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Life is too sweet and too short to express our affection with just
our thumbs. Touch is meant for more than a keyboard.
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Abstract Mood disorders can be difficult to diagnose, evaluate, and treat. They
involve affective and cognitive components, both of which need to be closely moni-
tored over the course of the illness. Current methods like interviews and rating scales
can be cumbersome, sometimes ineffective, and oftentimes infrequently adminis-
tered. Even ecological momentary assessments, when used alone, are susceptible to
many of the same limitations and still require active participation from the subject.
Passive, continuous, frictionless, and ubiquitous means of recording and analyzing
mood and cognition obviate the need for more frequent and lengthier doctor’s visits,
can help identify misdiagnoses, and would potentially serve as an early warning
system to better manage medication adherence and prevent hospitalizations. Activity
trackers and smartwatches have long provided exactly such a tool for evaluating phys-
ical fitness. What if smartphones, voice assistants, and eventually Internet of Things
devices and ambient computing systems could similarly serve as fitness trackers for
the brain, without imposing any additional burden on the user? In this chapter, we
explore two such early approaches—an in-depth analytical technique based on exam-
ining meta-features of virtual keyboard usage and corresponding typing kinematics,
and another method which analyzes the acoustic features of recorded speech—to
passively and unobtrusively understand mood and cognition in people with bipolar
disorder. We review innovative studies that have used these methods to build mathe-
matical models and machine learning frameworks that can provide deep insights into
users’ mood and cognitive states. We then outline future research considerations and
conclude with discussing the opportunities and challenges afforded by these modes
of researching mood disorders and passive sensing approaches in general.
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13.1 Introduction

Mood disorders take a sizable toll on the world’s population, affecting more than
1 in 20 people annually and nearly 1 out of every 10 people over the course of
their lifetime (Steel et al. 2014). Bipolar disorder, which alone accounts for at least
1% of years lived with disability globally (GBD 2017), is a mood disorder that
causes patients to alternate between manic episodes of abnormally elevated mood
and energy levels, and depressive episodesmarked by diminishedmood, interest, and
energy (APA2013). Compared tomajor depressive disorder (MDD), bipolar disorder
can be harder to diagnose, and even when an accurate diagnosis is made, it is often
delayed. The depressive episodes in both disorders share the same diagnostic criteria,
and it is known that individuals suffering frombipolar disorder on average spendmore
time in the depressive phase than in mania. In particular, bipolar disorder type II, a
subtype which is differentiated by attenuated levels of mania-like symptoms (termed
hypomania) is difficult to diagnose by non-specialists as it can be challenging to
distinguish from recurring unipolar depression. The presence of mood episodes with
mixed features, i.e., those that exhibit characteristics of both mania and depression,
can further complicate the process of diagnosis (Phillips and Kupfer 2013).

13.1.1 Current State of Diagnosis and Monitoring of Bipolar
Disorder

Clinical approaches to diagnosing and monitoring bipolar disorder usually start with
careful history-taking by the clinician (detailed interviews with patients and their
family members as well as probing for a family history of the disorder), followed
by the frequent use of self- and clinician-administered rating scales that assess for
a history of possible mania or hypomania in patients with depression. Even with
these tools at their disposal, it is often difficult for clinicians to ascertain whether
any noted changes in mood, sleep, or energy are within normal ranges—or whether
they are evidence of, say, a manic/hypomanic episode (Wolkenstein et al. 2011).
Achieving inter-rater reliability between administered assessments and scales poses
its own challenges.

After a correct diagnosis has been made, monitoring of symptoms commonly
relies upon self-reports that may include mood charting and self-ratings or clinician-
rated scales. These scales can only assess the severity of symptoms experienced by
the patients and cannot actually screen for mania or hypomania; patients in manic
states also may not be cognizant of their manic symptoms, casting doubt on the
validity of some of these assessments (NCCMH 2018).

Ecological momentary assessments (EMA) have been used for supplementary
monitoring in mood disorders with varying degrees of success (Ebner-Priemer
and Trull 2009; Asselbergs et al. 2016; Kubiak and Smyth 2019). Asselbergs and
colleagues reported that the clinical utility of self-report EMA is too often limited
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by the heavy response burden that is imposed upon respondents—which can result
in large dropout rates after an initial period of activity—and furthermore, that the
predictive models constructed using unobtrusive EMA data were inferior to existing
benchmark models.

In recent years, other techniques including neuroimaging (Phillips et al. 2008;
Leow et al. 2013; Ajilore et al. 2015; Andreassen et al. 2018) and genomics (Hou
et al. 2016; Ikeda et al. 2017) have also been used in attempts to discover biomarkers
for bipolar disorder. Although they may not currently be feasible either for diag-
nosis or for monitoring on an individual level, in the near future we may begin
finding immense value in these and relatedmethods beyond their immediate research
applications.

In addition to its affective components, bipolar disorder also influences cognitive
ability (APA 2013). Among the most severely impaired domains of cognition are
attention, working memory, and response inhibition (Bourne et al. 2013). These
provide another avenue to further aid in distinguishing a possible diagnosis of bipolar
disorder from other mood disorders and assessing its course and treatment.

