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Abstract We study a discrete-time portfolio selection problem with partial informa-

tion and maximum drawdown constraint. Drift uncertainty in the multidimensional

framework is modeled by a prior probability distribution. In this Bayesian frame-

work, we derive the dynamic programming equation using an appropriate change

of measure, and obtain semi-explicit results in the Gaussian case. The latter case,

with a CRRA utility function is completely solved numerically using recent deep

learning techniques for stochastic optimal control problems. We emphasize the in-

formative value of the learning strategy versus the non-learning one by providing

empirical performance and sensitivity analysis with respect to the uncertainty of the

drift. Furthermore, we show numerical evidence of the close relationship between

the non-learning strategy and a no short-sale constrained Merton problem, by illus-

trating the convergence of the former towards the latter as the maximum drawdown

constraint vanishes.

1 Introduction

This paper is devoted to the study of a constrained allocation problem in discrete

time with partial information. We consider an investor who is willing to maximize

the expected utility of her terminal wealth over a given investment horizon. The
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risk-averse investor is looking for the optimal portfolio in financial assets under

a maximum drawdown constraint. The maximum drawdown is a common metric

in finance and represents the largest drop in the portfolio value. Our framework

incorporates this constraint by setting a threshold representing the proportion of the

current maximum of the wealth process that the investor is willing to keep.

The expected rate of assets’ return (drift) is unknown, but information can be

learnt by progressive observation of the financial asset prices. The uncertainty about

the rate of return is modeled by a probability distribution, i.e., a prior belief on the

drift. To take into account the information conveyed by the prices, this prior will be

updated using a Bayesian learning approach.

An extensive literature exists on parameters uncertainty and especially on filtering

and learning techniques in a partial information framework. To cite just a few,

see [18], [20], [5], [16], [2], and [6]. Somme articles deal with risk constraints

in a portfolio allocation framework. For instance, paper [19] tackles dynamic risk

constraints and compares the continuous and discrete time trading while some papers

especially focus on drawdown constraints, see in particular seminal paper [11] or

[4]. More recently, the authors of [8] study infinite-horizon optimal consumption-

investment problem in continuous-time, and in paper [3], authors use forecasts of the

mean and covariance of financial returns from a multivariate hidden Markov model

with time-varying parameters to build the optimal controls.

As it is not possible to solve analytically our constrained optimal allocation

problem, we have applied a machine learning algorithm developed in [13] and

[1]. This algorithm, called Hybrid-Now, is particularly suited for solving stochastic

control problems in high dimension using deep neural networks.

Our main contributions to the literature is twofold: a detailed theoretical study

of a discrete-time portfolio selection problem including both drift uncertainty and

maximum drawdown constraint, and a numerical resolution using a deep learning

approach for an application to a model of three risky assets, leading to a five-

dimensional problem. We derive the dynamic programming equation (DPE), which is

in general of infinite-dimensional nature, following the change of measure suggested

in [9]. In the Gaussian case, the DPE is reduced to a finite-dimensional equation by

exploiting the Kalman filter. In the particular case of constant relative risk aversion

(CRRA) utility function, we reduce furthermore the dimensionality of the problem.

Then, we solve numerically the problem in the Gaussian case with CRRA utility

functions using the deep learning Hybrid-Now algorithm. Such numerical results

allow us to provide a detailed analysis of the performance and allocations of both

the learning and non-learning strategies benchmarked with a comparable equally-

weighted strategy. Finally, we assess the performance of the learning compared

to the non-learning strategy with respect to the sensitivity of the uncertainty of

the drift. Additionally, we provide empirical evidence of convergence of the non-

learning strategy to the solution of the classical Merton problem when the parameter

controlling the maximum drawdown vanishes.

The paper is organized as follows: Section 2 sets up the financial market model

and the associated optimization problem. Section 3 describes, in the general case,
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the change of measure and the Bayesian filtering, the derivation of the dynamic

programming equation and details some properties of the value function. Section

4 focuses on the Gaussian case. Finally, Section 5 presents the neural network

techniques used, and shows the numerical results.

2 Problem setup

On a probability space (Ω, F, P) equipped with a discrete filtration (Fk )k=0, ..., N

satisfying the usual conditions, we consider a financial market model with one

riskless asset assumed normalized to one, and d risky assets. The price process

(Si
k
)k=0,...,N of asset i ∈ [[1, d]] is governed by the dynamics

Si
k+1 = Si

k
eR

i
k+1, k = 0, . . . , N − 1, (1)

where Rk+1 = (R1
k+1
, . . . , RN

k+1
) is the vector of the assets log-return between time k

and k + 1, and modeled as:

Rk+1 = B + εk+1. (2)

The drift vector B is a d-dimensional random variable with probability distribution

(prior) μ0 of known mean b0 = E[B] and finite second order moment. Note that the

case of known drift B means that μ0 is a Dirac distribution. The noise ε = (εk )k
is a sequence of centered i.i.d. random vector variables with covariance matrix Γ

= E[εkε
′
k
], and assumed to be independent of B. We also assume the fundamental

assumption that the probability distribution ν of εk admits a strictly positive density

function g on Rd with respect to the Lebesgue measure.

The price process S is observable, and notice by relation (1) that R can be deduced

from S, and vice-versa. We will then denote by Fo =
{
F o
k

}
k=0, ..., N

the observation

filtration generated by the process S (hence equivalently by R) augmented by the

null sets of F, with the convention that for k = 0, F o
0

is the trivial algebra.

An investment strategy is anFo-progressively measurable processα = (αk )k=0, ..., N−1,

valued in Rd , and representing the proportion of the current wealth invested in each

of the d risky assets at each time k = 0, . . . , N − 1. Given an investment strategy α
and an initial wealth x0 > 0, the (self-financed) wealth process Xα evolves according

to

⎧⎪⎨⎪⎩
Xα
k+1 = Xα

k

(
1 + α′k

(
eRk+1 − �d

))
, k = 0, . . . , N − 1,

Xα
0 = x0.

(3)

where eRk+1 is the d-dimensional random variable with components
[
eRk+1

]
i
= eR

i
k+1

for i ∈ [[1, d]], and �d is the vector in Rd with all components equal to 1.

Let us introduce the process Zα
k

, as the maximum up to time k of the wealth

process Xα, i.e.,
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Zα
k := max

0≤�≤k
Xα
� , k = 0, . . . , N .

The maximum drawdown constraints the wealth Xα
k

to remain above a fraction

q ∈ (0, 1) of the current historical maximum Zα
k

. We then define the set of admissible
investment strategies Aq

0
as the set of investment strategies α such that

Xα
k ≥ qZα

k , a.s., k = 0, . . . , N .

In this framework, the portfolio selection problem is formulated as

V0 := sup
α∈Aq

0

E

[
U
(
Xα
N

)]
, (4)

where U is a utility function on (0,∞) satisfying the standard Inada conditions:

continuously differentiable, strictly increasing, concave on (0,∞) with U ′(0) = ∞
and U ′(∞) = 0.

3 Dynamic programming system

In this section, we show how Problem (4) can be characterized from dynamic pro-

gramming in terms of a backward system of equations amenable for algorithms. In a

first step, we will update the prior on the drift uncertainty, and take advantage of the

newest available information by adopting a Bayesian filtering approach. This relies

on a suitable change of probability measure.

3.1 Change of measure and Bayesian filtering

We start by introducing a change of measure under which R1,..., RN are mutually

independent, identically distributed random variables and independent from the drift

B, hence behaving like a noise. Following the methodology detailed in [9] we define

the σ-algebras

G0
k := σ(B, R1, . . . , Rk ), k = 0, . . . , N,

and G = (Gk )k the corresponding complete filtration. We then define a new proba-

bility measure P on (Ω,
∨N

k=1
Gk ) by

dP

dP





Gk := Λk, k = 0, . . . , N,

with



Portfolio Optimization with Partial Information and Maximum Drawdown Constraint 105

Λk :=

k∏
�=1

g(R� )

g(ε� )
, k = 1, . . . , N, Λ0 = 1.

