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Abstract We extend the work [9] by two of the coauthors, which dealt with a

deterministic control problem for which the Hilbert space could be generic and

investigated a novel form of the ‘lifting’ technique proposed by P. L. Lions. In [9],

we only showed the local existence and uniqueness of solutions to the FBODEs in

the Hilbert space which were associated to the control problems with drift function

consisting of the control only. In this article, we establish the global existence

and uniqueness of the solutions to the FBODEs in Hilbert space corresponding to

control problems with separable drift function which is nonlinear in state and linear

in control. We shall also prove the sufficiency of the Pontryagin Maximum Principle

and derive the corresponding Bellman equation. Finally, by using the ‘lifting’ idea

as in [6, 7], we shall apply the result to solve the linear quadratic mean field type

control problems, and to show the global existence of the corresponding Bellman

equations.
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1 Introduction

In recent years, Mean Field Game (MFG) and Mean Field Type Control Theory

(MFTCT) are burgeoning. Carmona and Delarue [14] proved the existence of the

general forward-backward systems of equations of McKean-Vlasov type using the

probabilistic approach, and therefore obtained the classical solution to the master

equation arisen from MFG. Their assumptions restricted their application to LQ

models only. Cardaliaguet et al. [12] proved the existence of the classical solution to

the master equation arisen from MFG by PDE techniques and the method of charac-

teristics. To do so, they required the state space to be compact, and the Hamiltonian

to be smooth, globally Lipschitz continuous and to satisfy a certain coercivity condi-

tion. Buckdahn et al. [11] adopted a similar approach to study forward flows, proving

that the semigroup of a standard McKean-Vlasov stochastic differential equation with

smooth coefficients is the classical solution of a particular type of master equation.

A crucial assumption was made therein on the smoothness of the coefficients, which

restricted the scope of applications. Gangbo and Mészáros in [19] constructed global

solutions to the master equation in potential Mean Field Games, where displacement

convexity was used as a substitution for the monotonicity condition. Besides the

notion of classical solutions, Mou and Zhang in [26] gave a notion of weak solution

of the master equation arisen from mean field games, using their results of mollifiers

on the infinite dimensional space. More results can be found in the papers of Cosso

and Pham [16], Pham and Wei [29] and Djete et al. [18], which concern the Bellman

and Master equations of Mean Field Games and Mean Field Type Control Theory.

By Pontryagin Maximum Principle, MFG and MFTCT are deeply connected to mean

field forward backward stochastic differential equations. Pardoux and Tang [27], An-

tonelli [2] and Hu and Yong [21] showed the existence and uniqueness of FBSDEs

under small time intervals by a fixed point argument. For Markovian FBSDEs, to

get rid of the small time issue, Ma et al. [24] employed the Four Step Scheme. They

constructed decoupling functions by the use of the classical solutions of quasi-linear

PDEs, hence non-degeneracy of the diffusion coefficient and the strong regularity

condition on the coefficients were required. Another way to remove time constraints

in Markovian FBSDEs was by Delarue [17]. Local solutions were patched together

by the use of decoupling functions. PDE methods were used to bound the coeffi-

cients of the terminal function relative to the initial data in order for the problem

to be well-posed. It was later extended to the case of non-Markovian FBSDEs by

Zhang in [32]. Moreover, to deal with non-Markovian FBSDEs with arbitrary time

length, there was the pure probabilistic method – method of continuation. It required

monotonicity conditions on the coefficients. For seminal works one may consult

[20, 28, 30, 31]. With the help of decoupling functions as in [17], but using a BSDE

to control the terminal coefficient instead of PDEs, Ma et al. [25] covered most of

the above cases, but in the case of codomain being R. For mean field type FBSDE. A

rather general existence result but with a restrictive assumption (boundedness of the

coefficients with respect to the state variable) was first done in [13] by Carmona and

Delarue. Taking advantage of the convexity of the underlying Hamiltonian and ap-
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plying the continuation method, Carmona and Delarue extended their results in [14].

Bensoussan et al. [10] exploited the condition in [14] and gave weaker conditions

for which the results in [14] still hold. By the method of continuation, Ahuja et al.

[1] extended the above result to the FBSDEs which allow coefficients to be function-

als of the processes. More details can be found in the monographs [15, 3] and [4, 5, 8].

We establish the global existence and uniqueness of the solutions to the FBODEs in

Hilbert space corresponding to control problems with separable drift function which

is nonlinear in state and linear in control. The result can be applied to solve linear

quadratic mean field type control problems. We exploit the ‘lifting to Hilbert space’

approach suggested by P. L. Lions in [22, 23], but lift to another Hilbert space instead

of the space of random variables. After lifting, the problems are akin to standard

control problems, but the drawback is that they are in the infinite dimensional space.

By the Pontryagin Maximum Principle, the control problems are reduced to FBODEs

in the Hilbert space. In order to accommodate nonlinear settings, we make use of

the idea of decoupling. By a Banach fixed point argument, we are able to locally

find a decoupling function for the FBODEs. We then derive a priori estimates of the

decoupling function and extend the solution from local to global as in Delarue [17]

by the a priori estimates. Finally we apply our result to solve linear quadratic mean

field type control problems and obtain their corresponding Bellman equations.

The rest of this article is organized as follows. In Section 2, we introduce the

model in the Hilbert space. In Section 3, we express the related FBODE and define

the decoupling function. A priori estimates of the decoupling function are derived in

Section 4. In Section 5, we prove the local existence and uniqueness of the FBODE

by using a Banach fixed point argument on the function space containing the de-

coupling function. In Section 6.1, we construct the global solution by our a priori
estimates. We show the sufficiency of the Maximum Principle in Section 6.2 and

write the corresponding Bellman function in Section 6.3. In Section 7, we apply our

result in the Hilbert space as in [7], to solve the optimal control problem, and show

the global existence to the corresponding Bellman equation.

2 The Model

2.1 Assumptions

Let H be a Hilbert space, with scalar product denoted by (·, ·). We consider a

non-linear operator A, x ∈ H �→ A(x) ∈ H , such that

A(0) = 0. (1)

We assume that x �→ A(x) is C1 and that DA(x)(= Dx A(x)) ∈ L(H ;H ), that means
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Dx A(x)(·) : y ∈ H �→ Dx A(x)(y) = lim
ε→0

A(x+ ε y)− A(x)

ε
,

and it satisfies:

The operator norm | |DA(x) | | ≤ γ. (2)

By definition, we have the result:

(DA(x)y, z) = (Dx (A(x), z), y); (3)

indeed, we can see this by noting that

(DA(x)y, z) = lim
ε→0

(
1

ε
(A(x+ ε y)− A(x)), z

)

= lim
ε→0

1

ε
[(A(x+ ε y), z)− (A(x), z)]

= (Dx (A(x), z), y),

where the last step follows by differentiating the functional (A(·), z) : H → R.

We also assume that DA(x) is differentiable with a second derivative D2 A(x) ∈
L(H ;L(H ;H )), similar to (3), such that

⎧⎪⎨⎪⎩
(Dx (Dx (A(x), z), y),w) = (D2

xx A(x)(y)w, z),

Dx (Dx (A(x), z), y) = (D2
xx A(x)(y), z).

