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Abstract In Itô-diffusion environments, we introduce and analyze N-player and

common-noise mean-field games in the context of optimal portfolio choice in a

common market. The players invest in a finite horizon and also interact, driven either

by competition or homophily. We study an incomplete market model in which the

players have constant individual risk tolerance coefficients (CARA utilities). We

also consider the general case of random individual risk tolerances and analyze the

related games in a complete market setting. This randomness makes the problem

substantially more complex as it leads to (N or a continuum of) auxiliary “individual”

Itô-diffusion markets. For all cases, we derive explicit or closed-form solutions for

the equilibrium stochastic processes, the optimal state processes, and the values of

the games.

1 Introduction

In Itô-diffusion environments, we introduce N-player and common-noise mean-field

games (MFGs) in the context of optimal portfolio choice in a common market.

We build on the framework and notions of [12] (see, also, [11]) but allow for a

more general market model (beyond the log-normal case) and, also, consider more

complex risk preferences.

The paper consists of two parts. In the first part, we consider a common incomplete

market and players with individual exponential utilities (CARA) who invest while

interacting with each other, driven either by competition or homophily. We derive

the equilibrium policies, which turn out to be state (wealth)-independent stochastic
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processes. Their forms depend on the market dynamics, the risk tolerance coeffi-

cients, and the underlying minimal martingale measure. We also derive the optimal

wealth and the values of both the N-player and the mean-field games, and discuss

the competitive and homophilous cases.

In the second part, we assume that the common Itô-diffusion market is complete,

but we generalize the model in the direction of risk preferences, allowing the risk

tolerance coefficients to be random variables. For such preferences, we first analyze

the single-player problem, which is interesting in its own right. Among others, we

show that the randomness of the utility “distorts” the original market by inducing

a “personalized” risk premium process. This effect is more pronounced in the N-

player game where the common market is now replaced by “personalized” markets

whose stochastic risk premia depend on the individual risk tolerances. As a result, the

tractability coming from the common market assumption is lost. In the MFG setting,

these auxiliary individual markets are randomly selected (depending on the type

vector) and aggregate to a common market with a modified risk premium process.

We characterize the optimal policies, optimal wealth processes, and game values,

building on the aforementioned single-player problem.

To our knowledge, N-player games and MFGs in Itô-diffusion market settings

have not been considered before except in preprint [6]. Therein, the authors used

the same asset specialization framework and same CARA preferences as in [12]

but allowed for Itô-diffusion price dynamics. They studied the problem using a

forward-backward stochastic differential equation (FBSDE) approach. In our work,

we have different model settings regarding both the measurability of the coefficients

of the Itô-diffusion price processes and the individual risk tolerance inputs. We also

solve the problems using a different approach, based on the analysis of portfolio

optimization problems of exponential utilities in semi-martingale markets.

The theory of mean-field games was introduced by Lasry and Lions [13], who

developed the fundamental elements of the mathematical theory and, independently,

by Huang, Malhamé and Caines who considered a particular class [8]. Since then,

the area has grown rapidly both in terms of theory and applications. Listing precise

references is beyond the scope of this paper.

Our work contributes to N-player games and MFG in Itô-diffusion settings for

models with controlled processes whose dynamics depend linearly on the controls

and are state-independent, and, furthermore, the controls appear in both the drift

and the diffusion parts. Such models are predominant in asset pricing and in optimal

portfolio and consumption choice. In the context of the general MFG theory, the

models considered herein are restrictive. On the other hand, their structure allows us

to produce explicit/closed-form solutions for Itô-diffusion environments.

The paper is organized as follows. In Section 2, we study the incomplete market

case for both the N-player game and the MFG, and for CARA utilities. In Section 3,

we focus on the complete market case but allow for random risk tolerance coefficients.

In analogy to Section 2, we analyze both the N-player game and the MFG. We

conclude in Section 4.
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2 Incomplete Itô-diffusion common market and CARA utilities

We consider an incomplete Itô-diffusion market, in which we introduce an N-player

and a mean-field game for players who invest in a finite horizon while interacting

among them, driven either by competition or homophily. We assume that the players

(either at the finite or the continuum setting) have individual constant risk tolerance

coefficients. For both the N-player and the MFG, we derive in closed form the

optimal policies, optimal controlled processes, and the game values. The analysis

uses the underlying minimal martingale measure, related martingales, and their

decomposition.

2.1 The N -player game

Consider a probability space (Ω,F ,P) supporting two Brownian motions denoted

as (Wt,WY
t )t∈[0,T ], T < ∞, imperfectly correlated with the correlation coefficient

ρ ∈ (−1,1). We denote by (Ft )t∈[0,T ] the natural filtration generated by both W and

WY , and by (Gt )t∈[0,T ] the one generated only by WY . We then let (μt )t∈[0,T ] and

(σt )t∈[0,t] be Gt -adapted processes, with 0 < c ≤ σt ≤ C and |μt | ≤ C, t ∈ [0,T], for

some (possibly deterministic) constants c and C.

The financial market consists of a riskless bond (taken to be the numeraire and

with zero interest rate) and a stock whose price process (St )t∈[0,T ] satisfies

dSt = μtSt dt +σtSt dWt, S0 = s0 ∈ R+. (1)

In this market, N players, indexed by i ∈ I, I = {1,2, . . .,N }, have a common

investment horizon [0,T] and trade between the two accounts. Each player, say

player i, uses a self-financing strategy (πit )t∈[0,T ], representing (discounted by the

numeraire) the amount invested in the stock. Then, her wealth (X i
t )t∈[0,T ] satisfies

dX i
t = π

i
t (μt dt +σt dWt ) , X i

0 = xi ∈ R, (2)

with πi being an admissible policy, belonging to

A =
{
π : self-financing, F -progressively measurable

and EP

[∫ T

0

σ2
sπ

2
s ds

]
<∞
}
. (3)

As in [12] (see also [1, 4, 9, 10, 11, 20]), players optimize their expected terminal

utility but are, also, concerned with the performance of their peers. For an arbitrary

but fixed policy (π1, . . ., πi−1, πi+1, . . ., πN ), player i, i ∈ I, seeks to optimize
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V i (x1, . . ., xi, . . ., xN )

= sup
πi ∈A

EP

[
−exp

(
− 1

δi

(
X i
T − ciCT

)) �����X1
0 = x1, . . .,X i

0 = xi, . . .,XN
0 = xN

]
, (4)

where

CT :=
1

N

N∑
j=1

X j
T (5)

averages all players’ terminal wealth, with X j
T , j = 1, . . .,N , given by (2).

The parameter δi > 0 is the individual (absolute) risk tolerance while the constant

ci ∈ (−∞,1] models the individual interaction weight towards the average wealth of

all players. If ci > 0, the above criterion models competition while when ci < 0 it

models homophilous interactions (see, for example, [14]). The optimization criterion

(4) can be, then, viewed as a stochastic game among the N players, where the notion

of optimality is being considered in the context of a Nash equilibrium, stated below

(see, for example, [2]).

Definition 1 A strategy (π∗t )t∈[0,T ] = (π1,∗
t , . . ., π

N,∗
t )t∈[0,T ] ∈ A⊗N is called a Nash

equilibrium if, for each i ∈ I and πi ∈ A,

EP

[
−exp

(
− 1

δi

(
X i,∗
T − ciC∗T

)) �����X1
0 = x1, . . .,X i

0 = xi, . . .,XN
0 = xN

]
≥ EP

[
−exp

(
− 1

δi

(
X i
T − ciC

i,∗
T

)) �����X1
0 = x1, . . .,X i

0 = xi, . . .,XN
0 = xN

]
(6)

with

C∗T :=
1

N

N∑
j=1

X j,∗
T and Ci,∗

T :=
1

N
���

N∑
j=1, j�i

X j,∗
T + X i

T
�	
,

where X j,∗
T , j ∈ I, solve (2) with π j,∗ being used.