13.1.2 Passive Sensing in Physical Health

Smartwatches, fitness trackers, and associated physical health and fitness apps in
general have to a large extent enabled and encouraged users to self-manage chronic
medical conditions and attempt to take better care of their physical health (Anderson
et al. 2016; Canhoto and Arp 2017; Messner et al. 2019). The Apple Watch, for
instance—which uses photoplethysmography to passively sense atrial fibrillation—
and the associated Apple Heart Study (Turakhia 2018) have already been credited
with saving several lives by alerting enrolled users to the onset of life-threatening
conditions and directing them to seek immediate medical attention (Feng 2018;
Perlow 2018).

13.1.3 What About Passive Sensing for Mental Health?

Portable sensors to track the health of the rest of the body have so far proven easier to
develop than those that can track brain health. As yet, there are no portable functional
magnetic resonance imaging (fMRI) scanners or brain-computer interfaces (BCI) that
can be used to unobtrusively analyze brain functioning—although science fiction has
proposed examples of each in the form of, respectively, cowboy hats that conduct
brain scans to map wearers’ cognition in television shows such asWestworld (Avun-
jian 2018) and biomechanical computer implants called neural lace in author Iain M.
Banks’ series The Culture (Banks 2002, 2010)—which science may in fact someday
deliver instead in the shape of the startup Openwater’s fMRI-replacing ski hats that
are purportedly being designed to use infrared holography to scan oxygen utilization
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by thewearer’s brain (Jepsen 2017; Clifford 2017) and implantable electronic circuits
capable of neural communication such as those being developed by Neuralink and
others (Fu et al. 2016; Chung et al. 2018; Sanford 2018).

Until these nascent technologies reachmaturity, there is a need for passive sensing
tools that can bridge the divide and perhaps eliminate the need for more onerous
means of sensing altogether. Smartphones are already ubiquitous enough and offer a
wide array of sensors, which when used in concert with mHealth and digital pheno-
typing tools, offer a greater degree of precision medicine tools to users, researchers,
and healthcare providers than ever before. Indeed, the very use of smartphones, and
mobile social networking apps in particular, has been found to be associated with
structural and functional changes in the brain (Montag et al. 2017); the corollary
that smartphone usage patterns can be used to quantify the presence of established
biomarkers has also been explored by Sariyska and colleagues (2018) in their prelim-
inary study examining the feasibility of probing molecular genetic variables corre-
sponding to individual differences in personality and linked social traits, in this case
a variant of the promoter gene coding for the oxytocin receptor, and simultaneously
surveying their real world behavior as reflected by the myriad different ways and
purposes for which they used their phones over the course of the day.

The proliferation of touchscreen smartphones with software keyboards has, at
least for the time being, tilted the balance of telecommunications in favor of typed
rather than spokenmessages (Shropshire 2015). Combined with the data provided by
a phone’s accelerometer, gyroscope, and screen pressure sensors, keystroke dynamics
can be used to build mathematical models of a person’s mood and cognition based
only on how, and not what, they type.

Voice itself, of course, remains a valuable instrument for gaining insight into the
speaker’s mood state, andwill only continue to becomemore so as the tide eventually
turns toward speech-based interactionswith both intelligent voice assistants and other
human users of connected devices. Using similar statistical modeling and machine
learning techniques, the acoustic features of speech are just aswell-suited for analysis
as typing kinematics (Cummings and Schuller 2019).

As more and more computing comes to be offloaded from personal devices to
Internet of Things (IoT) devices and the cloud, and ambient computing becomes
the norm, we expect that techniques like keystroke analysis will be supplanted by
speech meta-feature analysis, facial emotional recognition (for more information
on FER software, see Chap. 3 by Wilhelm and Geiger in this book), and altogether
novel passive mood sensing tools. For the present time, being aware of the increasing
ubiquity of algorithms and their influence on data analytics, digital architectures and
digital societies (Dixon-Román 2016), as well as mindful of the absence of a codified
analog for the Hippocratic Oath in the current practice of artificial intelligence in
medicine as well as other applications (Balthazar et al. 2018), we nevertheless stand
to learn a great deal from leveraging currently used input methods to derive models
for sensing users’ inner states.



234 F. Hussain et al.

13.2 Mobile Typing Kinematics

In the first known study of its kind, researchers from the University of Illinois at
Chicago (UIC), the University of Michigan, the Politecnico di Milano, Tsinghua
University and Sun Yat-sen University used passively obtained mobile keyboard
usage metadata to predict changes in mood state with significant degrees of accu-
racy. The team recruited subjects from the Prechter Longitudinal Study of Bipolar
Disorder at the University of Michigan as part of the BiAffect-PRIORI consortium
for its pilot study based on an Android mobile keyboard and associated app. After
winning the grand prize in the Mood Challenge supported by Apple and sponsored
by the New Venture Fund of Robert Wood Johnson Foundation, UIC is currently
conducting a full-scale study on the iOS platform using an app based on the open
source ResearchKit mobile framework, enrolling both people with bipolar disorder
as well as healthy controls from the general population.

The BiAffect study (https://www.biaffect.com/) involves the installation of a
companion app containing a custom keyboard that is cosmetically similar to the stock
system keyboard. The app includes mood surveys; self-rating scales; and active tasks
such as a the go/no-go task and the trail-making test (part B) to measure reaction
time, response inhibition, and set-shifting as part of executive functioning—all over-
lapping domains of cognition identified by Bourne and colleagues (2013) to be the
most affected in bipolar disorder.