(4)

We assume the Lipschitz property:

| |DA(x1)−DA(x2) | | ≤ b|x1− x2 |
1+max( |x1 |, |x2 |) , (5)

which implies

| |D2 A(x) | | ≤ b
1+ |x | . (6)

In the sequel, we shall make restrictions on the size of b.
We next consider x �→ F (x) and x �→ FT (x), functionals on H , which are C2,

with the properties:

⎧⎪⎨⎪⎩
F (0) = 0, DxF (0) = 0,

ν |ξ |2 ≤ (D2
xxF (x)ξ, ξ) ≤ M |ξ |2;

(7)

⎧⎪⎨⎪⎩
FT (0) = 0, DxFT (0) = 0,

νT |ξ |2 ≤ (D2
xxFT (x)ξ, ξ) ≤ MT |ξ |2,

(8)

and ν, νT > 0. H is the state space. In addition, there is a control space V , also a

Hilbert space and a linear bounded operator B ∈ L(V;H ), an invertible-self adjoint

operator onV , denoted by N .We assume that
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(BN−1B∗ξ, ξ) ≥ m |ξ |2, m > 0. (9)

Remark 1 The assumption (1) and the first line assumptions (7), (8) are of course not

necessary. It is just to simplify the calculations.

2.2 The Problem

We consider the following control problem. The state evolution is governed by the

differential equation inH :

⎧⎪⎪⎨⎪⎪⎩
dx
ds
= A(x)+ Bv(s),

x(t) = x,
(10)

in which v(·) is in L2(t,T ;V ). It is easy to check that the state x(·) is uniquely

defined and belongs to H1(t,T ;H ).We define the payoff functional:

Jxt (v(·)) :=

∫ T

t

F (x(s))ds+FT (x(T ))+
1

2

∫ T

t

(v(s),Nv(s))ds. (11)

This functional is continuous and coercive. IfH were Rn, it would be classical that

it has a minimum and thus we could write the necessary conditions of optimality.

But the proof does not carry over to general Hilbert spaces. Moreover, since A is not

linear, we do not have the convexity property, which would guarantee the existence

and uniqueness of a minimum, and thus a solution of the necessary conditions of

optimality. We shall then write the necessary conditions of optimality and prove

directly the existence and uniqueness of a solution.

3 Necessary Conditions of Optimality

3.1 The System

It is standard to check the following system of forward-backward equations inH :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dy
ds
= A(y)− BN−1B∗z(s), t < s < T,

− dz
ds
= (DA(y(s)))∗z(s)+DF (y(s)),

y(t) = x, z(T ) = DFT (y(T )).

(12)

The optimal state is y(·), and z(·) is the adjoint state. The optimal control is then:
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u(s) = −N−1B∗z(s). (13)

The system (12) expresses the Pontryagin Maximum Principle. The objective is to

study the system of Equations (12).

3.2 Decoupling

We set

z(t) = Γ(x, t). (14)

It is standard to check that z(s) = Γ(y(s), s). So y(s) is the solution of the differential

equation inH : ⎧⎪⎪⎨⎪⎪⎩
dy
ds
= A(y)− BN−1B∗Γ(y(s), s),

y(t) = x,
(15)

and Γ(x, s) is the solution of the nonlinear partial differential equation:

⎧⎪⎪⎨⎪⎪⎩
−∂Γ
∂s
= DxΓ(x) A(x)+ (Dx A(x))∗Γ(x)−DxΓ(x)BN−1B∗Γ(x, s)+DxF (x),

Γ(x,T ) = DxFT (x).
(16)

If A(x) = Ax, F (x) =
1

2
(x,M x) and FT (x) =

1

2
(x,MT x), then Γ(x, s) = P(s)x, and

P(s) is solution of the Riccati equation:

⎧⎪⎪⎨⎪⎪⎩
−dP

ds
= P(s) A+ A∗P(s)−P(s)BN−1B∗P(s)+M,

P(T ) = MT .
(17)

4 A Priori Estimates

4.1 First Estimate

We state the first result:

Proposition 1 We assume (1), (2), (5), (7), (8), (9) and

b2

16
< (m− k)(ν− k), 0 < k < min(m, ν), (18)

then we have the a priori estimate:
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|Γ(x, t) | ≤ |x | ��
M2

T

νT
+
γ2+M2

k
(T − t)�	 . (19)

Proof From the system (12), we obtain:

d
ds

(y(s), z(s)) = (A(y(s))−BN−1B∗z(s), z(s))− ((DA(y(s)))∗z(s)+DF (y(s)), y(s)
)
.

Integration yields:

(DxFT (y(T )), y(T ))+

∫ T

t

(BN−1B∗z(s), z(s))ds+
∫ T

t

(DxF (y(s)), y(s))ds

= (x, z(t))+

∫ T

t

(A(y(s))−DA(y(s))y(s), z(s)) ds.

(20)

We note that

|A(x)−DA(x)x | ≤ b
2
|x |; (21)

indeed, A(x)−DA(x)x =
∫ 1

0
(DA(θx)−DA(x))x dθ, and from the assumption (5),

we get:

|A(x)−DA(x)x | ≤
∫ 1

0

b|x |2(1− θ)
1+ |x | dθ,

which implies (21). Therefore, from (20), we obtain, using assumptions:

(x, z(t)) ≥ νT |y(T ) |2+m
∫ T

t

|z(s) |2ds+ ν
∫ T

t

|y(s) |2ds− b
2

∫ T

t

|y(s) | |z(s) |ds.

Using (18), we can state:

(x, z(t)) ≥ νT |y(T ) |2+ k
∫ T

t

(|y(s) |2+ z(s) |2)ds. (22)

On the other hand, from the second equation (12), we write z(t) = z(T ) +∫ T
t

((DA(y(s)))∗z(s)+DF (y(s))) ds, hence

(x.z(t)) = (x,DFT (y(T ))+

∫ T

t

(DA(y(s))x, z(s))ds+
∫ T

t

(x,DF (y(s))ds,

(x.z(t)) ≤ |x | |z(t) | ≤ |x |(MT |y(T ) |+
∫ T

t

γ |z(s) |ds+
∫ T

t

|y(t) |dt)

≤ 1

2

(
νT |y(T ) |2+ k

∫ T

t

( |y(s) |2+ z(s) |2)ds
)

+
|x |2
2

��
M2

T

νT
+
γ2+M2

k
(T − t)�	 .
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From this relation and (22), we get:

νT |y(T ) |2+ k
∫ T

t

(|y(s) |2+ z(s) |2)ds ≤ |x |2 ��
M2

T

νT
+
γ2+M2

k
(T − t)�	 .

