flight, f1, has a conflict with flight f2, then the two flights can be deconflicted
as follows:

Deconflict_Pair

while conflict(f1,f2)
reduce speed, s1, of f1
if s1 < smin

then flight f1 fails

Fig. 7.2 CPA algorithm: two
flights at closest points Ptmin

and Qtmin
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This allows the definition of the Closest Point of Approach Deconfliction (CPAD)
algorithm:

Algorithm 1: Closest point of approach

1 ∀ active flight, f

2 if f enters a new lane
3 OR a neighboring flight has slowed
4 OR f has reduced speed on its own
5 then call Deconflict_Pair for all flights in neighboring lanes
6 if f has reduced speed
7 then f broadcasts this information.

7.2.1 Approximate Global Deconfliction Using CPAD

Global tactical deconfliction is achieved by having each UAS run the CPAD
algorithm. CPAD does not guarantee strategic deconfliction (i.e., that no two flights
get within distance dS across the entire set of current flight plans); however, it
does guarantee that no two flights are ever within distance dS of each other at any
time. The benefits of this approach include that that there is no centralized flight
planning, no sharing of detailed flight info between USS, and robustness in the face
of contingencies. The cost of the approach is that some flights may be forced to fail;
however, this can be mitigated by choosing appropriate lane structure, controlling
the number of flights, and eventually by dynamic flight route selection (currently the
lane sequence is fixed). Certain communication requirements are imposed; however,
the data shared between flights is essentially their telemetry data, which the FAA-
NASA UTM requires broadcasting anyway.

7.3 Experiments

A discrete event simulation is run, which allows specification of the simulation time
interval, [0, tmax], and the number of flights, nf . One unit distance corresponds
to 50 ft, and one unit time corresponds to 10 seconds. Two maximum speeds are
considered: 5 and 9, which correspond to about 17 and 31 mph, respectively. Each
flight has randomly selected launch and land sites, as well as a random desired
launch time. A fixed 3×4 grid of lanes at altitude 10 units is serviced by 10 launch
lanes and 10 land lanes (see Fig. 7.1).

When a flight plan is created for a flight, it consists of a sequence of lanes and
for each a specific Time of Departure (TOD: departs entry point to lane) and Time
of Arrival (TOA: arrives at exit point of lane). The next event is just the flight with
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the earliest TOA in its current lane, unless it has not yet launched in which case it
is the current launch time. The launch times of the flights are uniformly distributed
across the simulation time interval. Note that if a flight cannot launch at its desired
launch time due to conflicts in the launch lane, then it is rescheduled to a later time
(with fixed delay). Once an event is selected, all flights are advanced according to
their respective speeds in their current lanes. Next, the flights are deconflicted.

We consider two aspects for study: (1) maximum simulated time (set to 100 and
200 units), and (2) maximum UAS speed (set to 5 and 9 units distance per unit time).
These correspond to about 17 and 33 minutes, and 17 and 31 mph, respectively.
The number of flights is chosen to equal the maximum time since this represents
on average one launch per launch site every 50 seconds. Given a max time, UAS
max speed, and number of flights, the simulation is run using the CPAD algorithm.
Table 7.1 gives the data for five representative runs, as well as the means. As can be
seen, these results indicate that the CPAD algorithm works well in these scenarios
with only one flight failure in all of the experiments (3000 flights overall). Moreover,
the average speed is quite near the maximum allowed speed, and there are very few

Table 7.1 Delays and failures in experimental simulations

tmax nf smax Wait Fly Done Fail Avg speed Delays

100 100 5 1 18 81 0 4.98 2

2 12 86 0 4.98 2

0 15 85 0 4.99 1

0 11 89 0 4.98 2

1 18 81 0 4.96 4

Means 0.8 14.8 84.4 0 4.98 2.2

100 100 9 0 11 89 0 8.98 1

1 8 91 0 8.94 2

0 12 88 0 8.99 0

0 6 94 0 8.99 0

0 11 88 1 8.98 0

Means 0.2 9.6 90 0.2 8.98 0.6

200 200 5 0 14 186 0 4.96 6

0 11 189 0 4.97 8

0 17 183 0 4.98 6

1 13 186 0 4.99 10

0 6 194 0 4.96 9

Means 0.2 12.2 187.6 0 4.97 8.6

200 200 9 0 7 193 0 8.96 4

1 6 193 0 8.97 2

0 8 192 0 8.97 4

0 7 193 0 8.98 3

0 4 196 0 8.97 2

Means 0.2 6.4 193.4 0 8.97 3
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delays (68 out of 3000). The most critical parameter for algorithm performance is
the maximum speed of the UAS. Other trends revealed in the data include that the
longer the time period, the more flights complete their mission, and the fewer flights
are delayed or in the air (on average).

7.4 Conclusions and Future Work

The lane-based approach provides a viable model for large-scale urban air traffic,
and CPAD closes the symbiotic DDDAS feedback loop to update the model based
on measurements and communication as required by the model. The results here
lay the foundation for a further study into the role of DDDAS in large-scale
unmanned traffic management. System designers must consider the impact of
airspace structure on information flow as well as the accessibility of the network
(measured as delay). This demonstrates the importance of considering the structure
of the discretization of the configuration space and how a real-time dynamic flight
deconfliction algorithm can operate under strong assumptions about the space/time
structure of the environment. Future issues to be explored include: (1) a broader set
of experiments will be run to study the role of the number of lanes, the distribution
of flights over lanes, etc., as well as a sensitivity analysis of the experimental
parameters, (2) flights are assigned a complete sequence of lanes in this study, but
we intend to explore the application of the software defined networking paradigm
to dynamically select the lane sequence, (3) the structural properties of the airway
network also play a role in facilitating flight deconfliction, and those parameters
will be studied, (4) experiments will be conducted on realistic airways scenarios;
e.g., the Utah Department of Transportation is exploring the use of the lane-based
approach in Utah, where the airways are located above roadways, and (5) CPAD
imposes communication requirements on the aircraft, and this aspect will also be
studied in terms of the likelihood of failure to communicate correctly and its impact
on deconfliction.



Chapter 8
Agent Based Modeling and Simulation

8.1 Introduction

The ability to statically analyze UAS traffic management systems (UTM) is
hampered by the dimensionality of possible behaviors. Individual agents can act
in different ways if their algorithms are not standardized, and even then there
are contingencies that can thwart the best plans available. The collection of
individual agents and their behaviors form the system, and one way to model the
collective behavior is through Agent-Based Modeling and Simulation (ABMS).
Various Agent-Based Modeling and Simulation software frameworks exist (see
[24, 66, 77]); however, a specific framework was developed here in order to find a
set of symbiotic UAS behaviors and UTM policies. The framework is instrumented
to allow measurement of crucial features, including local statistics and flow metrics,
contingencies (and if possible their causes), and higher-level system features and
emergent behaviors. Our previous work on the BRECCIA system [95, 97] included
a BDI-agent-based framework built from a Java library called Jason [21]. However,
the ability to rapid-prototype different models of communication, or create complex
agents, is inhibited by having to switch between Java and the Jason domain-specific
language. This chapter describes the ABMS approach to analysis for UTM systems.

8.2 Lane Systems and Sensitivity

Once the airway network is defined, a lane-based strategic deconfliction algorithm
is required to schedule flights into the lanes so as to maintain the required minimum
separation at all times during flight; this assumes that every flight follows its

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Sacharny, T. C. Henderson, Lane-Based Unmanned Aircraft Systems Traffic
Management, Unmanned System Technologies,
https://doi.org/10.1007/978-3-030-98574-5_8
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approved flight plan. The Lane-Based Strategic Deconfliction (LBSD)1 algorithm
is given, which allows computationally efficient scheduling. It is shown that this
algorithm is O(k2), where k is the number of flights in the lane sequence of the
proposed flight during its flight.

Alternatively, in-flight planning arises due to contingencies, i.e., possible future
events, usually causing problems or making further plans and arrangements nec-
essary. Contingency handling may occur at different time-horizons and require
different mechanisms, for example tactical (sensor-based) deconfliction. For these
scenarios the Closest Point of Approach (CPA) algorithm is defined so that UAS
can exploit the lane structure to continue their flights while avoiding collisions. This
protocol may be based on either individual UAS sensor data or on local inter-UAS
communication.

8.3 Lane Systems and Robustness

The layout of the lane system can also have significant effects on the behavior of
the system. A common refrain among air mobility enthusiasts is that the ability to
travel point-to-point in a straight line, Fig. 8.1 for example, should be maintained
and decreases the desirability of structured airspaces. However, a system of agents
performing individually optimal trajectories in an unstructured airspace is unlikely
to produce an efficient system. This is true in the case where agents can make
decisions dynamically based on system-wide conditions, for example, Braess’
paradox demonstrates where additional route options can result in an increase in
travel time [35]. This also appears to be true when considering conflict counts for a
simple cell-based deconfliction experiment (point-to-point flights deconflicted using
ground-delay, we call the FAA-NASA approach). Figure 8.2 shows histograms for
cell traversals (how many times a flight crossed a cell) and intersections (how many
flight paths intersect) for an experiment with 1000 UAS flying point-to-point in an
unstructured airspace with uniformly distributed land and launch sites. These graphs
show an increased density of conflicts focused in the center of the area of interest.

An ABMS framework that simulates AAM should model the roles and respon-
sibilities of the real UTM framework. However, the separation of responsibilities
between the USS (or PSU) and the operator can be merged for the purposes of
analyzing the resulting traffic and system behavior, since this separation mainly
serves regulatory requirements. Therefore a reasonable organization for an ABMS
includes the following organization:

1 ©[2022] IEEE. Reprinted, with permission, from [IEEE-T Intelligent Transportation Systems,
“Lane-Based Large-Scale UAS Traffic Management,” David Sacharny, Thomas C. Henderson and
Vista Marston, 2022, Print ISSN: 1524–9050, Online ISSN: 1558–0016, Digital Object Identifier:
10.1109/TITS.2022.3160378].

