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Finite Markov Chains Coupled to General Markov Processes and An Application to

Metastability I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

Thomas G. Kurtz and Jason Swanson

Finite Markov Chains Coupled to General Markov Processes and An Application to

Metastability II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Thomas G. Kurtz and Jason Swanson

Maximally Distributed Random Fields under Sublinear Expectation . . . . . . . . . . 339

Xinpeng Li and Shige Peng

Pairs Trading under Geometric Brownian Motion Models . . . . . . . . . . . . . . . . . . . 357

Phong Luu, Jingzhi Tie, and Qing Zhang

Equilibrium Model of Limit Order Books: A Mean-Field Game View . . . . . . . . 381

Jin Ma and Eunjung Noh

Bounded Regret for Finitely Parameterized Multi-Armed Bandits . . . . . . . . . . . . 411

Kishan Panaganti, Dileep Kalathil, and Pravin Varaiya

Developing the Path Signature Methodology and Its Application to Landmark-

Based Human Action Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465

Table of Contentsx

. . . . .Correction to: Stochastic Analysis, Filtering, and Stochastic Optimization  C1





Bibliography of Mark H. A. Davis

Books

Davis, M. H. A. (1977b). Linear estimation and stochastic control. Chapman &

Hall, London, Halsted Press [John Wiley & Sons], New York.

Davis, M. H. A. (1984a). Lectures on stochastic control and nonlinear filtering
(Vol. 75). Published for the Tata Institute of Fundamental Research, Bom-

bay; by Springer-Verlag, Berlin.

Davis, M. H. A. (1984b). Lineinoe Otsenivanie i Stokhasticheskoe Upravlenie
[Translated from the English by M. V. Burnashev and A. A. Novikov,

Translation edited and with a preface by A. N. Shiryaev]. “Nauka”, Moscow.

Davis, M. H. A., & Vinter, R. B. (1985). Stochastic modelling and control. Chapman

& Hall, London. https://doi.org/10.1007/978-94-009-4828-0

Davis, M. H. A., & Elliott, R. J. (1991). Applied stochastic analysis. Gordon &

Breach Science Publishers.

Davis, M. H. A. (1993b). Markov models and optimization (Vol. 49). Chapman &

Hall, London. https://doi.org/10.1007/978-1-4899-4483-2

Davis, M. H. A., Duffie, D., Fleming, W. H., & Shreve, S. (1995). Mathematical
finance (Vol. 65). Springer-Verlag.

Davis, M., & Etheridge, A. (2006). Louis Bachelier’s theory of speculation: The
origins of modern finance. Princeton University Press.

Davis, M. H. A., & Lleo, S. (2014). Risk-sensitive investment management (Vol. 19).

World Scientific.

Buchanan, D. L., & Davis, M. H. A. (2018). Metals and energy finance: Application
of quantitative finance techniques to the evaluation of minerals, coal and
petroleum projects. World Scientific Publishing.

Davis, M. H. A. (2019). Mathematical finance: A very short introduction. Oxford

University Press, Oxford.

xiii

https://doi.org/10.1007/978-94-009-4828-0
https://doi.org/10.1007/978-1-4899-4483-2


xiv

Published Papers

Davis, M. H. A., & Varaiya, P. P. (1972). Information states for linear stochastic

systems. J. Math. Anal. Appl., 37, 384–402. https://doi.org/10.1016/0022-

247X(72)90281-8

Davis, M. H. A. (1973a). On the existence of optimal policies in stochastic control.

SIAM J. Control, 11, 587–594.

Davis, M. H. A. (1973b). Optimal control of a degenerate Markovian system. In

D. J. Bell (Ed.), Recent mathematical developments in control. Academic

Press Inc.

Davis, M. H. A., & Varaiya, P. (1973). Dynamic programming conditions for par-

tially observable stochastic systems. SIAM J. Control, 11, 226–261. https:

//doi.org/10.1137/0311020

Davis, M. (1974). On the separation principle. Proceedings of the 5th Symposium
on Nonlinear Estimation and Applications.

Davis, M. H. A., Segall, A., & Kailath, T. (1974). Estimation of point processes.

Proceedings of IFAC Symposium on Stochastic Control.
Davis, M. H. A., & Varaiya, P. (1974). The multiplicity of an increasing family

of σ -fields. Ann. Probability, 2, 958–963. https://doi.org/10.1214/aop/

1176996562

Davis, M. (1975a). The application of nonlinear filtering to fault detection in linear

systems. IEEE Transactions on Automatic Control, 20(2), 257–259. https:

//doi.org/10.1109/TAC.1975.1100908

Davis, M. H. A. (1975b). On stochastic differentiation. Teor. Verojatnost. i Prime-
nen., 20(4), 887–892.

Segall, A., Davis, M. H. A., & Kailath, T. (1975). Nonlinear filtering with counting

observations. IEEE Trans. Inform. Theory, IT-21, 143–149. https://doi.org/

10.1109/tit.1975.1055360

Davis, M. H. A. (1976a). Martingales of Wiener and Poisson processes. J. London
Math. Soc. (2), 13(2), 336–338. https://doi.org/10.1112/jlms/s2-13.2.336

Davis, M. H. A. (1976b). A note on the Poisson disorder problem. Banach Center
Publications, 1(1), 65–72.

Davis, M. H. A. (1976c). The representation of martingales of jump processes. SIAM
J. Control Optim., 14(4), 623–638. https://doi.org/10.1137/0314041

Davis, M. H. A. (1976d). The separation principle in stochastic control via Girsanov

solutions. SIAM J. Control Optim., 14(1), 176–188. https : / /doi .org /10 .

1137/0314015

Davis, M. H. A. (1976e). The structure of jump processes and related control prob-

lems. Math. Programming Stud., (6), 2–14. https : / / doi . org / 10 . 1007 /

bfb0120740

Davis, M., & Andreadakis, E. (1977). Exact and approximate filtering in signal de-

tection: An example (corresp.) IEEE Transactions on Information Theory,

23(6), 768–772. https://doi.org/10.1109/TIT.1977.1055783

Bibliography of Mark H. A. Davis

https://doi.org/10.1016/0022-247X(72)90281-8
https://doi.org/10.1016/0022-247X(72)90281-8
https://doi.org/10.1214/aop/1176996562
https://doi.org/10.1109/tit.1975.1055360
https://doi.org/10.1112/jlms/s2-13.2.336
https://doi.org/10.1137/0314041
https://doi.org/10.1109/TIT.1977.1055783
https://doi.org/10.1137/0311020
https://doi.org/10.1137/0311020
https://doi.org/10.1214/aop/1176996562
https://doi.org/10.1109/TAC.1975.1100908
https://doi.org/10.1109/TAC.1975.1100908
https://doi.org/10.1109/tit.1975.1055360
https://doi.org/10.1137/0314015
https://doi.org/10.1137/0314015
https://doi.org/10.1007/bfb0120740
https://doi.org/10.1007/bfb0120740


xv

Davis, M. H. A., & Elliott, R. (1977). Optimal control of a jump process. Z.
Wahrscheinlichkeitstheorie und Verw. Gebiete, 40(3), 183–202. https://doi.

org/10.1007/BF00736046

Wan, C. B., & Davis, M. H. A. (1977). The general point process disorder problem.

IEEE Trans. Inform. Theory, IT-23(4), 538–540. https://doi.org/10.1109/

tit.1977.1055748

Davis, M. H. A. (1978a). Detection, mutual information and feedback encoding:

Applications of stochastic calculus. Communication systems and random
process theory (Proc. 2nd NATO Advanced Study Inst., Darlington, 1977),
705–720. NATO Advanced Study Inst. Ser., Ser. E: Appl. Sci., No. 25.

Davis, M. H. A. (1978b). A direct proof of innovations/observations equivalence for

Gaussian processes. IEEE Trans. Inform. Theory, 24(2), 252–254. https:

//doi.org/10.1109/TIT.1978.1055845

Davis, M. H. A. (1978c). Martingale integrals and stochastic calculus. Communica-
tion systems and random process theory (Proc. 2nd NATO Advanced Study
Inst., Darlington, 1977), 687–704. NATO Advanced Study Inst. Ser., Ser.

E: Appl. Sci., No. 25.

Davis, M. H. A. (1978d). Nonlinear semigroups in the control of partially-observable

stochastic systems. Measure theory applications to stochastic analysis
(Proc. Conf., Res. Inst. Math., Oberwolfach, 1977), 695, 37–49. https : / /

doi.org/10.1007/BFb0062653

Davis, M. H. A., & Wan, C. (1978). The principle of optimality for Markov jump

processes. IMA Conference on Analysis and Optimization of Stochastic
Systems, Oxford.

Davis, M. H. A. (1979a). Martingale methods in stochastic control. Stochastic con-
trol theory and stochastic differential systems (Proc. Workshop, Deutsch.
Forschungsgemeinsch., Univ. Bonn, Bad Honnef, 1979), 16, 85–117. https:

//doi.org/10.1007/BFb0009377

Davis, M. H. A. (1979b). Pathwise solutions and multiplicative functionals in non-

linear filtering. 1979 18th IEEE Conference on Decision and Control in-
cluding the Symposium on Adaptive Processes, 2, 176–181. https://doi.org/

10.1109/CDC.1979.270157

Davis, M. H. A., & Clark, J. M. C. (1979). On “predicted miss” stochastic con-

trol problems. Stochastics, 2(3), 197–209. https : / / doi . org / 10 . 1080 /

17442507908833126

Wan, C. B., & Davis, M. H. A. (1979). Existence of optimal controls for stochastic

jump processes. SIAM J. Control Optim., 17(4), 511–524. https://doi.org/

10.1137/0317037

Davis, M. (1980a). Review of “stochastic optimal control: The discrete case” by

D. Bertsekas and S. E. Shreve. IEEE Trans Automatic Control, 25, 1254–

1255.

Davis, M. H. A. (1980b). Capacity and cutoff rate for Poisson-type channels. IEEE
Trans. Inform. Theory, 26(6), 710–715. https://doi.org/10.1109/TIT.1980.

1056262

Bibliography of Mark H. A. Davis

https://doi.org/10.1007/BF00736046
https://doi.org/10.1109/tit.1977.1055748
https://doi.org/10.1109/CDC.1979.270157
https://doi.org/10.1137/0317037
https://doi.org/10.1109/TIT.1980.1056262
https://doi.org/10.1007/BF00736046
https://doi.org/10.1109/tit.1977.1055748
https://doi.org/10.1109/TIT.1978.1055845
https://doi.org/10.1109/TIT.1978.1055845
https://doi.org/10.1007/BFb0062653
https://doi.org/10.1007/BFb0062653
https://doi.org/10.1007/BFb0009377
https://doi.org/10.1007/BFb0009377
https://doi.org/10.1109/CDC.1979.270157
https://doi.org/10.1080/17442507908833126
https://doi.org/10.1080/17442507908833126
https://doi.org/10.1137/0317037
https://doi.org/10.1109/TIT.1980.1056262


xvi

Davis, M. H. A. (1980c). Comments on: “Weaker conditions for innovations in-

formational equivalence in the independent Gaussian case” [IEEE Trans.

Automat. Control 24 (1979), no. 1, 63–69; MR 80h:93079] by E. Mosca

[With a reply by Mosca]. IEEE Trans. Automat. Control, 25(3), 607–609.

https://doi.org/10.1109/TAC.1980.1102388

Davis, M. H. A. (1980d). Functionals of diffusion processes as stochastic integrals.

Math. Proc. Cambridge Philos. Soc., 87(1), 157–166. https://doi.org/10.

1017/S0305004100056590

Davis, M. H. A. (1980e). On a multiplicative functional transformation arising

in nonlinear filtering theory. Z. Wahrsch. Verw. Gebiete, 54(2), 125–139.

https://doi.org/10.1007/BF00531444

Davis, M. H. A., & Kohlmann, M. (1980). Stochastic control by measure trans-

formation: A general existence result. Inform. Sci., 21(3), 195–208. https:

//doi.org/10.1016/0020-0255(80)90029-8

Davis, M. H. A., & Wan, C. B. (1980). The principle of optimality for Markov jump

processes. Analysis and optimisation of stochastic systems (Proc. Internat.
Conf., Univ. Oxford, Oxford, 1978), 21–33.

Davis, M. H. A., & Wellings, P. H. (1980). Computational problems in nonlinear fil-

tering. Analysis and optimization of systems (Proc. Fourth Internat. Conf.,
Versailles, 1980), 28, 253–261. https://doi.org/10.1007/BFb0004045

Davis, M. (1981a). Review of “stochastic models, estimation and control” by P. S.

Maybeck. Proceedings of IEE (D), (128).

Davis, M. H. A. (1981b). Factorization of a multiplicative functional of nonlinear

filtering theory. Systems Control Lett., 1(1), 49–53. https : / / doi .org /10 .

1016/S0167-6911(81)80012-6

Davis, M. H. A. (1981c). New approach to filtering for nonlinear systems. Proc.
IEE-D, 128(5), 166–172. https://doi.org/10.1049/ip-d.1981.0037

Davis, M. H. A. (1981d). Pathwise non-linear filtering. In M. Hazewinkel & J.

Williams (Eds.), Stochastic systems: The mathematics of filtering and iden-
tification and applications (pp. 505–528). Springer. https : / /doi .org /10 .

1007/978-94-009-8546-9 25

Davis, M. H. A., & Marcus, S. I. (1981). An introduction to nonlinear filtering. In

M. Hazewinkel & J. Williams (Eds.), Stochastic systems: The mathematics
of filtering and identification and applications (pp. 53–75). Springer. https:

//doi.org/10.1007/978-94-009-8546-9 4

Elliott, R. J., & Davis, M. H. A. (1981). Optimal play in a stochastic differential

game. SIAM J. Control Optim., 19(4), 543–554. https://doi.org/10.1137/

0319033

Davis, M. H. A. (1982a). A pathwise solution of the equations of nonlinear filtering.

Teor. Veroyatnost. i Primenen., 27(1), 160–167. https://doi.org/10.1137/

1127017

Davis, M. H. A. (1982b). Stochastic control with noisy observations. Advances
in filtering and optimal stochastic control (Cocoyoc, 1982) (pp. 79–90).

Springer, Berlin. https://doi.org/10.1007/BFb0004527

Bibliography of Mark H. A. Davis

https://doi.org/10.1109/TAC.1980.1102388
https://doi.org/10.1017/S0305004100056590
https://doi.org/10.1007/BF00531444
https://doi.org/10.1007/BFb0004045
https://doi.org/10.1049/ip-d.1981.0037
https://doi.org/10.1137/0319033
https://doi.org/10.1137/1127017
https://doi.org/10.1007/BFb0004527
https://doi.org/10.1017/S0305004100056590
https://doi.org/10.1016/0020-0255(80)90029-8
https://doi.org/10.1016/0020-0255(80)90029-8
https://doi.org/10.1016/S0167-6911(81)80012-6
https://doi.org/10.1016/S0167-6911(81)80012-6
https://doi.org/10.1007/978-94-009-8546-9_25
https://doi.org/10.1007/978-94-009-8546-9_25
https://doi.org/10.1137/0319033
https://doi.org/10.1137/1127017
https://doi.org/10.1007/978-94-009-8546-9_4
https://doi.org/10.1007/978-94-009-8546-9_4


xvii

Davis, M. H. A. (1982c). Stochastic control with tracking of exogenous param-

eters. Stochastic differential systems (Bad Honnef, 1982) (pp. 285–293).

Springer, Berlin. https://doi.org/10.1007/BFb0044308
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Davis, M. H. A., Obłój, J., & Raval, V. (2014). Arbitrage bounds for prices of

weighted variance swaps. Math. Finance, 24(4), 821–854. https://doi.org/

10.1111/mafi.12021

Davis, M. H. A., & Lleo, S. (2015). Jump-diffusion asset-liability management via

risk-sensitive control. OR Spectrum, 37(3), 655–675. https://doi.org/10.

1007/s00291-014-0371-x

Davis, M. H. A., & Pistorius, M. R. (2015). Explicit solution of an inverse first-
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Control in Hilbert Space and First-Order Mean
Field Type Problem

Alain Bensoussan, Hang Cheung, and Sheung Chi Phillip Yam

Abstract We extend the work [9] by two of the coauthors, which dealt with a

deterministic control problem for which the Hilbert space could be generic and

investigated a novel form of the ‘lifting’ technique proposed by P. L. Lions. In [9],

we only showed the local existence and uniqueness of solutions to the FBODEs in

the Hilbert space which were associated to the control problems with drift function

consisting of the control only. In this article, we establish the global existence

and uniqueness of the solutions to the FBODEs in Hilbert space corresponding to

control problems with separable drift function which is nonlinear in state and linear

in control. We shall also prove the sufficiency of the Pontryagin Maximum Principle

and derive the corresponding Bellman equation. Finally, by using the ‘lifting’ idea

as in [6, 7], we shall apply the result to solve the linear quadratic mean field type

control problems, and to show the global existence of the corresponding Bellman

equations.

Dedicated in memory of Mark Davis for his outstanding contribution in control
theory.
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1 Introduction

In recent years, Mean Field Game (MFG) and Mean Field Type Control Theory

(MFTCT) are burgeoning. Carmona and Delarue [14] proved the existence of the

general forward-backward systems of equations of McKean-Vlasov type using the

probabilistic approach, and therefore obtained the classical solution to the master

equation arisen from MFG. Their assumptions restricted their application to LQ

models only. Cardaliaguet et al. [12] proved the existence of the classical solution to

the master equation arisen from MFG by PDE techniques and the method of charac-

teristics. To do so, they required the state space to be compact, and the Hamiltonian

to be smooth, globally Lipschitz continuous and to satisfy a certain coercivity condi-

tion. Buckdahn et al. [11] adopted a similar approach to study forward flows, proving

that the semigroup of a standard McKean-Vlasov stochastic differential equation with

smooth coefficients is the classical solution of a particular type of master equation.

A crucial assumption was made therein on the smoothness of the coefficients, which

restricted the scope of applications. Gangbo and Mészáros in [19] constructed global

solutions to the master equation in potential Mean Field Games, where displacement

convexity was used as a substitution for the monotonicity condition. Besides the

notion of classical solutions, Mou and Zhang in [26] gave a notion of weak solution

of the master equation arisen from mean field games, using their results of mollifiers

on the infinite dimensional space. More results can be found in the papers of Cosso

and Pham [16], Pham and Wei [29] and Djete et al. [18], which concern the Bellman

and Master equations of Mean Field Games and Mean Field Type Control Theory.

