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Abstract We study existence and uniqueness of continuous-time stochastic Radner

equilibria in an incomplete markets model. An assumption of “smallness” type—

imposed through the new notion of “closeness to Pareto optimality”—is shown to

be sufficient for existence and uniqueness. Central role in our analysis is played by a

fully-coupled nonlinear system of quadratic BSDEs.

Introduction

The equilibrium problem

The focus of the present paper is the problem of existence and uniqueness of a

competitive (Radner) equilibrium in an incomplete continuous-time stochastic model

of a financial market. A discrete version of our model was introduced by Radner

in [26] as an extension of the classical Arrow-Debreu framework, with the goal

of understanding how asset prices in financial (or any other) markets are formed,

under minimal assumption on the ingredients or the underlying market structure.

One of those assumptions is often market completeness; more precisely, it is usually

postulated that the range of various types of transactions the markets allow is such

that the wealth distribution among agents, after all the trading is done, is Pareto

optimal, i.e., that no further redistribution of wealth can make one agent better off
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without hurting somebody else. Real markets are not complete; in fact, as it turns out,

the precise way in which completeness fails matters greatly for the output and should

be understood as an a-priori constraint. Indeed, it is instructive to ask the following

questions: Why are markets incomplete in the first place? Would rational economic

agents not continue introducing new assets into the market, as long as it is still

useful? The answer is that they, indeed, would, were it not for exogenously-imposed

constraints out there, no markets exist for most contingencies; those markets that do

exist are heavily regulated, transactions costs are imposed, short selling is sometimes

prohibited, liquidity effects render replication impossible, etc. Instead of delving into

the modeling issues regarding various types of completeness constraints, we point

the reader to [31] where a longer discussion of such issues can be found.

The “fast-and-slow” model

The particular setting we subscribe to here is one of the simplest from the financial

point of view. It, nevertheless, exhibits many of the interesting features found in

more general incomplete structures and admits a straightforward continuous-time

formulation. It corresponds essentially to the so-called “fast-and-slow” completeness

constraint, introduced in [31].

One of the ways in which the “fast-and-slow” completeness constraint can be

envisioned is by allowing for different speeds at which information of two different

kinds is incorporated and processed. The discrete-time version of the model is

described in detail in [25, p. 213], where it goes under the heading of “short-lived”

asset models. Therein, at each node in the event tree, the agents have access to a

number of short-lived assets, i.e., assets whose life-span ends in one unit of time, at

which time all the dividends are distributed. The prices of such assets are determined

in the equilibrium, but their number is typically not sufficient to guarantee local (and

therefore global) completeness of the market. In our, continuous time model, the

underlying filtration is generated by two independent Brownian motions (B and W ).

Positioned the “node” (ω, t), we think of dBt and dWt as two independent symmetric

random variables, realized at time t + dt, with values ±√dt. Allowing the agents to

insure each other only with respect to the risks contained in dB, we denote the

(equilibrium) price of such an "asset" by −λt dt. As already hinted to above, one

possible economic rationale behind this type of constraint is obtained by thinking of

dB as the readily-available (fast) information, while dW models slower information

which will be incorporated into the process λt indirectly, and only at later dates. For

simplicity, we also fix the spot interest rate to 0, allowing agents to transfer wealth

from t to t + dt costlessly and profitlessly. While, strictly speaking, this feature puts

us in the partial-equilibrium framework, this fact will not play a role in our analysis,

chiefly because our agents draw their utility only from the terminal wealth (which is

converted to the consumption good at that point).

For mathematical convenience, and to be able to access the available continuous-

time results, we concatenate all short-lived assets with payoffs dBt and prices −λt dt
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into a single asset Bλ
t = Bt +

∫ t

0
λu du. It should not be thought of as an asset that

carries a dividend at time T , but only as a single-object representation of the family

of all infinitesimal, short-lived assets.

As a context for the ”fast-and-slow” constraint, we consider a finite number I of

agents; we assume that all of their utility functions are of exponential type, but allow

for idiosyncratic risk-aversion parameters and non-traded random endowments. The

exponential nature of the agents’ utilities is absolutely crucial for all of our results

as it induces a “backward” structure to our problem, which, while still very difficult

to analyze, allows us to make a significant step forward.

The representative-agent approach, and its failure in incomplete
markets

The classical and nearly ubiquitous approach to existence of equilibria in complete

markets is using the so-called representative-agent approach. Here, the agents’ en-

dowments are first aggregated and then split in a Pareto-optimal way. Along the

way, a pricing measure is produced, and then, a-posteriori, a market is constructed

whose unique martingale measure is precisely that particular pricing measure. As

long as no completeness constraints are imposed, this approach works extremely

well, pretty much independently of the shape of the agents’ utility functions (see,

e.g., [14, 13, 18, 19, 20, 9, 1, 30] for a sample of continuous-time literature). A con-

venient exposition of some of these and many other results, together with a thorough

classical literature overview can be found in the Notes section of Chapter 4. of [21]).

The incomplete case requires a completely different approach and what were

once minute details, now become salient features. The failure of representative-

agent methods under incompleteness are directly related to the inability of the

market to achieve Pareto optimality by wealth redistribution. Indeed, when not every

transaction can be implemented through the market, one cannot reduce the search

for the equilibrium to a finite-dimensional “manifold” of Pareto-optimal allocations.

Even more dramatically, the whole nature of what is considered a solution to the

equilibrium problem changes. In the complete case, one simply needs to identify a

market-clearing valuation measure. In the present “fast-and-slow” formulation, the

very family of all replicable claims (in addition to the valuation measure) has to be

determined. This significantly impacts the “dimensionality” of the problem and calls

for a different toolbox.

Our probabilistic-analytic approach

The direction of the present paper is partially similar to that of [31], where a much

simpler model of the “fast-and-slow” type is introduced and considered. Here, how-

ever, the setting is different and somewhat closer to [29] and [8]. The fast component
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is modeled by an independent Brownian motion, instead of the one-jump process.

Also, unlike in any of the above papers, pure PDE techniques are largely replaced or

supplemented by probabilistic ones, and much stronger results are obtained.

Doing away with the Markovian assumption, we allow for a collection of un-

bounded random variables, satisfying suitable integrability assumptions, to act as

random endowments and characterize the equilibrium as a (functional of a) solu-

tion to a nonlinear system of quadratic Backward Stochastic Differential Equations

(BSDE). Unlike single quadratic BSDE, whose theory is by now quite complete (see

e.g., [23, 5, 6, 12, 15, 3] for a sample), the systems of quadratic BSDEs are much

less understood. The main difficulty is that the comparison theorem may fail to hold

for BSDE systems (see [17]). Moreover, Frei and dos Reis (see [16]) constructed a

quadratic BSDE system which has bounded terminal condition but admits no so-

lution. The strongest general-purpose result seems to be the one of Tevzadze (see

[28]), which guarantees existence under an “L∞-smallness” condition placed on the

terminal conditions.

Like in [28], but unlike in [31] or [8], our general result imposes no regularity

conditions on the agents’ random endowments. Unlike [28], however, our smallness

conditions come in several different forms. First, we show existence and uniqueness

when the random-endowment allocation among agents is close to a Pareto optimal

one. In contrast to [28], we allow here for unbounded terminal conditions (random

endowments), and measure their size using an “entropic” BMO-type norm strictly

weaker than the L∞-norm. In addition, the equilibrium established is unique in a

global sense (as in [24], where a different quadratic BSDE system is studied).

Another interesting feature of our general result is that it is largely independent of

the number of agents. This leads to the following observation: the equilibrium exists

as soon as “sufficiently many sufficiently homogeneous” (under an appropriate notion

of homogeneity) agents share a given total endowment, which is not assumed to be

small. This is precisely the natural context of a number of competitive equilibrium

models with a large number of small agents, none of whom has a dominating sway

over the price.

Another parameter our general result is independent of is the time horizon T .

Indirectly, this leads to our second existence and uniqueness result which holds

when the time horizon is sufficiently small, but the random endowments are not

limited in size. Under the additional assumption of Malliavin differentiabilty, a lower

bound on how small the horizon has to be to guarantee existence and uniqueness

turns out to be inversely proportional to the size of the (Malliavin) derivatives

of random endowments. This extends [8, Theorem 3.1] to a non-Markovian setting.

Interestingly, both the L∞-smallness of the random endowments and the smallness of

the time-horizon are implied by the small-entropic-BMO-norm condition mentioned

above, and the existence theorems under these conditions can be seen as special cases

of our general result.
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Some notational conventions

As we will be dealing with various classes of vector-valued random variables and

stochastic processes, we try to introduce sufficiently compact notation to make

reading more palatable.

