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Abstract For a probability measure Q on Wiener space, Talagrand’s transport in-
equality takes the formWH (Q,P)2 ≤ 2H(Q|P), where theWasserstein distanceWH

is defined in terms of the Cameron-Martin norm, and whereH(Q|P) denotes the rel-
ative entropy with respect to Wiener measure P. Talagrand’s original proof takes a
bottom-up approach, using finite-dimensional approximations. As shown by Feyel
and Üstünel in [3] and Lehec in [10], the inequality can also be proved directly on
Wiener space, using a suitable coupling of Q and P. We show how this top-down
approach can be extended beyond the absolutely continuous case Q� P. Here the
Wasserstein distance is defined in terms of quadratic variation, and H(Q|P) is re-
placed by the specific relative entropy h(Q|P) on Wiener space that was introduced
by N. Gantert in [7].

1 Introduction

There are many ways of quantifying the extent to which a probability measureQ on
the path spaceC[0,1] deviates from Wiener measure P. In this paper we discuss the
following two approaches and the relation between them. One involves the notion
of entropy, the other uses a Wasserstein distance, that is, the solution of an optimal
transport problem on Wiener space. We will do this in two stages.

In the first stage, the measure Q will be absolutely continuous with respect to
Wiener measure P, and we consider the relative entropy H(Q|P) of Q with respect
to P. On the other hand, we use the Wasserstein distance

WH (Q,P) = inf
(∫

||ω −η)||H P(dω)R(ω ,dη)
)1/2

, (1)
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where the infimum is taken over all transition kernels R on Wiener space which
transport P into Q, and where the transportation cost is defined by the Cameron-
Martin norm. Talagrand’s transport inequality

WH (Q,P)≤
√
2H(Q|P) (2)

on Wiener space shows that these two measures of deviation are closely related.
In fact, inequality (2) becomes an identity as soon as we introduce the additional
constraint that the transport should be adapted to the natural filtration on Wiener
space; this was first shown by R. Lassalle in [9].

On Wiener space, inequality (2) was first studied by Feyel and Üstünel [3]. In
Talagrand’s original version [13], the inequality is formulated on Euclidean space
R
n, including the case n = ∞; the Wasserstein distance is defined in terms of the

Euclidean norm, and the reference measure P is the product of standard normal
distributions. But the Lévy-Ciesielski construction of Brownian motion in terms of
the Schauder functions shows that inequality (2) on Wiener space can be viewed as
a direct translation of the Euclidean case for n= ∞, as explained in Section 3.

Talagrand’s original proof in [13] takes a bottom-up approach, using finite-
dimensional approximations. Instead, as shown by D. Feyel and A. S. Üstünel in
[3] and by J. Lehec in [10], Talagrand’s inequality can be proved directly on Wiener
space, using a suitable coupling of Q and P. This top-down approach involves the
computation of relative entropy in terms of the intrinsic drift of Q that was used in
[4] and [5] for the analysis of time reversal and large deviations on Wiener space.
The intrinsic drift bQ is such thatQ can be viewed as a weak solution of the stochas-
tic differential equation dW = dWQ + bQ(W )dt, that is, WQ is a Wiener process
under Q. CouplingWQ with the coordinate processW under Q immediately yields
inequality (2), and it solves the optimal transport problem for the Cameron-Martin
norm if the coupling is required to be adapted.

Clearly, inequality (2) is of interest only if the relative entropy is finite, and so
Q should be absolutely continuous with respect to Wiener measure. In the second
stage, we go beyond this restriction. Here we replaceH(Q|P) by the specific relative
entropy

h(Q|P) := liminf
N↑∞

2−NHN(Q|P),

where HN(Q|P) denotes the relative entropy of Q with respect to P on the σ -field
generated by observing the path along the N-th dyadic partition of the unit inter-
val. The notion of specific relative entropy on Wiener space was introduced by N.
Gantert in her thesis [7], where it serves as a rate function for large deviations of
the quadratic variation from its ergodic behaviour; cf. also [8]. In our context, the
specific relative entropy appears if we rewrite the finite-dimensional Talagrand in-
equality for n= 2N in the form

W 2
N(Q,P)≤ 2 ·2−NHN(Q|P), (3)
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where the Wasserstein metricWN is defined in terms of the discrete quadratic varia-
tion along the N-th dyadic partition. This suggests that a passage to the limit should
yield an extension of Talagrand’s inequality, where H(Q|P) is replaced by h(Q|P),
and whereWH is replaced by a Wasserstein metricWS that is defined in terms of
quadratic variation. Here again, we take a top-down approach. Instead of analyzing
the convergence on the left-hand side of (3), we argue directly on Wiener space,
assuming that the coordinate process W is a special semimartingale under Q. We
show that h(Q|P)< ∞ implies that Q admits the construction of an intrinsic Wiener
processWQ such that the pair (W,WQ) defines a coupling of P andQ. This coupling
solves the optimal transport problem defined byWS , and for a martingale measure
Q it yields the inequality

WS (Q,P)≤
√
2h(Q|P). (4)

If, more generally, Q is a semimartingale measure that admits a unique equivalent
martingale measure Q∗, then we obtain the following extension of Talagrand’s in-
equality on Wiener space:

WS (Q|P)2 ≤ 2
(
h(Q|P)+H(Q|Q∗)

)
. (5)

In this form, inequality (5) includes both (4) and Talagrand’s inequality (2) as special
cases.

The paper is organized as follows. In Section 2 we introduce the basic concepts
of relative entropy and of a Wasserstein distance. Section 3 describes the top-down
approach to inequality (2) in the absolutely continuous case; the exposition will
be reasonably self-contained because we repeatedly refer to it in the sequel. In the
second stage, we consider measuresQ onC[0,1] such that the coordinate processW
is a semimartingale under Q. Section 4 shows how the semimartingale structure of
Q is reflected in the specific relative entropy h(Q|P); this extends Theorem 1.2 in [7]
for martingale measures to the general case. In section 5 we show that the condition
h(Q|P) < ∞ implies that Q admits the construction of an intrinsic Wiener process
WQ. CouplingWQ with the coordinate processW under Q, we obtain the solution
of an optimal transport problem on Wiener space that yields inequalities (4) and (5).

2 Preliminaries

In this section we recall some basic notions, in particular the definitions of relative
entropy and of the Wasserstein distances that we are going to use.

For two probability measures μ and ν on some measurable space (S,S ), the
relative entropy of ν with respect to μ is defined as

H(ν|μ) =

{∫
log dν

dμ dν ifν � μ ,
+∞ otherwise.
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For ν � μ we can write

H(ν|μ) =
∫
h(

dν
dμ

)dμ ,

denoting by h the strictly convex function h(x) = x logx on [0,∞), and Jensen’s
inequality implies H(ν|μ) ≥ 0, with equality if and only if μ = ν . Sometimes we
will deal with different σ -fields S on the same space S, and then we will also use
the notation HS (ν|μ). We are going to use repeatedly the fact that

lim
n↑∞

HSn(ν|μ) = HS (ν|μ) (6)

if (Sn)n=1,2... is a sequence of σ -fields increasing to S .

Consider a measurable cost function c(·, ·) on S× S with values in [0,∞]; typi-
cally, c(·, ·) will be a metric on S. We define the correspondingWasserstein distance
between ν and μ as

W (ν,μ) = inf
γ∈Γ (μ,ν)

(

∫
c2(x,y)γ(dx,dy))1/2,

where Γ (μ ,ν) denotes the class of all probability measures γ on the product space
S× S with marginals μ and ν . Equivalently, we can write

W (ν,μ) = inf Ẽ[c2(X̃ ,Ỹ )]1/2,

where the infimum is taken over all couples (X̃ ,Ỹ ) of S-valued random variables
on some probability space (Ω̃ ,F̃ , P̃) such that X̃ and Ỹ have distributions μ and
ν , respectively. Such a couple, and also any measure γ ∈ Γ (μ ,ν), will be called
a coupling of μ and ν . We refer to [15] for a thorough discussion of Wasserstein
distances in various contexts.