By Pontryagin Maximum Principle, MFG and MFTCT are deeply connected to mean

field forward backward stochastic differential equations. Pardoux and Tang [27], An-

tonelli [2] and Hu and Yong [21] showed the existence and uniqueness of FBSDEs

under small time intervals by a fixed point argument. For Markovian FBSDEs, to

get rid of the small time issue, Ma et al. [24] employed the Four Step Scheme. They

constructed decoupling functions by the use of the classical solutions of quasi-linear

PDEs, hence non-degeneracy of the diffusion coefficient and the strong regularity

condition on the coefficients were required. Another way to remove time constraints

in Markovian FBSDEs was by Delarue [17]. Local solutions were patched together

by the use of decoupling functions. PDE methods were used to bound the coeffi-

cients of the terminal function relative to the initial data in order for the problem

to be well-posed. It was later extended to the case of non-Markovian FBSDEs by

Zhang in [32]. Moreover, to deal with non-Markovian FBSDEs with arbitrary time

length, there was the pure probabilistic method – method of continuation. It required

monotonicity conditions on the coefficients. For seminal works one may consult

[20, 28, 30, 31]. With the help of decoupling functions as in [17], but using a BSDE

to control the terminal coefficient instead of PDEs, Ma et al. [25] covered most of

the above cases, but in the case of codomain being R. For mean field type FBSDE. A

rather general existence result but with a restrictive assumption (boundedness of the

coefficients with respect to the state variable) was first done in [13] by Carmona and

Delarue. Taking advantage of the convexity of the underlying Hamiltonian and ap-
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plying the continuation method, Carmona and Delarue extended their results in [14].

Bensoussan et al. [10] exploited the condition in [14] and gave weaker conditions

for which the results in [14] still hold. By the method of continuation, Ahuja et al.

[1] extended the above result to the FBSDEs which allow coefficients to be function-

als of the processes. More details can be found in the monographs [15, 3] and [4, 5, 8].

We establish the global existence and uniqueness of the solutions to the FBODEs in

Hilbert space corresponding to control problems with separable drift function which

is nonlinear in state and linear in control. The result can be applied to solve linear

quadratic mean field type control problems. We exploit the ‘lifting to Hilbert space’

approach suggested by P. L. Lions in [22, 23], but lift to another Hilbert space instead

of the space of random variables. After lifting, the problems are akin to standard

control problems, but the drawback is that they are in the infinite dimensional space.

By the Pontryagin Maximum Principle, the control problems are reduced to FBODEs

in the Hilbert space. In order to accommodate nonlinear settings, we make use of

the idea of decoupling. By a Banach fixed point argument, we are able to locally

find a decoupling function for the FBODEs. We then derive a priori estimates of the

decoupling function and extend the solution from local to global as in Delarue [17]

by the a priori estimates. Finally we apply our result to solve linear quadratic mean

field type control problems and obtain their corresponding Bellman equations.

The rest of this article is organized as follows. In Section 2, we introduce the

model in the Hilbert space. In Section 3, we express the related FBODE and define

the decoupling function. A priori estimates of the decoupling function are derived in

Section 4. In Section 5, we prove the local existence and uniqueness of the FBODE

by using a Banach fixed point argument on the function space containing the de-

coupling function. In Section 6.1, we construct the global solution by our a priori
estimates. We show the sufficiency of the Maximum Principle in Section 6.2 and

write the corresponding Bellman function in Section 6.3. In Section 7, we apply our

result in the Hilbert space as in [7], to solve the optimal control problem, and show

the global existence to the corresponding Bellman equation.

2 The Model

2.1 Assumptions

Let H be a Hilbert space, with scalar product denoted by (·, ·). We consider a

non-linear operator A, x ∈ H �→ A(x) ∈ H , such that

A(0) = 0. (1)

We assume that x �→ A(x) is C1 and that DA(x)(= Dx A(x)) ∈ L(H ;H ), that means
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Dx A(x)(·) : y ∈ H �→ Dx A(x)(y) = lim
ε→0

A(x+ ε y)− A(x)

ε
,

and it satisfies:

The operator norm | |DA(x) | | ≤ γ. (2)

By definition, we have the result:

(DA(x)y, z) = (Dx (A(x), z), y); (3)

indeed, we can see this by noting that

(DA(x)y, z) = lim
ε→0

(
1

ε
(A(x+ ε y)− A(x)), z

)

= lim
ε→0

1

ε
[(A(x+ ε y), z)− (A(x), z)]

= (Dx (A(x), z), y),

where the last step follows by differentiating the functional (A(·), z) : H → R.

We also assume that DA(x) is differentiable with a second derivative D2 A(x) ∈
L(H ;L(H ;H )), similar to (3), such that

⎧⎪⎨⎪⎩
(Dx (Dx (A(x), z), y),w) = (D2

xx A(x)(y)w, z),

Dx (Dx (A(x), z), y) = (D2
xx A(x)(y), z).

(4)

We assume the Lipschitz property:

| |DA(x1)−DA(x2) | | ≤ b|x1− x2 |
1+max( |x1 |, |x2 |) , (5)

which implies

| |D2 A(x) | | ≤ b
1+ |x | . (6)

In the sequel, we shall make restrictions on the size of b.
We next consider x �→ F (x) and x �→ FT (x), functionals on H , which are C2,

with the properties:

⎧⎪⎨⎪⎩
F (0) = 0, DxF (0) = 0,

ν |ξ |2 ≤ (D2
xxF (x)ξ, ξ) ≤ M |ξ |2;

(7)

⎧⎪⎨⎪⎩
FT (0) = 0, DxFT (0) = 0,

νT |ξ |2 ≤ (D2
xxFT (x)ξ, ξ) ≤ MT |ξ |2,

(8)

and ν, νT > 0. H is the state space. In addition, there is a control space V , also a

Hilbert space and a linear bounded operator B ∈ L(V;H ), an invertible-self adjoint

operator onV , denoted by N .We assume that
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(BN−1B∗ξ, ξ) ≥ m |ξ |2, m > 0. (9)

Remark 1 The assumption (1) and the first line assumptions (7), (8) are of course not

necessary. It is just to simplify the calculations.

2.2 The Problem

We consider the following control problem. The state evolution is governed by the

differential equation inH :

⎧⎪⎪⎨⎪⎪⎩
dx
ds
= A(x)+ Bv(s),

x(t) = x,
(10)

in which v(·) is in L2(t,T ;V ). It is easy to check that the state x(·) is uniquely

defined and belongs to H1(t,T ;H ).We define the payoff functional:

Jxt (v(·)) :=

∫ T

t

F (x(s))ds+FT (x(T ))+
1

2

∫ T

t

(v(s),Nv(s))ds. (11)

This functional is continuous and coercive. IfH were Rn, it would be classical that

it has a minimum and thus we could write the necessary conditions of optimality.

But the proof does not carry over to general Hilbert spaces. Moreover, since A is not

linear, we do not have the convexity property, which would guarantee the existence

and uniqueness of a minimum, and thus a solution of the necessary conditions of

optimality. We shall then write the necessary conditions of optimality and prove

directly the existence and uniqueness of a solution.

3 Necessary Conditions of Optimality

3.1 The System

It is standard to check the following system of forward-backward equations inH :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dy
ds
= A(y)− BN−1B∗z(s), t < s < T,

− dz
ds
= (DA(y(s)))∗z(s)+DF (y(s)),

y(t) = x, z(T ) = DFT (y(T )).

(12)

The optimal state is y(·), and z(·) is the adjoint state. The optimal control is then:
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u(s) = −N−1B∗z(s). (13)

The system (12) expresses the Pontryagin Maximum Principle. The objective is to

study the system of Equations (12).

3.2 Decoupling

We set

z(t) = Γ(x, t). (14)

It is standard to check that z(s) = Γ(y(s), s). So y(s) is the solution of the differential

equation inH : ⎧⎪⎪⎨⎪⎪⎩
dy
ds
= A(y)− BN−1B∗Γ(y(s), s),

y(t) = x,
(15)

and Γ(x, s) is the solution of the nonlinear partial differential equation:

⎧⎪⎪⎨⎪⎪⎩
−∂Γ
∂s
= DxΓ(x) A(x)+ (Dx A(x))∗Γ(x)−DxΓ(x)BN−1B∗Γ(x, s)+DxF (x),

Γ(x,T ) = DxFT (x).
(16)

If A(x) = Ax, F (x) =
1

2
(x,M x) and FT (x) =

1

2
(x,MT x), then Γ(x, s) = P(s)x, and

P(s) is solution of the Riccati equation:

⎧⎪⎪⎨⎪⎪⎩
−dP

ds
= P(s) A+ A∗P(s)−P(s)BN−1B∗P(s)+M,

P(T ) = MT .
(17)

4 A Priori Estimates

4.1 First Estimate

We state the first result:

Proposition 1 We assume (1), (2), (5), (7), (8), (9) and

b2

16
< (m− k)(ν− k), 0 < k < min(m, ν), (18)

then we have the a priori estimate:
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|Γ(x, t) | ≤ |x | ��
M2

T

νT
+
γ2+M2

k
(T − t)�	 . (19)

Proof From the system (12), we obtain:

d
ds

(y(s), z(s)) = (A(y(s))−BN−1B∗z(s), z(s))− ((DA(y(s)))∗z(s)+DF (y(s)), y(s)
)
.

Integration yields:

(DxFT (y(T )), y(T ))+

∫ T

t

(BN−1B∗z(s), z(s))ds+
∫ T

t

(DxF (y(s)), y(s))ds

= (x, z(t))+

∫ T

t

(A(y(s))−DA(y(s))y(s), z(s)) ds.

(20)

We note that

|A(x)−DA(x)x | ≤ b
2
|x |; (21)

indeed, A(x)−DA(x)x =
∫ 1

0
(DA(θx)−DA(x))x dθ, and from the assumption (5),

we get:

|A(x)−DA(x)x | ≤
∫ 1

0

b|x |2(1− θ)
1+ |x | dθ,

which implies (21). Therefore, from (20), we obtain, using assumptions:

(x, z(t)) ≥ νT |y(T ) |2+m
∫ T

t

|z(s) |2ds+ ν
∫ T

t

|y(s) |2ds− b
2

∫ T

t

|y(s) | |z(s) |ds.

Using (18), we can state:

(x, z(t)) ≥ νT |y(T ) |2+ k
∫ T

t

(|y(s) |2+ z(s) |2)ds. (22)

On the other hand, from the second equation (12), we write z(t) = z(T ) +∫ T
t

((DA(y(s)))∗z(s)+DF (y(s))) ds, hence

(x.z(t)) = (x,DFT (y(T ))+

∫ T

t

(DA(y(s))x, z(s))ds+
∫ T

t

(x,DF (y(s))ds,

(x.z(t)) ≤ |x | |z(t) | ≤ |x |(MT |y(T ) |+
∫ T

t

γ |z(s) |ds+
∫ T

t

|y(t) |dt)

≤ 1

2

(
νT |y(T ) |2+ k

∫ T

t

( |y(s) |2+ z(s) |2)ds
)

+
|x |2
2

��
M2

T

νT
+
γ2+M2

k
(T − t)�	 .
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From this relation and (22), we get:

νT |y(T ) |2+ k
∫ T

t

(|y(s) |2+ z(s) |2)ds ≤ |x |2 ��
M2

T

νT
+
γ2+M2

k
(T − t)�	 .

Therefore,

|x | |z(t) | ≤ |x |2 ��
M2

T

νT
+
γ2+M2

k
(T − t)�	,

and the result follows. We write

αt =
M2

T

νT
+
γ2+M2

k
(T − t). (23)

Note that in the system (12), we can write

|z(s) | ≤ αs |y(s) |. (24)

4.2 Second Estimate

The second estimate concerns the gradient DxΓ(x, t).We have the following result:

Proposition 2 We make the assumptions of Proposition 1 and

ν− bα0 > 0, (25)

then we have the a priori estimate:

| |DxΓ(x, t) | | ≤ M2
T

νT
+
γ2

m
(T − t)+

∫ T

t

(M + bαs)2

ν− bαs
ds. (26)

Proof We differentiate the system (12) with respect to x.We denote

Y (s) = Dx y(s),Z(s) = Dx z(s). (27)

Differentiating (12), we can write, by recalling notation (4):

d
ds
Y (s)ξ = Dx A(y(s))Y (s)ξ − BN−1B∗Z(s)ξ, (28)

− d
ds
Z(s)ξ = (D2

xx A(y(s))Y (s)(ξ), z(s))+ (DA(y(s)))∗Z(s)ξ +D2
xxF (y(s))Y (s)ξ,

Y (t)ξ = ξ, Z(T )ξ = D2
xxFT (y(T ))Y (T )ξ. (29)

We compute
d
ds

(Y (s)ξ,Z(s)ξ) and then integrate. We obtain that
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(Z(t)ξ, ξ) = (D2
xxFT (y(T ))Y (T )ξ,Y (T )ξ)+

∫ T

t

(BN−1B∗Z(s)ξ,Z(s)ξ)ds

+

∫ T

t

(D2
xxF (y(s))Y (s)ξ,Y (s)ξ)ds

+

∫ T

t

(D2
xx A(y(s))Y (s)(ξ)Y (s)ξ, z(s))

≥ νT |Y (T )ξ |2+m
∫ T

t

|Z(s)ξ |2ds+
∫ T

t

(ν− bαs) |Y (s)ξ |2ds.

(30)

Also, from the second line of (28),

|Z(t)ξ | ≤ MT |Y (T )ξ |+
∫ T

t

(M + bαs) |Y (s)ξ |ds+γ
∫ T

t

|Z(s)ξ |ds. (31)

Combining (30) and (31) as in Proposition 1, we conclude that

|Z(t)ξ | ≤ |ξ | ��
M2

T

νT
+
γ2

m
(T − t)+

∫ T

t

(M + bαs)2

ν− bαs
ds�	 .

SinceZ(t)ξ =DxΓ(x, t), the result (26) follows immediately. The proof is complete.�

We shall call

βt =
M2

T

νT
+
γ2

m
(T − t)+

∫ T

t

(M + bαs)2

ν− bαs
ds. (32)

Since

Γ(x, t) =
∫ 1

0

DxΓ(θx, t)x dθ,

we also have:

|Γ(x, t) | ≤ βt |x |, (33)

so in fact, ⎧⎪⎨⎪⎩
|Γ(x, t) | ≤ min(αt, βt ) |x |,
| |DxΓ(x, t) | | ≤ βt . (34)

5 Local Time Solution

5.1 Fixed Point Approach

We want to solve (12) by a fixed point approach. Suppose we have a function λ(x, t)
with values inH such that:
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⎧⎪⎨⎪⎩
|λ(x, t) | ≤ μt |x |,
| |Dxλ(x, t) | | ≤ ρt, (35)

where μt and ρt are bounded functions on [T − h,T], for some convenient h. These

functions will be chosen conveniently in the sequel, with μt < ρt .We then solve

⎧⎪⎪⎨⎪⎪⎩
d
ds

y(s) = A(y(s))− BN−1B∗λ(y(s), s),

y(t) = x.
(36)

This differential equation defines uniquely y(s), thanks to the assumptions (35). We

then define

Λ(x, t) := DxFT (y(T ))+

∫ T

t

(DA(y(s)))∗λ(y(s), s)ds+
∫ T

t

DxF (y(s))ds. (37)

We want to show that μt and ρt can be chosen such that

|Λ(x, t) | ≤ μt |x |, | |DxΛ(x, t) | | ≤ ρt, (38)

and that the map λ �→Λ has a fixed point. This will be only possible when t remains

close to T, namely T − h < t < T, with h small.

5.2 Choice of Functions μt and ρt

From (36), we obtain:

d
ds
|y(s) | ≤






 d
ds

y(s)





 ≤ (γ+ | |BN−1B∗ | |μs) |y(s) |,

which implies

|y(s) | ≤ |x | exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)
, (39)

and thus from (37) it follows that

|Λ(x, t) | ≤ MT |y(T ) |+
∫ T

t

(M +γμs) |y(s) |ds.

Using (39), we obtain:
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|Λ(x, t) | ≤ |x |
(
MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

+

∫ T

t

(M +γμs) exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

ds
)
.

To obtain the first inequality (38), we must choose the function μt such that

μt = MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

+

∫ T

t

(M +γμs) exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

ds.

(40)

So μt must be solution of the differential equation of Riccati type:

⎧⎪⎪⎨⎪⎪⎩
d
dt
μt = −||BN−1B∗ | |μ2

t −2γμt −M,

μT = MT .
(41)

To proceed, we need to assume that

γ2 < M | |BN−1B∗ | |, (42)

and we define μt bt the formula:

arctan
μt | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

= arctan
MT | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

+

(√
M | |BN−1B∗ | | −γ2

)
(T − t).

(43)

For h > 0, define θh with

arctan
θh | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

= arctan
MT | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

+

(√
M | |BN−1B∗ | | −γ2

)
h.

(44)

The number h must be small enough to guarantee that

arctan
MT | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

+

(√
M | |BN−1B∗ | | −γ2

)
h <
π

2
. (45)

Formula (43) defines uniquely μt for T − h < t < T . It is decreasing in t, with

MT < μt < θh .

Therefore, for T − h < t < T, we have defined by (37) a function Λ(x, t) which

satisfies the first condition (38), with μt defined by equation (43). We turn now to
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the definition of ρt . Define Y (s) = Dx y(s), see (36). We have:

⎧⎪⎪⎨⎪⎪⎩
d
ds
Y (s) =

(
DA(y(s))− BN−1B∗Dxλ(y(s), s)

)
Y (s),

Y (t) = I .
(46)

We obtain, by techniques already used:

| |Y (s) | | ≤ exp

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)
. (47)

We then differentiate Λ(x, t) in x, see (37). We get:

DxΛ(x, t) = D2
xxFT (y(T ))Y (T )+

∫ T

t

(D2
xx A(y(s))Y (s), λ(y(s), s))ds,

+

∫ T

t

(Dx A(y(s)))∗Dxλ(y(s), s)Y (s)ds+
∫ T

t

D2
xxF (y(s))Y (s)ds,

and we obtain:

| |DxΛ(x, t) | | ≤ MT | |Y (T ) | |+
∫ T

t

(M + bμs +γρs) | |Y (s) | |ds.

Since T − h < t < T, we can majorize, using also (47), to obtain:

| |DxΛ(x, t) | | ≤ MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |ρs)ds
)

+

∫ T

t

(M + bθh +γρs) exp

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

ds.

(48)

We are thus led to looking for ρt solution of

ρt = MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |ρs)ds
)

+

∫ T

t

(M + bθh +γρs) exp

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

ds.