A time horizon T > 0 is fixed throughout. An equality sign between random

variables signals almost-sure equality, while one between two processes signifies

Lebesgue-almost everywhere, almost sure equality; any two processes that are equal

in this sense will be identified; this, in particular, applied to indistinguishable càdlàg

processes. Given a filtered probability space (Ω,FT ,F = {Ft }t∈[0,T ],P) satisfying

the usual conditions, T denotes the set of all [0,T]-valued F-stopping times, and

P2 denotes the set of all predictable processes {μt }t∈[0,T ] such that
∫ T

0
μ2
t dt < ∞,

a.s. The integral
∫ ·

0
μu dBu of μ ∈ P2 with respect to an F-Brownian motion B

is alternatively denoted by μ · B, while the stochastic (Doléans-Dade) exponential

retains the standard notation E (·). The Lp-spaces, p ∈ [1,∞] are all defined with

respect to (Ω,FT ,P) and L0 denotes the set of (P-equivalence classes) of finite-

valued random variables on this space. For a continuous adapted process {Yt }t∈[0,T ],

we set

| |Y | |S∞ = | | supt∈[0,T ] |Yt | | |L∞,
and denote the space of all such Y with | |Y | |S∞ <∞ by S∞. For p ≥ 1, the space of

all μ ∈ P2 with | |μ| |pH p = E

[∫ T
0
|μu |p du

]
< ∞ is denoted by Hp , an alias for the

Lebesgue space Lp on the product [0,T]×Ω.

Given a probability measure P̂ and a P̂-martingale M , we define its BMO-norm

by

| |M | |2
BMO(P̂)

= sup
τ∈T

������EP̂τ [〈M〉T −〈M〉τ]
������L∞,

where EP̂τ [·] denotes the conditional expectation EP̂[·|Fτ] with respect to Fτ , com-

puted under P̂. The set of all P̂-martingales M with finite | |M | |BMO(P̂) is denoted

by BMO(P̂), or, simply, BMO, when P̂ = P. When applied to random variables,

X ∈ BMO(P̂) means that X = MT , for some M ∈ BMO(P̂). In the same vein, we

define (for some, and then any, (P̂,F)-Brownian motion B)

bmo(P̂) = {μ ∈ P2 : μ · B ∈ BMO(P̂)},
with the norm | |μ| |bmo(P̂) = | |μ · B | |BMO(P̂) . The same convention as above is used:

the dependence on P̂ is suppressed when P̂ = P.

Many of our objects will take values in RI , for some fixed I ∈ N. Those are

typically denoted by bold letters such as E,G,μ,ν,α, etc. If specific components are

needed, they will be given a superscript - e.g., G = (Gi)i . Unquantified variables

i, j always range over {1,2, . . ., I}. The topology of Rk is induced by the Euclidean

norm | · |2, defined by |x |2 =
√∑

k
��xk ��2 for x ∈ Rk . All standard operations and
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relations (including the absolute value |·| and order ≤) between Rk-valued variables

are considered componentwise.

1 The Equilibrium Problem and its BSDE Reformulation

We work on a filtered probability space (Ω,FT ,F = {Ft }t∈[0,T ],P), where F is the

standard augmentation of the filtration generated by a two-dimensional standard

Brownian motion {(Bt,Wt )}t∈[0,T ]. The augmented natural filtrations FB and FW of

the two Brownian motions B and W will also be considered below.

1.1 The financial market, its agents, and equilibria

Our model of a financial market features one liquidly traded risky asset, whose

value, denoted in terms of a prespecified numéraire which we normalize to 1, is

given by

dBλ
t = λt dt + dBt, t ∈ [0,T], (1)

for some λ ∈ P2. Given that it will play a role of a “free parameter” in our analysis,

the volatility in (1) is normalized to 1; this way, λ can simultaneously be interpreted

as the market price of risk. The reader should consult the section ‘The “fast-and-

slow” model’ in the introduction for the proper economic interpretation of this asset

as a concatenation of a continuum of infinitesimally-short-lived securities.

We assume there is a finite number I ∈ N of economic agents, all of whom trade

the risky asset as well as the aforementioned riskless, numéraire, asset of constant

value 1. The preference structure of each agent is modeled in the von Neumann-

Morgenstern framework via the following two elements:

i) an exponential utility function with risk tolerance coefficient δi > 0:

U i (x) = −exp(−x/δi), x ∈ R, and

ii) a random endowment Ei ∈ L0(FT ).

The pair (E,δ), where E = (Ei)i , δ = (δi)i , of endowments and risk-tolerance co-

efficients fully characterizes the behavior of the agents in the model; we call it the

population characteristics—E is the initial allocation and δ the risk profile. In

general, any RI -valued random vector will be refereed to as an allocation.

Each agent maximizes the expected utility of trading and random endowment:

E

[
U i (π · Bλ

T +Ei)
]
→max . (2)

Here {πt }t∈[0,T ] is a one-dimensional process which represents the number of shares

of the asset kept by the agent at time t. As usual, this strategy is financed by investing
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in or borrowing from the interestless numéraire asset, as needed. To describe the

admissible strategies of the agent, we follow the convention in [11]:

For λ ∈ P2, we denote byMλ
a the set of absolutely continuous local martingale

measures for Bλ, i.e., all probability measures Q
 P such that EQ[h(Bλ
τ −Bλ

σ )] = 0

for all pairs of stopping times σ ≤ τ ≤ T and for all bounded Fσ-measurable random

variables h. For a probability measure Q
 P, let H (Q|P) be the relative entropy of

Qwith respect to P, i.e., H (Q|P) = E
[
dQ
dP log

dQ
dP

]
≥ 0. For λ ∈ P2 such thatMλ � ∅,

where

Mλ = {Q ∈Mλ
a |H (Q|P) <∞},

a strategy π is said to be λ-admissible if π ∈ Aλ, where

Aλ =
{
π ∈ P2 | π · Bλ is a Q-martingale for all Q ∈Mλ

}
.

We note that the setAλ corresponds - up to finiteness of the utility - exactly to the set

Θ2 in [11]. This admissible class contains, in particular, all π ∈ P2 such that π · Bλ

is bounded (uniformly in t and ω).

Definition 1 (Equilibrium)
Given a population with characteristics (E,δ), a process λ ∈ P2 withMλ � ∅ is

called an equilibrium (market price of risk) if there exists an I-tuple (πi)i such

that

i) each πi is an optimal strategy for the agent i under λ, i.e.

πi ∈ argmaxπ∈AλE

[
U i (π · Bλ

T +Ei)
]
,

ii) the market clears, i.e.,
∑

i π
i = 0.

The set of all equilibria is denoted by Λδ (E,P), or simply, Λδ (E), when the the

probability P is clear from the context.

Remark 1 The assumptions on the agents’ random endowments that we introduce

below and the proof techniques we employ make it clear that bmo is a natural space

to search for equilibria in. There is, however, no compelling economic argument

to include bmo into the definition of an equilibrium, so we do not. It turns out,

nevertheless, that whenever an equilibrium λ is mentioned in the rest of the paper it

will be in the bmo context, and we will assume automatically that any equilibrium

market price of risk belongs to bmo. In particular, all uniqueness statements we make

will be with respect to bmo as the ambient space.

1.2 A simple risk-aware reparametrization

It turns out that a simple reparametrization in our “ingredient space” leads to sub-

stantial notational simplification. It also sheds some light on the economic meaning
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of various objects. The main idea is to think of the risk- tolerance coefficients

as numéraires, as they naturally carry the same currency units as wealth. When

expressed in risk-tolerance units, the random endowments and strategies become

unitless and we introduce the following notation

G = 1
δE, i.e., Gi = 1

δi Ei, and ρ = 1
δ π, i.e., ρi = 1

δi π
i . (3)

Since Aλ is invariant under this reparametrization, the equilibrium conditions be-

come

ρi ∈ argmaxρ∈Aλ
i
E

[
U (ρ · Bλ

T +Gi)
]

and
∑

i α
i ρi = 0, (4)

where U (x) = −exp(−x), and αi = δi/(
∑

j δ
j ) ∈ (0,1) - with

∑
i α

i = 1 - are the

(relative) weights of the agents. The set of all equilibria with risk-denominated

random endowments G = (Gi)i and relative weightsα = (αi)i is denoted byΛα (G,P)

(this notation overload should not cause any confusion in the sequel).

Since the market-clearing condition in (4) now involves the relative weights αi

as “conversion rates”, it is useful to introduce the aggregation operator A : RI → R
by

A[x] =
∑

i α
i xi, for x ∈ RI, (5)

so that the market-clearing condition now simply reads A[ρ] = 0, pointwise.

