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Abstract We consider multi-armed bandits where the model of the underlying

stochastic environment is characterized by a common unknown parameter. The true

parameter is unknown to the learning agent. However, the set of possible parame-

ters, which is finite, is known a priori. We propose an algorithm that is simple and

easy to implement, which we call Finitely Parameterized Upper Confidence Bound

(FP-UCB) algorithm, which uses the information about the underlying parameter

set for faster learning. In particular, we show that the FP-UCB algorithm achieves a

bounded regret under a structural condition on the underlying parameter set. We also

show that, if the underlying parameter set does not satisfy this structural condition,

the FP-UCB algorithm achieves a logarithmic regret, but with a smaller preceding

constant compared to the standard UCB algorithm. We also validate the superior

performance of the FP-UCB algorithm through extensive numerical simulations.

1 Introduction

The Multi-Armed Bandit (MAB) problem is a canonical formalism for studying how

an agent learns to take optimal actions through repeated interactions with a stochas-

tic environment. The learning agent receives a reward at each time step which will

depend on the action of the agent as well as the stochastic uncertainty of the environ-

ment. The goal of the agent is to act so as to maximize the cumulative reward. When

the model of the environment is known, computing the optimal action is a standard

optimization problem. The challenge in MAB is that the agent does not know the

stochastic model of environment a priori. The agent needs to explore, i.e., take ac-
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tions to gather information and estimate the model of the system. At the same time

the agent must exploit the available information to maximize the cumulative reward.

This exploration vs. exploitation trade-off is at the core of the MAB problem.

Lai and Robbins in their seminal paper [19] formulated the non-Bayesian stochas-

tic MAB problem and characterized the performance of a learning algorithm using

the metric of regret. They showed that no learning algorithm can achieve a re-

gret better than O(logT ). They also proposed a learning algorithm that achieves

an asymptotic logarithmic regret, matching the fundamental lower bound. A simple

index-based algorithm called UCB algorithm was introduced in [5] which achieves

the order optimal regret in a non-asymptotic manner. This approach led to a number

of interesting algorithms, among them linear bandits [13], contextual bandits [11],

combinatorial bandits [10], and decentralized and multi-player bandits [15].

Thompson (Posterior) Sampling is another class of algorithms that give superior

numerical performance for MAB problems. The posterior sampling heuristic was

first introduced by Thompson [25], but the first rigorous performance guarantee, an

O(logT ) regret, was given in [2]. The Thompson sampling idea has been used in al-

gorithms for bandits with multiple plays [17], contextual bandits [3], general online

learning problem [14], and reinforcement learning [23]. Both classes of algorithms

have been used in a number of practical applications, like communication networks

[24], smart grids [16], and recommendation systems [29].

Our contribution: We consider a class of multi-armed bandits problems where

the reward corresponding to each arm is characterized by a common unknown pa-

rameter with a finite set of possible values. This restriction is inspired by real-world

applications. For example, in recommendation systems and e-commerce applica-

tions (Amazon, Netflix), it is typical to assume that each user has a certain ‘type’

parameter (denoted by θ in our formulation), and the set of possible parameter val-

ues is finite. The preferences of the user is characterized by her type (for exam-

ple, prefer science books over fiction books). The set of all possible types and the

preferences of each type may be known a priori, but the type of a new user may

be unknown. So, instead of learning the preferences of this user over all possible

choices, it may be easier to learn the type parameter of this user from a few obser-

vations. In this work, we propose an algorithm that explicitly uses the availability of

such structural information about the underlying parameter set which enables faster

learning.

We propose an algorithm that is simple and easy to implement, which we call FP-

UCB algorithm, which uses the structural information for faster learning. We show

that the proposed FP-UCB algorithm can achieve a bounded regret (O(1)) under

some structural condition on the underlying parameter set. This is in sharp contrast

to the increasing (O(logT )) regret of standard multi-armed bandits algorithms. We

also show that, if the underlying parameter set does not satisfy the structural con-

dition, the FP-UCB algorithm achieves a regret of O(logT ), but with a smaller

preceding constant compared to the standard UCB algorithm. The regret achieved

by our algorithm also matches with the fundamental lower bound given by [1]. One

remarkable aspect of our algorithm is that, it is oblivious to whether the underlying

parameter set satisfies the necessary condition or not, thereby avoiding re-tuning
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of the algorithm depending on the problem instance. Instead, it achieves the best

possible performance given the problem instance.

Related work: Finitely parameterized multi-armed bandits problem were first

studied by Agrawal et al. [1]. They proposed an algorithm for this setting, and

proved that it achieves a bounded regret when the parameter set satisfies some

necessary condition, and logarithmic regret otherwise. However, their algorithm is

rather complicated, which limits practical implementations and extension to other

settings. The regret analysis is also involved and asymptotic in nature, different from

the recent simpler index-based bandits algorithms and their finite time analysis. [1]

also provided a fundamental lower bound for this class of problems. Compared to

this work, our FP-UCB algorithm is simple, easy to implement, and easy to ana-

lyze, while providing non-asymptotic performance guarantees that match the lower

bound.