(49)

This equation is similar to the one defining μt, see (40), with the change of M into

M + bθh . Hence, by analogy with (43), we can assert that:

arctan
ρt | |BN−1B∗ | |+γ√

(M + bθh) | |BN−1B∗ | | −γ2
= arctan

MT | |BN−1B∗ | |+γ√
(M + bθh) | |BN−1B∗ | | −γ2

+

(√
(M + bθh) | |BN−1B∗ | | −γ2

)
(T − t).

(50)
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In order to get a bounded solution for ρt, we need that the right hand side of (50) be

smaller than
π

2
.We need to restrict h more than with (45), namely:

arctan
MT | |BN−1B∗ | |+γ√
M | |BN−1B∗ | | −γ2

+

(√
(M + bθh) | |BN−1B∗ | | −γ2

)
h <
π

2
. (51)

Then the function ρt is well defined on (T − h,T], by formula (50) and the function

Λ(x, t) defined by (37), for t ∈ (T − h,T] satisfies (38) if λ(x, t) satisfies (35). We

also claim that

ρt > μt . (52)

Indeed, ρt satisfies the Riccati equation:

⎧⎪⎪⎨⎪⎪⎩
d
dt
ρt = −||BN−1B∗ | |ρ2t −2γρt − (M + bθh),

ρT = MT ,
(53)

and comparing (41) and (53), it is standard to show the property (52).

5.3 Contraction Mapping

We define the space of functions (x, t) ∈ H × (T − h,T ) �→ λ(x, t) ∈ H × (T − h,T ),
equipped with the norm:

| |λ | |h = sup
x∈H,t∈(T−h,T )

|λ(x, t) |
|x | . (54)

This space is a Banach space, denoted by Bh ·. We next consider the convex closed

subset of Bh · of functions such that:

|λ(x, t) | ≤ μt |x |, | |Dxλ(x, t) | | ≤ ρt,∀t ∈ (T − h,T], (55)

where μt and ρt are defined by (43) and (50), respectively. The subset (55) is denoted

by Ch . The map λ �→Λ, defined by (36) and (37), is defined from Ch to Ch .We want

to show that it leads to a contraction.

Let λ1(x, t), λ2(x, t) in Ch and the corresponding functions Λ1(x, t), Λ2(x, t),
which also belong to Ch . Let y1(s), y2(s) be the solutions of (36) corresponding to

λ1, λ2.We call ỹ(s) = y1(s)− y2(s).We have:

⎧⎪⎪⎨⎪⎪⎩
d
ds

ỹ(s) = A(y1(s))− A(y2(s))− BN−1B∗(λ1(y1(s))− λ2(y2(s))),

ỹ(t) = 0,

hence
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d
ds
| ỹ(s) | ≤ γ | ỹ(s) |+ | |BN−1B∗ | | |λ1(y1(s))− λ2(y2(s)) |.

Next,

|λ1(y1(s))− λ2(y2(s)) |
≤ |λ1(y1(s))− λ1(y2(s)) |+ |λ1(y2(s))− λ2(y2(s)) |
≤ ρs | ỹ(s) | |+ | |λ1− λ2 | |h |x | exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)
.

Therefore,

d
ds
| ỹ(s) | ≤ (γ+ | |BN−1B∗ | |ρs) | ỹ(s) |

+ | |BN−1B∗ | | |x | | |λ1− λ2 | |h exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)
.

We obtain that

| ỹ(s) | exp

(
−
∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

≤ ||BN−1B∗ | | |x | | |λ1− λ2 | |h
∫ s

t

exp

(
−||BN−1B∗ | |

∫ τ

t

(ρθ − μθ )dθ
)

dτ,

which implies:

| ỹ(s) | ≤ h| |BN−1B∗ | | |x | | |λ1− λ2 | |h exp

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)
. (56)

We next have from the definition of the map Λ(x, t) that:

Λ1(x, t)−Λ2(x, t) = DFT (y1(T ))−DFT (y2(T ))

+

∫ T

t

(
DA∗(y1(s))λ1(y1(s))−DA∗(y2(s))λ2(y2(s))

)
ds

+

∫ T

t

(DF (y1(s))−DF (y2(s)))ds.

(57)

We have:

|DA∗(y1(s))λ1(y1(s))−DA∗(y2(s))λ2(y2(s)) |
≤ (bθh +γρs) | ỹ(s) |+γ |x | | |λ1− λ2 | |h exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)
.

So, from (57), we obtain:
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|Λ1(x, t)−Λ2(x, t) | ≤ MT | ỹ(T ) |+
∫ T

t

(M + bθh +γρs) | ỹ(s) |ds

+γ |x | | |λ1− λ2 | |h
∫ T

t

exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

ds,

(58)

and from (56):

|Λ1(x, t)−Λ2(x, t) |

≤ |x | |λ1− λ2 | |hh×
[
| |BN−1B∗ | |

(
MT exp

(∫ T

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

+

∫ T

t

(M + bθh +γρs)

(∫ s

t

(γ+ | |BN−1B∗ | |ρτ )dτ
)

ds
)]

+γ |x | |λ1− λ2 | |h
∫ T

t

exp

(∫ s

t

(γ+ | |BN−1B∗ | |μτ )dτ
)

ds,

then from the definition of ρt (see (49)), we obtain:

|Λ1(x, t)−Λ2(x, t) |

≤ |x | |λ1− λ2 | |hh
(
ρt | |BN−1B∗ | |+γ exp

(∫ T

T−h
(γ+ | |BN−1B∗ | |μτ )dτ

))
.

(59)

Similarly to the definition of θh (see (44)), we define the quantity σh by the formula:

arctan
σh | |BN−1B∗ | |+γ√

(M + bθh) | |BN−1B∗ | | −γ2
= arctan

MT | |BN−1B∗ | |+γ√
(M + bθh) | |BN−1B∗ | | −γ2

+

(√
(M + bθh) | |BN−1B∗ | | −γ2

)
h.

(60)

From (50), we see that MT < ρt < σh . Therefore from (59),

| |Λ1−Λ2 | |h ≤ |λ1− λ2 | |h h
(
σh | |BN−1B∗ | |+γ exp

(
h(γ+ | |BN−1B∗ | |θh)

))
. (61)

Using the fact that θh→ MT as h→ 0, equation (60) shows that σh→ MT as h→ 0.
We deduce that:

h
(
σh | |BN−1B∗ | |+γ exp

(
h(γ+ | |BN−1B∗ | |θh)

))
→ 0, as h→ 0. (62)

We can restrict h such that

h
(
σh | |BN−1B∗ | |+γ exp

(
h(γ+ | |BN−1B∗ | |θh)

))
< 1, (63)

and thus for h sufficiently small, the map λ �→ Λ is paradoxical and leads to a

contradiction. We can summarize the results in the following theorem:
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Theorem 1 We assume (42). We choose h small enough to satisfy conditions (45),
(51), (63). For T − h < t < T , there exists one and only one solution of the system
of forward-backward equations (12). We have also one and only one solution of
equation (16) on the same interval.

6 Global Solution

6.1 Statement of Results

We have proven in Theorem 1 the existence and uniqueness of a local solution of the

system (12). We want to state that this solution is global, under the assumptions of

Proposition 2.

Theorem 2 We make the assumptions of Proposition 2 and (42). The local solution
defined in Theorem 1 can be extended. Thus there exists one and only one solution
of the system (12) on any finite interval [0,T], and there exists one and only one
solution of equation (16) on any finite interval [0,T].

Proof Defining by Γ(x, t) the fixed point obtained in Theorem 1, it is the unique

solution of the parabolic equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∂Γ
∂t
= DxΓ(x)A(x)+ (Dx A(x))∗Γ(x)−DxΓ(x)BN−1B∗Γ(x, s)

+DxF (x), T − h < t < T,

Γ(x,T ) = DxFT (x),

(64)

with h restricted as stated in Theorem 1. We also have the estimates:⎧⎪⎨⎪⎩
|Γ(x, t) | ≤ min(αt, βt ) |x |,

| |DxΓ(x, t) | | ≤ βt, (65)

with ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
αt =

M2
T

νT
+
γ2+M2

k
(T − t),

βt =
M2

T

νT
+
γ2

m
(T − t)+

∫ T

t

(M + bαs)2

ν− bαs
ds.

(66)

These estimates follow from the a priori estimates stated in Proposition 1 and 2. They

do not depend on h. Now we want to extend (64) for t < T − h. To avoid confusion,

we define

UT−h (x) := Γ(x,T − h). (67)

We set MT−h = β0.We can then state:
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⎧⎪⎨⎪⎩
|UT−h (x) | ≤ MT−h |x |,

| |DxUT−h (x) | | ≤ MT−h,
(68)

and we consider the parabolic equation:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−∂Γ
∂t
= DxΓ(x) A(x)+ (Dx A(x))∗Γ(x)−DxΓ(x)BN−1B∗Γ(x, s)

+DxF (x), t < T − h,

Γ(x,T − h) =UT−h (x).

(69)

We associate to this equation the system:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dy
ds
= A(y)− BN−1B∗z(s), t < s < T − h,

−dz
ds
= (DA(y(s)))∗z(s)+DF (y(s)),

y(t) = x, z(T − h) =UT−h (y(T − h)).

(70)

Proceeding like in Theorem 1, we can solve this system on an interval [T−h− l,T−h],
for a sufficiently small l � h. The difference is due to the fact that MT−h � MT . So

in (64), we can replace T − h by T − h− l . This time the estimates on Γ(x,T − h− l)
and DxΓ(x,T − h− l) are identical to those of Γ(x,T − h) and DxΓ(x,T − h), thanks

to the a priori estimates. So the intervals we can extend further will have the same

length. Clearly, this implies that we can extend (64) up to t = 0. So, we obtain the

global existence and uniqueness of equation (16) on [0,T]. The proof is complete.�

6.2 Optimal Control

In Theorem 2, we have obtained the existence and uniqueness of the solution of the

pair (y(s), z(s)) of the system (12), for any t ∈ [0,T].We want now to check that the

control u(s) defined by (13) is solution of the control problem (10), (11), and that

the optimal control is unique.

Theorem 3 Under the assumptions of Theorem 2, the control u(·) defined by (13) is
the unique optimal control for the problem (10), (11).
Proof Let v(·) be another control. We shall prove that

J (u(·)+ v(·)) ≥ J (u(·)), (71)

which will prove the optimality of u(·). We define by yv (·) the state corresponding

to the control u(·)+ v(·). It is the solution of

⎧⎪⎪⎨⎪⎪⎩
d
ds

yv (s) = A(yv (s))+ B(u(s)+ v(s)),

yv (t) = x,
(72)
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and we have:

J (u(·)+v(·)) =

∫ T

t

F (yv (s))ds+FT (yv (T ))+
1

2

∫ T

t

(u(s)+v(s),N (u(s)+v(s)))ds,

and

J (u(·)+ v(·))− J (u(·))

=

∫ T

t

(F (yv (s))−F (y(s)))ds+FT (yv (T ))−FT (y(T ))

+
1

2

∫ T

t

(v(s),Nv(s))ds+
∫ T

t

(Nu(s),v(s))ds.

We denote ỹv (s) := yv (s)− y(s). It satisfies:

⎧⎪⎪⎨⎪⎪⎩
d
ds

ỹv (s) = A(yv (s))− A(y(s))+ Bv(s),

ỹv (t) = 0.
(73)

Then,

J (u( ·)+v( ·))− J (u( ·))

=

∫ T

t

(DxF (y(s)), ỹv (s))ds

+

∫ T

t

∫ 1

0

∫ 1

0

θ
(
D2

xxF (y(s)+λθ ỹv (s))ỹv (s), ỹv (s)
)
dsdλdθ

+ (DxFT (y(T )), ỹv (T ))+

∫ 1

0

∫ 1

0

θ
(
D2

xxFT (y(T )+λθ ỹv (T ))ỹv (T ), ỹv (T )
)
dλdθ

+
1

2

∫ T

t

(v(s), Nv(s))ds−
∫ T

t

(z(s), Bv(s))ds.

From the assumptions (7), we can write:

J (u(·)+ v(·))− J (u(·)) ≥
∫ T

t

(
− d

ds
z(s)−DA∗(y(s))z(s), ỹv (s)

)
ds

+
ν

2

∫ T

t

| ỹv (s) |2ds+ (z(T ), ỹv (T ))

+
νT
2
| ỹv (T ) |2+ 1

2

∫ T

t

(v(s),Nv(s))ds

−
∫ T

t

(
z(s),

d
ds

ỹv (s)− (A(yv (s))− A(y(s)))

)
ds,

which reduces to:
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J (u(·)+ v(·))− J (u(·)) ≥ ν
2

∫ T

t

| ỹv (s) |2ds+
νT
2
| ỹv (T ) |2+ 1

2

∫ T

t

(v(s),Nv(s))ds

+

∫ T

t

(z(s), A(yv (s))− A(y(s))−DA(y(s)) ỹv (s)) ds.

(74)

Note that

|(z(s), A(yv (s))− A(y(s))−DA(y(s)) ỹv (s)) | ≤ b|z(s) | | ỹv (s) |2
2(1+ |y(s) |) ≤

bαs
2
| ỹv (s) |2.

Finally, we can state that

J (u(·)+v(·))− J (u(·)) ≥ 1

2

∫ T

t

(ν−bαs) | ỹv (s) |2ds+
νT
2
| ỹv (T ) |2 1

2

∫ T

t

(v(s),Nv(s))ds.

(75)

Thanks to the assumption (25), the right hand side of (75) is positive, which proves

(71) and completes the proof of the result. �

6.3 Bellman Equation

We have proven, under the assumptions of Theorem 2, that the control problem (10),

(11) has a unique solution u(·). Defining the value function

V (x, t) := inf
v( ·) Jxt (v(·)) = Jxt (u(·)), (76)

we can state that:

V (x, t) =
∫ T

t

F (y(s))ds+FT (y(T ))+
1

2

∫ T

t

(BN−1B∗Γ(y(s), s),Γ(y(s), s))ds,

(77)

with ⎧⎪⎪⎨⎪⎪⎩
d
ds

y(s) = A(y(s))− BN−1B∗Γ(y(s), s),

y(t) = x.
(78)

We first have:

Proposition 3 We have the following property:

Γ(x, t) = DxV (x, t). (79)

Proof Since the minimum of Jxt (v(·)) is attained in the unique value u(·), we can

rely on the envelope theorem to claim that:

(DxV (x, t), ξ) =
∫ T

t

(DxF (y(s)),X(s)ξ)ds+ (DxFT (y(T )),X(T )ξ), (80)
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in which X(s) is the solution of

⎧⎪⎪⎨⎪⎪⎩
d
ds
X(s) = Dx A(y(s))X(s),

X(t) = I .

Recalling the equation (12) for z(s) and performing integration by parts in (80), the

result (DxV (x, t), ξ) = (Γ(x, t), ξ) is easily obtained. This proves the result (79). �

We can then obtain the Bellman equation for the value function V (x, t).

Theorem 4 We make the assumptions of Theorem 2. The function V (x, t) is the
unique solution of

⎧⎪⎪⎨⎪⎪⎩
− ∂V
∂t
− (DxV, A(x))+

1

2
(DxV,BN−1B∗DxV ) = F (x),

V (x,T ) = FT (x).
(81)

Proof We know that V (x, t) is Gâteaux differentiable in x,with the derivative Γ(x, t).
From (12), Γ(x, t) is continuous in t. From equation (77), we can write:

V (x, t)−V (x, t + ε ) =
∫ t+ε

t

F (y(s))ds+
1

2

∫ t+ε

t

(BN−1B∗Γ(y(s), s),Γ(y(s), s))ds

+V (y(ε ), t + ε )−V (x, t + ε ).
(82)

We then have:

V (y(ε ), t + ε )−V (x, t + ε )

=V

(
x+

∫ t+ε

t

A(y(s))ds−
∫ t+ε

t

BN−1B∗Γ(y(s), s)ds, t + ε

)
−V (x, t + ε )

=

(
Γ(x, t + ε ),

∫ t+ε

t

A(y(s))ds−
∫ t+ε

t

BN−1B∗Γ(y(s), s)ds

)

+

∫ 1

0

(
Γ

(
x+ θ

∫ t+ε

t

(A(y(s))−BN−1B∗Γ(y(s)))ds, t + ε

)
−Γ(x, t + ε ),

∫ t+ε

t

(A(y(s))−BN−1B∗Γ(y(s)))ds

)
dθ.

(83)

Using the fact that Γ(x, t) is uniformly Lipschitz in x and continuous in t, we obtain

easily from (83) that:

V (y(ε ), t + ε )−V (x, t + ε )
ε

→ (Γ(x, t), A(x)− BN−1B∗Γ(x, t)).

Then, dividing (82) by ε and letting ε tend to 0, we obtain the PDE (81), recalling

(79). The initial condition in (81) is trivial. If we take the gradient in x of (81), we

recognize equation (16). Since this equation has a unique solution, the solution of

(81) is also unique (easy checking). This completes the proof. �
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7 Application to Mean Field Type Control Theory

7.1 Wasserstein Space

Denote by P2(Rn) the Wasserstein space of Borel probability measures m on Rn

such that
∫
Rn
|x |2dm(x) <∞, with the metric

W2(μ, ν) =

√
inf

{∫
|x− y |2dπ(x, y) : π ∈ Π(μ, ν)

}
, (84)

where Π(μ, ν) is the space of all Borel probability measures on Rn ×Rn whose first

and second marginals are μ and ν respectively.

7.2 Functional Derivatives

Let F be a functional on P2(Rn). We recall the idea of the functional derivative here.

Definition 1 F is said to have a functional derivative if there exists a continuous

function
dF
dm

: P2(Rn) ×Rn → R, such that for some c : P2(Rn)→ [0,∞) which is

bounded on bounded subsets, we have




 dF
dm

(m, x)





 ≤ c(m)(1+ |x |2) (85)

and

F (m′)−F (m) =

∫ 1

0

∫
Rn

dF
dm

(m+ θ(m′ −m))(x)d(m′ −m)(x)dθ. (86)

We require also
∫
Rn

dF
dm (m, x)dm(x) = 0 as it is unique up to a constant by definition.

Definition 2 F is said to have a second order functional derivative if there exists a

continuous function
d2F
dm2

:P2×Rn×Rn→R such that, for some c :P2(Rn)→ [0,∞)

which is bounded on bounded subsets, we have




d
2F

dm2
(m, x, x̃)






 ≤ c(m)(1+ |x |2+ | x̃ |2) (87)

and
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F (m′)−F (m)

=

∫
Rn

dF
dm

(m)(x)d(m′ −m)(x)

+

∫ 1

0

∫ 1

0

θ
d2F
dm2

(m+ λθ(m′ −m))(x, x̃)d(m′ −m)(x)d(m′ −m)( x̃)dλdθ.

