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Abstract This paper focuses on the maximal distribution on sublinear expectation

space and introduces a new type of random fields with the maximally distributed

finite-dimensional distribution. The corresponding spatial maximally distributed

white noise is constructed, which includes the temporal-spatial situation as a spe-

cial case due to the symmetrical independence property of maximal distribution.

In addition, the stochastic integrals with respect to the spatial or temporal-spatial

maximally distributed white noises are established in a quite direct way without the

usual assumption of adaptability for integrand.

1 Introduction

In mathematics and physics, a random field is a type of parameterized family of

random variables. When the parameter is time t ∈ R+, we call it a stochastic process,

or a temporal random field. Quite often the parameter is space x ∈ Rd , or time-space

(t, x) ∈ R+ × Rd. In this case, we call it a spatial or temporal-spatial random field.

A typical example is the electromagnetic wave dynamically spread everywhere in

our R3-space or more exactly, in R+ × R3-time-space. In principle, it is impossible

to know the exact state of the electromagnetic wave of our real world , namely, it is

a nontrivial random field parameterized by the time-space (t, x) ∈ R+ × R3.

Classically, a random field is defined on a given probability space (Ω,F , P). But

for the above problem, can we really get to know the probability P? This involves

the so called problem of uncertainty of probabilities.
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Over the past few decades, non-additive probabilities or nonlinear expectations

have become active domains for studying uncertainties, and received more and more

attention in many research fields, such as mathematical economics, mathematical

finance, statistics, quantum mechanics. A typical example of nonlinear expectation

is sublinear one, which is used to model the uncertainty phenomenon characterized

by a family of probability measures {Pθ }θ∈Θ in which the true measure is unknown,

and such sublinear expectation is usually defined by

E[X] := sup
θ∈Θ

EPθ
[X].

This notion is also known as the upper expectation in robust statistics (see Huber

[9]), or the upper prevision in the theory of imprecise probabilities (see Walley

[20]), and has the closed relation with coherent risk measures (see Artzner et al.

[1], Delbaen [4], Föllmer and Schied [6]). A first dynamical nonlinear expectation,

called g-expectation was initiated by Peng [12].

The foundation of sublinear expectation theory with a new type of G-Brownian

motion and the corresponding Itô’s stochastic calculus was laid in Peng [13], which

keeps the rich and elegant properties of classical probability theory except linearity of

expectation. Peng [15] initially defined the notion of independence and identical dis-

tribution (i.i.d.) based on the notion of nonlinear expectation instead of the capacity.

Based on the notion of new notions, the most important distribution calledG-normal

distribution introduced, which can be characterized by the so-calledG-heat equation.

The notions ofG-expectation andG-Brownian motion can be regarded as a nonlinear

generalization of Wiener measure and classical Brownian motion. The correspond-

ing limit theorems as well as stochastic calculus of Itô’s type underG-expectation are

systematically developed in Peng [18]. Besides that, there is also another important

distribution, called maximal distribution. The distribution of maximally distributed

random variable X can be calculated simply by

E[ϕ(X )] = max
v∈[−E[−X],E[X]]

ϕ(v), ϕ ∈ Cb (R).

The law of large numbers under sublinear expectation (see Peng [18]) shows that

if {Xi }
∞
i=1

is a sequence of independent and identical distributed random variables

with limc→∞ E[( |X1 | − c)+] = 0, then the sample average converges to maximal

distribution in law, i.e.,

lim
n→∞
E[ϕ(

X1 + · · · + Xn

n
)] = max

v∈[−E[−X1],E[X1]]
ϕ(v), ∀ϕ ∈ Cb (R).

We note that the finite-dimensional distribution for quadratic variation process of

G-Brownian motion is also maximal distributed.

Recently, Ji and Peng [10] introduced a new G-Gaussian random fields, which

contains a type of spatial white noise as a special case. Such white noise is a

natural generalization of the classical Gaussian white noise (for example, see Walsh

[21], Dalang [2] and Da Prato and Zabczyk [3]). As pointed in [10], the space-
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indexed increments do not satisfy the property of independence. Once the sublinear

G-expectation degenerates to linear case, the property of independence for the space-

indexed part turns out to be true as in the classical probability theory.

In this paper, we introduce a very special but also typical random field, called

maximally distributed random field, in which the finite-dimensional distribution is

maximally distributed. The corresponding space-indexed white noise is also con-

structed. It is worth mentioning that the space-indexed increments of maximal white

noise is independent, which is essentially different from the case of G-Gaussian

white noise. Thanks to the symmetrical independence of maximally distributed

white noise, it is natural to view the temporal-spatial maximally distributed white

noise as a special case of the space-indexed maximally distributed white noise.

The stochastic integrals with respect to spatial and temporal-spatial maximally dis-

tributed white noises can be constructed in a quite simple way, which generalize

the stochastic integral with respect to quadratic variation process of G-Brownian

motion introduced in Peng [18]. Furthermore, due to the boundedness of maximally

distributed random field, the usual assumption of adaptability for integrand can be

dropped. We emphasize that the structure of maximally distributed white noise is

quite simple, it can be determined by only two parameters μ and μ, and the calcula-

tion of the corresponding finite-dimensional distribution is taking the maximum of

continuous function on the domain determined by μ and μ. The use of maximally

distributed random fields for modelling purposes in applications can be explained

mainly by the simplicity of their construction and analytic tractability combined with

the maximal distributions of marginal which describe many real phenomena due to

the law of large numbers with uncertainty.