Therefore,

|x | |z(t) | ≤ |x |2 ��
M2

T

νT
+
γ2+M2

k
(T − t)�	,

and the result follows. We write

αt =
M2

T

νT
+
γ2+M2

k
(T − t). (23)

Note that in the system (12), we can write

|z(s) | ≤ αs |y(s) |. (24)

4.2 Second Estimate

The second estimate concerns the gradient DxΓ(x, t).We have the following result:

Proposition 2 We make the assumptions of Proposition 1 and

ν− bα0 > 0, (25)

then we have the a priori estimate:

| |DxΓ(x, t) | | ≤ M2
T

νT
+
γ2

m
(T − t)+

∫ T

t

(M + bαs)2

ν− bαs
ds. (26)

Proof We differentiate the system (12) with respect to x.We denote

Y (s) = Dx y(s),Z(s) = Dx z(s). (27)

Differentiating (12), we can write, by recalling notation (4):

d
ds
Y (s)ξ = Dx A(y(s))Y (s)ξ − BN−1B∗Z(s)ξ, (28)

− d
ds
Z(s)ξ = (D2

xx A(y(s))Y (s)(ξ), z(s))+ (DA(y(s)))∗Z(s)ξ +D2
xxF (y(s))Y (s)ξ,

Y (t)ξ = ξ, Z(T )ξ = D2
xxFT (y(T ))Y (T )ξ. (29)

We compute
d
ds

(Y (s)ξ,Z(s)ξ) and then integrate. We obtain that
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(Z(t)ξ, ξ) = (D2
xxFT (y(T ))Y (T )ξ,Y (T )ξ)+

∫ T

t

(BN−1B∗Z(s)ξ,Z(s)ξ)ds

+

∫ T

t

(D2
xxF (y(s))Y (s)ξ,Y (s)ξ)ds

+

∫ T

t

(D2
xx A(y(s))Y (s)(ξ)Y (s)ξ, z(s))

≥ νT |Y (T )ξ |2+m
∫ T

t

|Z(s)ξ |2ds+
∫ T

t

(ν− bαs) |Y (s)ξ |2ds.

(30)

Also, from the second line of (28),

|Z(t)ξ | ≤ MT |Y (T )ξ |+
∫ T

t

(M + bαs) |Y (s)ξ |ds+γ
∫ T

t

|Z(s)ξ |ds. (31)

Combining (30) and (31) as in Proposition 1, we conclude that

|Z(t)ξ | ≤ |ξ | ��
M2

T

νT
+
γ2

m
(T − t)+

∫ T

t

(M + bαs)2

ν− bαs
ds�	 .

SinceZ(t)ξ =DxΓ(x, t), the result (26) follows immediately. The proof is complete.�

We shall call

βt =
M2

T

νT
+
γ2

m
(T − t)+

∫ T

t

(M + bαs)2

ν− bαs
ds. (32)

Since

Γ(x, t) =
∫ 1

0

DxΓ(θx, t)x dθ,

we also have:

|Γ(x, t) | ≤ βt |x |, (33)

so in fact, ⎧⎪⎨⎪⎩
|Γ(x, t) | ≤ min(αt, βt ) |x |,
| |DxΓ(x, t) | | ≤ βt . (34)

5 Local Time Solution

5.1 Fixed Point Approach

We want to solve (12) by a fixed point approach. Suppose we have a function λ(x, t)
with values inH such that:
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⎧⎪⎨⎪⎩
|λ(x, t) | ≤ μt |x |,
| |Dxλ(x, t) | | ≤ ρt, (35)

where μt and ρt are bounded functions on [T − h,T], for some convenient h. These

functions will be chosen conveniently in the sequel, with μt < ρt .We then solve

⎧⎪⎪⎨⎪⎪⎩
d
ds

y(s) = A(y(s))− BN−1B∗λ(y(s), s),

y(t) = x.
(36)

This differential equation defines uniquely y(s), thanks to the assumptions (35). We

then define

Λ(x, t) := DxFT (y(T ))+

∫ T

t

(DA(y(s)))∗λ(y(s), s)ds+
∫ T

t

DxF (y(s))ds. (37)

We want to show that μt and ρt can be chosen such that

|Λ(x, t) | ≤ μt |x |, | |DxΛ(x, t) | | ≤ ρt, (38)

and that the map λ �→Λ has a fixed point. This will be only possible when t remains

close to T, namely T − h < t < T, with h small.

5.2 Choice of Functions μt and ρt

From (36), we obtain:

d
ds
|y(s) | ≤






 d
ds

y(s)





 ≤ (γ+ | |BN−1B∗ | |μs) |y(s) |,

which implies

|y(s) | ≤ |x | exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)
, (39)

and thus from (37) it follows that

|Λ(x, t) | ≤ MT |y(T ) |+
∫ T

t

(M +γμs) |y(s) |ds.

Using (39), we obtain:
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|Λ(x, t) | ≤ |x |
(
MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

+

∫ T

t

(M +γμs) exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

ds
)
.

To obtain the first inequality (38), we must choose the function μt such that

μt = MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

+

∫ T

t

(M +γμs) exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

ds.

(40)

So μt must be solution of the differential equation of Riccati type:

⎧⎪⎪⎨⎪⎪⎩
d
dt
μt = −||BN−1B∗ | |μ2

t −2γμt −M,

μT = MT .
(41)

To proceed, we need to assume that

γ2 < M | |BN−1B∗ | |, (42)

and we define μt bt the formula:

arctan
μt | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

= arctan
MT | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

+

(√
M | |BN−1B∗ | | −γ2

)
(T − t).

(43)

For h > 0, define θh with

arctan
θh | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

= arctan
MT | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

+

(√
M | |BN−1B∗ | | −γ2

)
h.

(44)

The number h must be small enough to guarantee that

arctan
MT | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

+

(√
M | |BN−1B∗ | | −γ2

)
h <
π

2
. (45)

Formula (43) defines uniquely μt for T − h < t < T . It is decreasing in t, with

MT < μt < θh .

Therefore, for T − h < t < T, we have defined by (37) a function Λ(x, t) which

satisfies the first condition (38), with μt defined by equation (43). We turn now to
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the definition of ρt . Define Y (s) = Dx y(s), see (36). We have:

⎧⎪⎪⎨⎪⎪⎩
d
ds
Y (s) =

(
DA(y(s))− BN−1B∗Dxλ(y(s), s)

)
Y (s),

Y (t) = I .
(46)

We obtain, by techniques already used:

| |Y (s) | | ≤ exp

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)
. (47)

We then differentiate Λ(x, t) in x, see (37). We get:

DxΛ(x, t) = D2
xxFT (y(T ))Y (T )+

∫ T

t

(D2
xx A(y(s))Y (s), λ(y(s), s))ds,

+

∫ T

t

(Dx A(y(s)))∗Dxλ(y(s), s)Y (s)ds+
∫ T

t

D2
xxF (y(s))Y (s)ds,

and we obtain:

| |DxΛ(x, t) | | ≤ MT | |Y (T ) | |+
∫ T

t

(M + bμs +γρs) | |Y (s) | |ds.

Since T − h < t < T, we can majorize, using also (47), to obtain:

| |DxΛ(x, t) | | ≤ MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |ρs)ds
)

+

∫ T

t

(M + bθh +γρs) exp

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

ds.

(48)

We are thus led to looking for ρt solution of

ρt = MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |ρs)ds
)

+

∫ T

t

(M + bθh +γρs) exp

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

ds.

(49)

This equation is similar to the one defining μt, see (40), with the change of M into

M + bθh . Hence, by analogy with (43), we can assert that:

arctan
ρt | |BN−1B∗ | |+γ√

(M + bθh) | |BN−1B∗ | | −γ2
= arctan

MT | |BN−1B∗ | |+γ√
(M + bθh) | |BN−1B∗ | | −γ2

+

(√
(M + bθh) | |BN−1B∗ | | −γ2

)
(T − t).

