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Abstract We consider a diffusion given by a small noise perturbation of a dynamical

system driven by a potential function with a finite number of local minima. The

classical results of Freidlin and Wentzell show that the time this diffusion spends in

the domain of attraction of one of these local minima is approximately exponentially

distributed and hence the diffusion should behave approximately like a Markov chain

on the local minima. By the work of Bovier and collaborators, the local minima can be

associated with the small eigenvalues of the diffusion generator. Applying a Markov

mapping theorem, we use the eigenfunctions of the generator to couple this diffusion

to a Markov chain whose generator has eigenvalues equal to the eigenvalues of the

diffusion generator that are associated with the local minima and establish explicit

formulas for conditional probabilities associated with this coupling. The fundamental

question then becomes to relate the coupled Markovchain to the approximateMarkov

chain suggested by the results of Freidlin and Wentzel.

1 Introduction

Fix ε > 0 and consider the stochastic process,

Xε (t) = Xε (0)−
∫ t

0

∇F (Xε (s)) ds+
√

2εW (t), (1)

where F ∈ C3(Rd) and W is a standard d-dimensional Brownian motion. For the

precise assumptions on F , see Section 3.1. Let ϕ be the solution to the differential
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equation ϕ′ = −∇F (ϕ). We will use ϕx to denote the solution with ϕx (0) = x. The

process Xε is a small-noise perturbation of the deterministic process ϕ.

Suppose thatM = {x0, . . . , xm} is the set of local minima of the potential function

F . The points x j are stable points for the process ϕ. For Xε , however, they are not

stable. The process Xε will initially gravitate toward one of the x j and move about

randomly in a small neighborhood of this point. But after an exponential amount of

time, a large fluctuation of the noise term will move the process Xε out of the domain

of attraction of x j and into the domain of attraction of one of the other minima. We

say that each point x j is a point of metastability for the process Xε .

If X is a cadlag process in a complete, separable metric space S adapted to a right

continuous filtration (assumptions that are immediately satisfied for all processes

considered here) and H is either open or closed, then τX
H
= inf{t > 0 : X (t) or X (t−) ∈

H } is a stopping time (see, for example, [8, Proposition 1.5]). If x ∈ S, let τXx = τ
X
{x }

.

We may sometimes also write τX (H ), and if the process is understood, we may omit

the superscript.

Let

Dj = {x ∈ Rd : lim
t→∞
ϕx (t) = x j } (2)

be the domains of attraction of the local minima. It is well-known (see, for example,

[9], [4, Theorem 3.2], [5, Theorems 1.2 and 1.4], and [7]) that as ε→ 0, τXε (Dc
j
)

is asymptotically exponentially distributed under Px j . It is therefore common to

approximate the process Xε by a continuous time Markov chain on the set M

(or equivalently on {0, . . . ,m}). In fact, metastability can be defined in terms of

convergence, in an appropriate sense, to a continuous time Markov chain. (See the

survey article [15] for details.) Beltrán and Landim [2, 3] introduced a general method

for proving the metastability of a Markov chain. Along similar lines, Rezakhanlou

and Seo [19] developed such a method for diffusions. For an alternative approach

using intertwining relations, see [1].

In this project, for each ε > 0, we wish to capture this approximate Markov chain

behavior by coupling Xε to a continuous time Markov chain, Yε , on {0, . . . ,m}. We

will refer to the indexed collection of coupled processes, {(Xε,Yε ) : ε > 0}, as a

coupling sequence. Our objective is to investigate the possibility of constructing a

coupling sequence which satisfies

P(Xε (t) ∈ Dj | Yε (t) = j)→ 1 (3)

as ε → 0, for all j. We also want the transition rate for Yε to go from i to j to

be asymptotically equivalent as ε → 0 to the transition rate for Xε to go from a

neighborhood of xi to a neighborhood of x j . That is, we would like

Ei[τ
Yε
j

] ∼ Exi [τ
Xε

Bρ (x0 )
] (4)

as ε→ 0, for all i and j, where Bρ(x) is the ball of radius ρ centered at x.

In this paper (Part I), we develop our general coupling construction. The construc-

tion goes beyond the specific case of interest here. It is a construction that builds
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a coupling between a Markov process on a complete and separable metric space

and a continuous-time Markov chain where the generators of the two processes have

common eigenvalues. The coupling is done in such a way that observations of the

chain yield quantifiable conditional probabilities about the process. This coupling

construction is built in Section 2 and uses the Markov mapping theorem (Theorem

19). In Section 3, we apply this construction method to reversible diffusions in Rd

driven by a potential function with a finite number of local minima.

