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Chapter 4
Biotechnology in Medicine: Advances-II

Sudeepa Rajan, Aadil Hussain Bhat, Sudipa Maity, and Omika Thakur

Abstract Therapeutically important proteins have been obtained from relevant 
organisms using biotechnological methods. The main caveat in procuring these pro-
teins in such a way is their insufficient quantity in the natural sources. This difficulty 
has been circumvented by the recombinant protein technology, which entails the 
abundant expression and purification of the protein of interest in a heterologous 
system. Certain drawbacks in the E. coli (bacterial) expression system, the most 
widely used and economical expression system, have prompted the development of 
alternative expression systems like insect and mammalian ones for therapeutic and 
diagnostic products including human insulin, growth hormones, and antibody frag-
ments. Major expression systems are described in this chapter along with a focus on 
a variety of protein purification tags. Brief information on expressed sequence tags 
is also provided. Later, the role of bioinformatics in handling huge amounts of 
genomics and proteomics data together with an application of various tools for pro-
tein structure analysis is explained. Finally, the significance of different protein 
detection arrays in biomarker discovery and diagnostics is reviewed followed by 
methods for data interpretation and analysis.
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4.1  Protein Expression: Introduction to E. coli Expression 
System, Yeast Expression System, Insect Expression 
System. Higher-Eukaryotic Expression Systems

4.1.1  Protein Expression

The main objective of recombinant protein expression is to produce a target protein 
in commercial quantity in a cost-effective manner without compromising its bio-
chemical and biological activity. Several protein expression systems have been used 
to produce large-scale proteins for therapeutic (biopharmaceuticals) and diagnostic 
purpose. Expression and purification of full-length protein is sometimes unneces-
sary, as the desired activity or property of the protein of interest can be achieved by 
a specific domain(s). Once the desired protein or domain(s) is finalized, next critical 
step is choosing the suitable expression system.

An expression system is defined as genetic constructs (expression vector with the 
desired gene sequence) specifically designed to produce protein of interest at high 
level, inside a host cell. The fundamental criteria for expression system selection 
include anticipated application of desired protein; resources availability; expendi-
ture cost; and time. The four most well established expression systems in use for 
pharmaceutical purposes are bacteria, yeast, baculovirus, and mammalian, and will 
be discussed in details.

4.1.1.1  Bacterial Expression System

Bacterial expression system is most popular and first choice for rapid and economi-
cal production of pharmaceutically important recombinant proteins [1] Escherichia 
coli has emerged as most commonly used industrial microorganism, as about one- 
third of all the pharmaceutical relevant proteins are purified from it [2]. Other bacte-
rial strains used for pharmaceutical purpose are Lactococcus lactis and Bacillus 
subtilis. The major advantages of using this system are: (1) Simple and scalable, 
with no sophisticated equipment requirement, (2) Quickest, (doubling time of 
E. coli is 20 min), (3) Easily manipulated due to availability of its genetics knowl-
edge, and (4) Economical, as one can produce tones of recombinant protein in no 
time [3, 4].

An expression vector is required to insert the target gene in the bacterial cells. 
Numerous articles are available online that extensively discuss the desired proper-
ties of an expression vector. Inexpensive usage, a little or no leaky expression with 
a reliable and tunable induction promoter are some of the desirable qualities of an 
expression vector for large-scale protein production [5, 6]. Commonly used and 
commercially available vectors are the pET series, pQE series (Qiagen), pGEX, etc. 
for single protein expression and pACYC, pBAD, and pSC101 series or single plas-
mid system like the Duet vectors (Novagen) for more than one proteins expression 
at the same time.
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Despite being the most efficient and cost-effective expression system, it has sev-
eral shortcomings especially when expressing mammalian proteins. These prob-
lems include stability of mRNA and protein inside the host, codon bias [7], inclusion 
bodies formation [8], and protein folding and solubility [9], and absence of key 
post-translational modifications (glycosylation, carboxylation, and amidation). 
Increasing demand of the pharmaceutically important proteins in the last 5 years has 
led to the development of new codon optimized and genetically modified bacterial 
strains capable of performing desired post-translational modification, and improved 
expression vectors to overcome above mentioned problems [10–12]. A list of the 
commercially available modified strains with their key features is given in Table 4.1. 
The use of other strategies like growing cells at lower temperature to prevent protein 
aggregation 15–23 oC [15, 16], co-expression of molecular chaperones or the post- 
translational modifying enzyme [17–19], and translocating protein to periplasmic 
space has helped in increasing protein yield [20–22]. The protein expression in peri-
plasmic space emerged as most successful strategy to produce several pharmaceuti-
cal proteins such as scFc, growth hormone, etc. owing to several advantages over 
others [23]. Protein isolation from inclusion bodies is also a viable and cost- effective 
option for pharmaceutical companies, as the purity of the protein in IBs is ~95% 
[24–26]. It is often better to change expression system to higher hierarchy as they 
are better equipped in folding and complex post-translational modifications to 
maintain the bioactivity of desired protein.

4.1.1.2  Yeast Expression System

Yeast being a eukaryotic organism and acts as a connecting link between E. coli and 
mammalian systems. It has properties similar to both the systems thus serves as an 
excellent expression system for pharmaceutically relevant protein production. The 
major advantages it has over other eukaryotic expression systems are: (1) Ability to 
grow in high densities in limited time, (2) Simple and cheap media requirements, 
(3) Easy genetic manipulation, and (4) Safe pathogen-free production [27]. Unlike 
bacterial expression system, yeast expression system has the ability to accomplish 
proper posttranslational modifications and extracellular expressions [28, 29]. 
Saccharomyces cerevisiae, Pichia pastoris, Kluyveromyces lactis, and 
Schizosaccharomyces pombe [30] are few commonly used yeasts. S. cerevisiae and 
P. pastoris are used extensively for the production of several therapeutic important 
recombinant proteins such as human insulin, human serum albumin, alpha 2b, tryp-
sin, collagen, hepatitis B vaccines, and human papillomavirus (HPV) vaccines [31, 
32]. The expression vector is designed so that genomic integration of expression 
cassette could take place leading to generation of stable expression clones with 
multiple copies of target gene [33]. P. pastoris based vectors also have 
inducible promoters (PAOX1 (most widely used), GAP, FLD1, PEX8, and YPT1) and 
antibiotic selection markers, for the selection of multi-copy transformants [34]. 
Some commercially available plasmids have these features incorporated (such as 
the pYEDIS, pPIC9K, pPICZα vector).
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Table 4.1 List of modified bacterial strains [10]

Strain Key feature Application Company

Promoter inducible strains
BL21(DE3) •  IPTG-inducible T7 

RNAP(DE3) promoter
General protein 
expression

Multiple companies

• Protease deficiency
BL21 star (DE3) •  IPTG-inducible T7 

RNAP(DE3) promoter
General protein 
expression from 
low-copy plasmid

Invitrogen™ 
(ThermoFisher)

•  Mutation in RNaseE gene, 
resulting in longer mRNA 
half-life

BL21(DE3)
pLysS

•  Contains pLysS plasmid 
which express T7 lysozyme 
to suppress leaky expression

Toxic protein 
expression

Multiple companies

BL21-AI •  T7RNAP gene under control 
of the araBAD promoter

Toxic protein 
expression

Invitrogen™ 
(ThermoFisher)

•  Tight regulation of protein 
expression

BLR (DE3) •  RecA-deficient, improves 
plasmid monomer yield

Expression of 
unstable proteins that 
might cause loss of 
DE prophage

Novagen (Merck)