All data collected by the app and keyboard are first encrypted and then transmitted
and stored on secure study servers; these were hosted at UIC for the Android pilot
app, whereas study management services are being supported by Sage Bionetworks
for the ongoing iOS study with the data being hosted on their Synapse platform. The
Android pilot phase,which has concluded data collection, involved the keyboard, trail
making test, Hamilton Depression Rating Scale (HDRS), YoungMania Rating Scale
(YMRS), and slider-based daily self-rating scales for mood, energy, impulsiveness,
and speed of thoughts; the main iOS study included each of these [with the notable
substitution of the clinician-rated HDRS and YMRS with the self-reported Patient
Health Questionnaire (PHQ) and the Altman Mania Rating Scale, respectively] as
well as a daily self-rating scale querying ability to focus, and the aforementioned
reaction time task. Metadata collected for keyboard usage include timestamps asso-
ciated with each keystroke, residence time on each key, intervals between successive
keystrokes, and accelerometer readings over the course of all active typing sessions.
The actual character corresponding to any given keypress is not recorded, apart
from noting whether it was a backspace, alphanumeric, or symbol key. In addition
to backspace usage, instances of autocorrection and autosuggestion invocations are
also logged.

Table 13.1 summarizes the literature that has been published thus far based on
analyses of data collected during the pilot phase of the study, which included 40
participants—between 9 and 20 ofwhose datawere used for any given one depending
on the number of days of metadata logged, diagnosis of the participant, and other
requirements; up to 1,374,547 keystrokes and 14,237,503 accelerometer readings

https://www.biaffect.com/
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Table 13.1 A summary of analyses published by researchers using data from the BiAffect study

Author Analytical technique Predictors used Main findings

Zulueta
et al.
(2018)

Linear mixed-effects models
(Preferred over ANOVA in
settings where measurements
are made on clusters of
related statistical units due to
advantages in dealing with
missing values)

Average
inter-key delay,
backspace
ratio,
autocorrect
rate, circadian
baseline
similarity,
average
accelerometer
displacement,
average
session length,
and session
count

Keystroke activity was predictive of
depressive, and to a lesser extent,
manic symptoms. Specifically,
accelerometer displacement,
average inter-key delay, session
count, and autocorrect rate were
positively correlated with the HDRS
scores, whereas accelerometer
displacement was positively
correlated and backspace rate
negatively correlated with YMRS
scores

Stange
et al.
(2018)

Multilevel models to evaluate
predictiveness of instability
metrics computed using the
root mean square successive
difference
(Specific models for each level
of multilevel data, thereby
modeling the
non-independence of
observations due to cluster
sampling)

Instability of
EMA affective
ratings and
daily typing
speed

Greater instability of mood during
baseline EMA was predictive of
future depressive symptoms, while
instability of energy predicted future
manic but not depressive symptoms.
Instability of typing speed predicted
prospective depressive but not
manic symptoms. Models built
using data gathered during only
5–7 days were as reliable and
predictive as those assessing
instability over longer time periods

Cao
et al.
(2017)

Comparison of late fusion
based DeepMood LSTM-type
GRU ML architecture with a
multi-view RNN machine
layer, factorization machine
layer, or conventional fully
connected layer against early
fusion approaches
(Recurrent connections
between machine learning
layers allow modeling of
nonlinear time series that,
after training on sufficient
data, can solve problems with
prolonged temporal
dependencies, such as
linguistic, semantic, and topic
inference tasks.)

Multiple
representative
views of the
features of
each typing
session such as
alphanumeric
characters,
special
characters, and
accelerometer
values

Healthy people showed a wider
range of variability in the time
intervals between successive
alphanumeric keypresses than
people who were experiencing a
mood disturbance. People in a
manic state tend to hold down a
keypress longer than people in a
stable mood state, while depressed
people pressed down on keys for
shorter than average durations. The
DMVM and DFM based
architectures were the most
predictive of depression scores, with
prediction performances of 90.31%
and 90.21%, respectively

(continued)
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Table 13.1 (continued)

Author Analytical technique Predictors used Main findings

Huang
et al.
(2018)

dpMood ML architecture
based on early fusion, stacked
CNNs to capture local typing
dynamics and RNNs to
capture temporal dynamics,
and final predictions based on
individual circadian
calibrations
(More typically employed in
computer vision models,
CNNs outperform shallow
architectures when predicting
mental health related aspects
from multiple data streams,
while reaching at least
comparable performance
levels as predesignated
architectures.)