With this coupling construction in hand, we can build the coupling sequences

described above. In our follow-up work (Part II), we take up the question of the

existence and uniqueness of a coupling sequence that satisfies requirements (3) and

(4).

2 The general coupling

2.1 Assumptions and definitions

Given a Markov process X with generator A satisfying Assumption 1, we will use

the Markov mapping theorem to construct a coupled pair, (X,Y ), in such a way that

for a specified class of initial distributions, Y is a continuous-time Markov chain

on a finite state space. The construction then allows us to explicitly compute the

conditional distribution of X given observations of Y .

For explicit definitions of the notation used here and throughout, see the Appendix.

Assumption Let E be a complete and separable metric space.

(i) A ⊂ C(E)×C(E).
(ii) A has a stationary distribution� ∈ P (E), which implies

∫
E
A f d� = 0 for all

f ∈ D(A).
(iii) For some m, there exist signed measures �1, . . . ,�m on E and positive real

numbers λ1, . . . , λm such that, for each k ∈ {1, . . . ,m} and f ∈ D(A),
∫
E

A f d�k = −λk

∫
E

f d�k, (5)

�k (dx) = ηk (x)�(dx), where ηk ∈ C(E), (6)

�k (E) = 0. (7)

We define �0 =� and η0 = 1. �

Remark If (1,0) ∈ A, then (5) implies (7). �

Remark In what follows, we will make use of the assumption that the functions ηk
are continuous. However, this assumption can be relaxed by appealing to the methods

in Kurtz and Stockbridge [14]. �
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Assumption Let E be a complete and separable metric space. Let A ⊂ C(E)×C(E),
m ∈ N, Q ∈ R(m+1)×(m+1) , and ξ (1), . . . , ξ (m) ∈ Rm+1.

(i) A and m satisfy Assumption 1.

(ii) Q is the generator of a continuous-time Markov chain with state space E0 =

{0,1, . . . ,m} and eigenvalues {0,−λ1, . . . ,−λm}.

(iii) The vectors ξ (1), . . . , ξ (m) are right eigenvectors of Q, corresponding to the

eigenvalues −λ1, . . . ,−λm.

(iv) For each i ∈ {0,1, . . . ,m}, the function

αi (x) = 1+

m∑
k=1

ξ
(k)
i
ηk (x) (8)

satisfies αi (x) > 0 for all x ∈ E.

We define ξ (0) = (1, . . . ,1)T , so that the function α : E → Rm+1 is given by α =∑m
k=0
ξ (k)ηk . �

Remark Given (A,m,Q) satisfying (i) and (ii) of Assumption 4, it is always possible

to choose vectors ξ (1), . . . , ξ (m) satisfying (iii) and (iv). This follows from the fact

that each ηk is a bounded function. �

Definition Suppose (A,m,Q, ξ (0), . . . , ξ (m) ) satisfies Assumption 4. For 0 ≤ j � i ≤
m, define

qij (x) =Qij

α j (x)
αi (x)

. (9)

Note that qij ∈ C(E). Let S = E ×E0. Define B ⊂ C(S)×C(S) by

B f (x, i) = A f (x, i)+
∑
j�i

qij (x)( f (x, j)− f (x, i)), (10)

where we take

D(B) = { f (x, i) = f1 (x) f2(i) : f1 ∈ D(A), f2 ∈ B(E0)} (11)

In particular, A f (x, i) = f2(i)A f1(x).
For each i ∈ E0, define the measure α(i, ·) on E by

α(i,Γ) =
∫
Γ

αi (x)�(dx), (12)

for all Γ ∈ B(E). Note that by (8), (7), and (6), these are probability measures. �



Finite Markov Chains Coupled to General Markov Processes 297

2.2 Construction of the coupling

We are now ready to construct our coupled pair, (X,Y ), which will have generator B,

to prove, for appropriate initial conditions, that the marginal process Y is a Markov

chain with generator Q, and to establish our conditional probability formulas. We

first require two lemmas.