10.1109/TITS.2022.3160378
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Fig. 8.1 Sample straight line paths between launch and land vertices

Fig. 8.2 Unstructured airspace density and path intersections. (a) Cell traversal counts. (b) Path
intersection counts

• LBSD: This class encapsulates the Lane-Based Strategic Deconfliction (LBSD)
Supplemental Data Service Provider, responsible for approving reservations into
the airspace.

• ATOC: An instance of this class represents an Air Traffic Operations Center,
providing users with visualization capabilities.
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• UAS: Unmanned Aerial System is a mobile agent that operates within the UTM.
• KB: A database for knowledge storage and access.
• SIM: This class encapsulates all the simulation functions, including mocking

GPS and radar sensors and updating agents.
• RADAR: An encapsulation of a reduced-order radar sensor model.

8.4 ABMS Optimization

The complexity of determining good plans for handling contingencies is a central
problem for large-scale autonomous systems. Different adaptations of the lane-
based approach can represent the majority of proposed airspace structures, from
the least structured (every UAS creates its own lane, i.e., the free-flight model),
to the most structured, where regulators completely determine the layout of the
airspace. How these structural decisions affect the behaviors of individual UAS,
and ultimately the system dynamics are captured by the ABMS approach. ABMS
is ideally suited to the analysis of complex, large-scale systems with interacting
heterogeneous agents, and can incorporate cognitive models that mediate how
individual agents perceive and react to the environment. By alternately optimizing
individual behaviors and system-level policies, a symbiotic design is found that
balances individual preferences, which include the ability to make good decisions
for handling contingencies, and system-level metrics, such as network accessibility
and efficiency.

Figure 8.3 shows the iterative process that uses ABMS to assess policies and
behaviors to demonstrate the effectiveness of the lane-based approach. The goal is
to optimize:

1. UTM Policies: UTM policies over a given set of UAS behaviors.
2. UAS Behaviors: UAS agent behaviors given a set of UTM policies.

In each iteration, a set of policies is selected for a given environment, then
UAS behaviors are adapted to improve individual and system-level measures
(compromises are explicitly documented). For the next iteration, the UAS behaviors
are held fixed while the policies are adapted. In addition to manually adapting the
behaviors and policies, hierarchical reinforcement learning (RL) techniques may be
applied to determine whether more robust systems can be found automatically. The
goal is to understand how UTM structure and constraints interact with UAS agents
to produce emergent behaviors that impact system performance. In particular, it is
essential to avoid cascading non-conforming flights arising from contingencies.

8.4.1 Contingency Handling as a Measure of Effectiveness

Contingencies are important because they represent the safety and logistics issues
that arise in real-world systems, serving major design and operational constraints.
Contingencies also represent a considerable computational challenge, since the
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Fig. 8.3 Agent Based Modeling Framework for Learning UTM Policies and UAS Behaviors. The
UTM policies are set, and then UAS agents learn both at the BDI cognitive level (beliefs) as well as
at the platform control level (plans). UAS behaviors are fixed and UTM Policies are then optimized
with respect to global lane stream properties as well as safety measures

Fig. 8.4 Single-lane contingency effects. (a) UAS after one iteration. (b) UAS after 91 iterations

representation and planning for all possible effects is generally intractable. In
fact, contingencies are the primary impediment to the large-scale integration of
autonomous systems. Therefore, to demonstrate that the lane-based approach is
an effective organizational strategy for UTM, it must be shown that the lane-
based approach provides a low-complexity foundation for contingency analysis and
mitigation.

As an example of how the lane-based approach supports contingency analysis,
consider the single-lane example in Fig. 8.4 (adapted from [64]). In this model, the
lane is a one-dimensional curve represented by an array of length L. Each element
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Fig. 8.5 Contingency effects on system state and individual behavior in a lane. (a) 85 UAS
showing predictability. (b) 100 UAS showing unpredictability

of the array can be in one of seven states: It may be empty, or occupied by a UAS
having an integer speed of zero to five. The speed value represents the number of
array elements that UAS moves forward in the next step of the simulation. The
behavior of each UAS is defined as follows, calculated at each step of the simulation
simultaneously for all UAS (gap is the number of unoccupied array elements in
front of the UAS):

1. Acceleration: Each vehicle with speed v < vmax and gap ≥ v + 1 gets speed
v ← v + 1.

2. Deceleration: Each vehicle with gap ≤ v − 1 gets speed v ← gap.
3. Move: Each vehicle moves forward v elements.

The simulation in Fig. 8.4 begins with 85 UAS placed randomly across the
lane. Here, a contingency is defined as a deceleration event (item 2 in the behavior
described above). At iteration 500 a contingency is forced on a number of UAS
in the lane. Figure 8.5 shows aggregated contingency events for 10 runs of the
simulation with 85 and 100 UAS. Figures 8.4 and 8.5 show two dramatically
different system responses: In (a) the number of contingencies returns to a settled
value before the forced contingency, while in (b) each run produces a different, and
hence unpredictable,2 outcome.

The lane-based approach provides a single control variable to account for these
two scenarios: the density of UAS in the lane structure. A more complex individual
behavior could potentially guard against such unpredictable effects, but with this
approach the trade-offs are made explicit for the policy maker.

2 As noted by Nagel and Rasmussen [64], this model can be treated analytically [103], but the
analytical results are “more difficult to obtain” than measurements from simulation. A result that
would support this thesis would show that free-flight systems, the least structured of airspace
designs proposed, are more difficult to analyze than lane-based systems and therefore less ideal
for contingency handling.
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8.4.2 UAS Behaviors for Contingency Handling

Consider a scenario in which ground infrastructure supporting UAS communica-
tions is disrupted during normal operations. Currently, the published protocol for
handling this contingency is to fly back to base if communications cannot be re-
established within a given amount of time [10]. Since this is a pre-defined policy,
it is worth considering whether such a policy is robust. For example, depending
on how many UAS communications are disrupted, the number of conflicts that
result from the simultaneous replanning of multiple agents may have negative
cascading effects [52]. As the complexity of the UTM system increases, it becomes
harder for experts to enumerate all the failure modes and effects; assigning liability
and performing post-failure diagnoses will also be difficult. Table 8.1 gives the
set of contingencies considered here, the contingency response, and the required
communication capabilities for the response.

8.4.2.1 The Role of Cognition in Contingency Handling

To develop robust policies for UAS in the UTM system, one can frame the
problem in a similar manner as designers did for ACAS X. Another method is
to use a hierarchical decomposition of states and actions, and a semi-Markov
decision process model for state-transitions [5, 9, 87]. A benefit of the lane-based

Table 8.1 Contingency table; V2V (Vehicle to Vehicle V2V), V2G (Vehicle to Ground), and
V2X (Vehicle to Everywhere)

Contingency Responses Communication requirements

UAS Nav loss Get position from other UAS V2V, V2G

UAS operator manual control V2G

Tactical landing V2X, V2G

UAS speed loss Move to emergency lane V2V, V2G

Alternate flight path V2G

Tactical landing V2X, V2G

UAS energy loss Plan alternate route to destination V2V, V2G

Alternate destination V2V, V2G

Nearest destination V2V, V2G

Tactical landing V2X, V2G

UAS Comms loss Wait in emergency lane

Tactical landing

UAS falling Deploy parachute V2V, V2G

Lane obstacles Tactical avoidance V2V, V2G

Move to emergency lane V2V, V2G

Lane closure Alternate route V2G

Create lanes
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system is that a concise description of surrounding vehicles, their intentions, and
locations is provided by the space-time lane diagram (lanes, reservations, headways,
and speeds). The STLD representation of system-level state can be fed to each
UAS agent for the purpose of contingency planning, potentially leading to higher
preference behaviors. For example, in a communications-loss scenario, a UAS may
decide to seek a different emergency landing pad if it knows that other agents in
the lane are likely to execute the same contingency plan. Another possibility is
that two UAS with communications loss continue past the disruption because other
UAS farther along appear to be functioning nominally, especially if a goal encoding
relay-communications were included. Such a scenario-specific policy would be
difficult to program explicitly, but such robust solutions are feasible through policy
optimization.

A hierarchical reinforcement learning technique can automatically determine
actions, as well as policy. More recent developments have shown promise in
learning games by creating abstractions of the actions available to agents. Both
the Option-Critic Architecture [9] and FeUdal Networks [120] take advantage of
semi-Markov processes to model different time-scales in the hierarchy, but FeUdal
networks benefit from an explicit representation of a high-level goal. The BDI
architecture is a convenient way to structure and analyze agent behavior, and
includes a hierarchical decomposition of actions in the form of plans. The different
decompositions of actions for operators, USS, and airspace controllers in the UTM
system are compared in Sect. 8.5.1 on Experiments. For example, two competing
high-level goals in the UTM system are to maximize headway and lane density.
Actions available to agents include Replan, Land, Cruise, etc. Additionally, since
NASA has published the required application programming interfaces (APIs) for
USS, the possibility of automatically generating low-level actions from these APIs
is also available.

8.4.3 UTM Policies for Contingency Handling

An intelligent airspace provides a robust and redundant basis for contingency
handling, such as the one-way lane structure, i.e., by eliminating, in the nominal
case, any necessity for UAS to coördinate through intersections. However, the lane
is more than a simple curve in 3D Euclidean space. Some properties that must be
specified include the lane boundary surface (e.g., a tube), minimum and maximum
speeds, geometry (straight, curved), length, etc. Another issue to be considered is
whether regular lanes between two intersections going in opposite directions should
be aligned left-right at the same altitude (as standard ground roads) or one above the
other.