•  Stabilizes plasmids with 
repetitive sequences

Tuner(DE3) and 
derivatives

•  Mutation in lac permease 
(lacY) allows uniform entry 
of IPTG

Expression of 
difficult protein: 
membrane proteins, 
toxic proteins, and 
proteins prone to 
insoluble expression

Novagen (Merck)

•  High regulation of IPTG 
induced protein expression

Lemo21(DE3) •  Modulated levels of T7 
lysozyme (inhibitor of 
T7RNAP) by l-rhamnose 
addition

Expression of 
difficult protein: 
membrane proteins, 
toxic proteins, and 
proteins prone to 
insoluble expression

NEB

• Tunable expression of protein

RiboTite •  Integration of orthogonal 
riboswitches upstream of the 
T7RNAP gene thereby 
permitting fine tuning of 
protein expression

For secretion of 
recombinant proteins 
in periplasm

Dixon laboratory

OverExpress™ 
C41(DE3) and 
C43(DE3)

•  Derived from standard BL 21 
(DE) strains

Expression of 
membrane toxic 
proteins from all 
classes of organism 
(yeast, plant, virus, 
and mammals)

Lucigen and Sigma 
[13]

•  Contain genetic mutation in 
t7rnap, lowering the T7 
RNAP accumulation

•  It phenotypically selected for 
conferring toxicity tolerance.

(continued)
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Table 4.1 (continued)

Strain Key feature Application Company

Marionette •  Protein coexpression 
independent control of 
expression using 12 different 
inducers

Protein complexes Addgene

(KRX) 
Competent Cells

•  Stringent control provided by 
the rhamnose-driven T7 
RNA polymerase

Expression of 
proteins

Promega

Codon biased strains
BL21 (DE3) 
CodonPlus-RIL/
RP

•  Contains pRI(P)L plasmid 
provides extra copies of rare 
tRNAs genes

Enable efficient 
high-level expression 
of heterologous 
proteins in E. coli

Stratagene

• Codon bias correction
Rosetta or 
Rosetta (DE3)

•  Contains pRARE plasmid 
provides extra copies of rare 
tRNAs genes

Enable efficient 
high-level expression 
of heterologous 
proteins in E. coli

Novagen(Merck)

•  Good for “Universal” 
translation

Others
Origami and 
derivatives

•  Has mutation in trxB and gor 
reductase resulting in more 
oxidant conditions in the 
cytoplasm

Disulfide-bonded 
protein production

Novagen (Merck)

SHuffle® T7 •  Contains the deletions of the 
genes for glutaredoxin 
reductase and thioredoxin 
reductase (Agor ΔtrxB)

Expression 
potentially toxic 
protein

NEB

•  Constitutively expresses a 
chromosomal copy of the 
disulfide bond isomerase 
DsbC, which promotes the 
correction of mis-oxidized 
proteins

•  DsbC is also a chaperone that 
can assist in the folding of 
proteins that do not require 
disulfide bonds

ArcticExpress 
(DE3)

•  Production of aggregation- 
prone proteins/constitutive 
expression of chaperones 
Cpn10 and Cpn60 from the 
psychrophilic bacterium 
Oleispira antarctica, which 
show high refolding 
activities at 4–12 °C

Agilent

TatExpress BL21 •  Strong inducible promoter, 
ptac upstream of tatABCD 
operon for increased levels 
of Tat secretion pathway

Enhanced production 
of industrially 
challenging proteins

Robinson laboratory 
[14]
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In recent times, P. pastoris being a obligate aerobic yeast has gained more pres-
tige as it can use methanol as a carbon source which lead to the development of an 
expression system based on the utilization of the inducible AOX1 promoter [35]. 
Other benefits include correct protein folding and secretion (by Kex2, PHO1, or 
α-MF as signal peptidase) outside the cell [36].

Despite being an efficient expression system, yeast has drawbacks like limited 
secretory expression of heterologous proteins resulting in low protein yield and 
limits its commercial use [37]. To address this issue, strategies involving optimiza-
tion of cultivation parameters (induction temperature and time, pH, oxygen, and 
nutrient supply), protein-based host selection, gene copy number, co-expression of 
secretory proteins such as chaperones, engineering of secretory pathways, have 
been employed to improve the expression of proteins [38, 39]. The other major 
drawback is hyper N- and O-linked glycosylation of proteins unlike mammalian 
system, which affects the protein immunogenicity [40]. To overcome this shortcom-
ing humanization of yeast by expressing mammalian specific glucose transferase 
and omitting yeast specific genes involved in glycosylation has been tried and found 
its application in producing humanized IgGs in yeast [41–45]. Latest technologies 
such as CRISPR/Cas9 [46] and GlycoSwitch [47] are now used for yeast genome 
engineering for this purpose. Many improvements are still required in the  yeast 
expression system before it can be used for therapeutic commercial purposes; there-
fore, companies are shifting their focus to other more complex expression systems.

4.1.1.3  Insect Cell Expression System

Baculovirus-mediated insect cell expression systems are widely used these days to 
produce large quantities of proteins for pharmaceutical purpose. These proteins are 
difficult to express either in bacteria or yeast due to improper protein folding or 
posttranslational modifications. The major advantage of this system remains 
the presence of post-translational modifications similar to mammalian system, thus 
avoiding the problem of immune-reactivity [48]. The other advantages include: (1) 
Cheap protein production cost as compared to mammalian system, (2) High capac-
ity of expressing multiple genes at the same time due to large and flexible viral 
genome (130 kb), (3) Safe, as they do not infect humans, (4) High protein yield 
driven by the strong promoters such as polyhedrin or p10, and (5) Easy downstream 
purification [49, 50].

Baculovirus vectors are used to insert desired gene and transfected into cultured 
insect cells. The most commonly used baculovirus system are Bac-to-Bac (Invitrogen), 
BacPAK (Takara), and BaculoGold (BD Biosciences), they are commercially avail-
able and has been widely used [51]. Recently, two rapid and simple baculovirus 
expression vector systems have been developed named as MultiBac [52] and Golden 
Gate-based system [53], which can be used to express multiple genes at the same 
time. The most common insect cells used for the production of protein are Sf9, Sf21 
(Spodoptera fugiperda), High5 (Trichopulsia ni), and S2 (Drosophila melanogaster 
embryos) cell lines [54]. These cell lines have proven themselves for the application 
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of recombinant protein expression from a variety of expression platforms due to their 
ability to grow in suspension and serum-free medium [55]. Recent advancement in 
genetic engineering of baculovirus system, this system has been promoted from 
being used during pest control to production of several recombinant proteins (viral 
antigens) by biopharmaceutical companies for human use [56]. Several vaccines are 
now available for the commercial use, which include Cervarix™ (GSK, Rixensart, 
Belgium), FluBlok™ (Protein Sciences Corp., Connecticut, USA), Provenge 
(DendreonInc., Seattle, WA), and Chimigen (Virexx Medical Corp., Calgary, 
Canada), [56–58]. Several of the known subunit vaccines against Chandipura virus, 
hepatitis E virus, and West Nile virus are also synthesized in insect cells [59]. Since, 
baculovirus are known not to infect humans, they are being evaluated to be used as 
efficient delivery vehicles for gene and cell therapy [60].

