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Abstract Landmark-based human action recognition in videos is a challenging task

in computer vision. One key step is to design a generic approach that generates

discriminative features for the spatial structure and temporal dynamics. To this end,

we regard the evolving landmark data as a high-dimensional path and apply path

signature techniques to provide an expressive, robust, non-linear, and interpretable

representation for the sequential events. We do not extract signature features from

the raw path, rather we propose path disintegrations and path transformations as

preprocessing steps. Path disintegrations turn a high-dimensional path linearly into

a collection of lower-dimensional paths; some of these paths are in pose space

while others are defined over a multi-scale collection of temporal intervals. Path

transformations decorate the paths with additional coordinates in standard ways to

allow the truncated signatures of transformed paths to expose additional features. For

spatial representation, we apply the non-linear signature transform to vectorize the

paths that arise out of pose disintegration, and for temporal representation, we apply

it again to describe this evolving vectorization. Finally, all the features are joined

together to constitute the input vector of a linear single-hidden-layer fully-connected

network for classification. Experimental results on four diverse datasets demonstrated

Weixin Yang

Mathematical Institute, University of Oxford, UK, e-mail: weixin.yang@maths.ox.ac.uk

Terry Lyons

Mathematical Institute, University of Oxford, UK and Alan Turing Institute, UK, e-mail: tlyons@
maths.ox.ac.uk

Hao Ni

Dept. of Mathematics, University College London and Alan Turing Institute, UK, e-mail: ucahhni@
ucl.ac.uk

Cordelia Schmid

Inria, France, e-mail: cordelia.schmid@inria.fr

Lianwen Jin

College of Electronic and Information Engineering, South China University of Technology, China,

e-mail: lianwen.jin@scut.edu.cn

431© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 

G. Yin, T. Zariphopoulou (eds.), Stochastic Analysis, Filtering, and Stochastic Optimization, 

https://doi.org/10.1007/978-3-030-98519-6_18

mailto:weixin.yang@maths.ox.ac.uk
mailto:cordelia.schmid@inria.fr
mailto:lianwen.jin@scut.edu.cn
https://doi.org/10.1007/978-3-030-98519-6_18
mailto:tlyons@maths.ox.ac.uk
mailto:tlyons@maths.ox.ac.uk
mailto:ucahhni@ucl.ac.uk
mailto:ucahhni@ucl.ac.uk
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98519-6_18&domain=pdf


432 Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin

that the proposed feature set with only a linear shallow network is effective and

achieves comparable state-of-the-art results to the advanced deep networks, and

meanwhile, is capable of interpretation.

1 Introduction

Human action recognition (HAR) is one of the most challenging tasks in computer

vision with a wide range of applications, such as human-computer interaction, video

surveillance, behavioral analysis, etc. A vast literature has been devoted to this task

in recent years, among which are some informative surveys [1, 2, 3, 4, 5, 6, 7, 8].

An attractive option of HAR is Landmark-based HAR (LHAR) where the object is

regarded as a system of correlated labelled landmarks. Johansson’s classic moving

light-spots experiment [9] demonstrated that people can detect motion patterns and

recognize actions from several bright spots distributed on the body, which has

stimulated research on pose estimation and LHAR [10, 11, 12]. Different from

skeleton-based HAR (SHAR), LHAR, using no knowledge of skeletal structure, is

flexible to extend to any landmark data streams with no explicit physical structures,

e.g. traffic or people flow.

Although many solutions have been proposed to address the challenge of LHAR,

the problem remains unsolved due to two main challenges. First, there is the problem

of designing reliable discriminative features for spatial structural representation,

and second of modelling the temporal dynamics of motion. In this paper, the path

signature feature (PSF) is used and refined as an expressive, robust, non-linear, and

interpretable feature set for spatial and temporal representation of LHAR.

The path signature, which was initially introduced in rough paths theory as a

branch of stochastic analysis, has been successfully applied to many machine learning

tasks. Most existing work can be devided into two categories: sliding-window-based

and global-based. In the sliding temporal window approach [13, 14, 15, 16, 17,

18, 19], signatures of small paths are extracted and embedded into multi-channel

feature maps as input of a CNN. The signatures herein are merely local descriptors

from which the deep models are then trained to learn hierarchical representation.

The global-based approaches combine all the cues into a high-dimensional path to

compute high-level signatures over the whole time interval [20, 21] or low-level

signatures over hierarchical intervals [22, 23]. They are straightforward but not

efficient for high dimensional or spatio-temporal data.

To represent spatial pose, most methods [12, 24, 25, 26, 27, 28, 29, 30] used

predefined skeletal structures. The connections distributed on a physical body are

intuitive spatial constraints but not necessarily the crucial ones to distinguish actions.

The connections discarded by imposing a skeletal structure could contain valuable

non-local information. To solve this, hand-designed features [31, 32, 33, 34] were

employed, but they are limited to encode non-linear dependencies. In this paper,

we propose to localize a pose by disintegration into a collection of m-node sub-
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paths. The signatures of these paths encode non-local and non-linear geometrical

dependencies.

To model temporal dynamics, hand-designed local descriptors [31, 34] were pop-

ular, but it is difficult to encode complex spatio-temporal dependences in these.

Recently, recurrent neural networks (RNN) [35], especially long short-term mem-

ory (LSTM) [36], have gained increasing popularity in handling sequential data,

including human actions [37, 24, 38, 39]. In particular, a variation of LSTM [40, 25]

succeeded in simultaneously exploring both spatial and temporal information. These

deep models play a vital role in feature representation and achieve state-of-the-art

performance, but the features learned by them are not as interpretable as hand-

designed features. In this paper our temporal disintegration turns the original paths

into hierarchical paths, from which the signatures encode multi-scale dynamical de-

pendencies. Moreover, our path transformations decorates the paths with additional

coordinates to allow signatures to expose additional valuable features.

To build the spatial and temporal representation, in each frame the spatial PSFs

are extracted from the localized paths obtained by pose disintegration. In the clip,

the evolution of each spatial feature along the time axis constitutes a spatio-temporal

path. After path transformations and temporal disintegration, the temporal PSFs

are then extracted from the spatio-temporal paths. Finally, the concatenation of all

the features forms the input vector of a linear single-hidden-layer fully-connected

network for classification. To extensively evaluate the effectiveness and flexibility

of our method, several datasets (i.e., JHMDB [31], SBU [41], Berkeley MHAD

[42], and NTURGB+D [39]) collected by different acquisition devices were used

for experiments. Using our feature set and only a linear shallow net, we achieve

comparable results to the advanced deep learning methods. Moreover, we took a

further step toward understanding human actions by analyzing the PSFs and the

linear classifier.

Our major contributions lie in four aspects:

1. PSFs are adopted and refined for LHAR with interpretations, proofs, experi-

ments, and discussions of their properties and advantages.

2. Pose disintegration is proposed for non-local spatial dependencies, and tempo-

ral disintegration is proposed for multiscale temporal dependencies.

3. Path transformations, decorating the original paths with additional coordinates,

are proposed to allow signatures to expose additional features.

4. Using signature-based spatio-temporal representation and only a linear shal-

low net, we achieve comparable state-of-the-art results to those with deep models.

Meanwhile, this interpretable pipeline facilitates the understanding of HAR.

The authors are delighted to dedicate this paper to Mark H. A. Davis for many

personal and professional reasons. Mark was wonderfully supportive friend. He was

also an adventurous innovator who took mathematical ideas deep into commercial

finance. In some sense this paper represents a similar pioneering spirit. It has a long

history, and is the first effort to introduce path signature to the central area of action

analysis and understanding in computer vision. This stream of research, as we report

here, has developed these ideas into a viable methodology for analyzing evolving

landmark style data in contexts where the datasets are too small to build effective
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deep learning approaches. We hope that by consolidating it here, we will recognize

Mark with a paper he would have supported and approved of.