This paper is organized as follows. In Section 2, we review basic notions and

results of nonlinear expectation theory and the notion and properties of maximal

distribution. In Section 3, we first recall the general setting of random fields under

nonlinear expectations, and then introduce the maximally distributed random fields.

In Section 4, we construct the spatial maximally distributed white noise and study

the corresponding properties. The properties of spatial as well as temporal-spatial

maximally distributed white noise and the related stochastic integrals are established

in Section 5.

2 Preliminaries

In this section, we recall some basic notions and properties in the nonlinear expecta-

tion theory. More details can be found in Denis et al. [5], Hu and Peng [8] and Peng

[13, 14, 15, 16, 18, 19].

Let Ω be a given nonempty set andH be a linear space of real-valued functions

on Ω such that if X ∈ H , then |X | ∈ H .H can be regarded as the space of random

variables. In this paper, we consider a more convenient assumption: if random

variables X1,· · · ,Xd ∈ H , then ϕ(X1, X2, · · · , Xd) ∈ H for each ϕ ∈ Cb.Lip (Rd).
Here Cb.Lip (Rd) is the space of all bounded and Lipschitz functions on Rd.
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We call X = (X1, · · · , Xn), Xi ∈ H , 1 ≤ i ≤ n, an n-dimensional random vector,

denoted by X ∈ H n.

Definition 1 A nonlinear expectation Ê onH is a functional Ê : H → R satisfying

the following properties: for each X,Y ∈ H ,

(i) Monotonicity: Ê[X] ≥ Ê[Y ] if X ≥ Y ;

(ii) Constant preserving: Ê[c] = c for c ∈ R;

The triplet (Ω,H , Ê) is called a nonlinear expectation space. If we further assume

that

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(iv) Positive homogeneity: Ê[λX] = λÊ[X] for λ ≥ 0.

Then Ê is called a sublinear expectation, and the corresponding triplet (Ω,H , Ê) is

called a sublinear expectation space.

Let (Ω,H , Ê) be a nonlinear (resp., sublinear) expectation space. For each given

n-dimensional random vector X , we define a functional on Cb.Lip (Rn) by

FX [ϕ] := Ê[ϕ(X )], for each ϕ ∈ Cb.Lip (Rn).

FX is called the distribution of X . It is easily seen that (Rn,Cb.Lip (Rn), FX ) forms

a nonlinear (resp., sublinear) expectation space. If FX is not a linear functional on

Cb.Lip (Rn), we say X has distributional uncertainty.

Definition 2 Two n-dimensional random vectors X1 and X2 defined on nonlinear

expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2) respectively, are called identically

distributed, denoted by X1
d
= X2, if FX1

= FX2
, i.e.,

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cb.Lip (Rn).

Definition 3 Let (Ω,H , Ê) be a nonlinear expectation space. An n-dimensional

random vector Y is said to be independent from another m-dimensional random

vector X under the expectation Ê if, for each test function ϕ ∈ Cb.Lip (Rm+n), we

have

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x,Y )]x=X].

Remark 1 Peng [15] (see also Peng [18]) introduced the notions of the distribution

and the independence of random variables under a nonlinear expectation, which play

a crucially important role in the nonlinear expectation theory.

For simplicity, the sequence {Xi }
n
i=1

is called independence if Xi+1 is independent

from (X1, · · · , Xi ) for i = 1, 2, · · · , n−1. Let X̄ and X be two n-dimensional random

vectors on (Ω,H , Ê). X̄ is called an independent copy of X , if X̄ d
= X and X̄ is

independent from X .

Remark 2 It is important to note that “Y is independent from X” does not imply that

“X is independent from Y” (see Peng [18]).
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In this paper, we focus on an important distribution on sublinear expectation space

(Ω,H , Ê), called maximal distribution.

Definition 4 An n-dimensional random vector X = (X1, · · · , Xn) on a sublinear

expectation space (Ω,H , Ê) is said to be maximally distributed, if there exists a

bounded and closed convex subset Λ ⊂ Rn such that, for every continuous function

ϕ ∈ C(Rn),
Ê[ϕ(X )] = max

x∈Λ
ϕ(x).

Remark 3 Here Λ characterizes the uncertainty of X . It is easy to check that this

maximally distributed random vector X satisfies

X + X̄ d
= 2X,

where X̄ is an independent copy of X . Conversely, suppose a random variable X
satisfying X + X̄ d

= 2X , if we further assume the uniform convergence condition

limc→∞ Ê[( |X | −c)+] = 0 holds, then we can deduce that X is maximally distributed

by the law of large numbers (see Peng [18]). An interesting problem is that is X still

maximally distributed without such uniform convergence condition? We emphasize

that the law of large numbers does not hold in this case, a counterexample can be

found in Li and Zong [11].

