
Optimal Control of Piecewise Deterministic

Markov Processes

O.L.V. Costa and F. Dufour

Abstract This chapter studies the infinite-horizon continuous-time optimal control

problem of piecewise deterministic Markov processes (PDMPs) with the control

acting continuously on the jump intensity λ and on the transition measure Q of the

process. Two optimality criteria are considered, the discounted cost case and the

long run average cost case. We provide conditions for the existence of a solution to

an integro-differential optimality equality, the so called Hamilton-Jacobi-Bellman

(HJB) equation, for the discounted cost case, and a solution to an HJB inequality for

the long run average cost case, as well as conditions for the existence of a deterministic

stationary optimal policy. From the results for the discounted cost case and under

some continuity and compactness hypothesis on the parameters and non-explosive

assumptions for the process, we derive the conditions for the long run average cost

case by employing the so-called vanishing discount approach.

1 Introduction

Piecewise Deterministic Markov Processes (PDMPs) were introduced by M.H.A.

Davis in the seminal paper [9] as a general family of nondiffusion stochastic models,

suitable to formulate an enormous variety of applications in operations research,
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engineering systems and management science. The general theory of the PDMPs,

including a full characterization of the extended generator as well as its applications

in several stochastic control problems, were elegantly and comprehensively presented

in the book [11]. PDMPs are characterized by three local parameters: the flow φ, the

jump rate λ, and the transition measureQ. Roughly speaking, the motion of a PDMP

starting at the initial state x0 follows a deterministic flow φ(x0, t) until the first jump

time T1, which occurs either spontaneously in a Poisson-like fashion with rate λ or

when the flow φ(x0, t) hits the boundary of the state space. In either case the post-

jump location of the process is selected by the transition measure Q(.|φ(x,T1)) and

the motion restarts from this new point afresh. As presented in [11], a suitable choice

of the state space and the local characteristics φ, λ, and Q can cover a great deal of

problems in operations research, engineering systems and management science. It is

worth pointing out that the presence of the boundary is crucial for the modeling of

some optimization problems as, for instance, in queueing and inventory systems or

maintenance-replacement models (see, for instance, the capacity expansion problem

in [9], item (21.13), in which the boundary represents that a project is completed,

and the jump in this case represents that investment is channelled immediately into

the next project).

Broadly speaking there are two types of control for PDMPs, as pointed out by

Davis in [11, page 134]: continuous control, in which the control variable acts at all

times on the process through the characteristics (φ, λ,Q), and impulse control, used

to describe control actions that intervene in the process by moving it to a new point of

the state space at some specific times. The focus of this chapter will be on the former

case, but considering that the control acts only on (λ,Q). Two performance criteria

will be considered along this chapter: the so-called infinite horizon discounted cost

case and the long run average cost case. Other criteria that can be found in the

literature for the PDMPs include, for instance, the risk-sensitive control problem, as

analyzed in [20] and [22].

It is worth pointing out that the main difficulty in considering the control acting

also on the flow φ relies on the fact that in this situation the time which the flow takes

to hit the boundary as well as the first order differential operator associated to the

flow φ would depend on the control. For the discounted cost criterion this problem

was nicely studied in [10] by rewriting the integral cost as a sum of integrals between

two consecutive jump times of the PDMP, which yields to the one step cost function

for a discrete-time Markov decision model. However this decomposition for the long

run average cost is not possible. When compared with the so-called continuous-time

Markov decision processes (see, for instance, [18, 16, 17, 19, 26, 33, 34]), it should

be highlighted that the PDMPs are characterized by a drift motion between jumps,

and forced jumps whenever the process hits the boundary, so that the available results

for the continuous-time Markov decision processes cannot be applied to the PDMPs

case.

Two kinds of approach can be pointed out for dealing with the discounted and

long run average control problems of PDMPs. The first one would be to characterize

the value function as a solution to the so called Hamilton-Jacobi-Bellman (HJB)

equation associated with an imbedded discrete-stage Markov decision model, with
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the stages defined by the jump times Tn of the process. As a sample of works along

this direction we can refer to [2, 3, 5, 8, 10, 11, 15, 30, 31] and the references

therein. The key idea behind this approach is to find, at each stage, a control function

that solves an imbedded deterministic optimal control problem. Usually the control

strategy is chosen among the set of piecewise open loop policies, that is, stochastic

kernels or measurable functions that depend only on the last jump time and post

jump location. The second approach for these problems, which we will call the

infinitesimal approach, is to characterize the optimal value function as the viscosity

solution of the corresponding integro-differential HJB equation. As a sample of

works using this kind of approach we can mention [7, 11, 12, 13, 14, 32] and the

references therein.

This chapter adopts the infinitesimal approach to study the discounted and long

run average control problems of PDMPs. The results presented in this chapter were

mainly drawn from [7] and [6]. The goal is to provide conditions for the existence of

a solution to integro-differential HJB equality and inequality, and for the existence

of a deterministic stationary optimal policy, associated to the discounted and long

run average control problems. These conditions are essentially related to continuity

and compactness assumptions on the parameters of the problem, as well as some

non-explosive conditions for the controlled process. In order to derive the results for

the long run average control problem we apply the so-called vanishing discounted

approach by adapting and combining arguments used in the context of continuous-

time Markov decision processes (see [33]), and the results obtained for the infinite-

horizon discounted optimal control problem.

The chapter is organized as follows. In sections 2 and 3 we present the nota-

tion, some definitions, the parameters defining the model, the construction of the

controlled process, the definition of the admissible strategies, and the problem for-

mulation. In section 4 we give the main assumptions and some auxiliary results. In

sections 5 and 6 we present the main results related to the discounted and long run

average control problems (see Theorems 2, 3 and 4) that provide sufficient condi-

tions for the existence of a solution to a HJB equality (for the discounted case) and

inequality (for the long run average case) and for the existence of a deterministic

stationary optimal policy. Some proofs of the auxiliary results are presented in the

Appendix.

2 Notation and definition

In this section we present the notation and some definitions that will be used through-

out the chapter as well as the definition of the generalized inferior limit and its

properties. The generalized limit will be used for the results related to the vanishing

discounted approach to be considered in section 6.

We will denote by N the set of natural numbers including 0, N∗ = N− {0}, R

the set of real numbers, R+ the set of non-negative real numbers, R∗
+
= R+ − {0},

R̂ = R∪{+∞}. By measure we will always refer to a countably additive, R+-valued
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set function. For X a Borel space (i.e. a Borel-measurable subset of a complete and

separable metric space) we denote by B(X ) its associated Borel σ-algebra, and by

M (X ) (P (X ) respectively) the set of measures (probability measures) defined on

(X,B(X )), endowed with the weak topology. We represent by P (X |Y ) the set of

stochastic kernels on X given Y where Y denotes a Borel space. For any set A, IA
denotes the indicator function of the set A, and for any point x ∈ X , δx denotes the

Dirac measure defined by δx (Γ) = IΓ (x) for any Γ ∈ B(X ).
The space of Borel-measurable (bounded, lower semicontinuous respectively)

real-valued functions defined on the Borel space X will be denoted byM(X ) (B(X ),
L(X ) respectively) and we set Lb (X ) = L(X )∩B(X ). Moreover, the space of Borel-

measurable, lower semicontinuous, R̂-valued functions defined on the Borel space

X will be denoted by L̂(X ). For all the previous space of functions the subscript +
will indicate the case of non-negative functions. The infimum over an empty set is

understood to be equal to +∞, and e−∞ = 0.