2 Related work

2.1 Path signature feature (PSF)

Rough path theory is concerned with capturing and making precise the interactions

between highly oscillatory and non-linear systems [43]. The essential object in rough

path theory, called the path signature, was first studied by Chen [44] whose work

concentrates on piecewise regular paths. More recently, the path signature has been

used by Lyons [45] to make sense of the solution to differential equations driven

by very rough signals. It was extended by Lyons’ theory from paths of bounded

variation [45] to rough paths of finite p-variation for any 𝑝 ≥ 1 [46].

Some successful applications of the PSF have been made in the fields of machine

learning, pattern recognition and data analysis. First of all, the most notable applica-

tions of using PSFs is handwriting understanding. Diehl [21] used iterated integrals

of a handwritten curve for recognition and found that some linear functions of the

PSF satisfy rotation invariance. Graham [19] used the sliding-window-based PSF

as feature maps of a CNN for large-scale online handwritten character recognition,

based on which he won the ICDAR2013 competition [47]. Inspired by this, Xie et

al. [15, 16] extended the method to handwritten text recognition. Yang et al. [17, 18]

explored the higher-level terms of the PSF for text-independent writer identification

which requires subtle geometric features. For financial data, useful predictions can

be made with only a small number of truncated PSFs [20, 48]. The truncated signa-

ture kernel for hand movement classification was presented in [49], and was further

extended to an untruncated version [50]. Moreover, PSFs were used on self-reported

mood data to distinguish psychiatric disorders [23]. In [51], path signature trans-

form was applied to describe the behaviour of controlled differential equations for

modelling temporal dynamics of irregular time series. To model topological data, a

novel path signature feature based on the barcodes arising from persistent homology

theory was proposed for classification tasks [52]. These applications demonstrate

the value of the PSF as an effective and informative feature representation.

The paper has been a long time in development, and the preprints [53] on the

ArXiv have already influenced other developments. To name a few, in [54, 55, 56], the

extraction of the path signature feature was treated as a flexible intermediate layer

in various end-to-end network architectures like CNNs, LSTMs, or Transformer

Networks. Also, variants of our proposed feature set were successfully applied to

tasks like Arabic handwriting recognition [57], writer identification [58], personal

signature verification [59], sketch recognition [60], action/gesture recognition [61,

62], speech emotion recognition [63], etc., showing its generalization ability. The

proposed invisibility-reset transformation was further analyzed in [64].
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2.2 Landmark-based human action recognition

A human body can be regarded as an articulated system composed of joints that

evolve in time [65]. For recent surveys of LHAR, we refer the reader to [8, 66, 67,

68].

Approaches based on hand-designed features for LHAR can be categorized into

two classes: joint-based and part-based. The joint-based ones regard the human

body as a set of points and attempt to capture the correlation among body joints

by using the motion of 3D points [69], measuring the pairwise distances [31, 70,

26, 33, 34], or using the joint orientations [71]. On the other hand, the part-based

approaches focus on connected segments of the human skeleton. They group the

body into several parts and encode these parts separately [27, 28, 72, 73, 74, 29, 75].

Some methods in this category represent a pose by means of the geometric relations

among body parts, for examples, [27, 28] employed quadruples of joints to form a

new coordinate system for representation, and [12] considered measurements of the

geometric transformation from one body part to another. Some methods assume that

certain actions are usually associated with a subset of body parts, so they aim to

identify and use the subsets of the most discriminative parts of the joints.

Given the recent success of deep learning frameworks, some works aim to capture

correlation among joint positions using CNNs [76, 77, 78, 79]. In [76], the input

feature maps of a CNN were joints colored according to their sequential orders, body

parts, or velocity, while in [77] and [78], the CNN’s inputs were the concatenation

of hand-designed local features. Since human actions are usually recorded as video

sequences, it is natural to apply RNNs or LSTMs. HBRNN [24] and Part-aware

LSTM [39] contained multiple networks for different groups of joints. Zhu et al.

[37] proposed a deep LSTM to learn the co-occurrence of discriminative joints

using a mixed-norm regularization term in the cost function. By additional new

gating to the LSTM, the Differential LSTM [38] is able to discover the salient

motion patterns, and [40, 25] achieved robustness to noise. It is noteworthy that the

spatio-temporal RNNs in [40, 25] concurrently encoded both spatial and temporal

context of actions within a LSTM. Liu et al. [80] used an attention-based LSTM

to iteratively select informative keypoints for recognition. Zhang et al. [81] used a

multilayer LSTM to fuse several simple geometric features for recognition. By taking

advantage of the graph structure of human skeleton, Graph Convolutional Networks

(GCNs) were introduced into the action recognition task. Yan et al. [30] used spatial

graph convolutions along with interleaving temporal convolutions. Concurrently,

Li et al. [82] proposed a similar approach but introduced a multi-scale module for

spatio-temporal modelling. DGNN [83] represented the skeleton as a directed acyclic

graph to encode both joint and bone information. MV-IGNET [84] extracted multi-

level spatial features and leveraged different skeleton topologies as multi-views to

generate complementary action features. MMDGCN [85] proposed a dense graph

convolution for local dependencies and used spatial-temporal attention module to

reduce the redundancy. These deep learning methods achieved high accuracy on

most large-scale action datasets, but they often require a lot of training data and

suffer from a lack of interpretability.
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3 Path Signature

3.1 Definition and geometric interpretation

The rigorous introduction of the path signature as a faithful description or feature

set for unparameterized paths can be found in [43, 86, 87, 88], so in this paper we

present it in a practical manner.

A d-dimensional path or stream of timestamped events P over the time interval

[0, 𝑇] ⊂ R can be represented as a continuous map 𝑃 : [0, 𝑇] → R𝑑 . The coordinates

of P at time 𝜏 are 𝑃𝜏 =
(
𝑃1
𝜏 , 𝑃

2
𝜏 , . . . , 𝑃

𝑑
𝜏

)
. To illustrate the idea, we consider the

simplest case when d = 1. The path is a real-valued path for which the path integral

is defined as

𝑆(𝑃)1
0,𝑇 =

∫
0<𝑡≤𝑇

𝑑𝑃1
𝜏 = 𝑃1

𝑇 − 𝑃1
0, (1)

which is the increment of this 1-dimensional path over the whole time interval and

is called the 1-fold iterated integral. We emphasize that 𝑆(𝑃)1
0,𝜏 , 0 < 𝜏 ≤ 𝑇 is also a

real valued path w.r.t 𝜏. The 2-fold iterated integral is

𝑆(𝑃)11
0,𝑇 =

∫
0<𝜏2≤𝑇

𝑆(𝑃)1
0,𝜏2

𝑑𝑃1
𝜏2

=
1

2

(
𝑃1
𝑇 − 𝑃1

0

)2

, (2)

which is proportional to the square of the increment. Again, 𝑆(𝑃)11
0,𝜏 is a real-valued

path, so if we continue recursively, the k-fold iterated integral of P is

𝑆(𝑃)11...1
0,𝑇 =

∫
0<𝜏𝑘 ≤𝑇

. . .

∫
0<𝜏2≤𝜏3

∫
0<𝜏1≤𝑡2

𝑑𝑃1
𝜏1
𝑑𝑃1

𝜏2
. . . 𝑑𝑃1

𝜏𝑘

=
1

𝑘!

(
𝑃1
𝑇 − 𝑃1

0

) 𝑘
,

(3)

which is proportional to the increment to the power of k.