1.3 A solution of the single-agent utility-maximization problem

Before we focus on the questions of existence and uniqueness of an equilibrium, we

start with the single agent’s optimization problem. Here we suppress the index i and

first introduce an assumptions on the risk-denominated random endowment:

G is bounded from above and G ∈ EBMO, (6)

where EBMO denotes the set of all G ∈ L0 for which there exists (necessarily unique)

processes mG and nG in bmo, as well a constant XG
0

, such that G = XG
T , where

XG
t = XG

0 +

∫ t

0

mG
u dBu +

∫ t

0

nGu dWu +
1
2

∫ t

0

(
(mG

u )2+ (nGu )2
)

du. (7)

The supermartingale XG admits the following representation

XG
t = − logEt [exp(−G)], so that U (XG

t ) = Et [U (G)] for t ∈ [0,T], (8)

and can be interpreted as the certainty-equivalent process (without access to the

market) of G, expressed in the units of risk tolerance.

Remark 2
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1. When G is bounded from above, as we require it to be in (6), a sufficient condition

for G ∈ EBMO is e−G ∈ BMO. This follows directly from the boundedness of

the (exponential) martingale e−XG
t away from zero.

2. The condition (6) amounts to the membership MG ∈ BMO, where MG = mG ·
B+ nG ·W . Then −MG ∈ BMO and, by Theorem 3.1, p. 54 in [22], E (−MG )

satisfies the reverse Hölder inequality (Rp) with some p > 1. Therefore, for

ε < p−1, we have

E[e−(1+ε)G] = E[e−(1+ε)(XG
0
+MG

T +
1
2
〈MG 〉T )

]

= e−(1+ε)XG
0 E

[(
E (−MG )T

)1+ε]
<∞.

On the other hand, by (1) above, we clearly have L∞ ⊆ EBMO, so

G ∈ L∞ ⇒ G ∈ EBMO⇒ E[e−(1+ε)G] <∞ for some ε > 0.

In particular our condition (6), while implied by the boundedness of G, itself

implies the conditions G+ =max{G,0} ∈ L∞, e−G ∈ ∪p>1L
p , imposed in [11].

We recall in Proposition 1 some results about the nature of the optimal solution to the

utility-maximization problem (2) from [11]; the proof if given in Section 3 below.

Proposition 1 (Single agent’s optimization problem: existence and duality)
Suppose that λ ∈ bmo and that G satisfies (6). Then both primal and dual problems

have finite values and the following statements hold:

1. There exists a unique ρλ,G ∈ Aλ such that

ρλ,G ∈ argmax
ρ∈Aλ

E

[
U (ρ · Bλ

T +G)
]
.

2. There exists a unique Qλ,G ∈Mλ such that

Q
λ,G ∈ argmin

Q∈Mλ

(H (Q|P)+EQ[G]).

3. There exists a constant cλ,G such that

cλ,G + ρλ,G · Bλ
T +G = − log(Zλ,G

T ), where Zλ,G
T =

dQλ,G

dP . (9)

The process ρλ,G and the probability measure Qλ,G are called the primal and

the dual optimizers, respectively. While they were first obtained by convex-duality

methods, they also admit a BSDE representation (see, e.g., [27]), where a major role

is played by (the risk-denominated version) of the so-called certainty-equivalent
process:

Yλ,G
t =U−1

(
Et

[
U (ρλ,G · Bλ

T − ρλ,G · Bλ
t +G)

] )
, t ∈ [0,T]. (10)
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The optimality of ρλ,G implies that

U (Yλ,G
t ) = esssup

ρ∈Aλ

Et

[
U (ρ · Bλ

T − ρ · Bλ
t +G)

]
, t ∈ [0,T]. (11)

Hence Yλ,G
t can be interpreted as the risk-denominated certainty equivalent of the

agent i, when he/she trades optimally from t onwards, starting from no wealth.

Finally, with

Zλ,G
t = Et

[
dQλ,G

dP

]
= E (−λ · B− νλ,G ·W )t, t ∈ [0,T] for some νλ,G ∈ P2, (12)

we have the following BSDE characterization for single agent’s optimization prob-

lem.

Lemma 1 (Single agent’s optimization problem: a BSDE characterization)
For λ ∈ bmo and G satisfying (6), let Yλ,G be as in (10), let μλ,G = λ− ρλ,G and

let νλ,G be defined by (12). Then the triplet (Yλ,G, μλ,G, νλ,G ) is the unique solution
to the BSDE

dYt = μt dBt + νt dWt +
(

1
2
ν2t − 1

2
λ2
t + λt μt

)
dt, YT = G, (13)

in the class where (μ, ν) ∈ bmo. Such a unique solution also satisfiesYλ,G−XG ∈ S∞.

Given the results of Propositions 1 and 1 above, we fix the notation Yλ,G , μλ,G , νλ,G ,

Q
λ,G , Zλ,G and ρλ,G for λ and G. We also introduce the vectorized versions Yλ,G ,

μλ,G , νλ,G , Qλ,G , and Zλ,G , so that, e.g., μλ,G = (μλ,G
i
)i and G = (Gi)i .

1.4 A BSDE characterization of equilibria

The BSDE-based description in Lemma 1 of the solution of a single agent’s optimiza-

tion problem is the main ingredient in the following characterization, whose proof

is given in Subsection 3.3 below. We use the risk-aware parametrization introduced

in Subsection 1.2, and remind the reader that Λα (G) denotes the set of all equilibria

in bmo when G = (Gi)i are the agents’ risk-denominated random endowments and

α = (αi)i are the relative weights.

Theorem 1 (BSDE characterization of equilibria)
For a process λ ∈ bmo, and an allocation G which satisfies (6) componentwise,

the following are equivalent:
1. λ ∈ Λα (G), i.e., λ is an equilibrium for the population (G,α).
2. λ = A[μ] for some solution (Y,μ,ν) of the BSDE system:

dYt = μt dBt +νt dWt +
(

1
2
ν2
t − 1

2
A[μt ]

2+ A[μt ]μt

)
dt, YT = G, (14)

with (μ,ν) ∈ bmoI .
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Remark 3

1. Spelled out “in coordinates”, the system (14) becomes

⎧⎪⎨⎪⎩
dY i

t = μ
i
t dBt + ν

i
t dWt +

(
1
2

(νit )
2− 1

2
(
∑

j α
j μ

j
t )

2+ (
∑

j α
j μ

j
t )μ

i
t

)
dt,

Y i
T = Gi, i ∈ {1,2, . . ., I},

(14)

and the market-clearing condition λ = A[μt ] reads λ =
∑

j α
j μj .

2. While quite meaningless from the competitive point of view, in the case I = 1 of

the above characterization still admits a meaningful interpretation. The notion

of an equilibrium here corresponds to the choice of λ under which an agent, with

risk-denominated random endowment G ∈ EBMO would choose not to invest in

the market at all. The system (14) reduces to a single equation

dYt = μt dBt + νt dWt + ( 1
2
μ2
t +

1
2
ν2t ) dt, YT = G,

which admits a unique solution, namely Y = XG , so that λ = mG is the unique

equilibrium. This case also singles out the space EBMO as the natural environ-

ment for the random endowments Gi in this context.

2 Main Results

We first present our main result, then discuss its implications on models with short

time horizons or a large population of agents. All proofs are postponed until Section

3.

2.1 Equilibria close to Pareto optimality

Whenever equilibrium is discussed, Pareto optimality is a key concept. Passing to the

more-convenient risk-aware notation, we remind the reader the following definition,

where, as usual, A[x] =
∑

i α
i xi:

Definition 2 For ξ ∈ L0(FT ), an allocation ξ is called ξ-feasible if A[ξ] ≤ ξ. An

allocation ξ is said to be Pareto optimal if there is no A[ξ]-feasible allocation ξ̃ ,

such that E[U (ξ̃i)] ≥ E[U (ξi)] for all i, and E[U (ξ̃i)] > E[U (ξi)] for some i.

In our setting, Pareto optimal allocations admit a very simple characterization; this

is a direct consequence of the classical result [4] of Borch so we omit the proof.

Lemma 2 A (sufficiently integrable) allocation ξ is Pareto optimal if and only if its
components agree up to a constant, i.e., if there exist ξc ∈ L0(FT ) and constants
(ci)i such that ξi = ξc + ci for all i.
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Next, we introduce a concept which plays a central role in our main result. Given

a population with the (risk-denominated) initial allocation G whose components

satisfy (6), let (mi,ni) ∈ bmo be an alias for the pair (mGi
,nG

i
) defined in (7). We

define distance to Pareto optimality H (G) of G by

H (G) = inf
ξc

max
i
| |(mi −mc,ni − nc) | |bmo(Pc ),

where the infimum is taken over the set of ξc ∈ EBMO, with (mc,nc) = (mξc
,nξc

)

as in (7), and the probability measure Pc is given by

dPc/dP = E (−mc · B− nc ·W )T = exp(−ξc)/E[exp(−ξc)]. (15)

Remark 4

1. Suppose that H (G) = 0 and that the infimum is attained. Then (mi,ni) = (mc,nc),

for all i, implying that all components of G coincide with ξc up to some additive

constants, making G Pareto optimal. On the other hand, since each agent has

exponential utility, shifting all components of G by the same amount ξc is

equivalent to a measure change from P to Pc . Therefore, λ ∈ Λα (G,P) if and

only if λ −mc ∈ Λα (G− ξc,Pc), i.e., translation in endowments does not affect

the wellposedness of the equilibrium. As a consequence, to show Λα (G,P) � ∅,
it suffices to prove Λα (G− ξc,Pc) � ∅ for some ξc , which is the strategy we

follow below.

