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Abstract We consider high order approximations of the solution of the stochastic

filtering problem, derive their pathwise representation in the spirit of the earlier work

of Clark [2] and Davis [10, 11] and prove their robustness property. In particular,

we show that the high order discretised filtering functionals can be represented by

Lipschitz continuous functions defined on the observation path space. This property

is important from the practical point of view as it is in fact the pathwise version

of the filtering functional that is sought in numerical applications. Moreover, the

pathwise viewpoint will be a stepping stone into the rigorous development of machine

learning methods for the filtering problem. This work is a cotinuation of [5] where

a discretisation of the solution of the filtering problem of arbitrary order has been

established. We expand the work in [5] by showing that robust approximations can

be derived from the discretisations therein.

1 Introduction

With the present article on non-linear filtering we wish to honor the work of Mark

H. A. Davis in particular to commemorate our great colleague. The topic of filtering

is an area that has seen many excellent contributions by Mark. It is remarkable that
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he was able to advance the understanding of non-linear filtering from a variety of

angles. He considered many aspects of the field in his work, spanning the full range

from the theory of the filtering equations to the numerical solution of the filtering

problem via Monte-Carlo methods.

Mark Davis’ work on filtering can be traced back to his doctoral thesis where he

treats stochastic control of partially observableprocesses. The first article specifically

on the topic of filtering that was co-authored by Mark appeared back in 1975

and considered a filtering problem with discontinuous observation process [12].

There, they used the so-called innovations method to compute the evolution of the

conditional density of a process that is used to modulate the rate of a counting

process. This method is nowadays well-known and is a standard way also to compute

the linear (Kalman) filter explicitly. Early on in his career, Mark also contributed to

the dissemination of filtering in the mathematics community with his monograph

Linear Estimation and Stochastic Control [7], published in 1977, which deals with

filtering to a significant degree. Moreover, his paper An Introduction to Nonlinear

Filtering [9], written together with S. I. Marcus in 1981, has gained the status of a

standard reference in the field.

Importantly, and in connection to the theme of the present paper, Mark has worked

on computation and the robust filter already in 1980 [8]. Directly after the conception

of the robust filter by Clark in 1978 [2], Mark took up the role of a driving figure in the

subsequent development of robust, also known as pathwise, filtering theory [10, 11].

Here, he was instrumental in the development of the pathwise solution to the filtering

equations with one-dimensional observation processes. Additionally, also correlated

noise was already analysed in this work.

Robust filtering remains a highly relevant and challenging problem today. Some

more recent work on this topic includes the article [6] which can be seen as an

extension of the work by Mark, where correlated noise and a multidimensional

observation process are considered. The work [4] is also worth mentioning in this

context, as it establishes the validity of the robust filter rigorously.

Non-linear filtering is an important area within stochastic analysis and has nu-

merous applications in a variety of different fields. For example, numerical weather

prediction requires the solution of a high dimensional, non-linear filtering problem.

Therefore, accurate and fast numerical algorithms for the approximate solution of

the filtering problem are essential. In this contribution we analyse a recently devel-

oped high order time discretisation of the solution of the filtering problem from the

literature [5] and prove that the so discretised solution possesses a property known

as robustness. Thus, the present paper is a continuation of the previous work [5] by

two of the authors which gives a new high-order time discretisation for the filtering

functional. We extend this result to produce the robust version, of any order, of

the discretisation from [5]. The implementation of the resulting numerical method

remains open and is subject of future research. In subsequent work, the authors plan

to deal with suitable extensions, notably a machine learning approach to pathwise

filtering.

Robustness is a property that is especially important for the numerical approxi-

mation of the filtering problem in continuous time, since numerical observations can
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only be made in a discrete way. Here, the robustness property ensures that despite

the discrete approximation, the solution obtained from it will still be a reasonable

approximation of the true, continuous filter.

The present paper is organised as follows: In Section 2 we discuss the established

theory leading up to the contribution of this paper. We introduce the stochastic

filtering problem in sufficient generality in Subsection 2.1 whereafter the high order

discretisation from the recent paper [5] is presented in Subsection 2.2 together with

all the necessary notations. The Subsection 2.2 is concluded with the Theorem 1,

taken from [5], which shows the validity of the high order discretisation and is the

starting point for our contribution. Then, Section 3 serves to concisely present the

main result of this work, which is Theorem 2 below. Our Theorem is a general result

applying to corresponding discretisations of arbitrary order and shows that all of

these discretisations do indeed assume a robust version. In Section 4 we present the

proof of the main result in detail. The argument proceeds along the following lines.

First, we establish the robust version of the discretisations for any order by means of

a formal application of the integration by parts formula. In Lemma 1 we then show

that the new robust approximation is locally bounded over the set of observation

paths. Thereafter, Lemma 2 shows that the robustly discretised filtering functionals

are locally Lipschitz continuous over the set of observation paths. Based on the

elementary but important auxilliary Lemma 3 we use the path properties of the

typical observation in Lemma 4 to get a version of the stochastic integral appearing

in the robust approximation which is product measurable on the Borel sigma-algebra

of the path space and the chosen filtration. Finally, after simplifying the arguments

by lifting some of the random variables to an auxilliary copy of the probability

space, we can show in Lemma 5 that, up to a null-set, the lifted stochastic integral

appearing in the robust approximation is a random variable on the correct space. And

subsequently, in Lemma 6 that the pathwise integral almost surely coincides with the

standard stochastic integral of the observation process. The argument is concluded

with Theorem 3 where we show that the robustly discretised filtering functional is a

version of the high-order discretisation of the filtering functional as derived in the

recent paper [5].

Our result in Theorem 2 can be interpreted as a remedy for some of the shortcom-

ings of the earlier work [5] where the discretisation of the filter is viewed as a random

variable and the dependence on the observation path is not made explicit. Here, we

are correcting this in the sense that we give an interpretation of said random variable

as a continuous function on path space. Our approach has two main advantages.

Firstly, from a practitioner’s point of view, it is exactly the path dependent version

of the discretised solution that we are computing in numerical applications. Thus it

is natural to consider it explicitly. The second advantage lies in the fact that here we

are building a foundation for the theoretical development of machine learning ap-

proaches to the filtering problem which rely on the simulation of observation paths.