Metadata for
alphanumeric
characters,
including
duration of
keypress, time
since last
keypress,
distance from
the center of
the last pressed
key along both
axes, and
corresponding
accelerometer
values during
active sessions

The proposed dpMood architecture
incorporating CNNs, RNNs, early
fusion and time-based calibration
taken together outperformed any
individual approach alone or in
combination with just a few others.
The integrated analysis of local
patterns and temporal dependencies
allowed for the isolation of
variations in keyboard usage at
different times of the day and from
day to day over the course of the
week, and the personalized
calibration was sensitive enough to
be able to distinguish between
healthy controls and subjects with
type I and type II bipolar disorder

Vesel
et al.
(2020)

Growth curve mixed-effects
(multilevel) models in R and
lme4 using maximum
likelihood fitting
(R version 3.6.1; R
Foundation for Statistical
Computing, Vienna, Austria;
lme4 version 1.1-21)

Examined
dependent
variables of
session-level
typing speed,
typing
variability,
typing
accuracy, and
session
duration and
their
relationship to
other
session-level
features and
demographics

More severe depression relates to
more variable typing speed (P <
0.001), shorter session duration (P <
0.001), and lower accuracy (P <
0.05). Additionally, typing speed
and variability exhibit a diurnal
pattern, being fastest and least
variable at midday. Older users
exhibit slower and more variable
typing, as well as more pronounced
slowing in the evening. The effects
of aging and time of day did not
impact the relationship of mood to
typing variables

Ross
et al.
(2021)

Longitudinal mixed-effects
models (with maximum
likelihood estimator fitting)
were used to analyze daily
digital trail-making test, part
B (TMT-B) performance as a
function of typing and mood
(All analyses were conducted
in R version 3.6.3; R Core
Team 2020)

Keypress
metadata,
paper and
digital TMT-B
completion
times, and
Hamilton
Depression
Rating Scale
scores

Participants who typed slower took
longer to complete dTMT-B, with
this trend also being seen in
individual fluctuations in typing
speed and dTMT-B performance.
Participants who were more
depressed completed the dTMT-B
slower than less depressed
participants

(continued)
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Table 13.1 (continued)

Author Analytical technique Predictors used Main findings

Zulueta
et al.
(2021)

Two random forest regression
models were trained using the
caret and randomForest
packages for R
(All statistical testing was
performed in R version 4.0.0)

Features
derived from
the smartphone
kinematics
were used to
train random
forest
regression
models to
predict age

Smartphone kinematics were
successfully used to predict
chronological age. The absolute
prediction error tended to be lower
for participants with positive
screens than those with negative
screens, whereas the raw prediction
error tended to be lower for
participants with negative screens
than those with positive screens

Abbreviations EMA ecological momentary assessment; HDRS Hamilton Depression Rating Scale;
YMRS Young Mania Rating Scale; LSTM long short-term memory; GRU gated recurrent unit;
ML machine learning; DMVM DeepMood multi-view machine; DFM DeepMood factorization
machine; DNN DeepMood neural network; CNN convolutional neural network; RNN recurrent
neural network

across 37,647 sessions were incorporated into some of the resulting models. Data
collection for the main arm of the study is ongoing and has already resulted in over
8000 cumulative hours of active typing sessions culled from across hundreds of users.

Zulueta and colleagues (2018) built mixed-effects linear models to correlate
keyboard activitymetadata during the week precedingwhen each pair of mood rating
scales was administered to the corresponding HDRS and YMRS scores. A represen-
tative sampling of these metadata over several weeks from one study participant is
illustrated in Fig. 13.1, while Fig. 13.2 compares the scores predicted by thesemodels
against actual scores for both mood scales. Autocorrect rates were positively corre-
lated with depression scores, probably because error-awareness becomes impaired
when depressed (Fig. 13.3a). Backspace usage rate was found to be negatively corre-
lated with higher mania scores, possibly because it is reflective of decreased self-
monitoring and impaired response inhibition (Fig. 13.3b). Accelerometer activity
was positively correlated with both depression and mania scores, possibly because
study subjects were experiencing depression with mixed features or agitated/irritable
depression. The trail making test, which consists of circles with alternating consec-
utive numbers and/or letters that respondents are directed to connect in the correct
order, is a standard neuropsychological assessment that measures processing speed
and task-switching,which are both good indicators of cognitive functioning; Fig. 13.4
shows how typing kinematics data were just as predictive as trail making test results
at establishing cognitive ability.

Stange et al. (2018) took a different approach by constructing multilevel models
based on instability metrics calculated for EMA ratings and daily typing speeds
(Fig. 13.5) using the root mean square of the successive differences (rMSSD)—a
time-domainmeasure that takes into account themagnitude, frequency, and temporal
order of intra-user fluctuations (Ebner-Priemer et al. 2009). Greater instability in
baseline mood EMA ratings was significantly predictive of elevated future symp-
toms of both depression (Fig. 13.6a) and mania, whereas instability in energy ratings
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Fig. 13.1 An example of the deep personalized sensing possible with BiAffect showing the number
of keystrokes, corresponding accelerometer readings, and the time between successive keypresses
logged for an individual participant over the duration of the pilot study phase. Adapted from Zulueta
et al. (2018)

was predictive of future mania but not depression; other affective EMA ratings were
not found to be significantly predictive of either. Typing speed instability was predic-
tive of elevated prospective symptoms of depression (Fig. 13.6b) but not of mania.
Interestingly, as little as one week of data provided levels of predictiveness compa-
rable to data collected over durations of time longer than 5–7 days, perhaps because
this time period is a representative enough snapshot to capture day-to-day typing
variability (Fig. 13.7). Turakhia and colleagues (2019) have subsequently gone on
to demonstrate the feasibility of exploiting variability in similar irregular noncontin-
uous datastreams to identify, predict, and prevent potential serious episodes—atrial
flutters and fibrillations in the case of their app- and wearable-based study on cardiac
arrhythmia.
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Fig. 13.2 Mixed effects modeling accounted for 63% of the variability of Hamilton Depression
Rating Scale scores (Conditional R2 = 0.63, Marginal R2 = 0.41,χ2