Lemma 1 In the setting of Definition 6, let X be a cadlag solution of the martingale

problem for A. Then there exists a cadlag processY such that (X,Y ) solves the (local)

martingale problem for B. If X is Markov, then (X,Y ) is Markov. If the martingale

problem for A is well-posed, then the martingale problem for B is well-posed.

Remark We are not requiring the qij to be bounded, so for the process we construct,

f (X (t),Y (t))− f (X (0),Y (0))−
∫ t

0

B f (X (s),Y (s)) ds

may only be a local martingale. �

Proof (Proof of Lemma 1) Let X (t) be a cadlag solution to the martingale problem

for A. Let {Nij : i, j ∈ E0, i � j} be a family of independent unit rate Poisson processes,

which is independent of X . Then the equation

Y (t) = k +
∑
i�j

( j − i)Nij

(∫ t

0

1{i } (Y (s))qij (X (s)) ds
)

(13)

has a unique solution, and as in [12], the process Z = (X,Y ) is a solution of the

(local) martingale problem for B. If X is Markov, the uniqueness of the solution of

(13) ensures that (X,Y ) is Markov. Similarly, Awell-posed implies B is well posed.�

Lemma 2 Let A satisfy Assumption 1. Taking ψ(x, i) = 1+
∑

j�i qij (x) ≥ 1, if A
satisfies Condition 17, then B satisfies Condition 17 with E replaced by S = E×E0.

Proof Since D(A) is closed under multiplication, D(B) defined in (11) is closed

under multiplication.

Since we are assuming that R(A) ⊂ C̄(E), for each f ∈ D(B), there exists cf > 0

such that |B f (x, i) | ≤ cfψ(x).
Condition 17(iii) for A and the separability of B(E0) implies Condition 17(iii)

for B0.

Since A is a pre-generator and B is a perturbation of A by a jump operator, B0 is

a pre-generator. �

Theorem Suppose A satisfies Condition 17 and (A,m,Q, ξ (1), . . . , ξ (m) ) satisfies As-

sumption 4. Let B be given by (10) and for pi ≥ 0,
∑m

i=0 pi = 1, define

ν(Γ× {i}) = piα(i,Γ), Γ ∈ B(E), i ∈ E0.
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If Ỹ is a cadlag E0-valued Markov chain with generator Q and initial distribution

{pi }, then there exists a solution (X,Y ) of the martingale problem for (B, ν) such that

Y and Ỹ have the same distribution on DE0
[0,∞), and

P(X (t) ∈ Γ | F Y
t ) = α(Y (t),Γ), (14)

for all t ≥ 0 and all Γ ∈ B(E). �

Proof We apply Theorem 19 to the operator B ⊂ C(S)×C(S).
Let γ : S→ E0 be the coordinate projection. Let α̃ be the transition function from

E0 into S given by the product measure α̃(i, ·) = α(i, ·) ⊗ δE0

i
, where α(i, ·) is given

by (12). Then α̃(i, γ−1(i)) = 1 and

ψ̃(i) ≡
∫
S

ψ(z)α̃(i,dz) =
∫
E

ψ(x, i)αi (x)�(dx) = 1+
∑
j�i

Qij <∞,

for each i ∈ E0. Define

C =
{(∫

S

f (z)α̃(·,dz),
∫
S

B f (z)α̃(·,dz)
)

: f ∈ D(B)
}
⊂ Rm+1×Rm+1.

The result follow by Theorem 19, if we can show that Cv = Qv for every vector

v ∈ D(C). Given f ∈ D(B), let

f (i) =
∫
S

f (z)α̃(i,dz) =
∫
E

f (x, i)α(i,dx) =
∫
E

f (x, i)αi (x)�(dx).

Note that

C f (i) =
∫
E

B f (x, i)αi (x)�(dx).

Since λ0 = 0, by (5) and the definition of qij (x),

C f (i) = −
m∑
k=0

ξ
(k)
i
λk

∫
E

f (x, i)ηk (dx)+
∑
j�i

Qij

∫
E

α j (x)( f (x, j)− f (x, i))�(dx).