2. Our “distance to Pareto optimality” is conceptually similar to the “coefficient

of resource utilization” of Debreu (see [10]), well known in economics. There,

however, seems to be no simple and direct mathematical connection between

the two.

In our first main result below, we assume that G is sufficiently close to some
Pareto optimal allocation, i.e., that H (G) ≤ ε∗, for some sufficiently small ε∗:

Theorem 2 (Existence and uniqueness close to Pareto optimality)
Let (6) hold for all components in G. There exists a sufficiently small constant ε∗,

independent of the number of agents I, such that if

H (G) ≤ ε∗, (16)

Then there exists a unique equilibrium λ ∈ bmo. Moreover, the triplet (Yλ,G,μλ,G,
νλ,G ), defined in Lemma 1, is the unique solution to (14) with (μλ,G,νλ,G ) ∈ bmoI .

Remark 5 A similar global uniqueness has been obtained in [24, Theorem 4.1] for

a different quadratic BSDE system arising from a price impact model.

The proof of Theorem 2 will be presented in Section 2.1. For the time being, let

us discuss two important cases in which (16) holds:

- First, given ξc ∈ EBMO and 1 ≤ i ≤ I, let XGi
and X ξc

be defined by (7) with

terminal conditions Gi and ξc , respectively. A simple calculation shows that
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d(XGi

t − X ξc

t ) = (mi
t −mc

t ) dBc
t + (nit − nc

t ) dW c
t +

1
2

(
(mi

t −mc
t )2+ (nit − nc

t )2
)

dt,

with the terminal condition Gi − ξc , for a two-dimensional Pc-Brownian motion

(Bc,W c), where Pc is given by (15). If, furthermore, Gi − ξc ∈ L∞, it follows that

| |(mi −mc,ni − nc) | |2bmo(Pc ) = 2sup
τ
| |EPcτ [XGi

T − ξc]− (XGi

τ − ξcτ ) | |
L∞

≤ 4| |Gi − ξc | |L∞ .
Therefore, assumption (16) holds, if

inf
ξc

max
i
| |Gi − ξc | |L∞ ≤

(ε∗)2

4
. (17)

- The second case in which (16) can be verified is in the case of a "large" number of

agents. Indeed, an interesting feature of (17) is its lack of dependence on I, leading to

the existence of equilibria in an economically meaningful asymptotic regime. Given

a total endowment EΣ ∈ L∞ to be shared among I agents, i.e.,
∑

i Ei = EΣ, one can

ask the following question: how many and what kind of agents need to share this total

endowment so that they can form a financial market in which an equilibrium exists?

The answer turns out to be “sufficiently many sufficiently homogeneous agents”. In

order show that, we first make precise what we mean by sufficiently homogeneous.

For the population characteristics E = (Ei)i and δ = (δi)i , with E ∈ (L∞)I , we define

the endowment heterogeneity index χE (E) ∈ [0,1] by

χE (E) =max
i, j

| |Ei −E j | |L∞
||Ei | |L∞ + | |E j | |L∞ .

We think of a population of agents as “sufficiently homogeneous” if χE (E) ≤ χE
0

for

some, given, critical index χE
0

. With this in mind, we have the following corollary

of Theorem 2:

Corollary 1 (Existence of equilibria for sufficiently many sufficiently homoge-
neous agents)

Given a critical endowment homogeneity index χE
0
∈ [0, 1

2
), a critical risk

tolerance δ0 > 0, as well as the total endowment EΣ ∈ L∞, there exists I0 =

I0(| |EΣ | |L∞, χE0 , δ0) ∈ N, so that any population (E,δ) = (Ei, δi)i satisfying

I ≥ I0,
∑

i Ei = EΣ, χE (Ei) ≤ χE
0
, and mini δ

i ≥ δ0,
admits an equilibrium.

Condition (17) can be thought of as a smallness-in-size assumption placed on the

random endowments, possibly after translation. It turns out that it can be “traded” for

a smallness-in-time condition which we now describe. We start by briefly recalling

the notion of Malliavin differentiation on the Wiener space. LetΦ be the set of random

variables ζ of the form ζ = ϕ(I(h1), . . .,I(hk )), where ϕ ∈ C∞
b

(Rk,R) (smooth
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functions with bounded derivatives of all orders) for some k, h j = (h j,b, h j,w ) ∈
L

2([0,T];R2) and I(h j ) = h j,b · BT + h j,w ·WT , for each j = 1, . . ., k. If ζ ∈ Φ, we

define its Malliavin derivative as the 2-dimensional process

Dθ ζ =

k∑
j=1

∂ϕ

∂x j
(I(h1), . . .,I(hk ))h j

θ, θ ∈ [0,T].

We denote by Db
θ ζ and Dw

θ ζ the two components of Dθ ζ and for ζ ∈Φ, p ≥ 1, define

the norm

| |ζ | |1,p =
⎡⎢⎢⎢⎢⎣E

⎡⎢⎢⎢⎢⎣|ζ |p +
(∫ T

0

|Dθ ζ |2dθ
)p/2⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
1/p

.

For p ∈ [1,∞), the Banach space D1,p is the closure of Φ under | | · | |1,p . For p =∞,

we define D1,∞ as the set of all those G ∈ D1,1 with DbG,DwG ∈ S∞.

Corollary 2 (Existence of equilibria on sufficiently small time horizons)
Suppose that (6) holds for all components of G and that there exists ξc ∈ EBMO

such that Gi − ξc ∈ D1,∞ for all i. Then a unique equilibrium exists as soon as

T < T∗ =
(ε∗)2

maxi
(
| |Db (Gi − ξc) | |2S∞ + | |Dw (Gi − ξc) | |2S∞

) . (18)

Remark 6 In a Markovian setting where G = g(BT ,WT ), for some functions g = (gi)i ,

we only need to assume there exists some gc ∈ L∞ such that ∂b (gi−gc), ∂w (gi−gc) ∈
L
∞, for any i, where ∂b (gi −gc) and ∂w (gi −gc) are weak derivatives of gi −gc . A

similar “smallness in time" result has been proven in [8, Theorem 3.1] (and in [30]

in a simpler model) in a Markovian setting. Corollary 2 extends the result of [8] to a

non-Markovian setting.

3 Proofs

3.1 Proof of Proposition 1

For λ ∈ bmo, we record thatMλ � ∅. Indeed, thanks to the bmo property of λ, the

process Zλ = E (−λ · B) is a martingale and satisfies the reverse Hölder inequality

Rp for some p > 1 (see [22, Theorem 3.1]). That, in turn, implies the reverse Hölder

inequality R log R, and, so, the probability Qλ defined via dQλ/dP = Zλ
T satisfies

H (Qλ |P) <∞, and, consequently Qλ ∈Mλ.

The statements of Proposition 1 will follow from [11, Theorem 2.2], once we

verify that Zλ satisfies the reverse Hölder inequality R log R under P as well, where

dP/dP = e−G/E[e−G]. For that, we note that e−G/E[e−G] = E (−mG · B− nG ·W )T ,

where (mG,nG ) is as in (7). Given λ ∈ bmo, the bmo property of (mG,nG ) and [22,
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Theorem 3.6] imply that λ −mG ∈ bmo(P), and, so, Zλ = E (−(λ −m) · B)T , where

B =
∫ ·

0
mudu+ B is a P-martingale. It remains to use the same argument as in the

previous paragraph to show that Zλ indeed satisfies the reverse Hölder inequality

R log R under P.

3.2 Proof of Lemma 1

Let (m,n) = (mG,nG ) from (7); more generally, we suppress the superscripts λ and

G throughout to increase legibility. A combination of (9) and (10) yields that

Y = −c− ρ · Bλ− log Z,

and a simple calculation confirms that (Y, μ, ν) satisfies (13). Next, we show Y −X ∈
S∞. We start by defining the probability measure P via dP/dP = E (−m · B−n ·W )T
so that under P, D = Y − X is the certainty-equivalent process corresponding to the

zero endowment. By (11), we have D ≥ 0 as well as

dDt = (μt −mt ) dB+ (νt − nt ) dW

+
(

1
2

(νt − nt )2− 1
2

(λt −mt )
2+ (λt −mt )(μt −mt )

)
dt, with DT = 0, (19)

where B = B+
∫ ·

0
mudu and W =W +

∫ ·
0

nudu are P-Brownian motions. Using the

notation Qλ, as well as the argument of Proof of Proposition 1 above, we can deduce

that Qλ ∈ Mλ−m (where P in the definition ofMλ−m is replaced by P). We claim

that

Dτ ≤ Hτ (Qλ |P), for any τ ∈ T . (20)

Proposition 1, applied under P and with zero random endowment produces the dual

optimizer Qλ,G , with P-density Zλ−m,G . If we project both sides of the equality

cλ,G + ρλ,G · Bλ
T = − log(Zλ−m,G

T ) under Qλ,G onto Fτ we obtain

Dτ = Hτ (Qλ,G |P).