Some recent works exploit the available structure of the MAB problem to get

tighter regret bounds. In particular, [4] [20] [22] [12] consider the problem setting

similar to our paper where the mean reward of each arm is characterized by a single

unknown parameter. [4] assumes that the reward functions are continuous in the

global parameter and gives a bounded regret result. [20] gives specific conditions on

the mean reward to achieve a bounded regret. [22] considers a latent bandit problem

where the reward distributions are partitioned into a number of clusters and indexed

by a latent parameter corresponding to the cluster. [12] characterizes the minimal

rates at which sub-optimal arms have to be explored depending on the structural

information, and proposes an algorithm that achieves these rates. [8] [7] [26] exploit

a different structural information where it is shown that if the mean value of the

best arm and the second best arm (but not the identity of the arms) are known,

a bounded regret can be achieved. There also are bandit algorithms that exploit

side information [28] [9], and recently in the context of contextual bandits [6]. Our

problem formulation, algorithm, and analysis are different from these works. We

also note that our problem formulation is fundamentally different from the system

identification problems [21] [18] because the goal here is to learn an optimal policy

online.

2 Problem Formulation

We consider the following sequential decision-making problem. In each time step

t ∈ {1,2, . . . ,T}, the agent selects an arm (action) from the set of L possible arms,

denoted a(t) ∈ [L] = {1, . . . ,L}. Each arm i, when selected, yields a random real-

valued reward. Let Xi(τ) be the random reward from arm i in its τth selection. We

assume that Xi(τ) is drawn according to a probability distribution Pi(·;θ o) with

mean μi(θ o). Here θ o is the (true) parameter that determines the distribution of the

stochastic rewards. The agent does not know θ o or the corresponding mean value

μi(θ o). The random rewards obtained from playing an arm repeatedly are i.i.d. and

independent of the plays of the other arms. The rewards are bounded with support
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in [0,1]. The goal of the agent is to select a sequence of actions that maximizes

the expected cumulative reward, E[∑T
t=1 μa(t)(θ o))]. The action a(t) depends on the

history of observations available to the agent until time t. So, a(t) is stochastic and

the expectation is with respect to its randomness.

Clearly, the optimal choice is to select the best arm (the arm with the highest

mean value) all the time, i.e., a(t) = a∗(θ o),∀t, where a∗(θ o) = argmaxi∈[L] μi(θ o).
However, the agent will be able to make this optimal decision only if she knows the

parameter θ o or the corresponding mean values μi(θ o) for all i. The goal of a MAB

algorithm is to learn to make the optimal sequence of decisions without knowing

the true parameter θ o.

We consider the setting where the agent knows the set of possible parameters Θ .

We assume that Θ is finite. If the true parameter were θ ∈ Θ , then agent selecting

arm i will get a random reward drawn according to a distribution Pi(·;θ) with mean

μi(θ). We assume that for each θ ∈Θ , the agent knows Pi(·;θ) and μi(θ) for all i ∈
[L]. The optimal arm corresponding to the parameter θ is a∗(θ) = argmaxi∈[L] μi(θ).
We emphasize that the agent does not know the true parameter θ o (and hence the

optimal action a∗(θ o)) except that it is in the finite set Θ .

In the multi-armed bandits literature, it is standard to characterize the perfor-

mance of an online learning algorithm using the metric of regret. Regret is defined

as the performance loss of an algorithm as compared to the optimal algorithm with

complete information. Since this is b(t) = a∗(θ o), the expected cumulative regret of

a multi-armed bandits algorithm after T time steps is defined as

E[R(T )] := E

[
T

∑
t=1

(μa∗(θ o)(θ o)−μa(t)(θ o))

]
. (1)

The goal of a MAB learning algorithm is to select actions sequentially in order

to minimize E[R(T )].

3 UCB Algorithm for Finitely Parameterized Multi-Armed
Bandits

In this section, we present our algorithm for finitely parameterized multi-armed ban-

dits and the main theorem. We first introduce a few notations for presenting the

algorithm and the results succinctly.

Let ni(t) be the number of times arm i has been selected by the algorithm until

time t, i.e., ni(t) = ∑t
τ=1�{a(τ) = i}. Here �{.} is an indicator function. Define the

empirical mean corresponding to arm i at time t as,

μ̂i(t) :=
1

ni(t)

ni(t)

∑
τ=1

Xi(τ). (2)
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Define the set A := {a∗(θ) : θ ∈Θ}, which is the collection of optimal arms cor-

responding to all parameters in Θ . Intuitively, a learning agent can restrict selection

to arms from the set A. Clearly, A ⊂ [L] and this reduction can be useful when |A| is

much smaller than L.

Our FP-UCB Algorithm is given in Algorithm 1. Figure 1 gives an illustration of

the episodes and time slots of the FP-UCB algorithm.

For stating the main result, we introduce a few more notations. We define the

confusion set B(θ o) and C(θ o) as,

B(θ o) := {θ ∈Θ : a∗(θ) �= a∗(θ o) and μa∗(θ o)(θ o) = μa∗(θ o)(θ)},
C(θ o) := {a∗(θ) : θ ∈ B(θ o)}.