In this incomplete market, we recall the associated minimal martingale measure

Q
MM , defined on FT , with

dQMM

dP
= exp

(
−1

2

∫ T

0

λ2
s ds−

∫ T

0

λs dWs

)
, (7)

where λt :=
μt

σt
, t ∈ [0,T], is the Sharpe ratio process (see, among others, [5]). By

the assumptions on the model coefficients, we have that, for t ∈ [0,T], λt ∈ Gt and

|λt | ≤ K, (8)

for some (possibly deterministic) constant K . We also consider the processes

(W̃t )t∈[0,T ] and (W̃Y
t )t∈[0,T ] with W̃t = Wt +

∫ t

0
λs ds and W̃Y

t = WY
t + ρ

∫ t

0
λs ds,

which are standard Brownian motions under QMM with W̃t ∈ Ft and W̃Y
t ∈ Gt .
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Next, we introduce the QMM -martingale (Mt )t∈[0,T ],

Mt := EQMM

[
e−

1
2

(1−ρ2)
∫ T

0
λ2
s ds

����Gt ] . (9)

From (8) and the martingale representation theorem, there exists aGt -adapted process

ξ ∈ L2 (P) such that

dMt = ξt Mt dW̃Y
t = ξt Mt

(
ρdW̃t +

√
1− ρ2 dW⊥t

)
, (10)

where W⊥t is a standard Brownian motion independent of Wt appearing in the

decomposition WY
t = ρWt +

√
1− ρ2W⊥t .

In the absence of interaction among the players (ci ≡ 0, i ∈ I), the optimization

problem (4) has been analyzed by various authors (see, among others, [17, 18]). We

recall its solution which will be frequently used herein.

Lemma 1 (no interaction)
Consider the optimization problem

v(x) = sup
a∈A

EP
[
−e−

1
δ xT

���� x0 = x
]
, (11)

with δ > 0 and (xt )t∈[0,T ] solving

dxt = at (μt dt +σt dWt ) , x0 = x ∈ R, a ∈ A. (12)

Then, the optimal policy
(
a∗t
)
t∈[0,T ] and the value function are given by

a∗t = δ
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
, (13)

and

v(x) = −e−
1
δ xM

1

1−ρ2

0
= −e−

1
δ x
(
EQMM

[
e−

1
2

(1−ρ2)
∫ T

0
λ2
s ds

]) 1

1−ρ2

, (14)

with (ξt )t∈[0,T ] as in (10).

Proof We only present the key steps, showing that the process (ut )t∈[0,T ] ,

ut := −e−
1
δ xt
(
EQMM

[
e−

1
2

(1−ρ2)
∫ T

t
λ2
s ds

����Gt ])
1

1−ρ2

,

with u0 = v(x), x ∈ R, is a supermartingale for xt solving (12) for arbitrary α ∈ A
and becomes a martingale for α∗ as in (13). To this end, we write

ut = −e−
xt
δ M

1

1−ρ2

t eNt with Nt =
1

2

∫ t

0

λ2
u du,
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and observe that

dut = −ut
δ

dxt +
1

2δ2
ut d〈x〉t +ut dNt +

1

1− ρ2
ut
Mt

dMt

+
1

2(1− ρ2)

ρ2

1− ρ2
ut
M2

t

d〈M〉t − 1

δ(1− ρ2)

ut
Mt

d〈x,M〉t

= ut

(
−1

δ
at μt +

1

2

1

δ2
a2
t σ

2
t +

1

2
λ2
t +

ρ

1− ρ2 ξtλt +
ρ2

2(1− ρ2)2
ξ2t

− ρ

δ(1− ρ2)
atσt ξt

)
dt +ut

(
−1

δ
atσt dWt +

1

1− ρ2 ξt dWY
t

)

=
1

2
ut

(
−1

δ
σtat + λt +

ρ

1− ρ2 ξt
)2

dt +ut

(
−1

δ
atσt dWt +

1

1− ρ2 ξt dWY
t

)
.

Because ut < 0, the drift remains non-positive and vanishes for t ∈ [0,T] if and only

if the policy

a∗t = δ
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
is being used. Furthermore, a∗ ∈ A, as it follows from the boundedness assumption

on σ, inequality (8) and that ξ ∈ L2 (P) . The rest of the proof follows easily. �

Next, we present the first main result herein that yields the existence of a (wealth-

independent) stochastic Nash equilibrium.

Proposition 1 For δi > 0 and ci ∈ (−∞,1], introduce the quantities

ϕN :=
1

N

N∑
i=1

δi and ψN :=
1

N

N∑
i=1

ci, (15)

and
δ̄i := δi +

ϕN
1−ψN ci . (16)

The following assertions hold:

1. If ψN < 1, there exists a wealth-independent Nash equilibrium,
(
π∗t
)
t∈[0,T ] =(

π1,∗
t , . . ., π

i,∗
t , . . ., π

N,∗
t

)
t∈[0,T ]

, where πi,∗t , i ∈ I, is given by the Gt -adapted
process

πi,∗t = δ̄i
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
, (17)

with (ξt )t∈[0,T ] as in (10). The associated optimal wealth process
(
X i,∗
t

)
t∈[0,T ]

is

X i,∗
t = xi + δ̄i

∫ t

0

(
λu +

ρ

1− ρ2 ξu
)

(λu du+ dWu) (18)

and the game value for player i, i ∈ I, is given by
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V i (x1, x2, . . ., xN ) = −exp

(
− 1

δi
(xi − ci x̄)

)
M

1

1−ρ2

0

= −exp

(
− 1

δi
(xi − ci x̄)

) (
EQMM

[
e−

1
2

(1−ρ2)
∫ T

0
λ2
s ds

]) 1

1−ρ2

,

(19)

with x̄ = 1
N

∑N
i=1

xi .
2. If ψN = 1, then it must be that ci ≡ 1, for all i ∈ I, and there is no such wealth-

independent Nash equilibrium.

Proof We first solve the individual optimization problem (4) for player i ∈ I, taking

the (arbitrary) strategies (π1, . . ., πi−1, πi+1, . . ., πN ) of all other players as given. This

problem can be alternatively written as

vi ( x̃i) = sup
π̃i ∈A

EP

[
−exp

(
− 1

δi
x̃iT

) ����� x̃i0 = x̃i

]
, (20)

where x̃it := X i
t − ci

N

∑N
j=1

X j
t , t ∈ [0,T], solves

dx̃it = π̃
i
t (μt dt +σt dWt ) and x̃i0 = x̃i := xi − ci x̄.

From Lemma 1, we deduce that its optimal policy is given by

π̃i,∗t = δi
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

and thus the optimal policy of (4) can be written as

πi,∗t = δi
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
+

ci
N
���
∑
j�i

π
j
t + π

i,∗
t
�	
 . (21)

Symmetrically, all players j ∈ I follow an analogous to (21) strategy. Averaging over

j ∈ I yields

1

N

N∑
i=1

πi,∗t = ψN
1

N

N∑
i=1

πi,∗t +ϕN
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

with ψN and ϕN as in (15). If ψN < 1, the above equation gives

1

N

N∑
i=1

πi,∗t =
ϕN

1−ψN
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

and we obtain (17). The rest of the proof follows easily. �
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We have stated the above result assuming that we start at t = 0. This is without loss

of generality, as all arguments may be modified accordingly. For completeness, we

present in the sequel the time-dependent case, in the context of a Markovian market.