In the sequel, the space S will be either a Euclidean space R
n, including the

infinite-dimensional case n= ∞, or the space

Ω =C0[0,1]

of all continuous functions ω on [0,1] with initial value ω(0) = 0.

For S = R
n with n ∈ {1, . . . ,∞} we are going to use the cost function c(x,y) =

||x−y||n, defined by the Euclidean norm ||x||n = (∑n
i=1 x2i )1/2. Thus, the correspond-

ing Wasserstein distance is given by

Wn(ν,μ) = inf
γ∈Γ (μ,ν)

(

∫
||x− y||2n)γ(dx,dy))

1/2.

Taking as reference measure the Gaussian measure

μn =
n

∏
i=1

N(0,1),
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Talagrand’s inequality on Euclidean space can now be stated as follows:

Theorem 1 For any n ∈ {0, . . . ,∞} and for any probability measure ν on Rn,

Wn(ν,μn)≤
√
2H(ν|μn). (7)

Talagrand’s proof in [13] takes a bottom-up approach. First the inequality is
proved in the one-dimensional case, using Vallender’s expression

W1(ν,μ) =
(∫ 1

0

(
qν(α)− qμ(α)

)2dα
)1/2 (8)

in [14] of the Wasserstein distance on R
1 in terms of the quantile functions qν and

qμ , followed by an integration by parts that involves the special form of the normal
distribution. The finite-dimensional case is shown by induction, applying the one-
dimensional inequality to the conditional distributions ν(dxn+1|x1, . . . ,xn) of ν . The
infinite-dimensional case n = ∞ follows by applying (7) to the finite-dimensional
marginals and taking the limit n ↑ ∞, using a standard martingale argument to obtain
convergence of the relative entropies on the right-hand side.

Let us now turn to the case S = Ω =C0[0,1]. We denote by (Ft)0≤t≤1 the right-
continuous filtration on Ω generated by the coordinate process

W = (Wt)0≤t≤1

defined by Wt(ω) = ω(t). We set F = F1 and denote by P the Wiener measure
on (Ω ,F ). Let H denote the Cameron-Martin space of all absolutely continuous
functions ω ∈ Ω such that the derivative ω̇ is square integrable on [0,1]. First we
will consider the cost function c(ω ,η) = ||ω −η ||H , where

||ω ||H =

{
(
∫ 1
0 ω̇2(t)dt)1/2 if ω ∈ H

+∞ otherwise.

The correspondingWasserstein distance will be denoted byWH , that is,

WH (Q,P) = inf
γ∈Γ (P,Q)

∫
||ω −η ||2H γ(dω ,dη)1/2,

for any probability measure Q on (Ω ,F ). In this setting, Talagrand’s inequality
takes the following form, first stated by D. Feyel and A. S. Ustunel in [3].

Theorem 2 For any probability measure Q on (Ω ,F ),

WH (Q,P)≤
√
2H(Q|P. (9)

In fact, inequality (9) can be viewed as a direct translation of Talagrand’s inequal-
ity on R∞. To see this, recall the Lévy-Ciesielski representation
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Wt(ω) = ∑
i∈I

Xi(ω)ei(t)

of Brownian motion in terms of the Schauder basis (ei)i∈I ofC0[0,1]. Under Wiener
measure P, the coordinates Xi are independent with distribution N(0,1). Thus, the
random vector (Xi(ω))i∈I , viewed as a measurable map T from Ω to R∞, has distri-
bution μ∞ under P. Relative entropy is invariant under T, and so we get

H(ν|μ∞) = H(Q|P),

where ν denotes the image of Q under T . On the other hand we have ||ω ||H =
||(Xi(ω))i∈I ||∞, and this implies

WH (Q,P) =W∞(ν,μ∞).

Thus, Talagrand’s inequality (7) for n = ∞ translates into inequality (9) on Wiener
space.

Having scetched the bottom-up approach to Talagrand’s inequality on Wiener
space, we are now going to focus on the top-down approach. It consists in proving
Talagrand’s inequality (9) directly on Wiener space, using a suitable coupling of Q
and P.

3 Intrinsic drift and optimal coupling in the absolutely
continuous case

Take any probability measure Q on (Ω ,F ) that is absolutely continuous with re-
spect to Wiener measure P. Let us first recall the following computation of the rela-
tive entroopy H(Q|P) in terms of the intrinsic drift of Q ; cf. [4], [5] or, for the first
two parts, Th. 7.11 in [11].

Proposition 1 There exists a predictable process bQ = (bQt (ω))0≤t≤1 with the fol-
lowing properties:
1) ∫ 1

0

(
bQt (ω)

)2dt < ∞ Q-a.s., (10)

that is, the process BQ defined by BQ
t (ω) =

∫ t
0 b

Q
s (ω)ds satisfies

BQ(ω) ∈ H Q-a.s.

2) WQ :=W −BQ is a Wiener process under Q, that is, W is a special semimartin-
gale under Q with canonical decomposition

W =WQ+BQ.
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3) The relative entropy of Q with respect to P is given by

H(Q|P) =
1
2
EQ

[∫ 1

0
(bQt )2dt

]
=

1
2
EQ

[
||BQ||2H

]
. (11)

The process bQ will be called the intrinsic drift of Q.

Proof For the convenience of the reader we scetch the argument; cf., e.g., [5] for
details.
1) By Itô’s representation theorem, the density φ = dQ

dP can be represented as a
stochastic integral of the Brownian motion W , that is, there exists a predictable
process (ξt)0≤t≤1 such that

∫ 1
0 ξt(ω)dt < ∞ P− a.s. and

φ = 1+
∫ 1

0
ξtdWt P-a.s.

Moreover, the process

φt := EP[φ |Ft ] = 1+
∫ t

0
ξsdWs, 0≤ t ≤ 1,

is a continuous martingale with quadratic variation

〈
φ
〉
t =

∫ t

0
ξ 2
s ds P-a.s.

and
inf

0≤t≤1
φt > 0 P-a.s. on {φ > 0},

hence Q-a.s.. Thus, the predictable process bQ defined by

bQt :=
ξt
φt
I{φt>0}, 0≤ t ≤ 1,

satisfies the integrability condition (10).
2) Applying Itô’s formula to logφt , we get

logφt =
∫ t

0

1
φs
dφs−

1
2

∫ t

0
(
1
φs
)2d

〈
φ
〉
s

=

∫ t

0
bQs dWs−

1
2

∫ t

0
(bQs )

2ds

=

∫ t

0
bQs dW

Q
s +

1
2

∫ t

0
(bQs )

2ds

The second part now follows from Girsanov’s theorem.
3) Equation (11) for H(Q|P) = EQ[logφ1] follows from the preceding equation for
t = 1. Indeed, if EQ

[∫ 1
0 (b

Q
s )

2ds
]
< ∞ then we get
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EQ
[∫ 1

0
bQs dW

Q
s
]
= 0,

and this implies (11). In the general case, the same argument applies up to each
stopping time Tn = inf{t|

∫ t
0(b

Q
s )

2ds> n}∧1, and for n ↑ ∞ we obtain (11). �

Remark 1 Apart from our present purpose, the intrinsic drift of Q is also an effi-
cient tool in proving a number of inequalities, including logarithmic Sobolev and
Shannon-Stam inequalities; see [10] and [2].

As observed by J. Lehec in [10], proposition 1 can be rephrased as follows in
terms of coupling, and in this form it yields an immediate proof of Talagrand’s
inequality on Wiener space.