With Theorem 2 we offer a first theoretical justification for this approach.
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2 Preliminaries

Here, we begin by introducing the theory leading up to the main part of the paper

which is presented in Sections 3 and 4.

2.1 The filtering problem

Let (Ω,F ,P) be a probability space with a complete and right-continuous filtra-

tion (Ft )t≥0. We consider a dX × dY-dimensional partially observed system (X,Y )
satisfying the system of stochastic integral equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Xt = X0+

∫ t

0

f (Xs) ds+
∫ t

0

σ (Xs ) dVs,

Yt =
∫ t

0

h (Xs ) ds+Wt,

(1)

where V and W are independent (Ft )t≥0-adapted dV - and dY -dimensional standard

Brownian motions, respectively. Further, X0 is a random variable, independent of V
and W , with distribution denoted by π0. We assume that the coefficients

f = ( f i )i=1,...,dX
: RdX → RdX and σ =

(
σi, j
)
i=1,...,dX, j=1,...,dV

: RdX → RdX×dV

of the signal process X are globally Lipschitz continuous and that the sensor function

h = (hi )i=1,...,dY : RdX → RdY

is Borel-measurable and has linear growth. These conditions ensure that strong solu-

tions to the system (1) exist and are almost surely unique. A central object in filtering

theory is the observation filtration {Yt }t≥0 that is defined as the augmentation of the

filtration generated by the observation process Y , so that Yt = σ (Ys, s ∈ [0, t])∨N ,

whereN are all P-null sets of F .

In this context, non-linear filtering means that we are interested in determining,

for all t > 0, the conditional law, called filter and denoted by πt , of the signal X at

time t given the information accumulated from observing Y on the interval [0, t].
Furthermore, this is equivalent to knowing for every bounded and Borel measurable

function ϕ and every t > 0, the value of

πt (ϕ) = E
[
ϕ(Xt ) ��Yt ] .

A common approach to the non-linear filtering problem introduced above is

via a change of probability measure. This approach is explained in detail in the

monograph [1]. In summary, a probability measure P̃ is constructed that is abso-

lutely continuous with respect to P and such that Y becomes a P̃-Brownian motion

independent of X . Additionally, the law of X remains unchanged under P̃. The
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Radon-Nikodym derivative of P̃ with respect to P is further given by the process Z
that is given, for all t ≥ 0, by

Zt = exp
���
dY∑
i=1

∫ t

0

hi (Xs ) dY i
s −

1

2

dY∑
i=1

∫ t

0

h2
i (Xs) ds��� .

Note that Z is an (Ft )t≥0-adapted martingale under P̃. This process is used in the

definition of another, measure-valued process ρ that is given, for all bounded and

Borel measurable functions ϕ and all t ≥ 0, by

ρt (ϕ) = Ẽ
[
ϕ(Xt )Zt ��Yt ], (2)

where we denote by Ẽ the expectation with respect to P̃. We call ρ the unnormalised

filter, because it is related to the probability measure-valued process π through

the Kallianpur-Striebel formula establishing that for all bounded Borel measurable

functions ϕ and all t ≥ 0 we have P-almost surely that

πt (ϕ) =
ρt (ϕ)
ρt (1)

=

Ẽ
[
ϕ(Xt )Zt |Yt

]
Ẽ
[
Zt |Yt

] (3)

where 1 is the constant function. Hence, the denominator ρt (1) can be viewed as the

normalising factor for πt .

2.2 High order time discretisation of the filter

As shown by the Kallianpur-Striebel formula (3), πt (ϕ) is a ratio of two condi-

tional expectations. In the recent paper [5] a high order time discretisation of these

conditional expectations was introduced which leads further to a high order time

discretisation of πt (ϕ). The idea behind this discretisation is summarised as follows.

First, for the sake of compactness, we augment the observation process as Ŷt =
(Ŷ i

t )
dY
i=0
= (t,Y 1

t , . . . ,Y
dY
t ) for all t ≥ 0 and write

ĥ =
(
−

1

2

dY∑
i=1

h2
i , h1, . . . , hdY

)
.

Then, consider the log-likelihood process

ξt = log(Zt ) =
dY∑
i=0

∫ t

0

ĥi (Xs) dŶ i
s , t ≥ 0. (4)

Now, given a positive integer m, the order m time discretisation is achieved by a

stochastic Taylor expansion up to order m of the processes
(
ĥi (Xt )

)
t≥0, i = 0, . . . ,dY

in (4). Finally, we substitute the discretised log-likelihood back into the original
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relationships (2) and the Kallianpur-Striebel formula (3) to obtain a discretisation of

the filtering functionals. However, it is important to note that for the orders m > 2 an

additional truncation procedure is needed, which we will make precise shortly, after

introducing the necessary notation for the stochastic Taylor expansion.

2.2.1 Stochastic Taylor expansions

Let M =
{
α ∈ {0, . . . ,dV }l : l = 0,1, . . .

}
be the set of all multi-indices with range

{0, . . . ,dV }, where ∅ denotes the multi-index of length zero. For α = (α1, ..., αk ) ∈M
we adopt the notation |α| = k for its length, |α|0 = #{ j : α j = 0} for the number

of zeros in α, and α− = (α1, ..., αk−1) and −α = (α2, ..., αk ), for the right and left

truncations, respectively. By convention |∅| = 0 and −∅ = ∅− = ∅. Given two multi-

indices α, β ∈M we denote their concatenation by α ∗ β. For positive and non-zero

integers n and m, we will also consider the subsets of multi-indices

Mn,m = {α ∈M : n ≤ |α| ≤ m} , and

Mm =Mm,m = {α ∈ M : |α| = m} .

For brevity, and by slight abuse of notation, we augment the Brownian motion

V and now write V =
(
V i
)
dV
i=0
= (t,V1

t , . . . ,V
dV
t ) for all t ≥ 0. We will consider the

filtration {F
0,V
t }t≥0 defined to be the usual augmentation of the filtration generated

by the process V and initially enlarged with the random variable X0. Moreover, for

fixed t ≥ 0, we will also consider the filtration {H t
s = F

0,V
s ∨Yt }s≤t . For all α ∈M

and all suitably integrable H t
s -adapted processes γ = {γs }s≤t denote by Iα (γ·) s,t

the ItÃť iterated integral given for all s ≤ t by

Iα(γ·)s,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
γt, if |α| = 0∫ t

s

Iα−(γ·)s,u dV
α|α |
u , if |α| ≥ 1.