Remark 1 As discussed in [12, Remark 2.5], problem (4) may be alternatively and

equivalently represented as

V i (x1, . . ., xN )

= sup
πi ∈A

EP

[
−exp

(
− 1

δ′i

(
X i
T − c′iC

−i
T

)) �����X1
0 = x1, . . .,X i

0 = xi, . . .,XN
0 = xN

]
,

with C−iT := 1
N−1

∑N
j=1, j�i X j

T , and δi =
δ′i

1+ 1
N−1

c′i
and ci =

c′i
N−1
N +

c′
i

N

.

Remark 2 Instead of working with the minimal martingale measure in the incomplete

Itô-diffusion market herein, one may employ the minimal entropy measure, QME ,

given by

dQME

dP
= exp

(
−1

2

∫ T

0

(
λ2
s + χ

2
s

)
ds−
∫ T

0

λs dWs −
∫ T

0

χs dW⊥s

)
, (22)

where χt = −Z⊥t and
(
yt, Zt, Z⊥t

)
t∈[0,T ] solves the backward stochastic differential

equation (BSDE)

−dyt =
(
−1

2
λ2
t +

1

2
(Z⊥t )2− λt Zt

)
dt −
(
Zt dWt + Z⊥t dW⊥t

)
and yT = 0. (23)

The measures QME and QMM are related through the relative entropy H in that

−H (QME |P) = 1
1−ρ2 ln M0 (cf. [17]). We choose to work with QMM for ease of the

presentation.

From Lemma 1, we see that the Nash equilibrium process,

πi,∗t = δ̄i
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

resembles the optimal policy of an individual player of the classical optimal invest-

ment problem with exponential utility and modified risk tolerance, δ̄i . The latter

deviates from δi by

δ̄i − δi = ϕN
1−ψN ci .

In the competitive case, ci > 0, δ̄i > δi and their difference increases with ci ,
ϕN and ψN . At times t such that

λt

σt
+

ρ

1−ρ2

ξt
σt
> 0 (resp.

λt

σt
+

ρ

1−ρ2

ξt
σt
< 0), the

competition concerns make the player invest more (resp. less) in the risky asset than

without such concerns.

In the homophilous case, ci < 0, we have that δ̄i < δi . Furthermore, direct com-

putations show that their difference decreases with δi and each cj , j � i, while it
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increases with ci . In other words,

∂δ j

(
δ̄i − δi

)
< 0, ∀ j ∈ I, ∂c j

(
δ̄i − δi

)
< 0, ∀ j ∈ I� {i} , and ∂ci

(
δ̄i − δi

)
> 0.

At times t such that
λt

σt
+

ρ

1−ρ2

ξt
σt
> 0, the player would invest less in the risky asset,

compared to without homophilous interaction. This investment decreases if other

players become more risk tolerant (their δ′j s increase) or less homophilous (their c′j
s increase) or if the specific player i becomes more homophilous (ci decreases). The

case
λt

σt
+

ρ

1−ρ2

ξt
σt
< 0 follows similarly. The comparison between the competitive

and the homophilous case is described in Figure 1.

Fig. 1: The plot of δ̄i − δi versus ci and ψN , with N = 25 and ϕN = 6.

2.1.1 The Markovian case

We consider a single stochastic factor model in which the stock price process

(St )t∈[0,T ] solves

dSt = μ(t,Yt )St dt +σ(t,Yt )St dWt, (24)

dYt = b(t,Yt ) dt + a(t,Yt ) dWY
t , (25)

with S0 = S > 0 and Y0 = y ∈ R. The market coefficients μ,σ,a and b satisfy ap-

propriate conditions for these equations to have a unique strong solution. Further

conditions, added next, are needed for the validity of the Feynman-Kac formula in

Proposition 2.

Assumption 1 The coefficients μ,σ,a and b are bounded functions, and a,b have
bounded, uniformly in t, y-derivatives. It is further assumed that the Sharpe ratio
function λ(t, y) :=

μ(t,y)
σ(t,y)

is bounded and with bounded, uniformly in t, y-derivatives
of any order.

For t ∈ [0,T], we consider the optimization problem
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V i (t, x1, . . ., xi, . . ., xN, y) = sup
πi ∈A

EP

[
− exp

(
− 1

δi

(
X i
T − ciCT

)) ����
X1
t = x1, . . .,X i

t = xi, . . .,XN
t = xN,Yt = y

]
, (26)

with (X i
s)s∈[t,T ] solving dX i

s = μ(s,Ys)πis ds +σ(s,Ys)πis dWs and πi ∈ A, and CT

as in (5). We also consider the process (ζt )t∈[0,T ] with ζt := ζ (t,Yt ), where ζ :

[0,T]×R→ R+ is defined as

ζ (t, y) = EQMM

[
e−

1
2

(1−ρ2)
∫ T

t
λ2 (s,Ys ) ds ����Yt = y

]
.

Under QMM , the stochastic factor process (Yt )t∈[0,T ] satisfies

dYt = (b(t,Yt )− ρλ(t,Yt )a(t,Yt )) dt + a(t,Yt ) dW̃Y
t .

Thus, using the conditions on the market coefficients and the Feynman-Kac formula,

we deduce that ζ (t, y) solves

ζt +
1

2
a2(t, y)ζyy + (b(t, y)− ρλ(t, y)a(t, y))ζy =

1

2
(1− ρ2)λ2(t, y)ζ, (27)

with ζ (T, y) = 1. In turn, the function f (t, y) := 1
1−ρ2 ln ζ (t, y) satisfies

f t +
1

2
a2(t, y) fyy+ (b(t, y)− ρλ(t, y)a(t, y)) fy+

1

2
(1− ρ2)a2(t, y) fy2 =

1

2
λ2(t, y),

f (T, y) = 0. (28)

In the absence of competitive/homophilous interaction, this problem has been ex-

amined by various authors (see, for example, [18]).

Proposition 2 Under Assumption 1, the following assertions hold for t ∈ [0,T] .

1. If ψN < 1, there exists a wealth-independent Nash equilibrium
(
π∗s
)
s∈[t,T ]

=(
π1,∗
s , . . ., π

i,∗
s , . . ., π

N,∗
s

)
s∈[t,T ]

, where πi,∗s , i ∈ I, is given by the process

πi,∗s = πi,∗(s,Ys), (29)

with (Yt )t∈[0,T ] solving (25) and πi,∗ : [0,T]×R→ R defined as

πi,∗(t, y) := δ̄i

(
λ(t, y)

σ(t, y)
+ ρ

a(t, y)

σ(t, y)
fy (t, y)

)
, (30)

with δ̄i as in (16) and f (t, y) solving (28). The game value of player i, i ∈ I, is
given by
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V i (t, x1, . . ., xN, y) = −exp

(
− 1

δi

(
xi − ci

N
ΣNi=1xi

))
ζ (t, y)

1

1−ρ2

= −exp

(
− 1

δi

(
xi − ci

N
ΣNi=1xi

)
+ f (t, y)

)
.