Now, when d = 2 , the 1-fold iterated integral of the path
{
𝑃1
𝜏 , 𝑃

2
𝜏

}
has 2 elements

𝑆(𝑃)1
0,𝑇 =

∫
0<𝑡≤𝑇

𝑑𝑃1
𝜏 = 𝑃1

𝑇 − 𝑃1
0, (4)

𝑆(𝑃)2
0,𝑇 =

∫
0<𝑡≤𝑇

𝑑𝑃2
𝜏 = 𝑃2

𝑇 − 𝑃2
0 . (5)

Each element is the increment of the path on the corresponding axis over the time

interval [0, 𝑇]. They denote the displacement of the given path. The 2-fold iterated

integral of this 2D path contains 𝑑2 = 22 elements
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𝑆(𝑃)11
0,𝑇 =

∫
0<𝜏2≤𝑇

∫
0<𝜏1≤𝑡2

𝑑𝑃1
𝜏1
𝑑𝑃1

𝑡2
= 1

2!

(
𝑃1
𝑇 − 𝑃1

0

)2
, (6)

𝑆(𝑃)22
0,𝑇 =

∫
0<𝜏2≤𝑇

∫
0<𝜏1≤𝜏2

𝑑𝑃2
𝜏1
𝑑𝑃2

𝜏2
= 1

2!

(
𝑃2
𝑇 − 𝑃2

0

)2
, (7)

𝑆(𝑃)12
0,𝑇 =

∫
0<𝜏2≤𝑇

∫
0<𝜏1≤𝜏2

𝑑𝑃1
𝜏1
𝑑𝑃2

𝜏2
, (8)

𝑆(𝑃)21
0,𝑇 =

∫
0<𝜏2≤𝑇

∫
0<𝑡1≤𝑡2

𝑑𝑃2
𝜏1
𝑑𝑃1

𝜏2
. (9)

We note that the first two elements are the same as (2) in the 1-dimensional case.

For the other two elements, the geometric intuitions are the areas shown in Fig. 1(a)

and Fig. 1(b). Together they represent the Lévy area [86] depicted in Fig. 1(c). The

Lévy area, which is a signed area enclosed by the path and the chord connecting the

endpoints, can be expressed by

𝐴0,𝑇 = 𝑆(𝑃)12
0,𝑇 − 𝑆(𝑃)21

0,𝑇 . (10)

The sign of the area depends on the sign of the winding number of the path moving

around it [89]. The interpretation of the k-fold iterated integral (k > 2) of a 2D path

is not trivial, so it is not included here. By analogy, for a 3D path, the 1-fold, 2-fold,

and 3-fold iterated integrals are units of displacement, area, and volume respectively.

In general, for a path in R𝑑 , the superscript of the k-fold iterated integral, which

describes the order of integration, is a multi-index (𝑖1, 𝑖2, . . . , 𝑖𝑘 ) ∈ {1, . . . , 𝑑}𝑘 .

Therefore, the 𝑑𝑘 elements of the k-fold iterated integral of a d-dimensional path

can be generally expressed as

Fig. 1 The geometric intuition of the PSF of a 2D path. The path in red moves from A to D over

the time interval [0, T]. The dashed line is the chord connecting the endpoints. Panels (a) and (b)

depict two terms of the 2-fold iterated integrals of the path, (c) is the Lévy area enclosed by the

path and its chord, and (d) is a demonstration of the shuffle product identity.



438 Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin

𝑆(𝑃)𝑖1 ,𝑖2 ,...,𝑖𝑘
0,𝑇 =

∫
0<𝜏𝑘 ≤𝑇

. . .

∫
0<𝑡2≤𝜏3

∫
0<𝜏1≤𝜏2

𝑑𝑃𝑖1
𝜏1
𝑑𝑃𝑖2

𝜏2
. . . 𝑑𝑃𝑖𝑘

𝜏𝑘 . (11)

Then the signature of a path P over the time interval [0, 𝑇] is the collection of all the

iterated integrals of P:

𝑆(𝑃)0,𝑇 =
(
1, 𝑆(𝑃)1

0,𝑇 , . . . , 𝑆(𝑃)
𝑑
0,𝑇 ,

𝑆(𝑃)1,1
0,𝑇 , . . . , 𝑆(𝑃)

1,𝑑
0,𝑇 , 𝑆(𝑃)

2,1
0,𝑇 , . . . , 𝑆(𝑃)

𝑑,1
0,𝑇 , . . . , 𝑆(𝑃)

𝑑,𝑑
0,𝑇

. . . , 𝑆(𝑃)1,1,...,1
0,𝑇 , . . . , 𝑆(𝑃)𝑖1 ,𝑖2 ,...,𝑖𝑘

0,𝑇 , . . . , 𝑆(𝑃)𝑑,𝑑,...,𝑑
0,𝑇 , . . .

)
,

(12)

where the 0-th term is conventionally set to 1. Since the signature is defined on top

of all the possible indices of finite length, the number of elements in the signature

is infinite. In practical use we usually consider the signature truncated at a certain

level n written as

𝑆𝑛 (𝑃)0,𝑇 =
(
1, 𝑆(𝑃)1

0,𝑇 , . . . , 𝑆(𝑃)
𝑖1 ,𝑖2 ,...,𝑖𝑛
0,𝑇 , . . . , 𝑆(𝑃)𝑑,𝑑,...,𝑑

0,𝑇

)
(13)

of which the dimensionality is 𝜑(𝑑, 𝑛) =
(
𝑑𝑛+1 − 1

)
(𝑑 − 1)−1. The elements of

the truncated signature are taken as features (i.e., PSF) encoding the informative

geometric properties of sequential data in applications in machine learning. For the

feature set, the 0-th term (i.e., a constant value set to 1) is optional, so the dimension

can be reduced to

𝜑′(𝑑, 𝑛) =
(
𝑑𝑛+1 − 𝑑

)
(𝑑 − 1)−1. (14)

For the 1-dimensional case (d = 1), the feature dimension is exactly equal to n
(excluded the 0-th term) according to (1), (2), and (3).

3.2 Calculation of the signature for a discrete path

Although the path signature is initially defined for continuous paths with bounded

variation, it is easily extended to discrete paths by linear interpolation [90]. The

signature is canonical and does not depend on the choice of timescale used for the

interpolation.

Computing the signature of a piecewise linear path does not require integrals. For

each line segment of the path, the elements of its signature are given by

𝑆(𝑃)𝑖1 ,𝑖2 ,...,𝑖𝑘𝜏,𝑡+1
=

1

𝑘!

𝑘∏
𝑗=1

(
𝑃
𝑖 𝑗
𝜏+1

− 𝑃
𝑖 𝑗
𝜏

)
, (15)

where 𝑃
𝑖 𝑗
𝜏 is the 𝑖 𝑗 -th coordinate value of path P at time 𝜏. For the entire path, Chen’s

identity [44] states that for any time stamps (𝑠, 𝑡, 𝑢) satisfying that 𝑠 < 𝑡 < 𝑢, we

have
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𝑆(𝑃)𝑖,𝑖2 ,...,𝑖𝑘 ,...,𝑖𝑛𝑠,𝑢 =
𝑛∑

𝑘=0

𝑆(𝑃)𝑖1 ,𝑖2 ,...,𝑖𝑘𝑠,𝑡 𝑆(𝑃)𝑖𝑘+1 ,𝑖𝑘+2 ,...,𝑖𝑛
𝑡 ,𝑢 . (16)

This implies that the signature of the entire path can be calculated from the signatures

of its pieces.