In addition, lane placement should be conditioned on several crucial operational
aspects, some of which include: (1) ground structures: buildings, towers, etc., (2)
population density that dynamically varies with time, (3) roadways on the ground:
these may be avoided or followed, (4) communications ground stations: that may
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also provide network repair if ground stations fail, (5) landing sites: availability
of emergency landing sites, and (6) monitoring infrastructure: radar, microphones,
etc. Some of these choices are not dichotomous. For instance, placing a lane above
a road will help to reduce aerial obstacles and improve communications as UAS
can use the cellular wireless infrastructure that has full coverage in most of the
roads and communicate with ground vehicles and road side units below them using
the unlicensed dedicated short-range communications (DSRC) channels [55] that
might lead to better safety; however, such a lane assignment increases the population
density below the flight, and thus, the risk of human injury.

There are four basic types of lanes that the trajectory of a UAS can encounter:
(1) launching/landing: allow ingress, egress to/from airspace, (2) regular: allow
travel through airspace (intersection to intersection), (3) roundabout: provide way
through intersection, and (4) ramp: transition between regular and roundabout lanes.
There are several parameters that constrain the placement and connectivity of lanes.
For example, a regular lane may be at a different altitude from roundabouts, and
therefore ramp lane placement must accommodate the individual lane parameters of
each other type.

8.5 ABMS Test: FAA vs. Lane-Based Approach

To schedule a flight, launch and land sites are selected, as well as a sequence of
lanes going from each one to the other, along with a desired speed, and a launch
time window. The set of lanes may be selected however desired; for example, to
minimize distance or weather constraints, or other relevant factors. The launch
time window gives the earliest and latest possible launch times (line 1 of LBSD
algorithm). Lanes are scheduled individually by flights, and every new flight must
respect the headway distance not only in each lane, but also when moving from one
lane to another (i.e., with respect to all merging or diverging lanes). The Lane-Based
Strategic Deconfliction algorithm used in the following experiments was described
in Chap. 4, Algorithm 1: Label Method.

A requirement of the Label Method is that a complete database of flight
reservations must be maintained and used by the algorithm; however, this will
generally be required by the flight authorities anyway to allow informed monitoring
of airspace usage. The original idea of the FAA was to allow a decentralized
approach where each USS maintained its own flight info and shared as necessary;
the drawback of this is that if any USS fails, the system fails, and there is the
possibility of semantic mismatch in terms of trajectory definition (e.g., meters vs.
feet).

The Space-Time Lane Diagram (STLD) that is enabled by the lane-based
approach also provides a straightforward way to visualize the traffic through a lane
for monitoring UTM operations. Figure 8.6 shows a set of planned flights through
a lane, where reservations represent a reduced-order model (speed and headway)
for the actual or planned trajectory. And their trajectories reflect the accelerations
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Fig. 8.6 Lane diagram for a single lane, showing six flight reservations, planned trajectories, and
simulated telemetry

necessary to turn between lanes. Lanes also allow real-time comparison of the UAS’
planned flight path and the actual trajectories (e.g., provided by telemetry data).

8.5.1 Experiments to Determine Parameter Impact on
Scheduling Algorithms

In a complicated system like a UTM, analytic solutions may not exist, and therefore,
simulations are used to explore UTM performance with respect to parameters of
interest. The experiments performed here are designed to allow both inter-UTM
(e.g., LBSD vs. FNSD) and intra-UTM (e.g., grid vs. Delaunay) structural analysis,
as well as a cursory system/behavioral analysis (relating the agents flexibility
in scheduling to the overall system performance). The parameters studied here
include:

1. Launch Frequency (flights per hour): Comparable to an arrival rate of flights into
the system [values: 100 and 1000].

2. UAS Speed (m/s): Average UAS speed through lane [values: 5, 10, 15].
3. Headway Distance (m): Minimum distance allowed between UAS [values: 5, 10,

30].
4. Flex Time (sec): Interval of possible launch times for flight [values: 0, 300, 1800].

The simulation covers an area of 5 square km (roughly the size of the Salt Lake
Valley) with the FAA cells spaced as a 10x10 cell structure. The LBSD grid was
chosen to correspond to this as an 11x11 node grid. The 121 launch (land) sites
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are located near the ground node points in both layouts. The Delaunay networks
are generated with the same number of nodes, but they are distributed randomly
(sampled from uniform distribution) in the given area. Road-based networks include
an area over San Francisco and an area over Salt Lake City. Ten simulation trials
were run for each of the 54 parameter combinations (note that for the Delaunay
networks an additional ten trials were run for each due to the random nature of the
node locations). The simulation period was set to 4 hours simulated time. The FAA
flights are up, over, and down trajectories scheduled between randomly selected
launch and land sites; the flight altitude was randomly assigned between the min
and max altitudes of the LBSD network. For both UTM methods, given the flight
frequency, a random set of desired flight times are generated, which are uniformly
spread across the total simulation time.

Figures 8.7 and 8.8 show the mean statistics for launch frequency of 100
flights/hour and 1000 flights/hour, respectively. The means of the maxima over all
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Fig. 8.7 Simulation results: averages for launch frequency of 100 flights per hour. The upper row
describes the parameter combination enumeration in the lower three rows, which give the mean
number of failed fights, mean delay, and mean deconfliction for those combinations of parameters
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Fig. 8.8 Simulation results: averages for launch frequency of 1000 flights per hour

trials are also given in Figs. 8.9 and 8.10. The statistics include: delay (calculated
as the time between the requested launch time and the assigned launch time), failed
flights (flights that could not be accommodated due to time or space constraints),
and deconfliction time (the amount of wall-clock time that the computer required to
schedule a flight).

This data indicates that all six categories of structures have response characteris-
tics that are most undesirable when the flex is low, the speed is low, and the headway
is high. However, the unstructured FAA airspace and the road-based San Francisco
networks are particularly sensitive to these inputs with respect to the mean statistics.
The max statistics in regard to delay show a somewhat different story where the FAA
structure responded similarly to the others and the San Francisco graph performed
the worst. These results indicate that small changes in the policies and behaviors
may have dramatic effects on what the average UAS agent experiences accessing
the unstructured (FNSD) airspace and complex road networks. Conversely, all the
structured airspaces had relatively subdued effects related to these inputs (note that
Salt Lake City has a grid-like road system).
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Fig. 8.9 Simulation results: maxes for launch frequency of 1000 flights per hour
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Fig. 8.10 Simulation results: maxes for launch frequency of 100 flights per hour



Chapter 9
Strategic Deployment of Drone Centers
and Fleet Size Planning for Drone
Delivery

9.1 Introduction

The parameters of a specific UTM application are important not only for considering
the feasibility of Unmanned Aircraft Systems (UAS) package delivery within the
state but also for determining the impact and ultimately the efficient operation of
drone delivery. UAAMS allows the Utah Department of Transportation (UDOT) to
assess different assumptions of the model and run “what-if” scenarios by generating
animation of the optimized airspace network. The platform provides the state with
more clarity about the energy impacts of large-scale drone delivery, as well as
a viable airspace network. The tool can further inform the UDOT Division of
Aeronautics to develop policies and negotiate with industry stakeholders.

Through this UTRAC research project, the implementation and deployment
of the UAAMS was successful and will be available for continuing research in
the development of advanced air mobility in the state of Utah. This type of tool
is critical for research in this area, as it incorporates the latest software and
infrastructure development techniques available. Also shown was the viability of
considering the large-scale impacts (e.g., environmental) of advanced air mobility
on specific communities by using micro-simulation technology. In contrast to micro-
simulations performed for human-controlled ground and air traffic, in this case a
model for the autonomous agents has the potential to be exact, since their algorithms
must be documented. Future improvements will consider optimizations to the
object function in the optimization procedure—this would allow a more thorough
exploration of the possible configurations of vehicle and vertiport parameters.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
D. Sacharny, T. C. Henderson, Lane-Based Unmanned Aircraft Systems Traffic
Management, Unmanned System Technologies,
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9.1.1 Problem Statement

In a 2017 report by the RAND corporation [62], analytical methods for calculating
the total energy consumed by a mix of delivery trucks and drones were developed
and shown to be highly dependent on the layout of distribution centers as well
as distance traveled by delivery vehicles. This suggests that the city layout, i.e.,
street connectivity and other network parameters, are important considerations for
energy-conscious policies. While industry stakeholders must determine the market
viability of drone delivery, they are not required to calculate the external and
indirect costs that may be associated with this burgeoning industry. The web-
based platform developed for this report, called the Utah Advanced Air Mobility
Simulator (UAAMS), enables researchers, planners, and practitioners to record and
update assumptions about the distribution of vertiports, traffic, population, and other
requirements that may affect the operation of the transportation network. These
parameters are important not only for considering the feasibility of Unmanned
Aircraft Systems (UAS) package delivery within the state but also for determining
the impact and ultimately the efficient operation of these new transportation tech-
nologies. Furthermore, additional analysis and what-if scenarios may be developed
using this simulator. Example Jupyter notebooks (python) are provided to help
guide development; however, users are not limited to any particular programming
language. To facilitate the iterative process needed for the development of Advanced
Air Mobility in the State of Utah, UAAMS is a web-based software and can be
accessed from any web browser. Additionally, the simulator is delivered with the
open-source web-map server, GeoServer (https://geoserver.org), which contains the
geospatial data used or generated by the simulations. This enables multiple agencies
within the state, who often use Geographic Information Systems (e.g., ArcGIS), to
communicate planning efforts and incorporate data from, or provide data to, these
simulations. Figure 9.1 shows the main features of the software developed for this
project:

1. Simulator Form: The simulator form enables the client to enter assumptions
about the vehicles and the environment, and then execute the simulation.

2. 3D Map Interface: A viewer for map and simulation data.
3. File System Explorer: Input and output files for simulations (e.g., vertiport

locations and result figures) may be stored in the filesystem. Additionally, all
the source codes for simulations are accessible through this file system explorer.