Proposition 2 The processesWQ =W−BQ andW, defined on the probability space
(Ω ,F ,Q), form a coupling of P and Q such that

EQ
[
||W −WQ||2H

]
= 2H(Q|P). (12)

Corollary 1 Any probability measure Q on (Ω ,F ) satisfies Talagrand’s inequality

WH (Q,P)≤
√
2H(Q|P). (13)

Proof If Q is not absolutely continuous with respect to Wiener measure P then
we have H(Q|P) = ∞, and (13) holds trivially. In the absolutely continuous case,
inequality (13) follows immediately from equation (12) and the definition of the
Wasserstein distanceWH . �

Note that the coupling (WQ,W ) of P and Q, which is defined on the filtered
probability space (Ω ,F ,(Ft )0≤t≤1,Q), is adaptive in the following sense.

Definition 1 A coupling (X̃ ,Ỹ ) of P and Q will be called an adaptive coupling, if it
is defined on a filtered probability space (Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃) such that

1. Ỹ = (Ỹt) is adapted with respect to P̃ and (F̃t )0≤t≤1,
2. X̃ is a Wiener process with respect to P̃ and (F̃t)0≤t≤1. that is, each increment

X̃t − X̃s is independent of F̃s with law N(0, t− s).

Theorem 3 The optimal adaptive coupling of P and Q is given by (WQ,W ), that is,

EQ
[
||W −WQ||2H

]
≤ Ẽ

[
||Ỹ − X̃||2H

]
, (14)

for any adaptive coupling (X̃ ,Ỹ ) of P and Q, and equality holds iff

Ỹ =WQ(Ỹ )+BQ(Ỹ ), P̃− a.s.. (15)

Proof Take any adapted coupling (X̃ ,Ỹ ) of P andQ, defined on a filtered probability
space (Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃), such that

Ẽ
[
||Ỹ − X̃ ||2H

]
< ∞.
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Since Ỹ is adapted with continuous paths, B̃ := Ỹ − X̃ is an adapted continuous
process such that Ẽ

[
||B||2

H

]
< ∞. This implies B̃t =

∫ t
0 b̃sds for some predictable

process b̃ = (b̃s)0≤s≤1 such that Ẽ
[∫ 1

0 b̃2s ds
]
< ∞. Since X̃ is a Brownian motion

with respect to the filtration (F̃t), the process Ỹ is a special semimartingale with
canonical decomposition

Ỹt = X̃t +
∫ t

0
b̃sds (16)

under P̃ with respect to (F̃t). On the other hand, since Ỹ has law Q under P̃ and
WQ is a Brownian motion under Q, the processWQ(Ỹ ) is a Brownian motion under
P̃ with respect to the smaller filtration (F̃ 0

t ) generated by the adapted process Ỹ .
Thus, Ỹ has the canonical decomposition

Ỹt =WQ
t (Ỹ )+

∫ t

0
bQs (Ỹ )ds (17)

under P̃ with respect to (F̃ 0
t ). This implies

bQt (Ỹ ) = Ẽ
[
b̃t | G̃t

]
P̃⊗ dt− a.s.; (18)

cf., for example, Th. 8.1 in [11] or the proof of equation 68 in the general context of
Proposition 4 below. Applying Jensen’s inequality, we obtain

Ẽ
[
||Ỹ − X̃ ||2H

]
= Ẽ

[∫ 1

0
b̃2t dt

]
≥ Ẽ

[∫ 1

0
(bQt (Ỹ ))2dt

]
= EQ

[∫ 1

0
(bQt (W ))2dt

]
= 2H(Q|P).

Equality holds iff
b̃t = bQt (Ỹ ) P̃⊗ dt− a.s.,

and in this case (16) and (17) imply X̃ =WQ(Ỹ ) P̃-a.s.. �

Let us define WH ,ad(Q,P) as the infimum of the right hand side in (14), taken
only over the adaptive couplings of P and Q. Clearly we have

WH (Q,P)≤WH ,ad(Q,P), (19)

and Theorem 3 shows that the following identity holds, first proved by R. Lassalle
in [9].

Corollary 2 For any probability measure Q on (Ω ,F ) we have

WH ,ad(Q,P) =
√
2H(Q|P). (20)
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Remark 2 For a thorough discussion of optimal transport problems on Wiener space
under various constraints, with special emphasis on the effects of an enlargement of
filtration, we refer to [1].

The following example illustrates the difference betweenWH andWH ,ad . It also
shows how the finite-dimensional inequalities in (7) can be derived from Talagrand’s
inequality on Wiener space, thus completing the top-down approach.

For a probability measure ν on R1 we introduce the probability measure

Qν =

∫
Pxν(dx)

on (Ω ,F ), where Px denotes the law of the Brownian bridge from 0 to x ∈ R
1. If

ν � μ := N(0,1), then Qν is absolutely continuous with respect to P with density

dQν

dP
=

dν
dμ

(W1),

and the relative entropy is given by

H(Qν |P) =
∫
log

dν
dμ

(W1)dQν =
∫
log

dν
dμ

dν = H(ν|μ). (21)

Corollary 3 We have

WH (Qν ,P) =W1(ν,μ) and WH ,ad(Qν ,P) =
√
2H(ν|μ). (22)

Thus, inequality (19) implies

W1(ν,μ) ≤
√
2H(ν|μ). (23)

Inequality (23) is strict except for the case where ν = N(m,1) for some m ∈ R
1.

Proof 1) The second identity in (22) follows from Corollary 2 and equation (21).
2) To prove the first identity, take any coupling (X̃ ,Ỹ ) of P and Q, defined on some
probability space (Ω̃ ,F̃ , P̃), such that Z := Ỹ − X̃ ∈ H . Then the endpoints X̃1 and
Ỹ1 form a coupling of μ and ν . Since

(Ỹ1− X̃1)2 = Z2
1 = (

∫ 1

0
Żsds)2 ≤

∫ 1

0
Ż2
s ds= ||Ỹ − X̃ ||2H ,

we obtain
W 2

1 (ν,μ)≤ Ẽ
[
(Ỹ1− X̃1)2

]
≤ Ẽ

[
||Ỹ − X̃ ||2H

]
,

hence
W 2

1 (ν,μ)≤W 2
H (Q,P). (24)

We now show that the lower boundW 2
1 (ν,μ) is attained by the following coupling

(W,Y ) of P and Qν , defined on the Wiener space (Ω ,F ,P). The process Y is given
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by
Yt =Wt + t

(
fν (W1)−W1

)
, 0≤ t ≤ 1,

where fν (x) = qν(Φ(x)) and Φ denotes the distribution function of μ = N(0,1).
The endpoint Y1 = fν (W1) has distribution ν under P, and the conditional distri-
bution of Y given the endpoint Y1 = y coincides with the Brownian bridge Py.
Thus Y has distribution Qν under P, and (W,Y ) is a coupling of P and Qν , de-
fined on (Ω ,F ,P). Note that this coupling is not adaptive with respect to the
filtration (Ft), since Y anticipates the endpoint W1 of the Brownian path. Since
||Y −W ||2

H
= ( fν (W1)−W1)

2, we get

EP
[
||Y −W ||2H

]
=

∫ (
fν (x)− x

)2μ(dx)

=

∫ 1

0

(
qν(α)−Φ−1(α)

)2dα =W 2
1 (ν,μ),

using equation (8) in the last step. This completes the proof of the first identity in
(22)
3) Let us write Q = Qν . Theorem 3 shows that the optimal adapted coupling of Q
and P is given by (W,WQ) under Q. Since

(W1−WQ
1 )2 = (

∫ 1

0
bQt dt)2 ≤

∫ 1

0
(bQt )2dt = ||BQ||2H

and
W 2

1 (ν,μ)≤ EQ
[
(W1−WQ

1 )2
]
≤ EQ

[
||BQ||2H

]
= 2H(ν|μ),

equality in (23) implies, Q-a.s., that bQt (·) is almost everywhere constant in t, hence
equal to m(·) :=W1−WQ

1 . Since the process bQ is adapted to the filtration (Ft ),
m(·) is measurable with respect to F0 =

⋂
t>0Ft . But P is 0-1 on F0, and the

same is true for Q � P. This implies m(·) = m Q-a.s. for some m ∈ R1, that is,
W1 =WQ

1 +m and ν = N(m,1). �

Talagrand’s inequality in any finite dimension n> 1 follows in the same manner.
For our purpose it is convenient to use the following equivalent version, where the
reference measure is taken to be

μ̃n =
n

∏
i=1

N(0,
1
n
)

instead of μn = ∏n
i=1N(0,1) as in (7).