We recommend the three open-source python software libraries, esig (on PyPi),

derived from the CoRoPa C++ library libalgebra [91], iisignature [92], and Signatory
[93] which has a dependency on PyTorch and works well on the CPU as well as the

GPU. They all allow fast computation of the path signature.

3.3 Properties of the path signature

3.3.1 Uniqueness

It is proved that the path signature determines a path if and only if the path is not

tree-like (this notion is introduced in [45]). A tree-like path is a trajectory containing

a section where the path exactly retraces itself. Tree-like paths are common in real-

world data streams, for instance, in some human actions, especially periodic ones,

like clapping or jumping in place. An effective way to avoid the tree-like situation is

adding an extra monotone dimension, such as time, to the original path.

3.3.2 Invariance under translation

The signature computed by (11) or (15) is invariant under translation of the paths,

which is a practical advantage and avoids complex recentering normalization.

3.3.3 Invariance under time reparameterization

A time reparameterization of a path is a continuous, nondecreasing substitution for

the time variable of a path. It changes the speed of recording of the path. Human

actions are largely invariant under changing the speed of the action or viewing

speed of the video. The ease with which the signature can completely filter out these

changes in the representation is a major advantage for machine learning, substantially

reducing the dimensionality of the feature set needed for action classification. The

use of the path signature, with its fixed-dimensional feature set, can help the classifer

to recognize the same action performed or sampled at different speeds. We refer the

reader to [43, 88] for a detailed proof of the invariance of the path signature under

time reparameterization.
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3.3.4 Nonlinearity of the signature

The shuffle product identity [86] states that the product of two signatures of lower

level can be expressed as a linear combination of some higher-level terms. For

instance, for the two-dimensional case in section 3.1, we can easily derive the

following equation from Fig. 1(d),

𝑆(𝑃)1
0,𝑇 · 𝑆(𝑃)2

0,𝑇 = 𝑆(𝑃)12
0,𝑇 + 𝑆(𝑃)21

0,𝑇 . (17)

In other words, the nonlinear behavior in terms of lower level terms can be expressed

by linear combination of higher-level terms. Therefore, when we incorporate the

higher-level terms into the feature representation, we automatically include more

nonlinear prior knowledge in our feature set. If the introduced nonlinearity is suffi-

cient, we need only linear classifiers to distinguish the targets.

3.3.5 Fixed dimension under length variations

Another practical property of the path signature is that the dimension of the PSF

extracted from the entire path depends on the truncation level of the signature and

the intrinsic dimension of the path but is independent of the (sampled) length of

the path, as described in 14. For human action recognition, the durations of actions

are variable. The use of the path signature allows us to extract a fixed dimension of

features and use them with classification methods which require a fixed-length input.

4 Path disintegrations and transformations

The principled and robust representation of unparameterized paths, along with the

convenience of reducing polynomial functions on the space of paths to linear ones

(which establishes their universality) provide the core motivations for using signa-

tures as features. One can always take the signature of a raw path to remove any

dependence on parameterization or translation, but sometimes it is prudent to apply

path disintegrations or path transformations as preprocessing to improve the effi-

ciency and effectiveness of PSFs. The disintegrations turn a path into a composition

of subpaths while the transformations turn a path into a higher-dimensional path.
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4.1 Path disintegrations

4.1.1 Pose Disintegration

In many cases, non-local clues are informative and straightforward, for instance,

the non-local displacement between two hand points is a key feature for the action

of clapping. To exploit both local and non-local clues in pose, we propose pose

disintegration. Landmarks that are labelled with corresponding body parts have

no inherent order, so a predefined priority order is randomly chosen and fixed –

different random choices of initial order yield comparable results in preliminary

experiments. The pose is then regarded as an ordered collection of points in R𝑑 .

Our pose disintegration localizes the pose into all possible subposes containing m
points. Connecting the m points in each subpose in the inherited order forms a unique

m-node sub-path that visits each point once. We end up with a collection of sub-paths

which do not need to be parts of physical body and are available for further path

transformations or signature extractions.

We consider that functions on a pose can be approximated by functions on the

piecewise linear localized paths of its subposes. For convenience, one can view these

functions as linear functions on the signature of its localized paths. The terms of

the first two levels of signatures cover the displacement and the area information

similar to the traditional hand-designed features [31, 34], while the higher-level

terms capture more non-linear features. For a pose with N joints, the dimension of

the signatures of its localized paths is 𝐶𝑚
𝑁 · 𝜑′(𝑑, 𝑛), where m is the number of points

in a subpose, d is the dimension of the path, and n is the truncated signature level.

The selections of these parameter values are highly correlated and associated with

the uniqueness of the paths. According to [94], any piecewise linear paths in R𝑑 ,

consisting of at most 𝑚 = 𝑑 + 1 points, can be uniquely recovered from the signature

at the third level. A larger m brings semantically high-level components but requires

a larger n for the path uniqueness [95], which exponentially increases the feature

dimension according to 14, and means less shareability and more sub-paths. The

number of m-node subpaths is in line with Pascal’s triangle and increases along with

𝑚(𝑚 ≥ 𝑁/2). To avoid feature set of very large dimension, 𝑚 ≤ 3, 𝑛 = 3 for 𝑑 = 2

and 𝑚 ≤ 4, 𝑛 = 3 for 𝑑 = 3 are suggested. Beyond the signature level n required for

the unique recovery of a path, the non-linearity (as described in 3.3.4) of the extra

high-level terms may still contribute to facilitate the training of the model until the

dimensionality of the feature set becomes impractical.

4.1.2 Temporal Disintegration

Temporal disintegration is based on the basic theory of the path signature which

suggests that low-level terms of signatures on all intermediate length time intervals

can be far more efficient than signatures of high levels over the whole time interval

[86]. Therefore, instead of extracting the PSF over the whole time interval, the dyadic

path signature features (DPSF) [22] split the entire interval into small intervals with
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a dyadic hierarchical structure and then extracts PSF over each small interval. Given

a path over the whole time interval [0, 𝑇] ⊂ R the j-th dyadic level of the hierarchical

structure is the collection of subintervals
[
𝑖𝑇/2 𝑗 , (𝑖 + 1)𝑇/2 𝑗

]
, 𝑖 ∈

[
0, 2 𝑗 − 1

]
, 𝑗 ∈

N. Note that the 0-th dyadic level contains exactly the whole path. The DPSF over

long, medium, and short time intervals describes multi-scale dynamical dependences

more efficiently than the PSF over the entire interval, which requires higher-level

terms to capture local dependencies.

Slightly different from the hierarchical structure in [22] which may break the

events that occur near the conjunctive time stamps
{
𝑖𝑇/2 𝑗 | 𝑖 ∈

[
1, 2 𝑗 − 1

]
, 𝑗 ∈ N+

}
,

we consider an overlapping version over the time intervals
[
𝑖𝑇/2 𝑗+1, (𝑖 + 2)𝑇/2 𝑗+1

]
,

𝑖 ∈
[
0, 2 ·

(
2 𝑗 − 1

) ]
. The overlapping DPSF is expected to supplement the original

DPSF with additional local details. Its dimension is

�̂�(ℎ, 𝑑, 𝑛) =
(
2ℎ+1 − ℎ − 2

)
· 𝜑′(𝑑, 𝑛), (18)

where ℎ ∈ N+ is the number of the hierarchical level. The selection of h is a tradeoff

between improving efficiency and introducing local noises over finer intervals.