(50)
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In order to get a bounded solution for ρt, we need that the right hand side of (50) be

smaller than
π

2
.We need to restrict h more than with (45), namely:

arctan
MT | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

+

(√
(M + bθh) | |BN−1B∗ | | −γ2

)
h <
π

2
. (51)

Then the function ρt is well defined on (T − h,T], by formula (50) and the function

Λ(x, t) defined by (37), for t ∈ (T − h,T] satisfies (38) if λ(x, t) satisfies (35). We

also claim that

ρt > μt . (52)

Indeed, ρt satisfies the Riccati equation:

⎧⎪⎪⎨⎪⎪⎩
d
dt
ρt = −||BN−1B∗ | |ρ2t −2γρt − (M + bθh),

ρT = MT ,
(53)

and comparing (41) and (53), it is standard to show the property (52).

5.3 Contraction Mapping

We define the space of functions (x, t) ∈ H × (T − h,T ) �→ λ(x, t) ∈ H × (T − h,T ),
equipped with the norm:

| |λ | |h = sup
x∈H,t∈(T−h,T )

|λ(x, t) |
|x | . (54)

This space is a Banach space, denoted by Bh ·. We next consider the convex closed

subset of Bh · of functions such that:

|λ(x, t) | ≤ μt |x |, | |Dxλ(x, t) | | ≤ ρt,∀t ∈ (T − h,T], (55)

where μt and ρt are defined by (43) and (50), respectively. The subset (55) is denoted

by Ch . The map λ �→Λ, defined by (36) and (37), is defined from Ch to Ch .We want

to show that it leads to a contraction.

Let λ1(x, t), λ2(x, t) in Ch and the corresponding functions Λ1(x, t), Λ2(x, t),
which also belong to Ch . Let y1(s), y2(s) be the solutions of (36) corresponding to

λ1, λ2.We call ỹ(s) = y1(s)− y2(s).We have:

⎧⎪⎪⎨⎪⎪⎩
d
ds

ỹ(s) = A(y1(s))− A(y2(s))− BN−1B∗(λ1(y1(s))− λ2(y2(s))),

ỹ(t) = 0,

hence
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d
ds
| ỹ(s) | ≤ γ | ỹ(s) |+ | |BN−1B∗ | | |λ1(y1(s))− λ2(y2(s)) |.

Next,

|λ1(y1(s))− λ2(y2(s)) |
≤ |λ1(y1(s))− λ1(y2(s)) |+ |λ1(y2(s))− λ2(y2(s)) |
≤ ρs | ỹ(s) | |+ | |λ1− λ2 | |h |x | exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)
.

Therefore,

d
ds
| ỹ(s) | ≤ (γ+ | |BN−1B∗ | |ρs) | ỹ(s) |

+ | |BN−1B∗ | | |x | | |λ1− λ2 | |h exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)
.

We obtain that

| ỹ(s) | exp

(
−
∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

≤ ||BN−1B∗ | | |x | | |λ1− λ2 | |h
∫ s

t

exp

(
−||BN−1B∗ | |

∫ τ

t

(ρθ − μθ )dθ
)

dτ,

which implies:

| ỹ(s) | ≤ h| |BN−1B∗ | | |x | | |λ1− λ2 | |h exp

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)
. (56)

We next have from the definition of the map Λ(x, t) that:

Λ1(x, t)−Λ2(x, t) = DFT (y1(T ))−DFT (y2(T ))

+

∫ T

t

(
DA∗(y1(s))λ1(y1(s))−DA∗(y2(s))λ2(y2(s))

)
ds

+

∫ T

t

(DF (y1(s))−DF (y2(s)))ds.

(57)

We have:

|DA∗(y1(s))λ1(y1(s))−DA∗(y2(s))λ2(y2(s)) |
≤ (bθh +γρs) | ỹ(s) |+γ |x | | |λ1− λ2 | |h exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)
.

So, from (57), we obtain:
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|Λ1(x, t)−Λ2(x, t) | ≤ MT | ỹ(T ) |+
∫ T

t

(M + bθh +γρs) | ỹ(s) |ds

+γ |x | | |λ1− λ2 | |h
∫ T

t

exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

ds,

(58)

and from (56):

|Λ1(x, t)−Λ2(x, t) |

≤ |x | |λ1− λ2 | |hh×
[
| |BN−1B∗ | |

(
MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

+

∫ T

t

(M + bθh +γρs)

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

ds
)]

+γ |x | |λ1− λ2 | |h
∫ T

t

exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

ds,

then from the definition of ρt (see (49)), we obtain:

|Λ1(x, t)−Λ2(x, t) |

≤ |x | |λ1− λ2 | |hh
(
ρt | |BN−1B∗ | |+γ exp

(∫ T

T−h
(γ+ | |BN−1B∗ | |μτ )dτ

))
.

(59)

Similarly to the definition of θh (see (44)), we define the quantity σh by the formula:

arctan
σh | |BN−1B∗ | |+γ√

(M + bθh) | |BN−1B∗ | | −γ2
= arctan

MT | |BN−1B∗ | |+γ√
(M + bθh) | |BN−1B∗ | | −γ2

+

(√
(M + bθh) | |BN−1B∗ | | −γ2

)
h.

(60)

From (50), we see that MT < ρt < σh . Therefore from (59),

| |Λ1−Λ2 | |h ≤ |λ1− λ2 | |h h
(
σh | |BN−1B∗ | |+γ exp

(
h(γ+ | |BN−1B∗ | |θh)

))
. (61)

Using the fact that θh→ MT as h→ 0, equation (60) shows that σh→ MT as h→ 0.
We deduce that:

h
(
σh | |BN−1B∗ | |+γ exp

(
h(γ+ | |BN−1B∗ | |θh)

))
→ 0, as h→ 0. (62)

We can restrict h such that

h
(
σh | |BN−1B∗ | |+γ exp

(
h(γ+ | |BN−1B∗ | |θh)

))
< 1, (63)

and thus for h sufficiently small, the map λ �→ Λ is paradoxical and leads to a

contradiction. We can summarize the results in the following theorem:
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Theorem 1 We assume (42). We choose h small enough to satisfy conditions (45),
(51), (63). For T − h < t < T , there exists one and only one solution of the system
of forward-backward equations (12). We have also one and only one solution of
equation (16) on the same interval.

6 Global Solution

6.1 Statement of Results

We have proven in Theorem 1 the existence and uniqueness of a local solution of the

system (12). We want to state that this solution is global, under the assumptions of

Proposition 2.

Theorem 2 We make the assumptions of Proposition 2 and (42). The local solution
defined in Theorem 1 can be extended. Thus there exists one and only one solution
of the system (12) on any finite interval [0,T], and there exists one and only one
solution of equation (16) on any finite interval [0,T].

Proof Defining by Γ(x, t) the fixed point obtained in Theorem 1, it is the unique

solution of the parabolic equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∂Γ
∂t
= DxΓ(x)A(x)+ (Dx A(x))∗Γ(x)−DxΓ(x)BN−1B∗Γ(x, s)

+DxF (x), T − h < t < T,

Γ(x,T ) = DxFT (x),

(64)

with h restricted as stated in Theorem 1. We also have the estimates:⎧⎪⎨⎪⎩
|Γ(x, t) | ≤ min(αt, βt ) |x |,

| |DxΓ(x, t) | | ≤ βt, (65)

with ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
αt =

M2
T

νT
+
γ2+M2

k
(T − t),

βt =
M2

T

νT
+
γ2

m
(T − t)+

∫ T

t

(M + bαs)2

ν− bαs
ds.