4. Simulation Output Viewer: Simulations produce a number of figures that can be
viewed here.

An initial simulation implementation was developed for this report to demon-
strate the workflow for running simulations, as well as developing new ones, and is
described in the sections that follow. The UAAMS is deployed to US data centers
on Google Cloud and is accessible by anyone with authorized credentials by visiting
the URL https://utrac.georq.io.

https://geoserver.org
https://utrac.georq.io
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Fig. 9.1 The Utah advanced air mobility simulator (UAAMS)

9.1.2 Objectives

The motivation for this work is to provide regulators, policymakers, and industry
stakeholders with a data-driven framework for assessing the energy costs and trade-
offs of large-scale drone delivery in the state of Utah. The primary objective is to
produce a web-based platform that takes inputs of state-wide road network, the
total number of (drone-deliverable) packages to deliver on a given day and their
destinations, and energy and cost assumptions per vehicle, and produces a state-
wide airspace network, delivery schedule, and truck/drone fleet mix. A secondary
goal is to optimize the network to ensure that drones are strategically deconflicted
as required by FAA/NASA and the total energy over that day is minimized. Overall,
this program will provide the state with more clarity about the energy impacts of
large-scale drone delivery, as well as a viable airspace network.

9.1.3 Scope

This research involves three major components: data collection, optimization model
development, and web-based platform development. We first gathered data on the
state-wide roadway network, population data (year 2025), Traffic Analysis Zone
(TAZ) boundary, and post office locations. The dataset enabled the creation of
delivery zones to simulate package delivery coverage area for each drone center.
In addition, the air delivery network was created by lifting the virtual highway
network into the sky. This includes generating airways, deconflicting zones for Utah
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considering the delivery scheduling, launching/landing lanes, etc. An optimization
model was developed to determine the schedule and deployment of drones within
the study area. The developed system model with the optimization component was
then implemented onto a web-based platform where people can assess different
assumptions of the model and run what-if scenarios by generating animation of
the optimized airspace network.

The rest of the discussion is structured as follows. Section 9.2 summarizes the
research methods. Section 9.3 illustrates the web-based platform along with a case
study for a medium-sized simulation with 33 TAZs. Section 9.4 presents the results
and findings, and outlines the lessons learned for follow-up research. Appendix D
of the UDOT Technical Report [93] includes the user guide of the developed web-
based platform.

9.2 Research Methods

9.2.1 Overview

Large-scale drone delivery is on the horizon nationwide, as it has the potential to
decrease pollution and help alleviate road congestion. Up until now, industry is
mainly concerned with the market viability of drone deployment, and very little
attention has been paid to external costs such as energy trade-off. The benefits
of drone deployment, however, are largely dependent upon layout of distribution
centers and distance traveled. To this end, we employ a data-driven approach to
strategically replace ground-based delivery networks with air-based drone deploy-
ment. In this project, we structured the airspace by regulating and treating it as lanes,
and optimized drone dispatch. Figure 9.2 shows the methodological framework of
our research.

Fig. 9.2 Methodology framework of proposed drone network optimization
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9.2.2 Data Source

The main data sources utilized to be fed into the airspace network construction
consist of four parts:

1. Population projection: This is retrieved from the Utah Geospatial Resource
Center (UGRC) [116] and is collected at the TAZ level. Year 2025 data was
retrieved as the demand input. The population projection was further converted
into parcel demand estimation, where on average 21 parcels/capita/year was
assumed initially [42].

2. Post office locations: This is retrieved from UGRC [118] to serve as potential
truck delivery centers. Figure 9.3 shows the overlay of post office locations with
the TAZ boundary.

3. Utah road network: This is retrieved from UGRC [117] and the layout is used to
create the elevated virtual airways in the sky for the drone fleet.

4. Utah building footprints and addresses: This is retrieved from UGRC [115] and
provides the locations of possible drone deliveries for demand modeling.

9.2.3 Optimization Setup

The optimization procedure considers possible locations for vertiports to answer the
question: Does there exist a set of vertiport locations that minimizes the total energy
requirements? Since the spatial distribution of vertiports affects which addresses are
served by them, the distances traveled and energy consumed by UAS are affected
by their placement. Other parameters, such as vehicle characteristics, the proportion
of packages that are delivered by UAS, and the routes of UAS and trucks have
important effects, but were not considered in this procedure. To gain some intuition
about how the locations of drone ports can affect the deliveries of packages, consider
the relative locations of a drone center, truck center, and two TAZs in Fig. 9.4. At
the start of the optimization, the drone center and the truck center are co-located.
Package deliveries are scheduled according to the procedure that assigns aircraft
to addresses that are within range and capabilities (according to the simulation
parameters), and then fills the resulting demand with truck deliveries. For more
efficient simulation, the truck distances and energy are calculated by solving a
probabilistic traveling salesman problem [62]. In contrast to the regular shaped cells
used for this calculation in [62], this simulation calculates the resulting convex hull
that encompasses the truck-assigned demand.

At each iteration of the optimization, the drone centers are moved to a new
location, the simulation is re-run, and the resulting total energy is calculated. The
optimization is complete when further updates to the locations of the drone centers
result in an increase in the total energy consumption. Several methods for optimizing
vertiport locations were considered for this project, with the settled approach being
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Fig. 9.3 TAZs with post office locations

the Covariance-Matrix Adaptation Evolution Strategy (CMAES) [28]. The objective
was to minimize the total energy required by both UAS and trucks to deliver a set of
packages in an area. Only the locations of the vertiports were considered variables
in the optimization, while the job mix, number of vertiports, and vehicle parameters
were held constant. Therefore, the number of variables in the optimization equals
the number of vertiports under consideration. Figure 9.5 shows a plot of a sample
optimization run for a single TAZ.
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Fig. 9.4 A diagram showing how delivery routes (in red) are influenced by the placement of drone
centers (i.e. vertiports) and truck centers relative to the travel analysis zones (TAZ)

Fig. 9.5 Optimization iterations showing divergent behavior

9.3 Web-Based Platform

9.3.1 Overview

A simulation that extends what was described in the RAND report is provided along
with UAAMS. This simulation incorporates all the parameters listed in Table 9.1.
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Table 9.1 The simulation
parameters

Form field Description

Simulation parameters

Name Simulation name

Simulation runner Python script name

Simulation year Pop. projection year

Population projections map shapefile/geojson file

Initial Vertiport positions post office locs.K

Parcels/Person/Year avg # packages

Ktsp TSP constant

Average wind speed avg wind speed felt

Init. deliv. by UAS ratio From trucks to UAS

Init. UAS per package UAS/package at vertiport.

Areas to Analyze areas from TAZ dataset

Truck parameters

Truck efficiency Truck efficiency mpg

Parcels per truck Truck package load

UAS parameters

UAS payload mass Payload mass (kg)

Lift-to-drag ratio Of UAS

UAS vehicle mass UAS mass (kg)

Power transfer efficiency Motor to propeller

Cruise speed UAS cruise speed

Power consumption Of electronics

Climb rate UAS climb rate

Maximum range Of UAS

Package load time Onto a UAS

Cruise Altitude UAS cruise altitude (m)

In contrast to the RAND report, this simulator considers the real locations of
addresses in Utah [118], as well as the projected population densities in order to
simulate projected demand that is more accurately distributed throughout the state.
Figure 9.6 shows a cross-section of these datasets.

The simulation implementation progresses along the following steps:

• Load Vertiport Locations
• Load Truck Depot Locations
• Load Population Projections (TAZ Zones)
• Load Building Locations
• Initialize UAS Model
• Filter TAZ Based on Requested City Areas
• Create Demand (Parcel Requests for a Day)
• Source Parcel Requests to Nearest Vertiport
• Calculated Parcel Requests within UAS range and Capability
• Calculate Truck/UAS Job Mix
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Fig. 9.6 Utah Buildings dataset overlaid on population projections dataset

• Generate UAS Trajectories
• Estimate UAS Round-Trip Times
• Estimate UAS Energy Requirements
• Estimate Truck Energy Requirements
• Generate Animation
• Generate Results

9.3.2 Case Study

A medium-sized simulation was executed that included 33 TAZs as a case study to
demonstrate the web-based platform.

9.3.2.1 Simulation Form

A simulation form is displayed whenever a file with the suffix .sim is clicked in the
workspace explorer. As this form is edited by the user, the parameters are written
to the .sim file (the raw json format can be viewed by opening the file in the code
editor as shown in Fig. 9.7). When the Run Simulation button is clicked at the top
of the form, the python program defined in the Simulation Runner field is executed
and the .sim file is provided as an argument to the program.
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Fig. 9.7 The simulation form

9.3.3 Simulation Procedure

The following section describes each step of the simulation in detail. The complete
source code of the simulation is delivered with UAAMS and accessible from the file
explorer.

Load Input Location Data This step includes loading the following location
data:

1. Vertiport Locations
2. Truck Depot Locations
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3. Population Projections (at the TAZ level)
4. Building Locations

Depending on the size of the dataset, the location data can be loaded either
from the filesystem or from a web-map server (one is provided with UAAMS). For
example, the population projections dataset was small enough to have loaded from a
shapefile located on the filesystem into memory, while the building locations dataset
is too large to handle in this way. The buildings dataset is loaded into the web-map
server offline, then during the simulation the server is queried within constrained
areas.

Initialize UAS Model The UAS model considered for this simulation is derived
from a study conducted by D’Andrea [29]. The parameters considered are listed in
Table 9.1.

Filter TAZ Zones Based on Requested City Areas The simulation can consider
a subset of areas in Utah, defined by the “City Areas” column in the Population
Projections dataset [116].

Create Demand (Parcel Requests for a Day) For each TAZ under consideration,
uniformly sample the building centroids within that TAZ from a binomial distribu-
tion with intensity given by the estimated number of parcels per person per day.

Source Parcel Requests to Nearest Vertiport For each parcel request in the
demand dataset (from the last step), calculate the nearest vertiport that can serve
that request.

Calculate Truck/UAS Job Mix Fixed by user input into the simulation form.

Generate UAS Trajectories For each parcel request that is served by a UAS,
generate a trajectory based on the vehicle parameters provided in the simulation
form.