Based on the coefficient functions of the signal X , we introduce the differential

operators L0 and Lr , r = 1, ...,dV , defined for all twice continuously differentiable

functions g : RdX → R by

L0
g =

dX∑
k=1

fk
∂g

∂xk
+

1

2

dX∑
k,l=1

dV∑
r=1

σk,rσl,r
∂2
g

∂xk∂xl
and

Lrg =
dX∑
k=1

σk,r
∂g

∂xk
, r = 1, ...,dV .

Lastly, for α = (α1, ..., αk ) ∈ M, the differential operator Lα is defined to be the

composition Lα
= Lα1 ◦ · · · ◦ Lαk , where, by convention, L∅g = g.
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2.2.2 Discretisation of the log-likelihood process

With the stochastic Taylor expansion at hand, we can now describe the discretisation

of the log-likelihood in (4). To this end, let for all t > 0,

Π(t) =
{
{t0, . . . , tn} ⊂ [0, t]n+1 : 0 = t0 < t1 < · · · < tn = t, n = 1,2, . . .

}
be the set of all partitions of the interval [0, t]. For a given partition we call the

quantity δ = max{t j+1 − t j : j = 0, . . . ,n− 1} the meshsize of τ. Then we discretise

the log-likelihood as follows. For all t > 0, τ ∈ Π(t) and all positive integers m we

consider

ξ
τ,m
t =

n−1∑
j=0

ξ
τ,m
t ( j) =

n−1∑
j=0

dY∑
i=0

∑
α∈M0,m−1

Lα ĥi (Xtj )
∫ tj+1

tj

Iα(1)tj,sdŶ
i
s

=

n−1∑
j=0

{
κ

0,m
j
+

∫ tj+1

tj

〈
η

0,m
j

(s),dYs
〉}
,

where we define for all integers l ≤ m−1 and j = 0, . . . ,n−1 the quantities

κl,m =

n−1∑
j=0

κ
l,m
j
=

n−1∑
j=0

{
−

1

2

∑
α∈Ml,m−1

Lα〈h(·), h(·)〉(Xtj )
∫ tj+1

tj

Iα(1)tj,s ds
}

η
l,m
j

(s) =
( ∑
α∈Ml,m−1

Lαhi (Xtj )Iα(1)tj,s
)
i=1,...,dY

.

and 〈·, ·〉 denotes the euclidean inner product. Note that by setting, in the case of

m > 2,

μτ,m ( j) =
dY∑
i=0

∑
α∈M2,m−1

Lα ĥi (Xtj )
∫ tj+1

tj

Iα(1)tj,sdŶ
i
s

= κ
2,m
j
+

∫ tj+1

tj

〈
η

2,m
j

(s),dYs
〉
,

we may write the above as

ξ
τ,m
t = ξ

τ,2
t +

n−1∑
j=0

μτ,m ( j) .

As outlined before, the discretisations ξτ,m are obtained by replacing the pro-

cesses
(
ĥi (Xt )

)
t≥0, i = 0, . . . ,dY in (4) with the truncation of degree m − 1 of the

corresponding stochastic Taylor expansion of ĥi (Xt ). These discretisations are sub-

sequently used to obtain discretisation schemes of first and second order for the filter
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πt (ϕ). However, they cannot be used directly to produce discretisation schemes of

any order m > 2 because they do not have finite exponential moments (required to

define the discretisation schemes). More precisely, the quantities μτ,m ( j) do not

have finite exponential moments because of the high order iterated integral involved.

For this, we need to introduce a truncation of μτ,m ( j) resulting in a (partial) tam-

ing procedure to the stochastic Taylor expansion of
(
ĥi (Xt )

)
t≥0. To achieve this,

we introduce for every positive integer q and all δ > 0 the truncation functions

Γq,δ : R→ R such that

Γq,δ (z) =
z

1+ (z/δ)2q
(5)

and set, for all j = 0, ...,n−1,

ξ̄
τ,m
t ( j) =

⎧⎪⎨⎪⎩ξ
τ,m
t ( j) , if m = 1,2

ξ
τ,2
t ( j)+ Γm,(tj+1−tj )

(
μτ,m ( j)

)
, if m > 2

.

Utilising the above, the truncated discretisations of the log-likelihood finally read

ξ̄
τ,m
t =

n−1∑
j=0

ξ̄
τ,m
t ( j) . (6)

We end this section with a remark about the properties of the truncation function

before we go on to discretising the filter.

Remark 1 The following two properties of the truncation function Γ, defined in (5),

are readily checked. For all positive integers q and all δ > 0 we have that

i) the truncation function is bounded, specifically, for all z ∈ R,

��Γq,δ (z)�� ≤ δ

(2q−1)1/2q
,

ii) and that its derivative is bounded for all z ∈ R as

q(1− q)−1

2q
≤

d

dz
Γq,δ (z) ≤ 1.

In particular, the truncation function is Lipschitz continuous.

2.2.3 Discretisation of the filter

Since ξ̄
τ,m
t in (6) is a discretisation of the log-likelihood we will now consider, for

all t > 0, τ ∈ Π (t) and all positive integers m, the discretised likelihood

Zτ,m
t = exp

(
ξ̄
τ,m
t

)
.
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The filter is now discretised, under the condition that the Borel measurable function

ϕ satisfies Ẽ
[
|ϕ(Xt )Zτ,m

t |
]
<∞, to the m-th order by

ρ
τ,m
t (ϕ) = Ẽ

[
ϕ(Xt )Zτ,m

t
��Yt ]

and

π
τ,m
t (ϕ) =

ρ
τ,m
t (ϕ)
ρ
τ,m
t (1)

. (7)

It remains to show that the achieved discretisation is indeed of order m.

2.2.4 Order of approximation for the filtering functionals

In the frameworkdeveloped thus far, we can state the main result of [5] which justifies

the construction and proves the high order approximation. To this end, we consider

the Lp-norms ‖·‖Lp = Ẽ[|·|p]1/p, p ≥ 1.