Corollary 4 For any probability measure ν on Rn,

nW 2
n (ν, μ̃n)≤ 2H(ν|μ̃n). (25)
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Proof We may assume ν � μ̃n. Let Tn : Ω → R
n denote the map that associates

to each path ω the vector of its increments ω(i/n)−ω((i− 1)/n) (i = 1, . . . ,n).
UnderWiener measure P, the distribution of Tn is given by μ̃n. DefineQν on (Ω ,F )
by

dQν

dP
=

dν
dμ

(Tn).

For any coupling (X̃ ,Ỹ ) of P and Qν such that Z := Ỹ − X̃ ∈ H , the vectors Xn :=
Tn(X̃) and Yn := Tn(Ỹ ) form a coupling of ν and μ̃n. Since

||Xn−Yn||2 =
n

∑
i=1

(

∫ i/n

(i−1)/n
Żsds)2 ≤

n

∑
i=1

1
n

∫ i/n

(i−1)/n
Ż2
s ds=

1
n
||Ỹ − X̃||2H ,

we obtain
W 2

n (ν, μ̃n)≤ Ẽ
[
||Yn−Xn||2

]
≤

1
n
Ẽ
[
(||Ỹ − X̃ ||2H

]
,

hence
W 2

n (ν, μ̃n)≤
1
n
W 2

H (Q,P)≤
2
n
H(Qν |P).

due to Corollary 1. Since H(Qν |P) = H(ν|μ̃n), we have proved (25). �

4 Specific Relative Entropy

The following concept of specific relative entropy on Wiener space was introduced
by N. Gantert in her thesis [7], where it plays the role of a rate function for large
deviations of the quadratic variation from its ergodic behaviour; cf. also [8]. In our
context, it will allow us to extend Talagrand’s inequality on Wiener space beyond
the absolutely continuous case Q� P.

From now on, the index N will refer to the N-th dyadic partition of the unit inter-
val, that is, DN = {k2−N |k = 1, . . . ,2N}. In particular we introduce the discretized
filtration

FN,t = σ({Ws|s ∈ DN ,s≤ t}), 0≤ t ≤ 1

on Ω =C0[0,1], and we set FN = FN,1 = σ({Ws|s ∈DN}).

Definition 2 For any probability measureQ on (Ω ,F ), the specific relative entropy
of Q with respect to Wiener measure P is defined as

h(Q|P) = liminf
N↑∞

2−NHN(Q|P), (26)

where HN(Q|P) denotes the relative entropy of Q with respect to P on the σ -field
FN .
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SinceH(Q|P)= limN HN(Q|P), we get h(Q|P)= 0 for anyQ such thatH(Q|P)<
∞. Thus, the notion of specific relative entropy is of interest only if we look beyond
the cases that we have considered so far.

Remark 3 Note that FN = σ(Tn) for n = 2N , where Tn : Ω → R
n maps a path ω to

the vector of its increments along theN-th dyadic partition; cf. the proof of Corollary
4. Identifying the restrictions of Q and P to FN with their images ν and μ̃n under
Tn, Talagrand’s finite-dimensional inequality (25) can be written in the form

2NW 2
N(Q,P)≤ 2HN(Q|P), (27)

with
WN(Q,P) := inf

(
ẼP̃

[〈
Ỹ − X̃

〉
N
])1/2

,

where the infimum is taken over all couplings of Q and P and
〈
·
〉
N denotes the dis-

crete quadratic variation along the N-th dyadic partition, that is,
〈
ω
〉
N = ||Tn(ω)||2n

for any continuous function ω ∈ Ω =C0[0,1]. For N ↑ ∞, the right hand side of (27)
increases to 2H(Q|P). Thus, an alternative version of the bottom-up approach to
Talagrand’s inequality on Wiener space consists in showing that, in the limit N ↑ ∞,
the left hand side of (27) can be replaced byWH (Q,P) if H(Q|P< ∞.

In order to go beyond the absolutely continuous case Q � P, let us rewrite the
finite-dimensional inequality (27) as

W 2
N(Q,P)≤ 2 ·2−NHN(Q|P). (28)

Taking the limit N ↑ ∞, the specific relative entropy h(Q|P) appears on the right
hand side of (28), while the left hand side suggests to define a new Wasserstein
distance on Wiener space in terms of quadratic variation. The resulting extension of
Talagrand’s inequality is contained in Theorems 6 and 7 below. Instead of analyzing
the limit behaviour of the left hand side of (28), we are going to use again a top-
down approach, arguing directly in terms of couplings on Wiener space. As a first
step in that direction, we now show how the specific relative entropy h(Q|P) reflects
the special structure of a semimartingale measure Q onC0[0,1].

Definition 3 Let QS denote the class of all probability measuresQ on Ω =C0[0,1]
such that the coordinate processW is a special semimartingale of the form

W =MQ+AQ (29)

under Q with respect to the filtration (Ft), where

1. MQ = (MQ)0≤t≤1 is a square-integrable martingale under Q
2. AQ = (AQ)0≤t≤1 is an adapted process with continuous paths of bounded varia-

tion such that its total variation |A|Q satisfies |A|Q1 ∈ L2(Q).

A probability measure Q ∈ QS will be called a martingale measure if AQ = 0, that
is, ifW is a square-integrable martingale under Q. The class of all such martingale
measures will be denoted by QM .
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Remark 4 Proposition 1 shows that any probabilitymeasureQ on (Ω ,F )with finite
relative entropyH(Q|P)<∞ belongs to the classQS , withMQ =WQ and AQ =BQ.

Let us now fix a measure Q ∈ QS . We denote by〈
W
〉
=

(〈
W
〉
t
)
0≤t≤1

the continuous quadratic variation process defined, Q-a.s., by the decomposition

W 2 =

∫
WdW +

〈
W
〉

of the continuous semimartingaleW 2 under Q. Our assumptions for Q ∈QS imply
that 〈

W
〉
t = lim

N↑∞ ∑
t∈DN

(
Wt −Wt−2−N

)2 in L1(Q) (30)

and that
lim
N↑∞ ∑

t∈DN

(
At −At−2−N

)2
= 0 in L1(Q) (31)

cf., e.g., Ch. VI in [12].
Let us introduce the finite measure q(ω ,dt) on [0,1] with distribution function〈

W
〉
(ω), defined Q-a.s., and denote by

q(ω ,dt) = qs(ω ,dt)+σ2(ω , t)dt (32)

its Lebesgue decomposition into a singular and an absolutely continuous part with
respect to Lebesgue measure λ on [0,1]; an explicit construction will be given in the
second part of the following proof.

Our next aim is to derive, for a large class of probability measures Q ∈ QS , a
lower bound for the specific relative entropy h(Q|P) in terms of the quadratic varia-
tion ofW under Q, that is, in terms of the random measure q(·, ·). In a first step we
focus on the case Q ∈ QM . The following theorem for martingale measures is es-
sentially due to N. Gantert in [7]; here we extend it to the case where the quadration
variation may have a singular component.