As in [29], the definition of the generalized inferior limit is as follows:

Definition 1 Let X be a Borel space and let {wn}, be a family of functions inM(X ).
The generalized inferior limit of the sequence {wn }, denoted by limg

n→∞wn is defined

as

limg
n→∞wn (x) = sup

k≥1

sup
ε>0

(
inf
m≥k

inf
{y:d(y,x)<ε }

wm(y)
)

(1)

where d (., .) is the metric in X . For notational convenience, limg
n→∞wn will be

denoted by w∗.

The following properties from the generalized inferior limit will be used in section

6 for the vanishing discounted approach.

Proposition 1 Let {wn } be a sequence of nonnegative functions in M(X ) and con-

sider an arbitrary x ∈ X . In this case, w∗ (x) as defined in (1) satisfies the following

properties:

(i) For any sequence {xn} such that xn→ x, it follows that lim
n→∞

wn (xn) ≥ w∗ (x), and

there exists a sequence {xn} such that xn → x and lim
n→∞

wn (xn) = w∗ (x).

(ii) w∗ ∈ L+(X ).
(iii) [Generalized Fatou’s Lemma] Suppose that {μn} is a sequence of probability

measures in P (X ) and that {μn} converges weakly to a μ ∈ P (X ). Then

lim
n→∞

∫
S

wn (x)μn(dx) ≥
∫
S

w∗ (x)μ(dx). (2)

Proof: For the proof of (i) see Lemma 4.1 in [4]. For (ii) see Lemma 3.1 in [25] and

for (iii) see Lemma 3.2 in [25]. �
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3 Problem formulation for the controlled PDMP

The goal of this section is to introduce the parameters defining the model, the

construction of the controlled process, the definition of the admissible strategies,

and the problem formulation. Since it follows closely sections 2 and 3 in [7] some

details will be skipped.

3.1 Parameters of the model

We will consider the control model depending on the following elements:

• The state space X, which we assume to be an open subset of Rd (d ∈ N∗) with

boundary represented by ∂X.
• The flow φ(x, t) : Rd ×R→ Rd, associated with a given Lipschitz continuous

vector field in Rd, that is, φ(x,0) = x and φ(x, t + s) = φ(φ(x, s), t) for all x ∈ Rd
and (t, s) ∈ R2.

• The so called active boundary defined as Ξ = {x ∈ ∂X : x = φ(y, t) for some y ∈

X and t ∈ R∗
+
}. With some abuse of notation, we set X as X∪Ξ, and for x ∈ X,

we define

t∗(x) = inf{t ∈ R+ : φ(x, t) ∈ Ξ}.

The flow φ outside the space X can be defined arbitrarily since it plays no role for

the problem.

• The action space A, assumed to be a Borel space, and the set of feasible actions in

state x ∈ X, given by A(x), which is a nonempty measurable subset of A. Define

the set K =Ki ∪Kg with

Kg
= {(x,a) ∈ X×A : a ∈ A(x)} ∈ B(X×A),

Ki
= {(x,a) ∈ Ξ×A : a ∈ A(x)} ∈ B(Ξ×A).

It is assumed that Kg (respectively, Ki) contains the graph of a measurable

function from X (respectively, Ξ) to A.
• The controlled jumps intensity λ which is a R+-valued measurable function

defined on K.
• The stochastic kernel Q on X given K satisfying Q(X \ {x}|x,a) = 1 for any

(x,a) ∈ K. It describes the state of the process after any jump. In other words,

if a jump governed by the intensity λ occurs in the current state x ∈ X and with

action a ∈ A(x), then Q(·|x,a) describes the distribution of the state immediately

after the jump. If z ∈ Ξ, that is, the current state is at the boundary then an action

b ∈ A(z) is applied and the state of the process changes instantly according to the

stochastic kernel Q.

It should be noticed that in the framework of continuous-time MDPs, the signed

kernel on X given K, defined by
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q(dy |x,a) = λ(x,a)
[
Q(dy |x,a)− δx (dy)

]
(3)

is the (controlled) infinitesimal generator of the jump process. For V ∈M(X) we set,

QV (x,a) =
∫

X

V (y)Q(dy |x,a), (x,a) ∈ K, (4)

λQV (x,a) = λ(x,a)QV (x,a), (x,a) ∈ Ki,

provided that the integral in (4) exists. From (3) we have that

qV (x,a) = λ(x,a)
[
QV (x,a)−V (x)

]
, (x,a) ∈ Ki . (5)

We conclude this sub-section with the following definition that will be used in

the sequel.

Definition 2 The set of functions g ∈ M(X) which are absolutely continuous with

respect to the flow φ on [0, t∗(x)[ (that is, the function g(φ(x, ·)) is absolutely

continuous on [0, t∗(x)]∩R+) and such that limt→t∗(x) g(φ(x, t)) exists whenever

t∗(x) < ∞ will be denoted by A(X). In this case the domain of definition of the

mapping g can be extended to X by setting g(z) = limt→t∗(x) g(φ(x, t)) where z =
φ(x, t∗(x))) ∈Ξ. Lemma 2.2 in [8] shows that, for g ∈A(X), there exists a real-valued

measurable function Xg defined on X satisfying

g(φ(x, t)) = g(x)+
∫

[0,t]

Xg(φ(x, s))ds, (6)

for any t ∈ [0, t∗(x)[. Notice that for g ∈ A(X) the function Xg satisfying (6) is

not necessarily unique. The case of bounded functions in A(X) will be denoted, as

before, by Ab (X).

3.2 Construction of the controlled process ξt

The canonical space Ω is defined by Ω =
⋃∞

n=0Ωn

⋃ (
X× (R∗

+
×X)∞

)
where Ωn =

X× (R∗
+
×X)n × ({∞}× {x∞})∞ and x∞ is an isolated artificial point corresponding

to the case when no jumps occur in the future, endowed with its Borel σ-algebra

denoted by F . In that case, the process stays forever in x∞, and so t∗(x∞) = +∞. Set

X∞ = X∪ {x∞} and X∞ = X∪ {x∞}. We also extend the definition of φ on X∞× R̂+
as φ(x∞, t) = x∞ for any t ∈ R̂+ and also φ(x, t∗(x)) = x∞ whenever t∗(x) =∞ for

x ∈ X.

We set ω ∈ Ω as

ω = (x0, θ1, x1, θ2, x2, . . .),

where x0 ∈ X represents the initial state of the controlled point process ξ, and for

n ∈ N∗, the components θn > 0 and xn correspond to the time interval between two
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consecutive jumps and the value of the process ξ immediately after the jump. For

the case θn < ∞ and θn+1 = ∞, the trajectory of the controlled point process has

only n jumps, and we put θm =∞ and xm = x∞ (artificial point) for all m ≥ n+ 1.