(66)

These estimates follow from the a priori estimates stated in Proposition 1 and 2. They

do not depend on h. Now we want to extend (64) for t < T − h. To avoid confusion,

we define

UT−h (x) := Γ(x,T − h). (67)

We set MT−h = β0.We can then state:
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⎧⎪⎨⎪⎩
|UT−h (x) | ≤ MT−h |x |,

| |DxUT−h (x) | | ≤ MT−h,
(68)

and we consider the parabolic equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∂Γ
∂t
= DxΓ(x) A(x)+ (Dx A(x))∗Γ(x)−DxΓ(x)BN−1B∗Γ(x, s)

+DxF (x), t < T − h,

Γ(x,T − h) =UT−h (x).

(69)

We associate to this equation the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dy
ds
= A(y)− BN−1B∗z(s), t < s < T − h,

−dz
ds
= (DA(y(s)))∗z(s)+DF (y(s)),

y(t) = x, z(T − h) =UT−h (y(T − h)).

(70)

Proceeding like in Theorem 1, we can solve this system on an interval [T−h− l,T−h],
for a sufficiently small l � h. The difference is due to the fact that MT−h � MT . So

in (64), we can replace T − h by T − h− l . This time the estimates on Γ(x,T − h− l)
and DxΓ(x,T − h− l) are identical to those of Γ(x,T − h) and DxΓ(x,T − h), thanks

to the a priori estimates. So the intervals we can extend further will have the same

length. Clearly, this implies that we can extend (64) up to t = 0. So, we obtain the

global existence and uniqueness of equation (16) on [0,T]. The proof is complete.�

6.2 Optimal Control

In Theorem 2, we have obtained the existence and uniqueness of the solution of the

pair (y(s), z(s)) of the system (12), for any t ∈ [0,T].We want now to check that the

control u(s) defined by (13) is solution of the control problem (10), (11), and that

the optimal control is unique.

Theorem 3 Under the assumptions of Theorem 2, the control u(·) defined by (13) is
the unique optimal control for the problem (10), (11).
Proof Let v(·) be another control. We shall prove that

J (u(·)+ v(·)) ≥ J (u(·)), (71)

which will prove the optimality of u(·). We define by yv (·) the state corresponding

to the control u(·)+ v(·). It is the solution of

⎧⎪⎪⎨⎪⎪⎩
d
ds

yv (s) = A(yv (s))+ B(u(s)+ v(s)),

yv (t) = x,
(72)
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and we have:

J (u(·)+v(·)) =

∫ T

t

F (yv (s))ds+FT (yv (T ))+
1

2

∫ T

t

(u(s)+v(s),N (u(s)+v(s)))ds,

and

J (u(·)+ v(·))− J (u(·))

=

∫ T

t

(F (yv (s))−F (y(s)))ds+FT (yv (T ))−FT (y(T ))

+
1

2

∫ T

t

(v(s),Nv(s))ds+
∫ T

t

(Nu(s),v(s))ds.

We denote ỹv (s) := yv (s)− y(s). It satisfies:

⎧⎪⎪⎨⎪⎪⎩
d
ds

ỹv (s) = A(yv (s))− A(y(s))+ Bv(s),

ỹv (t) = 0.
(73)

Then,

J (u( ·)+v( ·))− J (u( ·))

=

∫ T

t

(DxF (y(s)), ỹv (s))ds

+

∫ T

t

∫ 1

0

∫ 1

0

θ
(
D2

xxF (y(s)+λθ ỹv (s))ỹv (s), ỹv (s)
)
dsdλdθ

+ (DxFT (y(T )), ỹv (T ))+

∫ 1

0

∫ 1

0

θ
(
D2

xxFT (y(T )+λθ ỹv (T ))ỹv (T ), ỹv (T )
)
dλdθ

+
1

2

∫ T

t

(v(s), Nv(s))ds−
∫ T

t

(z(s), Bv(s))ds.

From the assumptions (7), we can write:

J (u(·)+ v(·))− J (u(·)) ≥
∫ T

t

(
− d

ds
z(s)−DA∗(y(s))z(s), ỹv (s)

)
ds

+
ν

2

∫ T

t

| ỹv (s) |2ds+ (z(T ), ỹv (T ))

+
νT
2
| ỹv (T ) |2+ 1

2

∫ T

t

(v(s),Nv(s))ds

−
∫ T

t

(
z(s),

d
ds

ỹv (s)− (A(yv (s))− A(y(s)))

)
ds,

which reduces to:
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J (u(·)+ v(·))− J (u(·)) ≥ ν
2

∫ T

t

| ỹv (s) |2ds+
νT
2
| ỹv (T ) |2+ 1

2

∫ T

t

(v(s),Nv(s))ds

+

∫ T

t

(z(s), A(yv (s))− A(y(s))−DA(y(s)) ỹv (s)) ds.

(74)

Note that

|(z(s), A(yv (s))− A(y(s))−DA(y(s)) ỹv (s)) | ≤ b|z(s) | | ỹv (s) |2
2(1+ |y(s) |) ≤

bαs
2
| ỹv (s) |2.

Finally, we can state that

J (u(·)+v(·))− J (u(·)) ≥ 1

2

∫ T

t

(ν−bαs) | ỹv (s) |2ds+
νT
2
| ỹv (T ) |2 1

2

∫ T

t

(v(s),Nv(s))ds.

(75)

Thanks to the assumption (25), the right hand side of (75) is positive, which proves

(71) and completes the proof of the result. �

6.3 Bellman Equation

We have proven, under the assumptions of Theorem 2, that the control problem (10),

(11) has a unique solution u(·). Defining the value function

V (x, t) := inf
v( ·) Jxt (v(·)) = Jxt (u(·)), (76)

we can state that:

V (x, t) =
∫ T

t

F (y(s))ds+FT (y(T ))+
1

2

∫ T

t

(BN−1B∗Γ(y(s), s),Γ(y(s), s))ds,

(77)

with ⎧⎪⎪⎨⎪⎪⎩
d
ds

y(s) = A(y(s))− BN−1B∗Γ(y(s), s),

y(t) = x.
(78)

We first have:

Proposition 3 We have the following property:

Γ(x, t) = DxV (x, t). (79)

Proof Since the minimum of Jxt (v(·)) is attained in the unique value u(·), we can

rely on the envelope theorem to claim that:

(DxV (x, t), ξ) =
∫ T

t

(DxF (y(s)),X(s)ξ)ds+ (DxFT (y(T )),X(T )ξ), (80)
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in which X(s) is the solution of

⎧⎪⎪⎨⎪⎪⎩
d
ds
X(s) = Dx A(y(s))X(s),

X(t) = I .

Recalling the equation (12) for z(s) and performing integration by parts in (80), the

result (DxV (x, t), ξ) = (Γ(x, t), ξ) is easily obtained. This proves the result (79). �

We can then obtain the Bellman equation for the value function V (x, t).