Generate Animation To help visualize the distribution and density of drone flights
that meet the demand specified in the simulation, a 3D animation (see figure below)
is generated that can be viewed within the workspace. The animation is specified by
an open-source human/machine readable file called CZML [6]. Figure 9.8 shows an
example frame from this animation.

Generate Results Results are generated and stored in figures as described in
Fig. 9.9.

9.4 Conclusions and Future Work

The implementation of a cloud-based collaborative simulator represents the bulk
of this UTRAC project. A major unexpected hurdle was the need for significant
memory and compute resources to execute the simulations. In particular, the



146 9 Strategic Deployment of Drone Centers and Fleet Size Planning for Drone Delivery

Fig. 9.8 One Frame of the simulation animation results

building dataset represented a challenge and required the use of a web-map server
rather than simply loading the entire shapefile into memory. During the demand
creation step in the simulation implementation, small areas were queried to avoid
overwhelming memory resources.

With regard to the test simulation, the total energy required by both UAS and
trucks combined was slightly more than the required energy if trucks were to meet
the same demand alone. This could be a result of the chosen vehicle parameters,
as well as the location distribution of vertiports. Despite this result, it may still be
desirable to take advantage of the short distance and round-trip times that UAS has
to offer.

Another challenge was encountered with the optimization objective. It was found
to be computationally difficult to consider all the vertiport locations, as well as
the various input parameters that could have been considered. The algorithm that
was chosen to perform the optimization is called the Covariance-Matrix Adaptation
Evolution Strategy [28] because it has a good reputation for handling highly non-
linear problems with many variables. However, the algorithm proved to be rather
slow, likely due to the random sampling and database querying that occur during
the demand creation step. Consequently, in the time allotted for optimization, the
algorithm did not successfully converge to a solution.
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Fig. 9.9 Simulation-produced plots

Overall, the implementation and deployment of the UAAMS was successful
and will be available for continuing research in the development of advanced
air mobility in the state of Utah. This type of tool is critical for research in
this area, as it incorporates the latest software and infrastructure development
techniques available. Also shown was the viability of considering the large-scale
impacts (e.g., environmental) of advanced air mobility on specific communities by
using micro-simulation technology. In contrast to micro-simulations performed for
human-controlled ground and air traffic, in this case a model for the autonomous
agents has the potential to be exact, since their algorithms must be documented.
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Less certain are the emergent effects that may result from the parallel execution of
these algorithms, and the environmental impacts of their collective behavior.

This UTRAC project has resulted in feedback from stakeholders that can
be used to improve the simulation tool, as well as the resulting analysis. For
example, simplifications to the workspace are necessary for non-developer, or
non-engineer, stakeholders (e.g., planners). It is crucial to enable a frictionless
communication between them and a tool like UAAMS has the potential to fill this
role. Future improvements will also consider optimizations to the object function in
the optimization procedure—this would allow a more thorough exploration of the
possible configurations of vehicle and vertiport parameters.



Chapter 10
UAS Coalition Forces Coordination
Scenario

10.1 Introduction

Consider now the problem of safely coördinating a set of multi-modal coalition
forces’ asset trajectories in a congested environment scenario. The lane-based UTM
described in the preceding chapters can be extended to address this problem and
will be called LEMANS-MM (Multi-Modal). Figure 10.1 illustrates the problem.
As can be seen in the figure, this approach requires access to heterogeneous
datasets that provide models of the various platforms involved, as well as the
set of constraints and requirements imposed for tactical or strategic purposes,
and a characterization of rogue or non-nominal trajectories. This allows for the
determination of trajectories for high-speed projectiles, etc., which can move
through the set of coalition agents without posing a threat (e.g., artillery rounds
passing between aircraft).

The goals for the LEMANS-MM system are to:

• Quickly and automatically create lanes with desired topology.
• Use highly efficient algorithms to determine strategically deconflicted flight

plans.
• Allow coalition forces to keep their flight data private when they deconflict.
• Provide strong support for handling contingencies (e.g., weather, platform

failures, emergency use of airways, rogue platforms, etc.).
• Provide a visualization interface for lane operations to make it easy for operators

to detect anomalies.
• Provide efficient and effective methods to pre-compute projectile trajectories

through the lane system and deconflict them.
• Allow application of machine learning methods to determine best multi-modal

asset parameters (e.g., lane topology, lane speed limits, minimal headway
distance, necessary lane volume, etc.).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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Fig. 10.1 The LEMANS-MM System will take information about the specific assets to be
coördinated, including geographic, weather, asset priorities, and other constraints, as well as a
set of known anomaly signatures

This approach requires the application of a multi-altitude lane set to allow the
different types of aircraft to operate at appropriate altitudes. Figure 10.2 shows
an example sketch with three separate lanes altitudes, in this case for Intelligence,
Surveillance and Reconnaissance (ISR) platforms at the highest altitude, planes and
helicopters at the mid-level, and UAS tactical drones at the lowest altitude. Given
the GIS data, mission constraints and requirements, and rogue types, LEMANS-
MM automatically generates the set of lanes for use by the manned and unmanned
aircraft.

10.2 Airway Creation and Deconfliction

The coalition airways shown in Fig. 10.2 are just an example of what can be defined.
In this particular case, the multiple levels are defined as three separate airways for
the ISR, manned and unmanned UAS aircraft. Although this does impose the burden
of strategic deconfliction in three separate lane systems, it has some advantages as
well. First, if the three sets of launch and land lanes are defined so as not to interfere
with each other (that is, they are well-separated), then there is little chance that
nominal flights will have conflicting trajectories. Moreover, if one of the coalition
forces wants to have its own private lane system, then it would just need to make
sure that this new set of lanes does not conflict with the shared lane systems.
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Fig. 10.2 Multi-altitude lane layout. Highest altitude is for ISR drones; mid-level altitude is for
manned aircraft; lowest altitude is for UAS tactical drones

One reason to have separate lane systems for the different altitudes is that this
allows each of them to be based off of different and more appropriate ground
networks. For example, a specific ground network layout is not necessarily of much
interest to the high-altitude surveillance flights, but for mid-level manned and low-
level UAS aircraft there may be good reason to conform to (or avoid) local ground
networks as well as to take into account local topography, including man-made
structures such as buildings and towers. It is also likely that manned flights will
require that certain areas be avoided (e.g., where there exists a high likelihood
of anti-aircraft capability), whereas low-flying UAS may be tasked with tracking
ground vehicles or other objects of interest.

On the other hand, if a single comprehensive set of lanes is desired, then it is
possible to generate it, but it would also require the capability of restricting the
usage of certain lanes to specific aircraft types. Moreover, if there is an allowance
for shared lanes (across aircraft mission types), then air speed differences may pose
problems since the speed of fighter planes is so much higher than, say, standard UAS
drone platforms.

The next issue is the determination of flight paths through the air lane network.
Contrary to the package delivery application, the different types of missions
here require different considerations in order to be effective. For example, high-
altitude reconnaissance missions may spend up to several hours acquiring data and
delivering it through satellite links. Also, the number of ISR aircraft is minimal
compared to the other types of missions. For manned aircraft the major motivation
for airway lanes is to allow coördination while they are en route to or returning
from the active engagement area, where of course, their movement would not
be pre-planned by means of an existing set of lanes. Finally, low-altitude UAS
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platforms may be used to support other actions, e.g., by means of reconnaissance
or monitoring, as well as for small load deliveries. Once the complete set of flights
is defined, then the nominal trajectories are known within some predictable level of
uncertainty. Of course, flights may dynamically change their trajectories, but this
would require making a new reservation for the altered trajectory. In this way, the
traffic management system is always up-to-date on the planned trajectories of all
flights. Another thing to take into consideration is the priority of each coalition
member, or the type of flight, in terms of making the flight reservation. Generally
speaking the flight reservation system is first-come, first-served. In other words,
lanes will be allocated in the order of the requests, and later attempts to schedule
flights may require that they be delayed from their requested launch time in order to
achieve strategic deconfliction. It is also possible to assign priorities so that certain
flights (or coalition members) may preëmpt existing, already scheduled flights
where the latter are assigned new times of passage through their lane sequence.

10.3 Multi-Modal Activities

In a warfare scenario, there will be a combined set of air, ground, and possibly other
forces working together to achieve strategic and tactical goals. This may require
disruption of the airways for other uses. Here we consider the case of artillery fire
where the projectiles follow a parabolic course through the airway lanes in order
to get to their targets. Most field artillery has a range of several kilometers and can
reach similar altitudes as well. While it is possible to account for other types of
trajectories, e.g., air-to-air missiles, and strategically deconflict them with coalition
force flights, we do not explore that capability here.

Consider the trajectory of a projectile. Given an initial velocity of v0 mps with θ

being the angle of fire, then the velocity is given by

vx = v0cos(θ)

vy = v0sin(θ) − gt

These equations do not take air resistance into account (to get an estimate of the
impact of air resistance, scale the numbers given below by 0.56). The position of
the projectile at time t after launch is

x = v0cos(θ)

y = v0tsin(θ) − 1

2
gt2

The total time the projectile is in the air before returning to its launch altitude is
given by
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ttotal = 2v0sin(θ)

g

The time it takes for the projectile to reach its maximum altitude is

th = v0sin(θ)

g

and the maximum height for a given initial velocity v0 and launch angle θ is

h = v2
0sin2(θ)

2g

Finally, in order to reach location (x, y, z) from location 0, 0, 0 with a projectile
fired with initial velocity v0, the required angle satisfies the equation:

tan(θ) =
v2

0 ±
√

v4
0 − g(g(x2 + y2) + 2zv2

0

g
√

x2 + y2

It will be seen in the simulation experiment described below that a standard field
artillery unit (an M777 howitzer in this case) will generally achieve the altitude of
the highest airway lanes described previously; thus, it is an important capability to
be able to deconflict artillery projectiles through the lane system.