Proposition 1 Let g(p) = maxv∈Λ v · p be given. Then an n-dimensional random

variable is maximally distributed if and only if for each ϕ ∈ C(Rn), the following

function

u(t, x) := Ê[ϕ(x + tX )] = max
v∈Λ
ϕ(x + tv), (t, x) ∈ [0,∞) × Rn (1)

is the unique viscosity solution of the the following nonlinear partial differential

equation

∂tu − g(Dxu) = 0, u|t=0 = ϕ(x). (2)

This property implies that, each sublinear function g on Rn determines uniquely

a maximal distribution. The following property is easy to check.

Proposition 2 Let X be an n-dimensional maximally distributed random vector

characterized by its generating function

g(p) := Ê[X · p], p ∈ Rn .

Then, for any function ψ ∈ C(Rn), Y = ψ(X ) is also an R-valued maximally

distributed random variable:

E[ϕ(Y )] = max
v∈[ρ,ρ]

ϕ(v), ρ = max
γ∈Λ
ψ(γ), ρ = min

γ∈Λ
ψ(γ).
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Proposition 3 Let X = (X1, · · · , Xn) be an n-dimensional maximal distribution on

a sublinear expectation space (Ω,H , Ê). If the corresponding generating function

satisfies, for all p = (p1, · · · , pn) ∈ Rn,

g(p) = Ê[X1p1 + · · · + Xnpn] = Ê[X1p1] + · · · + Ê[Xnpn],

then {Xi }
n
i=1

is a sequence of independent maximally distributed random variables.

Moreover, for any permutation π of {1, 2, · · · , n}, the sequence {Xπ (i) }
n
i=1

is also

independent.

Proof For i = 1, · · · , n, we denote μi = Ê[Xi] and μ
i
= −Ê[−Xi]. Since

g(p) = Ê[X1 · p1 + · · · + Xn · pn] = Ê[X1 · p1] + Ê[X2 · p2] + · · · + Ê[Xn · pn]

=

n∑
i=1

max
vi ∈[μ

i
,μi ]

pivi = max
(v1, · · · ,vn )∈⊗ni=1

[μ
i
,μi ]

(p1v1 + · · · + pnvn),

it follows Proposition 1 that (X1, · · · , Xn) is an n-dimensional maximally distributed

random vector such that, ∀ϕ ∈ C(Rn),

Ê[ϕ(X1, · · · , Xn)] = max
(v1, · · · ,vn )∈⊗ni=1

[μ
i
,μi ]
ϕ(v1, · · · , vn).

It is easy to check that {Xi }
n
i=1

is independent, and so does the permuted sequence

{Xπ (i) }
n
i=1

. �

Remark 4 The independence of maximally distributed random variables is symmet-

rical. But, as discussed in Remark 2, under a sublinear expectation, X is independent

from Y does not automatically imply that Y is also independent from X . In fact, Hu

and Li [7] proved that, if X is independent fromY , andY is also independent from X ,

and both of X and Y have distributional uncertainty, then (X,Y ) must be maximally

distributed.

3 Maximally distributed random fields

In this section, we first recall the general setting of random fields defined on a

nonlinear expectation space introduced by Ji and Peng [10].

Definition 5 Under a given nonlinear expectation space (Ω,H , Ê), a collection of

m-dimensional random vectors W = (Wγ)γ∈Γ is called an m-dimensional random

field indexed by Γ, if for each γ ∈ Γ, Wγ ∈ H
m.

In order to introduce the notion of finite-dimensional distribution of a random

field W , we denote the family of all sets of finite indices by

JΓ := {γ = (γ1, · · · , γn) : ∀n ∈ N, γ1, · · · , γn ∈ Γ, γi � γj if i � j}.
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Definition 6 Let (Wγ)γ∈Γ be an m-dimensional random field defined on a nonlinear

expectation space (Ω,H , Ê). For each γ = (γ1, · · · , γn) ∈ JΓ and the corresponding

random vector Wγ = (Wγ1
, · · · ,Wγn ), we define a functional on Cb.Lip (Rn×m) by

F
W
γ [ϕ] = Ê[ϕ(Wγ)]

The collection (FWγ [ϕ])γ∈JΓ is called the family of finite-dimensional distributions

of (Wγ)γ∈Γ.

It is clear that, for each γ ∈ JΓ, the triple (Rn×m,Cb.Lip (Rn×m), FWγ ) constitutes a

nonlinear expectation space.

Let (W (1)
γ )γ∈Γ and (W (2)

γ )γ∈Γ be two m-dimensional random fields defined on

nonlinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2) respectively. They are

said to be identically distributed, denoted by (W (1)
γ )γ∈Γ

d
= (W (2)

γ )γ∈Γ, or simply

W (1) d
= W (2) , if for each γ = (γ1, · · · , γn) ∈ JΓ,

Ê1[ϕ(W (1)
γ )] = Ê2[ϕ(W (2)

γ )], ∀ϕ ∈ Cb.Lip (Rn×m).