4.2 Path transformations

4.2.1 Time-incorporated transformation

The signature is invariant under parameterization, but in many situations, one would

like to keep the dependence on time. Adding a monotone increasing time dimension is

adopted to encode motion speed. The signature of a time-incorporated path contains

two parts: time-independent (TI) and time-dependent (TD). The TI part is exactly

the signature of the original path, so its integration order is

𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ {1, . . . , 𝑑}. (19)

The TD part is related with time. Its integration order is

𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ {1, . . . , 𝑑 + 1}, ∃𝑚 ∈ [1, 𝑘], 𝑖𝑚 = 𝑑 + 1, (20)

which means each term of the signature in TD is an integral along the time dimension

at least once. Given the truncated signature level n, the dimensionality of the TD

part is 𝜑′(𝑑 + 1, 𝑛) − 𝜑′(𝑑, 𝑛). The signature of the original path filters out the

information about the speed of motion and the sampling rate but the signature of the

time-incorporated path allows us to select one and suppress the other according to

significance to the classification.
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4.2.2 Invisibility-reset transformation

The signature capturing relative position information is invariant under translation.

Given that the absolute position may be essential for some scenarios (e.g., HAR

under static CCTVs), we propose the invisibility-reset transformation of a path to

retain the absolute position information in signatures. For a path P in R𝑑 within the

interval [0, 𝑇], we add two time steps T+1 and T+2 with value 𝑃𝑇 and 0 respectively

at the end of P and add a visibility dimension v with values 1 in [0, 𝑇] and 0 in

(𝑇,𝑇 + 2]. In other words, the invisibility-reset path 𝑃𝐼 𝑅 in R𝑑+1 first becomes

invisible at time T+1 and then is reset to the origin at T+2. According to (15) and

(16), we have

𝑆 (𝑃𝐼 𝑅)
𝑖1 ,𝑖, · · · ,𝑣,𝑣
0,𝑇 +2

= −𝑆(𝑃)𝑖,𝑖2 · · ·𝑖𝑘
0,𝑇 , 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ {1, . . . , 𝑑} (21)

which means certain terms in 𝑆 (𝑃𝐼 𝑅) encode the relative positions as in 𝑆 (𝑃).
Moreover, the terms of the first level of 𝑆 (𝑃𝐼 𝑅), given by

𝑆 (𝑃𝐼 𝑅)
𝑖1
0,𝑇 +2

= −𝑃𝑖1
0
, 𝑖1 ∈ {1, . . . , 𝑑}, (22)

are the absolute position of the initial point. This simple transformation retains

different position information in signatures and thus allows the network to select one

and suppress the other according to significance to the task.

4.2.3 Multi-delayed lead-lag transformation

The lead-lag transformation proposed in [20, 87, 90] is designed to exploit the

quadratic cross-variation between the original path and its delayed path. To extend

its capability to describe long-term dependencies of sequential events, our modified

lead-lag transformation, as shown in Fig. 2, is constructed by the original path and

its multiple delayed paths (instead of one delayed path in [20]). We denote the

dimension of a lead-lag transformed path as 𝑑𝐿𝐿𝑇 . The signatures of lead-lag paths

with smaller 𝑑𝐿𝐿𝑇 encode short-term dependencies, while those with larger 𝑑𝐿𝐿𝑇
explore more long-term dependencies.

Fig. 2 The illustration of

multi-delayed lead-lag trans-

formation. The dimen-sion of

lead-lag paths is 𝑑𝐿𝐿𝑇 . The

delayed paths are padded with

zeros to ensure a fix length for

each dimension.
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Table 1 Proposed features for LHAR

# of joints
Spatial structural features

(for each frame)

Temporal dynamical features

(along the time axis)

1 (a single joint) S-J: The d-dimensional coordinates of

each of the predefined N joints are used.

T-J-PSF: The temporal PSF over the

evolution of each joint up to signature

level 𝑛𝑇 𝐽 is extracted.

2 (joint pair) S-P-PSF: The PSF over each pair of

joint up to signature level 𝑛𝑆𝑃 is ex-

tracted.

T-S-PSF: The evolution of each

dimension of spatial PSF is treated as

a path, over which the temporal PSF

up to signature level 𝑛𝑇𝑆 is extracted.3 (joint triple) S-T-PSF: The PSF over each triple of

joint up to signature level 𝑛𝑆𝑇 is ex-

tracted.

5 Feature extraction for human action recognition

Our proposed feature set for LHAR, which we describe in this section, is outlined

in Table 1. We note that an unofficial Python implementation of the feature set is

available on GitHub [96].

5.1 Spatial structural features

First of all, the basic information describing the spatial structure is the d-dimensional

coordinates of each of the N joints of the body. The keyword S-J denotes the spatial

coordinate values of the joints. The dimension of this part is 𝐷𝑆𝐽 = 𝑁 · 𝑑 for each

sampled frame.

Fig. 3 The illustration of spatial feature (S-P-PSF and S-T-PSF) extraction. Note that we predefine

the priority order of all the N joints (N = 15 in this figure). The red quadrangles denote the feature

extraction of joint pairs, while the blue ellipses denote that of joint triples. All possible pairs and

triples of joints are considered.
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To encode the spatial context we use pose disintegration with 𝑚 = 2 and 𝑚 = 3

, which means joint pairs and joint triples are used as illustrated in Fig. 3. The

signatures of each of these subpaths are computed to model the spatial constraints

in each frame. The spatial PSF of joint pairs and joint triples are denoted by S-
P-PSF and ST-PSF respectively. If the truncation level of the signature of pairs

and triples are 𝑛𝑆𝑃 and 𝑛𝑆𝑇 respectively, then the feature dimensions per frame are

𝐷𝑆𝑃 = 𝐶2
𝑁 ·𝜑′ (𝑑, 𝑛𝑆𝑃) and 𝐷𝑆𝑇 = 𝐶3

𝑁 ·𝜑′ (𝑑, 𝑛𝑆𝑇 ) respectively. Finally, the spatial

features from all sampled frames are extracted and concatenated. The dimension of

S-P-PSF and S-T-PSF per frame is denoted by 𝐷𝑆 = 𝐷𝑆𝑃 + 𝐷𝑆𝑇 .

5.2 Temporal dynamical features

Inspired by the works in [40, 25] which jointly learned the spatial and temporal

contexts in a variant of LSTM, we suggest that the dynamics of landmark-based

human action can be described by the evolution of spatial context. The spatial

context herein are the features we extracted in section 5.1, although other spatial

features can be used alternatively. From these, we are going to extract two kinds of

temporal features T-J-PSF and T-S-PSF.

The T-J-PSF, illustrated in Fig. 4, is the temporal PSF of the evolution of each

joint along the time. The evolution of each joint is naturally a time-sequence, so

we consider its time-incorporated transformation. For N-joint bodies in R𝑑 , the

dimension of T-J-PSF is 𝐷𝑇 𝐽 = 𝑁 · 𝜑′ (𝑑 + 1, 𝑛𝑇 𝐽 ), where 𝑛𝑇 𝐽 is the truncation

level of the signature.

Since each dimension of the spatial contextual features (S-P-PSF and S-T-PSF)

characterizes one particular spatial constraint of a pose, the evolution of this spatial

constraint along the time forms a spatio-temporal path which delivers temporal

constraints of a motion. The temporal PSF of these spatio-temporal paths is denoted

by T-S-PSF and illustrated in Fig. 5. Since the signature of a spatiotemporal path

(i.e., a 1D path) is just the increments to a certain power, the multi-delayed lead-lag

transformation is applied to each path to enrich the PSF with cross variations among

Fig. 4 Illustration of temporal features extracted from the evolution of each corresponding joint

(T-J-PSF).
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Fig. 5 Illustration of temporal features extracted from the evolution of spatial context (T-S-PSF).