2. If ψN = 1, there exists no such Nash equilibrium.

Proof To ease the notation, we establish the results when t = 0 in (26). To this end,

we first identify the process ξ in (10). For this, we rewrite the martingale in (9) as

Mt = ζ (t,Yt )e−
1
2

(1−ρ2)
∫ t

0
λ2 (s,Ys ) ds,

and observe that

dMt =

(
ζt (t,Yt )+ (b(t,Yt )− ρa(t,Yt )λ(t,Yt ))ζy (t,Yt )

+
1

2
a2(t,Yt )ζyy (t,Yt )

) Mt

ζ (t,Yt )
dt − 1

2
(1− ρ2)λ2(t,Yt )Mt dt

+ a(t,Yt )
ζy (t,Yt )
ζ (t,Yt )

Mt

(
ρdW̃t +

√
1− ρ2 dW⊥t

)

= a(t,Yt )
ζy (t,Yt )
ζ (t,Yt )

Mt

(
ρdW̃t +

√
1− ρ2 dW⊥t

)
,

where we used that ζ (t, y) satisfies (27). Therefore, ξt = a(t,Yt )
ζy (t,Yt )

ζ (t,Yt )
. In turn, using

that ζ (t, y)1/(1−ρ2) = e f (t,y), we obtain that

fy (t,Yt ) =
1

1− ρ2
ζy (t, y)

ζ (t, y)
and ξt = (1− ρ2)a(t,Yt ) fy (t,Yt ),

and we easily conclude by replacing ξt by (1− ρ2)a(t,Yt ) fy (t,Yt ) in (17).

It remains to show that the candidate investment process in (29) is admissible.

Under Assumption 1 we deduce that fy (t, y) is a bounded function, since ζ (t, y) is

bounded away from zero and ζy (t, y) is bounded. We easily conclude. �

Remark 3 In the Markovian model (24)–(25), the density of the minimal entropy

measure QME is fully specified. Indeed, the BSDE (23) admits the solution

yt = f (t,Yt ), Zt = ρa(t,Yt ) fy (t,Yt ) and Z⊥t =
√

1− ρ2a(t,Yt ) fy (t,Yt ),

and, thus, the density of QME is given by (22) with

χt ≡ χ(t,Yt ) = −
√

1− ρ2a(t,Yt ) fy (t,Yt ).
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2.1.2 A fully solvable example

Consider the family of models with autonomous dynamics

μ(t, y) = μy
1

2� +
1
2 , σ(t, y) = y

1
2� , b(t, y) = m− y, a(t, y) = β

√
y,

with μ > 0, β > 0, � � 0 and m > 1
2
β2. Notable cases are � = 1, which corresponds

to the Heston stochastic volatility model, and � = −1 that is studied in [3].

Equation (28) depends only on b(t, y), a(t, y) and the Sharpe ratio λ(t, y) = μ
√
y,

and thus its solution f (t, y) is independent of the parameter �. Using the ansatz

f (t, y) = p(t)y+ q(t) with p(T ) = q(T ) = 0, we deduce from (28) that p(t) and q(t)
satisfy

ṗ(t)− 1

2
(μ+ ρβp(t))2− p(t)+

1

2
β2p2(t) = 0,

q̇(t)+mp(t) = 0. (31)

In turn,

p(t) =
1+ ρμβ−√Δ

(1− ρ2) β2

1− e−
√
Δ(T−t)

1− 1+ρμβ−√Δ
1+ρμβ+

√
Δ

e−
√
Δ(T−t)

, Δ = 1+ β2μ2+2ρμβ > 0,

and q(t) = m
∫ T
t

p(s)ds.

From (30), we obtain that the Nash equilibrium strategy
(
πi,∗s
)
s∈[t,T ]

, t ∈ [0,T],

for player i is given by the process

πi,∗s = δ̄i (μ+ ρβp(s))Y
1
2

(1− 1
� )

s .

If � = 1, the policy becomes deterministic, πi,∗s = δ̄i (μ+ ρβp(s)), and the equilibrium

wealth process solves

dX i,∗
s = δi (μ+ ρβp(s))(μYs ds+

√
Ys dWs).

2.2 The common-noise MFG

We analyze the limit as N ↑∞ of the N-player game studied in Section 2.1. We first

give an intuitive and informal argument that leads to a candidate optimal strategy in

the mean-field setting, and then propose a rigorous formulation for the MFG. The

analysis follows closely the arguments developed in [12].

For the N-player game, we denote by ηi = (xi, δi,ci) the type vector for player

i, where xi is her initial wealth, and ηi and ci are her risk tolerance coefficient and

interaction parameter, respectively. Such type vectors induce an empirical measure
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mN , called the type distribution,

mN (A) =
1

N

N∑
i=1

1ηi (A), for Borel sets A ⊂ Z,

which is a probability measure on the spaceZ := R× (0,∞)× (−∞,1].

We recall (cf. (17)) that the equilibrium strategies (πi,∗t )t∈[0,T ], i ∈ I, are given as

the product of the common (type-independent) process
λt

σt
+

ρ

1−ρ2

ξt
σt

and the modified

risk tolerance parameter δ̄i = δi +
ϕN

1−ψN
ci . Therefore, it is only the coefficient δ̄i

that depends on the empirical distribution mN through ψN and ϕN , as both these

quantities can be obtained by averaging appropriate functions over mN . Therefore,

if we assume that mN converges weakly to some limiting probability measure as

N ↑ ∞, we should intuitively expect that the corresponding equilibrium strategies

also converge. This is possible, for instance, by letting the type vector η = (x, δ,c) be

a random variable in the space Z with limiting distribution m, and take ηi as i.i.d.

samples of η. The sample ηi is drawn and assigned to player i at initial time t = 0.
We would then expect (πi,∗)t∈[0,T ] to converge to the process

lim
N↑∞
πi,∗t =

(
δi +

δ̄

1− c̄
ci

) (
λt
σt
+
ρ

1− ρ2
ξt
σt

)
, (32)

where c̄ and δ̄ represent the average interaction and risk tolerance coefficients.

Next, we introduce the mean-field game in the incomplete Itô-diffusion market

herein, and we show that (32) indeed arises as its equilibrium strategy. We model a

single representative player, whose type vector is a random variable with distribution

m, and all players in the continuum act in this common incomplete market.

2.2.1 The Itô-diffusion common-noise MFG

To describe the heterogeneous population of players, we introduce the type vector

η = (x, δ,c) ∈ Z, (33)

where δ > 0 and c ∈ (−∞,1] represent the risk tolerance coefficient and interaction

parameter, and x is the initial wealth. This type vector is assumed to be independent

of both W and WY , which drive the stock price process (1), and is assumed to have

finite second moments.

To formulate the mean-field portfolio game, we now let the filtered probability

space (Ω,F ,P) support W,WY as well as η. We assume that η has second moments

under P. We denote by (F MF
t )t∈[0,T ] the smallest filtration satisfying the usual

assumptions for which η is F MF
0

-measurable and both W,WY are adapted. As

before, we denote by (Ft )t∈[0,T ] the natural filtration generated by W and WY, and

by (Gt )t∈[0,T ] the one generated only by WY .
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We also consider the wealth process (Xt )t∈[0,T ] of the representative player solv-

ing

dXt = πt (μt dt +σt dWt ) , (34)

with X0 = x ∈ R and π ∈ AMF , where

AMF =

{
π : self-financing, F MF

t -progressively measurable

and EP

[∫ T

0

σ2
sπ

2
s ds

]
<∞
}
.

Similarly to the framework in [12], there exist two independent sources of random-

ness in the model: the first is due to the evolution of the stock price process, described

by the Brownian motions W and WY . The second is given by η, which models the

type of the player, i.e., the triplet of initial wealth, risk tolerance, and interaction

parameter in the population continuum. The first source of noise is stochastic and

common to each player in the continuum while the second is static, being assigned

at time zero and with the dynamic competition starting right afterwards.

In analogy to the N-player setting, the representative player optimizes the expected

terminal utility, taking into account the performance of the average terminal wealth

of the population, denoted by X . As in [12], we introduce the following definition

for the MFG considered herein.