(88)

Again, we require that
∫
Rn

d2F
dm (m, x, x̃)dm( x̃) = 0, for all x ∈Rn, and

∫
Rn

d2F
dm (m, x, x̃)

dm(x) = 0, for all x̃ ∈ Rn, as it is unique up to a constant. Note also that

d2F
dm2

(m)(x, x̃) =
d2F
dm2

(m)( x̃, x). (89)

We write D dF
dm (m)(x) to mean differentiating with respect to x, and D1

d2F
dm2 (m)(x1, x2)

and D2
d2F
dm2 (m)(x1, x2) to denote partial differentiation with respect to x1 and x2,

respectively.

7.3 Mean Field Type Control Problems

We introduce the setting of a mean-field type control problem. Consider real-valued

functions f (x,m) and h(x,m) defined on Rn ×P2(Rn). We define

F (m) :=

∫
Rn

f (x,m)dm(x),

FT (m) :=

∫
Rn

h(x,m)dm(x).

Fix a m ∈ P2(Rn). Let A,B :Rn→Rn be matrices, and N :Rn→Rn be a self-adjoint

invertible matrix. We make the following assumptions on f , h, B, N , A. We assume

that

(A1) ∀x ∈ Rn,

BN−1B∗x · x ≥ m |x |2,m > 0. (90)

(A2) f is regular enough such that the following is justifiable. ∀y ∈ Rn,
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ν |y |2 ≤ ∂
2 f
∂x2

(x,m)y · y ≤ M |y |2, (91)

ν |y |2 ≤ D2
ξ

∂ f
∂m

(x,m)(ξ)y · y ≤ M |y |2, (92)

Dξ
∂2 f
∂x∂m

(x,m)(ξ) = 0, (93)

Dξ1
Dξ2

∂2 f
∂m2

(x,m)(ξ1, ξ2) = 0. (94)

(A3) h is regular enough such that the following is justifiable. ∀y ∈ Rn,

νT |y |2 ≤ ∂
2h
∂x2

(x,m)y · y ≤ MT |y |2, (95)

νT |y |2 ≤ D2
ξ

∂h
∂m

(x,m)(ξ)y · y ≤ MT |y |2, (96)

Dξ
∂2h
∂x∂m

(x,m)(ξ) = 0, (97)

Dξ1
Dξ2

∂2h
∂m2

(x,m)(ξ1, ξ2) = 0. (98)

(A4) For the matrices, we have

|A| < M |BN−1B∗ |, with | · | the matrix 2-norm. (99)

The set of our feasible control is L2(t,T ; L2
m(Rn;Rn)), i.e.,

v·,m,t (·) ∈ L2(t,T ; L2
m(Rn;Rn))

if and only if

∫ T

t

∫
Rn

|vx,m,t (s) |2dm(x)ds <∞.

To each v·,m,t (·) ∈ L2(t,T ; L2
m(Rn;Rn)) and x ∈ Rn we associate the state

xx,m,t (s;v) := x+
∫ s

t

[
Axx,m,t (τ;v)+ Bvx,m,t (τ)

]
dτ. (100)

Note that x ·,m,t (·) ∈ L2(t,T ; L2
m(Rn;Rn)). We define the objective functional on

L2(t,T ; L2
m(Rn;Rn)) by

Jm,t (v) :=

∫ T

t

F (x ·,m,t (s;v)#m)ds+FT (x ·,m,T (s;v)#m) (101)

+
1

2

∫ T

t

∫
Rn

v∗x,m,t (τ)Nvx,m,t (τ)dm(x)dτ.
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Thus the value function is

V (m, t) := inf
v∈L2 (t,T ;L2

m (Rn ;Rn ))
Jm,t (v). (102)

7.4 The Hilbert SpaceHm and the Push-Forward Map

We proceed as our previous works [6, 7].

7.4.1 Settings

Fix m ∈ P2(Rn), we defineHm := L2
m(Rn;Rn), the set of all measurable vector field

Φ such that
∫
Rn
|Φ(x) |2dm(x) <∞. We equipHm with the inner product

〈X,Y 〉Hm
:=

∫
Rn

X (x) ·Y (x)dm(x). (103)

Write the corresponding norm as ‖X ‖Hm
=
√〈X,X〉Hm

.

Definition 3 For m ∈ P2, X ∈ Hm, define X ⊗m ∈ P2 as follow: for all φ : Rn→ R
such that x �→ |φ(x) |

1+ |x |2 is bounded, define

∫
φ(x)d(X ⊗m)(x) :=

∫
φ(X (x))dm(x). (104)

Remark 2 This actually is the push-forward map as we are working on the determin-

istic case. We write as X ⊗m to align with our treatment of the stochastic case in

[7].

We recall several useful properties from [7].

Proposition 4 We have the following properties:

1. Let X , Y ∈ Hm, and suppose X ◦Y ∈ Hm. Then (X ◦Y ) ⊗m = X ⊗ (Y ⊗m).
2. If X (x) = x is the identity map, then X ⊗m = m.
3. Let X ∈ Hm, denote the space L2

X (t,T ;Hm) to be the set of all processes in
L2(t,T ;Hm) that is adapted to σ(X ). There exists a natural linear isometry
between L2

X (t,T ;Hm) and L2(t,T ;HX⊗m).
Proof Please refer to [7] Section 2 and Section 3. �

7.4.2 Extending the Domain of Functions toHm

The proofs in this section is standard, we therefore omit unless specified. Readers

may refer to [7] Section 2. Let F : P2(Rn)→ R, we extend F to be a function onHm
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by X �→ F (X ⊗m), ∀X ∈ Hm. When the domain isHm, we can talk about Gâteaux

derivative. We actually have the following relation between the Gâteaux derivative

onHm and its functional derivative:

Proposition 5 Let F : P2(Rn) �→ R have a functional derivative dF
dm , and x �→

dF
dm (m, x) is continuously differentiable in Rn. Assume that D dF

dm (m, x) is contin-
uous in both m and x, and 




D dF

dm
(m)(x)






 ≤ c(m)(1+ |x |) (105)

for some constant c(m) depending only on m. Denote the Gâteaux derivative as
DXF (X ⊗m), we have

DXF (X ⊗m) = D
dF
dm

(X ⊗m)(X (·)). (106)

We now look at the second order Gâteaux derivative, denoted as D2
XF (X ⊗m), note

that D2
XF (X ⊗m) is a bounded linear operator fromHm toHm.

Proposition 6 In addition to the assumptions in Proposition 5, let F has a
second order functional derivative d2F

dm2 (m)(x1, x2), assume also D2 dF
dm (m)(x),

D1
d2F
dm2 (m)(x1, x2), D2

d2F
dm2 (m)(x1, x2) and

D1D2
d2F
dm2 (m)(x1, x2) exist and are continuous, such that






D2 dF
dm

(m)(x)





 ≤ d(m), (107)




D1D2

d2F
dm2

(m)(x1, x2)





 ≤ d ′(m), (108)

where d, d ′ are constants depending on m only, and | · | is the matrix 2-norm. Then
we have:

D2
XF (X ⊗m)Y (x) = D2 dF

dm
(X ⊗m)(X (x))Y (x)

+

∫
Rn

D1D2

d2F
dm2

(X ⊗m)(X (x),X (x ′))Y (x ′)dm(x ′).
(109)

Besides, we can view F (X ⊗m) as m �→ F (X ⊗m), in this case, we can talk about

differentiation with respect to m, denote it as
∂F
∂m

. The following relation between

∂F
∂m

and
dF
dm

holds.

Proposition 7 Let F : P2(Rn) �→ Rn have a functional derivative and fix X ∈ Hm.
We have

∂F
∂m

(X ⊗m)(x) =
dF
dm

(X ⊗m)(X (x)). (110)
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Now let A : Rn→ Rn, we extend it as ∀X ∈ Hm, X �→ A(X ) ∈ Hm,

A(X )(x) = A(X (x)). (111)

It is trivial to see that if A−1 exists in Rn, then A−1(X )(x) = A−1(X (x)) is the inverse

of A in Hm. So is the transpose of A, if A is a matrix. Again, we can talk about its

Gâteaux derivative.

Proposition 8 Let A to be continuously differentiable. Denote its derivative to be
dA. Assume that there exists k such that |dA(x) | ≤ k for all x ∈ Rn, where | · | is the
matrix 2-norm. Then for all X,Y ∈ Hm, we have

DX A(X )Y (x) = dA(X (x))Y (x). (112)

Proof Let X,Y,H ∈ Hm, then

1

ε

〈
A(X + εY )− A(X ),H

〉
Hm

=
1

ε

∫
Rn

[
A(X (ξ)+ εY (ξ))− A(X (ξ))

]
·H (ξ)dm(ξ)

=

∫
Rn

∫ 1

0

dA(X (ξ)+ θεY (ξ))Y (ξ) ·H (ξ)dθdm(ξ)

→
∫
Rn

dA(X (ξ))Y (ξ) ·H (ξ)dm(ξ) =
〈
dA(X (·))Y (·),H

〉
Hm
.

Proposition 9 Let A be twice continuously differentiable. Denote its second deriva-
tive to be d2 A. Note that d2 A(x)(a,b) ∈ Rn, and d2 A(x)(a,b) = d2 A(x)(b,a). As-
sume that there exists k (x) such that ∀a,b ∈ Rn, |d2 A(x)(a,b) | ≤ k (x), then we
have

d2 A(X )(Y,W )(x) = d2 A(X (x))(Y (x),W (x)). (113)

Proof Let X,Y,W,H ∈ Hm, then

1

ε

〈
DX A(X +W )Y −DX A(X )Y,H

〉
Hm

=
1

ε

∫
Rn

[
dA(X (ξ)+ εW (ξ))Y (ξ)− dA(X (ξ))Y (ξ)

]
·H (ξ)dm(ξ)

=

∫
Rn

∫ 1

0

d2 A(X (ξ)+ θεW (ξ))(Y (ξ),W (ξ)) ·H (ξ)dθdm(ξ)

→
∫
Rn

d2 A(X (ξ))(Y (ξ),W (ξ)) ·H (ξ)dm(ξ).
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7.5 Control Problem in the Hilbert SpaceHm

Recall the definitions of A, B, N , F, FT in Section 7.3. Extend the functions as in

Section 7.4.2. We assume (A1), (A2), (A3) and (A4). It is not hard to derive (9), (7)

and (42) from the assumptions. Note that in our case, b = 0.

Now fix X ∈ Hm as our initial data. For given vXt ∈ L2
X (t,T ;Hm) (subscript X and

t to address the measurability and starting time), consider the dynamics:

X (s) = X +
∫ s

t

[
AX (τ)+ BvXt (τ)

]
dτ. (114)

Denote the process as XXt (s) = XXt (s;vXt ). Define the cost functional:

JXt (vXt ) :=

∫ T

t

F (XXt (s)⊗m)ds+FT (XXt (T )⊗m)+
1

2

∫ T

t

〈vXt (τ),NvXt (τ)〉Hm
dτ,

(115)

and the value function is

V (X, t) := inf
vXt ∈L2

X (t,T ;Hm )
JXt (vXt ). (116)

This is in the form of our concerned model in Section 2, with the Hilbert space being

Hm.

While (114) is infinite dimensional, there is a finite dimensional view point of it. For

vXt ∈ L2
X (t,T ;Hm), by Proposition 4, let ṽ ∈ L2(t,T ;HX⊗m) be the representative

of vXt . Consider

x(s) = x+
∫ s

t

[
Ax(τ)+ Bṽ(τ, x)

]
dτ. (117)

Denote the solution to be x(s; x, ṽ(·, x)). Then we have

XXt (s;vXt )(x) = x(s; X (x), ṽ(·,X (x))).

We introduce the notation Xxt (·) with a lowercase letter for x to mean x(·; x, ṽ(·, x)),

and v·t (s) to mean ṽ(s, ·). From above we can conclude that the law of XXt (s;vXt (·))

is x(s; ·, ṽ(·, ·)) ⊗ (X ⊗m). Hence the cost functional (115) can be written as
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JXt (vXt )

=

∫ T

t

F (XXt (s) ⊗m)ds+FT (XXt (T ) ⊗m)+
1

2

∫ T

t

〈vXt (τ),NvXt (τ)〉Hm
dτ

=

∫ T

t

F (x(s; ·, ṽ(·, ·)) ⊗ (X ⊗m))ds+FT (x(T ; ·, ṽ(·, ·)) ⊗ (X ⊗m))

+
1

2

∫ T

t

〈vXt (τ),NvXt (τ)〉Hm
dτ

=:JX⊗m,t,
(118)

that means J depends on X only through X ⊗m. Respectively,

V (X, t) = inf
vXt ∈L2

X (t,T ;Hm )
JXt (vXt ) = inf

vXt ∈L2
X (t,T ;Hm )

JX⊗m,t (vXt ) =: V (X ⊗m, t).

(119)

7.6 Necessary and Sufficient Condition for Optimality

Assume (A1), (A2), (A3) and (A4), we conclude from Theorem 2 that there exists

unique optimal control v̂Xt (s) = −N−1B∗ZXt (s), where ZXt (s) together with YXt (s)

are the unique solution of the system

YXt (s) = X +
∫ s

t

[
AYXt (τ)− BN−1B∗ZXt (τ)

]
dτ, (120)

ZXt (s) =

∫ T

s

[
(AYXt (τ))∗ZXt (τ)+DXF (YXt (τ) ⊗m)

]
+DXFT (YXt (T ) ⊗m).

(121)

Again, because L2
X (t,T ;Hm) is isometric to L2(t,T ;HX⊗m), there exists Yξt (s),

Zξt (s) such that YXt = Yξt |ξ=X and ZXt = Zξt |ξ=X , (Yξt, Zξt ) solving

Yξt (s) = ξ +

∫ s

t

[
AYξt (τ)− BN−1B∗Zξt (τ)

]
dτ, (122)

Zξt (s) =

∫ T

s

[
(AYξt (τ))∗Zξt (τ)+D

dF
dm

(Y·t (τ) ⊗ (X ⊗m))(Yξt (τ))

]
(123)

+D
dFT
dm

(Y·t (T ) ⊗ (X ⊗m))(Yξt (T )).

As (Yξt, Zξt ) depends on m through X ⊗m, we write (Yξ,X⊗m,t, Zξ,X⊗m,t ). We can

write the value function as
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V (X, t) =
∫ T

t

F (YXt (s) ⊗m)ds+FT (YXt (T ) ⊗m)

+
1

2

∫ T

t

〈N−1B∗ZXt (τ),B∗ZXt (τ)〉Hm
dτ

=

∫ T

t

F (Y·,X⊗m,t (s) ⊗ (X ⊗m))ds+FT (Y·,X⊗m,t (T ) ⊗ (X ⊗m))

+
1

2

∫ T

t

∫
Rn

N−1B∗Zξ,X⊗m,t (τ) · B∗Zξ,X⊗m,t (τ)d(X ⊗m)(ξ)dτ

= V (X ⊗m, t).

(124)

In particular, if we choose X to be the identity function, i.e., X (x) = x, recall that

X ⊗m = m, there exists (Yx,m,t, Zx,m,t ) solving

Yx,m,t (s) = x+
∫ s

t

[
AYx,m,t (τ)− BN−1B∗Zx,m,t (τ)

]
dτ, (125)

Zx,m,t (s) =

∫ T

s

[
(AYx,m,t (τ))∗Zx,m,t (τ)+D

dF
dm

(Y·,m,t (τ) ⊗m)(Yx,m,t (τ))

]
(126)

+D
dFT
dm

(Y·,m,t (T ) ⊗ (X ⊗m))(Yx,m,t (T )),

which is the system of optimality condition for our mean field type control problem

in Section 7.3. For the value function, we have

V (m, t) =
∫ T

t

F (Y·,m,t (s) ⊗m)ds+FT (Y·,m,t (T ) ⊗m) (127)

+
1

2

∫ T

t

∫
Rn

N−1B∗Zx,m,t (τ) · B∗Zx,m,t (τ)dm(x)dτ.

7.7 Properties of the Value Function

We give the functional derivative of the value function V , and the relation between

the solution of the FBSDE and V . As the proofs are standard, we omit here and

readers may refer to Section 4 of [7].

Proposition 10 Assume (A1), (A2), (A3), (A4). We have the following properties for
the value function:

1. By Proposition 3, we have

DXV (X ⊗m, t) = ZXt (t). (128)

2. We have
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dV
dm

(m, t)(x) =

∫ T

t

dF
dm

(Y·,m,t (s) ⊗m)(Yx,m,s (s))ds

+
dFT
dm

(Y·,m,t (T ) ⊗m)(Yx,m,s (T ))

+
1

2

∫ T

t

N−1B∗Zx,m,t (τ) · B∗Zx,m,t (τ)dτ.

(129)

3. We have

D
d

dm
V (m, t)(x) = Zx,m,t (t), (130)

DXV (X ⊗m, t) = D
d

dm
V (X ⊗m, t)(X ) (131)

4. Also, the feedback nature of Z in Y , i.e., for any x ∈ Rn, ∀s ∈ [t,T], we have

Zx,m,t (s) = D
d

dm
V (Y·,m,t ⊗m, s)(Yx,m,t (s)), (132)

and for any X ∈ Hm, ∀s ∈ [t,T],

ZXt (s) = DXV (YXt (s) ⊗m, s). (133)

7.8 Bellman Equation

Assume (A1), (A2), (A3), (A4). By Theorem 4, we deduce that for any T > 0,

V (X ⊗m, t) is the unique solution to the following Bellman equation:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
−∂V
∂t

(X ⊗m, t)−
〈
DXV (X ⊗m, t), AX

〉
Hm

+
1

2

〈
DXV (X ⊗m, t),BN−1B∗DXV (X ⊗m, t)

〉
Hm
= F (X ⊗m),

V (X ⊗m) = FT (X ⊗m).

(134)

As before, let X be the identity function, together with Proposition 10, we conclude

that for any T > 0, V (m, t) solves the following PDE on the space of probability

measures:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
−∂V
∂t

(m, t)−
∫
Rn

D
dV
dm

(m, t)(x) · Axdm(x)

+
1

2

∫
Rn

D
dV
dm

(m, t)(x) · BN−1B∗D
dV
dm

(m, t)(x)dm(x) = F (m),

V (m,T ) = FT (m).

(135)
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Risk-Sensitive Markov Decision Problems under
Model Uncertainty: Finite Time Horizon Case

Tomasz R. Bielecki, Tao Chen, and Igor Cialenco

Abstract In this paper we study a class of risk-sensitive Markovian control prob-

lems in discrete time subject to model uncertainty. We consider a risk-sensitive dis-

counted cost criterion with finite time horizon. The used methodology is the one of

adaptive robust control combined with machine learning.