Between jumps, the state of the process ξ moves according to the flow φ. The path

up to n ∈ N is denoted by hn = (x0, θ1, x1, θ2, x2, . . . θn, xn), and the collection of all

such paths is denoted by Hn. We denote by Hn = (X0,Θ1,X1, . . . ,Θn,Xn) the n-term

random history process taking values in Hn for n ∈ N.

For n ∈ N, set the mappings Xn : Ω→ X∞ by Xn(ω) = xn and, for n ≥ 1, the

mappings Θn : Ω→ R
∗

+
by Θn(ω) = θn; Θ0(ω) = 0. The sequence (Tn)n∈N∗ of

R
∗

+
-valued mappings is defined onΩ by Tn(ω) =

∑n
i=1Θi (ω) =

∑n
i=1 θi and T∞(ω) =

limn→∞Tn(ω). The random measure μ associated with (Θn,Xn)n∈N is a measure

defined on R∗
+
×X by

μ(ω;dt,dx) =
∑
n≥1

I{Tn (ω)<∞}δ(Tn (ω),Xn (ω)) (dt,dx).

The dependence on ω will be suppressed for notational convenience and it will be

written μ(dt,dx) instead of μ(ω;dt,dx). For t ∈R+, defineFt =σ{H0}∨σ{μ(]0, s]×
B) : s ≤ t,B ∈ B(X)}. The controlled process

{
ξt
}
t ∈R+

is defined as:

ξt (ω) =
{
φ(Xn, t −Tn) if Tn ≤ t < Tn+1 for n ∈ N;

x∞, if T∞ ≤ t,

and it is easy to see that (ξt )t ∈R+ could be equivalently described by the sequence

(Θn,Xn)n∈N. As in [11], we set

p∗(dt) = I{ξt−∈Ξ}μ(dt,X)

which counts the number of jumps from the boundary of the controlled process ξt
(see [11], sub-section 26).

3.3 Admissible strategies

Associated to the state x∞ we consider a special action a∞ and we set A∞ =A∪{a∞};
A∞(x∞) = {a∞} and A∞(x) = A(x) for x ∈ X. We also extend the definition of λ

and Q at the point (x∞,a∞) by defining λ(x∞,a∞) = 0 and Q({x∞}|x∞,a∞) = 1. An

admissible control strategy is a sequence u = (πn, γn)n∈N such that, for any n ∈ N,

• πn ∈ P (A∞|Hn×R
∗
+
) and satisfies πn(A(φ(xn, t)) |hn, t) = 1

for hn = (x0, . . . , θn, xn) ∈ Hn and t ∈]0, t∗(xn)[.
• γn ∈ P (A∞|Hn) and satisfies γn (A(φ(xn, t∗(xn))) |hn) = 1

for hn = (x0, . . . , θn, xn) ∈ Hn and t∗(xn) <∞.

We will denote by U the set of admissible control strategies, and for u =
(πn, γn)n∈N ∈ U we denote by π and γ the random processes with values in P (A∞)
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correspondingly as

π(da |t) =
∑
n∈N

I{Tn<t≤Tn+1 }πn(da |Hn, t −Tn)

and

γ(da |t) =
∑
n∈N

I{Tn<t≤Tn+1 }γn(da |Hn),

for t ∈ R∗
+
. The processes π and γ are {Ft }t ∈R+ -predictable random processes with

values in P (A∞). The following class of admissible strategies will be considered

along this chapter. A control strategy u ∈ U is called deterministic stationary, if

πn(·|hn, t) = δϕs (φ(xn,t )) (·) and γn (·|hn) = δϕs (φ(xn,t∗(xn ))) (·), where ϕs : X∞ →A∞

is a measurable mapping satisfying ϕs (y) ∈ A(y) for any y ∈ X. By a slight abuse

of notation, such a strategy will be just denoted by u = ϕs .

From Theorem 3.6 in [23] (or Remark 3.43, page 87 in [24]) we have that, for any

admissible strategy u ∈ U and an initial state x0 ∈ X, there exists a probability Pux0

on (Ω,F ) such that the restriction of Pux0
to (Ω,F0) is given by (see [7] for further

details) Pux0

(
{X0 = x0}

)
= 1, and (see Lemma 3.1 in [7]) the predictable projection

of the random measure μ with respect to Pux0
is given by ν = ν0 + ν1, where, for

Γ ∈ B(R∗
+
×X),

ν0(Γ) =
∫
Γ

∫
A(ξs )

Q(dx |ξs,a)λ(ξs,a)π(da |s)ds,

ν1(Γ) =
∫
Γ

∑
n∈N∗

I{ξTn− ∈Ξ}
∫

A(ξTn−)
Q(dx |ξTn−,a)γ(da |Tn−)δTn (ds).

3.4 Problems formulation

We introduce in this section the infinite-horizon expected discounted and long run

average continuous-time optimal control problems we will consider in this chapter,

with the control acting continuously on the jump intensity λ and on the transition

measure Q of the process (but not on the deterministic flow φ).

In what follows the running cost rate Cg is a real-valued measurable mapping

defined on K and the boundary cost Ci is a real-valued measurable mapping defined

on K. We set Cg(x∞,a∞) = Ci (x∞,a∞) = 0. The associated infinite-horizon dis-

counted criterion corresponding to an admissible control strategy u = (un)n∈N ∈ U ,

un = (πn, γn), is defined by
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Vα (u, x0) = Eux0

[∫
]0,+∞[

e−αs
∫

A(ξs )
Cg(ξs,a)π(da |s)ds

]
+E

u
x0

[∫
]0,+∞[

e−αs
∫

A(ξs−)
Ci (ξs−,a)γ(da |s)p∗(ds)

]
, (7)

whereα > 0 is the discount factor. Similarly, the associated long run average criterion

corresponding to an admissible control strategy u ∈ U is defined by

A(u, x0) = lim
t→∞

1

t

{
E
u
x0

[∫
]0,t[

∫
A(ξs )

Cg(ξs,a)π(da |s)ds
]

+E
u
x0

[∫
]0,t[

∫
A(ξs−)

Ci (ξs−,a)γ(da |s)p∗(ds)
]}
. (8)

Definition 3 The optimization problems consist in minimizing the performance cri-

terionVα (u, x0) andA(u, x0) within the class of admissible strategies u ∈ U , where

x0 is the initial state. The optimal value functions will be denoted respectively by

V∗α (x0) andA∗ (x0), that is,

V∗α (x0) = inf
u∈U
Vα (u, x0), A∗ (x0) = inf

u∈U
A(u, x0)

and u ∈ U will be an optimal strategy for the discounted (respectively, long run

average) problem ifVα (u, x0) =V∗α (x0) (respectively,A(u, x0) =A∗ (x0)).

4 Main assumptions and auxiliary results

The objective of this section is to introduce the assumptions and present some

technical results that will be used along this chapter.

4.1 Main assumptions

Our approach requires that the process must be non-explosive and that the expected

value of the number of jumps at the boundary up to a time t ∈ R+ must be bounded

from above by an affine function in the variable t. One of the main goals of Assump-

tion A is to ensure these properties.

Assumption A. There are constants K ≥ 0 and ε1 > 0 such that

(A1) For any (x,a) ∈ Kg, λ(x,a) ≤ K .