Despite being a promising expression system, baculovirus has several draw-
backs. For instance, time consuming cloning procedure to generate stable recombi-
nant virus, expensive media requirements, and cell lysis by baculovirus infections 
resulting in suboptimal protein processing. The major drawback is differential gly-
cosylation pattern in comparison to humans, thus limiting the therapeutics use of 
recombinant protein [50]. In recent years, efforts are directed to deal with these 
problems. The stable transformation of insect cell line with plasmid having early 
baculovirus constitutively active promoters (e.g., IE1) [61] or using pre-infected 
cells [baculovirus infected insect cells (BIIC)] to avoid making of stable system has 
significantly reduce the processing time along with improved protein production 
[62]. Engineering of insect cells to have mammalian glycosyltransferases enzymes 
is also tested [63]. Regardless of recent advancements there is a room for improve-
ment to produce cost-effective, industrial scale, and therapeutics standard recombi-
nant protein in insect cell lines [64]. Several good articles are available which covers 
the baculovirus system in more details [65–67].

4.1.1.4  Mammalian Expression System

Mammalian expression system is the ideal choice for production of therapeutically 
important proteins because they perform similar post-translational modifications 
along with proper protein folding, which are critical for bioactivity of the protein. 
Other advantages include secretion of proteins in the cell culture, preventing addi-
tional step of protein purification [68]. Some mammalian cell lines can grow in 
suspension culture and serum-free chemically defined media, enabling large-scale 
reproducible protein production [69]. Several different mammalian host cell lines, 
such as Chinese Hamster Ovarian (CHO) cells, baby hamster kidney (BHK21) 
cells, and murine myeloma-Sp2/0/NS0 cells, have been used for large-scale produc-
tion of therapeutic proteins [70]. Recently, the use of human cell line (Human 
Embryonic Kidney (HEK 293) cells and fibro-sarcoma HT-1080 cells) has gained 
importance due to identical post-translational modifications of expressed pro-
teins [71].
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Like any other expression systems, plasmid based or viral based vectors (adeno-
viral vector, vaccinia vector, Semliki forest viral vectors) are used to transfect 
desired gene into cultured mammalian cells to form either transient or stable cell 
lines. However, efficient integration of transgenes into correct genomic loci still 
remains a major challenge during stable cell line production. Incorporation of chro-
mosomal elements (nuclear scaffold/matrix attachment regions (S/MARs) and 
ubiquitous chromatin opening elements (UCOEs)) into plasmid vectors is found to 
have a positive effect on stable gene expression. Transposon based vectors and site- 
specific recombinase systems, such as Cre-Lox and Flp-FRT, are also found useful 
in targeted integration of the gene in host genome for the production of stable cell 
line expressing recombinant proteins [72].

In the year 1968, the production of FDA approved first recombinant glycopro-
tein, tissue plasminogen activator (tPA, Activase) in CHO made a revolution [69]. 
Subsequently, a number of vaccines like Herpes simplex virus (HSV) vaccine [73], 
Synagis® vaccine used against respiratory syncytial virus [74] etc. and several thera-
peutic proteins, Drotrecogin alfa (XIGRIS®; Eli Lilly Corporation, Indianapolis, 
IN), recombinant factor IX Fc and VIII Fc fusion protein (Biogen, Cambridge, 
MA), dulaglutide (TRULICITY®; Eli Lily, Indianapolis, IN) etc. [68] are produced 
in mammalian cell line. Some of them have already received FDA approval.

The major drawback of using mammalian expression system is high cost of protein 
production, due slow cell growth, expensive media, and culture conditions (continuous 
CO2 supply, expensive transfection reagents). In recent years, mammalian cells have 
been further developed for the commercial production of broader range therapeutic 
proteins by selecting high protein-producing stable cell clones using methotrexate 
(MTX) amplification or glutamine synthetase (GS) system technology and high-
throughput fluorescence-activated cell sorting (FACS)-based screening method [75–
77]. Other advancements include genetic modification of mammalian cells by 
over-expression of anti-apoptotic proteins (bcl-2 family members and Bcl-x(L)) [78] 
or by inducing cell cycle arrest by adding anti-mitotic agents (such as hydroxyurea, 
nocodazole, colchicine, paclitaxel or vinblastine) [77] to increase cell viability along 
with high cell density which eventually lead to elevated protein productivity.

4.2  Protein Purification: Principle of Heterologous Protein 
Purification following Expression. Use of His Tag, 
GST- Tag, MBP-Tag, TAP-Tag, Myc-Tag

4.2.1  Protein Purification

Procuring pure and biologically active desired protein after expression is a daunting 
task. Separating desired protein from the rest of cellular protein pool is an essential 
prerequisite step for commercial production of therapeutic proteins. Several different 
chromatographic techniques like size exclusion, ion exchange, hydrophobic 
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interaction, affinity, and ammonium sulfate cut-off method, are widely used to isolate 
desired protein from other cellular impurity. These techniques rely on exploiting pro-
tein properties like, electric charge, solubility, size and hydrophobicity, therefore, 
optimization of the specific purification method is a time consuming and cumber-
some task. Among the above mentioned techniques, affinity chromatography is the 
most time and cost-effective, and usually a single step purification method [79].

In affinity chromatography, protein is expressed in fusion to an affinity tag which 
significantly help in protein purification. Some of the known affinity tags also 
increase protein solubility without affecting biological activity of the protein, an 
additional advantage [80]. Polyhistidine tag (his-tag) is the most commonly used 
affinity tag. The purification is based on IMAC (immobilized metal-ion affinity 
chromatography), where adsorption of protein occurs due to coordination between 
an immobilized metal-ion (Ni2+ or Cu2+ ion) and an electron donor groups from the 
protein surface (stretch of 6–10 histidine (tryptophan and cysteine)). The protein is 
purified using imidazole gradient [81]. The other commonly used tags are 
polyarginine- tag, FLAG-tag, c-Myc-, S-, and Strep-tag; they all are around the same 
~10 amino acid. Due to their small size, fusing these tags either at N- or C-terminus 
of desired protein usually does not affect its structure or biological activity. FLAG- 
tag is a hydrophilic octapeptide (DYKDDDDK) recognized by the M1 mAb resin. 
Due to non-reusability of antibody resin, the effective cost is high thereby restrict-
ing its widespread use. Recently, the development of anti-FLAG molecularly 
imprinted polymers (MIPs) approach using tetrapeptide DYKD as template has pro-
vides a cost-effective alternative solution for purifying FLAG-derived recombinant 
proteins [82]. Strep-tag (WRHPQFGG) binds to biotin and therefore, recombinant 
protein can eluted using biotin as competitor in buffer. Use of desthiobiotin facili-
tates regeneration and repeated use of these resins. Recent development of Strep- 
tag®II and Strep-Tactin has enhanced the use of Strep-tag owing to their higher 
affinity for the biotin [83]. Next comes the large molecular weight affinity tags 
(more than 200 amino acids), glutathione-S-transferase (GST), maltose-binding 
protein (MBP), N-utilization substance protein A (NusA), thioredoxin (Trx), ubiq-
uitin, and SUMO [84]. Some of these affinity tags not only aid in purification but 
also increase the solubility of protein. MBP and GST act as both solubility enhancer 
and affinity tag, while NusA, SUMO, and Trx only increase solubility [85, 86]. 
MBP is a periplasmic E. coli protein with high solubility. MBP when fused with 
desired protein increases fused protein solubility due to its intrinsic chaperone 
activity [87]. NusA is a 55 kDa, elongation factor which regulates transcription in 
E. coli. As a fusion partner it improves the solubility of the protein due to its intrin-
sic high solubility [88]. SUMO (small ubiquitin-related modifier) protein is a revers-
ible post-translational modification at ε-NH2-group of lysine residues of target 
protein. It is known to increase the solubility and expression of the protein. SUMO- 
specific proteases removes the SUMO tag from the target proteins thereby reducing 
the erroneous cleavage within the target protein [80]. Thioredoxin (Trx) is a small 
and highly soluble E. coli protein. Like NusA tag, Trx itself does not act as an affin-
ity tag and thus, requires fusion partners during purification step. List of affinity tags 
are given in Table 4.2. However, now-a-days larger soluble tags are being replaced 
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by small soluble tags like SET tag [91] and Fh8 tag [87] to overcome the problem 
faced by size of large tags.