7 = 17.6, P= 0.014). Ordinary
least squares modeling accounted for 34% of the natural log of Young Mania Rating Scale scores
(Multiple R2 = 0.34, Adjusted R2 = 0.26, F7,56 = 4.1, P = 0.0011) Adapted from Zulueta et al.
(2018)

Cao and colleagues (2017) were among the first to model keystroke dynamics
data using deep learning. Their method, DeepMood, consisted of comparing the
predictive performance of a multi-view machine layer architecture (Fig. 13.8) to
that of other late fusion approaches such as factorization and conventional fully
connected layers as well as early fusion strategies like tree boosting systems, linear
support vector machines, and logistic ridge regression models. For the uninitiated,
a review on current applications of deep neural networks in the field of psychi-
atry by Durstewitz et al. (2019) may serve as a primer. DeepMood’s early fusion
approaches align each of the data views—alphanumeric characters, special charac-
ters, and accelerometer values—with their associated timestamps (Fig. 13.9), and
then immediately concatenate the multi-view time series per session. However, this
does not take into proper account unaligned features in certain views, such as special
characters, that do not have corresponding data points from other views like accelera-
tion or inter-key distance. This shortcoming is addressed by the late fusion approach,
in which each of the multi-view series is first modeled separately by a recurrent
neural network (RNN), and then fused in the next stage by analyzing first-, second-,
and third-order interactions between each view’s output vectors. Cao and colleagues
established that their late fusion approach significantly outperformed early fusion
in the ability to predict mood disturbances and their severity (Fig. 13.10), with the
multi-view machines demonstrating the highest rate of accuracy at 90.31% followed
by the factorization machines at 90.21%.

In a subsequent analysis, Huang et al. (2018) found that an early fusion approach
integrating both convolutional and recurrent deep architectures and incorporating
users’ circadian rhythms allowed their model, dpMood, to attain even greater predic-
tive performance as well as make more precise personalized mood predictions
that took into fuller account an individual’s biological clock and unique typing
patterns. Their approach consisted of using convolutional neural networks (CNNs)
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Fig. 13.4 Comparison of the predictiveness of keystroke data with that of trail making test results
for assessing cognitive ability. Processing speed, as measured by trail taking test (part A) scores,
was significantly correlated with average interkey delay (i.e., time since last key, r= 0.5, p < 0.001)
and keys/second (r=−0.54, p < 0.001). Set shifting, as measured by trail taking test (part B) scores,
was highly associated with average time since last key (r = 0.68, p < 0.00001) and keys/second (r
= −0.62, p < 0.00001). Adapted from Zulueta et al. (2018)

that focused on temporal dynamics to analyze local features in typing kinematics
over small periods of time, in conjunction with a special type of RNN called a gated
recurrent unit (GRU) tomodel longer-term time-related dynamics (Fig. 13.11).GRUs
address the vanishing gradient problem—the inherent inability of simpler RNNs to
effectively learn those parameters that only cause very small changes in the neural
network’s output—and moreover have fewer parameters than comparable ameliora-
tive approaches, allowing them to perform better on smaller datasets (Cho et al. 2014)
such as the keystroke kinematics collected by BiAffect. This early fusion approach
allowed for the alignment of features frommultiple views to include additional infor-
mation about temporal relationships between these data points that would otherwise
be lost in late fusion models. In the final analysis, the proposed dpMood architec-
ture with the best predictive performance and the lowest regression error rate was
the one that made combined use of both CNNs and RNNs to learn local patterns as
well as temporal dependencies, learned each user’s individual circadian rhythm, and
retained accelerometer values that had no contemporaneous alphanumeric keypresses
by filling the unaligned alphanumeric features with zero values instead of dropping
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(a)

(c)

(b)

Fig. 13.5 An individual participant’s a self-rated ecological momentary assessment scores, b
passively collected daily typing speeds and c baseline and future course of depression symptom
severity. Adapted from Stange et al. (2018) and reproduced with permission from the publisher

(a) (b)

Fig. 13.6 Comparison of actual scores with those predicted by multilevel instability models for
an individual participant’s a Hamilton Depression Rating Scale and b Young Mania Rating Scale.
Adapted from Stange et al. (2018) and reproduced with permission from the publisher

unaligned accelerometer values altogether. Accelerometric and time-based analyses
elucidated both daily (Figs. 13.12 and 13.13) and hourly (Fig. 13.14) variations
in keyboard use, with the notably smaller Z-axis accelerations that help pinpoint
when a phone is being typed on from a supine position having been observed
more predominantly in the evenings (Fig. 13.14c) and on weekends (Fig. 13.13d).
Modeling individuals’ circadian rhythms as a sine function with parameters automat-
ically learned by gradient descent algorithms and backpropagation resulted in one of
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(a)

(b)