Intuitively, B(θ o) is the set of parameters that can be confused with the true pa-

rameter θ o. If B(θ o) is non-empty, selecting a∗(θ o) and estimating the empirical

mean is not sufficient to identify the true parameter because the same mean reward

can result from other parameters in B(θ o). So, if B(θ o) is non-empty, more explo-

ration (i.e., selecting sub-optimal arms other than a∗(θ o)) is necessary to identify

the true parameter. This exploration will contribute to the regret. On the other hand,

if B(θ o) is empty, the optimal parameter can be identified with much less explo-

ration, which results in a bounded regret. C(θ o) is the corresponding set of arms

that needs to be explored sufficiently to identify the optimal parameter. So, whether

B(θ o) is empty or not is the structural condition that decides the performance of the

algorithm.

We make the following assumption.

Assumption (Unique best action) For all θ ∈Θ , the optimal action, a∗(θ), is unique.

We note that this is a standard assumption in the literature. This assumption can

be removed at the expense of more notations. We define Δi as,

Δi := μa∗(θ o)(θ o)−μi(θ o), (3)

which is the difference between the mean value of the optimal arm and the mean

value of arm i for the true parameter θ o. This is the standard optimality gap notion

used in the MAB literature [5]. Without loss of generality assume natural logarithms.

For each arm in i ∈C(θ o), we define,

βi := min
θ :θ∈B(θ o),a∗(θ)=i

|μi(θ o)−μi(θ)|. (4)

We use the following Lemma to compare our result with classical MAB result.

The proof for this lemma is given in the appendix.

Lemma 1 Let Δi and βi be as defined in (3) and (4) respectively. Then, for each
i ∈C(θ o), βi > 0. Moreover, βi > Δi.

We now present the finite time performance guarantee for our FP-UCB algo-

rithm.
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Algorithm 1 FP-UCB

1: Initialization: Select each arm in the set A once
2: Initialize episode number k = 1, time step t = |A|+1
3: while t ≤ T do
4: tk = t −1
5: Compute the set

Ak =
{

a∗(θ),θ ∈Θ : ∀i ∈ A, |μ̂i(tk)−μi(θ)| ≤
√

3log(k)
ni(tk)

}
6: if |Ak| �= 0 then
7: Select each arm in the set Ak once
8: t ← t + |Ak|
9: else

10: Select each arm in the set A once
11: t ← t + |A|
12: end if
13: k ← k+1
14: end while

� � � �

tk

episode 1 episode k

1 + t1 1 + tk1 |A| = t1
�

A1

Ak

episode 2

A2

1 + t2
� �

t2

� � �

Fig. 1: An illustration of the episodes and time slots of the FP-UCB algorithm.

Theorem 1 Under the FP-UCB algorithm,

E[R(T )]≤ D1, if B(θ o) empty, and

E[R(T )]≤ D2 +12log(T ) ∑
i∈C(θ o)

Δi

β 2
i
, if B(θ o) non-empty, (5)

where D1 and D2 are problem dependent constants that depend only on the problem
parameters |A| and (μi(θ),θ ∈Θ), but do not depend on T .

Remark 1 (Comparison with the classical MAB results) Both UCB type algorithms

and Thompson Sampling type algorithms give a problem dependent regret bound

O(logT ). More precisely, assuming that the optimal arm is arm 1, the regret of the

UCB algorithm, E[RUCB(T )], is given by [5]

E[RUCB(T )] = O

(
L

∑
i=2

1

Δi
logT

)
.

On the other hand, the FP-UCB algorithm achieves the regret, E[RFP-UCB(T )],
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O(1), if B(θ o) empty, and O

(
∑

i∈C(θ o)

Δi

β 2
i

logT

)
, if B(θ o) non-empty.

Clearly, for some MAB problems, FP-UCB algorithm achieves a bounded re-

gret (O(1)) as opposed to the increasing regret (O(logT )) of the standard UCB

algorithm. Even in the cases where FP-UCB algorithm incurs an increasing regret

(O(logT )), the preceding constant (Δi/β 2
i ) is smaller than the preceding constant

(1/Δi) of the standard UCB algorithm because βi > Δi.

We now give the asymptotic lower bound for the finitely parameterized multi-

armed bandits problem from [1], for comparing the performance of our FP-UCB

algorithm.

Theorem 2 (Lower bound [1])
For any uniformly good control scheme under the parameter θ o,

liminf
T→∞

E[R(T )]
log(T )

≥ min
h∈H

max
θ∈B(θ o)

∑u∈A\{a∗(θ o)} hu(μa∗(θ o)(θ o)−μu(θ o))

∑u∈A\{a∗(θ o)} huDu(θ o‖θ)
.

where H is a probability simplex with |A|−1 vertices and, for any u ∈ A\{a∗(θ o)},
Du(θ o‖θ) =

∫
Pu(x;θ o) log(Pu(x;θ o)/Pu(x;θ))dx is the KL-divergence between the

probability distributions Pu(·;θ o) and Pu(·;θ).

Remark 2 (Optimality of the FP-UCB algorithm) From Theorem 2, the achievable
regret of any multi-armed bandits learning algorithm is lower bounded by Ω(1)
when B(θ o) is empty, and Ω(logT ) when B(θ o) is non-empty. Our FP-UCB algo-
rithm achieves these bounds and hence achieves the order optimal performance.

4 Analysis of the FP-UCB Algorithm

In this section, we give the proof of Theorem 1. For reducing the notation, without

loss of generality we assume that the true optimal arm is arm 1, i.e., a∗ = a∗(θ o)= 1.
We will also denote μ j(θ o) as μo

j , for any j ∈ A.