Theorem 4 We make the assumptions of Theorem 2. The function V (x, t) is the
unique solution of

⎧⎪⎪⎨⎪⎪⎩
− ∂V
∂t
− (DxV, A(x))+

1

2
(DxV,BN−1B∗DxV ) = F (x),

V (x,T ) = FT (x).
(81)

Proof We know that V (x, t) is Gâteaux differentiable in x,with the derivative Γ(x, t).
From (12), Γ(x, t) is continuous in t. From equation (77), we can write:

V (x, t)−V (x, t + ε ) =
∫ t+ε

t

F (y(s))ds+
1

2

∫ t+ε

t

(BN−1B∗Γ(y(s), s),Γ(y(s), s))ds

+V (y(ε ), t + ε )−V (x, t + ε ).
(82)

We then have:

V (y(ε ), t + ε )−V (x, t + ε )

=V

(
x+

∫ t+ε

t

A(y(s))ds−
∫ t+ε

t

BN−1B∗Γ(y(s), s)ds, t + ε

)
−V (x, t + ε )

=

(
Γ(x, t + ε ),

∫ t+ε

t

A(y(s))ds−
∫ t+ε

t

BN−1B∗Γ(y(s), s)ds

)

+

∫ 1

0

(
Γ

(
x+ θ

∫ t+ε

t

(A(y(s))−BN−1B∗Γ(y(s)))ds, t + ε

)
−Γ(x, t + ε ),

∫ t+ε

t

(A(y(s))−BN−1B∗Γ(y(s)))ds

)
dθ.

(83)

Using the fact that Γ(x, t) is uniformly Lipschitz in x and continuous in t, we obtain

easily from (83) that:

V (y(ε ), t + ε )−V (x, t + ε )
ε

→ (Γ(x, t), A(x)− BN−1B∗Γ(x, t)).

Then, dividing (82) by ε and letting ε tend to 0, we obtain the PDE (81), recalling

(79). The initial condition in (81) is trivial. If we take the gradient in x of (81), we

recognize equation (16). Since this equation has a unique solution, the solution of

(81) is also unique (easy checking). This completes the proof. �
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7 Application to Mean Field Type Control Theory

7.1 Wasserstein Space

Denote by P2(Rn) the Wasserstein space of Borel probability measures m on Rn

such that
∫
Rn
|x |2dm(x) <∞, with the metric

W2(μ, ν) =

√
inf

{∫
|x− y |2dπ(x, y) : π ∈ Π(μ, ν)

}
, (84)

where Π(μ, ν) is the space of all Borel probability measures on Rn ×Rn whose first

and second marginals are μ and ν respectively.

7.2 Functional Derivatives

Let F be a functional on P2(Rn). We recall the idea of the functional derivative here.

Definition 1 F is said to have a functional derivative if there exists a continuous

function
dF
dm

: P2(Rn) ×Rn → R, such that for some c : P2(Rn)→ [0,∞) which is

bounded on bounded subsets, we have




 dF
dm

(m, x)





 ≤ c(m)(1+ |x |2) (85)

and

F (m′)−F (m) =

∫ 1

0

∫
Rn

dF
dm

(m+ θ(m′ −m))(x)d(m′ −m)(x)dθ. (86)

We require also
∫
Rn

dF
dm (m, x)dm(x) = 0 as it is unique up to a constant by definition.

Definition 2 F is said to have a second order functional derivative if there exists a

continuous function
d2F
dm2

:P2×Rn×Rn→R such that, for some c :P2(Rn)→ [0,∞)

which is bounded on bounded subsets, we have




d
2F

dm2
(m, x, x̃)






 ≤ c(m)(1+ |x |2+ | x̃ |2) (87)

and
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F (m′)−F (m)

=

∫
Rn

dF
dm

(m)(x)d(m′ −m)(x)

+

∫ 1

0

∫ 1

0

θ
d2F
dm2

(m+ λθ(m′ −m))(x, x̃)d(m′ −m)(x)d(m′ −m)( x̃)dλdθ.

(88)

Again, we require that
∫
Rn

d2F
dm (m, x, x̃)dm( x̃) = 0, for all x ∈Rn, and

∫
Rn

d2F
dm (m, x, x̃)

dm(x) = 0, for all x̃ ∈ Rn, as it is unique up to a constant. Note also that

d2F
dm2

(m)(x, x̃) =
d2F
dm2

(m)( x̃, x). (89)

We write D dF
dm (m)(x) to mean differentiating with respect to x, and D1

d2F
dm2 (m)(x1, x2)

and D2
d2F
dm2 (m)(x1, x2) to denote partial differentiation with respect to x1 and x2,

respectively.

7.3 Mean Field Type Control Problems

We introduce the setting of a mean-field type control problem. Consider real-valued

functions f (x,m) and h(x,m) defined on Rn ×P2(Rn). We define

F (m) :=

∫
Rn

f (x,m)dm(x),

FT (m) :=

∫
Rn

h(x,m)dm(x).

Fix a m ∈ P2(Rn). Let A,B :Rn→Rn be matrices, and N :Rn→Rn be a self-adjoint

invertible matrix. We make the following assumptions on f , h, B, N , A. We assume

that

(A1) ∀x ∈ Rn,

BN−1B∗x · x ≥ m |x |2,m > 0. (90)

(A2) f is regular enough such that the following is justifiable. ∀y ∈ Rn,
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ν |y |2 ≤ ∂
2 f
∂x2

(x,m)y · y ≤ M |y |2, (91)

ν |y |2 ≤ D2
ξ

∂ f
∂m

(x,m)(ξ)y · y ≤ M |y |2, (92)

Dξ
∂2 f
∂x∂m

(x,m)(ξ) = 0, (93)

Dξ1
Dξ2

∂2 f
∂m2

(x,m)(ξ1, ξ2) = 0. (94)

(A3) h is regular enough such that the following is justifiable. ∀y ∈ Rn,

νT |y |2 ≤ ∂
2h
∂x2

(x,m)y · y ≤ MT |y |2, (95)

νT |y |2 ≤ D2
ξ

∂h
∂m

(x,m)(ξ)y · y ≤ MT |y |2, (96)

Dξ
∂2h
∂x∂m

(x,m)(ξ) = 0, (97)

Dξ1
Dξ2

∂2h
∂m2

(x,m)(ξ1, ξ2) = 0. (98)

(A4) For the matrices, we have

|A| < M |BN−1B∗ |, with | · | the matrix 2-norm. (99)

The set of our feasible control is L2(t,T ; L2
m(Rn;Rn)), i.e.,

v·,m,t (·) ∈ L2(t,T ; L2
m(Rn;Rn))

if and only if

∫ T

t

∫
Rn

|vx,m,t (s) |2dm(x)ds <∞.

To each v·,m,t (·) ∈ L2(t,T ; L2
m(Rn;Rn)) and x ∈ Rn we associate the state

xx,m,t (s;v) := x+
∫ s

t

[
Axx,m,t (τ;v)+ Bvx,m,t (τ)

]
dτ. (100)

Note that x ·,m,t (·) ∈ L2(t,T ; L2
m(Rn;Rn)). We define the objective functional on

L2(t,T ; L2
m(Rn;Rn)) by

Jm,t (v) :=

∫ T

t

F (x ·,m,t (s;v)#m)ds+FT (x ·,m,T (s;v)#m) (101)

+
1

2

∫ T

t

∫
Rn

v∗x,m,t (τ)Nvx,m,t (τ)dm(x)dτ.
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Thus the value function is

V (m, t) := inf
v∈L2 (t,T ;L2

m (Rn ;Rn ))
Jm,t (v). (102)

7.4 The Hilbert SpaceHm and the Push-Forward Map

We proceed as our previous works [6, 7].