Definition 2 For each π ∈ AMF , let X := EP[XT |FT ] with (Xt )t∈[0,T ] solving (34),

and consider the optimization problem

V (x) = sup
π∈AMF

EP

[
−exp

(
−1

δ

(
XT − cX

)) �����F MF
0 ,X0 = x

]
. (35)

A strategy π∗ ∈ AMF is a mean-field equilibrium if π∗ is the optimal strategy of the

above problem when X
∗

:= EP[X∗T |FT ] is used for X , where
(
X∗t
)
t∈[0,T ] solves (34)

with π∗ being used.

Next, we state the main result.

Proposition 3 If EP[c] < 1, there exists a unique wealth-independent MFG equilib-
rium

(
π∗t
)
t∈[0,T ], given by the F MF

0
∨Gt process

π∗t =
(
δ+

EP[δ]
1−EP[c]

c
) (
λt
σt
+
ρ

1− ρ2
ξt
σt

)
, (36)

with ξ as in (10). The corresponding optimal wealth is given by

X∗t = x+
(
δ+

EP[δ]
1−EP[c]

c
) ∫ t

0

(
λs +

ρ

1− ρ2 ξs
)

(λs ds+ dWs) , (37)

and
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V (x) = −exp

(
−1

δ
(x− cm)

)
M

1

1−ρ2

0

= −exp

(
−1

δ
(x− cm)

) (
EQMM

[
e−

1
2

(1−ρ2)
∫ T

0
λ2
s ds

]) 1

1−ρ2

,

where m = EP[x]. If EP[c] = 1, there is no such Nash equilibrium.

Proof We first observe that π∗ in (36) is F MF
t -measurable since

(
λt

σt
+

ρ

1−ρ2

ξt
σt

)
∈

Gt , and thus(
λt

σt
+

ρ

1−ρ2

ξt
σt

)
∈ Ft , while the factor

(
δ+ EP[δ]

1−EP[c]
c
)
∈ F MF

0
(independent of Ft ).

Furthermore, π∗ is also square-integrable under standing assumptions, and thus

admissible. To show that it is also indeed an equilibrium policy, we shall first define

X using π∗, and then verify that the optimal strategy to the representative player’s

problem (35) coincides with π∗t when this specific X is used in (35). To this end, we

introduce the process X t := EP[X∗t |Ft ] with (X∗t )t∈[0,T ] as in (37). Then,

X t = EP

[
x+
(
δ+

EP[δ]
1−EP[c]

c
) ∫ t

0

(
λs +

ρ

1− ρ2 ξs
)

(λs ds+ dWs)
���Ft ]

= m+
(
EP[δ]+

EP[δ]
1−EP[c]

EP[c]

) ∫ t

0

(
λs +

ρ

1− ρ2 ξs
)

(λs ds+ dWs)

= m+
(

EP[δ]
1−EP[c]

) ∫ t

0

(
λs +

ρ

1− ρ2 ξs
)

(λs ds+ dWs) ,

where we have used that
∫ t

0

(
λs +

ρ

1−ρ2 ξs

)
(λs ds+ dWs) is Gt -measurable and thus

Ft -measurable, and that
(
δ+ EP[δ]

1−EP[c]
c
)

is independent of Ft .
Next, we introduce the auxiliary process ( x̃t )t∈[0,T ], x̃t := Xt − cX t, with

(Xt )t∈[0,T ] as in (34). Then,

dx̃t = π̃t (μt dt +σt dWt ) and x̃0 = x̃ := x− cm,

and π̃t = πt − c
(

EP[δ]
1−EP[c]

) (
λt

σt
+

ρ

1−ρ2

ξt
σt

)
. In turn, we consider the optimization prob-

lem

v( x̃) := sup
π̃∈AMF

EP

[
−exp

(
−1

δ
x̃T

) �����F MF
0 , x̃0 = x̃

]
.

From Lemma 1, we deduce that the optimal strategy is given by

π̃∗t = δ
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

and, thus,

π∗t = δ
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
+ c
(

EP[δ]
1−EP[c]

) (
λt
σt
+
ρ

1− ρ2
ξt
σt

)
.
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The rest of the proof follows easily. �

If we view η = (x, δ,c) in the N-player game in Section 2.1 as i.i.d. samples on the

spaceZ with distribution m, then limN↑∞ψN = EP[c] and limN↑∞ ϕN = EP[δ] a.s..

We then obtain the convergence of the corresponding optimal processes, namely, for

t ∈ [0,T],

lim
N↑∞
πi,∗t = π

∗
t , and lim

N↑∞
X i,∗
t = X∗t .

2.2.2 The Markovian case

In analogy to the N-player case, we have the following result.

Proposition 4 Assume that the stock price process follows the single factor model
(24)–(25). Then, if EP[c] < 1, there exists a unique wealth-independent Markovian
mean-field game equilibrium, given by the process

(
π∗t
)
t∈[0,T ] ,

π∗t = π∗(η, t,Yt ) =
(
δ+

EP[δ]
1−EP[c]

c
) (
λ(t,Yt )
σ(t,Yt )

+ ρ
a(t,Yt )
σ(t,Yt )

fy (t,Yt )
)
,

with the F MF
0

-measurable random function π∗(η, t, y) :Z× [0,T]×R,

π∗(η, t, y) :=

(
δ+

EP[δ]
1−EP[c]

c
) (
λ(t, y)

σ(t, y)
+ ρ

a(t, y)

σ(t, y)
fy (t, y)

)
.

If EP[c] = 1, there is no such mean-field game stochastic equilibrium.

3 Complete Itô-diffusion common market and CARA utilities
with random risk tolerance coefficients

In this section, we focus on the complete common market case, but we extend the

model by allowing random individual risk tolerance coefficients. We start with a

background result for the single-player problem, which is new and interesting in

its own right. Building on it, we analyze both the N-player and the MFG. The

analysis shows that the randomness of the individual risk tolerance gives rise to

virtual “personalized” markets, in that the original common risk premium process

now differs across players, depending on their risk tolerance. This brings substantial

complexity as the tractability coming from the original common market is now lost.
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3.1 The Itô-diffusion market and random risk tolerance coefficients

We consider the complete analog of the Itô-diffusion market studied in Section 2.

Specifically, we consider a market with a riskless bond (taken to be the numeraire

and offering zero interest rate) and a stock whose price process (St )t∈[0,T ] solves

dSt = St (μt dt +σt dWt ) ,

with S0 > 0, and (Wt )t∈[0,T ] being a Brownian motion in a probability space (Ω,F ,P).

The market coefficients (μt )t∈[0,T ] and (σt )t∈[0,T ] are Ft -adapted processes, where

(Ft )t∈[0,T ] is the natural filtration generated by W , and with 0 < c ≤ σt ≤ C and

|μt | ≤ C, t ∈ [0,T], for some (possibly deterministic) constants c and C.

In this market, N players, indexed by i ∈ I, I = {1,2, . . .,N }, trade between the

two accounts in [0,T], with individual wealths
(
X i
t

)
t∈[0,T ]

solving

dX i
t = π

i
t (μt dt +σt dWt ) , (38)

and X i
0
= xi ∈ R.

Each of the players, say player i, has random risk tolerance, δiT , defined on

(Ω,F ,P) with the following properties:

Assumption 2 For each i ∈ I, the risk tolerance δiT is an FT -measurable random
variable with δiT ≥ δ > 0 and EP

(
δiT

)2
<∞.