Now, we can rewrite the expected regret from (1) as

E[R(T )] = E

[
T

∑
t=1

(μo
1 −μo

a(t))

]

=
L

∑
i=2

Δi E

[
T

∑
t=1

�{a(t) = i}
]
=

L

∑
i=2

Δi E [ni(T )] .

Since the algorithm selects arms only from the set A, this can be written as

E[R(T )] = ∑
i∈A

Δi E [ni(T )] . (6)
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We first prove the following important propositions.

Proposition 1 For all i ∈ A\C(θ o), i �= 1, under FP-UCB algorithm,

E [ni(T )]≤Ci, (7)

where Ci is a problem dependent constant that does not depend on T .

Proof Consider an arm i∈ A\C(θ o), i �= 1. Then, by definition, there exists a θ ∈Θ
such that a∗(θ) = i. Fix a θ which satisfies this condition. Define

α1(θ) := |μ1(θ o)−μ1(θ)|.

It is straightforward to note that when i ∈ A\C(θ o), then the θ which we considered

above is not in B(θ o). Hence, by definition, α1(θ)> 0.

For notational convenience, we will denote μ j(θ) simply as μ j, for any j ∈ A.

Notice that the algorithm picks ith arm once in t ∈ {1, . . . , |A|}. Define KT (note that

this is a random variable) to be the total number of episodes in time horizon T for

the FP-UCB algorithm. It is straightforward that KT ≤ T . Now,

E[ni(T )] = 1+E

[
T

∑
t=|A|+1

�{a(t) = i}
]

(a)
= 1+E

[
KT

∑
k=1

(�{i ∈ Ak}+�{Ak =∅})
]

≤ 1+
T

∑
k=1

[P({i ∈ Ak})+P({Ak =∅})] (8)

= 1+
T

∑
k=1

[P({i ∈ Ak,1 ∈ Ak})+P({i ∈ Ak,1 /∈ Ak})+P({Ak =∅})]

≤ 1+
T

∑
k=1

[P({i ∈ Ak,1 ∈ Ak})+P({i ∈ Ak,1 /∈ Ak})+P({i /∈ Ak,1 /∈ Ak})]

≤ 1+
T

∑
k=1

[P({i ∈ Ak,1 ∈ Ak})+P({1 /∈ Ak})]. (9)

Here (a) follows from the algorithm definition.

We will first analyze the second summation term in (9). First observe that, we

can write n j(tk) = 1+∑k−1
τ=1(�{ j ∈ Aτ}+�{Aτ =∅}) for any j ∈ A and episode k.

Thus, n j(tk) lies between 1 and k. Now,
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T

∑
k=1

P({1 /∈ Ak}) (a)
=

T

∑
k=1

P

(⋃
j∈A

{
|μ̂ j(tk)−μo

j |>
√

3logk
n j(tk)

})
(b)
≤

T

∑
k=1

∑
j∈A

P

(
|μ̂ j(tk)−μo

j |>
√

3logk
n j(tk)

)

(c)
=

T

∑
k=1

∑
j∈A

P

(∣∣∣∣∣ 1

n j(tk)

n j(tk)

∑
τ=1

Xj(τ)−μo
j

∣∣∣∣∣>
√

3logk
n j(tk)

)
(d)
≤

T

∑
k=1

∑
j∈A

k

∑
m=1

P

(∣∣∣∣∣ 1

m

m

∑
τ=1

Xj(τ)−μo
j

∣∣∣∣∣>
√

3logk
m

)
(e)
≤

T

∑
k=1

∑
j∈A

k

∑
m=1

2exp

(
−2m

3logk
m

)
=

T

∑
k=1

∑
j∈A

2k−5 ≤ 4|A|. (10)

Here (a) follows from algorithm definition, (b) from the union bound, and (c) from

the definition in (2). Inequality (d) follows by conditioning the random variable

n j(tk) that lies between 1 and k for any j ∈ A and episode k. Inequality (e) follows

from Hoeffding’s inequality [27, Theorem 2.2.6].

For analyzing the first summation term in (9), define the event Ek := {n1(tk) <
12logk/α2

1 (θ)}. Denote the complement of this event as Ec
k . Now the first summa-

tion term in (9) can be written as

T

∑
k=1

P({i ∈ Ak,1 ∈ Ak}) =
T

∑
k=1

P({i ∈ Ak,1 ∈ Ak,Ec
k})︸ ︷︷ ︸

= Term1

+
T

∑
k=1

P({i ∈ Ak,1 ∈ Ak,Ek})︸ ︷︷ ︸
= Term2

.