The existence of P comes from the Kolmogorov’s theorem since Λk is a strictly

positive martingale with expectation equal to one. Indeed, for all k = 1, ..., N ,

• Λk > 0 since the probability density function g is strictly positive

• Λk is Gk-adapted,

• As εk ⊥⊥ Gk−1, we have

E[Λk |Gk−1] = Λk−1E

[g(B + εk )

g(εk )


Gk−1

]
= Λk−1

∫
Rd

g(B + e)

g(e)
g(e)de = Λk−1

∫
Rd

g(z)dz = Λk−1.

Proposition Under P, (Rk )k=1,...,N , is a sequence of i.i.d. random variables, inde-

pendent from B, having the same probability distribution ν as εk . �

Proof. See Appendix 6.1. �

Conversely, we recover the initial measure P under which (εk )k=1,...,N is a se-

quence of independent and identically distributed random variables having proba-

bility density function g where εk = Rk − B. Denoting by Λk the Radon-Nikodym

derivative dP/dP restricted to the σ-algebra Gk :

dP

dP





Gk = Λk,

we have

Λk =

k∏
i=1

g(Ri − B)

g(Ri)
.

It is clear that, under P, the return and wealth processes have the form stated in

equations (2) and (3). Moreover, from Bayes formula, the posterior distribution of

the drift, i.e. the conditional law of B given the asset price observation, is

μk (db) := P
[
B ∈ db|F o

k

]
=
πk (db)

πk (Rd)
, k = 0, . . . , N, (5)

where πk is the so-called unnormalized conditional law

πk (db) := E
[
Λk�{B∈db } |F o

k

]
, k = 0, . . . , N .

We then have the key recurrence linear relation on the unnormalized conditional

law.

Proposition We have the recursive linear relation
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π� = ḡ(R� − ·)π�−1, � = 1, . . . , N, (6)

with initial condition π0 = μ0, where

ḡ(R� − b) =
g(R� − b)

g(R� )
, b ∈ Rd,

and we recall that g is the probability density function of the identically distributed

εk under P. �

Proof. See Appendix 6.2 . �

3.2 The static set of admissible controls

In this subsection, we derive some useful characteristics of the space of controls

which will turn out to be crucial in the derivation of the dynamic programming

system.

Given time k ∈ [[0, N]], a current wealth x = Xα
k
> 0, and current maximum wealth

z = Zα
k
≥ x that satisfies the drawdown constraint qz ≤ x at time k for an admissible

investment strategy α ∈ Aq
0
, we denote by Aq

k
(x, z) ⊂ Rd the set of static controls a

= αk such that the drawdown constraint is satisfied at next time k + 1, i.e. Xα
k+1
≥

qZα
k+1

. From the relation (3), and noting that Zα
k+1
= max[Zα

k
, Xα

k+1
], this yields

Aq
k

(x, z) ={
a ∈ Rd : 1 + a′

(
eRk+1 − �d

) ≥ q max
[ z

x
, 1 + a′

(
eRk+1 − �d

)]
a.s.
}
.

(7)

Recalling from Proposition 1, that the random variables R1, ..., RN are i.i.d. under P,

we notice that the set Aq
k

(x, z) does not depend on the current time k, and we will

drop the subscript k in the sequel, and simply denote by Aq (x, z).

Remembering that the support of ν, the probability distribution of εk , is Rd , the

following lemma characterizes more precisely the set Aq (x, z).

Lemma 1 For any (x, z) ∈ Sq :=
{
(x, z) ∈ (0,∞)2 : qz ≤ x ≤ z

}
, we have

Aq (x, z) =
{
a ∈ Rd+ : |a |

1
≤ 1 − q

z
x

}
,

where |a |
1
=
∑d

i=1
|ai | for a = (a1, . . . , ad) ∈ Rd+.

Proof. See Appendix 6.3. �

Let us prove some properties on the admissible set Aq (x, z).

Lemma 2 For any (x, z) ∈ Sq , the set Aq (x, z) satisfies the following properties:

1. It is decreasing in q: ∀q1 ≤ q2, Aq2 (x, z) ⊆ Aq1 (x, z),
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2. It is continuous in q,
3. It is increasing in x: ∀x1 ≤ x2, Aq (x1, z) ⊆ Aq (x2, z),
4. It is a convex set,
5. It is homogeneous: a ∈ Aq (x, z) ⇔ a ∈ Aq (λx, λz), for any λ > 0.

Proof. See Appendix 6.4. �

3.3 Derivation of the dynamic programming equation

The change of probability detailed in Subsection 3.1 allows us to turn the initial

partial information Problem (4) into a full observation problem as

V0 := sup
α∈Aq

0

E[U (Xα
N )] = sup

α∈Aq
0

E[ΛNU (Xα
N )]

= sup
α∈Aq

0

E

[
E
[
ΛNU (Xα

N )

F o
N

] ]
= sup

α∈Aq
0

E

[
U (Xα

N )πN (Rd)
]
, (8)

from Bayes formula, the law of conditional expectations, and the definition of the

unnormalized filter πN valued inM+, the set of nonnegative measures onRd . In view

of Equation (3), Proposition 1, and Proposition 2, we then introduce the dynamic

value function associated to Problem (8) as

vk (x, z, μ) = sup
α∈Aq

k
(x,z)

Jk (x, z, μ, α), k ∈ [[0, N]], (x, z) ∈ Sq, μ ∈ M+,

with

Jk (x, z, μ, α) = E
[
U
(
Xk,x,α
N

)
π
k,μ
N (Rd)

]
,

where Xk,x,α is the solution to Equation (3) on [[k, N]], starting at Xk,x,α
k

= x at

time k, controlled by α ∈ Aq
k

(x, z), and (π
k,μ
�

)�=k,...,N is the solution to (6) on

M+, starting from π
k,μ
k
= μ, so that V0 = v0(x0, x0, μ0). Here, Aq

k
(x, z) is the set

of admissible investment strategies embedding the drawdown constraint: Xk,x,α
�

≥
qZk,x,z,α

�
, � = k, . . . , N , where the maximum wealth process Zk,x,z,α follows the

dynamics: Zk,x,z,α
�+1

= max[Zk,x,z,α
�

, Xk,x,α
�+1

], � = k, . . . , N − 1, starting from Zk,x,z,α
k

= z at time k. The dependence of the value function upon the unnormalized filter μ
means that the probability distribution on the drift is updated at each time step from

Bayesian learning by observing assets price.

The dynamic programming equation associated to (8) is then written in backward

induction as
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⎧⎪⎪⎨⎪⎪⎩
vN (x, z, μ) = U (x)μ(Rd),

vk (x, z, μ) = sup
α∈Aq

k
(x,z)

E

[
vk+1

(
Xk,x,α
k+1
, Zk,x,z,α

k+1
, π

k,μ
k+1

)]
, k = 0, . . . , N − 1.

Recalling Proposition 2 and Lemma 1, this dynamic programming system is written

more explicitly as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vN (x, z, μ) = U (x)μ(Rd), (x, z) ∈ Sq, μ ∈ M+,
vk (x, z, μ) = sup

a∈Aq (x,z)

E

[
vk+1

(
x
(
1 + a′

(
eRk+1 − �d

))
,

max
[
z, x
(
1 + a′

(
eRk+1 − �d

))]
, ḡ(Rk+1 − ·)μ

)]
,

(9)

for k = 0, . . . , N − 1. Notice from Proposition 1 that the expectation in the above

formula is only taken with respect to the noise Rk+1, which is distributed under P

according to the probability distribution ν with density g on Rd .

3.4 Special case: CRRA utility function

In the case where the utility function is of CRRA (Constant Relative Risk Aversion)

type, i.e.,

U (x) =
xp

p
, x > 0, for some 0 < p < 1, (10)

one can reduce the dimensionality of the problem. For this purpose, we introduce the

process ρ = (ρk )k defined as the ratio of the wealth over its maximum up to current

as:

ραk =
Xα
k

Zα
k

, k = 0, . . . , N .

This ratio process lies in the interval [q, 1] due to the maximum drawdown constraint.

Moreover, recalling (3), and observing that Zα
k+1
=max[Zα

k
, Xα

k+1
], together with the

fact that 1
max[z,x]

= min[ 1
z ,

1
x ], we notice that the ratio process ρ can be written in

inductive form as

ραk+1 = min
[
1, ραk

(
1 + α′k

(
eRk+1 − �d

))]
, k = 0, . . . , N − 1.