The objective of each player is to optimize

V i (x1, . . ., xi, . . ., xN ) = sup
A

EP

[
− exp

(
− 1

δiT

(
X i
T −

ci
N

N∑
j=1

X j
T

))
�����X1

0 = x1, . . .,X i
0 = xi, . . .,XN

0 = xN

]
, (39)

with ci ∈ (−∞,1], X j , j ∈ I, solving (38), and A defined similarly to (3).

As in Section 2.1, we are interested in a Nash equilibrium solution, which is

defined as in Definition 1. Before we solve the underlying stochastic N-player game,

we focus on the single-player case. This is a problem interesting in its own right and,

to our knowledge, has not been studied before in such markets. A similar problem

was considered in a single-period binomial model in [15] and in a special diffusion

case in [16] in the context of indifference pricing of bonds. For generality, we present

below the time-dependent case.

3.2 The single-player problem

We consider the optimization problem
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vt (x) = sup
π∈A

EP
[
−e−

1
δT

xT ����Ft, xt = x
]
, (40)

with δT ∈ FT satisfying Assumption 2 and (xs)s∈[t,T ] solving (38) with xt = x ∈ R.

We define (Zt )t∈[0,T ] by

Zt = exp

(
−1

2

∫ t

0

λ2
s ds−

∫ t

0

λs dWs

)
,

and recall the associated (unique) risk neutral measure Q, defined on FT and given

by
dQ
dP
= ZT . (41)

We introduce the process (δt )t∈[0,T ] ,

δt := EQ[δT |Ft ], (42)

which may be thought as the arbitrage-free price of the risk tolerance “claim” δT .

We also introduce the measure Q̂, defined on FT , with

dQ̂
dP
=
δT

EQ[δT ]
ZT .

Direct calculations yield that under measure Q̂, the process
(
St
δt

)
t∈[0,T ]

is an Ft -
martingale.

By the model assumptions and the martingale representation theorem, there exists

an Ft -adapted process (ξt )t∈[0,T ] with ξ ∈ L2 (P) such that

dδt = ξtδt dWQt , (43)

with WQt =Wt +
∫ t

0
λs ds. Next, we introduce the process

Ht := E
Q̃

[
1

2

∫ T

t

(λs − ξs)2 ds
�����Ft

]
, (44)

where Q̃ is defined on FT by

dQ̃
dP
= exp

(
−1

2

∫ T

0

(λs − ξs)2 ds−
∫ T

0

(λs − ξs) dWs

)
. (45)

Under Q̃, the process

(
W Q̃t
)
t∈[0,T ]

with

W Q̃t :=Wt +

∫ t

0

(λs − ξs) ds (46)
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is a standard Brownian motion, and
(

1
δt

St
)
t∈[0,T ]

is a martingale with dynamics

d
(

St
δt

)
= (σt − ξt ) St

δt
dW Q̃t .

Direct calculations yield

dQ̃
dQ
= δT .

Alternatively, Ht may be also represented as

Ht =
EQ[δT

∫ T
t

1
2

(λs − ξs)2 ds |Ft ]
EQ[δT |Ft ] = EQ

[
δT
δt

∫ T

t

1

2
(λs − ξs)2 ds

�����Ft
]
, (47)

which is obtained by using that

dQ̃
dQ
= exp

(
−1

2

∫ T

0

ξ2s ds+
∫ T

0

ξs dWQs

)
.

Finally, we introduce the processes (Mt )t∈[0,T ] and (ηt )t∈[0,T ] with

Mt = EQ̃

[
1

2

∫ T

0

(λs − ξs)2 ds���Ft ] and dMt = ηt dW Q̃t . (48)

We are now ready to present the main result.

Proposition 5 The following assertions hold:

1. The value function of (40) is given by

vt (x) = −exp

(
− x
δt
−Ht

)
,

with δ and H as in (42) and (44).
2. The optimal strategy

(
π∗s
)
s∈[t,T ] is given by

π∗s = δs
λs −ηs − ξs
σs

+
ξs
σs

x∗s, (49)

with ξ, η as in (43) and (48), and x∗ solving (38) with π∗ being used.
3. The optimal wealth

(
x∗s
)
s∈[t,T ] solves

dx∗s = λs
(
δs (λs −ηs − ξs)+ ξsx∗s

)
ds+
(
δs (λs −ηs − ξs)+ ξsx∗s

)
dWs,

with x∗t = x, and is given by
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x∗s = xΦt,s +

∫ s

t

δu (λu − ξu)(λu −ηu − ξu)Φu,s du

+

∫ s

t

δu (λu −ηu − ξu)Φu,s dWu, (50)

where, for 0 ≤ u ≤ s ≤ T ,

Φu,s := exp

(∫ s

u

(
λv − 1

2
ξv

)
ξv dv+

∫ s

u

ξv dWv

)
.

Using (50), (49) gives the explicit representation of the optimal policy,

π∗s = δs
λs −ηs − ξs
σs

+
ξs
σs

(
xΦt,s +

∫ s

t

δu (λu − ξu)(λu −ηu − ξu)Φu,s du

+

∫ s

t

δu (λu −ηu − ξu)Φu,s dWu

)
.

3.2.1 The Markovian case

We assume that the stock price process (St )t∈[0,T ] solves

dSt = μ(t, St )St dt +σ(t, St )St dWt ,

with the initial price S0 > 0, and the functions μ(t, St ) and σ(t, St ) satisfying appro-

priate conditions, similar to the ones in Subsection 2.1.1 and Assumption 1. The risk

tolerance is assumed to have the functional representation

δT = δ(ST ),

for some function δ : R+→ R+ bounded from below and such that EP
[
δ2(ST )

]
<∞,

(cf. Assumption 2).

The value function in (40) takes the form

V (t, x, S) = sup
π∈A

EP
[
−e−

1
δ (ST )

xT ���xt = x, St = S
]
,

and, in turn, Proposition 5 yields

V (t, x, S) = −exp

(
x

δ(t, S)
−H (t, S)

)
,

with δ(t, S) and H (t, S) solving

δt +
1

2
σ2(t, S)S2δSS = 0, δ(T, S) = δ(S),

and
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Ht +
1

2
σ2(t, S)S2HSS +

1

δ(t, S)
σ2(t, S)S2δS (t, S)HS

+
1

2

(
λ(t, S)− 1

δ(t, S)
σ(t, S)SδS (t, S)

)2
= 0, H (T, S) = 0.

Clearly,

δ(t, S) = EQ [ δ(ST ) | St = S],

and

H (t, S) = E
Q̃

⎡⎢⎢⎢⎢⎣
∫ T

t

1

2

(
λ(u, Su)−σ(u, Su)Su

δS (u, Su)

δ(u, Su)

)2
du

����St = S
⎤⎥⎥⎥⎥⎦ ,

and, furthermore,

ξt =
δS (t, St )
δ(t, St )

Stσ(t, St ) and ηt = HS (t, St )Stσ(t, St ).

Using the above relations and (49), we derive the optimal investment process,

π∗s = δ(s, Ss)

(
λ(s, Ss)

σ(s, Ss)
− SsHS (s, Ss)

)
+ δS (s, Ss)Ss

(
−1+

1

δ (s, Ss)
x∗s

)
.

For completeness, we note that if δT ≡ δ > 0, the above expression simplify to

(see [18])

V (t, x, S) = −e−
1
δ x−H (t,S),

with H (t, S) solving

Ht +
1

2
σ2(t, S)S2HSS +

1

2
λ2(t, S) = 0, H (T, S) = 0.

The optimal strategy reduces to

π∗s = δ
(
λ(s, Ss)

σ(s, Ss)
− SsHS (s, Ss)

)
.