Tandem affinity purification (TAP) has also gained popularity in recent times. In 
TAP, desired protein is fused with at least two different affinity tags [92] or one 
affinity and another solubility enhancer fusion tag [93], depending on need. This 
helps in purifying desired protein using both the tags sequentially resulting in con-
siderable reduction of nonspecific proteins. Overall it helps in increasing the purity 
of the desired protein making it useful for therapeutic purpose [80]. Numerous com-
binations of solubility-enhancing and affinity tags have been exploited in order to 
enhance both protein solubility and yield of the desired protein. Some of the com-
mercially available TAPs are S3S-TAP-tag (is a recently developed system suitable 
for purification of mammalian protein complexes), FF-ZZ TAP-tag, Strep/FLAG- 
TAP (SF-TAP), GS-tag, PTP-tag, etc. [80].

Even though affinity tags are routinely used in laboratory protein purifications, 
they have a  limited use in commercially therapeutic applications. Several times 
these tags cause structural and activity changes or immunogenicity problems. 
Sequence specific protease or chemical cleavage methods are developed for the 
removal of these tags. The tobacco etch virus (TEV) protease, thrombin, 
Enterokinase, and factor Xa are some of the most commonly used protease to 
remove tags [89]. Most of the commercially available vectors have a protease cleav-
age site designed between fusion tags and desired proteins. The solubility of 
a  desired protein after tag removal cannot be predicted and enzymatic cleavage 
might cause negative effects, such as product heterogeneity due to cleavage at mul-
tiple sites, precipitation or poor recovery [94]. Chemical cleavage with CNBr-based 
method has advantages over enzymatic cleavage, as it is easy to remove from the 
reaction mixture and is cheap. Their use is largely restricted due to their harsh reac-
tive nature and unwanted protein modifications making purified protein unsuitable 
for therapeutic use [85]. The use of the poly-ionic peptide tags (addition of 3–5 
charge amino acid sequence) has shown to enhance solubility of the desired protein, 
regardless of their position at N- or C-terminus of the protein. The tags enhance the 
solubility of protein by increasing repulsive electrostatic interactions between pro-
tein molecules due to additional of charge from the tags. Due to their small size, the 
presence of poly-ionic peptide tags do not affect the structure or biological activity 
of the protein, an add-on advantage [94].

4.3  Proteomics: Introduction, Protein Detection Array, 
Protein Informatics, Domain Analysis, 
and Structure Prediction

Proteomics is defined as the study of proteome or a set of proteins found in a cell, 
tissue, or a whole organism. The importance of proteomics lies in the fact that unlike 
genome, the proteome is not constant and changes from cell to cell over time, 
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making an individual unique or different. The proteome provides a snapshot of the 
cell in action and the proteomics aims at understanding the proteome status at a 
large scale under certain physiological or diseased conditions [95]. The term “pro-
tein” was initially introduced in 1938 by the Swedish chemist JönsJakob Berzelius, 
working in electrochemistry while trying to describe a class of macromolecules 
made up of linear chains of amino acids [96]. Although proteomics research began 
in 1975 with the introduction of 2-Dimensional Gel Electrophoresis by O’Farrell 
and Klose, it was not until the early 1990’s, when the term “proteomics” was coined 
by Mark Wilkins, a Ph.D. student at the Macquarie University, Australia [97].

Proteomics is a rapidly growing field with cutting-edge technologies used to 
investigate expression of proteins, post-translational modifications, and involve-
ment of proteins in metabolic pathways and protein interactomics. The most com-
monly applied are mass spectrometry (MS)-based techniques such as Tandem-MS 
and gel-based techniques such as differential in-gel electrophoresis (DIGE). Another 
technique complementing to MS is protein microarray that has been widely applied 
as a promising proteomic technology with great potential for protein expression 
profiling, biomarker screen, drug discovery, drug target identification, and analysis 
of signaling pathways in health and disease [98]. The recording and analyses of the 
enormous amount of data generated by these high-throughput technologies are 
facilitated by the development of databases and online servers that are critical not 
only for recording and storing this data but also enable structure, function, and 
domain prediction of a protein [99]. For example, four major databases—UniProtKB, 
IntAct, Reactome, and PRIDE are responsible for storing all the up-to-date informa-
tion generated for a protein [100–102]. In addition to that, several prediction soft-
ware and servers such as Phyre2, FoldX, BisKit, etc. have facilitated protein 
structure prediction [103–105].

4.3.1  Protein Detection Array

Protein array analysis is a technique by which proteins spotted in defined locations 
on a solid support (a protein microarray, or protein chip) are probed for interactions 
with a probe molecule in a high-throughput, parallel manner [106–108]. Protein 
array analysis is used to screen protein function, drug discovery, biomarker discov-
ery, expression profiling, and antibody analysis [109, 110]. Typically, a protein 
microarray is prepared by immobilizing proteins onto a microscope slide using a 
standard contact spotter or noncontact microarrayer [111]. The microscopic slide 
surface can be made of aldehyde and epoxy-derivatized glass that get attached to 
amines and nitrocellulose or the surface could be nickel-coated that relies on more 
specific affinity attachment of His6-tagged proteins which results in the generation 
of ten-fold better signals. After proteins are immobilized on the slides, they can be 
probed for a variety of functions/activities [112, 113]. Finally, the resulting signals 
are usually measured by detecting fluorescent or radioisotope labels. Protein micro-
arrays are majorly categorized into two classes: analytical and functional [114, 
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115]. In addition, tissue or cell lysates can also be fractionated and spotted on a slide 
to form a reverse-phase protein microarray [116].

4.3.1.1  Analytical Microarrays

Analytical microarray is majorly represented by the antibody array which primarily 
employs the “analyte-labeled” assay format where an array is queried with: (1) a 
probe (labeled antibody or lig-and) or (2) an unknown biologic sample (e.g., cell 
lysate or serum sample) containing analytes of interest [117]. By tagging the query, 
molecules with a signal-generating moiety, a pattern of positive and negative spots 
is generated. For each spot, the intensity of the signal is proportional to the quantity 
of applied query molecules bound to the bait molecules. An image of the spot pat-
tern is captured, analyzed, and interpreted [118, 119]. This format, successfully, 
found alterations in protein expression in cancer cell development, epithelial and 
stromal cells. However, one of the major limitations of the antibody array approach 
is the production of specific antibodies in a high-throughput manner. In addition, 
targeted protein labeling may lead to epitope destruction because of some chemical 
reactions [120].

This assay can also be explained as the original enzyme-linked immunosorbent 
assay (ELISA) in a multiplexed format, but can only detect dozens to hundreds of 
analytes simultaneously because cross-reactivity between antibodies can occur 
[120]. Recombinant antibodies have become a promising means of overcoming this 
problem; however, their fabrication issues such as cloning and protein expression 
add to complexities to their practical use [121]. To improvise on the sensitivity and 
specificity, analytical microarrays usually employ “sandwich” assay format [106]. 
This format employs two different antibodies to detect the targeted protein (1) the 
capture antibody that immobilizes the targeted protein on the solid phase and (2) the 
reporter or detection antibody that generates a signal for the detection system. This 
format was applied to successfully detect 75 cytokines with high specificity, femto-
molar sensitivity, a 3-log quantitative range, and economy of sample consumption 
[106, 122, 123].