Each dimension of the spatial features is treated equally and individually.

events of the path. If the truncation level of the signature is 𝑛𝑇 𝑆 and the dimension of

the lead-lag paths is 𝑑𝐿𝐿𝑇 , the dimension of T-S-PSF from all spatio-temporal paths

is 𝐷𝑇 𝑆 = 𝐷𝑆 · 𝜑′ (𝑑𝐿𝐿𝑇 , 𝑛𝑇 𝑆). Considering there might exist complicated or long-

range actions, the temporal disintegration in section 4.1.2 can be applied. If so, the

dimensions are 𝐷𝑇 𝐽 = 𝑁 · �̂� (ℎ𝑇 𝐽 , 𝑑 + 1, 𝑛𝑇 𝐽 ) and 𝐷𝑇 𝑆 = 𝐷𝑆 · �̂� (ℎ𝑇 𝑆 , 𝑑𝐿𝐿𝑇 , 𝑛𝑇 𝑆)

where ℎ𝑇 𝐽 and ℎ𝑇 𝑆 are the corresponding hierarchical levels.

The dimension of all temporal PSFs is 𝐷𝑇 = 𝐷𝑇 𝐽 + 𝐷𝑇 𝑆 . Finally, the total

dimension of spatial and temporal features per clip is 𝐷 = 𝑀 · (𝐷𝑆𝐽 + 𝐷𝑆) + 𝐷𝑇 ,

where M is the number of sampled frames. Moreover, the spatial components can be

covered by the temporal PSFs extracted from invisibility-reset paths which require

no sampling step.

6 Experimental results and analysis

6.1 Datasets

Monocular videos recorded by 2D cameras are capable of collecting spontaneous

actions, but their sensitivity to viewpoint variations and occlusions makes recognition

a difficult task [1]. Intuitively, human body is general in 3D space, so marker-based

motion capture systems [97] were designed to collect highly accurate locations

of human joints. However, they are often expensive and impractical for recording

realistic action videos. Fortunately, costeffective depth cameras (e.g. Kinect sensor

[98]) were designed to provide reliable joint locations via real-time pose estimation

algorithms (e.g., [99]). Our method is general enough to be applied to various kinds

of data. To extensively evaluate the proposed methods, we conducted experiments

on four datasets containing examples of all three types of data: JHMDB [31], SBU

[41], Berkeley MHAD [42], and NTURGB+D [39]. The information we used herein

for action recognition is the locations of landmarks in all the frames. However, it is

worth noting that our method is flexible and additional information such as visibility

state or confidence score can be included.
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The JHMDB dataset [31] is a 2D human action dataset. There are 928 clips,

each clip containing between 15 and 40 frames. A clip captures only one person

doing one of 21 actions. The 2D joint positions are manually annotated. There are 3

splits separating the whole dataset into training and testing set. The final result is the

average of them. The sub-JHMDB is a subset of JHMDB with the full body inside

the frame. The challenges are the spontaneity of the actions captured by the clips

from YouTube and the loss of information due to 2D projection.

The SBU Interaction [41] is a 3D Kinect-based dataset. It has 282 clips categorized

into 8 classes of two-actor interactions, and has 30 joints per frame. Its depth

information suffers from self-occlusion, causing measurement errors in the estimated

joint locations.

The third dataset is Berkeley MHAD dataset [42] captured by a marker-based

motion capture system. It consists of 659 clips, of which 384 clips, performed by 7

actors, are used for training and 275 clips by 5 different actors are used for testing.

The 3D locations of 43 joints captured by LED markers are very accurate.

The Kinect-based NTURGB+D [39] is one of the largest 3D action recognition

datasets and contains 56 thousand clips of 60 classes. The large viewpoint variations

and unconstrained number of actors pose considerable challenges for analysis of this

dataset.

Note that the quantitative analysis was conducted on JHMDB, and all the pa-

rameters were determined by 5- fold cross validation on the training set of the first

split.

6.2 Network configurations

Since PSFs are rich non-linear features, we adopted a single-hidden-layer linear neu-

ral network as our classifier (1- layer net also works well in preliminary experiments).

The network is fully-connected and the activation of the hidden neurons is the iden-

tity function. The input dimension is decided by the PSF (i.e., S-P-PSF, S-T-PSF,

T-J-PSF, T-S-PSF, or some combinations of them) and the output is a probability

distribution given by a softmax layer over all the class labels in a dataset. The single

hidden layer has 64 neurons. The networks are trained by stochastic gradient descent

on the cross-entropy with momentum 0.7 and mini-batch size 30. The learning rate

updates in accordance to 𝛼(𝑡) = 𝛼(0) · exp(−𝜆𝑡) where 𝛼(0) = 0.005, 𝜆 = 0.005.

The maximum epoch is 300 for all experiments.

Dropconnect [100], a generalization of Dropout [101], randomly omits a propor-

tion of connections at each training iteration. It is applied to the connections between

the input and the single hidden layer for regularization. A high ratio of Dropconnect

is essential to mitigate overfitting because the features herein are of very high dimen-

sion. Additionally, since the actions of some joints are highly correlated with each

other, a small proportion of joints or features may already be sufficient to distinguish

some actions. Based on our preliminary experiments, the Dropconnect rate is set to

0.95.
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6.3 Data preprocessing and benchmark

We used two kinds of data augmentation. One is horizontal flipping, and the other

one is adding Gaussian noise (inspired by [31]) over joint coordinates to simulate

the noisy positions caused by estimation or annotation.

To cope with translation variation, we normalized the joints from world coordinate

system to person-centric coordinate system by placing the center point of the body at

the origin. To compensate for the biometric differences, we normalized the coordinate

values to the range of [-1,1] over the entire clip. For feature normalization, each

feature was divided by the maximum absolute value of the corresponding dimension

and normalized to [-1, 1].

The spatial components (S-J, S-P-PSF, and S-T-PSF) are calculated for each

frame. To obtain a fixed-length input to the network, we uniformly sampled M (in

this paper, M = 10) frames from each clip. As the signature has a fixed dimension

under length variation, the temporal features (T-J-PSF and T-S-PSF) are extracted

from all the frames without subsampling. Our baseline method is using S-J, the

d-dimensional coordinate values of all N joints. This leads to MNd-dimensional

feature set, for which we obtained a validation error rate of 57.54 ± 3.26%.

6.4 Investigation of the spatial features

As described in section 4.1.1 and 5.1, by pose disintegration with 𝑚 = 2 and 𝑚 = 3

, we constructed all the joint pairs and triples as localized paths for S-P-PSF and

S-TPSF respectively. The error rates on the validation set obtained by these feature

sets are shown in Table 2 and Table 3. The performance improves when higher terms

of the signature are considered, but the improvements tend to be negligible and the

variance increases when the dimension of the feature grows exponentially with the

signature level n. For the joint pairs, a suitable truncation level 𝑛𝑆𝑃 is 2 or 3, while

for the joint triples, the level 𝑛𝑆𝑇 needs to be as high as 3 or 4, which suggests the

choice of n should depend on m. We refer the reader to [95] which discusses the

relationship among m, n, and the path dimension d from the view of path recovery.

For the following experiments, we chose to fix 𝑛𝑆𝑃 = 2, 𝑛𝑆𝑇 = 3.