No integrability issues arise here since H (Qλ,G |P) < ∞ and ρλ,G · Bλ is a Qλ,G-

martingale (by part (iii) of Proposition 1). The required inequality (20) follows from

the optimality of Qλ,G in part (ii) of Proposition 1.

The right-hand side of (20) can be written as

Hτ (Qλ |P) = E
Q
λ

τ

[
1
2

∫ T

τ
(λt −mt )

2dt −
∫ T

τ
(λt −mt )dBλ

t

]
≤ 1

2
| |λ −m | |2

bmo(Qλ )
.

Given that both λ and m belong to bmo we have λ−m ∈ bmo(Qλ) by [22, Theorem

3.6]. Therefore, we can combine (20) and the fact that D ≥ 0 to conclude that D ∈ S∞.

Consequently, it suffices to apply the standard bmo-estimate for quadratic BSDEs



282 Constantinos Kardaras, Hao Xing, and Gordan Žitković

(see Lemma 9) to (19), to obtain (μ−m, ν−n) ∈ bmo(P). Since (m,n) ∈ bmo, another

application of [22, Theorem 3.6] confirms that (μ, ν) ∈ bmo.

Lastly, we show that there can be at most one solution to (13) with (μ, ν) ∈ bmo.

Let (Y, μ, ν) and (Ỹ, μ̃, ν̃) be two solutions with (μ, ν), ( μ̃, ν̃) ∈ bmo. For δY = Ỹ −Y ,

we have

d(δY )t = δμtdBλ
t + δνtdWν

t , δYT = 0.

Here δμ = μ̃− μ, δν = ν̃− ν, ν = 1
2

(ν+ ν̃), and Wν =W +
∫ ·

0
νtdt is a Qλ,ν-Brownian

motion, where Qλ,ν is defined via dQλ,ν/dP = E (−λ · B− ν ·W )T . By [22, Theorem

3.6], both δμ · Bλ and δν ·Wν are BMO(Qλ,ν)-martingales. Hence δYT = 0 implies

that δY = 0 and, consequently, δμ = δν = 0.

3.3 Proof of Theorem 1

(1) ⇒ (2). Given an equilibrium λ ∈ Λα (G) and i ∈ {1,2, . . ., I}, let ρλ,G
i

be the

primal optimizer of agent i, and let (Y i, μi, νi) be defined as in Lemma 1 where (13)

has the terminal condition Y i
T =Gi . Since λ is an equilibrium,

∑
i α

i ρλ,G
i
= 0, and so

λ = λ−∑i α
i ρλ,G

i
=
∑

i α
iμi , for μi = λ− ρλ,Gi

, implying that (Y,μ,ν) = (Y i, μi, νi)i
solves the system (14). The property (μ,ν) ∈ bmoI follows from Lemma 1.

(2) ⇒ (1). Given a solution (Y,μ,ν) of (14), we set λ =
∑

i α
iμi . This way,

individual equations in (14) turn into BSDEs of the form (13). If we set ρλ,i =
λ − μi the market clearing condition

∑
i αi ρ

λ,i = 0 holds. Since (μi, νi) ∈ bmo the

uniqueness part of Lemma 1 implies that λ, ρi maximizes single-agents’ utilities.

3.4 Proof of Theorem 2

In order to prove Theorem 2, we start with a refinement of the classical result on

uniform equivalence of bmo spaces (see Theorem 3.6, p. 62 in [22]), based on a

result of Chinkvinidze and Mania (see [7]).

Lemma 3 Let σ ∈ bmo be such that | |σ | |bmo =:
√

2R for some R < 1. If P̂ ∼ P is such
that dP̂ = E (σ · B̃)T dP, for some F-Brownian motion B̃, then, for all ζ ∈ bmo, we
have

(1+ R)−1 | |ζ | |bmo ≤ ||ζ | |bmo(P̂) ≤ (1− R)−1 | |ζ | |bmo. (21)

Proof Since M = σ · B̃ is a BMO-martingale, Theorem 3.6. in [22] states that the

spaces bmo and bmo(P̂) coincide and that the norms | | · | |bmo and | | · | |bmo(P̂) are

uniformly equivalent. This norm equivalence is refined in [7]; Theorem 2 there

implies that

(1+ R)−1 | |ζ | |bmo ≤ ||ζ | |bmo(P̂) ≤ (1+ R̂) | |ζ | |bmo, where R̂ =
√

1
2
| |σ | |2

bmo(P̂)
. (22)
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Clearly, only the second inequality in (21) needs to be discussed; it is obtained by

substituting ζ = σ into the second inequality in (22):

√
2R̂ = | |σ | |bmo(P̂) = (1+ R̂) | |σ | |bmo ≤

√
2(1+ R̂)R, so that (1+ R̂) ≤ (1− R)−1.

Coming back to Theorem 2, suppose that (16) is satisfied. Then there exists

ξc ∈ EBMO such that

max
i
| |(mi −mc,ni − nc) | |bmo(Pc ) ≤ ε∗. (23)

To simplify notation, we introduce m = (mi)i and n = (ni)i . A calculation shows

that (component-by-component)

d(Yt − ξct ) =(μt −mc
t ) dBc

t + (νt − nc
t ) dW c

t

+
(

1
2

(νt − nc
t )2− 1

2
(λt −mc

t )2+ (λt −mc
t )(μt −mc

t )
)

dt,

YT − ξcT =G− ξc,
where λ = A[μ], ξct = − log(Et [exp(−ξc)]), and Bc,W c are Pc-Brownian motions.

This is exactly the type of system covered in (14). Therefore, to ease notation, we

treat, throughout this section, P as Pc , B as Bc , W as W c , and G, λ,μ,ν as their

shifted versions, i.e., eg. G as G− ξc , λ as λ−mc , etc. As a result, (23) translates to

max
i
| |(mi,ni) | |bmo ≤ ε∗. (24)

We proceed by setting up a framework for the Banach fixed-point theorem. First

observe that since (mi,ni) ∈ bmo for all i, then bmo is a natural space in which

the fixed-point theorem can be applied. Given λ ∈ bmo and G = (Gi)i , let Yλ =

(Yλ,Gi
)i and X = (XGi

)i , denote the agents’ certainty-equivalent processes with and

without assess the market, respectively; we also set (μλ,G,νλ,G ) = (μλ,G
i
, νλ,G

i
)i ,

where (μλ,G
i
, νλ,G

i
)i is defined in Lemma 1. This allows us to define (a simple

transformation of) the excess-demand map

F : λ �→ A[μλ,G],

where the aggregation operator A[·] is defined in (5). The significance of this map

lies in the simple fact that λ is an equilibrium if and only if F (λ) = λ, i.e., if λ is a

fixed point of F.

Before proceeding to studying properties of F, we first record the following

a-priori estimate on λ in equilibrium.

Lemma 4 If λ ∈ bmo is an equilibrium, then

| |λ | |bmo ≤ max
i
| |(mi,ni) | |bmo.

Proof Aggregating all single equations in (14) and (7), we obtain
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dA[Yλ
t −Xt ]=(λt−A[mt ])dBt+A[νλt −nt ]dWt+

1
2

(λ2
t +A[(νλt )2])dt−1

2
A[m2

t +n
2
t ]dt .

Let (σn)n be a reducing sequence for local martingale part above. For any τ ∈ T ,

integrating the previous dynamics from τ∧σn to σn and projecting onto Fτ yields

Eτ

[
A[Yλ

σn
−Xσn ]

]
− A[Yλ

τ∧σn
−Xτ∧σn ] =

= 1
2
Eτ

[∫ σn

τ∧σn

(λ2
t + A[(νλt )2])dt

]
− 1

2
Eτ

[∫ σn

τ∧σn

A[m2
t + n

2
t ]dt

]
. (25)

Sending n→∞, since Yλ−X ≥ 0 (component-by-component) and is also bounded

(see Lemma 1) and A[XT ] = A[G] = A[Yλ
T ], we obtain

| |λ | |2bmo ≤ ||λ2+ A[(νλ)2]| |bmo ≤ ||A[m2+ n2]| |bmo

≤ A[| |(m, n) | |2bmo] ≤ max
i
| |(mi,ni) | |2bmo.