By assumption Qξ (k) = −λkξ (k) , so −ξ
(k)
i
λk =

∑m
j=0Qij ξ

(k)
j

and

−

m∑
k=0

ξ
(k)
i
λk

∫
E

f (x, i)ηk (dx) =
m∑
k=0

m∑
j=0

Qij ξ
(k)
j

∫
E

f (x, i)ηk (dx)

=

m∑
j=0

Qij

m∑
k=0

ξ
(k)
j

∫
E

f (x, i)ηk (dx)

=

m∑
j=0

Qij

∫
E

f (x, i)α j (x)�(dx).
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This gives

C f (i) = Qii

∫
E

f (x, i)αi (x)�(dx)+
∑
j�i

Qij

∫
S

f (x, j)α j (x)�(dx)

=

m∑
j=0

Qij f ( j) =Q f (i).

It follows that Ỹ is a solution to the martingale problem for (C, p).
By Theorem 19(a), there exists a solution Z = (X,Y ) of the martingale problem for

(B, ν) such that Y = γ(Z ) and Ỹ have the same distribution on DE0
[0,∞). Theorem

19(b) implies (14). �

Remark In what follows, we may still write expectations with the notation Ex or

Ei, even when we have a coupled process, (X,Y ). The meaning will be determined

by context, depending on whether the integrand of the expectation involves only X
or only Y . �

3 Reversible diffusions

3.1 Assumptions on the potential function

We now consider the special case of our coupling when X is a reversible diffusion on

R
d driven by a potential functionF and a small white noise perturbation. We will need

to use several results from the literature about the eigenvalues and eigenfunctions of

the generator of X . We assume the following on F .

Assumption (i) F ∈ C3(Rd) and lim |x |→∞ F (x) =∞.

(ii) F has m+1 ≥ 2 local minimaM = {x0, . . . , xm}.
(iii) There exist constants ai > 0 and ci > 0 such that a2 < 2a1−2, and

c1 |x |a1 − c2 ≤ |∇F (x) |2 ≤ c3 |x |a2
+ c4, (15)

c1 |x |a1 − c2 ≤ ( |∇F (x) | −2ΔF (x))2 ≤ c3 |x |a2
+ c4. (16)

Remark Note that 2 < a1 ≤ a2. To see this, observe that (15) implies a1 ≤ a2. Thus,

a1 ≤ a2 < 2a1−2, which implies a1 > 2. �

Lemma 3 Under Assumption 10, there exist constants c̃i > 0 such that

c̃1 |x | ã1 − c̃2 ≤ |F (x) | ≤ c̃3 |x | ã2
+ c̃4, (17)

where ãi = ai/2+1.

Proof Since
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F (x) = F (0)+
∫ 1

0

∇F (sx) · x ds,

it follows from (15) that

|F (x) | ≤ |F (0) |+ |x |(c3 |x |a2
+ c4)1/2,

and the upper bound in (17) follows immediately.

Since F →∞, there exists C > 0 such that F (x) > −C for all x ∈ Rd , and since

|∇F | → ∞, there exists R > 0 such that |∇F (x) | ≥ 1 whenever |x | ≥ R.

Recall that ϕx satisfies ϕ′x = −∇F (ϕx ) and ϕx (0) = x, and define

Tx = inf{t ≥ 0 : |ϕx (t) | < R}.

Suppose there exists x such that Tx =∞. Then, for all t > 0,

−C < F (ϕx (t)) = F (x)+
∫ t

0

∇F (ϕx (s)) · ϕ′x (s) ds

= F (x)−
∫ t

0

|∇F (ϕx (s)) |2 ds

≤ F (x)− t.

Therefore, F (x) ≥ t −C for all t, a contradiction, and we must have Tx <∞ for all

x ∈ Rd .

Let L = sup |x |≤R F (x). By (15) and the fact that F →∞, we may choose R′ ≥ R
and C′ > 0 such that F (x) > L and |∇F (x) | ≥ C′ |x |a1/2 whenever |x | > R′.

Fix x ∈ Rd with |x | > 2R′, so that F (x) > L. Since |ϕx (Tx) | = R, it follows

that F (ϕx (Tx )) ≤ L. By the continuity of ϕx , we may choose T ′ ∈ (0,Tx] such that

F (ϕx (T ′)) = L. We then have

L = F (x)+
∫ T ′

0

∇F (ϕx (t)) · ϕ′x (t) dt

= F (x)−
∫ T ′

0

|∇F (ϕx (t)) | |ϕ′x (t) | dt.