The following result states that the value function inherits the homogeneity prop-

erty of the utility function.

Lemma 3 For a utility function U as in (10), we have for all (x, z) ∈ Sq , μ ∈ M+,
k ∈ [[0, N]],

vk (λx, λz, μ) = λpvk (x, z, μ), λ > 0.
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Proof. See Appendix 6.5. �

In view of the above Lemma, we consider the sequence of functions wk , k ∈
[[0, N]], defined by

wk (r, μ) = vk (r, 1, μ), r ∈ [q, 1], μ ∈ M+,
so that vk (x, z, μ) = zpwk ( xz , μ), and we call wk the reduced value function. From the

dynamic programming system satisfied by vk , we immediately obtain the backward

system for (wk )k as

⎧⎪⎪⎨⎪⎪⎩
wN (r, μ) = r p

p μ(Rd), r ∈ [q, 1], μ ∈ M+,
wk (r, μ) = sup

a∈Aq (r )

E

[
wk+1

(
min
[
1, r
(
1 + a′

(
eRk+1 − �d

))]
, ḡ(Rk+1 − ·)μ)],

(11)

for k = 0, . . . , N − 1, where

Aq (r) =
{
a ∈ Rd+ : a′�d ≤ 1 − q

r

}
.

We end this section by stating some properties on the reduced value function.

Lemma 4 For any k ∈ [[0, N]], the reduced value function wk is nondecreasing and
concave in r ∈ [q, 1].

Proof. See proof in Appendix 6.6. �

4 The Gaussian case

We consider in this section the Gaussian framework where the noise and the prior

belief on the drift are modeled according to a Gaussian distribution. In this special

case, the Bayesian filtering is simplified into the Kalman filtering, and the dynamic

programming system is reduced to a finite-dimensional problem that will be solved

numerically. It is convenient to deal directly with the posterior distribution of the

drift, i.e. the conditional law of the drift B given the assets price observation, also

called normalized filter. From (5) and Proposition 2, it is given by the inductive

relation

μk (db) =
g(Rk − b)μk−1(db)∫
Rd

g(Rk − b)μk−1(db)
, k = 1, . . . , N . (12)

4.1 Bayesian Kalman filtering

We assume that the probability law ν of the noise εk is Gaussian: N (0, Γ), and so

with density function
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g(r) = (2π)−
d
2 |Γ|− 1

2 e−
1
2
r′Γ−1r, r ∈ Rd . (13)

Assuming also that the prior distribution μ0 on the drift B is Gaussian with mean

b0, and invertible covariance matrix Σ0, we deduce by induction from (12) that the

posterior distribution μk is also Gaussian: μk ∼ N (B̂k, Σk ), where B̂k = E[B |F o
k

]

and Σk satisfy the well-known inductive relations:

B̂k+1 = B̂k + Kk+1(Rk+1 − B̂k ), k = 0, . . . , N − 1 (14)

Σk+1 = Σk − Σk (Σk + Γ)−1Σk, (15)

where Kk+1 is the so-called Kalman gain given by

Kk+1 = Σk (Σk + Γ)−1, k = 0, . . . , N − 1. (16)

We have the initialization B̂0 = b0, and the notation for Σk is coherent at time k = 0

as it corresponds to the covariance matrice of B. While the Bayesian estimation B̂k

of B is updated from the current observation of the log-return Rk , notice that Σk (as

well as Kk) is deterministic, and is then equal to the covariance matrix of the error

between B and its Bayesian estimation, i.e. Σk = E[(B − B̂k )(B − B̂k )′]. Actually,

we can explicitly compute Σk by noting from Equation (12) with g as in (13) and

μ0 ∼ N (b0, Σ0) that

μk ∼ e
− 1

2

(
b−
(
Σ−1

0
+Γ−1k

)−1 (
Γ−1∑k

j=1
R j+Σ

−1
0
b0

)) (
Σ−1

0
+Γ−1k

) (
b−
(
Σ−1

0
+Γ−1k

)−1 (
Γ−1∑k

j=1
R j+Σ

−1
0
b0

))

(2π)
d
2 |(Σ−1

0
+ Γ−1k)−1 | 12

.

By identification, we then get

Σk = (Σ−1
0 + Γ

−1k)−1 = Σ0(Γ + Σ0k)−1Γ. (17)

Moreover, the innovation process (ε̃k )k , defined as

ε̃k+1 = Rk+1 − E[Rk+1 |F o
k ] = Rk+1 − B̂k, k = 0, . . . , N − 1, (18)

is a Fo-adapted Gaussian process. Each ε̃k+1 is independent of F 0
k

(hence ε̃k ,

k = 1, . . . , N are mutually independent), and is a centered Gaussian vector with

covariance matrix:

ε̃k+1 ∼ N (0, Γ̃k+1

)
, with Γ̃k+1 = Σk + Γ.

We refer to [15] and [14] for these classical properties about the Kalman filtering

and the innovation process.

Remark 1 From (14), and (18), we see that the Bayesian estimator B̂k follows the

dynamics

⎧⎪⎨⎪⎩
B̂k+1 = B̂k + Kk+1 ε̃k+1, k = 0, . . . , N − 1

B̂0 = b0,
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which implies in particular that B̂k has a Gaussian distribution with mean b0, and

covariance matrix satisfying

Var(B̂k+1) = Var(B̂k ) + Kk+1(Σk + Γ)K ′k+1 = Var(B̂k ) + Σk (Σk + Γ)−1Σk .

Recalling the inductive relation (15) on Σk , this shows that Var(B̂k ) = Σ0 − Σk . Note

that, from Equation (15), (Σk )k is a decreasing sequence which ensures that Var(B̂k )

is positive semi-definite and is nondecreasing with time k. ♦

4.2 Finite-dimensional dynamic programming equation

From (18), we see that our initial portfolio selection Problem (4) can be reformulated

as a full observation problem with state dynamics given by

⎧⎪⎨⎪⎩ Xα
k+1
= Xα

k

(
1 + α′

k

(
eB̂k+ε̃k+1 − �d

))
,

B̂k+1 = B̂k + Kk+1 ε̃k+1, k = 0, . . . , N − 1.
(19)

We then define the value function on [[0, N]] × Sq × Rd by

ṽk (x, z, b) = sup
α∈Aq

k
(x,z)

E
[
U (Xk,x,b,α

N )
]
, k ∈ [[0, N]], (x, z) ∈ Sq, b ∈ Rd,

where the pair (Xk,x,b,α, B̂k,b) is the process solution to (19) on [[k, N]], starting from

(x, b) at time k, so that V0 = ṽ0(x0, x0, b0). The associated dynamic programming

system satisfied by the sequence (ṽk )k is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ṽN (x, z, b) = U (x), (x, z) ∈ Sq, b ∈ Rd,
ṽk (x, z, b) = sup

a∈Aq (x,z)

E

[
ṽk+1

(
x
(
1 + a′

(
eb+ε̃k+1 − �d

))
,

max
[
z, x
(
1 + a′

(
eb+ε̃k+1 − �d

))]
, b + Kk+1 ε̃k+1

)]
,

for k = 0, . . . , N − 1. Notice that in the above formula, the expectation is taken with

respect to the innovation vector ε̃k+1, which is distributed according to N (0, Γ̃k+1).

Moreover, in the case of CRRA utility functions U (x) = xp/p, and similarly as

in Section 3.4, we have the dimension reduction with

w̃k (r, b) = ṽk (r, 1, b), r ∈ [q, 1], b ∈ Rd,
so that ṽk (x, z, b) = zpw̃k ( xz , b), and this reduced value function satisfies the back-

ward system on [q, 1] × Rd:

⎧⎪⎪⎨⎪⎪⎩
w̃N (r, b) = r p

p , r ∈ [q, 1], b ∈ Rd,
w̃k (r, b) = sup

a∈Aq (r )

E

[
w̃k+1

(
min
[
1, r
(
1 + a′

(
eb+ε̃k+1 − �d

))]
, b + Kk+1 ε̃k+1

)]
,
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for k = 0, . . . , N − 1.