Theorem 4 For any martingale measure Q ∈ QM , the specific relative entropy of
Q with respect to Wiener measure P satisfies

h(Q|P) ≥
1
2
EQ

[
q(ω , [0,1])− 1+H(λ |q(ω , ·))

]
=

1
2
EQ

[
qs(ω , [0,1])

]
+EQ

[∫ 1

0
f
(
σ2(ω , t)

)
dt
]
, (33)

where f is the convex function on [0,∞) defined by f (x) = 1
2 (x− 1− logx) ≥ 0. In

particular,
h(Q|P)< ∞ =⇒ σ2(·, ·)> 0 Q⊗λ − a.s. (34)
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Proof 1) First we look at the general case Q ∈ QS . Thus we can writeW =M+
A, where M is a square-integrable Q-martingale and A is an adapted process with
continuous paths of bounded variation such that EQ

[
|A|21

]
< ∞.

For N ≥ 1 and i= 1, . . . ,2N we write ti = i2−N and denote by νN,i(ω , ·) the con-
ditional distribution of the incrementWti −Wti−1 under Q given the σ -field FN,ti−1 ,
by

mN,i = EQ
[
Wti −Wti−1 |FN,ti−1

]
= EQ

[
Ati −Ati−1 |FN,ti−1

]
its conditional mean, by

σ̃2
N,i = EQ

[
(Wti −Wti−1)

2|FN,ti−1

]
−m2

N,i

its conditional variance, and by

σ2
N,i = EQ

[
(Mti −Mti−1)

2|FN,ti−1

]
= EQ

[〈
W
〉
ti
−
〈
W
〉
ti−1

|FN,ti−1

]
(35)

the conditional variance of the martingale incrementMti −Mti−1 . We can write

HN(Q|P) =
2N

∑
i=1

EQ
[
H
(
νN,i(ω , ·)|N(0,2−N)].

Since

H
(
N(m,α)|N(0,β )

)
= f (

α
β
)+

m2

2β

for α,β > 0 and m ∈ R1, we get

H
(
νN,i|N(0,2−N)

)
= H

(
νN,i|N(mN,i, σ̃2

N,i)
)
+H

(
N(mN,i, σ̃2

N,i)|N(0,2
−N)

)
= H

(
νN,i|N(mN,i, σ̃2

N,i)
)
+ f (2Nσ̃2

N,i)+
1
2
2Nm2

N,i ,

hence

HN(Q|P) = HN(Q|Q∗
N)+EQ

[ 2N

∑
i=1

f (2N σ̃2
N,i)

]
+

1
2
2NIN , (36)

where we define

IN := EQ
[ 2N

∑
i=1

m2
N,i
]
, (37)

and whereQ∗
N denotes the probability measure on (Ω ,FN) such that the increments

Wti−Wti−1 have conditional distributionN(mN,i, σ̃2
N,i) given the σ -fieldFN,ti−1 . Note

that Jensen’s inequality yields
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IN ≤ EQ
[ 2N

∑
i=1

(Ati −Ati−1)
2],

hence
lim
N↑∞

IN = 0, (38)

due to (31). Note also thatHN(Q|P)< ∞ implies σ̃2
N,i(ω)> 0 Q-a.s., since f (0) =

∞.
2) LetQ⊗q denote the finite measure on Ω̄ =Ω × [0,1] defined byQ⊗q(dω ,dt)=
Q(dω)q(ω ,dt). On the σ -field

PN := σ({At × (t,1] | t ∈ DN ,At ∈ FN,t}),

the measure Q⊗ q is absolutely continuous with respect to the product measure
Q⊗λ , where λ denotes the Lebesgue measure on (0,1], and the density is given by

σ2
N(ω , t) :=

2N

∑
i=1

2Nσ2
N,i(ω)I(ti−1,ti](t).

The σ -fields PN increase to the predictable σ -field P on Ω̄ , generated by the
sets At × (t,1] with t ∈ [0,1] and At ∈ Ft . Applying the first part of Lemma 1 with
μ = Q⊗λ and ν = Q⊗ q, we see that the limit

σ2(ω , t) = lim
N↑∞

σ2
N(ω , t)

exists both Q⊗ q -a.s. and Q⊗λ -a.s., with

σ2(ω , t) ∈ [0,∞) Q⊗λ − a.s.

and
σ2(ω , t) ∈ (0,∞] Q⊗ q− a.s..

Moreover, the Lebesgue decomposition of Q⊗ q with respect to Q⊗λ on the pre-
dictable σ -field P takes the form

Q⊗ q [Ā] = Q⊗ q [Ā∩{σ2 = ∞}]+EQ⊗λ
[
σ2; Ā

]
,

for Ā ∈ P . This implies, Q-a.s., the Lebesgue decomposition

q(ω ,dt) = qs(ω ,dt)+σ2(ω , t)λ (dt),

of q(ω , ·) with respect to Lebesgue measure λ , where the singular part qs(ω , ·) is
given by the restriction of q(ω , ·) to the λ -null set

N(ω) := {t | σ2(ω , t) = ∞}. (39)
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3) Let us now focus on the case where Q is a martingale measure. For Q ∈ QM , we
have σ̃2

N,i = σ2
N,i and A= 0, hence IN = 0. Thus, equation (36) can be written as

2−NHN(Q|P) = 2−NHN(Q|Q∗
N)+EQ

[∫ 1

0
f (σ2

N(·, t))dt
]
. (40)

Since HN(Q|Q∗
N)≥ 0, we obtain

h(Q|P) ≥ lim
N↑∞

EQ
[∫ 1

0
f (σ2

N(·, t))dt
]

=
1
2
EQ

[
qs(ω ,(0,1])

]
+EQ

[∫ 1

0
f (σ2(·, t))dt

]
. (41)

where we apply the second part of Lemma 1 below, with μ =Q⊗λ and ν =Q⊗q.
Since f (0) = ∞, we see that h(Q|P) < ∞ implies that σ2(·, ·) is strictly positive
Q⊗λ -a.s.. �

Remark 5 The proof of Theorem 4 shows that we obtain existence of the limit

h(Q|P) = lim
N↑∞

2−NHN(Q|P) (42)

together with the equality

h(Q|P) =
1
2
EQ

[
qs(ω , [0,1])

]
+EQ

[∫ 1

0
f
(
σ2(ω , t)

)
dt
]
, (43)

if and only if Q is “almost locally Gaussian” in the sense that the measures Q∗
N

appearing in (36) satisfy
lim
N↑∞

2−NHN(Q|Q∗
N) = 0. (44)

This was already observed by N. Gantert in [7].

In the proof of Theorem 4 we have used the following general lemma.

Lemma 1 Consider two probability measures μ and ν on a measurable space
(S,S ) and a sequence of (Sn)n=1,2,... of sub-σ -fields increasing to S∞. Suppose
that ν is equivalent to μ on Sn with density φn.
1) The limit φ∞ = limn φn exists both μ-a.s. and ν-a,s,, with

φ∞ ∈ [0,∞) μ − a.s. and φ∞ ∈ (0,∞] ν − a.s.,

and the Lebesgue decomposition ν = νs+νa of ν with respect to μ on S∞ is given
by

νs(A) = ν(A∩{φ∞ = ∞}) and νa(A) =
∫
A

φ∞dμ .

2) If supn
∫
f (φn)dμ < ∞ for f (x) = 1

2 (x− 1− logx) then we have
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lim
n↑∞

∫
f (φn)dμ =

1
2

νs(S)+
∫

f (φ∞)dμ . (45)

Proof The first part is well-known; the proof uses standard martingale arguments.
To prove the second part, we write∫

2 f (φn)dμ =

∫
φndμ − 1+

∫
log(φ−1

n )dμ

= νs(S)+
∫

φ∞dμ − 1+HSn(ν|μ).