Theorem 1 (Theorem 2.3 in [5])

Let m be a positive integer, let t > 0, let ϕ be an (m + 1)-times continuously dif-

ferentiable function with at most polynomial growth and assume further that the

coefficients of the partially observed system (X,Y ) in (1) satisfy that

◦ f is bounded and max{2,2m−1}-times continuously differentiable with bounded

derivatives,

◦ σ is bounded and 2m-times continuously differentiable with bounded derivatives,

◦ h is bounded and (2m + 1)-times continuously differentiable with bounded

derivatives, and that

◦ X0 has moments of all orders.

Then there exist positive constants δ0 and C, such that for all partitions τ ∈ Π(t)
with meshsize δ < δ0 we have that

��ρt (ϕ)− ρτ,mt (ϕ)��L2 ≤ Cδm.

Moreover, there exist positive constants δ̄0 and C̄, such that for all partitions τ ∈ Π(t)
with meshsize δ < δ̄0,

E
[��πt (ϕ)− πτ,mt (ϕ)��] ≤ C̄δm.

Remark 2 Under the above assumption that h is bounded and ϕ has at most polyno-

mial growth, the required condition from Theorem 2.4 in [5] that there exists ε > 0

such that sup{τ∈Π(t ):δ<δ0 }
��πτ,mt (ϕ)��L2+ε <∞ holds.

3 Robustness of the approximation

The classical robustness of the filter as in Theorem 5.12 in [1] states that for every

t > 0 and bounded Borel measurable function ϕ the filter πt (ϕ) can be represented
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as a function of the observation path

Y[0,t](ω) = {Ys (ω) : s ∈ [0, t]}, ω ∈ Ω.

In particular, Y[0,t] is here a path-valued random variable. The precise meaning of

robustness is then that there exists a unique bounded Borel measurable function F t,ϕ

on the path spaceC([0, t];RdY ), that is the space of continuous RdY -valued functions

on [0, t], with the properties that

i) P-almost surely,

πt (ϕ) = F t,ϕ (Y[0,t])

and

ii) F t,ϕ is continuous with respect to the supremum norm1.

The volume [1] contains further details on the robust representation. In the present

paper, we establish the analogous result for the discretised filter π
τ,m
t (ϕ) from (7). It

is formulated as follows.

Theorem 2 Let t > 0, τ = {t0, . . . , tn} ∈ Π(t), let m be a positive integer and

let ϕ be a bounded Borel measurable function. Then there exists a function

Fτ,m
ϕ : C([0, t];RdY )→ R with the properties that

i) P-almost surely,

π
τ,m
t (ϕ) = Fτ,m

ϕ (Y[0,t])

and

ii) for every two boundedpaths y1, y2 ∈C([0, t];RdY ) there exists a positive constant

C such that ��Fτ,m
ϕ (y1)−Fτ,m

ϕ (y2)�� ≤ C‖ϕ‖∞‖y1 − y2‖∞.

Note that Theorem 2 implies the following statement in the total variation norm.

Corollary 1 Let t > 0, τ = {t0, . . . , tn} ∈ Π(t), and let m be a positive integer. Then,

for every two bounded paths y1, y2 ∈ C([0, t];RdY ) there exists a positive constant C
such that

��πτ,m,y1

t − π
τ,m,y2

t
��TV = sup

ϕ∈Bb, ‖ϕ ‖∞≤1

��Fτ,m
ϕ (y1)−Fτ,m

ϕ (y2)�� ≤ C‖y1 − y2‖∞,

where Bb is the set of bounded and Borel measurable functions.

Remark 3 A natural question that arises in this context is to seek the rate of pathwise

convergence of Fτ,m
ϕ to Fϕ (defined as the limit of Fτ,m

ϕ when the meshsize goes to

zero) as functions on the path space. The rate of pathwise convergence is expected to

be dependent on the Hölder constant of the observation path. Therefore, it is expected

to be not better than 1
2
− ε for a semimartingale observation. The absence of high

order iterated integrals of the observation process in the construction of Fτ,m
ϕ means

1 For a subset D ⊆ Rl and a function ψ : D → Rd we set ‖ψ ‖∞ = maxi=1, . . .,d ‖ψi ‖∞ =

maxi=1, . . .,d supx∈D |ψi (x) |
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that one cannot obtain pathwise high order approximations based on the work in

[5]. Such approximations will no longer be continuous in the supremum norm. Thus

we need to consider rough path norms in this context. In a different setting, Clark

showed in the earlier paper [3] that one cannot construct pathwise approximations

of solutions of SDEs by using only increments of the driving Brownian motion.

In the following and final part of the paper, we exhibit the proof of Theorem 2.

4 Proof of the robustness of the approximation

We begin by constructing what will be the robust representation. Consider, for all

y ∈ C([0, t];RdY ),

Ξ
τ,m
t (y) =

n−1∑
j=0

{
κ

0,m
j
+

〈
η

0,m
j

(t j+1), ytj+1

〉
−
〈
η

0,m
j

(t j ), ytj
〉
−

∫ tj+1

tj

〈
ys,dη

0,m
j

(s)
〉}

=

n−1∑
j=0

{
κ

0,m
j
+

〈
η

0,m
j

(t j+1), ytj+1

〉
−
〈
h(Xtj ), ytj

〉
−

∫ tj+1

tj

〈
ys,dη

0,m
j

(s)
〉}

=

〈
h(Xtn ), ytn

〉
−
〈
h(Xt0 ), yt0

〉

+

n−1∑
j=0

{
κ

0,m
j
+

〈
η

0,m
j

(t j+1)− h(Xtj+1
), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

0,m
j

(s)
〉}

and further, for m > 2,

Mτ,m
j

(y) = κ2,m
j
+

〈
η

2,m
j

(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη2,m

j
(s)
〉

so that we can define

Ξ̄
τ,m
t (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ξ
τ,m
t (y), if m = 1,2

Ξ
τ,2
t (y)+

n−1∑
j=0

Γm,(tj+1−tj )
(
Mτ,m

j
(y)
)
, if m > 2

.

Furthermore, set

Z
τ,m
t (y) = exp

(
Ξ̄
τ,m
t (y)

)
.

Example 1 The robust approximation for m = 1 and m = 2 are given as follows.