Remark 2 (No short-sale constrained Merton problem) In the limiting case when

q = 0, the drawdown constraint is reduced to a non-negativity constraint on the

wealth process, and by Lemma 1, this means a no-short selling and no borrowing

constraint on the portfolio strategies. When the drift B is also known, equal to b0,

and for a CRRA utility function, let us then consider the corresponding constrained

Merton problem with value function denoted by vM
k

, k = 0, . . . , N , which satisfies

the standard backward recursion from dynamic programming:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
vMN (x) =

xp

p
, x > 0,

vMk (x) = sup
a′�d ≤1

a∈[0,1]d

E

[
vMk+1

(
x
(
1 + a′

(
eb0+εk+1 − �d

))]
, k = 0, . . . , N − 1.

(20)

Searching for a solution of the form vM
k

(x) =Kk xp/p, with Kk ≥ 0 for all k ∈ [[0, N]],

we see that the sequence (Kk )k satisfies the recursive relation:

Kk = SKk+1, k = 0, . . . , N − 1,

starting from KN = 1, where

S := sup
a′�d ≤1

a∈[0,1]d

E

[(
1 + a′

(
eb0+ε1 − �d

))p]
,

by recalling that ε1, . . . , εN are i.i.d. random variables. It follows that the value

function of the constrained Merton problem, unique solution to the dynamic pro-

gramming system (20), is equal to

vMk (x) = SN−k xp

p
, k = 0, . . . , N,

and the constant optimal control is given by

aM
k = argmax

a′�≤1
a∈[0,1]d

E

[(
1 + a′

(
eR1 − �d

))p]
k = 0, . . . , N − 1.

♦

5 Deep learning numerical resolution

In this section, we exhibit numerical results to promote the benefits of learning

from new information. To this end, we compare the learning strategy (Learning) to

the non-learning one (Non-Learning) in the case of the CRRA utility function and
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the Gaussian distribution for the noise. The prior probability distribution of B is

the Gaussian distribution N (b0, Σ0) for Learning while it is the Dirac distribution

concentrated at b0 for Non-Learning.

We use deep neural network techniques to compute numerically the optimal

solutions for both Learning and Non-Learning. To broaden the analysis, in addition to

the learning and non-learning strategies, we have computed an ”admissible" equally

weighted (EW) strategy. More precisely, this EW strategy will share the quantity

Xk − qZk equally among the d assets. Eventually, we show numerical evidence

that the Non-Learning converges to the optimal strategy of the constrained Merton

problem, when the loss aversion parameter q vanishes.

5.1 Architectures of the deep neural networks

Neural networks (NN) are able to approximate nonlinear continuous functions, typ-

ically the value function and controls of our problem. The principle is to use a large

amount of data to train the NN so that it progressively comes close to the target

function. It is an iterative process in which the NN is tuned on a training set, then

tested on a validation set to avoid over-fitting. For more details, see for instance [12]

and [10].

The algorithm we use, relies on two dense neural networks: the first one is

dedicated to the controls (ANN ) and the second one to the value function (V FNN ).

Each NN is composed of four layers: an input layer, two hidden layers and an output

layer:

(i) The input layer is d+1-dimensional since it embeds the conditional expectations

of each of the d assets and the ratio of the current wealth to the current historical

maximum ρ.
(ii) The two hidden layers give the NN the flexibility to adjust its weights and biases

to approximate the solution. From numerical experiments, we see that, given

the complexity of our problem, a first hidden layer with d + 20 neurons and a

second one with d + 10 are a good compromise between speed and accuracy.

(iii) The output layer is d-dimensional for the controls, one for each asset representing

the weight of the instrument, and is one-dimensional for the value function. See

Figures 1 and 2 for an overview of the NN architectures in the case of d = 3

assets.
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Parameter ANN VFNN

Initializer uniform(0, 1) He_uniform

Regularizers L2 norm L2 norm

Activation functions Elu and Sigmoid for output layer Elu and Sigmoid for output layer

Optimizer Adam Adam

Learning rates: step N-1 5e-3 1e-3

steps k = 0,...,N-2 6.25e-4 5e-4

Scale 1e-3 1e-3

Number of elements in a training batch 3e2 3e2

Number of training batches 1e2 1e2

Size of the validation batches 1e3 1e3

Penalty constant 3e-1 NA

Number of epochs: step N-1 2e3 2e3

steps k = 0,...,N-2 5e2 5e2

Size of the training set: step N-1 6e7 6e7

steps k = 0,...,N-2 1.5e7 1.5e7

Size of the validation set: step N-1 2e6 2e6

steps k = 0,..., N-2 5e5 5e5

Table 1 Parameters for the neural networks of the controls ANN and the value function VFNN.

Fig. 1 ANN architecture with d = 3 assets Fig. 2 VFNN architecture with d = 3 assets

We follow the indications in [10] to setup and define the values of the various

inputs of the neural networks which are listed in Table 1.

To train the NN, we simulate the input data. For the conditional expectation B̂k , we

use its time-dependent Gaussian distribution (see Remark 1): B̂k ∼ N (b0, Σ0 − Σk ),

with Σk as in Equation (17). On the other hand, the training of ρ is drawn from

the uniform distribution between q and 1, the interval where it lies according to the

maximum drawdown constraint.

5.2 Hybrid-Now algorithm

We use the Hybrid-Now algorithm developped in [1] in order to solve numerically

our problem. This algorithm combines optimal policy estimation by neural networks
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and dynamic programming principle which suits the approach we have developped

in Section 4.

With the same notations as in Algorithm 1 detailed in the next insert, at time k,

the algorithm computes the proxy of the optimal control α̂k with ANN , using the

known function V̂k+1 calculated the step before, and uses VNN to obtain a proxy of

the value function V̂k . Starting from the known function V̂N := U at terminal time N ,

the algorithm computes sequentially α̂k and V̂k with backward iteration until time 0.

This way, the algorithm loops to build the optimal controls and the value function

pointwise and gives as output the optimal strategy, namely the optimal controls from

0 to N − 1 and the value function at each of the N time steps.

The maximum drawdown constraint is a time-dependent constraint on the max-

imal proportion of wealth to invest (recall Lemma 1). In practice, it is a constraint

on the sum of weights of each asset or equivalently on the output of ANN . For

that reason, we have implemented an appropriate penalty function that will reject

undesirable values:

GPenalty (A, r) = Kmax

(
|A|

1
≤ 1 − q

r
, 0
)
, A ∈ [0, 1]d, r ∈ [q, 1].
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This penalty function ensures that the strategy respects the maximum drawdown

constraint at each time step, when the parameter K is chosen sufficiently large.

Algorithm 1: Hybrid-Now
Input: the training distributions μUni f and μk

Gauss
;

� μUni f = U (q, 1)

� μk
Gauss

= N (b0, Σ0 − Σk )

Output:
- estimate of the optimal strategy (âk )N−1

k=0
;

- estimate of the value function
(
V̂k

)N−1

k=0
;

Set V̂N = U;

for k = N − 1, . . . , 0 do
Compute:

β̂k ∈ argmin

β∈R2d2+56d+283

E

[
GPenalty (ANN (ρk, B̂k ; β), ρk ) − V̂k+1

(
ρ
β
k+1
, B̂k+1

)]
where ρk ∼ μUni f , B̂k ∼ μkGauss

,

B̂k+1 = H̃k (B̂k, ε̃k+1) and ρ
β
k+1
= F
(
ρk, B̂k, ANN

(
ρk, B̂k ; β

)
, ε̃k+1

)
;

� F (ρ, b, a, ε ) = min
(
1, ρ
(
1 +
∑d

i=1
ai
(
eb

i+ε i − 1
)))

� H̃k (b, ε ) = b + Σ0(Γ + Σ0k)−1ε

Set âk = ANN

(
.; β̂k
)

;

� âk is the estimate of the optimal control at time k.

Compute:

θ̂k ∈ argmin

θ∈R2d2+54d+261

E

[(
V̂k+1

(
ρ
β̂k
k+1
, B̂k+1

)
− V FNN

(
ρk, B̂k ; θ

))2]
Set V̂k = V FNN

(
., θ̂k
)

;

� V̂k is the estimate of the value function at time k.