(A2) For any (z,b) ∈ Ki , Q(Aε1
|z,b) = 1 where

Aε1
= {x ∈ X : t∗(x) > ε1}.
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(A3) For any (x,a) ∈ Kg, Q(A(x) |x,a) = 1 where

A(x) = {y ∈ X : t∗(y) ≥ min{t∗(x), ε1}}.

Assumptions B and C are classical hypotheses. They mainly ensure the existence

of an optimal selector.

Assumption B.

(B1) For every y ∈ X the set A(y) is compact.

(B2) The kernel Q is weakly continuous (also called weak-Feller Markov kernel)

on Kg.

(B3) The function λ is continuous on Kg.

(B4) The flow φ is continuous on R+×R
p .

(B5) The function t∗ is continuous on X.

Assumption C.

(C1) The multifunction Ψg from X to A defined by Ψg(x) = A(x) is upper semi-

continous. The multifunctionΨi from Ξ to A defined byΨi (z) =A(z) is upper

semicontinous.

(C2) The cost functionCg (respectively,Ci) is bounded and lower semicontinuous

on Kg (respectively, Ki).

Without loss of generality, we assume, from Assumption (C2), that the inequalities

|Cg | ≤ K and |Ci | ≤ K are valid, where K is the same constant as in Assumption

(A1).

4.2 Auxiliary results

We present in this subsection some auxiliary results that will be useful to study

both the infinite-horizon discounted control problem as well as the long-run average

cost control problem. The first result of this subsection, Lemma 1, shows that the

controlled process is non-explosive and provides an upper bound for the sum of the

expected values of e−αTn as well as an affine upperbound on t for the expected value

on the number of jumps from the frontier up to a time t. This result requires only

Assumption A.

Lemma 1 If Assumption A is satisfied then there exist positive numbers M < ∞,

c0 <∞ such that, for any control strategy u ∈ U and initial state x0 ∈ X,

E
u
x0

[∑
n∈N∗

e−αTn
]
≤ M, Pux0

(T∞ < +∞) = 0. (9)

Furthermore for any t ∈ R+,

E
u
x0

[∑
n∈N∗

I{
Tn≤t,ξT−n

∈Ξ
} ] ≤ Mt + c0. (10)
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Proof: For the proof of (9), see Lemma 4.1 in [7] and, for the proof of (10), see

Lemma 3.1 in [6]. �

Recalling the definitions ofVα andA (see equations (7) and (8) respectively), it

is easy to get that for any control strategy u ∈ U

|Vα (u, x0) | ≤ K (
1

α
+E

u
x0

[∑
n∈N∗

e−αTn
]
) ≤ K (

1

α
+M)

and

|A(u, x0) | ≤ K
(
1+ lim

t→∞

1

t
E
u
x0

[∑
n∈N∗

I{
Tn≤t,ξT−n

∈Ξ
} ] ) ≤ K (1+M),

by using Lemma 1 and the fact that |Cg | ≤ K and |Ci | ≤ K (see Assumption (C2)).

Therefore, the mappingsVα (u, ·) andA(u, ·) are well defined.

The next lemma will be useful to obtain the characterization of the value functions

in terms of integro differential equations.

Lemma 2 Consider a bounded from below real-valued measurable function F de-

fined on X such that, for a real number β > 0, it satisfies

∫
[0,t∗(x)[

e−βsF (φ(x, s))ds < +∞

for any x ∈X, and a bounded from below real-valued measurable functionG defined

on Ξ. Then the real-valued mapping V defined on X by

V (x) =
∫

[0,t∗(x)[
e−βsF (φ(x, s))ds+ e−βt

∗(x)G(φ(x, t∗(x)))

belongs to A(X). Moreover there exists a bounded from below measurable function

XV satisfying

−βV (x)+XV (x) = −F (x),

for any x ∈ X and, furthermore, V (z) = G(z) for any z ∈ Ξ.

Proof: See the Appendix.

For any function V in M(X) bounded from below let us introduce the R̂-valued

mappings RV and TV defined on X and Ξ respectively by

RV (x) = inf
a∈A(x)

{
Cg(x,a)+ qV (x,a)+KV (x)

}
, (11)

TV (z) = inf
b∈A(z)

{
Ci (z,b)+QV (z,b)

}
, (12)

where the constant K has been defined in Assumption (A1) and the transition kernel

q in equation (3). Observe that qV and QV are well defined since by hypothesisV is
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bounded from below. Note also qV and QV may take the value +∞. Finally, for any

α ∈ [0,1], let us introduce the R̂-valued functionBαV defined on X by

BαV (y) =
∫

[0,t∗ (y)[
e−(K+α)tRV (φ(y, t))dt + e−(K+α)t

∗(y)
TV (φ(y, t∗(y))). (13)

Again, remark the integral term in (13) is well defined but may take the value +∞.

Moreover, since |Cg | ≤ K and |Ci | ≤ K , we have clearly that RV (x) ≥ −Kc0 and

TV (z) ≥ −c0 for some constant c0 > 0. By using the definition of BαV

BαV (y) ≥ −c0(1− e−Kt∗(y) )− c0e−Kt∗(y)
= −c0

for any α ∈ [0,1].

The next lemma provides important properties of the operatorsR, T and Bα.

Lemma 3 Suppose that Assumptions A, B and C are satisfied. IfV ∈ L(X) is bounded

from below then for any α ∈ [0,1] we have that

RV ∈ L̂(X), TV ∈ L̂(Ξ), BαV ∈ L̂(X)

and all these functions are bounded from below.

Proof: See the Appendix.

For any 0 < α < 1, let us introduce

Kα =
K (1+K )(1− e−(K+α)ε1 )+ (K +α)Ke−(K+α)ε1

α(1− e−(K+α)ε1 )
,

KC =
2K (1+K )
1− e−Kε1

,

where K and ε1 have been defined in Assumption A. Clearly, for any 0 < α < 1

0 < αKα ≤ KC . (14)

The next lemma provides upper bounds and absolutely continuity properties of

the operator Bα.

Lemma 4 Suppose that Assumptions A, B and C hold. Consider V ∈ Lb (X) satisfy-

ing, for any y ∈ X,

|V (y) | ≤ Kα IAε1
(y)+ (Kα +K )IAc

ε1
(y).

Then BαV ∈ Ab (X) and for any y ∈ X,

|BαV (y) | ≤ Kα IAε1
(y)+ (Kα +K )IAc

ε1
(y).
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Proof: See Lemma 5.4 in [7]. �

We conclude this section with the following result, which is a consequence of the

so-called Dynkin formula associated with the controlled process (ξt )t ∈R+ .