Due to (6), we get

lim
n↑∞

∫
f (φn)dμ =

1
2
(
νs(S)+

∫
φ∞dμ − 1+HS∞(ν|μ)

)
If the left hand side is finite, the relative entropy is finite and reduces to

∫
log(φ−1

∞ )dμ ,
and this yields equation (45). �

Let us now go beyond the case of a martingale measure. Take Q ∈ QS and
let W =M+A be the canonical decomposition of the semimartingaleW under Q.
As soon as the process A is non-deterministic, the conditional variances σ2

N,i of M
defined in (35) do no longer coincide with the conditional variances σ̃2

N,i ofW along
the N-th dyadic partition. Instead we have

σ̃2
N,i = σ2

N,i+ δN,i,

where
δN,i = α2

N,i+ 2EQ
[
(Mti −Mti−1)(Ati −Ati−1)|FN,ti−1

]
,

and where we denote by

α2
N,i = EQ

[
(Ati −Ati−1)

2|FN,ti−1

]
−m2

N,i

the conditional variances of A along the N-th dyadic partition.
Lemma 2 The differences δN,i and the conditional variances α2

N,i satisfy

lim
n↑∞

EQ
[ 2N

∑
i=1

|δN,i|
]
= lim

n↑∞
EQ

[ 2N

∑
i=1

α2
N,i
]
= 0.

Proof Since

JN := EQ
[ 2N

∑
i=1

α2
N,i
]
≤ EQ

[ 2N

∑
i=1

(Ati −Ati−1)
2],

we obtain
lim
n↑∞

JN = 0 (46)

due to (31). On the other hand, since
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|δN,i| ≤ α2
N,i+ 2σN,iαN,i, (47)

we get

EQ
[ 2N

∑
i=1

|δN,i|
]
≤ EQ

[ 2N

∑
i=1

α2
N,i
]
+ 2

2N

∑
i=1

EQ
[
σ2
N,i
]1/2EQ

[
α2
N,i
]1/2

≤ JN + 2EQ
[
M2

1
]1/2J1/2N ,

hence

lim
N↑∞

EQ
[ 2N

∑
i=1

|δN,i|= 0, (48)

due to (46). �

To prove our extended version of Theorem 4, we use an additional assumption.

Definition 4 We denote by Q0
S

the class of all probability measures Q ∈ QS such
that

lim
n↑∞

EQ
[
2−N

2N

∑
i=1

α2
N,iσ−2

N,i
]
= 0. (49)

Remark 6 Condition (49) is satisfied if σ2(·, ·) is bounded away from 0. Indeed, if
σ2(·, ·)≥ c Q⊗λ -a.s. for some c> 0 then

2N

∑
i=1

2Nσ2
N,i(ω)I(ti−1,ti](t) = σ2

N(ω , t)≥ EQ⊗λ
[
σ2|PN

]
≥ c Q⊗λ − a.s.;

cf. the second part of the proof of Theorem 4. Thus, (49) follows from Lemma 2.

Theorem 5 For any Q ∈ Q0
S
,

h(Q|P)≥
1
2
EQ

[
qs(ω , [0,1])

]
+EQ

[∫ 1

0
f
(
σ2(ω , t)

)
dt
]
. (50)

Proof 1) Let us return to the first part of the proof of Theorem 4. Since
HN(Q|Q∗

N)≥ 0, equation (36) yields

2−NHN(Q|P)≥ EQ
[ 2N

∑
i=1

f (2N σ̃2
N,i)2

−N]+ 1
2
IN .

Since f is convex with f ′(x) = 1
2 (1− x−1), we obtain

f (2N σ̃2
N,i)≥ f (2Nσ2

N,i)+
1
2
(1− 2−Nσ−2

N,i )2
NδN,i.

Due to (38), this implies
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h(Q|P)≥ liminf
N↑∞

EQ
[∫ 1

0
f
(
σ2
N(ω , t)

)
dt+

1
2

ΔN
]
,

where

ΔN =
2N

∑
i=1

(
δN,i− 2−Nσ−2

N,i δN,i
)
.

Applying the second part of Lemma 1 as in the proof of Theorem 4, we see that
inequality (50) holds as soon as we show that

lim
N↑∞

ΔN = 0 in L1(Q). (51)

2) In view of Lemma 2 it is enough to show convergence to 0 for

EQ
[ 2N

∑
i=1

2−Nσ−2
N,i |δN,i|

]

≤ EQ
[ 2N

∑
i=1

2−Nσ−2
N,iα

2
N,i

]
+ 2EQ

[
2−N

2N

∑
i=1

αN,iσ−1
N,i

]

≤ EQ
[ 2N

∑
i=1

2−Nσ−2
N,iα

2
N,i

]
+ 2EQ

[
2−N

2N

∑
i=1

σ−2
N,i α

2
N,i
]1/2

.

But the last two terms converge to 0 due to our assumption (49), and this completes
the proof of (51). �

Corollary 5 Let Q ∈ QS be such that ||AQ||H ∈ L2(Q). Then we have

h(Q|P) = 0 ⇐⇒ H(Q|P)< ∞,

and in this case the canonical decomposition (29) of W under Q takes the form
MQ =WQ and AQ = BQ .

Proof Let us assume h(Q|P) = 0. Inequality (33) implies qs(ω , ·) = 0 Q-a.s and
f
(
σ2(ω , t)

)
= 0 Q⊗ λ -a.s, hence σ2(ω , t) = 1 Q⊗ λ -a.s. Thus, W has quadratic

variation 〈
W
〉
t =

〈
MQ〉

t = t

under Q, and so MQ is a Wiener process under Q. Uniqueness of the canonical
decomposition ofW under Q yieldsMQ =WQ and AQ = BQ, hence

H(Q|P) =
1
2
EQ

[
||AQ||2H

]
< ∞

due to Proposition 1. Conversely, H(Q|P) < ∞ implies h(Q|P) = 0, as we have
already observed above, following the definition of h(Q|P). �
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5 Intrinsic Wiener Process and Optimal Coupling for
Semimartingale Measures

We fix a probability measure Q ∈ QS and denote by

W =M+A (52)

the canonical decomposition of the coordinate process W under Q. Recall the
Lebesgue decomposition

q(ω ,dt) = q(ω ,dt)+σ2(ω , t)dt

of the random measure q(ω , ·) on [0,1] with distribution function
〈
W
〉
(ω), and put

A(ω) := {t ∈ [0,1] | σ2(ω , t)< ∞}.

The following construction of an intrinsic Wiener process WQ for Q extends the
definition in Proposition 1 beyond the absolutely continuous case Q� P.

Lemma 3 If h(Q|P)< ∞ then the process WQ = (WQ
t )0≤t≤1, defined Q-a.s. by

WQ
t :=

∫ t

0
σ(·,s)−1IA(·)(s)dMs, (53)

is a Wiener process under Q.

Proof By Theorem 4, our assumption h(Q|P)< ∞ implies

EQ
[∫ 1

0
f (σ2(ω , t))dt

]
< ∞,

where f (x) = 1
2 (x− 1− logx), and in particular

0< σ2(·, ·)< ∞ Q⊗λ − a.s..

since f (0) =∞. Since
〈
M
〉
=
〈
W
〉
and λ

(
A(·)

)
= 1 Q-a.s., the predictable integrand

φs = σ(·,s)−1IA(·)(s) in (53) satisfies
∫ t

0
φ2
s d

〈
M
〉
s =

∫ t

0
σ−2
s IA(·)(s)σ2

s ds=
∫ t

0
IA(·)(s)ds= t.

Thus, the stochastic integrals in (53) are well defined, and they define a continuous
martingaleWQ under Q with quadratic variation

〈
WQ〉

t = t. This implies thatWQ

is a Wiener process under Q. �

For the rest of this section we assume that Q ∈ QS satisfies the condition

h(Q|P)< ∞, (54)
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and soWQ will be a Wiener process under Q.