A major argument behind the choice of this algorithm is that, it is particularly

relevant for problems in which the neural network approximation of the controls and

value function at time k, are close to the ones at time k + 1. This is what we expect

in our case. We can then take a small learning rate for the Adam optimizer which

enforces the stability of the parameters’ update during the gradient-descent based

learning procedure.

5.3 Numerical results

In this section, we explain the setup of the simulation and exhibit the main results.

We have used Tensorflow 2 and deep learning techniques for Python developped in

[10]. We consider d = 3 risky assets and a riskless asset whose return is assumed
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Parameter Value

Number of risky assets d 3

Investment horizon in years T 1

Number of steps/rebalancing N 24

Number of simulations/trajectories Ñ 1000

Degree of the CRRA utility function p 0.8
Parameter of risk aversion q 0.7

Annualized expectation of the drift B
[
0.05 0.025 0.12

]
Annualized covariance matrix of the drift B

⎡⎢⎢⎢⎢⎢⎣
0.22 0 0

0 0.152 0

0 0 0.12

⎤⎥⎥⎥⎥⎥⎦
Annualized volatility of ε

[
0.08 0.04 0.22

]
Correlation matrix of ε

⎡⎢⎢⎢⎢⎢⎣
1 −0.1 0.2
−0.1 1 −0.25

0.2 −0.25 1

⎤⎥⎥⎥⎥⎥⎦
Annualized covariance matrix of the noise ε

⎡⎢⎢⎢⎢⎢⎣
0.0064 −0.00032 0.00352

−0.00032 0.0016 −0.0022

0.00352 −0.0022 0.0484

⎤⎥⎥⎥⎥⎥⎦
Table 2 Values of the parameters used in the simulation.

to be 0, on a 1-year investment horizon for the sake of simplicity. We consider 24

portfolio rebalancing during the 1-year period, i.e., one every two weeks. This means

that we have N = 24 steps in the training of our neural networks. The parameters

used in the simulation are detailed in Table 2.

First, we show the numerical results for the learning and the non-learning strate-

gies by presenting a performance and an allocation analysis in Subsection 5.3.1.

Then, we add the admissible constrained EW to the two previous ones and use

this neutral strategy as a benchmark in Subsection 5.3.2. Ultimately, in Subsection

5.3.3, we illustrate numerically the convergence of the non-learning strategy to the

constrained Merton problem when the loss aversion parameter q vanishes.

5.3.1 Learning and non-learning strategies

We simulate Ñ = 1000 trajectories for each strategy and exhibit the performance

results with an initial wealth x0 = 1. Figures 3 illustrates the average historical

level of the learning and non-learning strategies with a 95% confidence interval.

Learning outperforms significantly Non-Learning with a narrower confidence inter-

val revealing that less uncertainty surrounds Learning performance, thus yielding

less risk.

An interesting phenomenon, visible in Fig. 3, is the nearly flat curve for Learning

between time 0 and time 1. Indeed, whereas Non-Learning starts investing immedi-

ately, Learning adopts a safer approach and needs a first time step before allocating a

significant proportion of wealth. Given the level of uncertainty surrounding b0, this

first step allows Learning to fine-tune its allocation by updating the prior belief with
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the first return available at time 1. On the contrary, Non-Learning, which cannot

update its prior, starts investing at time 0.

Fig. 4 shows the ratio of Learning over Non-Learning. A ratio greater than one

means that Learning outperforms Non-Learning and underperforms when less than

one. It shows the significant outperformance of Learning over Non-Learning except

during the first period where Learning was not significantly invested and Non-

Learning had a positive return. Moreover, this graph reveals the typical increasing

concave curve of the value of information described in [17], in the context of

investment decisions and costs of data analytics, and in [6] in the resolution of

the Markowitz portfolio selection problem using a Bayesian learning approach.

Fig. 3 Historical Learning and Non-Learning

levels with a 95% confidence interval.

Fig. 4 Historical ratio of Learning over Non-

Learning levels.

Table 3 gathers relevant statistics for both Learning and Non-Learning such as:

average total performance, standard deviation of the terminal wealth XT , Sharpe ratio

computed as average total performance over standard deviation of terminal wealth.

The maximum drawdown (MD) is examined through two statistics: noting MDs̃
�

the

maximum drawdown of the �-th trajectory of a strategy s̃, the average MD is defined

as,

Avg MDs̃ =
1

Ñ

Ñ∑
�=1

MDs̃
�,

for Ñ trajectories of the strategy s̃, and the worst MD is defined as,

Worst MDs̃ = min
(
MDs̃

1, . . . ,MDs̃
Ñ

)
.

Finally, the Calmar ratio, computed as the ratio of the average total performance over

the average maximum drawdown, is the last statistic exhibited.

With the simulated dataset, Learning delivered, on average, a total performance

of 9.34% while Non-Learning only 6.40%. Integrating the most recent information

yielded a 2.94% excess return. Moreover, risk metrics are significantly better for

Learning than for Non-Learning. Learning exhibits a lower standard deviation of
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Statistic Learning Non-Learning Difference

Avg total performance 9.34% 6.40% 2.94%

Std dev. of XT 11.88% 16.67% -4.79%

Sharpe ratio 0.79 0.38 104.95%

Avg MD -1.53% -6.54% 5.01%

Worst MD -11.74% -27.18% 15.44%

Calmar ratio 6.12 0.98 525.26%

Table 3 Performance metrics: Learning and Non-Learning. The difference for ratios are computed

as relative improvement.

terminal wealth than Non-Learning (11.88% versus 16.67%), with a difference of

4.79%. More interestingly, the maximum drawdown is notably better controlled by

Learning than by Non-Learning, on average (−1.53% versus −6.54%) and in the

worst case (−11.74% versus −27.18%). This result suggests that learning from new

observations, helps the strategy to better handle the dual objective of maximizing

total wealth while controlling the maximum drawdown. We also note that learning

improves the Sharpe ratio by 104.95% and the Calmar ratio by 525.26%.

Fig. 5 and 6 focus more precisely on the portfolio allocation. The graphs of Fig.

5 show the historical average allocation for each of the three risky assets. First, none

of the strategies invests in Asset 2 since it has the lowest expected return according

to the prior, see Table 2. Whereas Non-Learning focuses on Asset 3, the one with the

highest expected return, Learning performs an optimal allocation between Asset 1

and Asset 3 since this strategy is not stuck with the initial estimate given by the prior.

Therefore, Learning invests little at time 0, then balances nearly equally both Assets

1 and 3, and then invests only in Asset 3 after time step 12. Instead, Non-Learning

is investing only in Asset 3, from time 0 until the end of the investment horizon.

Fig. 5 Historical Learning and Non-Learning asset allocations.

The curves in Fig. 6 recall each asset’s optimal weight, but the main features

are the colored areas that represent the average historical total percentage of wealth

invested by each strategy. The dotted line represents the total allocation constraint

they should satisfy to be admissible. To satisfy the maximum drawdown constraint,

admissible strategies can only invest in risky assets the proportion of wealth that,

in theory, could be totally lost. This explains why the non-learning strategy invests
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at full capacity on the asset that has the maximum expected return according to the

prior distribution.

We clearly see that both strategies satisfy their respective constraints. Indeed,

looking at the left panel, Learning is far from saturating the constraint. It has invested,

on average, roughly 10% of its wealth while its constraint was set around 30%. Non-

learning invests at full capacity saturating its allocation constraint. Remark that this

constraint is not a straight line since it depends on the value of the ratio: current

wealth over current historical maximum, and evolves according to time.

Fig. 6 Historical Learning and Non-Learning total allocations.

5.3.2 Learning, non-learning and constrained equally-weighted strategies

In this section, we add a simple constrained equally-weighted (EW) strategy to

serve as a benchmark for both Learning and Non-Learning. At each time step, the

constrained EW strategy invests, equally across the three assets, the proportion of

wealth above the threshold q.

Fig. 7 shows the average historical levels of the three strategies: Learning, Non-

Learning and constrained EW. We notice Non-Learning outperforms constrained

EW and both have similar confidence intervals. It is not surprising to see that Non-

Learning outperforms constrained EW since Non-Learning always bets on Asset 3,

the most performing, while constrained EW diversifies the risks equally among the

three assets.
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Fig. 7 Historical Learning, Non-Learning and constrained EW (Const. EW) levels with a 95%

confidence interval.