3.3 N -player game

We now study the N-player game. The concepts and various quantities are in direct

analogy to those in Section 2.1 and, thus, we omit various intermediate steps and

only focus on the new elements coming from the randomness of the risk tolerance

coefficients.

Proposition 6 For i ∈ I, let
δit = EQ[ δiT

���Ft ],
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with Q as in (41) and
(
ξit
)
t∈[0,T ]

be such that

dδit = ξ
i
t δ

i
t dWQt .

Define the measure Q̃i on FT as

dQ̃i

dP
= exp

(
−1

2

∫ T

0

(λs − ξis)2 ds−
∫ T

0

(
λs − ξis

)
dWs

)
, (51)

and the processes (M i
t )t∈[0,T ] and (ηt )t∈[0,T ] with

M i
t = EQ̃i

[
1

2

∫ T

0

(
λs − ξis

)2
ds
����Ft

]
and dM i

t = η
i
t dW Q̃

i

t . (52)

Let also,

ψN =
1

N

N∑
i=1

ci,

and assume that ψN < 1. Then

1. The player i’s game value (39) is given by

V i (x1, . . ., xi, . . ., xN )

= −exp��− 1

EQ[δiT ]

(
xi − ci

N
ΣNj=1x j

) −E
Q̃i

[
1

2

∫ T

0

(
λs − ξis

)2
ds
]�
 .

2. The equilibrium strategies (π1,∗
t , . . ., π

N,∗
t )t∈[0,T ] are given by

πi,∗t = ci π̄∗t +
1

σt

���δit (λt − ξit −ηit )+
(
X i,∗
t −

ci
N

N∑
j=1

X j,∗
t

)
ξit
�	
, (53)

where π̄∗t := 1
N Σ

N
j=1
π
j,∗
t is defined as

π̄∗t =
1

1−ψN
1

σt

(
λtϕ

1
N (t)−ϕ2

N (t)+ϕ3
N (t)−ϕ4

N (t) X̄∗t
)
, (54)

with

ϕ1
N (t) =

1

N
ΣNj=1δ

j
t , ϕ

2
N (t) =

1

N
ΣNj=1δ

j
t (ξ

j
t +η

j
t ),

ϕ3
N (t) =

1

N
ΣNj=1X j,∗

t ξ
j
t , ϕ

4
N (t) = ΣNj=1cjξ

j
t .

3. The associated optimal wealth processes
(
X i,∗
t

)
t∈[0,T ]

are given by
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X i,∗
t = ci X̄∗t +

(
x̃iΦi

0,t +

∫ t

0

(λs − ξis)δis (λs −ηis − ξis)Φi
s,t ds

+

∫ t

0

δis (λs −ηis − ξis)Φi
s,t dWs

)
, (55)

with

X̄∗t :=
1

1−ψN
(

1

N
ΣNi=1

(
x̃iΦi

0,t +

∫ t

0

δis (λs − ξis)(λs −ηis − ξis)Φi
s,t ds

+

∫ t

0

δis (λs −ηis − ξis)Φi
s,t dWs

))
,

where x̃i = xi − ci
N Σ

N
j=1

x j , and

Φi
s,t := exp

(∫ t

s

(
λu − 1

2
ξiu

)
ξiu du+

∫ t

s

ξiu dWu

)
. (56)

Proof Using the dynamics of X1, . . .,XN in (38), problem (39) reduces to

v ( x̃) = sup
π̃i ∈A

EP
⎡⎢⎢⎢⎢⎣−exp��− 1

δiT
X̃ i
T
�

⎤⎥⎥⎥⎥⎦ ,

where X̃ i
t = X i

t − ci
N Σ

N
j=1

X j
t satisfies dX̃ i

t = π̃
i
t (μt dt +σt dWt ) with X̃ i

0
= x̃i . Taking

π j ∈ A, j � i, as fixed and using Proposition 5, we deduce that πi,∗ satisfies

π̃i,∗t = π
i,∗
t −

ci
N

(
Σj�iπ

j
t + π

i,∗
t

)
= δit
λt −ηit − ξit
σt

+
ξit
σt

X̃ i,∗
t , (57)

where X̃ i,∗
t is the wealth process X̃ i

t associated with the strategy π̃i,∗t .

At equilibrium, π
j
t in (57) coincides with π

j,∗
t . Therefore, averaging over i ∈ I

gives

π̄∗t −ψN π̄∗t =
1

σt

(
λtϕ

1
N (t)−ϕ2

N (t)+ϕ3
N (t)−ϕ4

N (t) X̄∗t
)
.

Dividing both sides by 1−ψN yields (54), and then (53) follows.

To obtain explicit expressions of X i,∗
t and X̄∗t , we solve for X̃ i,∗

t using the optimal

strategy deduced in Section 3.2 (cf. (49)). We then obtain

X̃ i,∗
t = X i,∗

t −
ci
N

N∑
j=1

X j,∗
t = x̃iΦi

0,t +

∫ t

0

δis (λs − ξis)(λs −ηis − ξis)Φi
s,t ds

+

∫ t

0

δis (λs −ηis − ξis)Φi
s,t dWs,

with Φi
s,t as in (56). We conclude by averaging over all i ∈ I. �
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3.4 The Itô-diffusion common-noise MFG

Let (Ω,F ,P) be a probability space that supports the Brownian motion W as well as

the random type vector

θ = (x, δT ,c),

which is independent of W . As before, we denote by (Ft )t∈[0,T ] the natural filtration

generated by W , and (F MF
t )t∈[0,T ] with F MF

t = Ft ∨σ(θ). In the mean-field setting,

we model the representative player. One may also think of a continuum of players

whose initial wealth x and the interaction parameter c are random, chosen at initial

time 0, similar to the MFG in Section 2.2 herein. However, now, their risk tolerance

coefficients have two sources of randomness, related to their form and their terminal

(at T) measurability, respectively. Specifically, at initial time 0, it is determined how

these coefficients will depend on the final information, provided at T . For example,

in the Markovian case, this amounts to (randomly) selecting at time 0 the functional

form of δ(·) and, in turn, the risk tolerance used for utility maximization is given by

the random variable δ(ST ), which depends on the information FT through ST .
Similarly to (39), we are concerned with the optimization problem

V (x) = sup
π∈AMF

EP

[
−exp

(
− 1

δT

(
Xπ
T − cX

)) �����F MF
0 , X0 = x

]
, (58)

and the definition of the mean-field game is analogous to Definition 2.

Let the processes (δt )t∈[0,T ] and (ξt )t∈[0,T ] be given by

δt = EQ[δT |F MF
t ] and dδt = ξtδt dWQt , (59)

with Q defined on F MF
T by (41). The process (δt )t∈[0,T ] may be interpreted as the

arbitrage-free price of the risk tolerance “claim” δT for this representative player.

Let also Q̃ be defined on F MF
T by

dQ̃
dQ
= δT ,

and consider the martingale Mt = E
Q̃

[
1
2

∫ T
0

(λs − ξs)2 ds
����F MF

t

]
and (ηt )t∈[0,T ] to

be such that

dMt = ηt dW Q̃t , (60)

with W Q̃t =Wt +
∫ t

0
(λs − ξs) ds. The processes δ, ξ and η are all F MF

t -adapted.

We now state the main result of this section.