Theorem 1 Suppose that Assumption A is satisfied and that the cost functionsCg and

Ci are bounded (below or above). Then we have, for any strategy u = (πn, γn) ∈ U
and (W,XW ) ∈ Ab (X)×B(X), that

Vα (u, x0) =W (x0)+Eux0

[∫
]0,+∞[

e−αs
[
XW (ξs)−αW (ξs )

]
ds
]

+E
u
x0

[∫
]0,+∞[

e−αs
∫

Ag

{Cg(ξs,a)

+

∫
X

W (y)Q(dy |ξs,a)λ(ξs,a)−W (ξs)λ(ξs,a)}π(da |s)]ds
]

+E
u
x0

[∑
n∈N∗

I{ξTn−∈Ξ}e
−αTn

[∫
Ai

{Ci (ξTn−,a)

+

∫
X

W (y)Q(dy |ξTn−,a)}γ(da |Tn−)−W (ξTn−)
]]
. (15)

Proof: See Corollary 4.3 in [7]. �

5 The discounted control problem

Theorem 2 below presents sufficient conditions based on the three local character-

istics of the process φ, λ, Q, and the semi-continuity properties of the set valued

action space, for the existence of a solution for an integro-differential HJB optimal-

ity equation associated with the discounted control problem as well as conditions

for the existence of an optimal selector. Moreover it shows that the solution of the

integro-differential HJB optimality equation is in fact unique and coincides with

the optimal value for the α-discounted problem, and the optimal selector derived

in Theorem 2 yields an optimal deterministic stationary strategy for the discounted

control problem.

Theorem 2 Suppose Assumptions A, B and C are satisfied. Then there exist W ∈
Ab (X) and XW ∈ B(X) satisfying, for any x ∈ X,

−αW (x)+XW (x)+ inf
a∈Ag (x)

{
Cg(x,a)+ qW (x,a)

}
= 0, (16)

and, for any z ∈ Ξ,

W (z) = inf
b∈Ai (z)

{
Ci (z,b)+QW (z,b)

}
. (17)
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Moreover there is a measurable mapping ϕ̂α : X→ A such that ϕ̂α (y) ∈ A(y) for

any y ∈ X and satisfying, for any x ∈ X,

Cg(x, ϕ̂α (x))+ qW (x, ϕ̂α(x)) = inf
a∈A(x)

{
Cg(x,a)+ qW (x,a)

}
, (18)

and, for any z ∈ Ξ,

Ci (z, ϕ̂α(z))+QW (z, ϕ̂α(z)) = inf
b∈A(z)

{
Ci (z,b)+QW (z,b)

}
. (19)

Furthermore we have that

a) the deterministic stationary strategy ϕ̂α is optimal for the α-discounted problem,

b) the function W ∈ Ab (X), solution of (16)-(17), is unique and coincides with

V∗α (x) = in fu∈UVα (u, x), and

c) V∗α (x) satisfies

|V∗α (x) | ≤ Kα +KIAc
ε1
(x). (20)

Proof: By Lemma 3, one can define recursively the sequence of functions
{
Wi

}
i∈N in

Lb (X) as follows: Wi+1(y) =BαWi (y), for i ∈ N and W0(y) = −Kα IAε1
(y)− (Kα +

K )IAc
ε1
(y) for any y ∈ X. By using Lemma 4 and the definition of W0, we obtain that

W1(y) ≥ W0(y) for any y ∈ X. Now, note that the operator Bα is monotone, that is,

V1 ≤ V2 impliesBαV1 ≤ BαV2. Consequently, it can be shown by induction on i that

the sequence
{
Wi

}
i∈N is increasing and, from Lemma 4 and the definition ofW0, that

for every i ∈ N,

|Wi+1(x) | = |BαWi (x) | ≤ Kα IAε1
(x)+ (Kα +K )IAc

ε1
(x). (21)

Therefore from (21) the sequence of functions
{
Wi

}
i∈N is uniformly bounded, that

is, for any i ∈ N, sup
y∈X

��Wi (y)�� ≤ Kα +K . As a result,
{
Wi

}
i∈N converges to a map-

ping W ∈ B(X). Since
{
Wi

}
i∈N is an increasing sequence of lower semicontinuous

functions, W ∈ Lb (X), KWi + qWi ∈ Lb (Kg), and so, Cg
+KWi + qWi ∈ Lb (Kg)

by Assumption (C2). Therefore, combining Assumptions (B1) and (C1) and

Lemma 2.1 in [28], it follows that limi→∞RWi (x) = RW (x) for any x ∈ X and

limi→∞TWi (z) = TW (z) for any z ∈ Ξ. By using the bounded convergence Theo-

rem, it implies that the mapping W satisfies the following equations

W (y) = BαW (y)

=

∫
[0,t∗ (y)[

e−(K+α)tRW (φ(y, t))dt + e−(K+α)t
∗(y)
TW (φ(y, t∗(y))), (22)

where y ∈ X. Applying Lemma 2 to the mapping W where the function F (respec-

tively G) is given by RW (respectively, TW ), it yields that the function W ∈ Ab (X)
and satisfies

−(α+K )W (x)+XW (x) = − inf
a∈Ag (x)

{
Cg(x,a)+ qW (x,a)+KW (x)

}
,
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for any x ∈ X and

W (z) = inf
b∈Ai (z)

{
Ci (z,b)+QW (z,b)

}
,

for any z ∈ Ξ. This shows the existence of W ∈ Ab (X) and XW ∈ B(X) satisfying

equations (16) and (17).

Now, under Assumptions B and C, for any x ∈X the mapping defined on A(x) by

a→ Cg(x,a)+ λ(x,a)
[
QW (x,a)−W (x)

]
+KW (x)

is lower semicontinuous and since Ψg is upper semicontinuous, it follows from

Proposition D.5 in [21] that there exists a measurable mapping ϕ
g
α : X→ Ag such

that ∀x ∈X ϕ
g
α (x) ∈A(x) and equation (18) holds. Similar arguments can be used to

show the existence of a measurable mapping ϕiα : Ξ→ Ai satisfying ϕiα (z) ∈ A(z)
for any z ∈Ξ and equation (19) holds. Therefore, the measurable mapping ϕ̂α defined

by ϕ̂α (x) = ϕiα (x) for any x ∈ X and ϕ̂α (z) = ϕiα (z) for any z ∈ Ξ satisfies the claim.

To show a) and b), notice that for an arbitrary control strategy u ∈ U we have, by

using Theorem 1, thatVα (u, x) ≥W (x) for any x ∈X and also thatVα (ϕ̂, x) =W (x)
for any x ∈ X. Indeed from (16) and (17) we have that

XW (ξs)−αW (ξs )+
∫

Ag

{Cg(ξs,a)

+

∫
X

W (y)Q(dy |ξs,a)λ(ξs,a)−W (ξs)λ(ξs,a)}π(da |s)]≥ 0

and, for any z ∈ Ξ,

∫
Ai

{Ci (ξTn−,a)+
∫

X

W (y)Q(dy |ξTn−,a)}γ(da |Tn−)−W (ξTn−) ≥ 0

with equality whenever the strategy ϕ̂ is used. From (15) the terms inside the

expected value are positive, being zero whenever the strategy ϕ̂ is used, which shows

thatVα (u, x) ≥W (x) andVα (ϕ̂, x) =W (x) as desired. Finally from (21) we have c)

sinceV∗α (x) =W (x) = supi∈NWi (x). �

6 The average control problem

The objective of this section is to provide sufficient conditions to show the existence

of a solution to an integro-differential HJB inequality as well as the existence on

optimal selector. This results is proved by using the so-called vanishing discount

approach. The second main result of this section (see Theorem 4) gives the existence

of a deterministic stationary optimal policy for the infinite-horizon long run average

continuous-time control problem according to Definition 3.
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Let us introduce

mα = inf
x∈X

V∗α (x), ρα = αmα, (23)

hα(x) =V∗α (x)−mα ≥ 0, (24)

where x ∈X. In what follows we refer to section 2 for the definition of the generalized

inferior limit limg. The following final assumption will be required.