7.4.1 Settings

Fix m ∈ P2(Rn), we defineHm := L2
m(Rn;Rn), the set of all measurable vector field

Φ such that
∫
Rn
|Φ(x) |2dm(x) <∞. We equipHm with the inner product

〈X,Y 〉Hm
:=

∫
Rn

X (x) ·Y (x)dm(x). (103)

Write the corresponding norm as ‖X ‖Hm
=
√〈X,X〉Hm

.

Definition 3 For m ∈ P2, X ∈ Hm, define X ⊗m ∈ P2 as follow: for all φ : Rn→ R
such that x �→ |φ(x) |

1+ |x |2 is bounded, define

∫
φ(x)d(X ⊗m)(x) :=

∫
φ(X (x))dm(x). (104)

Remark 2 This actually is the push-forward map as we are working on the determin-

istic case. We write as X ⊗m to align with our treatment of the stochastic case in

[7].

We recall several useful properties from [7].

Proposition 4 We have the following properties:

1. Let X , Y ∈ Hm, and suppose X ◦Y ∈ Hm. Then (X ◦Y ) ⊗m = X ⊗ (Y ⊗m).
2. If X (x) = x is the identity map, then X ⊗m = m.
3. Let X ∈ Hm, denote the space L2

X (t,T ;Hm) to be the set of all processes in
L2(t,T ;Hm) that is adapted to σ(X ). There exists a natural linear isometry
between L2

X (t,T ;Hm) and L2(t,T ;HX⊗m).
Proof Please refer to [7] Section 2 and Section 3. �

7.4.2 Extending the Domain of Functions toHm

The proofs in this section is standard, we therefore omit unless specified. Readers

may refer to [7] Section 2. Let F : P2(Rn)→ R, we extend F to be a function onHm
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by X �→ F (X ⊗m), ∀X ∈ Hm. When the domain isHm, we can talk about Gâteaux

derivative. We actually have the following relation between the Gâteaux derivative

onHm and its functional derivative:

Proposition 5 Let F : P2(Rn) �→ R have a functional derivative dF
dm , and x �→

dF
dm (m, x) is continuously differentiable in Rn. Assume that D dF

dm (m, x) is contin-
uous in both m and x, and 




D dF

dm
(m)(x)






 ≤ c(m)(1+ |x |) (105)

for some constant c(m) depending only on m. Denote the Gâteaux derivative as
DXF (X ⊗m), we have

DXF (X ⊗m) = D
dF
dm

(X ⊗m)(X (·)). (106)

We now look at the second order Gâteaux derivative, denoted as D2
XF (X ⊗m), note

that D2
XF (X ⊗m) is a bounded linear operator fromHm toHm.

Proposition 6 In addition to the assumptions in Proposition 5, let F has a
second order functional derivative d2F

dm2 (m)(x1, x2), assume also D2 dF
dm (m)(x),

D1
d2F
dm2 (m)(x1, x2), D2

d2F
dm2 (m)(x1, x2) and

D1D2
d2F
dm2 (m)(x1, x2) exist and are continuous, such that






D2 dF
dm

(m)(x)





 ≤ d(m), (107)




D1D2

d2F
dm2

(m)(x1, x2)





 ≤ d ′(m), (108)

where d, d ′ are constants depending on m only, and | · | is the matrix 2-norm. Then
we have:

D2
XF (X ⊗m)Y (x) = D2 dF

dm
(X ⊗m)(X (x))Y (x)

+

∫
Rn

D1D2

d2F
dm2

(X ⊗m)(X (x),X (x ′))Y (x ′)dm(x ′).
(109)

Besides, we can view F (X ⊗m) as m �→ F (X ⊗m), in this case, we can talk about

differentiation with respect to m, denote it as
∂F
∂m

. The following relation between

∂F
∂m

and
dF
dm

holds.

Proposition 7 Let F : P2(Rn) �→ Rn have a functional derivative and fix X ∈ Hm.
We have

∂F
∂m

(X ⊗m)(x) =
dF
dm

(X ⊗m)(X (x)). (110)
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Now let A : Rn→ Rn, we extend it as ∀X ∈ Hm, X �→ A(X ) ∈ Hm,

A(X )(x) = A(X (x)). (111)

It is trivial to see that if A−1 exists in Rn, then A−1(X )(x) = A−1(X (x)) is the inverse

of A in Hm. So is the transpose of A, if A is a matrix. Again, we can talk about its

Gâteaux derivative.

Proposition 8 Let A to be continuously differentiable. Denote its derivative to be
dA. Assume that there exists k such that |dA(x) | ≤ k for all x ∈ Rn, where | · | is the
matrix 2-norm. Then for all X,Y ∈ Hm, we have

DX A(X )Y (x) = dA(X (x))Y (x). (112)

Proof Let X,Y,H ∈ Hm, then

1

ε

〈
A(X + εY )− A(X ),H

〉
Hm

=
1

ε

∫
Rn

[
A(X (ξ)+ εY (ξ))− A(X (ξ))

]
·H (ξ)dm(ξ)

=

∫
Rn

∫ 1

0

dA(X (ξ)+ θεY (ξ))Y (ξ) ·H (ξ)dθdm(ξ)

→
∫
Rn

dA(X (ξ))Y (ξ) ·H (ξ)dm(ξ) =
〈
dA(X (·))Y (·),H

〉
Hm
.

Proposition 9 Let A be twice continuously differentiable. Denote its second deriva-
tive to be d2 A. Note that d2 A(x)(a,b) ∈ Rn, and d2 A(x)(a,b) = d2 A(x)(b,a). As-
sume that there exists k (x) such that ∀a,b ∈ Rn, |d2 A(x)(a,b) | ≤ k (x), then we
have

d2 A(X )(Y,W )(x) = d2 A(X (x))(Y (x),W (x)). (113)

Proof Let X,Y,W,H ∈ Hm, then

1

ε

〈
DX A(X +W )Y −DX A(X )Y,H

〉
Hm

=
1

ε

∫
Rn

[
dA(X (ξ)+ εW (ξ))Y (ξ)− dA(X (ξ))Y (ξ)

]
·H (ξ)dm(ξ)

=

∫
Rn

∫ 1

0

d2 A(X (ξ)+ θεW (ξ))(Y (ξ),W (ξ)) ·H (ξ)dθdm(ξ)

→
∫
Rn

d2 A(X (ξ))(Y (ξ),W (ξ)) ·H (ξ)dm(ξ).
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7.5 Control Problem in the Hilbert SpaceHm

Recall the definitions of A, B, N , F, FT in Section 7.3. Extend the functions as in

Section 7.4.2. We assume (A1), (A2), (A3) and (A4). It is not hard to derive (9), (7)

and (42) from the assumptions. Note that in our case, b = 0.

Now fix X ∈ Hm as our initial data. For given vXt ∈ L2
X (t,T ;Hm) (subscript X and

t to address the measurability and starting time), consider the dynamics:

X (s) = X +
∫ s

t

[
AX (τ)+ BvXt (τ)

]
dτ. (114)

Denote the process as XXt (s) = XXt (s;vXt ). Define the cost functional:

JXt (vXt ) :=

∫ T

t

F (XXt (s)⊗m)ds+FT (XXt (T )⊗m)+
1

2

∫ T

t

〈vXt (τ),NvXt (τ)〉Hm
dτ,

(115)

and the value function is

V (X, t) := inf
vXt ∈L2

X (t,T ;Hm )
JXt (vXt ). (116)

This is in the form of our concerned model in Section 2, with the Hilbert space being

Hm.