Proposition 7 If EP[c] < 1, there exists a MFG equilibrium
(
π∗t
)
t∈[0,T ], given by
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π∗t =
c

1−EP[c]

1

σt

(
λtEQ[δT |Ft ]−EQ[δT (ξt +ηt ) |Ft ]+EP[X∗t ξt |Ft ]

−EP[cξt |Ft ]EP[X∗t |Ft ]
)
+

1

σt

(
δt (λt − ξt −ηt )+ (X∗t − cEP[X∗t |Ft ])ξt

)
, (61)

with δ, ξ and η as in (59) and (60), and
(
X∗t
)
t∈[0,T ] being the associated optimal

wealth process, solving
dX∗t = π∗t (μt dt +σt dWt ). (62)

The value of the MFG is given by

V (x) = −exp��− 1

EQ[δT |F MF
0

]
(x− cm)−E

Q̃

[
1

2

∫ T

0

(λs − ξs)2 ds���F MF
0

]�
,
with m = EP[x].

For the proof, we will need the following lemma.

Lemma 2 If X is a F MF
s -measurable integrable random variable, then EP[X |Ft ] =

EP[X |Fs], for s ∈ [0, t].

Proof Let P := {A =C∩D : C ∈ Fs, D ∈ σ{Wu −Ws, s ≤ u ≤ t}} and L = {A ∈ F :

EP[X1A] = EP[EP[X |Fs]1A]}. Then, the following assertions hold:

(1) P is a π-system since both Fs and σ{Wu −Ws, s ≤ u ≤ t} are σ-algebras and

closed under intersection. Also Fs ⊆ P and σ{Wu −Ws, s ≤ u ≤ t} ⊆ P by taking

D =Ω and C =Ω.

(2) P ⊆ L. For any A ∈ P, A =C∩D with C ∈ Fs, D ∈ σ{Wu −Ws, s ≤ u ≤ t}, it

holds that

EP[EP[X |Fs]1A] = EP[EP[X |Fs]1C1D] = EP[EP[X1C |Fs]1D] = EP[X1C]EP[1D],

where we have consecutively used that C ⊥ D, the metastability of 1C , and the

independence between 1D and Fs .
Furthermore, by the independence between 1D and F MF

s = Ft ∨σ(θ), we deduce

EP[X1A] = EP[X1C1D] = EP[X1C]EP[1D],

and conclude that A ∈ L. Therefore P ⊆ L.

(3) L is a λ-system. It is obvious that Ω ∈ L and A ∈ L imply that Ac ∈ L. For a

sequence of disjoint sets A1, A2, . . . in L, one has
���X1∪∞

i=1
Ai

��� ≤ |X | and, thus, by the

dominated convergence theorem, we deduce that

EP[X1∪∞
i=1

Ai ] =

∞∑
i=1

EP[X1Ai ]. (63)

Similarly, by the inequalities ‖EP[X |Fs]1∪∞
i=1

Ai ‖1 ≤ ‖EP[X |Fs]‖1 ≤ ‖X ‖1, we have
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EP[EP[X |Fs]1∪∞
i=1

Ai ] =

∞∑
i=1

EP[EP[X |Fs]1Ai ]. (64)

Since Ai ∈ L, ∀i, the right-hand-sides of (63) and (64) are equal, which implies

∪∞
i=1

Ai ∈ L.

Therefore, by the π-λ theorem, we obtain that Ft = σ(Fs ∪σ{Wu −Ws, s ≤ u ≤
t}) ⊆ σ(P) ⊆ L. Noticing that EP[X |Fs] is Ft -measurable by definition, we have

that EP[X |Ft ] = EP[X |Fs]. �

Proof (Proposition 7) Let
(
Xα
t

)
t∈[0,T ] be given by Xα

t = x+
∫ t

0
μsαs ds+

∫ t

0
σsαs dWs

for an admissible policy αt (F MF
t -adapted) and define X t := EP[Xα

t |Ft ]. Then,

X t = m+EP

[∫ t

0

μsαs ds���Fs] +EP

[∫ t

0

σsαs dWs
���Fs] .

Using Lemma 2, the adaptivity of μt , σt with respect to Ft , and the definition of Itô

integral, we rewrite the above as

X t = m+
∫ t

0

μsEP [αs |Fs] ds+
∫ t

0

σsEP [αs |Fs] dWs .

Direct arguments yield that the optimization problem (58) reduces to

V ( x̃) = sup
π̃∈AMF

EP

[
−exp

(
− 1

δT
X̃T

) ���F MF
0 , X̃0 = x̃

]
,

where (X̃t )t∈[0,T ] solves

dX̃t ≡ d(Xt − cX t ) = π̃t (μt dt +σt dWt ), (65)

with X̃0 = x̃ = x− cm and π̃t := πt − cEP[αt |Ft ]. Then, (49) yields

π̃∗t = δt
λt −ηt − ξt
σt

+
ξt
σt

X̃∗t , (66)

with δt, ξt, ηt given in (59) and (60), and (X̃∗t )t∈[0,T ] solving (65) with π̃∗ being used.

On the other hand, using that π̃∗t = π∗t − cEP[αt |Ft ], we obtain

π∗t − cEP[αt |Ft ] = δt λt −ηt − ξt
σt

+
ξt
σt

X̃∗t .

In turn, using that, at equilibrium, α = π∗, we get

(1−EP[c])EP[π∗t |Ft ] =
1

σt

(
λtEP[δt |Ft ]−EP[δt (ξt +ηt ) |Ft ]+EP[X̃∗t ξt |Ft ]

)
.

Further calculations give
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π∗t = c
1

1−EP[c]

1

σt

(
λtEP[δt |Ft ]−EP[δt (ξt +ηt ) |Ft ]+EP[X∗t ξt |Ft ]

−EP[X∗t |Ft ]EP[cξt |Ft ]
)
+
δt (λt −ηt )− δt ξt + X∗t ξt − cξtEP[X∗t |Ft ]

σt
. (67)

Finally, we obtain

EP[δt |Ft ] = EP[EQ[δT |F MF
t ]|Ft ] = EP

[
EP

[
δT ZT

Zt

���F MF
t

] ���Ft ]
= EP

[
δT ZT

Zt

���Ft ] = EQ[δT |Ft ],

and a similar derivation for EP[ δt (ξt +ηt ) | Ft ]. We conclude by checking the ad-

missibility of π∗ which follows from model assumptions, the form of π∗, and equa-

tion (62). �

4 Conclusions and future research directions

In Itô-diffusion environments, we introduced and studied a family of N-player and

common-noise mean-field games in the context of optimal portfolio choice in a

common market. The players aim to maximize their expected terminal utility, which

depends on their own wealth and the wealth of their peers.

We focused on two cases of exponential utilities, specifically, the classical CARA

case and the extended CARA case with random risk tolerance. The former was

considered for the incomplete market model while the latter for the complete one.

We provided the equilibrium processes and the values of the games in explicit

(incomplete market case) and in closed form (complete market case). We note that in

the case of random risk tolerances, for which even the single-player case is interesting

in its own right, the optimal strategy process depends on the state process, even if

the preferences are of exponential type.

A natural extension is to consider power utilities (CRRA), which are also com-

monly used in models of portfolio choice. This extension, however, is by no means

straightforward. Firstly, in the incomplete market case, the underlying measure de-

pends on the individual risk tolerance, which is not the case for the CARA utilities

considered herein (see (7) for the minimal martingale measure and (22)-(23) for the

minimal entropy measure, respectively). Secondly, while it is formally clear how to

formulate the random risk tolerance case for power utilities, its solution is far from

obvious. The authors are working in both these directions.

Our results may be used to study such models when the dynamics of the common

market and/or the individual preferences are not entirely known. This could extend

the analysis to various problems in reinforcement learning (see, for example, the

recent work [14] in a static setting). It is expected that results similar to the ones in
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[19] could be derived and, in turn, used to build suitable algorithms (see, also, [7]

for a Markovian case).
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