Fig. 8 shows the ratio of Learning over constrained EW: it depicts the same concave

shape as Fig. 4. The outperformance of Non-Learning with respect to constrained

EW is plot in Fig. 9 and confirms, on average, the similarity of the two strategies.

Fig. 8 Ratio Learning over constrained EW

(Const. EW) according to time.

Fig. 9 Ratio Non-Learning over constrained EW

(Const. EW) according to time.

Table 4 collects relevant statistics for the three strategies. Learning clearly sur-

passes constrained EW: it outperforms by 5.49% while reducing uncertainty on

terminal wealth by 1.92% resulting in an improvement of 182.08% of the Sharpe

ratio. Moreover, it better handles maximum drawdown regarding both the average

and the worst case, exhibiting an improvement of 3.17% and 10.09% respectively,

enhancing the Calmar ratio by 647.56%.

The Non-Learning and the constrained EW have similar profiles. Even if Non-

Learning outperforms constrained EW by 2.5%, it has a higher uncertainty in ter-

minal wealth (+2.87%). This results in similar Sharpe ratios. Maximum drawdown,

both on average and considering the worst case are better handled by constrained EW

(−4.70% and −21.83% respectively) than by Non-Learning (−6.54% and −27.18%

respectively) thanks to the diversification capacity of constrained EW. The better per-
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Statistic Const. EW L NL L - Const. EW NL - Const. EW

Avg total performance 3.85% 9.34% 6.40% 5.49% 2.55%

Std dev. of XT 13.80% 11.88% 16.67% -1.92% 2.87%

Sharpe ratio 0.28 0.79 0.38 182.08% 37.63%

Avg MD -4.70% -1.53% -6.54% 3.17% -1.84%

Worst MD -21.83% -11.74% -27.18% 10.09% -5.34%

Calmar ratio 0.82 6.12 0.98 647.56% -19.56%

Table 4 Performance metrics: Constrained EW (Const. EW) vs Learning (L) and Non-Learning

(NL). The difference for ratios are computed as relative improvement.

formance of Non-Learning compensates the better maximum drawdown handling of

constrained EW, entailing a better Calmar ratio for Non-Learning 0.98 versus 0.82

for constrained EW.

5.3.3 Non-learning and Merton strategies

We numerically analyze the impact of the drawdown parameter q, and compare the

non-learning strategies (assuming that the drift is equal to b0), with the constrained

Merton strategy as described in Remark 2. Fig. 10 confirms that when the loss

aversion parameter q goes to zero, the non-learning strategy approaches the Merton

strategy.

Fig. 10 Wealth curves resulting from the Merton strategy and the non-learning strategy for different

values of q.

In terms of assets’ allocation, the Merton strategy saturates the constraint only

by investing in the asset with the highest expected return, Asset 3, while the non-

learning strategy adopts a similar approach and invests at full capacity in the same

asset. To illustrate this point, we easily see that the areas at the top and bottom-left

corner converge to the area at the bottom-right corner of Fig. 11.
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Fig. 11 Asset 3 average weights of the non-learning strategies with q ∈ {0.7, 0.4, 0.1} and the

Merton strategy.

As q vanishes, we observe evidence of the convergence of the Merton and the

non-learning strategies, materialized by a converging allocation pattern and resulting

wealth trajectories. It should not be surprising since both have in common not to

learn from incoming information conveyed by the prices.

5.4 Sensitivities analysis

In this subsection, we study the effect of changes in the uncertainty about the beliefs

of B. These beliefs take the form of an estimate b0 of B, and a degree of uncertainty

about this estimate, the covariance of Σ0 of B. For the sake of simplicity, we design Σ0

as a diagonal matrix whose diagonal entries are variances representing the confidence

the investor has in her beliefs about the drift. To easily model a change in Σ0, we

define the modified covariance matrix Σ̃ as

Σ̃unc := unc ∗ Σ0,

where unc > 0. From now on, the prior of B is N (b0, Σ̃unc).

A higher value of unc means a higher uncertainty materialized by a lower con-

fidence in the prior estimate of the expected return of B, b0. We consider learning

strategies with values of unc ∈ {1/6, 1, 3, 6, 12}. The value unc = 1 was used for

Learning in Subsection 5.3.
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Equation (2) implies that the returns’ probability distribution depends upon unc.

It implies that for each value of unc, we need to compute both Learning and Non-

Learning on the returns sample drawn from the same probability law to make relevant

comparisons.

Therefore, from a sample of a thousand returns paths’ draws, we plot in Fig. 12 the

average curves of the excess return of Learning over its associated Non-Learning,

for different values of the uncertainty parameter unc.

Fig. 12 Excess return of Learning over Non-Learning with a 95% confidence interval for different

levels of uncertainty.

Looking at Fig. 12, we notice that when uncertainty about b0 is low, i.e. unc = 1/6,

Learning is close to Non-Learning and unsurprisingly the associated excess return is

small. Then, as we increase the value of unc the curves steepen increasingly showing

the effect of learning in generating excess return.

Table 5 summarises key statistics for the ten strategies computed in this sec-

tion. When unc = 1/6, Learning underperforms Non-Learning. This is explained

by the fact that Non-Learning has no doubt about b0 and knows Asset 3 is the best

performing asset acoording to its prior, whereas Learning, even with low uncer-

tainty, needs to learn it generating a lag which explains the underperformance on

average. For values of unc ≥ 1 Learning outperforms Non-learning increasingly, as

can be seen on Fig. 13, at the cost of a growing standard deviation of terminal wealth.

The Sharpe ratio of terminal wealth is higher for Learning than for Non-Learning

for any value of unc. Nevertheless, an interesting fact is that the ratio rises from

unc = 1/6 to unc = 1, then reaches a level close to 0.8 for values of unc = 1, 3, 6
then decreases when unc = 12.

This phenomenon is more visible on Fig. 14 that displays the Sharpe ratio of termi-

nal wealth of Learning and Non-Learning according to the values of unc, and the

associated relative improvement. Clearly, looking at Figures 13 and 14, we remark
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unc = 1/6 unc = 1 unc = 3 unc = 6 unc = 12

Statistic L NL L NL L NL L NL L NL

Avg total performance 3.87% 4.35% 9.45% 6.00% 19.96% 10.25% 90.03% 16.22% 130.07% 30.44%

Std dev. of XT 5.81% 9.22% 12.10% 17.28% 25.01% 28.18 % 113.69% 41.24% 222.77% 70.84%

Sharpe ratio 0.67 0.47 0.78 0.35 0.80 0.36 0.79 0.39 0.58 0.43

Avg MD -2.51% -5.21% -1.40% -6.78% -1.90% -8.40% -2.68% -10.14% -3.58% -11.35%

Worst MD -7.64% -17.88% -5.46% -24.01% -7.99% -26.68% -15.62% -29.22% -16.98% -29.47%

Calmar ratio 1.54 0.83 6.77 0.89 10.49 1.22 33.65 1.60 36.32 2.68

Table 5 Performance and risk metrics: Learning (L) vs Non-Learning (NL) for different values of

uncertainty unc.

that while increasing unc gives more excess return, too high values of unc in the

model turn out to be a drag as far as Sharpe ratio improvement is concerned.

Fig. 13 Average total performance of Learning

(L) and Non-Learning (NL), and excess return,

for unc ∈ {1/6, 1, 3, 6, 12}.

Fig. 14 Sharpe ratio of terminal wealth of Learn-

ing (L) and Non-Learning (NL), and relative im-

provement, for unc ∈ {1/6, 1, 3, 6, 12}.

For any value of unc, Learning handles maximum drawdown significantly better

than Non-Learning whatever it is the average or the worst. This results in a better

performance per unit of average maximum drawdown (Calmar ratio), for Learning.

We also see that the maximum drawdown constraint is satisfied for every strategies

of the sample and for any value of unc since the worst maximum drawdown is always

above −30%, the lowest admissible value with a loss aversion parameter q set at 0.7.