10.4 Simulation Experiment

In order to demonstrate these methods, a scenario is presented that involves

• Three coalition force members (called Red, Green, and Blue).
• Bogey aircraft (called Black).
• Artillery projectiles (called Magenta).

The coalition forces share access to three distinct airway lane networks: ISR,
manned, and UAS.

ISR Airway Lane Network The ISR lane network is a rectangular grid that covers
an area of 5 km squared, has grid lines spaced at 1km intervals, has one launch
and one land lane, and has its two-level lane set at 18,000 and 18,200 meters,
respectively. There are 444 lanes and 252 lane vertexes. Note that the area from
x = 0 to x = 3000 m is considered coalition-held territory while from x = 3000 to
x = 5000 meters is enemy-held terrain.

Manned Airway Lane Network The manned air network is derived from rect-
angular grid ground network that covers the same 5 km squared area as the ISR
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network, has grid lines every 500 meters, has one launch and one land lane, and
has its two-level lanes at 4000 meters and 4200 meters, respectively. There are 1574
lanes and 892 lane vertexes.

UAS Airway Lane Network The UAS air lane system is derived from a rectangu-
lar grid network that covers the same 5km squared area as the other two air networks,
has grid spacings every 300 meters, has ten launch and ten land lanes, and has its
two-level lanes at 600 meters and 620 meters, respectively. There are 1626 lanes
and 944 lane vertexes.

There are five ISR flights per coalition member, and these are scheduled in the
order Green, Red, and Blue. The flight path is the same for every flights; they are
simply staggered in time. The mission is to ascend to 18,000 meters, make a pass
around the outer perimeter of the ISR grid, then circle in the opposite direction, and
then proceed to land.

The manned missions are planned similarly. Each coalition member schedules
five flights. For this case, the mission proceeds from the launch site to a randomly
selected interior vertex of the air lane network, and from there on to a vertex near
the enemy area, then returning through another randomly selected interior vertex,
and then on to the landing lane.

The UAS missions are similar to the manned flight missions. Each coalition
member schedules five flights. The mission starts from a randomly selected launch
site from among the ten possible, on to a randomly selected interior point, then on
to a vertex near the enemy area, back through a randomly selected interior vertex,
and finally on to a randomly selected landing lane from among the ten possible.

A set of five enemy aircraft (bogeys) are also introduced into the simulation;
however, they are obviously not part of the scheduled flights, but rather their
trajectories are generated as Rogue Type II flights (defined in Chap. 5). That is,
they launch from a randomly selected ground location in enemy terrain, fly up to a
randomly selected lane, and fly along it. This pattern is repeated a total of ten times:
randomly choose a lane, fly to it, and then fly along it. After completing this, the
flight lands at a randomly selected ground location in enemy territory. These flights
are added just to demonstrate the capability to include non-scheduled flights in the
simulation.

Finally, five hundred artillery rounds are planned:

• A random location is selected inside coalition-held terrain.
• A random location is selected in enemy terrain.
• The angle of fire is determined from the two positions.
• The trajectory of the projectile is determined.
• The trajectory is deconflicted by delaying the shot until no flight is endangered

by the trajectory.

Angle of Fire Determination The angle is determined through the previously
given equation, and then solving for θ using the arctan function. Note that in order
to satisfy the conditions of the equation, it is necessary to translate the firing point,
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X1, and the target point X2 by −X1 so that the firing location of the howitzer is at
the origin of the coördinate system.

Projectile Trajectory Determination The trajectory consists of a sequence of
three-dimensional points and associated time of passage. The first element of the
sequence is then the randomly selected firing location with the initial time as the
desired firing time. A time step is selected for the calculation (in the simulation
described below, a time step of 0.1 seconds is used). The trajectory consists of a
sequence of locations and times:

T = {(X1, t1), (X2, t2), . . . , (Xn, tn)}

Projectile Trajectory Deconfliction In order to deconflict the projectile trajectory,
it is necessary to ensure that at no point in the trajectory does the projectile get
too close to a flight in a lane passing at the same time. This is achieved using the
following information:

• The ISR, manned and UAS lane network data.
• The ISR, manned and UAS kd-tree spatial database models (described in

Chap. 5).
• The ISR, manned and UAS flight reservation information (i.e., the flight sched-

ules).
• The minimum distance to maintain (i.e., the headway).
• The projectile trajectory, T .

Given a trajectory, T = {(X1, t1), (X2, t2), . . . , (Xn, tn)}, then to guarantee that it
is safe, it is necessary to:

1. For every element of the sequence, (Xk, tk), find all lanes in the three air networks
that are within headway distance of the trajectory points (this is done using the
spatial databases to find nearest points in the model).

2. For each such lane, determine if there is a flight that passes at such a time as to
be unsafe (this is done by using the flight reservations to determine which flights
are in the lane when the projectile passes, and then using the airways lane data to
determine exactly where the flight is in the lane when the projectile passes).

3. If any such flight exists add some fixed delay time to the artillery shot firing time,
and re-start the analysis of the trajectory.

10.5 Experimental Results

Given the three networks described above, the M777 Howitzer is used as an example
artillery platform for the simulation. The M777 is produced by BAE systems, and
has the following characteristics:
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Fig. 10.3 One time step during the simulation of the artillery firing through the air lane networks
where the artillery projectiles trajectories are deconflicted with the scheduled coalition flights

• Weighs about 4000 kg.
• Has an effective range of 24 km.
• Has a muzzle velocity of 827 m/s.
• Has a maximum angle of fire of 71.7◦.

Thus, the maximum projectile altitude is about 31,000 meters when air resistance is
not considered, and about 18,000 meters when it is. In the simulation, air resistance
is not taken into account, and there is no constraint on firing angle.

Figure 10.3 shows the simulation at time step t = 2070. The magenta projectile
tracks have all been deconflicted, and their paths through the lane systems pose no
safety threats for the coalition forces flights. The Green, Red, and Blue forces flights
can be seen with corresponding asterisk colors inside a black circle. The bogey
flights are indicated as black asterisks inside a clack circle. Five hundred rounds of
artillery projectiles go through the air networks during the simulation time.

Areas for exploration in future work on this topic include:

• Creation of a single combined airway network in which lane usage may be
restricted by flight type or coalition member.

• The assignment of priorities to coalition members.
• The simulation and analysis of air-to-air trajectories.
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• A more full-blown simulation of mission sets for the various forces; e.g.,
coördinated reconnaissance and combat action, response to bogeys, using UAS
to track ground vehicles, etc.

The incorporation of these capabilities into a physics-based game engine would
allow the evaluation of strategic and tactical plans in realistic scenarios.



Appendix A
Space–Time Lane Diagram Enumeration

See Figs. A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8, A.9, and A.10.

Fig. A.1 Space–time lane diagrams for possible label combinations 1 through 13
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Fig. A.2 Space–time lane diagrams for possible label combinations 14 through 26

Fig. A.3 Space–time lane diagrams for possible label combinations 27 through 41



A Space–Time Lane Diagram Enumeration 161

Fig. A.4 Space–time lane diagrams for possible label combinations 42 through 56

Fig. A.5 Space–time lane diagrams for possible label combinations 57 through 71
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Fig. A.6 Space–time lane diagrams for possible label combinations 72 through 86

Fig. A.7 Space–time lane diagrams for possible label combinations 87 through 99
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Fig. A.8 Space–time lane diagrams for possible label combinations 100 through 112

Fig. A.9 Space–time lane diagrams for possible label combinations 113 through 127
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Fig. A.10 Space–time lane diagrams for possible label combinations 128 through 139



Appendix B
Matlab Code for Algorithm LBSD

function possible = UR_possible_times_int(possible0,speed,cor_
list,...cor_lengths,flights,ht)

% UR_possible_times_int - provide possible strategically
deconflicted

% launch time intervals given a requested interval and the
% scheduled flights
% On input:
% possible0 (1x2 vector): first and last possible launch

times speed (float): speed to requesting UAS
% cor_list (kx1 vector): list of corridors to be traversed

(in order)
% cor_lengths (kx1 vector): lengths of corridors to be

traversed
% flights (vector struct): scheduled flights (given per

corridor)
% ht (float): headway time
% On output:
% possible (nx2 array): each row is a continuous interval of
% possible
% starting flight times
% Call:
% inters =
% UR_possible_times_int([4,35],2,[13,6,14],[500,6,500],fl,5);
% Author:
% T. Henderson
% UU
% Summer 2019
%

len_cor_list = length(cor_list);
intervals = possible0;
offset = 0;
c = 0;
total_time = 0;
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while ~isempty(intervals)&c<len_cor_list
c = c + 1;
dc = cor_lengths(c);
cor = cor_list(c);
ts = dc/speed;
[num_intervals,dummy] = size(intervals);
for k = 1:num_intervals

intervals(k,:) = intervals(k,:) + [offset,offset];
end
c_flights = flights(cor).flights;
if ~isempty(c_flights)

[num_c_flights,dummy] = size(c_flights);
f = 0;
[num_intervals,dummy] = size(intervals);
while f<num_c_flights&~isempty(intervals)

f = f + 1;
tr1 = min(intervals(:,1));
tr2 = max(intervals(:,2));
ts1 = c_flights(f,1);
ts2 = c_flights(f,2);
tr1e = tr1 + dc/speed;
tr2e = tr2 + dc/speed;
if ~((ts1+ht<=tr1&ts2+ht<=tr1e)|(ts1-ht>=tr2&ts2-ht>

=tr2e))
new_intervals = [];
for k = 1:num_intervals

k_intervals = UR_OK_sched_req_enum(c_flights
(f,1),...

c_flights(f,2),c_flights(f,3),intervals
(k,1),...
intervals(k,2),speed,dc,ht);

new_intervals = UR_merge_intervals(k_inter-
vals,...

new_intervals);
end
intervals = new_intervals;
if isempty(intervals)

num_intervals = 0;
else

num_intervals = length(intervals(:,1));
end

end
end

end
offset = ts;
total_time = total_time + ts;

end
total_time = total_time - ts;
[num_intervals,dummy] = size(intervals);
for k = 1:num_intervals

intervals(k,:) = intervals(k,:) - [total_time,total_time];
end
if ~isempty(intervals)

t1 = intervals(1,1);
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offset = 0;
for c = 1:len_cor_list

cor = cor_list(c);
if ~isempty(flights(cor).flights)...