Let T ′′ = inf{t ≥ 0 : |ϕx (t) | < |x |/2}. Note that F (ϕx (T ′)) = L implies |ϕx (T ′) | ≤
R′ < |x |/2, and thereforeT ′′ ≤ T ′. Moreover, for all t < T ′′, we have |ϕx (t) | ≥ |x |/2 >
R′, which implies

|∇F (ϕx (t)) | ≥ C′ |ϕx (t) |a1/2 ≥ C′
(
|x |
2

)a1/2

.

Thus,

L ≤ F (x)−C′
(
|x |
2

)a1/2∫ T ′′

0

|ϕ′x (t) | dt.
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But
∫ T ′′

0
|ϕ′x (t) | dt is the length of ϕx from t = 0 to t = T ′′, which is bounded below

by

|ϕx (T ′′)− ϕx (0) | ≥ |ϕx (0) | − |ϕx (T ′′) | = |x | −
|x |
2
=

|x |
2
.

Therefore, for all |x | > 2R′, we have F (x) ≥ C′′ |x |a1/2+1 − |L |, where C′′ =
2−a1/2−1C′, and this proves the lower bound in (17). �

3.2 Spectral properties of the generator

Having established our assumptions on F , we now turn our attention to the diffusion

process, Xε, given by (1). To simplify notation, we may sometimes omit the ε. The

process X has generator A = εΔ−∇F · ∇. To show that A meets the requirements

of our coupling from Section 2, we must prove certain results about its eigenvalues

and eigenfunctions. For this, we begin with some notation, a lemma, and two results

from the literature.

Define π(x) = πε (x) = e−F (x)/2ε . Let

V = Vε :=
Δπ

π
=

1

4ε2
|∇F |2−

1

2ε
ΔF . (18)

Lemma 4 Let Vε be given by (18), where F satisfies Assumption 10. Recall the

constants ai from (15)-(16). For all ε ∈ (0,1), there exist constants ci,ε > 0 such that

c1,ε |x |a1 − c2,ε ≤ Vε (x) ≤ c3,ε |x |a2
+ c4,ε .

In particular, Vε →∞ for all ε ∈ (0,1).

Proof Fix ε ∈ (0,1). By (15) and (16), for x sufficiently large,

c |x |a1 ≤ ( |∇F (x) | −2ΔF)2 ≤ C |x |a2,

and

c |x |a1 ≤ |∇F (x) |2 ≤ C |x |a2,

for some 0 < c ≤ C <∞. Note that

4V1 = |∇F |2−2ΔF = ( |∇F | −2ΔF)+ ( |∇F |2− |∇F |).

Hence, for x sufficiently large, V1(x) ≤ C1 |x |a2 . Also,

V1(x) ≥
1

4
(c |x |a1 −C2 |x |a2/2).

Since a1 > a2/2, it follows that for x sufficiently large, V1(x) ≥ c̃|x |a1 . Therefore,

there exist constants c̃i > 0 such that
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c̃1 |x |a1 − c̃2 ≤ V1(x) ≤ c̃3 |x |a2
+ c̃4,

and

c̃1 |x |a1 − c̃2 ≤ |∇F (x) |2 ≤ c̃3 |x |a2
+ c̃4,

for all x ∈ Rd . Note that

Vε =
1

ε

(
V1 +

(
1− ε

4ε

)
|∇F |2

)
,

so that
1

ε
V1 ≤ Vε ≤

1

ε
V1+

1

ε2
|∇F |2.

From here, the lemma follows easily. �

The following two theorems are from [6]. Theorem 12 is a consequence of [6,

Theorem 4.5.4] and [6, Lemma 4.2.2]. Theorem 13 is part of [6, Theorem 2.1.4].

Theorem Let H = −Δ+W , where W is continuous with W →∞. Let λ denote the

smallest eigenvalue of H , and ψ the corresponding eigenfunction, normalized so that

‖ψ‖L2 (Rd ) = 1. Define U f = ψ f and H̃ =U−1(H − λ)U. If

ĉ1 |x | â1 − ĉ2 ≤ |W (x) | ≤ ĉ3 |x | â2
+ ĉ4,

where âi > 0, ĉi > 0, and â2 < 2â1− 2, then e−H̃t is an ultracontractive symmetric

Markov semigroup on L2(Rd,ψ(x)2 dx). That is, for each t ≥ 0, the operator e−H̃t is

a bounded operator mapping L2(Rd,ψ(x)2 dx) to L∞(Rd,ψ(x)2 dx). �

Theorem Let e−Ht be an ultracontractive symmetric Markov semigroup on L2(Ω, μ),
where Ω is a locally compact, second countable Hausdorff space and μ is a Borel

measure on Ω. If μ(Ω) <∞, then each eigenfunction of H belongs to L∞(Ω, μ). �

This next proposition establishes the spectral properties of A that are needed to

carry out the construction of our coupling.