Definition 5 WQ will be called the intrinsic Wiener process of Q.

Remark 7 If H(Q|P) < ∞ then the intrinsic Wiener process coincides with the
Wiener processWQ :=W −BQ defined in Proposition 1; cf. the proof of corollary
5.

Definition 6 An adaptive coupling (X̃ ,Ỹ ) of P and Q on a filtered probability space
(Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃)will be called a semimartingale coupling if Ỹ is a special semi-
martingale with respect to P̃ and (F̃t )0≤t≤1, and if the canonical decomposition
Ỹ = M̃+ Ã is such that

1. M̃ is a square-integrable martingale,
2. Ã is an adapted process with continuous paths of bounded variation such that its

total variation |Ã| satisfies |Ã|1 ∈ L2(P̃).

Clearly, the pair (WQ,W ) is a semimartingale coupling of P and Q, defined on
the filtered probability space (Ω ,F ,(Ft )0≤t≤1,Q). In fact, we are going to show
that (WQ,W ) is the optimal semimartingale coupling for the Wasserstein distance
WS (Q,P) defined below.

Proposition 3 For any semimartingale coupling (X̃ ,Ỹ ) of P and Q on some filtered
probability space (Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃) we have

Ẽ
[〈
Ỹ − X̃

〉
1
]
≥ EQ

[〈
W −WQ〉

1
]
, (55)

and equality holds if and only if X̃ =WQ(Ỹ ) P̃-a.s.. Moreover,

EQ
[〈
W −WQ〉

1
]
= EQ

[∫ 1

0

(
σ(·,s)− 1

)2ds+ qs(·,(0,1])
]
. (56)

.

Proof 1) First we show that the last equality holds. Recall from the proof of Theo-
rem 4 that qs(ω , ·) is given,Q-a.s., by the restriction of q(ω , ·) to the λ -nullsetN(ω)
defined in (39). Since A(·)∪N(·) = [0,1], we have

Wt =

∫ t

0
IA(·)(s)dWs+

∫ 1

0
IN(·)(s)dWs

=

∫ t

0
σ(·,s)dWQ

s +

∫ 1

0
IN(·)(s)dWs,

hence
(W −WQ)t =

∫ t

0

(
σ(·,s)− 1

)
dWQ

s +

∫ 1

0
IN(·)(s)dWs

and
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〈
W −WQ〉

t =
∫ t

0

(
σ(·,s)− 1

)2ds+ ∫ 1

0
IN(·)(s)d

〈
W
〉
s

+ 2
∫ t

0

(
σ(·,s)− 1

)
IN(·)(s)d

〈
WQ,W

〉
s.

The last term vanishes since, Q-a.s., N(ω) is a nullset with respect to
d
〈
WQ,W

〉
(ω)� d

〈
WQ〉(ω) = dt. This implies

EQ
[〈
W −WQ〉

1
]
= EQ

[∫ 1

0

(
σ(·,s)− 1

)2ds+ qs(·,(0,1])
]
.

2) Consider any semimartingale coupling (X̃ ,Ỹ ) of P and Q, defined on some fil-
tered probability space (Ω̃ ,F̃ ,(F̃t)0≤t≤1, P̃). Both X̃ and the process W̃ :=WQ(Ỹ ),
defined by

W̃t :=
∫ t

0
σ(Ỹ ,s)−1IA(Ỹ)(s)dỸs ,

are Wiener processes under P̃ with respect to the filtration (F̃t ). Projecting the first
on the second, we can write

X̃t =
∫ t

0
ρsdW̃s+ L̃t ,

where L̃= (L̃t )0≤t≤1 is a martingale orthogonal to W̃ . Since

t =
〈
X̃
〉
t =

∫ t

0
ρ2
s ds+

〈
L̃
〉
t ,

we get ρ2
t ≤ 1 and d

〈
L̃
〉
t = (1−ρ2

t )dt. This implies

d
〈
X̃ ,Ỹ

〉
= ρtd

〈
W̃ ,Ỹ

〉
= ρtσ−1(Ỹ , t)IA(Ỹ)(t)σ

2(Ỹ , t)dt

≤ σ(Ỹ , t)dt,

hence 〈
Ỹ − X̃

〉
1 =

〈
Ỹ
〉
1+

〈
X̃
〉
1− 2

〈
X̃ ,Ỹ

〉
1

≥
∫ 1

0
σ2(Ỹ , t)dt+ qs(Ỹ ,(0,1])+ 1− 2

∫ 1

0
σ(Ỹ , t)dt

=

∫ 1

0

(
σ(Ỹ , t)− 1

)2dt+ qs(Ỹ ,(0,1]).

Thus,



170 H. Föllmer

Ẽ
[〈
Ỹ − X̃

〉
1
]
≥ Ẽ

[∫ 1

0
(σ

(
Ỹ , t)− 1

)2dt+ qs(Ỹ ,(0,1])
]

= EQ
[∫ 1

0

(
σ(·, t)− 1

)2dt+ qs(·,(0,1])
]

. = EQ
[〈
W −WQ〉

1
]
,

and equality holds iff ρt(·) = 1 P̃⊗ dt -a.s., that is, iff X̃ = W̃ =WQ(Ỹ ) P̃ -a.s.. �

Now consider the followingWasserstein distanceWS (Q,P), where the cost func-
tion is defined in terms of quadratic variation.

Definition 7 The Wasserstein distanceWS (Q,P) betweenQ andWiener measure P
is defined as

WS (Q,P) = inf
(
Ẽ
[〈
Ỹ − X̃

〉
1+ ||Ã||2S

]) 1
2 , (57)

where the infimum is taken over all semimartingale couplings (Ỹ , X̃) of Q and P on
some filtered probability space, where M̃+ Ã is the canonical decomposition of Ỹ ,
and where we set

||Ã||S =
(∫ 1

0
ã2t d

〈
Ỹ
〉
t
)1/2

if Ã is absolutely continuous with respect to
〈
Ỹ
〉
with density process ã, and

||Ã||S = ∞ otherwise.

Remark 8 In the absolutely continuous case Q� P we have

d
〈
Ỹ
〉
= d

〈
X̃
〉
= dt Q−a.s.,

and so the norm ||Ã||S reduces to the Cameron-Martin norm ||Ã||H .

As an immediate corollary to the preceding proposition we obtain the follow-
ing inequality for martingale measures. It provides a first extension of Talagrand’s
inequality (13) on Wiener space beyond the absolutely continuous case.

Theorem 6 For a martingale measure Q ∈ QM ,

W 2
S (Q,P) = EQ

[〈
W −WQ〉

1
]
≤ 2h(Q|P), (58)

and equality holds iff Q= P.