Fig. 13.7 a Reliability of active and passive assessments of instability depending on number of
days of assessment. b Predictive utility of active and passive assessments of instability depending on
number of days of assessment. Adapted from Stange et al. (2018) and reproduced with permission
from the publisher

Fig. 13.8 DeepMood machine learning architecture with a multi-view machine layer for late data
fusion. Adapted from Cao et al. (2017)
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Fig. 13.9 A representative sample of the multi-view metadata collected in a time series. Adapted
from Cao et al. (2017) and reproduced with permission from the publisher

Fig. 13.10 Comparison of
the improvements in
accuracy of different
DeepMood architectural
approaches over the course
of successive training
epochs. Adapted from Cao
et al. (2017) and reproduced
with permission from the
publisher
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Fig. 13.11 dpMood machine learning architecture based on early data fusion stacked CNNs
and GRUs, and time-based calibrations.Adapted from Huang et al. (2018) and reproduced with
permission from the publisher

these parameters conspicuously clustering based on the subjects’ diagnoses, permit-
ting dpMood to successfully classify users as participants with bipolar I disorder,
those with bipolar II disorder, or healthy controls (Fig. 13.15). These sophisticated
techniques can combine to provide extraordinarily insightful mood-sensing tools to
users and precision medicine practitioners alike.

Preliminary analysis of study participants’ performance on the go/no-go task has
indicated that reaction times vary both within and between individuals (Fig. 13.16a)
as well as continue to change over time (Fig. 13.16b); variations in daily typing
patterns in BiAffect users have been found to correlate with their performance on the



13 Passive Sensing of Affective and Cognitive … 245

Fig. 13.12 Distribution of daily typing hours visualized as a 7 day × 24 h matrix. Adapted from
Huang et al. (2018) and reproduced with permission from the publisher

go/no-go task, and concurrent analyses of both data streams are now under way to
examine their interrelationships and interactions with mood and cognition as well.

Vesel and colleagues (2020) investigated the effects of mood, age, and diurnal
patterns on intraindividual variability (IIV) in typing behaviors recorded in the iOS
dataset, correlated against participants’ responses to the PHQ. Interkey delay (IKD)
was calculated as the time difference between 2 consecutive keypresses and analysis
was restricted to only IKDs between character-to-character keypress events; typing
speed of a session was operationally inferred using the median IKD of that session.
Typing variability at the session level was quantified using the median absolute
deviance of IKDs. Typing mode (the use of one or two hands when typing) was
classified using a novel approach utilizing linear regression. Growth curve mixed-
effects (multilevel) models were established using maximum likelihood fitting to
examine dependent variables of session-level typing speed, typing variability, typing
accuracy, and session duration and their relationship to other session-level features
and demographics (Fig. 13.17).

It was established that typing speed exhibits slowing with age, while pausing
between typing and variability in typing speed increase with age. The relationship
between keystroke dynamics features and mood was supported by the significantly
higher variability in IKDs observed with more severe depression, consistent with
reported findings of higher IIV in task performance in mood disorders. Typing accu-
racy, as encoded using session-level autocorrect rates, was also found to decrease in
more depressed individuals. Finally, sessions corresponding to elevated depressive
symptoms were found to be shorter in duration, suggesting a decrease in smartphone
keyboard use during more severe depression.

Ross et al. (2021) evaluated the efficacy of using smartphone typing dynamics
along with mood scores in cognitive assessment as an adjunct to formal in-person
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(a) (b)

(c) (d)

Fig. 13.13 Day-to-day fluctuations over the course of a week in a duration of a keypress, b
time between successive keypresses, c acceleration along Y-axis, and d acceleration along Z-axis.
Adapted from Huang et al. (2018) and reproduced with permission from the publisher

neuropsychological assessments through trail making tests. In addition to using the
Android pilot app keyboard, participants were administered the pencil-and-paper
version of the trail-making test, part B (pTMT-B) at the beginning and end of the
study, as well as completed digital TMT-Bs (dTMT-B) throughout the study on their
smartphones, and responded to the Hamilton Depression Rating Scale (HDRS) and
Young Mania Rating Scale (YMRS) over the course of weekly phone interviews.
For analysis, time windows were selected such that each consisted of one dTMT-B,
one HDRS-17 score, and multiple keypresses, as shown in Fig. 13.18.

Intraclass correlations between the digital and paper-based forms of TMT-B were
calculated to assess the consistency between both modalities. Comparison of the first
dTMT-B to paper TMT-B showed adequate reliability. Longitudinal mixed-effects
models were then used to analyze daily dTMT-B performance as a function of typing
and mood. Participants who typed slower were observed to take longer to complete
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(a) (b)

(c)

Fig. 13.14 Circadian rhythm mediated fluctuations in a duration of a keypress, b time between
successive keypresses, and c acceleration along Y- and Z-axes. Adapted from Huang et al. (2018)
and reproduced with permission from the publisher

(a) (b)