Proposition Fix ε > 0. The operator H = −Δ+Vε is a self-adjoint operator on

L2(Rd) with discrete, nonnegative spectrum λ̂k ↑∞ and corresponding orthonormal

eigenfunctionsψk . Each ψk is locally Hölder continuous. Moreover, λ̂0 = 0 is simple

and ψ0 is proportional to π. We define μ by μ(dx) = π(x)2 dx and� = Z−1μ, where

Z = μ(Rd ). The operator H̃ given by H̃ f = π−1H (π f ) is a self-adjoint operator on

L2(�) with eigenvalues λ̂k and orthogonal eigenfunctions η̂k = ψk/π. The functions

η̂k have norm one in L2(μ), whereas the functions ηk = Z1/2η̂k have norm one in

L2(�).
For f ∈ C∞c (Rd), we have −εH̃ f = εΔ f −∇F · ∇ f . Hence, if we define A by

A = {( f ,−εH̃ f ) : f ∈ C∞c (Rd)},

then A is the generator for the diffusion process given by (1). For each x ∈ Rd , (1)

has a unique, global solution for all time, so that the process X with X (0) = x is a
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solution to the martingale problem for (A, δx). The operator A is graph separable, and

D(A) is separating and closed under multiplication. The measure � is a stationary

distribution for A. Moreover,

∫
A f d�k = −λk

∫
f d�k,

where �k (dx) = ηk (x)�(dx) and λk = ελ̂k . The signed measures �k satisfy

�k (Rd) = 0, and each ηk belongs to C(Rd), the space of bounded, continuous

functions on Rd. �

Proof Note that V → ∞ by Lemma 4. Therefore, by [18, Theorem XIII.67], we

have that H is a self-adjoint operator on L2(Rd) with compact resolvent. It follows

(see [6, pp. 108–109, 119–120, and Proposition 1.4.3]) that H has a purely discrete

spectrum and there exists a complete, orthonormal set of eigenfunctions {ψk }
∞
k=0

with corresponding eigenvalues λ̂k ↑ ∞. Moreover, λ̂0 is simple and ψ0 is strictly

positive.

SinceV is locally bounded, and (−Δ+V − λ̂k )ψk = 0, [10, Theorem 8.22] implies

that, for each compact K ⊂ Rd, ψk is Hölder continuous on K with exponent γ(K ).
Define U : L2(μ) → L2(Rd) by U f = π f , so that H̃ = U−1HU. Since U is an

isometry, H̃ is self-adjoint on L2(μ) and has the same eigenvalues as H . Note that,

for any f ∈ D(H̃), it follows from Green’s identity that

〈 f , H̃ f 〉L2 (μ) = 〈π f ,H (π f )〉L2 (Rd ) =

∫
|∇(π f ) |2+

∫
V (π f )2

=

∫
|∇(π f ) |2+

∫
(Δπ)π f 2

=

∫
|∇(π f ) |2 −

∫
∇π · ∇(π f 2).

Using the product rule, ∇(gh) = g∇h+ h∇g, this simplifies to

〈 f , H̃ f 〉L2 (μ) =

∫
( |∇π |2 f 2

+2 f π(∇ f ·∇π)+ |∇ f |2π2− |∇π |2 f 2−π(∇( f 2) ·∇π))

=

∫
(2 f π(∇ f · ∇π)+ |∇ f |2π2− π(∇( f 2) · ∇π)) =

∫
|∇ f |2π2,

showing that H̃ cannot have a negative eigenvalue. Hence, λ̂0 ≥ 0.

By (17), we have π ∈ L2(Rd), so that π ∈ D(H ) with Hπ = 0. Hence, since λ̂0 is

nonnegative and has multiplicity one, it follows that λ̂0 = 0 and ψ0 is proportional

to π.

Observe that, if f ∈ C∞c , then, using the product rule for the Laplacian and the

identity V = Δπ/π, we have

−H̃ f = −
1

π
H (π f ) =

1

π
(Δ(π f )−Vπ f ) =

1

π
( fΔπ+2∇π · ∇ f + πΔ f − fΔπ).