(11)

Analyzing Term1 in (11), we get,

P({i ∈ Ak,1 ∈ Ak,Ec
k})

= P

(⋂
j∈A

{|μ̂ j(tk)−μo
j |<
√

3logk
n j(tk)

}
⋂
j∈A

{|μ̂ j(tk)−μ j|<
√

3logk
n j(tk)

}
⋂

Ec
k

)

≤ P

(
{|μ̂1(tk)−μo

1 |<
√

3logk
n1(tk)

}, |{μ̂1(tk)−μ1|<
√

3logk
n1(tk)

},Ec
k

)
= 0. (12)

This is because the events {|μ̂1(tk)−μo
1 |<
√

3logk
n1(tk)

} and {|μ̂1(tk)−μ1|<
√

3logk
n1(tk)

}
are disjoint under Ec

k , that is, when n1(tk)≥ 12log(k)/α2
1 (θ). To see this, notice that
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|μ̂1(tk)−μo

1 |<
√

3logk
n1(tk)

}
⊆
{
|μ̂1(tk)−μo

1 |<
α1(θ)

2

}
,{

|μ̂1(tk)−μ1|<
√

3logk
n1(tk)

}
⊆
{
|μ̂1(tk)−μ1|< α1(θ)

2

}
,

for n1(tk) ≥ 12logk/α2
1 (θ). Moreover, since |μo

1 − μ1| = α1(θ), {|μ̂1(tk)− μo
1 | <

α1(θ)/2} and {|μ̂1(tk)−μ1|< α1(θ)/2} are disjoint sets. Hence, their subsets are

also disjoint.

For analyzing Term2 in (11), we start by setting up few notations. Define

n′1(tk) := 1+∑k−1
τ=1�{1 ∈ Aτ}. Note that, according to the FP-UCB algorithm, arm

1 can be selected if Aτ is empty as well, so n′1(tk) ≤ n1(tk). Define ki(θ) and m(k)
as,

ki(θ) := min
{

k : k ≥ 3,k > �12log(k)/α2
1 (θ)�

}
, (13)

m(k) := max{1,k−�12log(k)/α2
1 (θ)�}. (14)

Note that ki(θ) is a problem dependent constant and does not depend on T . Also,

m(k) = k−�12log(k)/α2
1 (θ)� for all k ≥ ki(θ). We claim that for all k ≥ ki(θ),{

n′1(tk)< 12log(k)/α2
1 (θ)
}⊆ {1 /∈ Aτ , for some τ,m(k)≤ τ ≤ k−1} . (15)

To see this, suppose there exists no τ, m(k) ≤ τ ≤ k− 1, such that 1 /∈ Aτ . Then,

1 ∈ Aτ for all τ, where m(k) ≤ τ ≤ k− 1. So, by definition n′1(tk) ≥ (k−m(k)) =
�12log(k)/α2

1 (θ)� for k ≥ ki(θ). So, the complement of the RHS of (15) is a subset

of the complement of the LHS of (15). Hence the claim follows.

Now,

T

∑
k=1

P({i ∈ Ak,1 ∈ Ak,Ek})≤
T

∑
k=1

P(Ek)

(a)
≤

T

∑
k=1

P
(
n′1(tk)< 12log(k)/α2

1 (θ)
)

(b)
≤ ki(θ)+

T

∑
k=ki(θ)

P(n′1(tk)< 12log(k)/α2
1 (θ))

(c)
≤ ki(θ)+

T

∑
k=ki(θ)

P({1 /∈ Aτ , for some τ,m(k)≤ τ ≤ k−1})

(d)
= ki(θ)+

T

∑
k=ki(θ)

P

⎛⎝ k−1⋃
τ=m(k)

⋃
j∈A

|μ̂ j(τ)−μo
j |>
√

3logτ
n j(tτ)

⎞⎠
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≤ ki(θ)+
T

∑
k=ki(θ)

k−1

∑
τ=m(k)

∑
j∈A

P

(
|μ̂ j(τ)−μo

j |>
√

3logτ
n j(tτ)

)
(e)
≤ ki(θ)+

T

∑
k=ki(θ)

k−1

∑
τ=m(k)

2|A|
τ5

(16)

≤ ki(θ)+
T

∑
k=ki(θ)

2|A|k
(m(k))5

= ki(θ)+
T

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

( f )
= ki(θ)+Ki(θ), (17)

where Ki(θ) is a problem dependent constant that does not depend on T .

In the above analysis, (a) follows from the definition of Ek and the observation

that n′1(tk) ≤ n1(tk). Considering T to be greater than or equal to ki(θ)|A|, equality

(b) follows; note that this is an artifact of the proof technique and does not affect

the theorem statement since E[ni(T ′)], for any T ′ less than ki(θ)|A|, can be trivially

upper bounded by E[ni(T )]. Inequality (c) follows from (15), (d) by the FP-UCB

algorithm, (e) is similar to the analysis in (10), and (f) follows from the fact that

k > �12log(k)/α2
1 (θ)� for all k ≥ ki(θ).

Now, using (17) and (12) in (11), we get,

T

∑
k=1

P({i ∈ Ak,1 ∈ Ak})≤ ki(θ)+Ki(θ). (18)

Using (18) and (10) in (9), we get,

E[ni(T )]≤Ci,

where Ci = 1+ 4|A|+minθ :a∗(θ)=i(ki(θ)+Ki(θ)), which is a problem dependent

constant that does not depend on T . This concludes the proof. �

Proposition 2 For any i ∈C(θ o), under the FP-UCB algorithm,

E [ni(T )]≤ 2+4|A|+ 12log(T )
β 2

i
. (19)

Proof Fix an i ∈ C(θ o). Then there exists θ ∈ B(θ o) such that a∗(θ) = i. Fix θ
which satisfies this condition. Define the event F(t) :=

{
ni(t −1)< 12logT/β 2

i
}
.

Now,
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E[ni(T )] = 1+E

[
T

∑
t=|A|+1

�{a(t) = i}
]

= 1+E

[
T

∑
t=|A|+1

�{a(t) = i,F(t)}
]
+E

[
T

∑
t=|A|+1

�{a(t) = i,Fc(t)}
]
.