Assumption D. lim
g

α→0
hα(x) <∞ for all x ∈ X.

It is easy to show that there exist a sequence {αn } satisfying limn→∞ αn = 0

and such that limn→∞ ραn
= ρ for some |ρ| ≤ KC +K . To see this, observe that by

combining equations (14), (20) and (23) we obtain that for any 0 < α < 1

|ρα | = |αmα | ≤ α| inf
x∈X

V∗α (x) | ≤ α sup
x∈X

|V∗α (x) | ≤ αKα +K ≤ KC +K . (25)

Let us introduce the function h∗ given by

h∗(x) = limg
n→∞hαn

(x). (26)

It is easy to see that h∗(x) ≥ 0 since hα(x) ≥ 0. Clearly,h∗(x) <∞ by Assumption

D and h∗ ∈ L+(X) by using Proposition 1.

Before showing the main results of this section, we need the following technical

result.

Lemma 5 The function h∗ defined in (26) satisfies the following inequality:

h∗(x) ≥
∫

[0,t∗ (x)[
e−Ks (Rh∗(φ(x, s))− ρ)ds+ e−Kt∗(x)

Th∗(φ(x, t∗(x))). (27)

Proof: See the Appendix. �

The following theorem provides sufficient conditions for the existence of a solution

and optimal selector to an integro-differential HJB inequality, associated to the long

run average control problem.

Theorem 3 Suppose that Assumptions A, B, C and D are satisfied. Then the following

holds:

a) There exist H ∈ A(X)∩L(X) bounded from below satisfying

ρ ≥ XH (x)+ inf
a∈Ag (x)

{
Cg(x,a)+ qH (x,a)

}
, (28)

for any x ∈ X, and

H (z) ≥ inf
b∈Ai (z)

{
Ci (z,b)+QH (z,b)

}
, (29)
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for any z ∈ Ξ.

b) There is a measurable mapping ϕ̂ : X→ A such that ϕ̂(y) ∈ A(y) for any y ∈ X

and satisfying

Cg(x, ϕ̂(x))+ qH (x, ϕ̂(x)) = inf
a∈A(x)

{
Cg(x,a)+ qH (x,a)

}
, (30)

for any x ∈ X, and

Ci (z, ϕ̂(z))+QH (z, ϕ̂(z)) = inf
b∈A(z)

{
Ci (z,b)+QH (z,b)

}
, (31)

for any z ∈ Ξ.

Proof: Let us introduce H (x) as

H (x) =
∫

[0,t∗ (x)[
e−Ks(Rh∗(φ(x, s))− ρ)ds+ e−Kt∗(x)

Th∗(φ(x, t∗(x))), (32)

for all x ∈ X.

We will prove first item a). Observe that H (x) = B0h∗(x) − ρ
∫

[0,t∗(x)[
e−Ksds.

Now by Lemma 3 it follows that H is bounded below and that H ∈ L̂(X) since

h∗ ∈ L(X) and t∗ is continuous by Assumption (B5). Observe that equation (27)

implies that H (x) ≤ h∗(x) showing that H ∈ L(X).
A straightforward application of Lemma 2 shows that H (x) ∈ A(X) and it also

follows that there exists a bounded from below measurable function XH satisfying

−KH (x)+XH (x)+ inf
a∈A(x)

{
Cg(x,a)+ qh∗(x,a)+Kh∗(x)

}
= ρ (33)

for any x ∈ X and

H (z) = inf
b∈A(z)

{
Ci (z,b)+Qh∗(z,b)

}
, (34)

for any z ∈ Ξ. Recalling that h∗(x) ≥ H (x), we obtainfrom (33) and (34) that for any

x ∈ X,

XH (x)+ inf
a∈A(x)

{
Cg(x,a)+ qH (x,a)

}
≤ −KH (x)+XH (x)+ inf

a∈A(x)

{
Cg(x,a)+ qh∗(x,a)+Kh∗(x)

}
= ρ (35)

and for any z ∈ Ξ,

inf
b∈A(z)

{
Ci (z,b)+QH (z,b)

}
≤ inf

b∈A(z)

{
Ci (z,b)+Qh∗(z,b)

}
= H (z). (36)

Combining equations (35), (36), we finally get that H ∈ A(X)∩L(X) and satisfies

equations (28) and (29) giving item a).
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Item b) is an easy consequence of the fact that H is lower semicontinuous on X,

Assumptions A, B, C and Proposition D.5 in [21]. �

The goal now is to establish a deterministic stationary optimal policy for the

long run average control problem as defined in Definition 3, based on a solution for

the integro-differential HJB inequality (28), (29) and its associated optimal selector

(30), (31). In order to do that we introduce the following notation for a measurable

selector ϕ, a function W ∈M(X) bounded from below, and any x ∈ X,

λϕ (x) = λ(x, ϕ(x)), Λϕ (x, t) =
∫ t

0

λϕ (φ(x, s))ds,

QϕW (x) =QW (x, ϕ(x)), qϕW (x) = qW (x, ϕ(x)),
λϕQϕW (x) = λ(x, ϕ(x))QW (x, ϕ(x)),

Cg,ϕ (x) = Cg(x, ϕ(x)), Ci,ϕ (z) = Cz (x, ϕ(z)), z ∈ Ξ

and for ρ, ϕ̂ as in Theorem 3,

Gϕ̂W (x) =
∫

]0,t∗ (x)[
e−Λ

ϕ̂ (x,s)λϕ̂Qϕ̂W (φ(x, s)))ds+ eΛ
ϕ̂ (x,t∗ (x))Qϕ̂W (φ(x, t∗(x))),

Lϕ̂W (x) =
∫

]0,t∗ (x)[
e−Λ

ϕ̂ (x,s)W (φ(x, s))ds,

Lϕ̂ (x) =
∫

]0,t∗ (x)[
e−Λ

ϕ̂ (x,s)ds,

Pϕ̂W (x) = e−Λ
ϕ̂ (x,t∗ (x))W (φ(x, t∗(x)),

T ϕ̂ (ρ,W )(x) = −ρLϕ̂ (x)+ Lϕ̂Cg,ϕ̂ (x)+Pϕ̂Ci,ϕ̂ (x)+Gϕ̂W (x).

We have the following auxiliary result.

Lemma 6 For H and ρ, ϕ̂ as in Theorem 3 we have that

H (x) ≥ T ϕ (ρ,H )(x) (37)

Jϕ̂m(t, x) ≤ H (x) (38)

where

Jϕ̂m(t, x) =E
ϕ̂
x

[∫
]0,t∧Tm[

[
Cg (ξs, ϕ̂)) − ρ]ds]

+E
ϕ̂
x

[∫
]0,t∧Tm[

Ci (
(
ξs−, ϕ̂)

)
dp∗(s)+T ϕ̂ (ρ,H )

(
ξt∧Tm

)]
.