Since 2ε∇π/π = −∇F , we have −εH̃ f = εΔ f −∇F · ∇ f .
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Since∇F is locally Lipschitz, (1)has a unique solution up to an explosion time (see

[17, Theorem V.38]). Since lim |x |→∞ F =∞ by assumption and lim |x |→∞ AF (x) =∞
by Lemma 4.2, it follows that F is a Liapunov function for Xε proving that Xε does

not explode.

By [13, Remark 2.5], A is graph separable. Clearly D(A) is closed under multi-

plication. Since D(A) separates points and Rd is complete and separable, D(A) is

separating (see [8, Theorem 3.4.5]).

If f ∈ C∞c , then

∫
A f d� = −ε〈1, H̃ f 〉L2 (�) = −ε〈H̃1, f 〉L2 (�) = 0,

so that� is a stationary distribution for A. For k ≥ 1, since �k (dx) = ηk (x)�(dx),
we have∫

A f d�k = −ε〈ηk, H̃ f 〉L2 (�) = −ε〈H̃ηk, f 〉L2 (�) = −λk

∫
f d�k .

Also, �k (Rd) = 〈ηk,1〉L2 (�) = 0, since ηk and η0 = 1 are orthogonal.

Finally, since ηk = Z1/2ψk/π and ψk is locally Hölder continuous, it follows that

each ηk belongs toC(Rd), and the fact that they are bounded follows from Theorems

12 and 13. �

3.3 The coupled process

By Proposition 14, the pair (A,m) satisfies Assumption 1 with E = Rd , so we have

the following.

Theorem Let A be the generator for (1) where F satisfies Assumption 10, and let

(−λ0, η0), . . . , (−λm, ηm) be the first m + 1 eigenvalues and eigenvectors of A. Let

Q ∈R(m+1)×(m+1) be the generator of a continuous-time Markovchainwith state space

E0 = {0,1, . . . ,m} and eigenvalues {0,−λ1, . . . ,−λm} and eigenvectors ξ (1), . . . , ξ (m)

such that αi defined by (8) is strictly positive. Let B be defined as in Definition 6.

Let Ỹ be a continuous time Markov chain with generatorQ and initial distribution

p = (p0, . . . , pm) ∈ P (E0). Then there exists a cadlag Markov process (X,Y ) with

generator B and initial distribution ν given by

ν(Γ× {i}) = piα(i,Γ), Γ ∈ B(Rd ), (19)

such that Y and Ỹ have the same distribution on DE0
[0,∞), and

P(X (t) ∈ Γ | Y (t) = j) =
∫
Γ

α j (x)�(dx), (20)

for all t ≥ 0, all 0 ≤ j ≤ m, and all Γ ∈ B(E). �
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Remark That Q with these properties exists can be seen from [16, Theorem 1].

Remark 5 ensures the existence of the eigenvectors. �

Proof Note that under the assumptions of the theorem, (A,m,Q, ξ (1), . . . , ξ (m) ) sat-

isfies Assumption 4. By Proposition 14, the rest of the hypotheses of Theorem 8

are also satisfied. Consequently, the process (X,Y ) exists, and by uniqueness of the

martingale problem for B, (X,Y ) is Markov. �

We can now construct the coupling sequences described in the introduction.

For each ε > 0, choose a matrix Qε and eigenvectors ξ
(1)
ε , . . . , ξ

(m)
ε that satisfy the

assumptions of Theorem 15. If (Xε,Yε ) is the Markov process described in Theorem

15, then the family, {(Xε,Yε ) : ε > 0}, forms a coupling sequence.

The coupling sequence is determined by the collection, {Qε, ξ
(1)
ε , . . . , ξ

(m)
ε : ε > 0}.

By making different choices for the matrices and eigenvectors, we can obtain different

coupling sequences. In our follow-up paper, we will consider the question of existence

and uniqueness of a coupling sequence that satisfies conditions (3) and (4).
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Appendix

Let E be a complete and separable metric space,B(E) theσ-algebra of Borel subsets

of E, and P (E) the family of Borel probability measures on E. Let M (E) be the

collection of all real-valued, Borel measurable functions on E, and B(E) ⊂ M (E) the

Banach space of bounded functions with ‖ f ‖∞ = supx∈E | f (x) |. Let C(E) ⊂ B(E)
be the subspace of bounded continuous functions, whileC(E) denotes the collection

of continuous, real-valued functions on E. A collection of functions D ⊂ C(E) is

separating if μ, ν ∈ P (E) and
∫
f dμ =

∫
f dν for all f ∈ D implies μ = ν.