Table 2 Effect of different signature levels on the performance of S-P-PSF

Type of subpaths Signature level 𝑛𝑆𝑃 Feature dim. Error rate (%)

Joint Pairs

1 2100 32.79 ± 4.49

2 6300 25.41 ± 4.55

3 14700 24.10 ± 5.65
4 31500 24.10 ± 5.72
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Table 3 Effect of different signature levels on the performance of S-T-PSF

Type of subpaths Signature level 𝑛𝑆𝑇 Feature dim. Error rate (%)

Joint Triples

1 9100 43.93 ± 2.87

2 27300 32.46 ± 3.26

3 63700 26.39 ± 3.99

4 136500 24.75 ± 4.79
5 282100 23.77 ± 6.41

6 573300 25.24 ± 6.44

6.5 Investigation of the temporal features

6.5.1 Investigation of T-J-PSF

First, we investigated the effect of the time-incorporated transformation and the

truncation level 𝑛𝑇 𝐽 of the T-J-PSF. As shown in Fig. 6, if the truncation level 𝑛𝑇 𝐽

(the horizontal axis) is 1, adding a time dimension (the green plot) only improves the

performance a little. This is because the first level term related to the time dimension is

only the duration of the action. When 𝑛𝑇 𝐽 increases, the performance improvements

of using time-incorporated PSF are more significant, showing the effectiveness of

the time-incorporated path transformation. As to the truncation level, when 𝑛𝑇 𝐽

increases, the results have lower bias together with gradually higher variance, so a

trade-off is required. Here, 𝑛𝑇 𝐽 = 5 is a good choice.

In addition, we investigated the effect of the signature of the time-incorporated

path at different frame rates. We artificially increased the frame rate by interpolating

additional frames at random time stamps of the original clips. Bodies of the additional

frames were copied from those of their adjacent frames. On the other hand, we

decreased the frame rate by random subsampling. The networks were trained using

the training clips at original frame rate (30fps) and tested 10 times using artificial

validation clips at each of the frame rates ranging from 6fps to 90fps in 6fps steps.

As shown in Fig. 7, when the frame rate increases from 30fps to 90fps, the error

rates of using the time-independent part (TI) stay the same, while those of using

Fig. 6 Comparison of T-
J-PSF w/ and w/o using

time-incorporated paths. The

colored areas are the error

bands.
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the time-dependent part (TD) raise rapidly. It demonstrates the TI (i.e. the signature

of original path) is invariant under time reparameterization while the TD is very

sensitive to speed variation. The larger the signature level n, the more sensitive

the TD is to speed variation. Similarly, in the other direction, when the frame rate

decreases from 30fps to 6fps, the influence to TD is far more significant than that to

TI, showing the tolerance of TI under missing frames.

If we replace the PSF with the overlapping DPSF, then an appropriate hierarchical

level ℎ𝑇 𝐽 needs to be chosen. As shown in 8, in terms of performance, the low-level

(e.g., 𝑛𝑇 𝐽 = 2) overlapping DPSFs over the hierarchical intervals (e.g., ℎ𝑇 𝐽 = 3)

often outperform the high-level (e.g., 𝑛𝑇 𝐽 = 5) PSFs over the whole interval (ℎ𝑇 𝐽 =
1), which shows the efficiency of using temporal disintegration. However, when the

disintegrated paths are too fragmented to avoid being dominated by local noises

(e.g., when ℎ𝑇 𝐽 > 3), the additional features are harmful. We thus fixed ℎ𝑇 𝐽 = 3.

Another observation is that the improvements from ℎ𝑇 𝐽 = 1 to ℎ𝑇 𝐽 = 3 become less

significant along with the increasing 𝑛𝑇 𝐽 , demonstrating a trend that the high-level

PSF and lowlevel DPSF yield similar information eventually.

Fig. 7 Sensitivity of the

time-dependent and time-

independent part of the time-

incorporated PSF to different

frame rates.

Fig. 8 Comparison of T-J-
PSF with different dyadic

hierarchical level ℎ𝑇 𝐽 and

different truncation level 𝑛𝑇 𝐽

of signature.
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Fig. 9 Comparison of the

error rates (solid) and the

feature dimensions (dashed) of

using T-S-PSF with different

dimensions 𝑑𝐿𝐿𝑇 of lead-lag

paths and different truncation

level 𝑛𝑇𝑆 of signature.

6.5.2 Investigation of T-S-PSF

Regarding the PSF derived from the evolution of the spatial context (T-S-PSF), two

factors were evaluated: the dimension 𝑑𝐿𝐿𝑇 of the lead-lag path and the truncation

level 𝑛𝑇 𝑆 of the signature. As shown in Fig. 9, the results improve when a higher

dimension 𝑑𝐿𝐿𝑇 of the lead-lag path is adopted, but the marginal improvement

is less obvious when 𝑑𝐿𝐿𝑇 ≥ 3. For the truncation level 𝑛𝑇 𝑆 , the improvements

are significant from 𝑛𝑇 𝑆 = 1 to 𝑛𝑇 𝑆 = 2, but they are negligible when 𝑛𝑇 𝑆 > 2.

The dashed lines in Fig.9 show the trends of feature dimension under different

parameters. By making a trade-off between model complexity and performance, we

fixed 𝑑𝐿𝐿𝑇 = 3, 𝑛𝑇 𝑆 = 2.

By using the overlapping DPSF instead of PSF, the validation error rates are

30.82 ± 7.00%, 26.07 ± 6.12%, 26.39 ± 5.51%, and 26.07 ± 5.23%, when the

hierarchical level ℎ𝑇 𝑆 is 1, 2, 3, and 4 respectively. Thus, we fixed ℎ𝑇 𝑆 to 3.

6.6 Ablation study

For the ablation study of our features on the JHMDB [31], we used the parameter

setting for each feature based on the foregoing analysis. We retrained the network

using the whole training set (including the validation set) and took the final result

as the average of the three splits. The results are shown in Table 4. We can see

that adding the spatial PSF (Ex. 4) to the baseline (Ex. 1) gives an improvement of

about 20%, and further adding the temporal PSF (Ex. 9) contributes an additional

10%. The spatial context may be alternative between joint pairs and joint triples, for

example Ex. 2 vs. Ex. 3, or Ex. 7 vs. Ex. 8, but they are complementary as shown in

Ex. 4 and Ex. 9.

Applying the invisibility-reset transformation to all the paths before taking the

temporal signatures allow us to remove all the spatial components S-J, S-P-PSF,

and S-TPSF, while obtain the same accuracy as that of Ex. 9.
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Also, we evaluated the method which directly takes all the evolving N landmarks

inR𝑑 as a Nd-dimensional path for signature extraction. Together with S-J, it achieves

55.0% in accuracy. The dimension of this PSF is 𝜑′(𝑁𝑑, 𝑛) = 838, 230 when 𝑛 = 4

and will be impractical when 𝑛 > 4. This shows the cost-effectiveness of using pose

and temporal disintegration.

Table 4 Effect of different signature levels on the performance of S-T-PSF

Ex.# S-J S-P-PSF S-T-PSF T-J-PSF T-S-PSF

(S-P)*

T-S-PSF

(S-T)*

Accuracy

(%)

1 o 48.9

2 o o 68.4

3 o o 68.7

4 o o o 69.2

5 o o 62.0

6 o o o o 73.5

7 o o o o 79.1

8 o o o o 78.3

9 o o o o o o 80.4

∗ S-P (S-T) means the temporal features are only on the base of spatial joint

pairs (joint triples).

6.7 Comparison with the state-of-the-art methods

To achieve our best results, we adopted the best settings of parameters from the

foregoing analysis. For the JHMDB dataset [31], the results were given in the previous

subsections. For the other three datasets, we followed the evaluation criteria in [40].

6.7.1 Comparison over small datasets

For the JHMDB dataset, previous state-of-the-art methods are high-level pose feature

(HLPF) [31] and its modified version (i.e. Novel HLPF [34]), dense trajectory features

[102] encoded by Fisher vectors [103], and the pose-based CNN features (P-CNN)

[79]. As shown in Table 5, our method, which uses only the joint locations, achieve

better performance than the P-CNN which requires additional RGB information.