&abs(t1-flights(cor).flights(1,1))<7
tch = 0;

end
t1 = t1 + cor_lengths(c)/speed;

end
end

% return all intervals
possible = intervals;
return

function intervals =
UR_OK_sched_req_enum(ts1,ts2,s_s,tr1,tr2,s_r,d,ht)
% UR_OK_sched_req_enum - determine OK intervals for proposed

flight in
% specific corridor
% On input:
% ts1 (float): start of scheduled flight
% ts2 (float): end of scheduled flight
% s_s (float): speed of scheduled flight
% tr1 (float): min start time requested
% tr2 (float): max start time requested
% s_r (float): speed of requested flight
% d (float): corridor length
% ht (float): headway time
% On output:
% intervals (nx2 array): possible start time intervals
% Call:
% int1 = UR_OK_sched_req_enum(23,51,5,8,40,3,49,5);
% Author:
% T. Henderson
% UU
% Summer 2019
%

persistent first itable

if isempty(first)
first = 0;
itable = [...

1 1 1 1;... % Case 1
1 1 1 2;... % Case 2
1 1 1 3;... % Case 3
1 1 1 4;... % Case 4
1 1 1 5;... % Case 5
1 1 2 1;... % Case 6
1 1 2 2;... % Case 7
1 1 2 3;... % Case 8
1 1 2 4;... % Case 9
1 1 2 5;... % Case 10
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1 1 3 1;... % Case 11
1 1 3 2;... % Case 12
1 1 3 3;... % Case 13
1 1 3 4;... % Case 14
1 1 3 5;... % Case 15
1 1 4 1;... % Case 16
1 1 4 2;... % Case 17
1 1 4 3;... % Case 18
1 1 4 4;... % Case 19
1 1 4 5;... % Case 20
1 1 5 1;... % Case 21
1 1 5 2;... % Case 22
1 1 5 3;... % Case 23
1 1 5 4;... % Case 24
1 1 5 5;... % Case 25
1 2 1 3;... % Case 26
1 2 1 4;... % Case 27
1 2 1 5;... % Case 28
1 2 2 3;... % Case 29
1 2 2 4;... % Case 30
1 2 2 5;... % Case 31
1 2 3 3;... % Case 32
1 2 3 4;... % Case 33
1 2 3 5;... % Case 34
1 2 4 5;... % Case 35
1 2 5 5;... % Case 36
1 3 1 3;... % Case 37
1 3 1 4;... % Case 38
1 3 1 5;... % Case 39
1 3 2 3;... % Case 40
1 3 2 4;... % Case 41
1 3 2 5;... % Case 42
1 3 3 3;... % Case 43
1 3 3 4;... % Case 44
1 3 3 5;... % Case 45
1 3 4 5;... % Case 46
1 3 5 5;... % Case 47
1 4 1 5;... % Case 48
1 4 2 5;... % Case 49
1 4 3 5;... % Case 50
1 4 4 5;... % Case 51
1 4 5 5;... % Case 52
1 5 1 5;... % Case 53
1 5 2 5;... % Case 54
1 5 3 5;... % Case 55
1 5 4 5;... % Case 56
1 5 5 5;... % Case 57
2 1 3 1;... % Case 58
2 1 3 2;... % Case 59
2 1 3 3;... % Case 60
2 1 4 1;... % Case 61
2 1 4 2;... % Case 62
2 1 4 3;... % Case 63
2 1 5 1;... % Case 64



B Matlab Code for Algorithm LBSD 169

2 1 5 2;... % Case 65
2 1 5 3;... % Case 66
2 1 5 4;... % Case 67
2 1 5 5;... % Case 68
2 2 3 3;... % Case 69
2 2 4 4;... % Case 70
2 2 5 5;... % Case 71
2 3 3 3;... % Case 72
2 3 3 4;... % Case 73
2 3 3 5;... % Case 74
2 3 4 5;... % Case 75
2 3 5 5;... % Case 76
2 4 3 5;... % Case 77
2 4 4 5;... % Case 78
2 4 5 5;... % Case 79
2 5 3 5;... % Case 80
2 5 4 5;... % Case 81
2 5 5 5;... % Case 82
3 1 3 1;... % Case 83
3 1 3 2;... % Case 84
3 1 3 3;... % Case 85
3 1 4 1;... % Case 86
3 1 4 2;... % Case 87
3 1 4 3;... % Case 88
3 1 5 1;... % Case 89
3 1 5 2;... % Case 90
3 1 5 3;... % Case 91
3 1 5 4;... % Case 92
3 1 5 5;... % Case 93
3 2 3 3;... % Case 94
3 2 4 3;... % Case 95
3 2 5 3;... % Case 96
3 2 5 4;... % Case 97
3 2 5 5;... % Case 98
3 3 3 3;... % Case 99
3 3 3 4;... % Case 100
3 3 3 5;... % Case 101
3 3 4 3;... % Case 102
3 3 4 4;... % Case 103
3 3 4 5;... % Case 104
3 3 5 3;... % Case 105
3 3 5 4;... % Case 106
3 3 5 5;... % Case 107
3 4 3 5;... % Case 108
3 4 4 5;... % Case 109
3 4 5 5;... % Case 110
3 5 3 5;... % Case 111
3 5 4 5;... % Case 112
3 5 5 5;... % Case 113
4 1 5 1;... % Case 114
4 1 5 2;... % Case 115
4 1 5 3;... % Case 116
4 1 5 4;... % Case 117
4 1 5 5;... % Case 118
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4 2 5 3;... % Case 119
4 2 5 4;... % Case 120
4 2 5 5;... % Case 121
4 3 5 3;... % Case 122
4 3 5 4;... % Case 123
4 3 5 5;... % Case 124
4 4 5 5;... % Case 125
4 5 5 5;... % Case 126
5 1 5 1;... % Case 127
5 1 5 2;... % Case 128
5 1 5 3;... % Case 129
5 1 5 4;... % Case 130
5 1 5 5;... % Case 131
5 2 5 3;... % Case 132
5 2 5 4;... % Case 133
5 2 5 5;... % Case 134
5 3 5 3;... % Case 135
5 3 5 4;... % Case 136
5 3 5 5;... % Case 137
5 4 5 5;... % Case 138
5 5 5 5]; % Case 139

end

intervals = [];

t_across = d/s_r;
%t_across = ceil(d/s_r);
p1 = ts1 - ht;
p2 = ts1 + ht;
p3 = ts2 + ht;
p4 = ts2 - ht;
q1 = tr1;
q2 = tr2;
q3 = tr2 + t_across;
q4 = tr1 + t_across;

if p1<q1
i1 = 1;

elseif p1==q1
i1 = 2;

elseif p1>q1&p1<q2
i1 = 3;

elseif p1==q2
i1 = 4;

else
i1 = 5;

end
if p2<q1

i3 = 1;
elseif p2==q1

i3 = 2;
elseif p2>q1&p2<q2

i3 = 3;
elseif p2==q2
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i3 = 4;
else

i3 = 5;
end

if p3<q4
i4 = 1;

elseif p3==q4
i4 = 2;

elseif p3>q4&p3<q3
i4 = 3;

elseif p3==q3
i4 = 4;

else
i4 = 5;

end
if p4<q4

i2 = 1;
elseif p4==q4

i2 = 2;
elseif p4>q4&p4<q3

i2 = 3;
elseif p4==q3

i2 = 4;
else

i2 = 5;
end

index = find(itable(:,1)==i1&itable(:,2)==i2&itable(:,3)==i3...
&itable(:,4)==i4);

switch index
case {1,2,6,7,125,126,138,139}

intervals = [q1,q2];
case {3,8,26,29,32,37,40,43}

intervals = [p3-t_across,q2];
case {4,9,14,16,17,18,19,27,30,33,38,41,44,61,62,63,86,87,88}

intervals = [q2,q2];
case {11,12,58,59,60,83,84,85}

intervals = [p2,q2];
case 13

if s_s<s_r
intervals = [p3-t_across,q2];

else
intervals = [p2,q2];

end
case 69

intervals = [p1,q1; p2,q2];
case {70,73}

intervals = [p1,q1; q2,q2];
case {71,74,75,76,77,78,79,80,81,82}

intervals = [p1,q1];
case 72

intervals = [p1,q1; p3-t_across,q2];
case {94,95}
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intervals = [q1,q1;q2,q2];
case 99

if s_s<s_r
intervals = [q1,p1; p3-t_across,q2];

elseif s_s==s_r
intervals = [q1,p1; p2,q2];

else
intervals = [q1,p4-t_across; p2,q2];

end
case {96,97,98,119,120,121,132,133,134}

intervals = [q1,q1];
case {100,103}

intervals = [q1,p1; q2,q2];
case 102

intervals = [p1,p4-t_across; q2,q2];
case {101,104,108,109,110,111,112,113}

intervals = [q1,p1];
case 107

if s_s<=s_r
intervals = [q1,p1];

else
intervals = [q1,p4-t_across];

end
case {105,106,122,123,124,135,136,137}

intervals = [q1,p4-t_across];
end

function new_int = UR_merge_intervals(int1,int2)
% UR_merge_intervals - given two sets of intervals, merge them
% On input:
% int1 (n1x2 array): first set of intervals
% int2 (n2x2 array): second set of intervals
% On output:
% new_int (px2 array): intersection of two interval sets
% Call:
% new_int = UR_merge_intervals (int1,int2);
% Author:
% T. Henderson
% UU
% Summer 2019
%

if isempty(int1)&isempty(int2)
new_int = [];
return

end

new_int = [int1;int2];
[vals,indexes] = sort(new_int(:,1));
new_int = new_int(indexes,:);
change = 1;
while change==1

change = 0;
len_new_int = length(new_int(:,1));
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for k = 1:len_new_int-1
if new_int(k,1)==new_int(k+1,1)

v_min = min(new_int(k,2),new_int(k+1,2));
new_int(k+1,2) = v_min;
new_int(k,:) = [];
change = 1;
break

end
end

end



Appendix C
Sample ABMS LBSD Code

The ABMS code uses MATLAB’s object oriented interface. The following demon-
strates some of the LBSD interfaces and the central data structures required by the
lane-based approach.