(20)

Analyzing the first summation term in (20) we get,

E

[
T

∑
t=|A|+1

�{a(t) = i,F(t)}
]
= E

[
T

∑
t=|A|+1

�{a(t) = i}�{ni(t −1)< 12logT/β 2
i
}]

≤ 1+12logT/β 2
i . (21)

We use the same decomposition as in the proof of Proposition 1 for the second

summation term in (20). Thus we get,

E

[
T

∑
t=|A|+1

�{a(t) = i,Fc(t)}
]
=

E

[
KT

∑
k=1

�{i ∈ Ak,Fc(tk +1)}+�{Ak =∅,Fc(tk +1)}
]

≤
T

∑
k=1

P({i ∈ Ak,1 ∈ Ak,Fc(tk +1)}) (22)

+
T

∑
k=1

P({1 /∈ Ak,Fc(tk +1)}), (23)

following the analysis in (9). First, consider (23). From the analysis in (10) we have

T

∑
k=1

P({1 /∈ Ak,Fc(tk +1)})≤
T

∑
k=1

P({1 /∈ Ak})≤ 4|A|. (24)

For any i ∈ A and episode k under event Fc(tk +1), we have

ni(tk)≥ 12logT
β 2

i
≥ 12log tk

β 2
i

≥ 12logk
β 2

i

since tk satisfies k ≤ tk ≤ T . From (4), it further follows that√
3logk
n j(tk)

≤ βi

2
≤ |μi(θ o)−μi(θ)|

2
.

So, following the analysis in (12) for (22), we get
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P({i ∈ Ak,1 ∈ Ak,Fc(tk +1)})

= P

⎛⎝⋂ j∈A{|μ̂ j(tk)−μ j(θ o)|<
√

3logk
n j(tk)

},⋂
j∈A{|μ̂ j(tk)−μ j(θ)|<

√
3logk
n j(tk)

},Fc(tk +1)

⎞⎠
≤ P

⎛⎝{|μ̂i(tk)−μi(θ o)|<
√

3logk
ni(tk)

},
{|μ̂i(tk)−μi(θ)|<

√
3logk
ni(tk)

},Fc(tk +1)

⎞⎠= 0. (25)

Using equations (21), (24), and (25) in (20), we get

E[ni(T )]≤ 2+4|A|+ 12log(T )
β 2

i
.

This completes the proof. �

We now give the proof of our main theorem.

Proof (of Theorem 1)

From (6),

E[R(T )] = ∑
i∈A

ΔiE[ni(T )] = ∑
i∈A\C(θ o)

ΔiE[ni(T )]+ ∑
i∈C(θ o)

ΔiE[ni(T )]. (26)

Whenever B(θ o) is empty, notice that C(θ o) is empty. So, using Proposition 1,

(26) becomes

E[R(T )] = ∑
i∈A

ΔiE[ni(T )]≤ ∑
i∈A

ΔiCi ≤ |A|max
i∈A

ΔiCi.

Whenever B(θ o) is non-empty, C(θ o) is non-empty. Analyzing (26), we get,

E[R(T )] = ∑
i∈A\C(θ o)

ΔiE[ni(T )]+ ∑
i∈C(θ o)

ΔiE[ni(T )]

(a)
≤ ∑

i∈A\C(θ o)

ΔiCi + ∑
i∈C(θ o)

ΔiE[ni(T )]

(b)
≤ ∑

i∈A\C(θ o)

ΔiCi + ∑
i∈C(θ o)

Δi

(
2+4|A|+ 12log(T )

β 2
i

)
≤ |A|max

i∈A
Δi(2+Ci +4|A|)+12log(T ) ∑

i∈C(θ o)

Δi

β 2
i
.

Here (a) follows from Proposition 1 and (b) from Proposition 2. Setting

D1 := |A|max
i∈A

ΔiCi and D2 := |A|max
i∈A

Δi(2+Ci +4|A|) (27)
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proves the regret bounds in (5) of the theorem. �

We now provide the following lemma to characterize the problem dependent con-

stants Ci given in Proposition 1. The proof for this lemma is given in the appendix.

Lemma 2 Under the hypotheses in Proposition 1, we have

Ci ≤ 1+4|A|+ min
θ :a∗(θ)=i

(2Ei(θ)(Ei(θ)+1)|A|+4|A|α10
1 (θ)),

where Ei(θ) = max{3,�144/α4
1 (θ)�} and α1(θ) = |μ1(θ o)−μ1(θ)|.

Now, using the above lemma with (27), we have a characterization of the problem

dependent constants in Theorem 1.

5 Simulations

In this section, we present detailed numerical simulation to illustrate the perfor-

mance of FP-UCB algorithm compared to the other standard multi-armed bandits

algorithms.

We first consider a simple setting to illustrate intuition behind FP-UCB algo-

rithm. Consider Θ = {θ 1,θ 2} with [μ1(θ 1)μ2(θ 1)] = [0.9,0.5] and [μ1(θ 2),μ2(θ 2)]
= [0.2,0.5]. Consider the reward distributions Pi, i = 1,2 to be Bernoulli. Clearly,

a∗(θ 1) = 1 and a∗(θ 2) = 2.