Further, our method manages the high degree of nonlinearity, and outperforms other

methods using hand-designed features like HLPF. Also, the computation of our

feature extraction is very fast. The average speed using esig [91] on a single thread

of an Intel 2.4GHz Xeon Gold 6240R CPU is 85 fps on the JHMDB dataset.

Moreover, we used the off-the-shelf pose estimation called Alphapose (with Pose-

flow) [104] to get a set of 17 estimated joints from the RGB videos of the sub-JHMDB

dataset, and then trained and tested the network using the estimated poses. By us-

ing only location information, our test accuracy is 68.2%, which outperforms that
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of PCNN [79] (66.8%), PA-AP [105] (61.5%), JointAP [106] (61.2%), or HLPF

[31] (54.1%). As an example of the flexibility of our method on additional clues,

taking the confidence scores from the pose estimation as an additional dimension of

landmarks raises the accuracy rate to 75.7%. However, a gap of accuracy still exists

between using estimated poses and ground truth poses (84.23% by ours).

Table 5 Comparison of methods on JHMDB using ground-truth landmarks

Methods Accuracy (%)

DT-FV [102] 65.9

P-CNN [79] 74.6

HLPF [31] 76.0

Novel HLPF [34] 79.6

Path Signature (Ours) 80.4

For the SBU Interaction dataset, the two human bodies are regarded as one

united articulated system with a total of 30 joints in 3D. As shown in Table 6,

the proposed method using PSF significantly outperforms the other skeleton-based

methods including many RNN-based or LSTM-based ones. Aside from the accuracy,

the interpretable PSF could facilitate further understanding of interactions.

Table 6 Comparison of methods on SBU dataset

Method Accuracy (%)

Yun et al. [41] 80.3
Ji et al. [107] 86.9
CHARM [108] 83.9
HBRNN [24] (reported by [37]) 80.4
Deep LSTM (reported by [37]) 86.0
Co-occurrence LSTM [37] 90.4
STA-LSTM [109] 91.5
ST-LSTM-Trust Gate [40, 25] 93.3
SkeletonNet [110] 93.5
GC-Attention-LSTM [80] 94.1
Path Signature (Ours) 96.8

Table 7 Comparison of methods on MHAD dataset

Method Accuracy (%)

Vantigodi et al. [111] 96.1
Ofli et al. [73] 95.4
Vantigodi et al. [112] 97.6
Kapsouras et al. [113] 98.2
HBRNN [24] 100

ST-LSTM-Trust Gate [40, 25] 100

Path Signature (Ours) 100
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For the Berkeley MHAD dataset, we achieve the same accuracy (100%) as the

state-of-the-art methods shown in Table 7, showing the effectiveness of PSF for

recognizing actions with accurate joint locations.

These results show that the proposed hand-designed feature set with single-layer

linear network can outperform most deep learning methods on small datasets.

6.7.2 Comparison over large-scale datasets

We also conducted experiments on the large-scale NTURGB+D data.

For normalization, we applied the same 3D rotation and scaling as those in [39],

so the body in the first frame faces the camera directly and those in the following

frames are compensated accordingly. Since in this dataset different actions contain

different number of detected actors, we applied a two-stage classification. The first

stage is a binary classifier separating the actions into two types: 1-body or 2-body

actions, then the second stage is the corresponding classifier (1-body or 2-body

classifier) for each type. The supervised label of the binary classification at the first

stage can be found by going through all the training samples and calculating the

average number of actors in each action class. The range of the numbers is [1.02,

1.06] for the first 49 classes which are annotated as 1-body actions, while the range

is [1.87, 2.04] for the remaining 11 classes which are annotated as 2-body actions.

Before feature extraction, we ranked all the detected actors in each clip based on

the magnitudes of their movements. Then, for the 1-body classifier, features were

extracted from the most active actor. For the first-stage binary classifier and the

2-body classifier, the two most active actors were regarded as one evolving object;

this means we ended up having twice the number of joints per frame (i.e., 50 joints

per frame). If a body is missing in the entire clip, the coordinates of this body are set

to 0; if a body is missing in some medial frames, its coordinates are filled in using

cubic spline interpolation [114].

The final results were given by two-stage classification as shown in Table 8. Table

9 shows that our method outperforms many deep learning based methods. The GCN

[30] and its variants [83, 84, 85] achieve the current state-of-the-art accuracy on

NTURGB+D dataset by taking advantage of the human skeleton structure. To utilize

this skeleton structure as a prior knowledge to reduce complexity in our feature set

is worth further studying.

Table 8 Accuracy (%) of the two-stage classification on NTURGB+D dataset

Task The 1st stage
The 2nd stage

Final
1-body 2-body

Cross-subject 99.2 75.7 91.9 78.3
Cross-view 99.3 82.5 94.4 86.1
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Table 9 Comparison of methods on NTURGB+D dataset

Method Deep networks? Cross-subject Cross-view

Dynamic Skeletons [115] X(SVM) 60.2 65.2
HBRNN [24] �(RNN) 59.1 64.0
Part-aware LSTM [39] �(LSTM) 62.9 70.3
ST-LSTM-Trust Gate [40, 25] �(LSTM) 69.2 77.7
STA-LSTM [109] �(LSTM) 73.4 81.2
SkeletonNet [110] �(CNN) 75.9 81.2
Joint Distance Maps [116] �(CNN) 76.2 82.3
GC-Attention-LSTM [80] �(LSTM) 74.4 82.8
Deep STGC [82] �(GCN) 74.8 86.3
ST-GCN [30] �(GCN) 81.5 88.3
Path Signature (Ours) X(Single-layer NN) 78.3 86.1

6.8 Toward understanding of human actions

The interpretable geometric properties of PSF facilitate the understanding of human

actions. By using a linear classifier the importance of each feature to each action

class can be evaluated by the product of the two-layer weight matrices. For each class

of sub-JHMDB, we ranked the joint pairs/triples according to the average over the

weights connecting the features of joint groups and the corresponding class label.

The top-3 joint pairs/triples for spatial and temporal features are shown in Fig. 10.

The spatial ones often emphasize static constraints while the temporal ones highlight

dynamic variations. Notice that many top pairs/triples are physically non-local, which

demonstrates the effectiveness of the pose disintegration method.

Moreover, by using temporal disintegration (h = 3), we can evaluate the impor-

tance of different timescales and time intervals. As shown in Fig. 11, discriminative

motions often appear in various intervals of finer timescales, e.g., the start of “catch”

or “pick”, the middle of “kick ball” or “swing ball”, and the end of “golf” or “jump”.

7 Conclusions

In this paper, we refined the path signature as a robust, nonlinear, and interpretable

feature for landmark-based data. Path disintegrations and transformations are pro-

posed to improve the effectiveness and efficiency of signature features. Based on

these, we designed and built the signature-based spatio-temporal representation of

action sequences. Experimental results show that using our feature set, a linear

shallow fully-connected neural network achieves comparable results to advanced

methods including CNN-based and RNN-based ones, especially on small datasets.

For future work, one could reduce the size of the representation of the body or

feature set based on our analysis and understanding of human actions. It would also

be interesting to integrate our landmark-based representation with other informative

cues (e.g., appearance) to improve the performance of HAR. Moreover, our method
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Fig. 10 Top-3 most important joint pairs/triples for (a) spatial features and (b) temporal features

based on our linear network.

is general enough for other landmark-based objects where the given information in

each landmark can be diverse.
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Fig. 11 Visualization of the

important timescales and time

periods for the actions in sub-

JHMDB dataset. The darker

in color, the more important it

is.
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