1 Introduction

The main goal of this work is to study finite time horizon risk-sensitive Marko-
vian control problems subject to model uncertainty in a discrete time setup, and to

develop a methodology to solve such problems efficiently. The proposed approach

hinges on the following main building concepts: incorporating model uncertainty

through the adaptive robust paradigm introduced in [BCC+19] and developing ef-

ficient numerical solutions for the obtained Bellman equations by adopting the ma-
chine learning techniques proposed in [CL19].

There exists a significant body of work on incorporating model uncertainty (or

model misspecification) in stochastic control problems, and among some of the

well-known and prominent methods we would mention the robust control approach

[GS89, HSTW06, HS08], adaptive control [KV15, CG91], and Bayesian adaptive

control [KV15]. A comprehensive literature review on this subject is beyond the

scope of this paper, and we refer the reader to [BCC+19] and references therein.

In [BCC+19] the authors proposed a novel adaptive robust methodology that solves
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time-consistent Markovian control problems in discrete time subject to model un-

certainty - the approach that we take in this study too. The core of this methodology

was to combine a recursive learning mechanism about the unknown model with

the underlying Markovian dynamics, and to demonstrate that the so called adaptive

robust Bellman equations produce an optimal adaptive robust control strategy.

In contrast to [BCC+19], where the considered optimization criterion was of the

terminal reward type, in the present work, we also allow intermediate rewards and

we use the discounted risk sensitive criterion. Accordingly, we derive a new set of

adaptive robust Bellman equations, similar to those used in [BCC+19].

Risk sensitive criterion has been broadly used both in the control oriented lit-

erature, as well as in the game oriented literature. We refer to, e.g., [BP03, DL14,

BR17], and the references therein for insight into risk sensitive control and risk

sensitive games both in discrete time and in continuous time.

The paper is organized as follows. In Section 2 we formulate the finite time hori-

zon risk-sensitive Markovian control problem subject to model uncertainty that is

studied here. Section 3 is devoted to the formulation and to study of the robust adap-

tive control problem that is relevant for the problem formulated in Section 2. This

section presents the main theoretical developments of the present work. In Section 4

we formulate an illustrative example of our theoretical results that is rooted in the

classical linear-quadratic-exponential control problem (see e.g. [HS95]). Next, us-

ing machine learning methods, in Section 5 we provide numerical solutions of the

example presented in Section 4.

Finally, we want to mention that the important case of an infinite time horizon

risk-sensitive Markovian control problem in discrete time subject to model uncer-

tainty will be studies in a follow-up work.

2 Risk-sensitive Markovian discounted control problems with
model uncertainty

In this section we state the underlying discounted risk-sensitive stochastic control

problems. Let (Ω ,F ) be a measurable space, T ∈ N be a finite time horizon, and

let us denote by T := {0,1,2, . . . ,T} and T ′ := {0,1,2, . . . ,T − 1}. We let Θ ⊂
Rd be a non-empty compact set, which will play the role of the parameter space

throughout. We consider a random process Z = {Zt , t = 1,2 . . .} on (Ω ,F ) taking

values in Rm, and we denote by F= (Ft , t = 0,2 . . .) its natural filtration, with F0 =
{ /0,Ω}. We postulate that this process is observed by the controller, but the true law

of Z is unknown to the controller and assumed to be generated by a probability

measure belonging to a (known) parameterized family of probability distributions

on (Ω ,F ), say P(Θ) = {Pθ ,θ ∈ Θ}. As usually, EP will denote the expectation

under a probability measure P on (Ω ,F ), and, for simplicity, we will write Eθ
instead of EPθ . We denote by Pθ∗ the measure generating the true law of Z, and

thus θ ∗ ∈ Θ is the unknown true parameter. The sets Θ and P(Θ) are known to



Risk-Sensitive MDPs under Model Uncertainty 35

the observer. Clearly, the model uncertainty may occur if Θ �= {θ ∗}, which we will

assume to hold throughout.

We let A ⊂ Rk be a finite set,1 and S : Rn × A ×Rm → Rd be a measurable

mapping. An admissible control process ϕ is an F-adapted process, taking values in

A, and we will denote by A the set of all admissible control processes.

We consider an underlying discrete time controlled dynamical system with the

state process X taking values in Rn and control process ϕ taking values in A. Specif-

ically, we let

Xt+1 = S(Xt ,ϕt ,Zt+1), t ∈ T ′, X0 = x0 ∈ Rn. (1)

At each time t = 0, . . . ,T − 1, the running reward rt(Xt ,ϕt) is delivered, where,

for every a ∈ A, the function rt(·,a) : Rn → R+ is bounded and continuous. Sim-

ilarly, at the terminal time t = T the terminal reward rT (XT ) is delivered, where

rT : Rn → R+ is a bounded and continuous function.

Let β ∈ (0,1) be a discount factor, and let γ �= 0 be the risk sensitivity factor. The

underlying discounted, risk-sensitive control problem is:

sup
ϕ∈A

1

γ
ln
(
Eθ∗eγ(∑T−1

t=0 β t rt (Xt ,ϕt )+β T rT (XT ))
)

(2)

subject to (1). Clearly, since θ ∗ is not known to the controller, the above problem

can not be solved as it is stated. The main goal of this paper is formulate and solve

the adaptive robust control problem corresponding to (2).

Remark 1 (i) The risk-sensitive criterion in (2) is in fact an example of application

of the entropic risk measure, say ρθ∗,γ , which is defined as

ρθ∗,γ(ξ ) :=
1

γ
lnEθ∗eγξ ,

where ξ is a random variable on (Ω ,F ,Pθ∗) that admits finite moments of all or-

ders.

(ii) It can be verified that

ρθ∗,γ(ξ ) = Eθ∗(ξ )+
γ
2
VARθ∗(ξ )+O(γ2).

Thus, in case when γ < 0 the term
γ
2VARθ∗(ξ ) can be interpreted as the risk-

penalizing term. On the contrary, when γ > 0, the term
γ
2VARθ∗(ξ ) can be viewed

as the risk-favoring term.

(iii) In the rest of the paper we focus on the case γ > 0. The case γ < 0 can be treated

in an analogous way.

1 A will represent the set of control values, and we assume it is finite for simplicity, in order to
avoid technical issues regarding the existence of measurable selectors.



36 Tomasz R. Bielecki, Tao Chen, and Igor Cialenco

3 The adaptive robust risk sensitive discounted control problem

We follow here the developments presented in [BCC+19]. The key difference is that

in this work we deal with running and terminal costs.

In what follows, we will be making use of a recursive construction of confidence

regions for the unknown parameter θ ∗ in our model. We refer to [BCC17] for a

general study of recursive constructions of (approximate) confidence regions for

time homogeneous Markov chains. Section 4 provides details of a specific such

recursive construction corresponding to the example presented in that section. Here,

we just postulate that the recursive algorithm for building confidence regions uses

a Θ -valued and observed process, say C = (Ct , t ∈ N0), satisfying the following

abstract dynamics

Ct+1 = R(t,Ct ,Zt+1), t ∈ N0, C0 = c0 ∈Θ , (3)

where R : N0 ×Rd ×Rm → Θ is a deterministic measurable function. Note that,

given our assumptions about process Z, the process C is F-adapted. This is one of

the key features of our model. Usually Ct is taken to be a consistent estimator of θ ∗.

Now, we fix a confidence level α ∈ (0,1), and for each time t ∈ N0, we assume

that an (1−α)-confidence region, say Θ t ⊂ Rd , for θ ∗, can be represented as

Θ t = τ(t,Ct), (4)

where, for each t ∈ N0, τ(t, ·) : Rd → 2Θ is a deterministic set valued function,

where, as usual, 2Θ denotes the set of all subsets of Θ . Note that in view of (3)

the construction of confidence regions given in (4) is indeed recursive. In our con-

struction of confidence regions, the mapping τ(t, ·) will be a measurable set valued

function, with compact values. It needs to be noted that we will only need to com-

pute Θ t until time T − 1. In addition, we assume that for any t ∈ T ′, the mapping

τ(t, ·) is upper hemi-continuous (u.h.c.). That is, for any c ∈ Θ , and any open set

E such that τ(t,c) ⊂ E ⊂ Θ , there exists a neighbourhood D of c such that for all

c′ ∈ D, τ(t,c′)⊂ E (cf. [Bor85, Definition 11.3]).

Remark 2 The important property of the recursive confidence regions constructed as

indicated above is that, in many models, limt→∞ Θ t = {θ ∗}, where the convergence

is understood Pθ∗ almost surely, and the limit is in the Hausdorff metric. This is not

always the case though in general. In [BCC17] is shown that the convergence holds

in probability, for the model setup studied there.

The sequence Θ t , t ∈ T ′ represents learning about θ ∗ based on the observation

of the history (Y0,Y1 . . . ,Yt), t ∈ T ′, where Yt = (Xt ,Ct), t ∈ T , is the augmented

state process taking values in the augmented state space

EY = Rn ×Θ .

We denote by EY the collection of Borel measurable sets in EY .
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In view of the above, if the control process ϕ is employed then the process Y has

the following dynamics

Yt+1 = G(t,Yt ,ϕt ,Zt+1), t ∈ T ′,

where the mapping G : N0 ×EY ×A×Rm → EY is defined as

G(t,y,a,z) =
(
S(x,a,z),R(t,c,z)

)
, (5)

with y = (x,c) ∈ EY .

We define the corresponding histories

Ht = (Y0, . . . ,Yt), t ∈ T ′, (6)

so that

Ht ∈ Ht = EY ×EY × . . .×EY︸ ︷︷ ︸
t+1 times

. (7)

Clearly, for any admissible control process ϕ , the random variable Ht is Ft -

measurable. We denote by

ht = (y0,y1, . . . ,yt) = (x0,c0,x1,c1, . . . ,xt ,ct) (8)

a realization of Ht . Note that h0 = y0 = (x0,c0).
A control process ϕ = (ϕt , t ∈T ′) is called history dependent control process if

(with a slight abuse of notation)

ϕt = ϕt(Ht),

where (on the right hand side) ϕt : Ht → A, is a measurable mapping. Given our

above setup, any history dependent control process is F–adapted, and thus, it is

admissible. For any admissible control process ϕ and for any t ∈ T ′, we denote

by ϕ t = (ϕk, k = t, . . . ,T − 1) the ‘t-tail’ of ϕ . Accordingly, we denote by A t the

collection of ‘t-tails’ of ϕ . In particular, ϕ0 = ϕ and A 0 = A . The superscript

notation applied to processes should not be confused with power function applied

such as β t .

Let ψt : Ht →Θ be a Borel measurable mapping such that ψt(ht) ∈ τ(t,ct), and

let us denote by ψ = (ψt , t ∈ T ′) the sequence of such mappings, and by ψ t the t-
tails of the sequence ψ , in analogy to ϕ t . The set of all sequences ψ , and respectively

ψ t , will be denoted by Ψ and Ψ t , respectively.

Strategies ϕ and ψ are called Markovian strategies or policies if (with some

abuse of notation)

ϕt = ϕt(Yt), ψt = ψt(Yt),

where (on the right hand side) ϕt : EY → A, and is a (Borel) measurable mapping,

and ψt : EY →Θ is a (Borel) measurable mapping satisfying ψt(x,c) ∈ τ(t,c).
In order to simplify all the following argument we limit ourselves to Markovian

policies. In case of Markovian dynamics settings, such as ours, this comes without
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loss of generality, as there typically exist optimal Markovian strategies, if optimal

strategies exist at all. Accordingly, A and Ψ are now sets of Markov strategies.

Next, for each (t,y,a,θ) ∈T ′ ×EY ×A×Θ , we define a probability measure on

EY , given by

Q(B | t,y,a,θ) = Pθ (Zt+1 ∈ {z : G(t,y,a,z) ∈ B}) = Pθ (G(t,y,a,Zt+1) ∈ B) , (9)

for any B ∈ EY We assume that for every t ∈ T and every a ∈ A, we have that

Q(dy′ | t,y,a,θ) is a Borel measurable stochastic kernel with respect to (y,θ). This

assumption will be strengthened later on.

Using Ionescu-Tulcea theorem (cf. [BR11, Appendix B]), for every t = 0, . . . ,T −
1, every t-tail ϕ t ∈ A t and every state yt ∈ EY , we define the family Qϕt ,Ψ t

yt ,t =

{Qϕt ,ψt

yt ,t , ψ t ∈ Ψ t} of probability measures on the concatenated canonical space

XT
s=t+1EY , with

Q
ϕt ,ψt

yt ,t (Bt+1 ×·· ·×BT )

:=
∫

Bt+1

· · ·
∫

BT

T

∏
u=t+1

Q(dyu | u−1,yu−1,ϕu−1(yu−1),ψu−1(yu−1)). (10)

The discounted, risk-sensitive, adaptive robust control problem corresponding2

to (2) is:

sup
ϕ0∈A 0

inf
Q∈Q

ϕ0 ,Ψ0

y0 ,0

EQeγ ∑T
t=0 β t rt (Xt ,ϕt (Yt )), (11)

where, for simplicity of writing, here and everywhere below, with slight abuse of

notations, we set rT (x,a) = rT (x). In next section we will show that a solution to this

problem can be given in terms of the discounted adaptive robust Bellman equations

associated to it.

3.1 Adaptive robust Bellman equation

Towards this end we aim our attention at the following adaptive robust Bellman

equations

WT (y) = eγβ T rT (x), y ∈ EY ,

Wt(y) = max
a∈A

inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)eγβ t rt (x,a)Q(dy′ | t,y,a,θ), (12)

y ∈ EY , t = T −1, . . . ,0,

where we recall that y = (x,c).

2 Since γ > 0, we omit the factor 1/γ .
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Remark 3 Clearly, in (12), the exponent eγβ t rt (x,a) can be factored out, and Wt can be

written as

Wt(y) = max
a∈A

(
eγβ t rt (x,a) · inf

θ∈τ(t,c)

∫
EY

Wt+1(y′)Q(dy′ | t,y,a,θ)
)
.

Nevertheless, in what follows, we will keep similar factors inside of the integrals,

mostly for the convenience of writing as well as to match the visual appearance of

classical Bellman equations.

We will study the solvability of this system. We start with Lemma 1 below, where,

under some additional technical assumptions, we show that the optimal selectors in

(12) exist; namely, for any t ∈T ′, and any y = (x,c)∈ EY , there exists a measurable

mapping ϕ∗
t : EY → A, such that

Wt(y) = inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)eγβ t rt (x,ϕ∗
t (y))Q(dy′ | t,y,ϕ∗

t (y),θ).

In order to proceed, for the sake of simplicity, we will assume that under measure

Pθ , for each t ∈T , the random variable Zt has a density with respect to the Lebesgue

measure, say fZ(z;θ), z ∈ Rm. In this case we have∫
EY

Wt+1(y′)Q(dy′ | t,y,a,θ) =
∫
Rm

Wt+1(G(t,y,a,z)) fZ(z;θ)dz,

where G(t,y,a,z) is given in (5).

Additionally, we take the standing assumptions:

(i) for any a and z, the function S(·,a,z) is continuous;

(ii) for each z, the function fZ(z; ·) is continuous;

(iii) for each t ∈ T ′, the function R(t, ·, ·) is continuous.

Then, the following result holds true.

Lemma 1 The functions Wt , t = T,T −1, . . . ,0, are lower semi-continuous (l.s.c.),
and the optimal selectors ϕ∗

t , t = T −1, . . . ,0, realizing maxima in (12) exist.

Proof Since rT is continuous and bounded, so is the function WT . Since G(T −
1, ·,a,z) is continuous, then, WT (G(T − 1, ·,a,z)) is continuous. Consequently, re-

calling again that y = (x,c), for each a, the function

wT−1(y,a,θ) :=
∫
R

WT (G(T −1,y,a,z))eγβ T−1rT−1(x,a) fZ(z;θ)dz

= eγβ T−1rT−1(x,a)
∫
R

eγβ T rT (S(x,a,z)) fZ(z;θ)dz

is continuous in (y,θ).
Next, we will apply [BS78, Proposition 7.33] by taking (in the notations of

[BS78])
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X = EY ×A = Rn ×Θ ×A, x = (y,a),

Y =Θ , y = θ ,

D =
⋃

(y,a)∈EY×A

{(y,a)}× τ(T −1,c),

f (x,y) = wT−1(y,a,θ).

Note that in view of the prior assumptions, Y is metrizable and compact. Clearly

X is metrizable. From the above, f is continuous, and thus lower semi-continuous.

Since τ(T −1, ·) is compact-valued and u.h.c. on EY ×A, then according to [Bor85,

Proposition 11.9], the set-valued function τ(T − 1, ·) is closed, which implies that

its graph D is closed [Bor85, Definition 11.5]. Also note that the cross section Dx =
D(y,a) = {θ ∈Θ : (y,a,θ) ∈ D} is given by D(y,a)(T −1) = τ(T −1,c). Hence, by

[BS78, Proposition 7.33], the function

w̃T−1(y,a) = inf
θ∈τ(T−1,c)

(wT−1(y,a,θ)), (y,a) ∈ EY ×A,

is l.s.c. Consequently, the function ŵT−1(y,a) = −w̃T−1(y,a) is u.s.c. (upper semi-

continuous). Thus, by [BS78, Proposition 7.34], the function

−WT−1(y) =−max
a∈A

w̃T−1(y,a) = min
a∈A

ŵT−1(y,a)

is u.s.c., so that WT−1(y) is l.s.c. Moreover, since A is finite, there exists an optimal

selector ϕ∗
T−1, that is WT−1(y) = w̃T−1(y,ϕ∗

T−1(y)).