Lane System

// The following code shows how to initialize a
// simple roundabout and plot the result
lane_length_m = 10;
altitude_m = 15;
lbsd = LBSD.genSampleLanes(lane_length_m,altitude_m);
plot(lbsd);
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Lane IDs
Lane identifiers are associated with edges in the directed graph that represents the
lane network. It is common practice in MATLAB to use integer indexes to increase
performance; however, strings were selected for lane identifiers. This selection was
made to enable the flexibility of deleting or adding lanes without having to reorder
existing lanes.

lane_ids = lbsd.getLaneIds

lane_ids = 24x1 string
"2"
"9"
"3"
"4"
"13"
"5"
"6"
"17"
"7"
"8"
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Lane Node Table
A MATLAB table holds data regarding the nodes in the directed graph that
represents the lane system. The critical fields include the 3-dimensional position
of the node, and whether it is a launch or land location.

lbsd.lane_graph.Nodes

XData YData ZData Launch Land Name

1 -5 -12.0711 15 0 0 ’1’

2 -12.0711 -5 15 0 0 ’2’

3 -12.0711 5 15 0 0 ’3’

4 -5 12.0711 15 0 0 ’4’

5 5 12.0711 15 0 0 ’5’

6 12.0711 5 15 0 0 ’6’

7 12.0711 -5 15 0 0 ’7’

8 5 -12.0711 15 0 0 ’8’

9 -5 -22.0711 15 0 0 ’9’

10 -5 -22.0711 0 0 1 ’10’

11 -22.0711 -5 15 0 0 ’11’

12 -22.0711 -5 0 1 0 ’12’

13 -22.0711 5 15 0 0 ’13’

14 -22.0711 5 0 0 1 ’14’

Lane Edge Table
The edge table represents the lanes in the directed graph and lists the names of
the nodes that are connected in the order that they may be traversed. A weight is
assigned to each edge, and in this case it is the Euclidean distance covered by the
edge.

lbsd.lane_graph.Edges

Random Reservation Generation
For demonstration and testing purposes, random lane reservations may be sched-
uled.
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EndNodes Weight

1 ’1’ ’2’ 10

2 ’1’ ’9’ 10

3 ’2’ ’3’ 10

4 ’3’ ’4’ 10

5 ’3’ ’13’ 10

6 ’4’ ’5’ 10

7 ’5’ ’6’ 10

8 ’5’ ’17’ 10

9 ’6’ ’7’ 10

10 ’7’ ’8’ 10

11 ’7’ ’21’ 10

12 ’8’ ’1’ 10

13 ’9’ ’10’ 15

14 ’11’ ’2’ 10

start_time = 0;
end_time = 100;
lane_ids = ["1","2","3"];
num_res = 50;
speed = 1;
headway = 5;
lbsd.genRandReservations(start_time, end_time, num_

res, ...lane_ids, speed, headway);

Reservations Table
The reservations table contains all the reservations that have been made on the lane
system. The critical fields include the entry time, exit time, speed, and headway (hd).
Since the exit time can be derived from the speed and entry time, it is not necessary
but is included for optimization reasons. Other underlying optimizations include
lane reservation lookup tables; MATLAB tables have performance drawbacks
when certain indexing operations are performed, for example lookup by the string
lane identifier. To combat these drawbacks and still enable the clean application
programming interface provided by the table data structure, several redundant
structures provide fast lookup and insertion for reservations.

lbsd.getReservations
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id lane_id entry_time_s exit_time_s speed hd

1 "1" "1" 98.7935 108.7935 1 5

2 "2" "1" 17.0432 27.0432 1 5

3 "3" "1" 25.7792 35.7792 1 5

4 "4" "1" 39.6799 49.6799 1 5

5 "5" "1" 7.3995 17.3995 1 5

6 "6" "1" 68.4096 78.4096 1 5

7 "7" "1" 62.0672 72.0672 1 5

8 "8" "1" 75.8112 85.8112 1 5

9 "9" "1" 87.1111 97.1111 1 5

10 "10" "1" 53.0629 63.0629 1 5

11 "11" "1" 33.5311 43.5311 1 5

12 "12" "1" 45.2593 55.2593 1 5

13 "13" "1" 93.5731 103.5731 1 5

14 "14" "2" 98.7935 108.7935 1 5

Lane Reservation Lookup
An object of the LBSD class enables users to lookup the reservations for any
lane.

lbsd.getLaneReservations("1")

id lane_id entry_time_s exit_time_s speed hd

1 "1" "1" 98.7935 108.7935 1 5

2 "2" "1" 17.0432 27.0432 1 5

3 "3" "1" 25.7792 35.7792 1 5

4 "4" "1" 39.6799 49.6799 1 5

5 "5" "1" 7.3995 17.3995 1 5

6 "6" "1" 68.4096 78.4096 1 5

7 "7" "1" 62.0672 72.0672 1 5

8 "8" "1" 75.8112 85.8112 1 5

9 "9" "1" 87.1111 97.1111 1 5

10 "10" "1" 53.0629 63.0629 1 5

11 "11" "1" 33.5311 43.5311 1 5

12 "12" "1" 45.2593 55.2593 1 5

13 "13" "1" 93.5731 103.5731 1 5

Reservation Clearing
The LBSD class allows for resetting the reservations table.
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lbsd.clearReservations()

Event Triggering
An event system is provided by the LBSD class to enable external services to
react to different method calls. For example, this feature is used by the Air Traffic
Operations Center (ATOC) class to update different plots whenever a UAS agent
schedules a flight. Below is an example of how this feature can be used to print to
the MATLAB terminal anytime a reservation is made.

Subscribe to a Reservation Events
lbsd.subscribeToNewReservation(\

@(src,evt)disp("Reservation Made!"));

Since the random reservations method sequentially schedules flights, this method
can be used to trigger the reservation events for testing, as in the example below.

start_time = 0;
end_time = 100;
lane_ids = ["1","2","3"];
num_res = 50;
speed = 1;
headway = 5;
lbsd.genRandReservations(start_time, end_time, num_

res, \lane_ids, speed, headway);

Reservation Made!
Reservation Made!
Reservation Made!
...

Space–Time Lane Diagram
Both the LBSD class and the ATOC class have the ability to create space–time
lane diagrams (STLD) for visualizing reservations. The example below shows how
the ATOC object is constructed with a reference (a MATLAB handle) to an LBSD
object, then constructs the STLD for several lanes by using the LBSD application
programming interface.

atoc = ATOC(lbsd, 100, zeros(3), 90);
atoc.laneGraphs(lane_ids, [start_time, end_time]);
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Appendix D
Abbreviations

AAM Advanced Air Mobility
ABMS Agent-Based Modeling and Simulation
ADS-B Automatic Dependent Surveillance-Broadcast
AFOSR Air Force Office of Scientific Research
AGL Above Ground Level
AGRC Automated Geographic Reference Center
ANSP Air Navigation Service Provider
ARMD Aeronautics Research Mission Directorate
ATC Air Traffic Control
ATOC Air Traffic Operations Center
BC Betweenness Centrality
BDI Belief, Desire, Intention
BSP Bertsimas and Stock-Patternson
CMAES Covariance Matrix Adaptation Evolution Strategy
CNF Conjunctive Normal Form
CONOPS Concept of Operations
CPAD Closest Point of Approach Deconfliction
DDDAS Data-Driven Dynamic Applications Systems
DSRC Dedicated Short-Range Communications
DSS Discovery and Synchronization of Services
FAA Federal Aeronautics Administration
FIMS Flight Information Management System
FNSD FAA-NASA Strategic Deconfliction
GIS Geographic Information System
GTMS Ground Transportation Management System
ICAO International Civil Aviation Organization
IGNRN Integrated Graph of Natural Road Networks
ISR Intelligence, Surveillance, and Reconnaissance
LBSD Lane-Based Strategic Deconfliction
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NAB Nominal vs. Anomalous Behavior
NASA National Aeronautics and Space Administration
NP Non-deterministic Polynomial Time Complexity
NRE Non-Recurring Engineering
MDP Markov Decision Process
PSSAT Probabilistic Sentence Satisfiability
PSU Providers of Services for Urban Air Mobility
RL Reinforcement Learning
RRT Rapidly Exploring Random Trees
RTK Real-Time Kinetic
SAT Satisfiability
SBDC Small Business Development Center
STLD Space–Time Lane Diagram
sUAS small Unmanned Aircraft Systems
TAP Traffic Assignment Problem
TAZ Traffic Analysis Zone
TCAS Traffic Alert and Collision Avoidance System
TCL Technical Capability Level
TFMP Traffic Flow Management Problem
TFMRP Traffic Flow Management and Rerouting Problem
TFR Temporary Flight Restriction
TOA Time of Arrival
TOD Time of Departure
UAAMS Utah Advanced Air Mobility System
UAM Urban Air Mobility
UAS Unmanned Aircraft Systems
UAV Unmanned Aircraft Vehicles
UDOT Utah Department of Transportation
UGRC Utah Geospatial Resource Center
UQ Uncertainty Quantization
USS UAS Service Supplier
UTM UAS Traffic Management
VM Virtual Machine
VOR Very High Frequency Omni-directional Range
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