For any given m-dimensional random field W = (Wγ)γ∈Γ, the family of its finite-

dimensional distributions satisfies the following properties of consistency:

(1) Compatibility: For each (γ1, · · · , γn, γn+1) ∈ JΓ and ϕ ∈ Cb.Lip (Rn×m),

F
W
γ1, · · · ,γn

[ϕ] = FWγ1, · · · ,γn,γn+1
[ϕ̃], (3)

where the function ϕ̃ is a function on R(n+1)×m defined for any y1, · · · , yn, yn+1 ∈

R
m,

ϕ̃(y1, · · · , yn, yn+1) = ϕ(y1, · · · , yn);

(2) Symmetry: For each (γ1, · · · , γn) ∈ JΓ, ϕ ∈ Cb.Lip (Rn×m) and each permu-

tation π of {1, · · · , n},

F
W
γπ (1), · · · ,γπ (n) [ϕ] = F

W
γ1, · · · ,γn

[ϕπ] (4)

where we denote ϕπ (y1, · · · , yn) = ϕ(yπ (1), · · · , yπ (n) ), for y1, · · · , yn ∈ R
m.

The following theorem generalizes the classical Kolmogorov’s existence theorem to

the situation of sublinear expectation space, which is a variant of Theorem 3.8 in

Peng [17]. The proof can be founded in Ji and Peng [10].

Theorem 1 Let {Fγ, γ ∈ JΓ} be a family of finite-dimensional distributions satisfying

the compatibility condition (3) and the symmetry condition (4). Then there exists

an m-dimensional random field W = (Wγ)γ∈Γ defined on a nonlinear expectation

space (Ω,H , Ê) whose family of finite-dimensional distributions coincides with

{Fγ, γ ∈ JΓ}. Moreover, if we assume that each Fγ in {Fγ, γ ∈ JΓ} is sublinear, then

the corresponding expectation Ê on the space of random variables (Ω,H ) is also

sublinear.
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Now we consider a new random fields under a sublinear expectation space.

Definition 7 Let (Wγ)γ∈Γ be an m-dimensional random field, indexed by Γ, defined

on a sublinear expectation space (Ω,H , Ê). (Wγ)γ∈Γ is called a maximally distributed

random field if for each γ = (γ1, · · · , γn) ∈ JΓ, the following (n × m)-dimensional

random vector

Wγ =(Wγ1
, · · · ,Wγn )

=(W (1)
γ1
, · · ·W (m)

γ1
, · · · ,W (1)

γn
, · · · ,W (m)

γn
), W ( j)

γi ∈ H ,

is maximally distributed.

For each γ = (γ1, · · · , γn) ∈ JΓ, we define

g
W
γ (p) = Ê[Wγ · p], p ∈ Rn×m,

Then (gWγ )γ∈JΓ constitutes a family of sublinear functions:

g
W
γ : Rn×m �→ R, γ = (γ1, · · · , γn), γi ∈ Γ, 1 ≤ i ≤ n, n ∈ N,

which satisfies the properties of consistency in the following sense:

(1) Compatibility: For any (γ1, · · · , γn, γn+1) ∈ JΓ and p = (pi)n×mi=1
∈ Rn×m,

g
W
γ1, · · · ,γn,γn+1

(p̄) = g
W
γ1, · · · ,Wγn

(p), (5)

where p̄ =
(
p
0

)
∈ R(n+1)×m ;

(2) Symmetry: For any permutation π of {1, · · · , n},

g
W
γπ (1), · · · ,γπ (n) (p) = g

W
γ1, · · · ,γn

(π−1(p)), (6)

where π−1(p) = (p(1), . . . , p(n) ),

p(i) = (p(π−1 (i)−1)m+1, . . . , p(π−1 (i)−1)m+m ) , 1 ≤ i ≤ n.

If the above type of family of sublinear functions (gγ )γ∈JΓ is given, following

the construction procedure in the proof of Theorem 3.5 in Ji and Peng [10], we can

construct a maximally distributed random field on sublinear expectation space.

Theorem 2 Let (gγ)γ∈JΓ be a family of real-valued functions such that, for each

γ = (γ1, · · · , γn) ∈ JΓ, the real function gγ is defined on Rn×m �→ R and satisfies

the sub-linearity. Moreover, this family (gγ)γ∈JΓ satisfies the compatibility condition

(5) and symmetry condition (6). Then there exists an m-dimensional maximally

distributed random field (Wγ)γ∈Γ on a sublinear expectation space (Ω,H , Ê) such

that for each γ = (γ1, · · · , γn) ∈ JΓ, Wγ = (Wγ1
, · · · ,Wγn ) is maximally distributed

with generating function
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g
W
γ (p) = Ê[Wγ · p] = gγ (p), for any p ∈ Rn×m.

Furthermore, if there exists another maximally distributed random field (W̄γ)γ∈Γ,
with the same index set Γ, defined on a sublinear expectation space (Ω̄, H̄ , Ē) such

that for each γ = (γ1, · · · , γn) ∈ JΓ, W̄γ is maximally distributed with the same

generating function gγ, namely,

Ē[W̄γ · p] = gγ (p) for any p ∈ Rn×m,

then we have W d
= W̄ .

4 Maximally distributed white noise

In this section, we formulate a new type of maximally distributed white noise on Rd.