Fig. 15 reveals how the average maximum drawdown behaves regarding the level of

uncertainty. Non-Learning maximum drawdown behaves linearly with uncertainty:

the wider the range of possible values of B the higher the maximum drawdown is on

average. It emphasizes its inability to adapt to an environment in which the returns

have different behaviors compared to their expectations. Learning instead, manages

to keep a low maximum drawdown for any value of unc. Given the previous remarks,

it is obvious that the gain in maximum drawdown from learning grows with the level

of uncertainty.
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Fig. 15 Average maximum

drawdown of Learning (L)

and Non-Learning (NL) and

the gain from learning for unc
∈ {1/6, 1, 3, 6, 12}.

Figures 16-20 represent portfolio allocations averaged over the simulations. They

depict, for each value of the uncertainty parameter unc, the average proportion of

wealth invested, in each of the three assets, by Learning and Non-Learning. The pur-

pose is not to compare the graphs with different values of unc since the allocation

is not performed on the same sample of returns. Rather, we can identify trends that

are typically differentiating Learning from Non-Learning allocations.

Since the maximum drawdown constraint is satisfied by the capped sum of total

weights that can be invested, the allocations of both Learning and Non-Learning are

mainly based on the expected returns of the assets.

Non-Learning, by definition, does not depend on the value of the uncertainty pa-

rameter. Hence, no matter the value of unc, its allocation is easy to characterize

since it saturates its constraint investing in the asset that has the best expected return

according to the prior. In our setup, Asset 3 has the highest expected return, so

Non-Learning invests only in it and saturates its constraint of roughly 30% during

all the investment period. The slight change of the average weight in Asset 3 comes

from ρ, the ratio wealth over maximum wealth, changing over time.

Fig. 16 Learning and Non-Learning historical assets’ allocations with unc = 1/6.
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Unlike Non-Learning, depending of the value of unc, Learning can perform more

sophisticated allocations because it can adjust the weights according to the incoming

information. Nonetheless, in Fig. 16, when unc is low, Learning and Non-Learning

look similar regarding their weights allocation since both strategies invest, as of time

0, a significant proportion of their wealth only in Asset 3.

On the right panel of Fig. 16, the progressive increase in the weight of Asset 3

illustrates the learning process. As time goes by, Learning progressively increases

the weight in Asset 3 since it has the highest expected return. It also explains why

Learning underperforms Non-Learning for low values of unc; contrary to Non-

Learning which invests at full capacity in Asset 3, Learning needs to learn that Asset

3 is the optimal choice.

Fig. 17 Learning and Non-Learning historical assets’ allocations with unc = 1.

Fig. 18 Learning and Non-Learning historical assets’ allocations with unc = 3.

However, as uncertainty increases, Learning and Non-Learning strategies start

differentiating. When unc ≥ 1, Learning invests little, if any, at time 0. In addition,

an increase in unc allows the inital drift to lie in a wider range and generates

investment opportunities for Learning. This explains why Learning invests in Asset

1 when unc = 1, 3, 6, 12 although the estimate b0 for this asset is lower than for

Asset 3. In Fig. 19, we see that Learning even invests in Asset 2 which has the lowest

expected drift.
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Fig. 19 Learning and Non-Learning historical assets’ allocations with unc = 6.

Fig. 20 Learning and Non-Learning historical assets’ allocations with unc = 12.

Figures 21-25 illustrate the historical total percentage of wealth allocated for

Learning and Non-Learning with different levels of uncertainty. As seen previously,

Non-Learning has fully invested in Asset 3 for any value of unc.

Fig. 21 Historical total allocations of Learning and Non-Learning with unc = 1/6.

Moreover, Learning has always less investment that Non-Learning for any level

of uncertainty. It suggests that Learning yields a more cautious strategy than Non-

Learning. This fact, in addition to its wait-and-see approach at time 0 and its ability
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to better handle maximum drawdown, makes Learning a safer and more conservative

strategy than Non-Learning. This can be seen in Fig. 21, where both Learning and

Non-Learning have invested in Asset 3, but not at the same pace. Non-Learning

goes fully in Asset 3 at time 0, whereas Learning increments slowly its weight in

Asset 3 reaching 25% at the final step. When unc is low, there is no value added to

choose Learning over Non-Learning from a performance perspective. Nevertheless,

Learning allows for a better management of risk as Table 5 exhibits.

As unc increases, in addition to being cautious, Learning mixes allocation in

different assets, see Figures 22-25, while Non-Learning is stuck with the highest

expected return asset.

Fig. 22 Historical total allocations of Learning and Non-Learning with unc = 1.

Fig. 23 Historical total allocations of Learning and Non-Learning with unc = 3.

Learning is able to be opportunistic and changes its allocation given the prices

observed. For example in Fig. 22, Learning starts investing in Asset 1 and 3 at time

1 and stops at time 12 to weigh Asset 1 while keeping Asset 3. Similar remarks can

be made for Fig. 23, where Learning puts non negligeable weights in all three risky

assets for unc = 6 in Fig. 24.
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Fig. 24 Historical total allocations of Learning and Non-Learning with unc = 6.

Fig. 25 Historical total allocations of Learning and Non-Learning with unc = 12.

6 Conclusion

We have studied a discrete-time portfolio selection problem by taking into account

both drift uncertainty and maximum drawdown constraint. The dynamic program-

ming equation has been derived in the general case thanks to a specific change of

measure. More explicit results have been provided in the Gaussian case using the

Kalman filter. Moreover, a change of variable has reduced the dimensionality of the

problem in the case of CRRA utility functions. Next, we have provided extensive

numerical results in the Gaussian case with CRRA utility functions using recent deep

neural network techniques. Our numerical analysis has clearly shown and quantified

the better risk-return profile of the learning strategy versus the non-learning one.

Indeed, besides outperforming the non-learning strategy, the learning one provides

a significantly lower standard deviation of terminal wealth and a better controlled

maximum drawdown. Confirming the results established in [7], this study exhibits

the benefits of learning in providing optimal portfolio allocations.
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Appendix

6.1 Proof of Proposition 1

For all k = 1, ..., N , the law under P, of Rk given the filtration Gk−1 yields the

unconditional law under P of εk . Indeed, since (Λk )k is a (P,G)-martingale, we have

from Bayes formula, for all Borelian F ⊂ Rd ,

P[Rk ∈ F |Gk−1] = E[�{Rk ∈F } |Gk−1] =
E[Λk�{Rk ∈F } |Gk−1]

E[Λk |Gk−1]

= E[
Λk

Λk−1

�{Rk ∈F } |Gk−1] = E

[
g(B + εk )

g(εk )
�{Rk ∈F }

Gk−1

]
=

∫
Rd

g(B + e)

g(e)
�{B+e∈F }g(e)de =

∫
Rd

g(z)�{z∈F }dz

= P[εk ∈ F].

This means that, under P, Rk is independent from B and from R1, .., Rk−1 and that

Rk has the same probability distribution as εk . �

6.2 Proof of Proposition 2

For any borelian function f : Rd �→ R we have, on one hand, by definition of πk+1:

E
[
Λk+1 f (B) |F o

k+1

]
=

∫
Rd

f (b)πk+1(db),

and, on the other hand, by definition of Λk :

E[Λk+1 f (B) |F o
k+1] = E

[
Λk f (B)

g(Rk+1 − B)

g(Rk+1)






F o
k+1

]
= E

[
Λk f (B)g(Rk+1 − B)




F o
k+1

]
(g(Rk+1))−1

=

∫
Rd

f (b)
g(Rk+1 − b)

g(Rk+1)
πk (db),

where we use in the last equality the fact that Rk+1 is independent of B under P
(recall Proposition 1). By identification, we obtain the expected relation. �
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6.3 Proof of Lemma 1

Since the support of the probability distribution ν of εk is Rd , we notice that the law

of the random vector Yk := eRk − �d has support equal to (−1,∞)d . Recall from (7)

that a ∈ Aq
k

(x, z) iff

1 + a′Yk+1 ≥ q max
[ z

x
, 1 + a′Yk+1

]
, a.s. (21)

(i) Take some a ∈ Aq
k

(x, z), and assume that ai < 0 for some i ∈ [[1, d]]. Let us then

define the event Ωi
M = {Y i

k+1
≥ M,Y M

k+1
∈ [0, 1], j � i}, for M > 0, and observe that

P[Ωi
M ] > 0. It follows from (21) that

1 + aiM +max
j�i
|a j | ≥ q

z
x
, on Ωi

M,

which leads to a contradiction for M large enough. This shows that ai ≥ 0 for all

i ∈ [[1, d]], i.e. Aq
k

(x, z) ⊂ Rd+.
(ii) For ε ∈ (0, 1), let us define the event Ωε = {Y i

k+1
≤ −1 + ε, i = 1, . . . , d}, which

satisfies P[Ωε] > 0. For a ∈ Aq (x, z), we get from (21), and since a ∈ Rd+ by Step (i):

1 − (1 − ε)a′�d ≥ q
z
x
, on Ωε .