Fig. 13.15 Visualizations of each individuals’ calibration sine functions for a HamiltonDepression
Rating Scale scores and b Young Mania Rating Scale scores. Adapted from Huang et al. (2018) and
reproduced with permission from the publisher
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Fig. 13.16 A Go/no-go reaction time varies between and within individuals. b Average reaction
time changes over the course of time
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Fig. 13.17 Overview of BiAffect data collection and feature extraction process. a Keypress-level
typingmetadata are collected via the BiAffect keyboard and stored by Sage Bionetworks. b Interkey
delays for keypress transitions from character to character are aggregated at a session level to
compute median absolute deviance alongside typing accuracy and session duration. c An example
for the hourly typing activity over multiple days from 2 active users is presented as an illustration
of the potential patterns captured via continuous, unobtrusive collection. The blue dashed line
highlights the different levels of activity at night, with user B exhibiting a more irregular activity
pattern than user A. Size of the marker is proportional to the number of characters typed per hour

dTMT-B. This trend was also seen in individual fluctuations in typing speed and
dTMT-B performance (Fig. 13.19).Moreover, participants whoweremore depressed
completed the dTMT-B slower than less depressed participants (Fig. 13.20).

Depression severity was associated with the dTMT-B time at both the inter- and
intrasubject level. Participants who were more depressed completed dTMT-B more
slowly than participants who were not depressed. Typing speed was also associated
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Fig. 13.18 Schematic outlining how keypresses were assigned to each digital trail making test part
B (dTMT-B) to account for missing data

Fig. 13.19 Digital trail-making test part B completion time as a function of grand mean centered
(a) and subject centered (b) typing speed with ribbons showing the 95th confidence interval

with the dTMT-B at both inter- and intrasubject levels. Faster typists completed the
dTMT-B more quickly than slower typists. Participants’ individual fluctuations in
typing speed reflected their fluctuations in dTMT-B over the course of the study.
A diagnosis of bipolar disorder was found to be a significant predictor of dTMT-B
completion time, after controlling for depression score and typing speed.

Zulueta et al. (2021) analyzed participants’ responses to the Mood Disorders
Questionnaire (MDQ) and self-reported birth year against Features derived from the
smartphone kinematics, which were used to train random forest regression models
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Fig. 13.20 Digital trail-making test part B completion time as a function of grand mean centered
(a) and subject centered (b) Hamilton Depression Rating Scale score with ribbons showing the 95th
confidence interval

to predict age. Data were split into training and validation sets (75:25). Two random
forest regression models were trained using the caret and randomForest packages
for R. The mtry value which minimized the Root Mean Square Error (RMSE) was
selected as the value used in the final models. The models were constructed in a
stepwise fashion with the first model including only typing related features, and the
second model included all features from the first with the addition of gender and
MDQ screening status. Each model’s performance was assessed using the validation
set to calculate RMSE, Breiman’s pseudo R-squared, and median absolute error.
Differences in model performance testing were assessed using pairedWilcoxon tests
of their absolute errors. Feature importance was assessed using out-of-bag changes
in Mean Square Error (MSE). Accumulated Local Effects plots (ALE Plots) were
constructed for features which appeared important or interesting. Differences within
model performance between participants based onMDQ screen status were assessed
using Wilcoxon tests comparing raw prediction error scores and absolute prediction
error scores.

Compared to participants with positive MDQ screens, participants with negative
screens had a lower rate of reporting a diagnosis of bipolar disorder, a higher rate
of reporting no history of bipolar disorder, and also provided no diagnosis history
at a lower rate. The participants with negative screens tended to have lower MDQ
scores comparted to those with positive screens and have a greater total number
of keypresses. Plots A–D of Fig. 13.21 depict the ALE plots of four of the most
important features: the median of mean interkey times, the mean session length, the
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Fig. 13.21 Accumulated Local Effects plots for the second model. a–b Depict the effects of
individual features on age prediction. e, f depict the interaction of the two indicated effects on
age

sample entropy of the backspace rate, and the mean backspace rate. Many of the
most important features are different summaries of the same essential feature (e.g.,
interkey time). Based on these plots, increased interkey time and session length are
both generally associated with increased age; whereas, increased sample entropy of
the backspace rate is associated with younger age, and the association between age
and the mean backspace rate is not monotonic. Plots E and F of Fig. 13.21 depict the
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interaction between the median of mean interkey times and the mean session length
and between the mean backspace rate and the sample entropy of the backspace rate,
respectively. In these plots, it is observed that the existence and directionality of linear
trends between the predicted age and these features both depend on the range of a
second associated feature, highlighting the complexity of the relationship between
typing behaviors and predicted age.

The tendency to underestimate the chronological age of participants screening
negative for bipolar disorder compared to those screening positive is consistent with
the finding that bipolar disorder may be associated with brain changes that could
reflect pathological aging. This interesting result could also reflect that those who
screen negative for bipolar disorder andwho engaged in the studyweremore likely to
have higher premorbid functioning. This work demonstrates that age-related changes
may be detected via a passive smartphone kinematics based digital biomarker.

13.3 Speech Dynamics

Research on keystroke kinematics was inspired by the work of colleagues at the
University of Michigan’s Heinz C. Prechter Bipolar Research Program on the
Predicting Individual Outcomes for Rapid Intervention (PRIORI) project, which is
based on analyzing voice patterns in participants enrolled in the longest longitudinal
research study of bipolar disorder; BiAffect aims to infer mood from typingmetadata
just as PRIORI does from the acoustic meta-features of speech. Participants were
enrolled in the PRIORI study for an average of 16 to 48 weeks and were provided
a rooted Android smartphone with a preinstalled secure recording application that
captured audio of the participant’s end of every phone call. Study staff called partic-
ipants weekly to administer HDRS and YMRS mood assessments; these calls were
labeled separately from personal calls. The dataset has accumulated over 52,000
recorded calls totaling above 4,000 h of speech from 51 participants with bipolar
disorder and 9 healthy controls.