First, if m = 1, then
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Ξ
τ,1
t (y) =

n−1∑
j=0

{
κ

0,1
j
+

〈
η

0,1
j
(t j+1), ytj+1

〉
−
〈
h(Xtj ), ytj

〉
−

∫ tj+1

tj

〈
ys,dη

0,1
j
(s)
〉}

=

n−1∑
j=0

{
−

1

2
〈h, h〉(Xtj )(t j+1− t j )+

〈
h(Xtj ), ytj+1

− ytj
〉}

and also Ξ̄
τ,1
t (y) = Ξτ,1t (y) so thatZ

τ,1
t (y) = exp

(
Ξ
τ,1
t (y)

)
. If m = 2, then

Ξ
τ,2
t (y) = Ξτ,1t (y)+

n−1∑
j=0

{
κ

1,2
j
+

〈
η

1,2
j
(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

1,2
j
(s)
〉}

= Ξ
τ,1
t (y)−

∑
α∈M1

n−1∑
j=0

1

2
Lα〈h, h〉(Xtj )

∫ tj+1

tj

Vα
s −V

α
tj

ds

+

∑
α∈M1

n−1∑
j=0

∫ tj+1

tj

〈
Lαh(Xtj ), ytj+1

− ys
〉
dVα

s .

Therefore, also Ξ̄
τ,2
t (y) = Ξτ,2t (y) so thatZ

τ,2
t (y) = exp

(
Ξ
τ,2
t (y)

)
. �

First, we show that the newly constructedZ
τ,m
t is locally bounded.

Lemma 1 Let t > 0, let τ = {t0, . . . , tn} ∈ Π(t) be a partition with mesh size δ and

let m be a positive integer. Then, for all R > 0, p ≥ 1 there exists a positive constant

Bp,R such that

sup
‖y ‖∞≤R

��Zτ,m
t (y)��Lp ≤ Bp,R .

Proof Notice that, by Remark 1, in the case m ≥ 2, we have for all y ∈ C([0, t];RdY )
that

Ξ̄
τ,m
t (y) ≤ Ξτ,2t (y)+

nδ
(2m−1)1/2m

.

This implies that for all y ∈ C([0, t];RdY ),

Z
τ,m
t (y) = exp

(
Ξ̄
τ,m
t (y)

)
≤ exp

(
Ξ
τ,2
t (y)

)
exp

( nδ
(2m−1)1/2m

)
.

For m = 1, we clearly have Z
τ,1
t (y) = exp

(
Ξ
τ,1
t (y)

)
. Hence, it suffices to show the

result for m = 1,2 only. We have

Ξ
τ,2
t (y) = Ξτ,1t (y)+

n−1∑
j=0

{
κ

1,2
j
+

〈
η

1,2
j
(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

1,2
j
(s)
〉}
.

Now, by the triangle inequality, boundedness of y, and boundedness of h, we get

��Ξτ,1t (y)�� = ����
n−1∑
j=0

{
κ

0,1
j
+

〈
η

0,1
j
(t j+1), ytj+1

〉
−
〈
h(Xtj ), ytj

〉
−

∫ tj+1

tj

〈
ys,dη

0,1
j
(s)
〉}����
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=

����
n−1∑
j=0

{
κ

0,1
j
+

〈
h(Xtj ), ytj+1

− ytj
〉}����

=

����
n−1∑
j=0

{
−

1

2
〈h(Xtj ), h(Xtj )〉(t j+1− t j )+ 〈h(Xtj ), ytj+1

− ytj 〉
}����

≤
tdY ‖h‖2∞

2
+2R‖h‖∞ = C0,

where we denote the final constant by C0. Furthermore, by the triangle inequality,

boundedness of y, and boundedness of h and its derivatives,

����
n−1∑
j=0

{
κ

1,2
j
+

〈
η

1,2
j
(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

1,2
j
(s)
〉}����

=

∑
α∈M1

{����
n−1∑
j=0

1

2
Lα〈h, h〉(Xtj )

∫ tj+1

tj

Vα
s −V

α
tj

ds

+

n−1∑
j=0

∫ tj+1

tj

〈
Lαh(Xtj ), ytj+1

− ys
〉
dVα

s

����
}

≤
∑

α∈M1\{0}

{����
n−1∑
j=0

∫ tj+1

tj

1

2
Lα〈h, h〉(Xtj )(t j+1− s)+

〈
Lαh(Xtj ), ytj+1

− ys
〉
dVα

s

����
}

+

����
n−1∑
j=0

∫ tj+1

tj

1

2
L0〈h, h〉(Xtj )(s− t j )+

〈
L0h(Xtj ), ytj+1

− ys
〉
ds
����

≤
∑

α∈M1\{0}

{����
n−1∑
j=0

∫ tj+1

tj

1

2
Lα〈h, h〉(Xtj )(t j+1− s)+

〈
Lαh(Xtj ), ytj+1

− ys
〉
dVα

s

����
}

+

1

2
δt‖L0〈h, h〉‖∞+2dYRt‖L0h‖∞

= C1+

∑
α∈M1\{0}

{����
∫ t

0

1

2
Lα〈h, h〉(X �s�)(�s� − s)+

〈
Lαh(X �s� ), y �s� − ys

〉
dVα

s

����
}
.

Here, C1 is a constant introduced for conciseness. Then,

��Zτ,2
t (y)��Lp

=

����Zτ,1
t (y) exp

(n−1∑
j=0

{
κ

1,2
j
−
〈
η

1,2
j
(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

1,2
j
(s)
〉})����Lp

≤ exp
(
C0+C1

)
�����exp
( ∑
α∈M1\{0}

{����
∫ t

0

1

2
Lα〈h, h〉(X �s�)(�s� − s)+

〈
Lαh(X �s� ), y �s� − ys

〉
dVα

s

����
})�����Lp
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<∞.

The lemma is thus proved. �

In analogy to the filter, we define the functions

Gτ,m
ϕ (y) = Ẽ[ϕ(Xt )Zτ,m

t (y)]

and

Fτ,m
ϕ (y) =

Gτ,m
ϕ (y)

Gτ,m

1
(y)
=

Ẽ[ϕ(Xt )Zτ,m
t (y)]

Ẽ[Z
τ,m
t (y)]

.

Lemma 2 Let τ ∈ Π(t) be a partition, let m be a positive integer and let ϕ be a

bounded Borel measurable function. Then the functions Gτ,m
ϕ : C([0, t];RdY ) → R

and Fτ,m
ϕ : C([0, t];RdY )→ R are locally Lipschitz continuous and locally bounded.