Proof: See the Appendix. �

Theorem 4 Suppose that Assumptions A, B, C and D are satisfied and consider ϕ̂ as

in (30), (31). Then the deterministic stationary strategy ϕ̂ is optimal for the average

cost problem and for any x ∈ X,
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ρ =A(ϕ̂, x) =A∗ (x). (39)

Proof: Applying Proposition 4.6 in [8] it follows that limα↓0αV
∗
α (x) ≤ A∗(x).

Therefore,

ρ = lim
n→∞
αn inf

x∈X

V∗αn
(x) ≤ lim

n→∞
αnV

∗
αn
(x) ≤ A∗(x).

To get the reverse inequality, first observe that, since T ϕ̂ (ρ,H ) is bounded from

below by, say, −c0, we obtain from Lemma 6 that

−c0+E
ϕ̂
x

[∫
]0,t∧Tm[

[
Cg (ξs, ϕ̂))]ds+∫

]0,t∧Tm[

Ci (
(
ξs−, ϕ̂)

)
dp∗(s)

]
≤ H (x)+ ρEϕ̂x (t∧Tm).

Taking the limit as m goes to infinity, this yields

−c0+E
ϕ̂
x

[∫
]0,t[

[
Cg (ξs, ϕ̂))]ds+∫

]0,t[

Ci (
(
ξs−, ϕ̂)

)
dp∗(s)

]
≤ H (x)+ ρt,

and so,

A(x, ϕ̂)(x) ≤ ρ.

However,A∗ (x) ≤ A(x, ϕ̂)(x) giving the results. �
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Appendix

In this appendix we present the proof of some auxiliary results needed along this

chapter.

Proof of Lemma 2: Write Vn (x) =
∫

[0,t∗(x)[
e−βsFn(φ(x, s))ds+ e−βt

∗(x)Gn(φ(x, t∗(x)))

for x ∈ X with Fn(x) =min{F (x),n} and Gn(x) =min{G(x),n} on X (respectively,

Ξ). Now, observe that for any x ∈ X, t∗(φ(x, t)) = t∗(x) − t, φ(φ(x, t), t∗(φ(x, t))) =
φ(x, t∗(x)) and φ(φ(x, t), s) = φ(x, t + s), for any (t, s) ∈ R2

+
with t + s ≤ t∗(x).Then,

it can be easily shown by a change of variable that for any x ∈ X and t ∈ [0, t∗(x)[,

Vn (φ(x, t)) = eβt
∫

[t,t∗(x)[
e−βsFn(φ(x, s))ds+ eβte−βt

∗(x)Gn(φ(x, t∗(x))),

and so,
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V (φ(x, t)) = eβt
∫

[t,t∗(x)[
e−βsF (φ(x, s))ds+ eβte−βt

∗(x)G(φ(x, t∗(x))) (40)

by the monotone convergence theorem. Consequently, the function V (φ(x, ·)) is

absolutely continuous on [0, t∗(x)]∩R+ and so, V ∈ A(X). Equation (40) implies

that for any x ∈ X XV (φ(x, t)) = βV (φ(x, t))−F (φ(x, t)), almost everywhere w.r.t.

the Lebesgue measure on [0, t∗(x)[. This implies that −βV (x)+XV (x) = −F (x) for

any x ∈ X. Moreover, we have V (z) = G(z) for any z ∈ Ξ, showing the result. �

Proof of the Lemma 3: Define Vn (x) =min{V (x),n} so that Vn ∈ Lb (X). By using

hypotheses (B2)-(B3) and the fact that λ is bounded byK on Kg, we obtain that qVn+
KVn ∈ L(Kg), and so, by Assumption (C2) Cg

0
+ qVn +KVn ∈ L(Kg). Therefore,

combining Lemma 17.30 in [1] with Assumptions (B1) and (C1), it yields that

RVn ∈ L(X). By using the same arguments, it can be shown that TVn ∈ L(Ξ).
Now consider y ∈ X and a sequence {yn}n∈N in X converging to y. By a slight

abuse of notation, for any y ∈ X, I[0,t∗(y)[ (t) e−(K+α)t RVn (φ(y, t)) denotes the

function defined on R+ which is equal to e−(K+α)tRVn (φ(y, t)) on [0, t∗(y)[ and zero

elsewhere. It can be shown easily by using the lower semicontinuity of the function

RVn and the continuity of the flow φ that lim
n→∞

I[0,t∗(yn )[(t) e
−(K+α)t

RVn (φ(yn, t)) ≥

I[0,t∗(y)[ (t) e−(K+α)tRVn (φ(y, t)), for any t ∈ [0, t∗(y)[. An application of Fatou’s

Lemma gives that

lim
n→∞

∫
[0,t∗ (yn )[

e−(K+α)tRVn (φ(yn, t))dt ≥
∫

[0,t∗(y)[
e−(K+α)tRVn (φ(y, t))dt.

The case t∗(y) =∞ is trivial. Now, if t∗(y) <∞ then combining the lower semicon-

tinuity of the function TV with the continuity of the flow φ and t∗ (see Assumptions

(B4)-(B5)), it gives easily that

lim
n→∞

e−(K+α)t
∗ (yn )TVn (φ(yn, t∗(yn))) ≥ e−(K+α)t

∗ (y)
TVn (φ(y, t∗(y))),

showing the results hold for Vn, that is, RVn ∈ Lb (X), TVn ∈ Lb (Ξ), and BαVn ∈
Lb (X). From Proposition 10.1 in [27], it follows that RV = limn→∞RVn ∈ L̂(X) and

similarly,TV = limn→∞TVn ∈ L̂(Ξ). Now, from the monotoneconvergence theorem,

we have BαV = limn→∞BαVn, and so BαV ∈ L̂(X). Clearly, these functions are

bounded from below, giving the result. �

Proof of the Lemma 5: From Theorem 2 we have that W (x) =V∗α (x) satisfies (16)

and (17), and thus from (23), (24) and after some algebraic manipulations we obtain

that

−(α+K )hα(x)+Xhα(x)+ inf
a∈Ag (x)

{
Cg(x,a)+ qhα(x,a)+Khα(x)

}
− ρα = 0,

(41)

for any x ∈ X,
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hα(z) = inf
b∈Ai (z)

{
Ci (z,b)+Qhα(z,b)

}
, (42)

for any z ∈ Ξ. Moreover, according to Theorem 2 there exists a measurable selector

ϕ̂α : X→A satisfying ϕ̂α (y) ∈ A(y) for any y ∈ X reaching the infimum in (41) and

(42). Thus,

−(α+K )hα (x)+Xhα(x)+Cg(x, ϕ̂α (x))+ qhα(x, ϕ̂α (x))+Khα(x)− ρα = 0,

(43)

for any x ∈ X,

hα(z) = Ci (z,b)+Qhα(z, ϕ̂α(z)) (44)

for any z ∈ Ξ. Taking the integral of (43) along the flow φ(x, t), we get from (43) and

(44) (see [8]) that for any x ∈ X,

hα(x) =
∫

[0,t∗(x)[
e−(K+α)t

(
Rhα (φ(x, t))− ρα

)
dt + e−(K+α)t

∗(x)
Thα (φ(x, t∗(x))),

(45)

where we recall that

Rhα (y) = Cg(y, ϕ̂α(y))+ qhα(y, ϕ̂α (y))+Khα(y), y ∈ X, (46)