Proof 1) For Q ∈ QM , the pair (W,WQ) is a semimartingale coupling of Q and
P, defined on (Ω ,F ,(Ft )0≤t≤1,Q), such thatW −WQ =M−WQ is a martingale
under Q. Thus, the expected cost in (57) only involves the quadratic variation com-
ponent, and Proposition 3 implies

W 2
S (Q,P) = EQ

[〈
W −WQ〉

1
]
= EQ

[∫ 1

0

(
σ(·,s)− 1

)2ds+ qs(·,(0,1])
]
. (59)

Note that
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(σ − 1)2 ≤ σ2− 1− logσ2 = 2 f (σ2),

with equality iff σ2 = 1. Thus,

EQ
[〈
W −WQ〉

1
]
≤ EQ

[
2
∫ 1

0
f
(
σ2(·,s)

)
dt+ qs(·,(0,1])

]
≤ 2h(Q|P), (60)

where the second inequality follows from Theorem 4.
2) Equality in (58) implies equality in (60). It follows from part 1) that σ2(·, ·) =
1 Q⊗ λ -a.s.. This implies W = M =WQ under Q, hence Q = P. The converse is
obvious. �

Definition 8 We write Q ∈ Q∗
S

if the canonical decompositionW =M+A of the
coordinate processW under Q ∈ QS is such that

EQ
[
||A||2S

]
< ∞, (61)

that is, dAt = atd
〈
W
〉
t with

∫ 1
0 a2t d

〈
W
〉
t ∈ L1(Q), and if

G∗ := exp
(
−

∫ 1

0
atdM−

1
2

∫ 1

0
a2t d

〈
M
〉
t
)

satisfies
G∗ ∈ L2(Q) and EQ[G∗] = 1. (62)

Remark 9 For Q ∈ Q∗
S
, the probability measure Q∗ defined by

dQ∗ = G∗dQ (63)

is an equivalent martingale measure for Q; cf., for example, [6]. Note that QM ⊂
Q∗

S
, and that Q∗ = Q for Q ∈ QM .

Proposition 4 For Q ∈ Q∗
S
, the coupling (W,WQ) of Q and P is optimal for WS ,

that is,
W 2

S (Q,P) = EQ
[〈
W −WQ〉

1+ ||A||2S
]
. (64)

Proof ForQ∈Q∗
S
, the right-hand side in (64) is finite, and so we haveWS (Q,P)<

∞. Now take any semimartingale coupling (Ỹ , X̃) of Q and P, defined on some fil-
tered probability space (Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃), such that

Ẽ
[〈
Ỹ − X̃

〉
1+ ||Ã||2S

]
< ∞.

Since
Ẽ
[〈
Ỹ − X̃

〉
1
]
≥ EQ

[〈
W −WQ〉

1
]

(65)

by Proposition 3, it only remains to show that

Ẽ
[
||Ã||2S

]
≥ EQ

[
||A||2S

]
,
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that is,

Ẽ
[∫ 1

0
ã2t d

〈
Ỹ
〉
t
]
≥ EQ

[∫ 1

0
a2t d

〈
W
〉
t
]
. (66)

We denote by P̃ the predictable σ -field on Ω̃ ×(0,1] corresponding to the filtration
(F̃t), and byP0 ⊆P the predictable σ -field corresponding to the smaller filtration
(F̃ 0

t ) generated by (Ỹt). Since Ẽ
[
||Ã||2

S

]
< ∞, we have

dÃt = ãtd
〈
Ỹ
〉
t = ãtdq(Ỹ , t),

where ã = (ãt) is P-measurable and square-integrable with respect to the finite
measure P̃⊗ q(Ỹ , ·) on P̃ . Let ã0 = (ã0t ) denote the process defined by the condi-
tional expectation

ã0 := EP̃⊗q(Ỹ ,·)
[
ã
∣∣P0],

and note that Jensen’s inequality implies

EP̃⊗q(Ỹ ,·)
[
(ã0)2

]
≤ EP̃⊗q(Ỹ ,·)

[
ã2
]
. (67)

For any A0
t ∈ F 0

t we can write

Ẽ
[
Ỹt+h− Ỹt ;A0

t
]
= Ẽ

[
M̃t+h− M̃t ;A0

t
]
+ Ẽ

[
Ãt+h− Ãt ;A0

t
]

= Ẽ
[∫ t+h

t
ãsd

〈
Ỹ
〉
s;A

0
t
]
= EP̃⊗q(Ỹ ,·)

[
ã;A0

t × (t, t+ h]
]

= EP̃⊗q(Ỹ ,·)
[
ã0;A0

t × (t, t+ h]
]
= Ẽ

[∫ t+h

t
ã0s d

〈
Ỹ
〉
s;A

0
t
]
.

This implies that the canonical decomposition of the semimartingale Ỹ in the smaller
filtration (F̃ 0

t ) is of the form

Ỹt = M̃0
t +

∫ t

0
ã0s d

〈
Ỹ
〉
s.

where M̃0 is a martingale with respect to (F̃ 0
t ). On the other hand, since the law of

Ỹ under P̃ is given by Q, we have

Ỹt =Mt(Ỹ )+
∫ t

0
as(Ỹ )d

〈
Ỹ
〉
s.

Uniqueness of the canonical decomposition implies

ã0 = a(Ỹ ) P̃⊗ q(Ỹ , ·)− a.s. (68)

Thus, inequality (67) yields

Ẽ
[∫ 1

0
ã2t d

〈
Ỹ
〉
t
]
≥ Ẽ

[∫ 1

0
a2t (Ỹ )d

〈
Ỹ
〉
t
]
= EQ

[∫ 1

0
a2t (W )d

〈
W
〉
t
]
,
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and so we have shown inequality (66). �

The following inequality extends Theorem 6 beyond the case of a martingale
measure. As explained in Remark 10 below, it contains inequality (58) forQ∈QM ,
Talagrand’s inequality (9) for Q� P, and Corollary 2 forWH ,ad as special cases.

Theorem 7 For Q ∈ Q∗
S
,

W 2
S (Q,P)≤ 2

(
h(Q|P)+H(Q|Q∗)

)
, (69)

where Q∗ is the equivalent martingale measure for Q defined by (63). Equality holds
iff H(Q|P)< ∞.

Proof 1) Proposition 4 combined with inequality (60) shows that

W 2
S (Q,P) = EQ

[〈
W −WQ〉

1+ ||A||2S
]

≤ 2h(Q|P)+EQ
[∫ 1

0
a2t d

〈
W
〉
t
]
. (70)

Since Q∗ is equivalent to Q, we have

H(Q|Q∗) = EQ
[
log

(
dQ∗/dQ)−1]

= EQ
[∫ 1

0
atdMt +

1
2

∫ 1

0
a2t d

〈
M
〉
t
]
.

But M is a square-integrable martingale under Q and EQ[
∫ 1
0 a2t d

〈
M
〉
t
]
< ∞ for Q ∈

Q∗
S
. This implies EQ

[∫ 1
0 atdMt

]
= 0, hence

H(Q|Q∗) =
1
2
EQ

[∫ 1

0
a2t d

〈
M
〉
t
]
.

Thus,

W 2
S (Q,P)≤ EQ

[〈
W −WQ〉

1+ ||A||2S
]
≤ 2h(Q|P)+ 2H(Q|Q∗).

and so we have shown inequality (69).
2) Equality in (69) implies equality in (70), hence

EQ
[〈
W −WQ〉

1
]
= 2h(Q|P).

Recall that the left-hand side satisfies equation (56). As in the proof of Theorem 6,
it follows that M =WQ. This impliesW =WQ+A and ||A||H = ||A||S ∈ L2(Q),
hence

H(Q|P) =
1
2
EQ

[
||A||2H

]
< ∞,

due to Proposition 1.
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Conversely, H(Q|P) < ∞ implies h(Q|P) = 0 and Q ∈ Q∗
S

with Q∗ = P, hence
H(Q|Q∗) = H(Q|P). Thus, the right-hand side of (69) reduces to 2H(Q|P) =
EQ

[
||BQ||2

H

]
. Moreover, sinceW =WQ+BQ and

〈
W
〉
t = t underQ, we get A=BQ,

and the left-hand side becomes W 2
S
(Q,P) =W 2

H ,ad(Q,P) = EQ
[
||BQ||2

H

]
. Thus,

equality holds in (69). �

Remark 10 Inequality (69) includes inequality (58) for martingale measures as a
special case. Indeed, for Q ∈QM ⊂ Q∗

S
we have Q=Q∗, hence H(Q|Q∗) = 0 and

W 2
S (Q,P)≤ 2h(Q|P).

Part 2) of the preceding proof shows how Talagrand’s inequality (9) and the identity
(20) forWH ,ad follow from Theorem 7.
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