Given sublinear expectation space Ω,H , Ê, let Lp (Ω) be the completion of H

under the Banach norm ‖X ‖ := Ê[|X |p]
1
p . For any X,Y ∈ L1(Ω), we say that X = Y

if Ê[|X − Y |] = 0. As shown in Chapter 1 of Peng [18], Ê can be continuously

extended to the mapping from L1(Ω) to R and properties (i)-(iv) of Definition 1 still

hold. Moreover, (Ω,L1(Ω), Ê) also forms a sublinear expectation space, which is

called the complete sublinear expectation space.

Definition 8 Let (Ω,L1(Ω), Ê) be a complete sublinear expectation space and Γ =

B0(Rd) := {A ∈ B(Rd), λA < ∞}, where λA denotes the Lebesgue measure of

A ∈ B(Rd). Let g : R �→ R be a given sublinear function, i.e.,

g(p) = μp+ − μp−, −∞ < μ ≤ μ < +∞.

A random field W = {WA}A∈Γ is called a one-dimensional maximally distributed

white noise if

(i) For each A1, · · · , An ∈ Γ, (WA1
, · · · ,WAn

) is a Rn-maximally distributed ran-

dom vector under Ê, and for each A ∈ Γ,

Ê[WA · p] = g(p)λA, p ∈ R. (7)

(ii) Let A1, A2, · · · , An be in Γ and mutually disjoint, then {WAi
}n
i=1

are indepen-

dent sequence, and

WA1∪A2∪···∪An
= WA1

+WA2
+ · · · +WAn

. (8)

Remark 5 For each A ∈ Γ, we can restrict that WA takes values in [λAμ, λAμ].

Indeed, let

dA(x) := min
y∈[λAμ,λAμ]

{|x − y |},
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by the definition of maximal distribution,

Ê[dA(WA)] = max
v∈[λAμ,λAμ]

min
y∈[λAμ,λAμ]

{|v − y |} = 0,

which implies that dA(WA) = 0.

We can construct a spatial maximal white noise satisfying Definition 8 in the

following way.

For each γ = (A1, · · · , An) ∈ JΓ , Γ = B0(Rd ), consider the mapping gγ (·) :

R
n → R defined as follows:

gγ (p):=
∑

k∈{0,1}n

g(k · p)λB(k), p ∈ Rn, (9)

where k = (k1, · · · , kn) ∈ {0, 1}n, and B(k) = ∩n
j=1

Bj , with

Bj =

{
Aj if k j = 1,

Ac
j

if k j = 0.

For example, given A1, A2, A3 ∈ Γ and p = (p1, p2, p3) ∈ R3,

gA1,A2,A3
(p) = g(p1 + p2 + p3)λA1∩A2∩A3

+ g(p1 + p2)λA1∩A2∩A
c
3
+ g(p2 + p3)λAc

1
∩A2∩A3

+ g(p1 + p3)λA1∩A
c
2
∩A3

+ g(p1)λA1∩A
c
2
∩Ac

3
+ g(p2)λAc

1
∩A2∩A

c
3
+ g(p3)λAc

1
∩Ac

2
∩A3
.

Obviously, for each γ = (A1, · · · , An) ⊂ Γ, gγ (·) defined by (9) is a sublinear

function defined on Rn due to the sub-linearity of function g(·). The following

property shows that the consistency conditions (5) and (6) also hold for {gγ }γ∈JΓ .

Proposition 4 The family {gγ }γ∈JΓ defined by (9) satisfies the consistency conditions

(5) and (6).

Proof For compatibility (5), given A1, · · · , An, An+1 ∈ Γ and p̄T = (pT , 0) ∈ Rn+1,

we have

gA1, · · · ,An+1
(p̄) =

∑
k∈{0,1}n+1

g(k · p̄)λB(k)

=

∑
k′ ∈{0,1}n

g(k ′ · p)(λB(k′)∩An+1
+ λB(k′)∩Ac

n+1
)

=

∑
k′ ∈{0,1}n

g(k ′ · p)λB(k′) = gA1, · · · ,An
(p).

The symmetry (6) can be easily verified since the operators k · p and B(k) = ∩n
j=1

Bj

are also symmetry. �



Maximally Distributed Random Fields under Sublinear Expectation 349

Now we present the existence of the maximally distributed white noises under the

sublinear expectation.

Theorem 3 For each given sublinear function

g(p) = max
μ∈[μ,μ]

(μ · p) = μp+ − μp−, p ∈ R,

there exists a one-dimensional maximally distributed random field (Wγ)γ∈Γ on a

sublinear expectation space (Ω,L1(Ω), Ê) such that, for each γ = (A1, · · · , An) ∈
JΓ, Wγ = (WA1

, · · · ,WAn
) is maximally distributed.

Furthermore, (Wγ)γ∈Γ is a spatial maximally distributed white noise under

(Ω,L1(Ω), Ê), namely, conditions (i) and (ii) of Definition 8 are satisfied.

If (W̄γ)γ∈Γ is another maximally distributed white noise with the same sublinear

function g in (9), then W̄ d
= W .

Proof Thanks to Proposition 4 and Theorem 2, the existence and uniqueness of the

maximally distributed random fieldW in a sublinear expectation space (Ω,L1(Ω), Ê)
with the family of generating functions defined by (9) hold. We only need to verify

that the maximally distributed random field W satisfies conditions (i) and (ii) of

Definition 8.