Condition (i) B ⊂ C(E) ×C(E) and D(B) is closed under multiplication and

separating.

(ii) There exists ψ ∈ C(E), ψ ≥ 1, such that for each f ∈ D(B), there exists a

constant cf such that

|B f (x) | ≤ cfψ(x), x ∈ E .

(We write B f even though we do not exclude the possibility that B is multival-

ued. In the multivalued case, each element of B f must satisfy the inequality.)

(iii) There exists a countable subset Bc ⊂ B such that every solution of the (local)

martingale problem for Bc is a solution of the (local) martingale problem for

B.

(iv) B0 f ≡ ψ−1B f is a pre-generator, that is, B0 is dissipative and there are se-

quences of functions μn : E → P (E) and λn : E → [0,∞) such that for each
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( f ,g) ∈ B,

g(x) = lim
n→∞
λn (x)

∫
E

( f (y)− f (x))μn(x,dy) (21)

for each x ∈ E. �

Remark Condition 17(iii) holds if B0 is graph-separable, that is, there is a countable

subset B0,c of B0 such that B0 is a subset of the bounded, pointwise closure of B0,c.

An operator is a pre-generator if for each x ∈ E, there exists a solution of the

martingale problem for (B, δx). �

For a measurable E0-valued process Y , where E0 is a complete and separable

metric space, let

F̂ Y
t = completion of σ

(∫ r

0

g(Y (s)) ds : r ≤ t,g ∈ B(E0)
)
∨σ(Y (0)).

Theorem Let (S,d) and (E0,d0) be complete, separable metric spaces. Let B satisfy

Condition 17. Let γ : S → E0 be measurable, and let α̃ be a transition function

from E0 into S (that is, α̃ : E0 ×B(S)→ R satisfies α̃(y, ·) ∈ P (S) for all y ∈ E0

and α̃(·,Γ) ∈ B(E0) for all Γ ∈ B(S)) satisfying
∫
h ◦γ(z) α̃(y,dz) = h(y), y ∈ E0,

h ∈ B(E0), that is, α̃(y, γ−1(y)) = 1. Assume that ψ̃(y) ≡
∫
S
ψ(z)α̃(y,dz) < ∞ for

each y ∈ E0 and define

C =
{(∫

S

f (z)α̃(·,dz),
∫
S

B f (z)α̃(·,dz)
)

: f ∈ D(B)
}
.

Let μ ∈ P (E0) and define ν =
∫
α̃(y, ·) μ(dy).

a) If Ỹ satisfies
∫ t

0
E[ψ̃(Ỹ (s))]ds < ∞ a.s. for all t > 0 and Ỹ is a solution of the

martingale problem for (C, μ), then there exists a solution Z of the martingale

problemfor (B, ν) such that Ỹ has the same distributionon ME0
[0,∞) asY = γ◦Z .

If Y and Ỹ are cadlag, then Y and Ỹ have the same distribution on DE0
[0,∞).

b) Let TY
= {t :Y (t) is F̂ Y

t measurable} (which holds for Lebesgue-almost every t).
Then for t ∈ TY ,

P(Z (t) ∈ Γ | F̂ Y
t ) = α̃(Y (t),Γ), Γ ∈ B(S).

c) If, in addition, uniqueness holds for the martingale problem for (B, ν), then

uniqueness holds for the ME0
[0,∞)-martingale problem for (C, μ). If Ỹ has sample

paths in DE0
[0,∞), then uniqueness holds for the DE0

[0,∞)-martingale problem

for (C, μ).
d) If uniqueness holds for the martingale problem for (B, ν), then Y restricted to TY

is a Markov process. �

Remark If Y is cadlag with no fixed points of discontinuity (that is Y (t) = Y (t−)
a.s. for all t), then F̂ Y

t = F
Y
t for all t. �
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Remark The main precursor of this Markov mapping theorem is [13, Corollary 3.5].

The result stated here is a special case of Corollary 3.3 of [11]. �
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