Proceeding to the next step, note that WT−1(G(T −2,y,a,z))eγβ T−2rT2
(x,a) is l.s.c.

and positive, hence bounded from below. Therefore, according to [BS78, Proposi-

tion 7.31], the function

wT−2(y,a,θ) =
∫
R

WT−1(G(T −2,y,a,z))eγβ T−2rT−2(x,a) fZ(z;θ)dz

is l.s.c.. The rest of the proof follows in the analogous way. �

Next, we will prove an auxiliary result needed to justify the mathematical oper-

ations conducted in the proof of the main result – Theorem 1. Define the functions

Ut and U∗
t as follows: for ϕ t ∈ A t and y ∈ EY ,

Ut(ϕ t ,y) = eγβ t rt (x,ϕt (y)) inf
Q∈Q

ϕt ,Ψ t
y,t

EQeγ ∑T
k=t+1 β krk(Xk,ϕk(Yk)), t ∈ T ′, (13)

U∗
t (y) = sup

ϕt∈A t
Ut(ϕ t ,y), t ∈ T ′, (14)

U∗
T (y) = eγβ T rT (x). (15)

We now have the following result.
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Lemma 2 For any t ∈T ′, and for any ϕ t ∈A t , the function Ut(ϕ t , ·) is lower semi-
ananlytic (l.s.a.) on EY . Moreover, there exists a sequence of universally measurable
functions ψ∗

k , k = t, . . . ,T −1 such that

Ut(ϕ t ,y) = eγβ t rt (x,ϕt (y))E
Q

ϕt ,ψt,∗
y,t

eγ ∑T
k=t+1 β krk(Xk,ϕk(Yk)). (16)

Proof According to (9), and using the definition of Qϕt ,Ψ t

y,t , we have that

Ut(ϕ t ,y) = inf
ψt∈Ψ t

∫
EY

· · ·
∫

EY

eγ ∑T
k=t β krk(xk,ϕk(yk))

Q(dyT |T −1,yT−1,ϕT−1(yT−1),ψT−1(yT−1)) (17)

· · ·Q(dyt+1|t,y,ϕt(y),ψt(y)).

For a given policy ϕ ∈ A , define the following functions on EY

VT (y) = eγβ T rT (x),

Vt(y) = inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,ϕt (y)Vt+1(y′)Q(dy′|t,y,ϕt(y),θ), t ∈ T ′.

We will prove recursively that the functions Vt are l.s.a. in y, and that

Vt(y) =Ut(ϕ t ,y), t = 0, . . . ,T −1. (18)

Clearly, VT is l.s.a. in y.

Next, we will prove that VT−1(y) is l.s.a.. By our assumptions, the stochastic

kernel Q(·|T −1, ·, ·, ·) is Borel measurable on EY given EY ×A×Θ , in the sense of

[BS78, Definition 7.2]. Then, the integral
∫

EY
VT (y′)Q(dy′|T − 1,y,a,θ) is l.s.a. on

EY ×A×Θ according to [BS78, Proposition 7.48]. Now, we set (in the notations of

[BS78])

X = EY ×A, x = (y,a)

Y =Θ , y = θ ,

D =
⋃

(y,a)∈EY×A

{y,a}× τ(T −1,c),

f (x,y) =
∫

EY

VT (y′)Q(dy′|T −1,y,a,θ).

Note that in view of our assumptions, X and Y are Borel spaces. The set D is closed

(see the proof of Lemma 1) and thus analytic. Moreover, Dx = τ(T −1,c). Hence,

by [BS78, Proposition 7.47], for each a ∈ A the function

inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,a,θ)
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is l.s.a. in y. Thus, it is l.s.a. in (y,a). Moreover, in view of [BS78, Proposition 7.50],

for any ε > 0, there exists an analytically measurable function ψε
T−1(y,a) such that

inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,a,θ) =
∫

EY

VT (y′)Q(dy′|T −1,y,a,ψε
T−1(y,a))

+ ε.

Therefore, for any fixed (y,a), we obtain a sequence {ψ1/n
T−1(y,a),n ∈ N} such that

lim
n→∞

∫
EY

VT (y′)Q(dy′|T −1,y,a,ψ1/n
T−1(y,a))

= inf
θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,a,θ).

Due to the assumption that τ(T −1,c) is compact, there exists a convergent subse-

quence {ψ1/nk
T−1 (y,a),k ∈ N} such that its limit ψ∗

T−1(y,a) is universally measurable

and satisfies∫
EY

VT (y′)Q(dy′|T −1,y,a,ψ∗
T−1(y,a)) = inf

θ∈τ(T−1,c)

∫
EY

VT (y′)Q(dy′|T −1,y,a,θ).

Clearly, the function eγβ T−1rT−1(x,a) is l.s.a. in (y,a). Thus, since ϕT−1(y) is a Borel

measurable function, using part (3) in [BS78, Lemma 7.30] we conclude that both

eγβ T−1rT−1(x,ϕT−1(y)) and infθ∈τ(T−1,c)
∫

EY
VT (y′)Q(dy′|T −1,y,ϕT−1(y),θ) are l.s.a.

in y. Since both these functions are non-negative then, by part (4) in [BS78, Lemma

7.30], we conclude that VT−1 is l.s.a. in y. The proof that Vt is l.s.a. in y and ψ∗
t exists

for t = 0, . . . ,T −2, follows analogously. We also obtain that∫
EY

Vt(y′)Q(dy′|t −1,y,a,ψ∗
t−1(y,a)) = inf

θ∈τ(t−1,c)

∫
EY

Vt(y′)Q(dy′|t −1,y,a,θ),

(19)

for any t = 1, . . . ,T −1.

It remains to verify (18). For t = T −1, by (17), we have

UT−1(ϕT−1,y) = inf
θ∈τ(T−1,c)

∫
EY

eγβ T−1rT−1(x,ϕT−1(y))VT (y′)

Q(dy′|T −1,y,ϕT−1(y),θ)
=VT−1(y).

Therefore, UT−1(ϕT−1, ·) is l.s.a.. Assume that for t = 1, . . . ,T − 1, Ut(ϕ t ,y) =
Vt(y), and it is l.s.a.. Then, for any yt−1 ∈ EY , with the notation ψ t−1 = (ψt−1,ψ t),
we get



Risk-Sensitive MDPs under Model Uncertainty 43

Ut−1(ϕ t−1,yt−1)

= inf
(ψt−1,ψt )∈Ψ t−1

∫
EY

· · ·
∫

EY

eγ ∑T−1
k=t−1 β krk(xk,ϕk(yk))+γβ T rT (xT )

T

∏
k=t

Q(dyk|k−1,yk−1,ϕk−1(yk−1),ψk−1(yk−1))

≥ inf
(ψt−1,ψt )∈Ψ t−1

∫
EY

eγβ t−1rt−1(xt−1,ϕt−1(yt−1))Vt(yt)

Q(dyt |t −1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))

− inf
θ∈τ(t−1,c)

∫
EY

eγβ t−1rt−1(xt−1,ϕt−1(yt−1))Vt(yt)

Q(dyt |t −1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))

=Vt−1(yt−1).

Next, fix ε > 0, and let ψ t,ε denote an ε-optimal selectors sequence starting at time

t, namely

∫
EY

· · ·
∫

EY

eγ ∑T
k=t β krk(xk,ϕk(yk))

T

∏
k=t+1

Q(dyk|k−1,yk−1,ϕk−1(yk−1),ψ
t,ε
k−1(yk−1))

≤Ut(ϕ t ,yt)+ ε.

Consequently, for any yt−1 ∈ EY ,

Ut−1(ϕ t−1,yt−1) = inf
(ψt−1,ψt )∈Ψ t−1

∫
EY

· · ·
∫

EY

eγ ∑T
k=t−1 β krk(xk,ϕk(yk))

T

∏
k=t

Q(dyk|k−1,yk−1,ϕk−1(yk−1),ψk−1(yk−1))

≤ inf
ψt−1∈τ(t−1,c)

∫
EY

· · ·
∫

EY

eγ ∑T
k=t−1 β krk(xk,ϕk(yk))

T

∏
k=t+1

Q(dyk|k−1,yk−1,ϕk−1(yk−1),ψ
t,ε
k−1(yk−1))

· · ·Q(dyt |t −1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))

≤ inf
ϕt−1∈τ(t−1,c)

∫
EY

Ut(ϕ t ,yt)Q(dyt |t −1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))+ ε

= inf
ϕt−1∈τ(t−1,c)

∫
EY

Vt(yt)Q(dyt |t −1,yt−1,ϕt−1(yt−1),ψt−1(yt−1))+ ε

=Vt−1(yt−1)+ ε.

Since ε is arbitrary, (18) is justified. In particular, Ut(ϕ t , ·) is l.s.a. for any t ∈ T ′.
Finally, in view of (19), the equality (16) follows immediately. This concludes the

proof. �
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Now we are in the position to prove the main result in this paper.

Theorem 1 For t = 0, . . . ,T , we have that

U∗
t ≡Wt . (20)

Moreover, the policy ϕ∗ derived in Lemma 1 is adaptive robust-optimal, that is

U∗
t (y) =Ut(ϕ t,∗,y), t = 0, . . . ,T −1. (21)

Proof We proceed similarly as in the proof of [Iye05, Theorem 2.1], and via back-

ward induction in t = T,T −1, . . . ,1,0.

For t = T , clearly, U∗
T (y) = WT (y) = eγβ T rT (x) for all y ∈ EY . For t = T − 1 we

have, for y ∈ EY ,

U∗
T−1(y) = sup

ϕT−1=ϕT−1∈A T−1

inf
θ∈τ(T−1,c)

∫
EY

eγβ T−1rT−1(x,ϕT−1(y))WT (y′)

Q(dy′ | T −1,yT−1,ϕT−1(y),θ)

= max
a∈A

inf
θ∈τ(T−1,c)

∫
EY

eγβ T−1rT−1(x,a)WT (y′)Q(dy′ | T −1,y,a,θ)

=WT−1(y).

From the above, using Lemma 1, we obtain that U∗
T−1 is l.s.c. and bounded.

For t = T −2, . . . ,1,0, assume that U∗
t+1 is l.s.c. and bounded. Recalling the no-

tation ϕ t = (ϕt ,ϕ t+1), we thus have, y ∈ EY ,

U∗
t (y) = sup

(ϕt ,ϕt+1)∈A t
inf

θ∈τ(t,c)

∫
EY

eγβ t rt (x,ϕt (y))Ut+1(ϕ t+1,y′)Q(dy′ | t,y,ϕt(y),θ)

≤ sup
(ϕt ,ϕt+1)∈A t

inf
θ∈τ(ct ,t)

∫
EY

eγβ t rt (x,ϕt (y))U∗
t+1(y

′)Q(dy′ | t,y,ϕt(y),θ)

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,a)U∗
t+1(y

′)Q(dy | t,yt ,a,θ)

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (y,a)Wt+1(y′)Q(dy′ | t,y,a,θ)

=Wt(y).

Now, fix ε > 0, and let ϕ t+1,ε denote an ε-optimal control strategy starting at time

t +1, that is

Ut+1(ϕ t+1,ε ,y)≥U∗
t+1(y)− ε , y ∈ Ey.

Then, for y ∈ EY , we have
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U∗
t (y) = sup

(ϕt ,ϕt+1)∈A t
inf

θ∈τ(t,c)

∫
EY

eγβ t rt (x,ϕt (y))Ut+1(ϕ t+1,y′)Q(dy′ | t,y,ϕt(y),θ)

≥ sup
(ϕt ,ϕt+1)∈A t

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,ϕt (y))Ut+1(ϕ t+1,ε ,y′)Q(dy′ | t,y,ϕt(y),θ)

≥ max
a∈A

inf
θ∈τ(t,c)

∫
EY

eγβ t rt (x,a)U∗
t+1(y

′)Q(dy′ | t,y,a,θ)− ε

= max
a∈A

inf
θ∈τ(t,c)

∫
EY

Wt+1(y′)Q(dy′ | t,y,a,θ)− ε

=Wt(y)− ε.

Since ε was arbitrary, the proof of (20) is done. In particular, we have that for any

t ∈ T , the function U∗
t (·) is l.s.c. as well as bounded.

It remains to justify the validity of equality (21). We will proceed again by (back-

ward) induction in t. For t = T −1, using (20), we have that

U∗
T−1(y) =WT−1(y) = eγβ T−1rT−1(x,ϕ∗

T−1(y))

inf
θ∈τ(t,c)

∫
EY

eγβ T rT (x′) Q(dy′ | T −1,y,ϕ∗
T−1(y),θ)

= eγβ T−1rT−1(x,ϕ∗
T−1(y)) inf

Q∈Q
ϕT−1,∗ ,ΨT−1

y,T−1

(
EQeγβ T rT (XT )

)
=UT−1(ϕT−1,∗,y).

Moreover, by Lemma 2, we get that

U∗
T−1(y) =UT−1(ϕT−1,∗,y) = E

Q
ϕT−1,∗ ,ψT−1,∗
y,T−1

eγβ T−1rT−1(x,ϕ∗
T−1(y))+γβ T rT (XT ).

For t = T −2, using again (20), Lemma 1, and Lemma 2, we have

U∗
T−2(y) =WT−2(y) = eγβ T−2rT−2(x,ϕ∗

T−2(y))

×
∫

EY

WT−1(y′)Q(dy′ | T −2,y,ϕ∗
T−2(y),ψ

∗
T−2(y,ϕ

∗
T−2(y)))

= eγβ T−2rT−2(x,ϕ∗
T−2(y))

×
∫

EY

UT−1(ϕT−1,∗,y′)Q(dy′ | T −2,y,ϕ∗
T−2(y),ψ

∗
T−2(y,ϕ

∗
T−2(y)))

= eγβ T−2rT−2(x,ϕ∗
T−2(y))

×
∫

EY

(
E
Q

ϕT−1,∗ ,ψT−1,∗
y′ ,T−1

eγβ T−1rT−1(x′),ϕ∗
T−1(y

′))+γβ T rT (XT )

)
Q(dy′ | T −2,y,ϕ∗

T−2(y),ψ
∗
T−2(y,ϕ

∗
T−2(y)))

= E
Q

ϕT−2,∗ ,ψT−2,∗
y,T−2

eγβ T−2rT−2(x,ϕ∗
T−2(y))+γβ T−1rT−1(x′),ϕ∗

T−1(y
′))+γβ T rT (XT ).
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Hence, we have that U∗
T−2(y) is attained at ϕT−2,∗, and therefore U∗

T−2(y) =
UT−2(ϕT−2,∗,y). The rest of the proof of (21) proceeds in an analogous way. The

proof is complete. �

4 Exponential Discounted Tamed Quadratic Criterion Example

In this section, we consider a linear quadratic control problem under model uncer-

tainty as a numerical demonstration of the adaptive robust method. To this end, we

consider the 2-dimensional controlled process

Xt+1 = B1Xt +B2ϕt +Zt+1,

where B1 and B2 are two 2×2 matrices and Zt+1 is a 2-dimensional normal random

variable with mean 0 and convariance matrix

Σ ∗ =

(
σ∗,2

1 σ∗,2
12

σ∗,2
12 σ∗,2

2

)
,

where σ∗,2
1 , σ∗,2

12 , and σ∗,2
2 are unknown. Given observations Z1, . . . ,Zt , we consider

an unbiased estimator, say Σ̂t =

(
σ̂2

1,t σ̂2
12,t

σ̂2
12,t σ̂2

2,t

)
, of the covariance matrix Σ ∗, given

as

Σ̂t =
1

t +1

t

∑
i=1

ZiZ�
i ,

which can be updated recursively as

Σ̂t =
t(t +1)Σ̂t−1 + tZtZ�

t

(t +1)2
.

With slight abuse of notations, we denote by Σ , Σ ∗, and Σ̂t the column vectors

Σ� = (σ2
1 ,σ

2
12,σ

2
2 )

Σ ∗,� = (σ∗,2
1 ,σ∗,2

12 ,σ∗,2
2 )

Σ̂�
t = (σ̂2

1,t , σ̂
2
12,t , σ̂

2
2,t).

The corresponding parameter set is defined as

Θ :=
{

Σ� = (Σ1,Σ12,Σ2) ∈ R3 : 0 ≤ Σ1, Σ2 ≤ Σ , Σ 2
12 ≤ Σ1Σ2

}
,

where Σ is some fixed positive constant. Note that the set Θ is a compact subset of

R3.
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Putting the above together and considering the augmented state process Yt =
(Xt , Σ̂t), t ∈T , and some finite control set A⊂R2, we get that the function S defined

in (1) is given by

S(x,a,z) = B1x+B2a+ z, x,z ∈ R2, a ∈ A,

and the function R(t,c,z) showing in (3) satisfies that

R(t,c,z) = (c̄1, c̄2, c̄3)
�,

(
c̄1 c̄3

c̄3 c̄2

)
=

(t +1)(t +2)

(
c1 c3

c3 c2

)
+(t +1)zz�

(t +2)2
,

where z ∈ R2, t ∈ T ′, c = (c1,c2,c3). Then, function G defined in (5) is specified

accordingly.

It is well-known that
√

t +1(Σ̂t −Σ ∗) converges weakly to 0-mean normal dsitri-

bution with covariance matrix

MΣ =

⎛⎜⎝ 2σ∗,4
1 2σ∗,2

1 σ∗,2
12 2σ∗,4

12

2σ∗,2
1 σ∗,2

12 σ∗,2
1 σ∗,2

2 +σ∗,4
12 2σ∗,2

12 σ∗,2
2

2σ∗,4
12 2σ∗,2

12 σ∗,2
2 2σ∗,4

2

⎞⎟⎠ .

We replace every entry in MΣ with the corresponding estimator at time t ∈ T ′ and

denote by M̂t(Σ̂t) the resulting matrix. With probability one, the matrix M̂t(Σ̂t) is

positive-definite. Therefore, we get the confidence region for σ∗,2
1 , σ∗,2

12 , and σ∗,2
2 as

τ(t,c) =
{

Σ ∈Θ : (t +1)(Σ − c)�M̂−1
t (c)(Σ − c)≤ κ

}
,

where κ is the 1−α quantile of χ2 distribution with 3 degrees of freedom for some

confidence level 0 < α < 1.

We further take functions rT (x) = min{b1,max{b2,x�K1x}} and

rt(x,a) = min{b1,max{b2,x�K1x+a�K2a}},

t ∈T ′, where x,a ∈R2, b1 > 0, b2 < 0, and K1 and K2 are two fixed 2-by-2 matrices

with negative trace.

For this example, all conditions of the adaptive robust framework of Section 2

are easy to verify, except for the u.h.c. property of set-valued function τ(t, ·), which

we establish in the following lemma.

Lemma 3 For any t ∈ T ′, the set valued function τ(t, ·) is upper hemi-continuous.

Proof Fix any t ∈ T ′ and c0 ∈ Θ . According to our earlier discussion, the matrix

M̂t(c0) is positive-definite. Hence, its inverse admits the Cholesky decomposition

M̂−1
t (c0) = Lt(c0)L�

t (c0). Consider the change of coordinate system via the linear

transformation L c = L�
t (c0)c, and we name it system-L . Let E ⊂Θ be open and

such that τ(t,c0) ⊂ E. Note that L τ(t,c0) is a closed ball centered at L c0 in the
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system-L . Also, the mapping L is continuous and one-to-one, hence L E is an

open set and L τ(t,c0)⊂L E. Then, we have that there exists an open ball Br(L c0)
in the system-L centered at L c0 with radius r such that L τ(t,c0) ⊂ Br(L c0) ⊂
L E.