4.3.1.2  Functional Microarray

Functional protein microarrays are constructed using individually purified proteins 
that enable the study of various biochemical properties of proteins, such as binding 
activities, including protein–protein, protein–DNA, protein–lipid, protein–drug, 
and protein–peptide interactions, and enzyme–substrate relationships via various 
types of biochemical reactions [106, 120]. Functional protein microarrays are con-
structed by printing a large number of individually purified proteins, and in princi-
ple, it is feasible to print arrays comprised of virtually all annotated proteins of a 
given organism, effectively comprising a whole proteome microarray [124]. 
Functional protein microarrays have been successfully applied to identify 
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protein–protein, protein–lipid, protein–antibody, protein–small molecules, protein–
DNA, protein–RNA, lectin–glycan, and lectin–cell interactions, and to identify sub-
strates or enzymes in phosphorylation, ubiquitylation, acetylation, and nitrosylation, 
as well as to profile immune response [114]. The first use of functional protein 
microarrays was demonstrated by Zhu et al. [125] to determine the substrate speci-
ficity of protein kinases in yeast. Since then, reported applications of functional 
protein microarrays in basic research, as well as in clinical applications, have 
increased rapidly [126]. Significant achievements in providing the whole proteome 
of several organisms (i.e., human, yeast, E. coli, virus) on arrays have provided the 
tools for many important biological discoveries [126].

4.3.1.3  Reverse-Phase Protein Microarrays

This format immobilizes an individual complex test sample in each array spot such 
that an array is comprised of hundreds of different patient samples or cellular 
lysates. Each array is incubated with one detection protein (i.e. antibody), and a 
single analyte end point is measured and directly compared across multiple sam-
ples. This method allows for the analysis of many samples obtained at different 
states by directly spotting tissue, cell lysates, or even fractionated cell lysates on a 
glass slide. Many different probes can be tested to specifically identify certain pro-
teins in lysate samples [120]. This type of microarray was first established by 
Paweletz and colleagues to monitor histological changes in prostate cancer patients 
[127]. Using this method, they successfully detected microscopic transition stages 
of pro-survival checkpoint protein in three different stages of prostate cancer: nor-
mal prostate epithelium, prostate intraepithelial neoplasia, and invasive prostate 
cancer. The high degree of sensitivity, precision, and linearity achieved by reverse- 
phase protein microarrays enabled this method to quantify the phosphorylation sta-
tus of some proteins (such as Akts and ERKs) in these samples; phosphorylation 
was statistically correlated with prostate cancer progression.

4.3.2  Protein Informatics

With the advent of high-throughput technologies like Next-Generation Sequencing 
(NGS), a wealth of information about genomic sequences from a variety of organ-
isms has been amassed. This has led to a rapid buildup of protein sequence data in 
the form of new protein databases and updation of the existing ones. The exponen-
tial increase in the protein related data has prompted computational biologists to 
develop an advanced infrastructure that facilitates better organization, structural and 
functional annotation, and evolutionary analyses [128]. Along with a myriad of pro-
tein analysis tools, numerous protein related databases have been created that can be 
categorized as sequence databases, family and domain databases, 3D structure data-
bases, gene expression databases, enzyme and pathway databases, PTM databases, 
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protein-protein interaction databases, etc. [129]. More information can be accessed 
at http://www.oxfordjournals.org/our_journals/nar/database/cap/, https://proteinin-
formationresource.org/staff/chenc/MiMB/dbSummary2015.html or Expasy, a 
Swiss Bioinformatics Resource Portal.

4.3.3  Domain Analysis

Protein domains are defined as basic units of structure, function, and evolution. 
Ranging from 30 to 600 amino acids in length, these units are able to fold indepen-
dently into stable tertiary structures [130–132]. Compact structures with separate 
hydrophobic cores represent structural domains wherein contacts between residues 
within the domain are found to be more extensive than between domains [133, 134]. 
Identification of domains forms the basis of protein classification and annotation. 
This is exemplified by many protein sequence databases like Pfam, SMART and 
Interpro, and protein structure databases such as SCOP, CATH, and PALI, which 
consider domains as the basis for their classification of proteins. The domain-level 
approach has strongly influenced our understanding in the areas of evolutionary his-
tory, homology detection and modeling, protein fold recognition, etc. Interestingly, 
a relatively random domain shuffling process is thought to have led to domain link-
ages during the course of evolution, resulting in a few beneficial domain associa-
tions being selected and propagated in the interest of cell fitness [135–138].

Most sequence-based domain recognition methods rely on the conservation of 
contiguous homologous segments, which is complicated by domain shuffling and 
recombination in multidomain proteins, accessory domains, and evolutionary diver-
gence of sequences. Therefore, to get an insight into the functional and structural 
interplay of domains in multidomain proteins, all domains in the full-length amino 
acid sequence need to be considered simultaneously for protein classification. 
Keeping this in view, an alignment-free tool, named CLAP (CLAssification of 
Proteins), was developed for effective classification of multidomain proteins, 
bypassing the need for identification of domains and their sequential order [135].

Proteins are generally composed of one or more domains arranged in a distinct 
way that largely dictates the protein function. This is referred to as domain architec-
ture [139, 140].A limited fraction of domain combinations have been found in pro-
teins ruling out the possibility of random combinations. In accordance with power 
law distribution, the covalent linkage between domains is such that most domains 
have few partners with a smaller fraction of abundant domains being highly con-
nected [141–143]. Based on domain co-occurrence or context, a novel approach, 
dPUC (Domain Prediction Using Context) was developed for domain prediction 
and identification. The scores are assigned by analyzing whether two domain fami-
lies frequently co-occur (positive context) or have never been found as a pair (nega-
tive context) [144].

As we move from prokaryotes to eukaryotes or from unicellular eukaryotes to 
animals, the number of unique domains and the fraction of multidomain proteins 
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increase. This organismal complexity-associated trend, called domain accretion, is 
thought to play a significant role in evolution. While researchers have likened the 
genomes to natural language texts, protein domains are considered analogous to 
words, with domain architectures and amino acids representing sentences and let-
ters, respectively [145]. So n-gram analysis, a well-known probabilistic language- 
modeling (linguistic) technique helpful in the identification of meaningful word 
combinations by treating consecutive words in sentences as a unit, is utilized to 
probe the rules of domain association leading to distinct domain architectures. The 
set of rules, termed “proteome grammar” is employed to study genome complexity 
and domain evolution [146]. Some domains tend to be involved in many different 
domain architectures, a phenomenon called protein domain promiscuity. A bigram 
analysis has been employed to study the evolution of this promiscuity. Bigram refers 
to a pair of domains on a protein sequence [139, 147]. Domain rearrangements and 
domain accretion are two important aspects of evolution. It has been found that 
there is a nearly universal value of information gain (loss of entropy) associated 
with a transition to the observed domain architectures from random domain combi-
nations. This highly conserved constant value corresponds to the minimum com-
plexity required to maintain a functioning cell and is governed by “quasi-universal 
grammar.” However, two major groups viz. a subset (extremely simplified cells) of 
Archaea and animals (extreme complexity) have deviations from this constant 
value [146].