For the third inequality, note that Eτ[
∫ T
τ

A[m2
t + n

2
t ]dt] ≤ A[| |(m, n) | |2bmo] holds for

all stopping times τ. �

For arbitrary λ ∈ bmo, the following estimate gives an explicit upper bound on

the (nonnegative) difference Dλ,i = Yλ,i − X i .

Lemma 5 Suppose that | |λ | |bmo <
√

2. Then,

0 ≤
√

Dλ,i ≤ ||λ | |bmo+ | |(mi,ni) | |bmo√
2− ||λ | |bmo

, for all i.

Proof Let Qλ be the probability such that dQλ = Zλ
T dP, where Zλ = E (−λ · B).

Since Qλ ∈Mλ, then the argument that leads to (20) also implies that

Yλ,i
τ ≤ Hτ (Qλ |P)+E

Q
λ

τ [Gi], for any τ ∈ T . (26)

On the right-hand side of (26),

Hτ (Qλ |P) = E
Q
λ

τ

[
1
2

∫ T

τ
λ2
udu−

∫ T

τ
λudBλ

u

]
≤ 1

2
| |λ | |2

bmo(Qλ )
.

Since | |λ | |bmo(Qλ ) ≤
√

2| |λ | |bmo/
(√

2− ||λ | |bmo

)
, as follows from Lemma 3, we ob-

tain

Hτ (Qλ |P) ≤ ||λ | |2bmo(√
2− ||λ | |bmo

)2 .
Furthermore, recalling that X i

T =Gi and dX i
t =mi

tdBt +nitdWt +
1
2

((mi
t )

2+ (nit )
2)dt,

we note that

E
Q
λ

τ [Gi] = Eτ[(Zλ
T /Z

λ
τ )Gi] = Eτ[(Zλ

T /Z
λ
τ )X i

T ].
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Given that Zλ is a BMO-martingale and | |(mi,ni) | |bmo <∞ , the integration-by-parts

formula implies that

Eτ[(Zλ
T /Z

λ
τ )X i

T ] =

= X i
τ −Eτ

[∫ T

τ
(Zλ

u/Z
λ
τ )λumi

udu
]
+ 1

2
Eτ

[∫ T

τ
(Zλ

u/Z
λ
τ )
(
(mi

u)2+ (niu)2
)

du
]

= X i
τ −EQ

λ

τ

[∫ T

τ
λumi

udu
]
+ 1

2
E
Q
λ

τ

[∫ T

τ

(
(mi

u)2+ (niu)2
)

du
]
.

A use of Holder’s inequality then gives

E
Q
λ

τ [Gi]− X i
τ ≤ ||λ | |bmo(Qλ ) | |mi | |bmo(Qλ ) +

1
2
| |(mi,ni) | |2bmo(Qλ )

≤ 2| |λ | |bmo | |(mi,ni) | |bmo+ | |(mi,ni) | |2bmo(√
2− ||λ | |bmo

)2 ,

where, again, the last inequality follows from Lemma 3. A Combination of the above

estimates shows that

Dλ,i
τ = Yλ,i

τ − X i
τ ≤ �� | |λ | |bmo+ | |(mi,ni) | |bmo√

2− ||λ | |bmo

��
2

,

which completes the proof. �

Lemma 6 Suppose that λ ∈ bmo satisfies

| |λ | |bmo <

√
2− ||(mi,ni) | |bmo

2
.

Then, it holds that

| |(μλ,i, νλ,i) | |bmo ≤

≤ (
√

2+ | |(mi,ni) | |bmo) | |(mi,ni) | |bmo+ | |λ | |bmo( | |λ | |bmo+ | |(mi,ni) | |bmo)√
2−2| |λ | |bmo− ||(mi,ni) | |bmo

.

In particular, the previous is also a bound for both | |μλ,i | |bmo and | |νλ,i | |bmo.

Proof Set Y = Yλ, μ = μλ and ν = νλ to increase legibility, and define

f i =
| |λ | |bmo+ | |(mi,ni) | |bmo√

2− ||λ | |bmo

,

and D = Y −X . Note that Di
T = 0 and 0 ≤ Di ≤ ( f i)2 from Lemma 5. Since

dDi
t = (μit −mi

t )dBt + (νit − nit )dWt +
1
2

(
(νit )

2− λ2
t +2μitλt − (mi

t )
2− (nit )

2
)

dt,
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an application of Itô’s lemma gives

d(Di
t )

2 =2Di
t (μ

i
t −mi

t )dBt +2Di
t (ν

i
t − nit )dWt

+Di
t

(
(νit )

2− λ2
t +2μitλt − (mi

t )
2− (nit )

2
)

dt

+
(
(μit −mi

t )
2+ (νit − nit )

2
)

dt.

Next, we take a reducing sequence (σn)n for the local martingales on the right-hand

side above, as well as and an arbitrary τ ∈ T . If we integrate the above dynamics

between σn∧ τ and σn, and use the facts that (νi)2 ≥ 0, λ2−2μiλ ≤ (μi − λ)2, and

Di ≥ 0, we obtain

(Di
σn

)2 ≥ (Di
σn

)− (Di
τ∧σn

)2 ≥2

∫ σn

τ∧σn

Di
t (μ

i
t −mi

t )dBt +2

∫ σn

τ∧σn

Di
t (ν

i
t − nit )dWt

−
∫ σn

τ∧σn

Di
t

(
(μit − λt )2+ (mi

t )
2+ (nit )

2
)

dt

+

∫ σn

τ∧σn

(
(μit −mi

t )
2+ (νit − nit )

2
)

dt.

Given that Di ≤ ( f i)2, a projection of both sides above on Fτ yields

Eτ

[∫ σn

τ∧σn

(
(μit −mi

t )
2+ (νit − nit )

2
)

dt
]

≤ Eτ[Di
σn

]+ ( f i)2
Eτ

[∫ σn

τ∧σn

(
(μi − λ)2+ (mi

t )
2+ (nit )

2
)

dt
]
.

Sending n→∞ first on the right-hand side then the left, helped by the facts that Di

is bounded and Di
T = 0, implies that

| |(μi, νi)− (mi,ni) | |2bmo ≤ ( f i)2
(
| |μi − λ | |2bmo+ | |(mi,ni) | |2bmo

)
.

Taking square roots on both sides, and using the elementary inequality
√

x2+ y2 ≤
|x | + |y | for any x, y, and the fact that | |μi − λ | |bmo ≤ ||(μi, νi) | |bmo + | |λ | |bmo, we

obtain

| |(μi, νi)− (mi,ni) | |bmo ≤ f i
(
| |λ | |bmo+ | |(μi, νi) | |bmo+ | |(mi,ni) | |bmo

)
.

Finally, since | |(μi, νi) | |bmo ≤ ||(μi, νi)− (mi,ni) | |bmo+ | |(mi,ni) | |bmo, it follows that

(1− f i) | |(μi, νi) | |bmo ≤ ||(mi,ni) | |bmo+ f i
(
| |λ | |bmo+ | |(mi,ni) | |bmo

)
,

from which the result follows after simple algebra. �

Define B(r) = {λ ∈ bmo : | |λ | |bmo ≤ r }. The following result shows that the

excess-demand map F maps B(r) into itself for an appropriate choice of r .
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Lemma 7 There exists a sufficiently small ε∗ independent of the number of the agents
I, such that whenever maxi | |(mi,ni) | |bmo ≤

√
2ε for ε ≤ ε∗, F mapsB(2ε ) into itself.

Proof Suppose that maxi | |(mi,ni) | |bmo ≤
√

2ε for some ε ∈ (0,1) determined later.

Let us consider λ ∈ B(
√

2εa), where a ∈ [1,1/ε ) will also be determined later.

Our goal is to choose a sufficiently small ε such that A[μλ] ∈ B(
√

2εa)for some

a ∈ [1,1/ε ), whenever λ is chosen from the same ball. If this task is successful,

given a ≥ 1, Lemma 4 implies that all possible equilibria are already in the same

ball. Hence the local uniqueness immediately implies global uniqueness in bmo.

For λ ∈ B(
√

2εa), Lemma 5 gives

0 ≤
√

Dλ,i ≤ ε (1+ a)

1− aε
=: φ(ε,a).

Note that φ is an increasing function of both arguments. For Lemma 6 we need

φ < 1. Therefore, only ε ∈ (0,1) such that φ(ε,1) < 1 can be used, i.e., ε ∈ (0,1/3).

Taking ε ∈ (0,1/3) and a ∈ [1,1/ε ), in order to have φ(ε,a) < 1, it is necessary and

sufficient that

a <
1− ε
2ε
=: a(ε ).