Any ellipsoid centered at c′ in the original coordinate system has representation

(c− c′)�F(c− c′) = 1 which can be written as (L�
t c− L�

t c′)L−1F(L�)−1(L�c−
L�c′) = 1. Hence, it is still an ellipsoid in the L -system after transformation. To

this end, we define on Θ a function h(c) := ‖L c−L c0‖+max{ri(c), i = 1,2,3},

where ‖ · ‖ is the Euclidean norm in the system-L , and ri(c), i = 1,2,3, are the

lengths of the three semi axes of the ellipsoid L τ(t,c). It is clear that ri(c), i= 1,2,3
are continuous functions.

Next, it is straightforward to check that f is a non-constant continuous function.

Therefore, we consider the set D := {c ∈Θ : h(c)< r} and see that it is an open set

in Θ and non-empty as c0 ∈ D. Moreover, for any c ∈ D, we get that the ellipsoid

L τ(t,c)⊂ Br(L c0). Hence, τ(t,c)⊂ E, and we conclude that τ(t, ·) is u.h.c.. �

Thus, according to Theorem 1, the dynamic risk sensitive optimization problem

under model uncertainty can be reduced to the Bellman equations given in (12):

WT (y) = eγβ T rT (x), (22)

Wt(y) = sup
a∈A

inf
θ∈τ(t,c)

∫
R2

Wt+1(G(t,y,a,z))eγβ t (rt (x,a)) fZ(z;θ)dz, (23)

y = (x,c1,c2,c3) ∈ EY , t = T −1, . . . ,0,

where fZ(·;θ) is the density function for two dimensional normal random variable

with mean 0 and covariance parameter θ . In the next section, using (22)-(23), we

will compute numerically Wt by a machine learning based method. Note that the

dimension of the state space EY is five in the present case, for which the traditional

grid-based numerical method becomes extremely inefficient. Hence, we employ the

new approach introduced in [CL19] to overcome the challenges met in our high

dimensional robust stochastic control problem.

5 Machine Learning Algorithm and Numerical Results

In this section, we describe our machine learning based method and present the nu-

merical results for our example. Similarly to [CL19], we discretize the state space

the relevant state space in the spirit of the regression Monte Carlo method and adap-

tive design by creating a random (non-gridded) mesh for the process Y = (X ,C).
Note that the component X depends on the control process, hence at each time t we

randomly select from the set A a value of ϕt , and we randomly generate a value of

Zt+1, so to simulate the value of Xt+1. Next, for each t, we construct the convex hull

of simulated Yt and uniformly generate in-sample points from the convex hull to
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obtain a random mesh of Yt . Then, we solve the equations (22)–(23), and compute

the optimal trading strategies at all mesh points.

The key idea of our machine learning based method is to utilize a non-parametric

value function approximation strategy called Gaussian process surrogate. For the

purpose of solving the Bellman equations (22)–(23), we build GP regression model

for the value function Wt+1(·) so that we can evaluate∫
R2

Wt+1(G(t,y,a,z))eγαt (rt (x,a)) fZ(z;θ)dz.

We also construct GP regression model for the optimal control ϕ∗. It permits us

to apply the optimal strategy to out-of-sample paths without actual optimization,

which allows for a significant reduction of the computational cost.

As the GP surrogate for the value function Wt we consider a regression model

W̃t(y) such that for any y1, . . . , yN ∈ EY , with yi �= y j for i �= j, the random vari-

ables W̃t(y1), . . . , W̃t(yN) are jointly normally distributed. Then, given training data

(yi,Wt(Y i)), i = 1, . . . , N, for any y ∈ EY , the predicted value W̃t(y), providing an

estimate (approximation) of Wt(y) is given by

W̃ (y) =
(
k(y,y1), . . . ,k(y,yN)

)
[K+ ε2I]−1

(
Wt(y1), . . . ,Wt(yN)

)T
,

where ε is a tuning parameter, I is the N ×N identity matrix and the matrix K is

defined as Ki, j = k(yi,y j), i, j = 1, . . . , N. The function k is the kernel function for

the GP model, and in this work we choose the kernel as the Matern-5/2. Fitting the

GP surrogate W̃t means to estimate the hyperparameters inside k through the training

data (yi,Wt(yi)), i = 1, . . . , N for which we take ε = 10−5. The GP surrogates for

ϕ∗ is obtained in an analogous way.

Given the mesh points {yi
t , i= 1, . . . , Nt , t ∈T ′}, the overall algorithm proceeds

as follows:

Part A: Time backward recursion for t = T −1, . . . ,0.

1. Assume that Wt+1(yi
t+1), and ϕ∗

t+1(y
i
t+1)= (ϕ1,∗

t+1(y
i
t+1),ϕ

2,∗
t+1(y

i
t+1)), i= 1, . . . ,Nt ,

are numerically approximated as Wt+1(yi
t+1), ϕ1,∗

t+1(y
i
t+1) and

ϕ2,∗
t+1(y

i
t+1), i = 1, . . . ,Nt , respectively. Also suppose that the corresponding GP

surrogates W̃t+1, ϕ̃1,∗
t+1, and ϕ̃2,∗

t+1 are fitted through training data (yi
t+1,Wt+1(yi

t+1)),

(yi
t+1,ϕ

1,∗
t+1(y

i
t+1)), and (yi

t+1,ϕ
2,∗
t+1(y

i
t+1)), i = 1, . . . ,Nt , respectively.

2. For time t, any a ∈ A, θ ∈ τ(t,c) and each yi
t , i = 1, . . . ,Nt , use one-step Monte

Carlo simulation to estimate the integral

wt(y,a,θ) =
∫
R2

Wt+1(G(t,y,a,z))eγαt (rt (x,a)) fZ(z;θ)dz.

For that, if Z1
t+1, . . . , ZM

t+1 is a sample of Zt+1 drawn from the normal distri-

bution corresponding to parameter θ , where M > 0 is a positive integer, then

estimate the above integral as
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w̃t(y,a,θ) =
1

M

M

∑
i=1

W̃t+1(G(t,y,a,Zi
t+1))e

γαt (rt (x,a)).

3. For each yi
t , i = 1, . . . , Nt , and any a ∈ A, compute

wt(yi
t ,a) = inf

θ∈τ(t,c)
w̃t(yi

t ,a,θ).

4. Compute

Wt(yi
t) = max

a∈A
wt(yi

t ,a),

and obtain a maximizer ϕ∗
t (y

i
t) = (ϕ1,∗

t (yi
t),ϕ

2,∗
t (yi

t)), i = 1, . . . ,Nt .

5. Fit a GP regression model for Vt( ·) using the results from Step 4 above. Fit GP

models for ϕ1,∗
t ( ·) and ϕ2,∗

t ( ·) as well; these are needed for obtaining values of

the optimal strategies for out-of-sample paths in Part B of the algorithm.

6. Goto 1: Start the next recursion for t −1.

Part B: Forward simulation to evaluate the performance of the GP surrogates ϕ1,∗
t ( ·)

and ϕ2,∗
t ( ·), t = 0, . . . ,T −1, over the out-of-sample paths.

1. Draw K > 0 samples of i.i.d. Z∗,i
1 , . . . ,Z∗,i

T , i = 1, . . . ,K, from the normal distri-

bution corresponding to the assumed true parameter θ ∗.

2. All paths will start from the initial state y0. The state along each path i is updated

according to G(t,yi
t , ϕ̃∗

t (y
i
t),Z

∗,i
t+1), where ϕ̃∗

t = (ϕ̃1,∗
t , ϕ̃2,∗

t ) is the GP surrogate

fitted in Part A. Also, compute the running reward rt(xi
t , ϕ̃∗

t (y
i
t)).

3. Obtain the terminal reward rT (xi
T ), generated by ϕ̃∗ along the path correspond-

ing to the sample of Z∗,i
1 , . . . , Z∗,i

T , i = 1, . . . , K, and compute

W ar :=
1

γ
ln

(
1

K

K

∑
i=1

eγ(∑T−1
t=0 β t rt (xi

t ,ϕ̃∗
t (y

i
t ))+β T rT (xi

T ))

)
(24)

as an estimate of the performance of the optimal adaptive robust risk sensitive

strategy ϕ∗.

For comparison, we also analyze the optimial risk sensitive strategies of the adap-

tive and strong robust control methods. In (23), if we take τ(t,c) = {c} for any t,
then we obtain the adaptive risk sensitive strategy. On the other hand, by taking

τ(t,c) = Θ for any t and c, we get the strong robust strategy. We will compute

W ad and W sr the risk sensitive criteria of adaptive and strong robust, respectively, in

analogy to (24).

Next, we apply the machine learning algorithm described above by solving (22)–

(23) for a specific set of parameters. In particular, we take: T = 10 with one period

of time corresponding to one-tenth of a year; the discount factor being equal to 0.3

or equivalently β = 0.3; the initial state X�
0 = (2,2); the confidence level α = 0.1; in

Part A of our algorithm the number of one-step Monte Carlo simulations is M = 100;

the number of forward simluations in Part B is taken K = 2000; the control set A is

approximated by the compact set [−1,1]2; the relevant matrices are
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B1 = B2 =

(
0.5 −0.1
−0.1 0.5

)
, K1 =

(
0.7 −0.2
−0.2 0.7

)
, K2 =

(−200 100

100 −200

)
.

The assumed true covariance matrix for Zt , t ∈ T , as well as initital guess are

Σ ∗ =
(

0.009 0.006

0.006 0.016

)
, Σ̂0 =

(
0.00625 0.004

0.004 0.02025

)
,

respectively. The parameter set is chosen as Θ = τ(0,c0), where

c�0 = (0.00625,0.004,0.02025). For all three control approaches, we compute W ar,

W ad, and W sr, respectively, for the risk sensitive parameters γ = 0.2 and γ = 1.5.

Finally, we report on the computed values of the optimality criterion correspond-

ing to three different methods: adaptive robust (AR), adaptive (AD) and strong ro-

bust (SR).

W ar W ad W sr

γ = 0.2 -319.81 -323.19 -329.53

γ = 1.5 -427.76 -427.97 -442.97

Table 1 Risk sensitive criteria for AR, AD, and SR.
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Optimal Control of Piecewise Deterministic

Markov Processes

O.L.V. Costa and F. Dufour

Abstract This chapter studies the infinite-horizon continuous-time optimal control

problem of piecewise deterministic Markov processes (PDMPs) with the control

acting continuously on the jump intensity λ and on the transition measure Q of the

process. Two optimality criteria are considered, the discounted cost case and the

long run average cost case. We provide conditions for the existence of a solution to

an integro-differential optimality equality, the so called Hamilton-Jacobi-Bellman

(HJB) equation, for the discounted cost case, and a solution to an HJB inequality for

the long run average cost case, as well as conditions for the existence of a deterministic

stationary optimal policy. From the results for the discounted cost case and under

some continuity and compactness hypothesis on the parameters and non-explosive

assumptions for the process, we derive the conditions for the long run average cost

case by employing the so-called vanishing discount approach.

1 Introduction

Piecewise Deterministic Markov Processes (PDMPs) were introduced by M.H.A.

Davis in the seminal paper [9] as a general family of nondiffusion stochastic models,

suitable to formulate an enormous variety of applications in operations research,
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engineering systems and management science. The general theory of the PDMPs,

including a full characterization of the extended generator as well as its applications

in several stochastic control problems, were elegantly and comprehensively presented

in the book [11]. PDMPs are characterized by three local parameters: the flow φ, the

jump rate λ, and the transition measureQ. Roughly speaking, the motion of a PDMP

starting at the initial state x0 follows a deterministic flow φ(x0, t) until the first jump

time T1, which occurs either spontaneously in a Poisson-like fashion with rate λ or

when the flow φ(x0, t) hits the boundary of the state space. In either case the post-

jump location of the process is selected by the transition measure Q(.|φ(x,T1)) and

the motion restarts from this new point afresh. As presented in [11], a suitable choice

of the state space and the local characteristics φ, λ, and Q can cover a great deal of

problems in operations research, engineering systems and management science. It is

worth pointing out that the presence of the boundary is crucial for the modeling of

some optimization problems as, for instance, in queueing and inventory systems or

maintenance-replacement models (see, for instance, the capacity expansion problem

in [9], item (21.13), in which the boundary represents that a project is completed,

and the jump in this case represents that investment is channelled immediately into

the next project).

Broadly speaking there are two types of control for PDMPs, as pointed out by

Davis in [11, page 134]: continuous control, in which the control variable acts at all

times on the process through the characteristics (φ, λ,Q), and impulse control, used

to describe control actions that intervene in the process by moving it to a new point of

the state space at some specific times. The focus of this chapter will be on the former

case, but considering that the control acts only on (λ,Q). Two performance criteria

will be considered along this chapter: the so-called infinite horizon discounted cost

case and the long run average cost case. Other criteria that can be found in the

literature for the PDMPs include, for instance, the risk-sensitive control problem, as

analyzed in [20] and [22].

It is worth pointing out that the main difficulty in considering the control acting

also on the flow φ relies on the fact that in this situation the time which the flow takes

to hit the boundary as well as the first order differential operator associated to the

flow φ would depend on the control. For the discounted cost criterion this problem

was nicely studied in [10] by rewriting the integral cost as a sum of integrals between

two consecutive jump times of the PDMP, which yields to the one step cost function

for a discrete-time Markov decision model. However this decomposition for the long

run average cost is not possible. When compared with the so-called continuous-time

Markov decision processes (see, for instance, [18, 16, 17, 19, 26, 33, 34]), it should

be highlighted that the PDMPs are characterized by a drift motion between jumps,

and forced jumps whenever the process hits the boundary, so that the available results

for the continuous-time Markov decision processes cannot be applied to the PDMPs

case.

Two kinds of approach can be pointed out for dealing with the discounted and

long run average control problems of PDMPs. The first one would be to characterize

the value function as a solution to the so called Hamilton-Jacobi-Bellman (HJB)

equation associated with an imbedded discrete-stage Markov decision model, with
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the stages defined by the jump times Tn of the process. As a sample of works along

this direction we can refer to [2, 3, 5, 8, 10, 11, 15, 30, 31] and the references

therein. The key idea behind this approach is to find, at each stage, a control function

that solves an imbedded deterministic optimal control problem. Usually the control

strategy is chosen among the set of piecewise open loop policies, that is, stochastic

kernels or measurable functions that depend only on the last jump time and post

jump location. The second approach for these problems, which we will call the

infinitesimal approach, is to characterize the optimal value function as the viscosity

solution of the corresponding integro-differential HJB equation. As a sample of

works using this kind of approach we can mention [7, 11, 12, 13, 14, 32] and the

references therein.

This chapter adopts the infinitesimal approach to study the discounted and long

run average control problems of PDMPs. The results presented in this chapter were

mainly drawn from [7] and [6]. The goal is to provide conditions for the existence of

a solution to integro-differential HJB equality and inequality, and for the existence

of a deterministic stationary optimal policy, associated to the discounted and long

run average control problems. These conditions are essentially related to continuity

and compactness assumptions on the parameters of the problem, as well as some

non-explosive conditions for the controlled process. In order to derive the results for

the long run average control problem we apply the so-called vanishing discounted

approach by adapting and combining arguments used in the context of continuous-

time Markov decision processes (see [33]), and the results obtained for the infinite-

horizon discounted optimal control problem.

The chapter is organized as follows. In sections 2 and 3 we present the nota-

tion, some definitions, the parameters defining the model, the construction of the

controlled process, the definition of the admissible strategies, and the problem for-

mulation. In section 4 we give the main assumptions and some auxiliary results. In

sections 5 and 6 we present the main results related to the discounted and long run

average control problems (see Theorems 2, 3 and 4) that provide sufficient condi-

tions for the existence of a solution to a HJB equality (for the discounted case) and

inequality (for the long run average case) and for the existence of a deterministic

stationary optimal policy. Some proofs of the auxiliary results are presented in the

Appendix.

2 Notation and definition

In this section we present the notation and some definitions that will be used through-

out the chapter as well as the definition of the generalized inferior limit and its

properties. The generalized limit will be used for the results related to the vanishing

discounted approach to be considered in section 6.

We will denote by N the set of natural numbers including 0, N∗ = N− {0}, R

the set of real numbers, R+ the set of non-negative real numbers, R∗
+
= R+ − {0},

R̂ = R∪{+∞}. By measure we will always refer to a countably additive, R+-valued
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set function. For X a Borel space (i.e. a Borel-measurable subset of a complete and

separable metric space) we denote by B(X ) its associated Borel σ-algebra, and by

M (X ) (P (X ) respectively) the set of measures (probability measures) defined on

(X,B(X )), endowed with the weak topology. We represent by P (X |Y ) the set of

stochastic kernels on X given Y where Y denotes a Borel space. For any set A, IA
denotes the indicator function of the set A, and for any point x ∈ X , δx denotes the

Dirac measure defined by δx (Γ) = IΓ (x) for any Γ ∈ B(X ).
The space of Borel-measurable (bounded, lower semicontinuous respectively)

real-valued functions defined on the Borel space X will be denoted byM(X ) (B(X ),
L(X ) respectively) and we set Lb (X ) = L(X )∩B(X ). Moreover, the space of Borel-

measurable, lower semicontinuous, R̂-valued functions defined on the Borel space

X will be denoted by L̂(X ). For all the previous space of functions the subscript +
will indicate the case of non-negative functions. The infimum over an empty set is

understood to be equal to +∞, and e−∞ = 0.

As in [29], the definition of the generalized inferior limit is as follows:

Definition 1 Let X be a Borel space and let {wn}, be a family of functions inM(X ).
The generalized inferior limit of the sequence {wn }, denoted by limg

n→∞wn is defined

as

limg
n→∞wn (x) = sup

k≥1

sup
ε>0

(
inf
m≥k

inf
{y:d(y,x)<ε }

wm(y)
)

(1)

where d (., .) is the metric in X . For notational convenience, limg
n→∞wn will be

denoted by w∗.

The following properties from the generalized inferior limit will be used in section

6 for the vanishing discounted approach.

Proposition 1 Let {wn } be a sequence of nonnegative functions in M(X ) and con-

sider an arbitrary x ∈ X . In this case, w∗ (x) as defined in (1) satisfies the following

properties:

(i) For any sequence {xn} such that xn→ x, it follows that lim
n→∞

wn (xn) ≥ w∗ (x), and

there exists a sequence {xn} such that xn → x and lim
n→∞

wn (xn) = w∗ (x).