Specifically, for every two paths y1, y2 ∈ C([0, t];RdY ) such that there exists a real

number R > 0 with ‖y1‖∞ ≤ R and ‖y2‖∞ ≤ R, there exist constants LG , MG , LF ,

and MF such that

��Gτ,m
ϕ (y1)−Gτ,m

ϕ (y2)�� ≤ LG ‖ϕ‖∞‖y1 − y2‖∞ and ��Gτ,m
ϕ (y1)�� ≤ MG ‖ϕ‖∞

and

��Fτ,m
ϕ (y1)−Fτ,m

ϕ (y2)�� ≤ LF ‖ϕ‖∞‖y1 − y2‖∞ and ��Fτ,m
ϕ (y1)�� ≤ MF ‖ϕ‖∞ .

Proof We first show the results for Gτ,m
ϕ . Note that

��Zτ,m
t (y1)−Zτ,m

t (y2)�� ≤ (Zτ,m
t (y1)+Zτ,m

t (y2)
)��Ξ̄τ,mt (y1)− Ξ̄τ,mt (y2)��.

Then, by the Cauchy-Schwarz inequality, for all p ≥ 1 we have

��ϕ(Xt )Zτ,m
t (y1)− ϕ(Xt )Zτ,m

t (y2)��Lp ≤ 2B2p,R ‖ϕ‖∞��Ξ̄τ,mt (y1)− Ξ̄τ,mt (y2)��L2p .

(8)

Thus, for m > 2, we can exploit the effect of the truncation function and, similarly to

the proof of Lemma 1, it suffices to show the result for m = 1,2. To this end, consider

for all q ≥ 1,

��Ξτ,2t (y1)−Ξτ,2t (y2)��Lq ≤ ��Ξτ,1t (y1)−Ξτ,1t (y2)��Lq

+

�����
n−1∑
j=0

{〈
η

1,2
j
(t j+1), y1(t j+1)− y2(t j+1)

〉
−

∫ tj+1

tj

〈
y1(s)− y2(s),dη1,2

j
(s)
〉}�����Lq

.

First, we obtain for all q ≥ 1,
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��Ξτ,1t (y1)−Ξτ,1t (y2)��Lq =

�����
n−1∑
j=0

〈h(Xtj ), (y1(t j+1)− y2(t j+1))− (y1(t j )− y2(t j ))〉
�����Lq

≤ 2dY ‖h‖∞‖y1 − y2‖∞.

And second we have for all q ≥ 1 that

�����
n−1∑
j=0

{∫ tj+1

tj

〈
(y1(t j+1)− y1(s))− (y2(t j+1)− y2(s)),dη1,2

j
(s)
〉}�����Lq

≤

n−1∑
j=0

���������〈L0h(Xtj ), y1(t j+1)− y2(t j+1)
〉
(t j+1− t j )

����
+

����
∫ tj+1

tj

〈
L0h(Xtj ), y1(s)− y2(s)

〉
ds
����

+

∑
α∈M1\{0}

����〈Lαh(Xtj ), y1(t j+1)− y2(t j+1)
〉(
Vα
tj+1
−Vα

tj

) ����
+

����
∫ tj+1

tj

〈
Lαh(Xtj ), y1(s)− y2(s)

〉
dVα

s

���������Lq

≤

[
C̄1+ C̄2

n−1∑
j=0

∑
α∈M1\{0}

‖Vα
tj+1
−Vα

tj
‖Lq

]
‖y1 − y2‖∞

≤ C‖y1 − y2‖∞

This and Lemma 1 imply that Gτ,m
ϕ is locally Lipschitz and locally bounded. To

show the result for Fτ,m
ϕ we need to establish that 1/Gτ,m

1
is locally bounded. We

have, using Jensen’s inequality, that for m ≥ 2

Gτ,m

1
= Ẽ
[
Z

τ,m
t

]
≥ exp

(
Ẽ
[
Ξ̄
τ,m
t

] )
≥ exp

(
Ẽ
[
Ξ
τ,2
t

] )
exp

(
−

nδ
(2m−1)1/2m

)

and for m = 1 clearly

Gτ,1

1
= Ẽ
[
Z

τ,1
t

]
≥ exp

(
Ẽ
[
Ξ
τ,1
t

] )
.

Since the quantities Ẽ
[
Ξ
τ,1
t

]
and Ẽ

[
Ξ
τ,2
t

]
are finite, the lemma is proved. �

In the following, given t > 0, we set for every γ ∈ (0,1/2),

Hγ =

⎧⎪⎨⎪⎩ y ∈ C([0, t];RdY ) : sup
s1,s2∈[0,t]

‖ys1
− ys2

‖∞

|s1 − s2 |γ
<∞

⎫⎪⎬⎪⎭ ⊆ C([0, t];RdY )

and recall that Y[0,t] : Ω→ C([0, t];RdY ) denotes the random variable in path space

corresponding to the observation process Y .
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Lemma 3 For all t > 0 and γ ∈ (0,1/2), we have P̃-almost surely that Y[0,t] ∈ Hγ.

Proof Recall that, under P̃, the observation processY is a Brownian motion and, by

the Brownian scaling property, it suffices to show the result for t = 1. Therefore, let

γ ∈ (0,1/2) and note that for all δ ∈ (0,1] we have

sup
s1,s2∈[0,1]

‖Ys1
−Ys2
‖∞

|s1 − s2 |γ
=max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ sup
s1,s2∈[0,1]
|s1−s2 |≤δ

‖Ys1
−Ys2
‖∞

|s1 − s2 |γ
, sup
s1,s2∈[0,1]
|s1−s2 |≥δ

‖Ys1
−Ys2
‖∞

|s1− s2 |γ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
The second element of the maximum above is easily bounded, P̃-almost surely, by

the sample path continuity. For the first element, note that there exists δ0 ∈ (0,1)
such that for all δ ∈ (0, δ0],

δγ ≥
√

2δ log(1/δ).

Therefore, it follows that P̃-almost surely,

sup
s1,s2∈[0,1]
|s1−s2 |≤δ0

‖Ys1
−Ys2
‖∞

|s1 − s2 |γ
≤ sup

s1,s2∈[0,1]
|s1−s2 |≤δ0

‖Ys1
−Ys2
‖∞√

2|s1− s2 | log(1/|s1− s2 |)
.