Note that a is decreasing in ε with a(0+) =∞ and a(1/3) = 1, and that a(ε ) < 1/ε
holds for all ε ∈ (0,1/3).

Now, in order to have | |μλ,i | |bmo ≤
√

2εa, by Lemma 6 we need to ensure that

2(1+ ε )ε +2aε2(1+ a)√
2(1−2aε − ε ) ≤ a

√
2ε,

or, equivalently, that

q(a, ε ) := 3εa2− (1−2ε )a+ (1+ ε ) ≤ 0.

Fix a > 1, say a =
√

2, there exists a sufficiently small ε∗ such that q(
√

2, ε ) ≤ 0 for

any ε ≤ ε∗. Note that the choice of ε∗ is independent of the number of the agent I. For

such choice of ε , we have | |μλ,i | |bmo ≤ 2ε for all i. As a weighted sum of individual

component, | |F[λ]| |bmo ≤ A[| |μλ | |bmo], hence F[λ] ∈ B(2ε ) as well. �

Finally we check that F is a contraction on B(2ε ) for sufficiently small ε .

Lemma 8 There exists a sufficiently small ε∗ independent of the number of the agents
I, such that whenever maxi | |(mi,ni) | |bmo ≤

√
2ε for ε ≤ ε∗, F is a contraction on

B(2ε ).

Proof We drop the superscript i to increase legibility. Set δY =Yλ−Y λ̃, and note that

| |δY | |S∞ <∞ from Lemma 5 and δYT = 0. Set (μ, ν) = (μλ, νλ) and ( μ̃, ν̃) = (μλ̃, νλ̃).

Denote λ̄ = (λ+ λ̃)/2, μ̄= (μ+ μ̃)/2, and ν̄ = (ν+ ν̃)/2. Calculation using (13) gives

dδYt = (μt − μ̃t )dBt + (νt − ν̃t )dWt +
1
2

(
ν2t − ν̃2t + λ̃2

t − λ2
t +2μtλt −2μ̃t λ̃t

)
dt

= (μt − μ̃t )dBλ̄
t + (νt − ν̃t )dW ν̄

t − (λt − λ̃t )(λ̄t − μ̄t )dt,
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where Bλ̄ = B+
∫ ·

0
λtdt, W ν̄ =W +

∫ ·
0
ν̄tdt are Brownian motions under Qλ̄,ν̄ , and

Q
λ̄,ν̄ is defined via dQλ̄,ν̄/dP= E (−λ̄ ·B− ν̄ ·W )T . For an arbitrary τ ∈ T , integrating

the previous dynamics on [τ,T], taking conditional expectation E
Q
λ̄,ν̄

τ on both sides,

(both local martingales are BMO(Qλ̄,ν̄)-martingales, due to μ, μ̃, ν, ν̃ ∈ bmo from

Lemma 6 and [22, Theorem 3.6]), and finally using δYT = 0, we obtain

|δYτ | ≤ EQλ̄,ν̄

τ

[∫ T

τ
|λt − λ̃t | |λ̄t − μ̄t |dt

]
≤ ||λ̄ − μ̄| |bmo(Qλ̄,ν̄ ) | |λ − λ̃ | |bmo(Qλ̄,ν̄ ) .

This implies that

| |δY | |S∞ ≤ ||λ̄ − μ̄| |bmo(Qλ̄,ν̄ ) | |λ − λ̃ | |bmo(Qλ̄,ν̄ ) . (27)

To establish the Lipschitz continuity of F, we use Itô’s formula to get

d(δYt )2 =2δYt (μt − μ̃t )dBλ̄
t +2δYt (νt − ν̃t )dW ν̄

t −2δYt (λt − λ̃t )(λ̄t − μ̄t )dt

+
(
(μt − μ̃t )2+ (νt − ν̃t )2

)
dt.

For an arbitrary τ ∈ T , an integration of the above dynamics between τ and T , and

using (27) and δYT = 0, yields that

E
Q
λ̄,ν̄

τ

[∫ T

τ

(
(μt − μ̃t )2+ (νt − ν̃t )2

)
dt
]
≤

≤ 2| |δY | |S∞EQ
λ̄,ν̄

τ

[∫ T

τ
(λt − λ̃t )(λ̄t − μ̄t )dt

]
≤ 2| |λ̄ − μ̄| |2

bmo(Qλ̄,ν̄ ) | |λ − λ̃ | |
2

bmo(Qλ̄,ν̄ ),

which, in turn, implies that

| |( μ̃, ν̃)− (μ, ν) | |bmo(Qλ̄,ν̄ ) ≤
√

2 | |λ̄ − μ̄| |bmo(Qλ̄,ν̄ ) | |λ − λ̃ | |bmo(Qλ̄,ν̄ ) .

Note that Lemma 6 and the estimates in Lemma 7 also imply that | | ν̄ | |bmo ≤ 2ε , where

2ε is taken from Lemma 7. Therefore, | |(λ̄, ν̄) | |bmo ≤ 4ε and, similarly, | |λ̄ − μ̄| |bmo ≤
4ε . Therefore, it follows from Lemma 3 that

| |( μ̃, ν̃)− (μ, ν) | |bmo ≤
√

2
1+2
√

2ε

(1−2
√

2ε )2
| |λ̄ − μ̄| |bmo | |λ − λ̃ | |bmo

≤ 1+2
√

2ε

(1−2
√

2ε )2
8ε | |λ − λ̃ | |bmo.

Choosing sufficiently small ε so that 1+2
√

2ε

(1−2
√

2ε )2
8ε < 1, the proof is complete after

aggregating all components. �
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Proof (of Theorem 2) We have shown in the sequence of lemmas above that, when

(24) holds, the excess-demand map F is a contraction on B(2ε ) and that (μλ,νλ) ∈
bmoI . The Banach fixed point theorem implies that F has a unique fixed point λ
with | |λ | |bmo ≤ 2ε . Therefore the system (14) admits a solution (Y,μ,ν) with (μ,ν) ∈
bmoI . Hence λ is an equilibrium by Theorem 1. For the uniqueness of equilibrium,

Lemma 4 implies that any equilibrium λ satisfies | |λ | |bmo ≤ maxi | |(mi,ni) | |bmo ≤√
2ε . However, we have already shown that there can be only one equilibrium λ in

B(2ε ). Therefore we immediately have global uniqueness of equilibrium. Given the

unique λ, by Lemma 1, (Y,μ,ν) is the unique solution to (14) with (μ,ν) ∈ bmoI .�

3.5 Proof of Corollary 1

Summing both sides of | |Ei −E j | |L∞ ≤ χE0 ( | |Ei | |L∞ + | |E j | |L∞ ) over j, we obtain

I | |Ei | |L∞ − ||EΣ | |L∞ ≤ ‖IEi −∑j E j ‖L∞ ≤ ∑j | |Ei −E j | |L∞
≤ χE0 I | |Ei | |L∞ + χE0

∑
j | |E j | |L∞,

which implies

(1− χE0 ) | |Ei | |L∞ ≤ 1
I | |EΣ | |L∞ + χE0 1

I

∑
j | |E j | |L∞ .

Summing both sides of the previous inequality over i yields

∑
i | |Ei | |L∞ ≤ 1

1−2χE
0

| |EΣ | |.

The previous two inequalities combined then imply

| |Ei | |L∞ ≤ 1

1−2χE
0

1
I | |EΣ | |L∞, for all i.

Therefore

max
i

| |Ei | |L∞
δi

≤ 1

1−2χE
0

1
Iδ0
| |EΣ | |L∞,

where the right-hand side is strictly less than (ε∗)2/4 for sufficiently large I. Hence

(17) is satisfied when I ≥ I0, for some I0, and the existence of equilibrium follows

from Theorem 2.

3.6 Proof of Corollary 2

Throughout the proof, we treat G as G− ξc and suppress the superscript i when we

work with each component.
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Recalling (6) and Remark 2, we have E[G2] < ∞, which combined with the

assumption DbG,DwG ∈ S∞ implies G ∈ D1,2. Let G = E[G]+MT , where MT =m ·
BT +n ·WT for some (m,n). Clark-Ocone formula implies that Eθ [DθG] = (mθ,nθ ),

for any θ ≤ T , hence (m,n) ∈ S∞ as well. As a result, there exists a constant C
such that 〈M〉T ≤ CT , implying that G has at most Gaussian tail by Bernstein

inequality (see Equation (4.i) in [2]), hence E[exp(−2G)] <∞. Now combining the

previous inequality with DbG,DwG ∈ S∞, we obtain exp(−G) ∈D1,2, consequently,

Vt = Et [exp(−G)] ∈ D1,2 and

Dk
θVt = −Et [e−GDk

θG] for all θ ≤ t ≤ T and k = b or w.