Thα (z) = Ci (z, ϕ̂α(z))+Qhα(z, ϕ̂α(z)), z ∈ Ξ. (47)

According to Proposition 1 (i), we can find a sequence {xn} ∈X such that xn→ x and

lim
n→∞

hαn
(xn) = h∗(x). In what follows set, for notational simplicity, xn(t) = φ(xn, t),

x(t) = φ(x, t), an(t) = ϕ̂αn
(xn(t)), t∗n = t∗(xn). From continuity of t∗ and φ (see

Assumption (B4)) we have that, as n→∞, xn(t)→ x(t), and, whenever t∗(x) <∞,

xn (t∗n) → φ(x, t∗(x)). From the fact that Rhα is bounded from below and ρα is

bounded, we can apply the Fatou’s lemma in (45) to obtain that

h∗(x) = lim
n→∞

hαn
(xn) ≥

∫
]0,+∞[

lim
n→∞

(
I[0,t∗n ) (t)e

−(K+αn )t [Rhαn
(xn(t))− ραn

])
dt

+ lim
n→∞

e−(K+αn )t∗nThαn
(xn(t∗n)). (48)

The convergence of ραn
to ρ together with Assumption (B5) implies that, a.s. on

[0,∞),

lim
n→∞

I[0,t∗n ) (t)e
−(K+αn )t

{
Rhαn

(xn(t))− ραn

}
= I[0,t∗(x)) (t)e−Kt

{
lim
n→∞

Rhαn
(xn(t))− ρ

}
, (49)

and limn→∞ e
−(K+αn )t∗nThαn

(xn (t∗n)) = e−Kt∗(x) limn→∞Thαn
(xn (t∗n)). The goal

now is to show that
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lim
n→∞

Rhαn
(xn(t))) ≥ Rh∗(x(t)), (50)

and that

lim
n→∞

Thαn
(xn(t∗n)) ≥ Thα(x(t

∗(x))). (51)

Let us first show (50). For a fixed t ∈ (0, t∗(x)), there is no loss of generality in

assuming that t < t∗n for any n ∈ N and thus xn(t) ∈ X. Consider a subsequence {nj }
of {n} such that

lim
n→∞

Rhαn
(xn(t)) = lim

j→∞
Rhαnj

(xnj
(t)).

From Assumptions (B1) and (C1) the multifunctionΨg is compact valued and upper

semi-continuous so that, from the fact that xnj
(t)→ x(t), we can find a subsequence

of {anj
(t)} ∈A(xnj

(t)), still denoted by {anj
(t)} such that anj

(t)→ a ∈A(x(t)) (see

Theorem 17.16 in [1]) as j→∞. From (46) we have that

lim
n→∞

Rhαn
(xn(t)) = lim

j→∞

(
Cg(xnj

(t),anj
(t))+ qhαnj

(xni (t), xnj
(t))
)

+ lim
j→∞

(
Khαnj

(xnj
(t))
)
,

and therefore

lim
n→∞

Rhαn
(xn(t)) ≥ lim

j→∞

Cg(xnj
(t),anj

(t))

+ lim
j→∞

(
qhαnj

(xni (t), xnj
(t))+Khαnj

(xnj
(t))
)
. (52)

Lower semicontinuity of Cg on Kg yields to

lim
j→∞

Cg(xnj
(t),anj

(t)) ≥ Cg(x(t),a). (53)

From Proposition 1 (i) and (iii), the fact that Q is weakly continuous on Kg (As-

sumption (B2)), and the continuity of λ (Assumption (B3)), we get that

lim
j→∞

λ(xnj
(t),anj

(t))Qhαnj
(xnj

(t),anj
(t)) ≥ λ(x(t),a)Qh∗(x(t),a) (54)

and, recalling that K − λ(xnj
(t),anj

(t)) ≥ 0 from Assumption (A1), we get that

lim
j→∞

[
K − λ(xnj

(t),anj
(t))
]
hαnj

(xnj
(t),anj

(t)) ≥
[
K − λ(x(t),a)

]
h∗(x(t),a).

(55)

Combining (46), (52), (53), (54), (55), we conclude that

lim
n→∞

Rhαn
(xn(t))) ≥ Cg(x(t),a)+ qh∗(x(t),a)+Kh∗(x(t)) ≥ Rh∗(x(t)),

showing (50).
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Let us now show (51) for t∗(x) <∞. From the fact that Ψi is compact valued and

upper semi-continuousand xn (t∗n)→ x(t∗(x)), and using similar arguments as before

(in particular equation (47)), we can find a subsequence {anj
(t∗nj

)} ∈ A(xnj
(t∗nj

))
such that anj

(t∗nj
)→ b ∈ A(x(t∗(x))) (see again Theorem 17.16 in [1]), and that

lim
n→∞

Thαn
(xn(t∗n)) ≥ C

i (x(t∗(x)),b)+Qh∗(x(t∗(x)),b) ≥ Thα(x(t∗(x)))

showing (51).

Combining (48), (49), (50) and (51) we get that (27) holds, showing Lemma 5. �

Proof of the Lemma 6: From Theorem 3 we get that for any x ∈ X

ρ ≥ XH (φ(x, s))+Cg,ϕ̂ (φ(x, s))+ qϕ̂H ((φ(x, s))), (56)

and for the case t∗(x) <∞,

H (φ(x, t∗(x))) ≥ Ci,ϕ̂ (φ(x, t∗(x)))+Qϕ̂H (φ(x, t∗(x))). (57)

Multiplying (56) by e−Λϕ̂ (x,s) and taking the integral from 0 to t we obtain that

ρ

∫
]0,t[

e−Λ
ϕ̂ (x,s)ds ≥

∫
]0,t[

e−Λ
ϕ̂ (x,s) (XH (φ(x, s))− λϕ̂ (φ(x, s))H (φ(x, s)))ds

+

∫
]0,t[

e−Λ
ϕ̂ (x,s)Cg,ϕ̂ (φ(x, s))ds+

∫
]0,t[

e−Λ
ϕ̂ (x,s)λϕ̂Qϕ̂H (φ(x, s))ds. (58)

Replacing

∫
]0,t[

e−Λ
ϕ̂ (x,s) (XH (φ(x, s))− λϕ̂ (φ(x, s))H (φ(x, s)))ds

= e−Λ
ϕ̂ (x,t )H (φ(x, t))−H (x)

into (58) yields to

H (x) ≥− ρ
∫

]0,t[

e−Λ
ϕ̂ (x,s)ds+

∫
]0,t[

e−Λ
ϕ̂ (x,s)λϕ̂Qϕ̂H (φ(x, s))ds

+ e−Λ
ϕ̂ (x,t )H (φ(x, t))+

∫
]0,t[

e−Λ
ϕ̂ (x,s)Cg,ϕ̂ (φ(x, s))ds.

Taking the limit as t→ t∗(x) and using (57) for the case t∗(x) <∞ we obtain (37).

From (37) and Proposition 3.4 in [8] we obtain (38).
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