Karam et al. (2014) used a support vector machine (SVM) classifier to perform
participant-independent modeling of segment- and low-level features extracted by
the openSMILE audio signal processing toolkit, and were able to separate euthymic
speech from hypomanic and depressed speech using an average of 5 to 8 judiciously
selected features. In a later study, Gideon et al. (2016) used a declipping algorithm
to approximate the original audio signal, and performed noise-robust segmentation
to improve inter-device audio recording comparability. Rhythm features were clas-
sified using multi-task SVM analysis, then transformed into call-level features, and
finally Z-normalized either globally or individually by subject. Declipping and SVM
classification was found to increase the performance of manic but not depressive
predictiveness,whereas segmentation andnormalization significantly increased both.
Khorram et al. (2016) captured subject-specific mood variations using i-vectors, and
utilized a speaker-dependent SVM to classify both these i-vectors as well as rhythm
features. Fusion of the subject-specificmodel—using unlabeled personal calls—with
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a population-general system enabled significantly improved predictive performance
for depressive symptoms compared to the earlier approach used by Gideon and
colleagues (2016). Khorram et al. (2018) went on to develop an ‘in the wild’ emotion
dataset collating valence and activation annotations made by human raters drawing
only upon the acoustic characteristics, and not the spoken content, of recordings from
both personal and assessment calls.

Ongoing analyses, confounding challenges, and proposed solutions related to
voice analysis have been outlined in a concise review by the PRIORI team (McInnis
et al. 2017); their current focus is to isolate elements in the speech signal that aremost
strongly correlated with incipient disturbances in mood, enabling the development
of on-device analytical systems without compromising limited mobile phone battery
life.

13.4 Future Directions

The eventual goal of these projects is to be able to generate an early warning signal
when changes in users’ patterns of typing, speech, and behavior identify them to be
at risk for an imminent manic or depressive episode. This would allow for just-in-
time adaptive interventions that can circumvent or at least minimize the acuteness
of the episode and any resulting cases of hospitalization, medication adjustment, or
self-harm (Rabbi et al. 2019).

It has not escaped our attention that these passive sensing techniques can have
applications in conditions other than bipolar disorder and indeed beyond just mood
disorders; we have been investigating the use of a voice-enabled intelligent agent that
are responsive to users’ mood in order to provide emotionally aware education and
guidance to patients with comorbid diabetes and depression (Ajilore 2018), as well as
exploring the effectiveness of keystroke dynamics modeling in disparate conditions
ranging from neurodegenerative processes such as Alzheimer’s disease to cirrhotic
sequelae such as hepatic encephalopathy.

The BiAffect keyboard has not only proven extremely adept at enabling digital
phenotyping of its users’ affective and cognitive states, but is also sensitive enough to
their unique typing patterns that it can serve as an effective behavior-based biometric
user identification and authentication tool. Sun et al. (2017) created DeepService, a
multi-view multi-class deep learning method which is able to use data collected by
the BiAffect keyboard to identify users with an accuracy rate of over 93% without
using any cookies or account information. Until recently, the use of keystroke kine-
matics in hardware personal computer keyboards had been limited to similar contin-
uous authentication applications, but physical keyboard sensing techniques are now
expanding in scope to include identifying and measuring digital biomarkers as well
(Samzelius 2016).

Mindful of the myriad potential concerns related to user privacy, data security
and ethical implications inherent in the mass development and deployment of such
applications, as well as in drawing conclusions based on findings generated using a
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relatively small number of smartphone users from a handful of geographic regions
(Lovatt and Holmes 2017; Martinez-Martin and Kreitmair 2018), and remaining
particularly cognizant of the clinical imperative to only use those methods informed
by established transtheoretical frameworks—the overarching lack ofwhichmay have
led to the current replication crisis in psychology and themedical sciences (Muthukr-
ishna and Henrich 2019)—the research teams investigating BiAffect data streams
have endeavored to adopt a deliberately paced approach that harmonizes the latest
developments in cognitive science, psychological theory, nosology, and treatment
with state-of-the-art deep learning techniques and statistical methods. By paying
close attention to safeguarding the individual privacy and protected health informa-
tion of its users, and by adopting the most transparent possible model of sharing
research techniques and findings in order to prioritize the use of digital phenotyping
data for ethical medical applications, the BiAffect platform has been built on the twin
paradigms of open source and open science as an invitation to collaborators from
around the world to replicate, validate, amend or correct our hypotheses.

Perhaps one day we will all sport brain scanning ski caps that tell us how we
feel, and install BCI implants to communicate wordlessly with our gadgets and with
one another, while our IoT devices infer our emotions by analyzing our behavior
at a distance; in the meantime, there is already no dearth of data streams readily
available for passively mining users’ mood, cognition, and much more with greater
preservation of privacy and potential for predictiveness.
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