4.3.3.1  Domain Parsing

The accurate prediction of domain boundaries (domain parsing) is crucial for the 
design of chimeric proteins with multi-functional domains and the experimental 
structure determination of proteins where crystallization is adversely affected by 
flexible regions. It also makes the multiple sequence alignments more reliable [148, 
149]. The defining feature of structural domains underlies some effective algorithms 
that assign domain boundaries using 3D structures. Some protein features such as 
signal peptide, trans-membrane helices, low-complexity, and disordered regions 
and coiled coils, which are not found in globular domains, can be easily predicted 
using relevant tools. These analyses performed subsequent to a sequence search 
with BLAST constitute initial steps in domain prediction. The domain boundary 
prediction employing templates with known structure involves three steps [150]. 
Sequence search against protein structure databases like PDB comprises the first 
step and helps in retrieving alignments between target sequence and template struc-
ture. The more accurate alignments with a percentage identity of at least 30% and 
enough coverage (at least 100 residues) with few gaps can be used for 3D model 
generation. Many methods including a highly sensitive HHPred server have been 
developed for detecting remote structural homologs by performing a search against 
a wide range of databases such as PDB, SCOP, Pfam, and COGs [151]. The final 
step involves 3D model generation using a modeling program like MODELLER 
(incorporated in HHSearch server) [152–154]. Phyre2 [105, 155], I-TASSER [156, 
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157], and ROBETTA [158] are some of the methods that detect templates and 
develop the model automatically.

4.3.4  Structure Prediction

A few advanced techniques, viz. X-ray crystallography, nuclear magnetic resonance 
(NMR), and recently developed cryo-electron microscopy (cryo-EM), have been 
instrumental in solving the 3D structures of proteins. In spite of this, a rapid non- 
proportional progress in the field of genomics has widened the already existing gap 
between the number of protein sequences identified and the number of available 
protein 3D structures [159]. To address this issue, a variety of computational meth-
ods that are faster, easier, and economical have been developed. One of the methods 
involves sampling the conformational space (c-space) of a protein through deter-
ministic or heuristic approaches. With deterministic methods like homology model-
ing, entire or part of the c-space is scanned and sub-spaces excluded based on a 
priori knowledge. In heuristic algorithms (ab initio modeling, Monte Carlo, and 
molecular dynamics simulations), only a fraction of the c-space is sampled without 
a priori knowledge generating a representative set of Boltzmann-weighted confor-
mations [160, 161].

Homology modeling (also called comparative modeling) consists of predicting 
3D structure from the primary sequence of the protein. It is useful in identifying 
therapeutic targets, studying structure and function of proteins, protein interaction 
networks and signaling pathways, and mutagenesis associated with certain diseases 
[159, 162]. It also has applications in molecular modeling of protein complexes and 
in the refinement of cryo-EM 3D structures [163–165]. It involves multiple steps 
starting with the identification and selection of suitable templates by searching PDB 
(Protein Data Bank), an online database of known crystal structures. The protein 
Basic Local Alignment Search Tool (BLASTp) is employed to look for templates 
with a sequence identity of more than 40%. There are other algorithms available 
including PSI-BLAST (Position-Specific Iterated BLAST), hidden Markov models 
(HMMs), and profile–profile alignments, for templates with low homology [166]. 
Subsequent to the optimization of the selected alignments, 3D model is built using 
rigid-body assembly method (as in 3D-JIGSAW and SWISS-MODEL programs), 
segmented matching method (used by SegMod/ENCAD), spatial restraint method 
(used by MODELLER and DRAGON), or the artificial evolution method (used by 
NEST). Next, loop modeling is performed either by scanning a structure database 
like PDB (a knowledge-based approach used by MODELLER, 3D-JIGSAW and 
SWISS-MODEL) or by optimizing a scoring function through Monte Carlo or 
molecular dynamics methods for randomly chosen conformations (an energy-based 
method using an ab initio fold prediction approach). Addition of side chains to the 
main backbone requires rotamer libraries, which contain statistical distributions of 
side chain and backbone orientations extracted from known crystal structures. 
These are tested sequentially and scored using energy functions. Some of the tools 
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used for side chain packing include SCWRL, FASPR, and SCAP [160–162]. To 
improve the quality of the model thus generated, optimization is done by energy 
minimization through molecular mechanics force fields. Other ways of model 
refinement employ molecular dynamics and Monte Carlo simulations. The relation-
ship between the energy of a protein and its conformation is described by the poten-
tial energy hyper-surface (PEHS) modeled with quantum or molecular mechanical 
methods. The native conformation of a protein in the funnel shaped PEHS is ideally 
represented by a global energy minimum conformation (GEMC), although a canon-
ical ensemble of structures is required to describe the system state completely. The 
top portion of the PEHS funnel contains high energy conformations resulting from 
steric and hydrophilic/hydrophobic clashes and unoptimized bond lengths and 
angles, etc. These conformations are eliminated as a protein folds and GEMC is 
reached with the narrowing of the funnel [160, 167].

Finally, the model is evaluated and validated by considering stereochemistry, 
physical parameters, statistical mechanics, etc. To perform this task, Distance- 
matrix ALIgnment (DALI; http://ekhidna2.biocenter.helsinki.fi/dali/) or Verify3D 
online servers are used. Many homology modeling programs and online servers like 
SWISS-MODEL [168–170] and Phyre2 [105] have been developed that perform 
most of the aforementioned steps in an automated fashion. Other homology model-
ing programs include MODELLER [153], I-TASSER [157], Rosetta [171], Raptor 
X [172, 173], GalaxyTBM [174], AlphaFold [175], etc.

4.4  Expression Sequence Tags (ESTs), Application of Protein 
Detection Microarray with Examples

4.4.1  Expression Sequence Tags (ESTs)

Expressed sequence tags (ESTs) are partial cDNA sequences, resulting from single 
pass sequencing of clones obtained from cDNA libraries. They are used for decod-
ing genome organization and determining gene expression profiles in specific tis-
sues under different conditions. The foremost utilization of ESTs in genome 
organization studies is to regulate the chromosomal localization of analogous genes 
employing somatic hybrid cell panel. Furthermore, ESTs contribute in comparative 
genetics of different species to decipher their gene function. Overall the ESTs lead 
to integrated genomic approach by the combination of sequence, functional, and 
localization data. To date, over 45 million ESTs have been generated from over 
1400 different eukaryotic species. They have been proven very useful in gene iden-
tification and predictions because they are low-cost alternative to whole genome 
sequencing [176]. This is particularly important for eukaryotes which tend to have 
“less gene-dense genomes” [177].

For the generation and processing of ESTs mRNA is collected either from whole 
organisms or specific tissues depending on the size of the organism. This is followed 
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by the extraction of pooled mRNAs and purified typically on the basis of their poly- 
adenylation. Subsequently, a cDNA library is constructed from this pool and clones 
are randomly picked for a single pass sequencing read. The raw data are then pro-
cessed to derive the underlying sequence which is followed by further processing 
that removes low-quality and contaminating sequences associated with the vectors. 
The purified sequence data is the submitted to EST database such as dbEST [178–
180]. The continued generation of ESTs for different species along with the techno-
logical advancement has led to its exploitation in range of applications. For example, 
tandem mass spectrometry matches peptide fragments to known protein sequences. 
However, limited number of sequences in protein databases leads to computational 
bias against poorly characterized proteins. ESTs are beginning to have a widespread 
appeal in identifying and characterizing alternative spliced isoforms [181].

4.4.2  Application of Protein Detection Microarray

Microarray technology was developed in 1989 by Roger Ekins, based on ambient 
analyte immunoassay [182, 183]. Later, it was transformed into DNA microarray 
for simultaneous detection of mRNA expression levels in multiple genes. However, 
the mRNA expression in a cell does not always correspond to exact protein levels 
[184]. Therefore, to overcome these limitations of DNA microarrays, protein micro-
array was developed for functional analysis of proteins as they are the major driving 
forces behind all cellular processes. Immunoassays are first protein microarray, 
based on specific antigen-antibody interactions, later expanded to antibody microar-
ray which enabled parallel detection of multiple proteins in minute sample quantity 
with high sensitivity and reproducibility [184]. High-throughput protein array was 
developed by immobilization of purified proteins on chip glass slide/bead/nitrocel-
lulose membrane or microtiter plate chip [106].