While (114) is infinite dimensional, there is a finite dimensional view point of it. For

vXt ∈ L2
X (t,T ;Hm), by Proposition 4, let ṽ ∈ L2(t,T ;HX⊗m) be the representative

of vXt . Consider

x(s) = x+
∫ s

t

[
Ax(τ)+ Bṽ(τ, x)

]
dτ. (117)

Denote the solution to be x(s; x, ṽ(·, x)). Then we have

XXt (s;vXt )(x) = x(s; X (x), ṽ(·,X (x))).

We introduce the notation Xxt (·) with a lowercase letter for x to mean x(·; x, ṽ(·, x)),

and v·t (s) to mean ṽ(s, ·). From above we can conclude that the law of XXt (s;vXt (·))

is x(s; ·, ṽ(·, ·)) ⊗ (X ⊗m). Hence the cost functional (115) can be written as
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JXt (vXt )

=

∫ T

t

F (XXt (s) ⊗m)ds+FT (XXt (T ) ⊗m)+
1

2

∫ T

t

〈vXt (τ),NvXt (τ)〉Hm
dτ

=

∫ T

t

F (x(s; ·, ṽ(·, ·)) ⊗ (X ⊗m))ds+FT (x(T ; ·, ṽ(·, ·)) ⊗ (X ⊗m))

+
1

2

∫ T

t

〈vXt (τ),NvXt (τ)〉Hm
dτ

=:JX⊗m,t,
(118)

that means J depends on X only through X ⊗m. Respectively,

V (X, t) = inf
vXt ∈L2

X (t,T ;Hm )
JXt (vXt ) = inf

vXt ∈L2
X (t,T ;Hm )

JX⊗m,t (vXt ) =: V (X ⊗m, t).

(119)

7.6 Necessary and Sufficient Condition for Optimality

Assume (A1), (A2), (A3) and (A4), we conclude from Theorem 2 that there exists

unique optimal control v̂Xt (s) = −N−1B∗ZXt (s), where ZXt (s) together with YXt (s)

are the unique solution of the system

YXt (s) = X +
∫ s

t

[
AYXt (τ)− BN−1B∗ZXt (τ)

]
dτ, (120)

ZXt (s) =

∫ T

s

[
(AYXt (τ))∗ZXt (τ)+DXF (YXt (τ) ⊗m)

]
+DXFT (YXt (T ) ⊗m).

(121)

Again, because L2
X (t,T ;Hm) is isometric to L2(t,T ;HX⊗m), there exists Yξt (s),

Zξt (s) such that YXt = Yξt |ξ=X and ZXt = Zξt |ξ=X , (Yξt, Zξt ) solving

Yξt (s) = ξ +

∫ s

t

[
AYξt (τ)− BN−1B∗Zξt (τ)

]
dτ, (122)

Zξt (s) =

∫ T

s

[
(AYξt (τ))∗Zξt (τ)+D

dF
dm

(Y·t (τ) ⊗ (X ⊗m))(Yξt (τ))

]
(123)

+D
dFT
dm

(Y·t (T ) ⊗ (X ⊗m))(Yξt (T )).

As (Yξt, Zξt ) depends on m through X ⊗m, we write (Yξ,X⊗m,t, Zξ,X⊗m,t ). We can

write the value function as
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V (X, t) =
∫ T

t

F (YXt (s) ⊗m)ds+FT (YXt (T ) ⊗m)

+
1

2

∫ T

t

〈N−1B∗ZXt (τ),B∗ZXt (τ)〉Hm
dτ

=

∫ T

t

F (Y·,X⊗m,t (s) ⊗ (X ⊗m))ds+FT (Y·,X⊗m,t (T ) ⊗ (X ⊗m))

+
1

2

∫ T

t

∫
Rn

N−1B∗Zξ,X⊗m,t (τ) · B∗Zξ,X⊗m,t (τ)d(X ⊗m)(ξ)dτ

= V (X ⊗m, t).

(124)

In particular, if we choose X to be the identity function, i.e., X (x) = x, recall that

X ⊗m = m, there exists (Yx,m,t, Zx,m,t ) solving

Yx,m,t (s) = x+
∫ s

t

[
AYx,m,t (τ)− BN−1B∗Zx,m,t (τ)

]
dτ, (125)

Zx,m,t (s) =

∫ T

s

[
(AYx,m,t (τ))∗Zx,m,t (τ)+D

dF
dm

(Y·,m,t (τ) ⊗m)(Yx,m,t (τ))

]
(126)

+D
dFT
dm

(Y·,m,t (T ) ⊗ (X ⊗m))(Yx,m,t (T )),

which is the system of optimality condition for our mean field type control problem

in Section 7.3. For the value function, we have

V (m, t) =
∫ T

t

F (Y·,m,t (s) ⊗m)ds+FT (Y·,m,t (T ) ⊗m) (127)

+
1

2

∫ T

t

∫
Rn

N−1B∗Zx,m,t (τ) · B∗Zx,m,t (τ)dm(x)dτ.

7.7 Properties of the Value Function

We give the functional derivative of the value function V , and the relation between

the solution of the FBSDE and V . As the proofs are standard, we omit here and

readers may refer to Section 4 of [7].

Proposition 10 Assume (A1), (A2), (A3), (A4). We have the following properties for
the value function:

1. By Proposition 3, we have

DXV (X ⊗m, t) = ZXt (t). (128)

2. We have
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dV
dm

(m, t)(x) =

∫ T

t

dF
dm

(Y·,m,t (s) ⊗m)(Yx,m,s (s))ds

+
dFT
dm

(Y·,m,t (T ) ⊗m)(Yx,m,s (T ))

+
1

2

∫ T

t

N−1B∗Zx,m,t (τ) · B∗Zx,m,t (τ)dτ.

(129)

3. We have

D
d

dm
V (m, t)(x) = Zx,m,t (t), (130)

DXV (X ⊗m, t) = D
d

dm
V (X ⊗m, t)(X ) (131)

4. Also, the feedback nature of Z in Y , i.e., for any x ∈ Rn, ∀s ∈ [t,T], we have

Zx,m,t (s) = D
d

dm
V (Y·,m,t ⊗m, s)(Yx,m,t (s)), (132)

and for any X ∈ Hm, ∀s ∈ [t,T],

ZXt (s) = DXV (YXt (s) ⊗m, s). (133)

7.8 Bellman Equation

Assume (A1), (A2), (A3), (A4). By Theorem 4, we deduce that for any T > 0,

V (X ⊗m, t) is the unique solution to the following Bellman equation:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−∂V
∂t

(X ⊗m, t)−
〈
DXV (X ⊗m, t), AX

〉
Hm

+
1

2

〈
DXV (X ⊗m, t),BN−1B∗DXV (X ⊗m, t)

〉
Hm
= F (X ⊗m),

V (X ⊗m) = FT (X ⊗m).

(134)

As before, let X be the identity function, together with Proposition 10, we conclude

that for any T > 0, V (m, t) solves the following PDE on the space of probability

measures:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−∂V
∂t

(m, t)−
∫
Rn

D
dV
dm

(m, t)(x) · Axdm(x)

+
1

2

∫
Rn

D
dV
dm

(m, t)(x) · BN−1B∗D
dV
dm

(m, t)(x)dm(x) = F (m),

V (m,T ) = FT (m).

(135)
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