Applying Clark-Ocone formula to Vt yields

Vt = E[Vt ]+

∫ t

0

Eθ [Db
θVt ]dBθ +

∫ t

0

Eθ [Dw
θ Vt ]dWθ .

On the other hand, dVθ = −VθmθdBθ −VθnθdWθ . Therefore Eθ [Db
θVt ] = −Vθmθ and

Eθ [Dw
θ Vt ] = −Vθmθ , for θ ≤ t. Hence,

mθ = −
Eθ [Db

θVt ]

Vθ
=
Eθ [e−GDb

θ G]

Eθ [e−G]
≤ ||DbG | |S∞,

which implies | |m | |S∞ ≤ ||DwG | |S∞ , and similarly, | |n| |S∞ ≤ ||DwG | |S∞ .

The statement now follows from Theorem 2 since, for T < T∗, where T∗ is given

in Corollary 2, we have

max
i
| |(mi,ni) | |2bmo < T∗max

i
(| |mi | |2S∞ + | |ni | |2S∞ )

≤ T∗max
i

( | |DbGi | |2S∞ + | |DwGi | |2S∞ ) ≤ (ε∗)2.

3.7 An a-priori bmo-estimate

Lemma 9 (An a-priori bmo-estimate for a single BSDE)
Given λ ∈ P2, let (Y, μ, ν) be a solution of the BSDE

dYt = μt dBt + νt dWt + ( 1
2
ν2t − 1

2
λ2
t + μtλt ) dt, YT = ξ.

If Y ∈ S∞, then (μ, ν) ∈ bmo.

Proof For β > 1 and two stopping times τ ≤ σ ∈ T , Itô’s formula yields
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e−βYσ ≥e−βYσ − e−βYτ = −β
∫ σ

τ
e−βYu (μudBu + νudWu)

− β
∫ σ

τ
e−βYu

(
1
2
ν2u − 1

2
λ2
u + λuμu

)
du+ 1

2
β2

∫ σ

τ
e−βYu (μ2

u + ν
2
u)du

≥− β
∫ σ

τ
e−βYu (μudBu + νudWu)+ 1

2
(β2− β)

∫ σ

τ
e−βYu (μ2

u + ν
2
u) du,

where we used the elementary fact that a2−b2+2bc ≤ a2+c2, for all a,b,c. We pick

a reducing sequence {σn}n∈N for the stochastic integral above, project onto Fτ , and

then let n→∞ to get

eβ | |Y | |S∞ ≥ 1
2

(β2− β)Eτ[
∫ T
τ

eβYu (μ2
u + ν

2
u) du]

≥ 1
2

(β2− β)e−β | |Y | |S∞Eτ[

∫ T

τ
(μ2

u + ν
2
u) dt].

This implies

Eτ

[∫ T

τ
(μ2

u + ν
2
u) du

]
≤ 2

β2− β e2β | |Y | |S∞ .

Since the above inequality holds for arbitrary τ ∈ T , the statement follows. �

References

1. Anderson, R.M., Raimondo, R.C.: Equilibrium in continuous-time financial markets: Endoge-

nously dynamically complete markets. Econometrica 76(4), 841–907 (2008)

2. Barlow, M., Jacka, S., Yor, M.: Inequality for a pair of processes stopped at a random time.

Proc. London Math. Soc. 52(3), 142–172 (1986)

3. Barrieu, P., El Karoui, N.: Monotone stability of quadratic semimartingales with applications

to unbounded general quadratic BSDEs. Ann. Probab. 41, 1831–2853 (2013)

4. Borch, K.: The safety loading of reinsurance premiums. Skand. Aktuarietidskr. 1960, 163–184

(1961) (1960)

5. Briand, P., Hu, Y.: BSDE with quadratic growth and unbounded terminal value. Probab.

Theory Relat. Fields 136(4), 604–618 (2006)

6. Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal condi-

tions. Probab. Theory Relat. Fields 141(3-4), 543–567 (2008)

7. Chikvinidze, B., Mania, M.: New proofs of some results on bounded mean oscillation mar-

tingales using Backward stochastic differential equations. J. Theor. Probab. 27, 1213–1228

(2014)

8. Choi, J.H., Larsen, K.: Taylor approximation of incomplete Radner equilibrium models (2014).

To appear in Finance Stoch.

9. Dana, R.A., Pontier, M.: On existence of an Arrow-Radner equilibrium in the case of complete

markets. A remark. Math. Oper. Res. 17(1), 148–163 (1992)

10. Debreu, G.: The coefficient of resource utilization. Econometrica 19(3), 273–292 (1951)

11. Delbaen, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer, M., Stricker, C.: Exponential

hedging and entropic penalties. Math. Finance 12(2), 99–123 (2002)

12. Delbaen, F., Hu, Y., Bao, X.: Backward SDEs with superquadratic growth. Probab. Theory

Relat. Fields 150, 145–192 (2011)



292 Constantinos Kardaras, Hao Xing, and Gordan Žitković

13. Duffie, D.: Stochastic equilibria: existence, spanning number, and the “no expected financial

gain from trade” hypothesis. Econometrica 54(5), 1161–1183 (1986)

14. Duffie, D., Huang, C.F.: Implementing Arrow-Debreu equilibria by continuous trading of few

long-lived securities. Econometrica 53(6), 1337–1356 (1985)

15. Elie, R., Briand, P.: A simple constructive approach to quadratic BSDEs with or without delay.

Stoch. Process. Appl. 123(8), 2921–2939 (2013)

16. Frei, C., dos Reis, G.: A financial market with interacting investors: does an equilibrium exist?

Math. Financ. Econ. 4(3), 161–182 (2011)

17. Hu, Y., Peng, S.: On the comparison theorem for multidimensional BSDEs. C. R. Math. Acad.

Sci. Paris 343(2), 135–140 (2006)

18. Karatzas, I., Lakner, P., Lehoczky, J.P., Shreve, S.E.: Equilibrium in a simplified dynamic,

stochastic economy with heterogeneous agents. In: Stochastic analysis, pp. 245–272. Academic

Press, Boston, MA (1991)

19. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Existence and uniqueness of multi-agent equilibrium

in a stochastic, dynamic consumption/investment model. Math. Oper. Res. 15(1), 80–128

(1990)

20. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Equilibrium models with singular asset prices. Math.

Finance 1, 11–29 (1991)

21. Karatzas, I., Shreve, S.E.: Methods of mathematical finance, Applications of Mathematics
(New York), vol. 39. Springer-Verlag, New York (1998)

22. Kazamaki, N.: Continuous exponential martingales and BMO, Lecture Notes in Mathematics,
vol. 1579. Springer-Verlag, Berlin (1994)

23. Kobylanski, M.: Backward stochastic differential equations and partial differential equations

with quadratic growth. Ann. Probab. 28(2), 558–602 (2000)

24. Kramkov, D., Pulido, S.: A system of quadratic BSDEs arising in a price impact model (2014).

To appear in Ann. Appl. Probab.

25. Magill, M., Quinzii, M.: Theory of Incomplete Markets, Volume 1. MIT Press, Cambridge

and London (1996)

26. Radner, R.: Equilibrium under uncertainty. Econometrica 36(1), 31–58 (1982)

27. Rouge, R., El Karoui, N.: Pricing via utility maximization and entropy. Math. Finance 10(2),

259–276 (2000). INFORMS Applied Probability Conference (Ulm, 1999)

28. Tevzadze, R.: Solvability of backward stochastic differential equations with quadratic growth.

Stochastic Process. Appl. 118(3), 503–515 (2008)

29. Zhao, Y.: Stochastic equilibria in a general class of incomplete brownian market environments.

Ph.D. thesis, The University of Texas at Austin (2012)

30. Žitković, G.: Financial equilibria in the semimartingale setting: complete markets and markets

with withdrawal constraints. Finance Stoch. 10(1), 99–119 (2006)

31. Žitković, G.: An example of a stochastic equilibrium with incomplete markets. Finance Stoch.

16(2), 177–206 (2012)


	Incomplete Stochastic Equilibria with Exponential Utilities Close to Pareto Optimality
	Introduction
	The equilibrium problem
	The “fast-and-slow” model
	The representative-agent approach, and its failure in incomplete markets
	Our probabilistic-analytic approach
	Some notational conventions

	1 The Equilibrium Problem and its BSDE Reformulation
	1.1 The financial market, its agents, and equilibria
	1.2 A simple risk-aware reparametrization
	1.3 A solution of the single-agent utility-maximization problem
	1.4 A BSDE characterization of equilibria

	2 Main Results
	2.1 Equilibria close to Pareto optimality

	3 Proofs
	3.1 Proof of Proposition 1
	3.2 Proof of Lemma 1
	3.3 Proof of Theorem 1
	3.4 Proof of Theorem 2
	3.5 Proof of Corollary 1
	3.6 Proof of Corollary 2
	3.7 An a-priori bmo-estimate

	References