The Lévy modulus of continuity of Brownian motion further ensures that P̃-almost

surely,

limsup
δ↓0

sup
s1,s2∈[0,1]
|s1−s2 |≤δ

‖Ys1
−Ys2
‖∞√

2δ log(1/δ)
= 1.

The Lemma 3 thus follows. �

Lemma 4 Let τ = {0 = t1 < . . . < tn = t} ∈ Π(t) be a partition, let j ∈ {0, . . . ,n−1}

and let c be a positive integer. Then, there exists a version of the stochastic integral

C([0, t];RdY )×Ω � (y,ω) �→
∫ tj+1

tj

〈ys,dη
c,c+1
j

(s,ω)〉 ∈ R

such that it is equal onHγ ×Ω to a B(C([0, t];RdY ))×F -measurable mapping.

Proof For k a positive integer, define for y ∈ C([0, t];RdY ),

J
c,k
j

(y) =
k−1∑
i=0

〈
ysi, j ,

(
η
c,c+1
j

(si+1, j )− ηc,c+1
j

(si, j )
)〉
,

where si, j =
i(tj+1−tj )

k
+ t j , i = 0, . . . , k. Furthermore, we set �s� = si, j for s ∈

[
i(tj+1−tj )

k
+ t j,

(i+1)(tj+1−tj )
k

+ t j ). Then, for y ∈ Hγ, we have

Ẽ

[(
J

c,2l

j
(y)−

∫ tj+1

tj

〈ys,dη
c,c+1
j

(s)〉
)2]
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= Ẽ

[ (∫ tj+1

tj

〈y �s� − ys,dη
c,c+1
j

(s)〉
)2]

= Ẽ

[ ( ∑
α∈Mc

dY∑
i=0

∫ tj+1

tj

(yi
�s�
− yis)L

αhi (Xtj ) dIα(1)tj,s
)2]

≤ (dV +1)dY
dY∑
i=0

∑
α∈Mc

Ẽ

[ (∫ tj+1

tj

(yi
�s�
− yis)L

αhi (Xtj ) dIα(1)tj,s
)2]

= (dV +1)dY
dY∑
i=0

∑
α∈Mc

α|α |�0

Ẽ

[∫ tj+1

tj

(
(yi�s� − y

i
s)L

αhi (Xtj )
)2

d〈Iα(1)tj, ·〉s
]

+ (dV +1)dY
dY∑
i=0

∑
α∈Mc

α|α |=0

Ẽ

[(∫ tj+1

tj

(yi
�s�
− yis)L

αhi (Xtj ) d
[∫ s

tj

Iα−(1)tj,rdr
] )2]

≤ (dV +1)dY
K (t j+1− t j )2γ

22lγ
max
α∈Mc

‖Lαh(Xtj )‖∞
{ dY∑

i=0

∑
α∈Mc

α|α |�0

Ẽ

[∫ tj+1

tj

(Iα−(1)tj,s )
2 ds

]

+

dY∑
i=0

∑
α∈Mc

α|α |=0

Ẽ

[ (∫ tj+1

tj

Iα−(1)tj,s ds
)2]}

≤
(dV +1)dYCK (t j+1− t j )2γ

22lγ
,

Where the constant C is independent of l. Thus, by Chebyshev’s inequality, we get

for all ε > 0 that

P̃
(����J c,2l

j
(y)−

∫ tj+1

tj

〈ys,dη
c,c+1
j

(s)〉
���� > ε) ≤ 1

ε2

(dV +1)dYCK (t j+1 − t j )2γ

22lγ
.

However, the bound on the right-hand side is summable over l so that we conclude

using the first Borel-Cantelli Lemma that, for all ε > 0,

P̃
(
limsup
l→∞

����J c,2l

j
(y)−

∫ tj+1

tj

〈ys,dη
c,c+1
j

(s)〉
���� > ε) = 0.

Thus, for all y ∈ Hγ, the integral J
c,k
j

(y) converges P̃-almost surely to the integral∫ tj+1

tj
〈ys,dη

c,c+1
j

(s)〉. Hence, we can define the limit onHγ ×Ω to be

J c
j (y)(ω) = limsup

l→∞

J
c,l
j

(y)(ω); (y,ω) ∈ Hγ ×Ω.

Since the mapping
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C([0,T ];RdY )×Ω � (y,ω) �→ limsup
l→∞

J
c,l
j

(y)(ω) ∈ R

is jointly B(C([0,T ];RdY )) ⊗F measurable the lemma is proved. �

It turns out that proving the robustness result is simplified by first decoupling the

processes X and Y in the following manner. Let (Ω̊, F̊ , P̊) be an indentical copy of

the probability space (Ω,F , P̃). Then

G̊τ,m
ϕ (y) = E̊[ϕ(X̊t )Z̊τ,m

t (y)]

is the corresponding representation of Gτ,m
ϕ (y) in the new space, where Z̊

τ,m
t (y) =

exp( ˚̄
Ξ
τ,m
t (y)) with

Ξ̊
τ,m
t (y) =

n−1∑
j=0

κ̊
0,m
j
+

〈
η̊

0,m
j

(t j+1), ytj+1

〉
−
〈
h(X̊tj ), ytj

〉
−

∫ tj+1

tj

〈
ys, dη̊

0,m
j

(s)
〉

and, for m > 2,

M̊τ,m
j

(y) = κ̊2,m
j
−
〈
η̊

2,m
j

(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,d η̊2,m

j
(s)
〉
,

so that, finally,

˚̄
Ξ
τ,m
t (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ξ̊
τ,m
t (y), if m = 1,2

Ξ̊
τ,2
t (y)+

n−1∑
j=0

Γm,(tj+1−tj )
(
M̊τ,m

j
(y)
)
, if m > 2.

Moreover, with J̊ c
j
(y) corresponding to Lemma 4 we can write for y ∈ Hγ,

Ξ̊
τ,m
t (y) =

n−1∑
j=0

κ̊
0,m
j
+

〈
η̊

0,m
j

(t j+1), ytj+1

〉
−
〈
h(X̊tj ), ytj

〉

−

m−1∑
c=0

n−1∑
j=0

J̊ c
j (y).