For each A ∈ Γ, Ê[WA ·p] = g(p)λA by Theorem 2 and (9), thus (i) of Definition 8

holds.

We note that if {Ai }
n
i=1

are mutually disjoint, then for p = (p1, · · · , pn) ∈ Rn, by

(9), we have

Ê[p1WA1
+ · · · + pnWAn

] = g(p1)λA1
+ · · · + g(pn)λAn

,

thus the independence of {WAi
}n
i=1

can be implied by Proposition 3.

In order to prove (8), we only consider the case of two disjoint sets. Suppose that

A1 ∩ A2 = ∅, A3 = A1 ∪ A2,

an easy computation of (9) shows that

gA1,A2,A3
(p) =g(p1 + p3)λA1

+ g(p2 + p3)λA2

= max
v1∈[μλA1

,μλA1
]

max
v2∈[μλA2

,μλA2
]

max
v3=v1+v2

(p1 · v1 + p2 · v2 + p3 · v3).

Thus, for each ϕ ∈ C(R3),

Ê[ϕ(WA1
,WA2

,WA3
)] = max

v1∈[μλA1
,μλA1

]
max

v2∈[μλA2
,μλA2

]
max

v3=v1+v2

ϕ(v1, v2, v3).

In particular, we set ϕ(v1, v2, v3) = |v1 + v2 − v3 |, it follows that

Ê[|WA1
+WA2

−WA1∪A2
|] = 0.

which implies that



350 Xinpeng Li and Shige Peng

WA1∪A2
= WA1

+WA2
.

Finally, (ii) of Definition 8 holds. �

Remark 6 The finite-dimensional distribution of maximally distributed whiten noise

can be uniquely determined by two parameters μ and μ, which can be simply

calculated by taking the maximum of the continuous function over the domain

determined by μ and μ.

Similar to the invariant property of G-Gaussian white noise introduced in Ji and

Peng [10], it also holds for maximally distributed white noise due to the well-known

invariance of the Lebesgue measure under rotation and translation.

Proposition 5 For each p ∈ Rd and O ∈ O(d) := {O ∈ Rd×d : OT
= O−1}, we set

Tp,O (A) = O · A + p, A ∈ Γ.

Then, for each A1, · · · , An ∈ Γ,

(WA1
, · · · ,WAn

) d
= (WTp,O (A1 ), · · · ,WTp,O (An ) ).

5 Spatial and temporal maximally distributed white noise and

related stochastic integral

In Ji and Peng [10], we see that a spatial G-white noise is essentially different

from the temporal case or the temporal-spatial case, since there is no independence

property for the spatialG-white noise. But for the maximally distributed white noise,

spatial or temporal-spatial maximally distributed white noise has the independence

property due to the symmetrical independence for maximal distribution.

Combining symmetrical independence and boundedness properties of maximal

distribution, the integrand random fields can be largely extended when we consider

the stochastic integral with respect to spatial maximally distributed white noise. For

stochastic integral with respect to temporal-spatial case, the integrand random fields

can even contain the “non-adapted” situation.

5.1 Stochastic integral with respect to the spatial maximally

distributed white noise

We firstly define the stochastic integral with respect to the spatial maximally dis-

tributed white noise in a quite direct way.

Let {Wγ }γ∈Γ , Γ = B0(Rd), be a one-dimensional maximally distributed white

noise defined on a complete sublinear expectation space (Ω,L1(Ω), Ê), with g(p) =
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μp+ − μp−, −∞ < μ ≤ μ < ∞. We introduce the following type of random fields,

called simple random fields.

Given p ≥ 1, set

Mp,0
g (Ω) = {η(x, ω) =

n∑
i=1

ξi (ω)1Ai
(x), A1, · · · , An ∈ Γ are mutually disjoint

i = 1, 2, . . . , n, ξ1, · · · , ξn ∈ Lp (Ω), n = 1, 2, · · · , }.

For each simple random fields η ∈ Mp,0
g (Ω) of the form

η(x, ω) =
n∑
i=1

ξi (ω)1Ai
(x), (10)

the related Bohner’s integral for η with respect to the Lebesgue measure λ is

IB (η) =
∫
Rd

η(x, ω)λ(dx) :=

n∑
i=1

ξi (ω)λAi
.

It is immediate that IB (η) : Mp,0
g (Ω) �→ Lp (Ω) is a linear and continuous mapping

under the norm for η, defined by,

‖η‖M p = Ê[

∫
Rd

|η(x, ω) |pλ(dx)]
1
p .

The completion of Mp,0
g (Ω) under this norm is denoted by Mp

g (Ω) which is a Banach

space. The unique extension of the mapping IB is denoted by

∫
Rd

η(x, ω)λ(dx) := IB (η), η ∈ Mp
g (Ω).

Now for a simple random field η ∈ Mp,0
g (Ω) of form (10), we define its stochastic

integral with respect to W as

IW (η) :=

∫
Rd

η(x, ω)W (dx) =
n∑
i=1

ξi (ω)WAi
.

With this formulation, we have the following estimation.

Lemma 1 For each η ∈ M1,0
g (Ω) of form (10), we have

Ê
[�����
∫
Rd

η(x, ω)W (dx)
�����
]
≤ κÊ

[∫
Rd

|η(x, ω) |λ(dx)
]

(11)

where κ = max{|μ|, |μ|}.