Suppose the true parameter is θ 1, i.e., θ o = θ 1. Then, it is easy to note that, in

this case B(θ o) is empty, and hence C(θ o) is empty. So, according to Theorem 1,

FP-UCB will achieve an O(1) regret. The performance of the algorithm for this

setting is shown in Fig. 2. Indeed, the regret doesn’t increase after some time steps,

which shows the bounded regret property. We note that in all the figures, the regret

is averaged over 10 runs, with the thick line showing the average regret and the band

around shows the ±1 standard deviation.

Now, suppose the true parameter is θ 2, i.e., θ o = θ 2. In this case B(θ o) is non-

empty. In fact, B(θ o) = θ 1 and C(θ o) = 1. So, according to Theorem 1, FP-UCB

will achieve an O(logT ) regret. The performance of the algorithm shown in Fig. 3

suggests the same. Fig. 4 plots the regret scaled by log t, and the curve converges to

a constant value, confirming the O(logT ) regret performance.

We consider a problem with 4 arms where the mean values for the arms (cor-

responding to the true parameter θ o) are μ(θ o) = [0.6,0.4,0.3,0.2]. Consider the

parameter set Θ such that μ(θ) for any θ is a permutation of μ(θ o). Note that the

cardinality of the parameter set, |Θ |= 24, in this case. It is straightforward to show

that B(θ o) is empty for this case. We compare the performance of FP-UCB algo-

rithm for this case with two standard multi-armed bandits algorithms. Fig. 5 shows

the performance of standard UCB algorithm and that of FP-UCB algorithm. Fig.

6 compares the performance of standard Thompson sampling algorithm with that

of FP-UCB algorithm. The standard bandits algorithm incurs an increasing regret,
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while FP-UCB achieves a bounded regret. For μ(θ ′) = [0.4,0.6,0.3,0.2], we have

a∗(θ ′) = 2. Now we give a typical value for the k2(θ ′), defined in (13), used in

the proof. For this θ ′ we have k2(θ ′) = min
{

k : k ≥ 3,k > �12log(k)/α2
1 (θ

′)�} =
min
{

k : k ≥ 3,k > �12log(k)/0.22�}= 2326 since α1(θ ′) = 0.2. When the reward

distributions are not necessarily Bernoulli, note that ki(θ) is 3 for any θ with

a∗(θ) = i satisfying α1(θ)> 2
√

3/e.
As before assume that μ(θ o) = [0.6,0.4,0.3,0.2]. But consider a larger param-

eter set Θ such that for any θ ∈ Θ , μ(θ) ∈ {0.6,0.4,0.3,0.2}4. Note that, due to

repetitions in the mean rewards for the arms, definition of a∗(θ) needs to be up-

dated, and the algorithmic way is to pick the minimum arm index out of which are

having the same mean rewards. For example, consider μ(θ) = [0.5,0.6,0.6,0.2],
and so as per our new definition, a∗(θ) = 2. Even in this scenario, we have B(θ o) to

be empty. Thus, FP-UCB achieves an O(1) regret rather than O(log(T )) as opposed

to standard UCB algorithm and Thompson sampling algorithm.

We now consider a case where FP-UCB incurs an increasing regret. We again

consider a problem with 4 arms where the mean values for the arms are μ(θ o) =
[0.4,0.3,0.2,0.2]. But consider a larger parameter set Θ such that for any θ ∈ Θ ,

μ(θ) ∈ {0.6,0.4,0.3,0.2}4. Note that the cardinality of Θ , |Θ |= 44 in this case. It

is easy to observe that B(θ o) is non-empty, for instance θ with mean arm values

[0.4,0.6,0.3,0.2] is in B(θ o). Fig. 7 compares the performance of standard UCB

and FP-UCB algorithms for this case. We see FP-UCB incurring O(log(T )) regret

here. Also note that the performance of the FP-UCB in this case also is superior to

the standard UCB algorithm.

Fig. 2 Fig. 3 Fig. 4

Fig. 5 Fig. 6 Fig. 7
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6 Conclusion and Future Work

We proposed an algorithm for finitely parameterized multi-armed bandits. Our FP-

UCB algorithm achieves bounded regret if the parameter set satisfies some neces-

sary condition and logarithmic regret in other cases. In both cases, the theoretical

performance guarantees for our algorithm are superior to the standard UCB algo-

rithm for multi-armed bandits. Our algorithm also shows superior numerical perfor-

mance.

In the future, we will extend this approach to linear bandits and contextual ban-

dits. Reinforcement learning problems where the underlying MDP is finitely pa-

rameterized is another research direction we plan to explore. We will also develop

similar algorithms using Thompson sampling approaches.

References

1. Rajeev Agrawal, Demosthenis Teneketzis, and Venkatachalam Anantharam. Asymptotically
efficient adaptive allocation schemes for controlled iid processes: Finite parameter space.
IEEE Transactions on Automatic Control, 34(3):258–267, 1989.

2. Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit
problem. In Proceedings of the 25th Annual Conference on Learning Theory, volume 23,
pages 39.1–39.26. PMLR, 2012.

3. Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear
payoffs. In International Conference on Machine Learning, pages 127–135, 2013.

4. Onur Atan, Cem Tekin, and Mihaela Schaar. Global multi-armed bandits with hölder conti-
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20. Tor Lattimore and Rémi Munos. Bounded regret for finite-armed structured bandits. In Ad-
vances in Neural Information Processing Systems, pages 550–558, 2014.