As discussed earlier, the arrays are divided into three main categories; (1) ana-
lytical protein microarrays (2) reverse phase protein microarrays, and (3) functional 
protein microarrays (Fig. 4.1). Analytical protein microarrays (APMs) or capture 
microarrays are composed of antibodies, aptamers, or affibody libraries attached to 
a solid support that binds to a specific protein in cell lysate. The APMs provide 
information regarding protein expression, their binding affinities and specificity; 
however, cross-hybridization of antibodies is still the major challenge associated 
with these microarrays. Analytical microarrays are generally used for identification 
and profiling of treated/non-treated cells and diseased/non-diseased tissues. The 
reverse phase protein microarray (RPPA) separates complex mixture of proteins in 
tissue lysate; detected by fluorescent or chemiluminescent assays, and are useful to 
identify altered proteins or post-translational modifications in diseased cell. Unlike 
APMs and RPPMs, functional protein microarray (FPM) is used to study biochemi-
cal activities in entire proteome. These microarrays are composed of full-length 
purified functional protein or protein domain arrays immobilized on protein chip. 
FPMs are used to identify protein–protein, protein–DNA, protein–RNA, 
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Fig. 4.1 Types of protein microarrays and their application in basic and clinical research

protein–phospholipids, and protein–small molecule interactions, detect antibodies, 
and determine enzyme activity and its specificity. Compared to other methods, 
FPMs are more capable in detecting low level of protein expression and weak inter-
actions. On the basis of recent developments in FPMs, they are divided into four 
categories, namely, (1) Purified proteome microarray, (2) Purified protein family 
microarray, (3) Purified protein domain microarray and, (4) Cell-free protein/pep-
tide microarray.

The purified proteome microarray, consisting of genome-wide expressed pro-
teins immobilized on a microarray, is widely utilized in E. coli, S. cerevisiae, and 
human system to study their functional and biochemical properties. Two DNA 
repair proteins, namely YbaZ and YbcN, were identified by Chen et al. using E. coli 
proteome microarray consisting of 4256 unique proteins [185]. In another study, 
using similar microarray, Spr phase switch and DNA binding proteins were identi-
fied in type 1 fimbria [186]. Unique antimicrobial peptide and glycosaminoglycans 
protein targets were identified using E. coli proteome microarray [187, 188]. 
Additionally, CobB deacetylation enzyme was identified as a strong binder of cyclic 
di-GMP (bacterial second messenger) while Yojl was found to be involved in 
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bacterial cell invasion by probing human brain microvascular endothelial cells on 
E. coli proteome microarray [189, 190]. Besides this, E. coli proteome microarray 
has also been applied for identification of glycoproteins [191], tyrosine sulfation 
[192], and ClpYQ protease [193] to study bacterial physiology and host–microbial 
interactions.

A total of 33 novel calmodulin and more than 150 phospholipid binding proteins 
were identified with biotinylated calmodulin and fluorescently labeled liposomes, 
respectively, utilizing yeast proteome microarray [125]. The same microarray was 
used for the identification of SMIR3 and SMIR4 rapamycin inhibitors, Arg5,6 mito-
chondrial enzyme, and Pus4 and App1 brome mosaic virus antiviral proteins [194–
196]. Lin et  al. further demonstrated two signaling pathways, NuA4 
complex-mediated protein acetylation reactions involved in yeast aging and sub-
strates for HECT domain ubiquitin E3 ligase Rsp5 [197]. All these studies demon-
strate the usefulness of bacterial and yeast proteome microarray in basic research. 
However, human proteome microarray is still the most widely used in clinical 
research, pharmaceutical industry, and translational research. HuProt composed of 
~21,000 full-length purified human proteins, ProtoArray ~9000 purified human pro-
teins from insect cells, and NAPPA with 10,000 human proteins are the three popu-
lar human proteome microarrays. Human proteome microarray is broadly applied in 
five major areas: (a) diagnostics, (b) proteomics, (c) protein functional analysis, (d) 
antibody characterization, and (e) treatment development. Diagnostics includes pro-
filing of sera to discover new disease biomarkers and monitoring of disease states/
responses to therapy in personalized medicine. In 2010, Song et al. identified and 
validated three highly specific anti-hepatitis biomarkers RPS20, Alba-like, and 
dUTPase with 47.5%, 45.5%, and 22.7% sensitivity, respectively, using human pro-
tein microarray consisting of 5011 non-redundant proteins [198]. In another study, 
a microarray with 1626 purified human recombinant proteins was utilized for vali-
dation of six highly specific biomarkers against autoimmune hepatitis with 82% 
sensitivity and 92% specificity [199]. Also, six highly specific biomarkers, namely 
PTPRN2, MLH1, MTIF3, PPIL2, NUP50, QRFPR associated with type 1 diabetes 
were recently validated using Nucleic Acid Programmable Protein Array (NAPPA) 
[200]. In addition to this, Protoarray was used for validation of transglutaminase 4 
(TGM4) biomarker specific infertility causing autoimmune polyendocrine syn-
drome type 1 (APS1) in males [201]. Furthermore, validation of RNA Polymerase 
II subunit A C-terminal domain phosphatase (CTDP1) biomarker specific to Behcet 
disease was performed using HuProt array [202]. Three highly specific p53, PTPRA, 
and PTGFR biomarkers were validated against ovarian cancer using NAPPA 5177 
tumor antigens microarray with 98.3% specificity [203]. In other study, four SNX1, 
PQBP1, IGHG1, and EYA1 biomarkers specific to glioma were identified by prob-
ing ~17,000 human protein microarray [204]. HuProt array was used for identifica-
tion of COPS2, NT5E, TERF1, and CTSF biomarkers for diagnosis of gastric 
cancer and validation of p53, HRas, and ETHE1 for early detection of lung cancer 
[205, 206]. Moreover, three specific FGFR2, CALM1, and COL6A1 prostate can-
cer biomarkers were identified and validated using 123 purified antigens microarray 
platform [207]. Human proteome array has been utilized to validate IGHG4, STAT6, 
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CRYM, HDAC7A, EFCAB2, SELENBP1, and CCNB1 biomarkers against 
Meningiomas [208]. In a more recent study, a highly specific biomarker panel, iden-
tified and validated using protein array based approach, was employed to discrimi-
nate Zikavirus and Dengue virus infections [209]. High-Density Nucleic Acid 
Programmable Protein Array (HD-NAPPA) of the pathogen Mycobacterium tuber-
culosis (Mtb) was used in the identification of eight antibody targets, viz. Rv0054, 
Rv0831c, Rv2031c, Rv0222, Rv0948c, Rv2853, Rv3405c, Rv3544c, for tuberculo-
sis serology [210].

Currently, there are two methods to detect protein signals (1) labeled and (2) 
label free. The ideal protein array detection method should produce low background 
noise and generate high signal frequency. Therefore, the most common and widely 
used detection method is fluorescence labeling which is highly sensitive, safe, and 
compatible with readily available microarray laser scanners. Other labels used are 
affinity, photochemical, or radioisotope tags. As these labels are attached to the 
probe itself which can interfere in the probe-target protein reaction; thus, a number 
of label free detection methods are developed such as surface Plasmon resonance 
(SPR), carbon nanotubes, carbon nanowire sensors, and microelectromechanical 
system cantilevers. Most of these methods are relatively new and not very suitable 
for detection of high-throughput protein interactions; however, they do offer much 
promise for the future.