Proof We have
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Ê[|

∫
Rd

η(x, ω)W (dx) |] = Ê[|

N∑
i=1

ξi (ω)WAi
|] ≤ Ê[

N∑
i=1

|ξi (ω) | · |WAi
|]

≤ κÊ[

N∑
i=1

|ξi (ω) | · λAi
] = κÊ[‖η‖M1

g (Ω)].

The last inequality is due to the boundedness of maximal distribution (see Remark

5). �

This lemma shows that IW : M1,0
g (Ω) �→ L1(Ω) is a linear continuous mapping.

Consequently, IW can be uniquely extended to the whole domain M1
g (Ω). We still

denote this extended mapping by

∫
Rd

ηW (dx) := IW (η).

Remark 7 Different from the stochastic integrals with respect to G-white noise in

Ji and Peng [10] which is only defined for the deterministic integrand, here the

integrand can be a random field.

5.2 Maximally distributed random fields of temporal-spatial types and

related stochastic integral

It is well-known that the framework of the classical white noise defined in a prob-

ability space (Ω,F , P) with 1-dimensional temporal and d-dimensional spatial pa-

rameters is in fact a R1+d-indexed space type white noise. But Peng [17] and then

Ji and Peng [10] observed a new phenomenon: Unlike the classical Gaussian white

noise, the d-dimensional space-indexed G-white noise cannot have the property of

incremental independence, thus spatial G-white noise is essentially different from

temporal-spatial or temporal one. Things will become much direct for the case of

maximally distributed white noise due to the incremental independence property of

maximal distributions. This means that a time-space maximally distributed (1+ d)-
white noise is essentially a (1+ d)-spatial white noise. The corresponding stochastic

integral is also the same. But in order to make clear the dynamic properties, we

still provide the description of the temporal-spatial white-noise on the time-space

framework:

R
+ × Rd = {(t, x1, . . . , xd) ∈ R+ × Rd},

where the index t ∈ [0,∞) is specially preserved to be the index for time.

Let Γ = {A ∈ B(R+ × Rd ), λA < ∞}, the maximally distributed white noise

{WA}A∈Γ is just like in the spatial case with dimension 1 + d.

More precisely, let
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Ω = {ω ∈ RΓ : ω(A ∪ B) = ω(A) +ω(B),
∀A, B ∈ Γ, A∪ B = ∅},

and W = (Wγ (ω) = ωγ )γ∈Γ the canonical random field.

For T > 0, denote the temporal-spatial sets before time T by

ΓT := {A ∈ Γ : (s, x) ∈ A⇒ 0 ≤ s < T }.

Set FT = σ{WA, A ∈ ΓT }, F =
∨
T≥0

FT , and

Lip (ΩT ) ={ϕ(WA1
, . . . ,WAn

), ∀n ∈ N,
Ai ∈ ΓT , i = 1, . . . , n, ϕ ∈ Cb.Lip (Rn)}.

We denote

Lip (Ω) =
∞⋃
n=1

Lip (Ωn).

For each X ∈ Lip (Ω), without loss of generality, we assume X has the form

X =ϕ(WA11
, · · · ,WA1m

, · · · ,WAn1
, · · · ,WAnm

),

where Aij = [ti−1, ti ) × Aj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 = t0 < t1 < · · · < tn < ∞,

{A1, · · · , Am} ⊂ B0(Rd) are mutually disjoint and ϕ ∈ Cb.Lip (Rn×m). Then the

corresponding sublinear expectation for X can be defined by

Ê[X] = Ê[ϕ(WA11
, · · · ,WA1m

, · · · ,WAn1
, · · · ,WAnm

)
= max

vi j ∈[μ,μ]
ϕ(λA11

v11, · · · , λA1m
v1m, · · · , λAn1

vvn1, · · · , λAnm
vnm),

1 ≤ i ≤ m, 1 ≤ j ≤ n

and the related conditional expectation of X under Ft , where t j ≤ t < t j+1, denoted

by Ê[X |Ft ], is defined by

Ê[ϕ(WA11
, · · · ,WA1m

, · · · ,WAn1
, · · · ,WAnm

) |Ft ]
=ψ(WA11

, · · · ,WA1m
, · · · ,WAj1

, · · · ,WAjm
),

where

ψ(x11, · · · , x1m, · · · , x j1, · · · , x jm) = Ê[ϕ(x11, · · · , x1m, · · · , x j1, · · · , x jm, W̃ )].

Here

W̃ = (WA( j+1)1, · · · ,WA( j+1)m , · · · ,WAn1
, · · · ,WAnm

).
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It is easy to verify that Ê[·] defines a sublinear expectation on Lip (Ω) and

the canonical process (Wγ)γ∈Γ is a one-dimensional temporal-spatial maximally

distributed white noise on (Ω, Lip (Ω), Ê).
For each p ≥ 1, T ≥ 0, we denote by Lp

g (ΩT )(resp., Lp
g (Ω)) the completion

of Lip (ΩT )(resp., Lip (Ω)) under the norm ‖X ‖p := (Ê[|X |p])1/p. The conditional

expectation Ê[· |Ft ] : Lip (Ω) → Lip (Ωt ) is a continuous mapping under ‖ · ‖p and

can be extended continuously to the mapping Lp
g (Ω) → Lp

g (Ωt ) by

|Ê[X |Ft ] − Ê[Y |Ft] | ≤ Ê[|X − Y | |Ft ] for X,Y ∈ Lip (Ω).