By taking ε small enough, this shows by a contradiction argument that

Aq
k

(x, z) ⊂
{
a ∈ Rd+ : 1 − a′�d ≥ q

z
x

}
. =: Ãq (x, z). (22)

(iii) Let us finally check the equality in (22). Fix some a ∈ Ãq (x, z). Since the random

vector Yk+1 is valued in (−1,∞)d , it is clear that

1 + a′Yk+1 ≥ 1 − a′�d ≥ q
z
x
≥ 0, a.s.,

and thus

1 + a′Yk+1 ≥ q
[
1 + a′Yk+1

]
, a.s.,

which proves (21), hence the equality Aq (x, z) = Ã(x, z). �

6.4 Proof of Lemma 2

1. Fix q1 ≤ q2 and (x, z) ∈ Sq2 ⊂ Sq1 . We then have
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a ∈ Aq2 (x, z) ⇒ a ∈ Rd+ and a′�d ≤ 1 − q2

z
x
≤ 1 − q1

z
x
=⇒ a ∈ Aq1 (x, z),

which means that Aq2 (x, z) ⊆ Aq1 (x, z).

2. Fix q ∈ (0, 1), and consider the decreasing sequence qn = q + 1
n , n ∈ N∗. For any

(x, z) ∈ Sqn , we then have Aqn (x, z) ⊆ Aqn+1 (x, z) ⊂ Aa (x, z), which implies that

the sequence of increasing sets Aqn (x, z) admits a limit equal to

lim
n→∞ Aqn (x, z) = ∪

n≥1
Aqn (x, z) = Aq (x, z),

since limn→∞ qn = q. This shows the right continuity of q �→ Aq (x, z). Similarly, by

considering the increasing sequence qn = q − 1
n , n ∈ N∗, we see that for any (x, z) ∈

Aq (x, z), the sequence of decreasing sets Aqn (x, z) admits a limit equal to

lim
n→∞ Aqn (x, z) = ∩

n≥1
Aqn (x, z) = Aq (x, z),

since limn→∞ qn = q. This proves the continuity in q of the set Aq (x, z).

3. Fix q ∈ (0, 1), and (x1, z), (x2, z) ∈ Sq s.t. x1 ≤ x2. Then,

a ∈ Aq (x1, z) =⇒ a ∈ Rd+ and a′�d ≤ 1 − q
z
x1

≤ 1 − q
z
x2

=⇒ a ∈ Aq (x2, z),

which shows that Aq (x1, z) ⊆ Aq (x2, z).

4. Fix q ∈ (0, 1), (x, z) ∈ Aa (x, z). Then, for any a1, a2 of the set Aq (x, z), and β ∈
(0, 1)], and denoting by a3 = βa1 + (1 − β)a2 ∈ Rd+, we have

a′3�d = βa′1�d + (1 − β)a′2�d ≤ β (1 − q
z
x
)
+ (1 − β)

(
1 − q

z
x
)
= 1 − q

z
x
.

This proves the convexity of the set Aq (x, z).

4. The homogeneity property of Aq (x, z) is obvious from its very definition. �

6.5 Proof of Lemma 3

We prove the result by backward induction on time k from the dynamic programming

equation for the value function.

• At time N , we have for all λ > 0,

vN (λx, λz, μ) =
(λx)p

p
= λpvN (x, z, μ),

which shows the required homogeneity property.

•Now, assume that the homogeneity property holds at time k +1, i.e vk+1(λx, λz, μ)
= λpvk+1(x, z, μ) for any λ > 0. Then, from the backward relation (9), and the
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homogeneity property of Aq (x, z) in Lemma 2, it is clear that vk inherits from vk+1

the homogeneity property. �

6.6 Proof of Lemma 4

1. We first show by backward induction that r �→ wk (r, ·) is nondecreasing in on

[q, 1] for all k ∈ [[0, N]].

• For any r1, r2 ∈ [q, 1], with r1 ≤ r2, and μ ∈ M+, we have at time N

wN (r1, μ) = U (r1)μ(Rd) ≤ U (r2)μ(Rd) = wN (r2, μ).

This shows that wN (r, ·) is nondecreasing on [q, 1].

• Now, suppose by induction hypothesis that r �→ wk+1(r, ·) is nondecreasing. De-

noting by Yk := eRk − �d the random vector valued in (−1,∞)d , we see that for all

a ∈ Aq (r1)

min
[
1, r1

(
1 + a′Yk+1

)] ≤ min
[
1, r2

(
1 + a′Yk+1

)]
, a.s.

since 1+ a′Yk+1 ≥ 1− a′�d ≥ q 1
r1
≥ 0. Therefore, from backward dynamic program-

ming Equation (11), and noting that Aq (r1) ⊂ Aq (r2), we have

wk (r1, μ) = sup
a∈Aq

(
r1)

E

[
wk+1

(
min
[
1, r1

(
1 + a′Yk+1

)]
, ḡ(Rk+1 − ·)μ)]

≤ sup
a∈Aq (r2)

E

[
wk+1

(
min
[
1, r2

(
1 + a′Yk+1

)]
, ḡ(Rk+1 − ·)μ)] = wk (r2, μ),

which shows the required nondecreasing property at time k.

2. We prove the concavity of r ∈ [q, 1] �→ wk (r, ·) by backward induction for all

k ∈ [[0, N]]. For r1, r2 ∈ [q, 1], and λ ∈ (0, 1), we set r = λr1 + (1 − λ)r2, and for

a1 ∈ Aq (r1), a2 ∈ Aq (r2), we set a =
(
λr1a1 + (1 − λ)r2a2

)
/r which belongs to

Aq (r). Indeed, since a1, a2 ∈ Rd+, we have a ∈ Rd+, and

a =
( λr1a1 + (1 − λ)r2a2

r

) ′
�d ≤ λr1

r
(
1 − q

r1

)
+

(1 − λ)r2

r
(
1 − q

r2

)
= 1 − q

r
.

• At time N , for fixed μ ∈ M+, we have

wN
(
λr1 + (1 − λ)r2, μ

)
= U (λr1 + (1 − λ)r2)

≥ λU (r1) + (1 − λ)U (r2) = λwN (r1, μ) + (1 − λ)wN (r2, μ),

since U is concave. This shows that wN (r, ·) is concave on [q, 1].

• Suppose now the induction hypothesis holds true at time k+1: wk+1(r, ·) is concave

on [q, 1]. From the backward dynamic programming relation (11), we then have
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λwk (r1, μ) + (1 − λ)wk (r2, μ)

≤ λE
[
wk+1

(
min[1, r1(1 + a′1Yk+1)], ḡ(Rk+1 − ·)μ)]

+(1 − λ)E
[
wk+1

(
min[1, r2(1 + a′2Yk+1)], ḡ(Rk+1 − ·)μ)]

≤ E
[
wk+1

(
λmin[1, r1(1 + a′1Yk+1)] + (1 − λ) min[1, r2(1 + a′2Yk+1)], ḡ(Rk+1 − ·)μ)]

= E
[
wk+1

(
min[1, r (1 + a′Yk+1)], ḡ(Rk+1 − ·)μ)] ≤ wk (r, μ),

where we used for the second inequality, the induction hypothesis joint with the

concavity of x �→ min(1, x), and the nondecreasing monotonicity of r �→ wk+1(r, ·).
This shows the required inductive concavity property of r �→ wk (r, ·) on [q, 1]. �
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