4.5  Data Analysis and Interpretation of Protein 
Detection Arrays

Protein microarrays provide wealth of information regarding protein interactions, 
protein functions, and signaling pathways which could be used for clinical diagnosis. 
However, data translation requires automated data processing and interpretation for 
generation of meaningful information. Protein microarray data analysis mainly 
depends on the design of surfaces, content, detection method, data preprocessing, 
inference, classification, and validation (Fig. 4.2). The design of array is a crucial step 
as it significantly affects data analysis and its final interpretation. Inclusion of bio-
logical replicates is recommended as they provide higher statistical confidence; how-
ever, they also make results more complex to evaluate. Data preprocessing, which 
includes image analysis, normalization, and data transformation, also greatly affects 
data analysis and interpretation. Image-processing algorithms distinguish foreground 
and background intensities and inference based on data analysis variability [211]. 
Different data analysis strategies for different types of array generate variable results. 
These arrays provide variety of tools for disease analysis but lack standard analytical 
and data processing strategy which enhance complexity in data analysis.

The data analysis strategies like spot-finding on slide images, Z-score calcula-
tions, and significance analysis of microarrays (SAM) have their origin in DNA 
microarray analysis; however, concentration-dependent analysis (CDA) is specific 
for protein microarrays (Fig. 4.3) [212].
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Fig. 4.2 Protein microarray strategy for data analysis

Fig. 4.3 Methods for data analysis of protein microarrays

In spot intensity determination method, microarray image analysis starts with the 
fixing of spot intensity. A grid of circles with adjusted position and size are placed 
over protein spots to get reliable intensity data. The output file is created by GenePix 
Pro software (Molecular Devices, CA). In Z-score analysis, Z-score equation 
(Zs = Ss − μ/σ) is analyzed to determine the significantly different from the expected 
values, where Zs is the Z-score for the sth spot, Ss is the signal for that spot’, μ is the 
mean signal across all spots, and σ is the standard deviation across all spots. In 
concentration-dependent analysis (CDA), absolute signals generated depend on 
protein concentration in the sample. To overcome this issue an iteration process is 
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used to calculate Z-score (Zs = Ss − μw/σw) and remove outliers. In the equation, Zs 
represents Z-score for the sth spot, Ss spot signal, μw mean signal, and σw standard 
deviation (Fig. 4.3).

The signals produced are detected by fluorescent dyes or colorimetric assays. 
There are two types of assays for colorimetric detection of proteins: single color 
assay and dual color assay. Single color assay is a single antibody based microarray 
which uses internal control system based on two colors for quantification of antigen 
and antibody. In the dual color assay, each sample is labeled with different fluores-
cent dyes and their signal intensity is measured using fluorescence image scanners. 
Dual color assays have better reproducibility and discriminatory efficiency then 
single color assays [213]. To prevent undesired technical artifacts caused by electric 
charges, different protein sizes, hydrophobic protein interaction of proteins and 
antibody/antigen binding kinetics in dual color assays the data pre-processing pro-
tocols like filtering, background correction and data normalization are required 
[214]. Furthermore, it employs four different microarray designs: (a) Reference in 
which sample of interest and reference sample is labeled with different fluorescent 
fluorochromes. This design is generally used for comparative studies; (b) Balanced- 
block where two samples bearing two different fluorochromes are hybridized to 
make a single block; (c) Incomplete block, more than two samples bearing only two 
fluorescent fluorochromes are co-hybridized on microarray; (d) Loop design where 
samples are hybridized in different arrays using different fluorochromes which 
leads to duplication of arrays.

For data normalization, different algorithms, rank-invariant selection, modified 
rank-invariant selection and rank difference weighted global loess are used to define 
the set of probes. Rank-invariant selection algorithm is used in the absence of house- 
keeping controls. However, its major limitation is that it does not cover entire inten-
sity range [215]. Modified Rank-Invariant Selection Algorithm corrects intensity 
values through extrapolation of curve to lower and upper intensity limits. Rank 
Difference Weighted Global Loess is applied to whole probes on array to get global 
normalization. Despite the differences among data processing methods in microar-
ray analysis the general recommendations which need to be considered for data 
processing in microarray analysis are: Bayesian approaches to examine intersec-
tions, quality-control, validation methods, and standardized testing platforms.

4.6  Summary

Medical biotechnology has provided several products essential for research, thera-
peutics, and diagnostic purpose. Recombinant protein technology is the connecting 
link between medical biotechnology, and mass production of therapeutic and diag-
nostic products. For a long time, E. coli has served as the cost-effective and low- 
maintenance expression system for the production of pharmaceutically important 
recombinant proteins. The limitation of expressing several human proteins with 
specific post-translational modifications, essential for their biological activity, in 
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E. coli (which lacks post-translational modification machinery), has forced bio-
chemists to look for alternative expression systems for large recombinant protein 
production. Using new and improved recombinant methods, humanization of 
E. coli, which has failed so far, could be tried and made successful. Lately, insect 
cell lines, non-human mammalian cell lines, and human cell lines with engineered 
genome are extensively used to produce therapeutic proteins such as growth factors, 
vaccines against infectious diseases, monoclonal antibodies, and IFNs to treat can-
cers and other diseases. The advantages and disadvantages of the different expres-
sion systems are reviewed in this chapter. We have also discussed the significance of 
protein tags used during protein purification following its expression. Some of these 
tags are also known to increase the solubility of the proteins, ultimately leading to 
high protein yields required for commercial purpose.

Ever since informative machineries started to evolve, proteomics technologies 
have been aimed at the comprehensive detection of the downstream proteins to eval-
uate complex disease diagnosis, allied mechanism and concerned therapy for effec-
tive management of the diseases. Moreover, to understand the complex biological 
organization, it is imperative to understand regulatory interconnections between 
DNA, RNA, and protein. For instance, microarrays, automated sequencing, and 
mass spectrometry have significantly contributed to systems biology approach by 
investigating protein–protein interactions, signal pathway analysis, studies of 
PTMs, or/and detection of toxins. It also has a wide array of opportunities in disease 
biomarker discovery to enable better disease management through improved diag-
nostics. More importantly, various forms of protein microarray have gradually 
evolved for proteomics research. With the progressive development, standardization 
of the experimental workflow and data interpretation, protein microarray holds 
promises in diagnostic applications. For protein microarray data analysis, various 
techniques including spot intensity determination method, z-score calculation, and 
concentration-dependent analysis have been used. Moreover, colorimetric assays 
involving fluorescent dyes are used for detecting signals.

Expressed sequence tags and cDNA provide direct evidence for all sample tran-
scripts and are the most important resources for transcriptome exploration. ESTs 
have proven useful in different applications along with individual tools and pipe-
lines for EST analysis.

Finally, an increasing number of bioinformatics methods have been developed to 
meet the needs of researchers for rigorous analysis of a vast amount of data gener-
ated through high-throughput genomic and proteomic techniques. From sequence- 
based analysis to protein structure prediction, analysis tools have been developed 
that focus on individual steps of the process or perform the whole process in an 
automated way. For instance, different protein databases along with certain analysis 
tools have been used for protein data analysis. Correct identification of domain 
boundaries for elucidating domain architecture and predicting protein structure 
from primary sequences using homology modeling have become possible with 
some of the finest tools developed recently. All these methods have facilitated the 
research on therapeutic agents that could be used in drug designing and other areas.
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