It is easy to verify that the conditional expectation Ê[·|Ft] satisfies the following

properties, and the proof is very similar to the corresponding one of Proposition 5.3

in Ji and Peng [10].

Proposition 6 For each t ≥ 0, the conditional expectation Ê[· |Ft ] : Lp
g (Ω) →

Lp
g (Ωt ) satisfies the following properties: for any X,Y ∈ Lp

g (Ω), η ∈ L
p
g (Ωt ),

(i) Ê[X |Ft] ≥ Ê[Y |Ft ] for X ≥ Y .

(ii) Ê[η |Ft ] = η.

(iii) Ê[X + Y |Ft ] ≤ Ê[X |Ft ] + Ê[Y |Ft ].
(iv) Ê[ηX |Ft ] = η+Ê[X |Ft ] + η−Ê[−X |Ft ] if η is bounded.

(v) Ê[Ê[X |Ft ] |Fs] = Ê[X |Ft∧s] for s ≥ 0.

Now we define the stochastic integral with respect to the spatial-temporal maxi-

mally distributed white noise W , which is similar to the spatial situation.

For each given p ≥ 1, let Mp,0(ΩT ) be the collection of simple processes with

the form:

f (s, x;ω) =
n−1∑
i=0

m∑
j=1

Xij (ω)1Aj
(x)1[ti,ti+1) (s), (12)

where Xij ∈ Lp
g (ΩT ), i = 0, · · · , n − 1, j = 1, · · · ,m, 0 = t0 < t1 < · · · < tn = T ,

and {Aj }
m
j=1
⊂ Γ is mutually disjoint.

Remark 8 Since we only require Xij ∈ Lp
g (ΩT ), the integrand may “non-adapted”.

This issue is essentially different from the requirement of adaptability in the definition

of stochastic integral with respect to temporal-spatial G-white noise in Ji and Peng

[10].

The completion of Mp,0(ΩT ) under the norm ‖ · ‖M p , denoted by Mp
g (ΩT ), is a

Banach space, where the Banach norm ‖ · ‖M p is defined by

‖ f ‖M p :=

(
Ê
[∫ T

0

∫
Rd

| f (s, x) |pdsλ(dx)
]) 1

p

=

⎧⎪⎪⎨⎪⎪⎩Ê
⎡⎢⎢⎢⎢⎢⎣
n−1∑
i=0

m∑
j=1

|Xij |
p (ti+1 − ti )λAj

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

1
p

.
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For f ∈ Mp,0(ΩT ) with the form as (12), the related stochastic integral with

respect to the temporal-spatial maximally distributed white noise W can be defined

as follows:

IW ( f ) =
∫ T

0

∫
Rd

f (s, x)W (ds, dx) :=

n−1∑
i=0

m∑
j=1

XijW ([t j, t j+1) × Aj ). (13)

Similar to Lemma 1, we have

Lemma 2 For each f ∈ M1,0([0,T ] × Rd ),

Ê
[�����
∫ T

0

∫
Rd

f (s, x)W (ds, dx)
�����
]
≤ κÊ

[∫ T

0

∫
Rd

| f (s, x) |dsdx
]
, (14)

where κ = max{|μ|, |μ|}.

Thus IW : M1,0(ΩT ) �→ L1
g(ΩT ) is a continuous linear mapping. Consequently,

IW can be uniquely extend to the domain M1
g (ΩT ). We still denote this mapping by

∫ T

0

∫
Rd

f (s, x)W (ds, dx) := IW ( f ) for f ∈ M1
g (ΩT ).

Remark 9 Thanks to the boundedness of maximally distributed white noise, the do-

main of integrand M1
g (ΩT ) is much larger since the usual requirement of adaptability

for integrand can be dropped.

It is easy to check that the stochastic integral has the following properties.

Proposition 7 For each f , g ∈ M1
g (ΩT ), 0 ≤ s ≤ r ≤ t ≤ T ,

(i)
∫ t

s

∫
Rd

f (u, x)W (du, dx) =
∫ r

s

∫
Rd

f (u, x)W (du, dx)+
∫ t

r

∫
Rd

f (u, x)W (du, dx).
(ii)
∫ t

s

∫
Rd

(α f (u, x) + g(u, x))W (du, dx)
= α
∫ t

s

∫
Rd

f (u, x)W (du, dx) +
∫ t

s

∫
Rd

g(u, x)W (du, dx), where α ∈ L1
g(ΩT ) is

bounded.

Remark 10 In particular, if we only consider temporal maximally distributed white

noise and further assume that μ ≥ 0. In this case, the index set Γ = {[s, t) : 0 ≤

s < t < ∞}. The canonical process W ([0, t)) is the quadratic variation process of

G-Brownian motion, more details about the quadratic variation process can be found

in Peng [18].
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