21. Lennart Ljung. System Identification: Theory for the User. Prentice Hall, New Jersey, 1998.
22. Odalric-Ambrym Maillard and Shie Mannor. Latent bandits. In International Conference on

Machine Learning, pages 136–144, 2014.
23. Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via

posterior sampling. In Advances in Neural Information Processing Systems, pages 3003–3011,
2013.

24. Cem Tekin and Mingyan Liu. Approximately optimal adaptive learning in opportunistic spec-
trum access. In 2012 Proceedings IEEE INFOCOM, pages 1548–1556. IEEE, 2012.

25. William R Thompson. On the likelihood that one unknown probability exceeds another in
view of the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

26. Sattar Vakili and Qing Zhao. Achieving complete learning in multi-armed bandit problems.
In 2013 Asilomar Conference on Signals, Systems and Computers, pages 1778–1782. IEEE,
2013.

27. Roman Vershynin. High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press, 2018.

28. Chih-Chun Wang, Sanjeev R Kulkarni, and H Vincent Poor. Bandit problems with side obser-
vations. IEEE Transactions on Automatic Control, 50(3):338–355, 2005.

29. Shi Zong, Hao Ni, Kenny Sung, Nan Rosemary Ke, Zheng Wen, and Branislav Kveton. Cas-
cading bandits for large-scale recommendation problems. In Proceedings of the Thirty-Second
Conference on Uncertainty in Artificial Intelligence, pages 835–844. AUAI Press, 2016.

Appendix

6.1 Proof of Lemma 1

Proof Fix an i ∈C(θ o). Then there exists a θ ∈ B(θ o) such that a∗(θ) = i. For this

θ , by the definition of B(θ o), we have

μ1(θ o) = μ1(θ). (28)

Using Assumption 1, it follows that

μi(θ) = μa∗(θ)(θ)> μ1(θ) = μ1(θ o) = μa∗(θ o)(θ o)> μi(θ o).

Thus, βi = minθ :θ∈B(θ o),a∗(θ)=i |μi(θ o)−μi(θ)|> 0.
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Now, for any given θ considered above, suppose |μi(θ)− μi(θ o)| ≤ Δi. Since

Δi > 0 by definition, this implies that

μa∗(θ)(θ) = μi(θ)≤ Δi +μi(θ o) (a)
= μ1(θ o)−μi(θ o)+μi(θ o) = μ1(θ o) (b)

= μ1(θ),

where (a) follows from definition of Δi and (b) from (28). This is a contradiction

because μa∗(θ)(θ)> μ1(θ).
Thus, |μi(θ)−μi(θ o)|> Δi for any θ ∈ B(θ o) such that a∗(θ) = i. So, βi > Δi.�

6.2 Proof of Lemma 2

Proof We have Ci = 1+4|A|+minθ :a∗(θ)=i(ki(θ)+Ki(θ)).
First recall that ki(θ) := min

{
k : k ≥ 3,k > �12log(k)/α2

1 (θ)�
}

. Since log(x)≤
(x−1)/

√
x for all 1 ≤ x < ∞, we have{

k : k ≥ 3,k >
12(k−1)

α2
1 (θ)

√
k
+1

}
⊆ {k : k ≥ 3,k > �12log(k)/α2

1 (θ)�
}
.

The LHS of the above equation simplifies to
{

k : k ≥ 3,k > 144/α4
1 (θ)
}

. Thus, we

have ki(θ)≤ max{3,�144/α4
1 (θ)�}.

Now, recall that Ki(θ) is defined as

Ki(θ) =
T

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

≤
∞

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

=
Ei(θ)

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

+
∞

∑
k=Ei(θ)+1

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5
. (29)

We analyze the first summation in (29). Thus, we get,

Ei(θ)

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

≤
Ei(θ)

∑
k=ki(θ)

2|A|k ≤
Ei(θ)

∑
k=1

2|A|k = Ei(θ)(Ei(θ)+1)|A|. (30)

Since log(x)≤ (x−1)/
√

x for all 1 ≤ x < ∞, we have

k−
⌈

12log(k)
α2

1 (θ)

⌉
≥ k− 12log(k)

α2
1 (θ)

−1 ≥ (k−1)(α2
1 (θ)

√
k−12)

α2
1 (θ)

√
k

.

Using this, the second summation in (29) can be bounded as
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∞

∑
k=Ei(θ)+1

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

≤
∞

∑
k=Ei(θ)+1

2|A|k7/2α10
1 (θ)

((k−1)(α2
1 (θ)

√
k−12))5

(a)
≤

∞

∑
k=Ei(θ)+1

2|A|k7/2α10
1 (θ)

(k−1)5

≤ 2|A|α10
1 (θ)

∞

∑
k=4

k7/2

(k−1)5

(b)
≤ 4|A|α10

1 (θ) (31)

where (a) follows from the observation that (α2
1 (θ)

√
k−12)> 1 for k ≥ Ei(θ)+1

and (b) follows from calculus (an integral bound).

Thus using (30) and (31) in (29), we get Ki(θ)≤Ei(θ)(Ei(θ)+1)|A|+4|A|α10
1 (θ).

This concludes the proof of this lemma. �
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