In the same way we get, mutatis mutandis, the expression for ˚̄
Ξ
τ,m
t (y) onHγ. Now,

we denote by

(Ω̌, F̌ , P̌) = (Ω× Ω̊,F ⊗ F̊ , P̃⊗ P̊)

the product probability space. In the following we lift the processes η̊ andY from the

component spaces to the product space by writingY(ω,ω̊) =Y (ω) and η̊
c,c+1
j

(ω,ω̊) =
η̊
c,c+1
j

(ω̊) for all (ω,ω̊) ∈ Ω̌.
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Lemma 5 Let c be a positive integer and let j ∈ {0, . . . ,n}. Then there exists a nullset

N0 ∈ F such that the mapping (ω,ω̊) �→ J̊ c
j
(Y[0,t](ω))(ω̊) coincides on (Ω\N0)×Ω̊

with an F̌ -measurable map.

Proof Notice first that the set

N0 = {ω ∈ Ω : Y[0,t](ω) �Hγ}

is clearly a member of F and we have that P̃(N0) = 0. With N0 so defined, the lemma

follows from the definition and measurability of (ω,ω̊) �→ J̊ c
j
(Y[0,t](ω))(ω̊). �

Lemma 6 Let c be a positive integer and j ∈ {0, . . . ,n}. Then we have P̌-almost surely

that ∫ tj+1

tj

〈Ys, dη̊c,c+1
j

(s)〉 = J̊ c
j
(Y[0,t]).

Proof Note that we can assume without loss of generality that dY = 1 because the

result follows componentwise. Then, let K > 0 and T = inf{s ∈ [0, t] : |Ys | ≤ K } to

define

YK
s = YsIs≤T +YT Is>T ; s ∈ [0, t].

Then Fubini’s theorem and Lemma 5 imply that

Ě

[(k−1∑
i=0

YK
si, j

(
η̊
c,c+1
j

(si+1, j )− η̊c,c+1
j

(si, j )
)
− J̊ c

j
(YK

[0,t](ω))
)2]

=

∫
Ω\N0

E̊
[ (
J̊

c,k
j

(YK
[0,t](ω))− J̊

c
j
(YK

[0,t](ω))
)2]

dP̃(ω)

Now, since the function s �→ YK
s (ω) is continuous and J̊ c

j
(YK

[0,t]
(ω)) is a version of

the integral
∫ tj+1

tj
YK
s (ω) dη̊

c,c+1
j

(s) we have for every ω ∈ Ω \ N0 that

lim
k→∞

E̊
[ (
J̊

c,k
j

(YK
[0,t](ω))− J̊

c
j
(YK

[0,t](ω))
)2]
= 0.

Moreover, clearly,

E̊
[ (
J̊

c,k
j

(YK
[0,t](ω))− J̊

c
j
(YK

[0,t](ω))
)2]
≤ 4K2E̊[η̊2

t ] <∞

So that we can conclude by the dominated convergence theorem that

lim
k→∞

Ě

[(k−1∑
i=0

YK
si, j

(
η
c,c+1
j

(si+1, j )− ηc,c+1
j

(si, j )
)
− J̊ c

j
(YK

[0,t](ω))
)2]

=

∫
Ω\N0

lim
k→∞

E̊
[ (
J̊

c,k
j

(YK
[0,t](ω))− J̊

c
j
(YK

[0,t](ω))
)2]

dP̃(ω) = 0

As K is arbitrary, the lemma is proved. �
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Finally, we are ready to show the main result, Theorem 2. We restate it here again,

in a slightly different manner which reflects the current line of argument.

Theorem 3 The random variable Fτ,m
ϕ (Y[0,t]) is a version of π

τ,m
t (ϕ).

Proof By the Kallianpur-Striebel formula it suffices to show that for all bounded

and Borel measurable functions ϕ we have P̃-almost surely

ρ
τ,m
t (ϕ) = Gτ,m

ϕ (Y[0,t]).

Furthermore, this is equivalent to showing that for all continuous and bounded

functions b : C([0, t];RdY )→ R the equality

Ẽ[ρ
τ,m
t (ϕ)b(Y[0,t])] = Ẽ[Gτ,m

ϕ (Y[0,t])b(Y[0,t])].

holds. As for the left-hand side we can write

Ẽ[ρ
τ,m
t (ϕ)b(Y[0,t])]

= Ẽ[ϕ(Xt )Zτ,m
t b(Y[0,t])]

= Ẽ[ϕ(Xt ) exp(ξ̄τ,mt )b(Y[0,t])]

= Ě[ϕ(X̊t ) exp( ˚̄ξ
τ,m
t )b(Y[0,t])]

= Ě[ϕ(X̊t ) exp(IBP( ˚̄ξ
τ,m
t ))b(Y[0,t])]

where IBP( ˚̄ξ
τ,m
t ) is given by the application of the integration by parts formula for

semimartingales as

IBP(ξ̊τ,mt ) =
n−1∑
j=0

IBP(ξ̊τ,mt )( j)

=

n−1∑
j=0

{
κ̊

0,m
j
+

〈
η̊

0,m
j

(t j+1),Ytj+1

〉
−
〈
h(X̊tj ),Ytj

〉
−

∫ tj+1

tj

〈
Ys,dη̊0,m

j
(s)
〉}

IBP( μ̊τ,m) ( j) = κ̊2,m
j
+

〈
η̊

2,m
j

(t j+1),Ytj+1

〉
−

∫ tj+1

tj

〈
Ys,dη̊2,m

j
(s)
〉

IBP( ˚̄ξ
τ,m
t ) ( j) =

⎧⎪⎨⎪⎩IBP(ξ̊
τ,m
t )( j), if m = 1,2

IBP(ξ̊τ,mt )( j)+ Γm,(tj+1−tj )
(
IBP( μ̊τ,m) ( j)

)
, if m > 2

.

And, on the other hand, the right-hand side is
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Ẽ[Gτ,m
ϕ (Y[0,t])b(Y[0,t])]

= Ẽ[ϕ(Xt )Zτ,m
t (Y[0,t])b(Y[0,t])]

= Ẽ[ϕ(Xt ) exp(Ξ̄τ,mt (Y[0,t]))b(Y[0,t])]

= Ẽ[E̊[ϕ(X̊t ) exp( ˚̄
Ξ
τ,m
t (Y[0,t]))]b(Y[0,t])]

= Ě[ϕ(X̊t ) exp( ˚̄
Ξ
τ,m
t (Y[0,t]))b(Y[0,t])],

where the last equality follows from Fubini’s theorem. As the representations coin-

cide, the theorem is thus proved. �
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