(ii) w∗ ∈ L+(X ).
(iii) [Generalized Fatou’s Lemma] Suppose that {μn} is a sequence of probability

measures in P (X ) and that {μn} converges weakly to a μ ∈ P (X ). Then

lim
n→∞

∫
S

wn (x)μn(dx) ≥
∫
S

w∗ (x)μ(dx). (2)

Proof: For the proof of (i) see Lemma 4.1 in [4]. For (ii) see Lemma 3.1 in [25] and

for (iii) see Lemma 3.2 in [25]. �
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3 Problem formulation for the controlled PDMP

The goal of this section is to introduce the parameters defining the model, the

construction of the controlled process, the definition of the admissible strategies,

and the problem formulation. Since it follows closely sections 2 and 3 in [7] some

details will be skipped.

3.1 Parameters of the model

We will consider the control model depending on the following elements:

• The state space X, which we assume to be an open subset of Rd (d ∈ N∗) with

boundary represented by ∂X.
• The flow φ(x, t) : Rd ×R→ Rd, associated with a given Lipschitz continuous

vector field in Rd, that is, φ(x,0) = x and φ(x, t + s) = φ(φ(x, s), t) for all x ∈ Rd
and (t, s) ∈ R2.

• The so called active boundary defined as Ξ = {x ∈ ∂X : x = φ(y, t) for some y ∈

X and t ∈ R∗
+
}. With some abuse of notation, we set X as X∪Ξ, and for x ∈ X,

we define

t∗(x) = inf{t ∈ R+ : φ(x, t) ∈ Ξ}.

The flow φ outside the space X can be defined arbitrarily since it plays no role for

the problem.

• The action space A, assumed to be a Borel space, and the set of feasible actions in

state x ∈ X, given by A(x), which is a nonempty measurable subset of A. Define

the set K =Ki ∪Kg with

Kg
= {(x,a) ∈ X×A : a ∈ A(x)} ∈ B(X×A),

Ki
= {(x,a) ∈ Ξ×A : a ∈ A(x)} ∈ B(Ξ×A).

It is assumed that Kg (respectively, Ki) contains the graph of a measurable

function from X (respectively, Ξ) to A.
• The controlled jumps intensity λ which is a R+-valued measurable function

defined on K.
• The stochastic kernel Q on X given K satisfying Q(X \ {x}|x,a) = 1 for any

(x,a) ∈ K. It describes the state of the process after any jump. In other words,

if a jump governed by the intensity λ occurs in the current state x ∈ X and with

action a ∈ A(x), then Q(·|x,a) describes the distribution of the state immediately

after the jump. If z ∈ Ξ, that is, the current state is at the boundary then an action

b ∈ A(z) is applied and the state of the process changes instantly according to the

stochastic kernel Q.

It should be noticed that in the framework of continuous-time MDPs, the signed

kernel on X given K, defined by
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q(dy |x,a) = λ(x,a)
[
Q(dy |x,a)− δx (dy)

]
(3)

is the (controlled) infinitesimal generator of the jump process. For V ∈M(X) we set,

QV (x,a) =
∫

X

V (y)Q(dy |x,a), (x,a) ∈ K, (4)

λQV (x,a) = λ(x,a)QV (x,a), (x,a) ∈ Ki,

provided that the integral in (4) exists. From (3) we have that

qV (x,a) = λ(x,a)
[
QV (x,a)−V (x)

]
, (x,a) ∈ Ki . (5)

We conclude this sub-section with the following definition that will be used in

the sequel.

Definition 2 The set of functions g ∈ M(X) which are absolutely continuous with

respect to the flow φ on [0, t∗(x)[ (that is, the function g(φ(x, ·)) is absolutely

continuous on [0, t∗(x)]∩R+) and such that limt→t∗(x) g(φ(x, t)) exists whenever

t∗(x) < ∞ will be denoted by A(X). In this case the domain of definition of the

mapping g can be extended to X by setting g(z) = limt→t∗(x) g(φ(x, t)) where z =
φ(x, t∗(x))) ∈Ξ. Lemma 2.2 in [8] shows that, for g ∈A(X), there exists a real-valued

measurable function Xg defined on X satisfying

g(φ(x, t)) = g(x)+
∫

[0,t]

Xg(φ(x, s))ds, (6)

for any t ∈ [0, t∗(x)[. Notice that for g ∈ A(X) the function Xg satisfying (6) is

not necessarily unique. The case of bounded functions in A(X) will be denoted, as

before, by Ab (X).

3.2 Construction of the controlled process ξt

The canonical space Ω is defined by Ω =
⋃∞

n=0Ωn

⋃ (
X× (R∗

+
×X)∞

)
where Ωn =

X× (R∗
+
×X)n × ({∞}× {x∞})∞ and x∞ is an isolated artificial point corresponding

to the case when no jumps occur in the future, endowed with its Borel σ-algebra

denoted by F . In that case, the process stays forever in x∞, and so t∗(x∞) = +∞. Set

X∞ = X∪ {x∞} and X∞ = X∪ {x∞}. We also extend the definition of φ on X∞× R̂+
as φ(x∞, t) = x∞ for any t ∈ R̂+ and also φ(x, t∗(x)) = x∞ whenever t∗(x) =∞ for

x ∈ X.

We set ω ∈ Ω as

ω = (x0, θ1, x1, θ2, x2, . . .),

where x0 ∈ X represents the initial state of the controlled point process ξ, and for

n ∈ N∗, the components θn > 0 and xn correspond to the time interval between two
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consecutive jumps and the value of the process ξ immediately after the jump. For

the case θn < ∞ and θn+1 = ∞, the trajectory of the controlled point process has

only n jumps, and we put θm =∞ and xm = x∞ (artificial point) for all m ≥ n+ 1.

Between jumps, the state of the process ξ moves according to the flow φ. The path

up to n ∈ N is denoted by hn = (x0, θ1, x1, θ2, x2, . . . θn, xn), and the collection of all

such paths is denoted by Hn. We denote by Hn = (X0,Θ1,X1, . . . ,Θn,Xn) the n-term

random history process taking values in Hn for n ∈ N.

For n ∈ N, set the mappings Xn : Ω→ X∞ by Xn(ω) = xn and, for n ≥ 1, the

mappings Θn : Ω→ R
∗

+
by Θn(ω) = θn; Θ0(ω) = 0. The sequence (Tn)n∈N∗ of

R
∗

+
-valued mappings is defined onΩ by Tn(ω) =

∑n
i=1Θi (ω) =

∑n
i=1 θi and T∞(ω) =

limn→∞Tn(ω). The random measure μ associated with (Θn,Xn)n∈N is a measure

defined on R∗
+
×X by

μ(ω;dt,dx) =
∑
n≥1

I{Tn (ω)<∞}δ(Tn (ω),Xn (ω)) (dt,dx).

The dependence on ω will be suppressed for notational convenience and it will be

written μ(dt,dx) instead of μ(ω;dt,dx). For t ∈R+, defineFt =σ{H0}∨σ{μ(]0, s]×
B) : s ≤ t,B ∈ B(X)}. The controlled process

{
ξt
}
t ∈R+

is defined as:

ξt (ω) =
{
φ(Xn, t −Tn) if Tn ≤ t < Tn+1 for n ∈ N;

x∞, if T∞ ≤ t,

and it is easy to see that (ξt )t ∈R+ could be equivalently described by the sequence

(Θn,Xn)n∈N. As in [11], we set

p∗(dt) = I{ξt−∈Ξ}μ(dt,X)

which counts the number of jumps from the boundary of the controlled process ξt
(see [11], sub-section 26).

3.3 Admissible strategies

Associated to the state x∞ we consider a special action a∞ and we set A∞ =A∪{a∞};
A∞(x∞) = {a∞} and A∞(x) = A(x) for x ∈ X. We also extend the definition of λ

and Q at the point (x∞,a∞) by defining λ(x∞,a∞) = 0 and Q({x∞}|x∞,a∞) = 1. An

admissible control strategy is a sequence u = (πn, γn)n∈N such that, for any n ∈ N,

• πn ∈ P (A∞|Hn×R
∗
+
) and satisfies πn(A(φ(xn, t)) |hn, t) = 1

for hn = (x0, . . . , θn, xn) ∈ Hn and t ∈]0, t∗(xn)[.
• γn ∈ P (A∞|Hn) and satisfies γn (A(φ(xn, t∗(xn))) |hn) = 1

for hn = (x0, . . . , θn, xn) ∈ Hn and t∗(xn) <∞.

We will denote by U the set of admissible control strategies, and for u =
(πn, γn)n∈N ∈ U we denote by π and γ the random processes with values in P (A∞)
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correspondingly as

π(da |t) =
∑
n∈N

I{Tn<t≤Tn+1 }πn(da |Hn, t −Tn)

and

γ(da |t) =
∑
n∈N

I{Tn<t≤Tn+1 }γn(da |Hn),

for t ∈ R∗
+
. The processes π and γ are {Ft }t ∈R+ -predictable random processes with

values in P (A∞). The following class of admissible strategies will be considered

along this chapter. A control strategy u ∈ U is called deterministic stationary, if

πn(·|hn, t) = δϕs (φ(xn,t )) (·) and γn (·|hn) = δϕs (φ(xn,t∗(xn ))) (·), where ϕs : X∞ →A∞

is a measurable mapping satisfying ϕs (y) ∈ A(y) for any y ∈ X. By a slight abuse

of notation, such a strategy will be just denoted by u = ϕs .

From Theorem 3.6 in [23] (or Remark 3.43, page 87 in [24]) we have that, for any

admissible strategy u ∈ U and an initial state x0 ∈ X, there exists a probability Pux0

on (Ω,F ) such that the restriction of Pux0
to (Ω,F0) is given by (see [7] for further

details) Pux0

(
{X0 = x0}

)
= 1, and (see Lemma 3.1 in [7]) the predictable projection

of the random measure μ with respect to Pux0
is given by ν = ν0 + ν1, where, for

Γ ∈ B(R∗
+
×X),

ν0(Γ) =
∫
Γ

∫
A(ξs )

Q(dx |ξs,a)λ(ξs,a)π(da |s)ds,

ν1(Γ) =
∫
Γ

∑
n∈N∗

I{ξTn− ∈Ξ}
∫

A(ξTn−)
Q(dx |ξTn−,a)γ(da |Tn−)δTn (ds).

3.4 Problems formulation

We introduce in this section the infinite-horizon expected discounted and long run

average continuous-time optimal control problems we will consider in this chapter,

with the control acting continuously on the jump intensity λ and on the transition

measure Q of the process (but not on the deterministic flow φ).

In what follows the running cost rate Cg is a real-valued measurable mapping

defined on K and the boundary cost Ci is a real-valued measurable mapping defined

on K. We set Cg(x∞,a∞) = Ci (x∞,a∞) = 0. The associated infinite-horizon dis-

counted criterion corresponding to an admissible control strategy u = (un)n∈N ∈ U ,

un = (πn, γn), is defined by



Optimal Control of Piecewise Deterministic Markov Processes 61

Vα (u, x0) = Eux0

[∫
]0,+∞[

e−αs
∫

A(ξs )
Cg(ξs,a)π(da |s)ds

]
+E

u
x0

[∫
]0,+∞[

e−αs
∫

A(ξs−)
Ci (ξs−,a)γ(da |s)p∗(ds)

]
, (7)

whereα > 0 is the discount factor. Similarly, the associated long run average criterion

corresponding to an admissible control strategy u ∈ U is defined by

A(u, x0) = lim
t→∞

1

t

{
E
u
x0

[∫
]0,t[

∫
A(ξs )

Cg(ξs,a)π(da |s)ds
]

+E
u
x0

[∫
]0,t[

∫
A(ξs−)

Ci (ξs−,a)γ(da |s)p∗(ds)
]}
. (8)

Definition 3 The optimization problems consist in minimizing the performance cri-

terionVα (u, x0) andA(u, x0) within the class of admissible strategies u ∈ U , where

x0 is the initial state. The optimal value functions will be denoted respectively by

V∗α (x0) andA∗ (x0), that is,

V∗α (x0) = inf
u∈U
Vα (u, x0), A∗ (x0) = inf

u∈U
A(u, x0)

and u ∈ U will be an optimal strategy for the discounted (respectively, long run

average) problem ifVα (u, x0) =V∗α (x0) (respectively,A(u, x0) =A∗ (x0)).

4 Main assumptions and auxiliary results

The objective of this section is to introduce the assumptions and present some

technical results that will be used along this chapter.

4.1 Main assumptions

Our approach requires that the process must be non-explosive and that the expected

value of the number of jumps at the boundary up to a time t ∈ R+ must be bounded

from above by an affine function in the variable t. One of the main goals of Assump-

tion A is to ensure these properties.

Assumption A. There are constants K ≥ 0 and ε1 > 0 such that

(A1) For any (x,a) ∈ Kg, λ(x,a) ≤ K .

(A2) For any (z,b) ∈ Ki , Q(Aε1
|z,b) = 1 where

Aε1
= {x ∈ X : t∗(x) > ε1}.
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(A3) For any (x,a) ∈ Kg, Q(A(x) |x,a) = 1 where

A(x) = {y ∈ X : t∗(y) ≥ min{t∗(x), ε1}}.

Assumptions B and C are classical hypotheses. They mainly ensure the existence

of an optimal selector.

Assumption B.

(B1) For every y ∈ X the set A(y) is compact.

(B2) The kernel Q is weakly continuous (also called weak-Feller Markov kernel)

on Kg.

(B3) The function λ is continuous on Kg.

(B4) The flow φ is continuous on R+×R
p .

(B5) The function t∗ is continuous on X.

Assumption C.

(C1) The multifunction Ψg from X to A defined by Ψg(x) = A(x) is upper semi-

continous. The multifunctionΨi from Ξ to A defined byΨi (z) =A(z) is upper

semicontinous.

(C2) The cost functionCg (respectively,Ci) is bounded and lower semicontinuous

on Kg (respectively, Ki).

Without loss of generality, we assume, from Assumption (C2), that the inequalities

|Cg | ≤ K and |Ci | ≤ K are valid, where K is the same constant as in Assumption

(A1).

4.2 Auxiliary results

We present in this subsection some auxiliary results that will be useful to study

both the infinite-horizon discounted control problem as well as the long-run average

cost control problem. The first result of this subsection, Lemma 1, shows that the

controlled process is non-explosive and provides an upper bound for the sum of the

expected values of e−αTn as well as an affine upperbound on t for the expected value

on the number of jumps from the frontier up to a time t. This result requires only

Assumption A.

Lemma 1 If Assumption A is satisfied then there exist positive numbers M < ∞,

c0 <∞ such that, for any control strategy u ∈ U and initial state x0 ∈ X,

E
u
x0

[∑
n∈N∗

e−αTn
]
≤ M, Pux0

(T∞ < +∞) = 0. (9)

Furthermore for any t ∈ R+,

E
u
x0

[∑
n∈N∗

I{
Tn≤t,ξT−n

∈Ξ
} ] ≤ Mt + c0. (10)
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Proof: For the proof of (9), see Lemma 4.1 in [7] and, for the proof of (10), see

Lemma 3.1 in [6]. �

Recalling the definitions ofVα andA (see equations (7) and (8) respectively), it

is easy to get that for any control strategy u ∈ U

|Vα (u, x0) | ≤ K (
1

α
+E

u
x0

[∑
n∈N∗

e−αTn
]
) ≤ K (

1

α
+M)

and

|A(u, x0) | ≤ K
(
1+ lim

t→∞

1

t
E
u
x0

[∑
n∈N∗

I{
Tn≤t,ξT−n

∈Ξ
} ] ) ≤ K (1+M),

by using Lemma 1 and the fact that |Cg | ≤ K and |Ci | ≤ K (see Assumption (C2)).

Therefore, the mappingsVα (u, ·) andA(u, ·) are well defined.

The next lemma will be useful to obtain the characterization of the value functions

in terms of integro differential equations.

Lemma 2 Consider a bounded from below real-valued measurable function F de-

fined on X such that, for a real number β > 0, it satisfies

∫
[0,t∗(x)[

e−βsF (φ(x, s))ds < +∞

for any x ∈X, and a bounded from below real-valued measurable functionG defined

on Ξ. Then the real-valued mapping V defined on X by

V (x) =
∫

[0,t∗(x)[
e−βsF (φ(x, s))ds+ e−βt

∗(x)G(φ(x, t∗(x)))

belongs to A(X). Moreover there exists a bounded from below measurable function

XV satisfying

−βV (x)+XV (x) = −F (x),

for any x ∈ X and, furthermore, V (z) = G(z) for any z ∈ Ξ.

Proof: See the Appendix.

For any function V in M(X) bounded from below let us introduce the R̂-valued

mappings RV and TV defined on X and Ξ respectively by

RV (x) = inf
a∈A(x)

{
Cg(x,a)+ qV (x,a)+KV (x)

}
, (11)

TV (z) = inf
b∈A(z)

{
Ci (z,b)+QV (z,b)

}
, (12)

where the constant K has been defined in Assumption (A1) and the transition kernel

q in equation (3). Observe that qV and QV are well defined since by hypothesisV is
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bounded from below. Note also qV and QV may take the value +∞. Finally, for any

α ∈ [0,1], let us introduce the R̂-valued functionBαV defined on X by

BαV (y) =
∫

[0,t∗ (y)[
e−(K+α)tRV (φ(y, t))dt + e−(K+α)t

∗(y)
TV (φ(y, t∗(y))). (13)

Again, remark the integral term in (13) is well defined but may take the value +∞.

Moreover, since |Cg | ≤ K and |Ci | ≤ K , we have clearly that RV (x) ≥ −Kc0 and

TV (z) ≥ −c0 for some constant c0 > 0. By using the definition of BαV

BαV (y) ≥ −c0(1− e−Kt∗(y) )− c0e−Kt∗(y)
= −c0

for any α ∈ [0,1].

The next lemma provides important properties of the operatorsR, T and Bα.

Lemma 3 Suppose that Assumptions A, B and C are satisfied. IfV ∈ L(X) is bounded

from below then for any α ∈ [0,1] we have that

RV ∈ L̂(X), TV ∈ L̂(Ξ), BαV ∈ L̂(X)

and all these functions are bounded from below.

Proof: See the Appendix.

For any 0 < α < 1, let us introduce

Kα =
K (1+K )(1− e−(K+α)ε1 )+ (K +α)Ke−(K+α)ε1

α(1− e−(K+α)ε1 )
,

KC =
2K (1+K )
1− e−Kε1

,

where K and ε1 have been defined in Assumption A. Clearly, for any 0 < α < 1

0 < αKα ≤ KC . (14)

The next lemma provides upper bounds and absolutely continuity properties of

the operator Bα.

Lemma 4 Suppose that Assumptions A, B and C hold. Consider V ∈ Lb (X) satisfy-

ing, for any y ∈ X,

|V (y) | ≤ Kα IAε1
(y)+ (Kα +K )IAc

ε1
(y).

Then BαV ∈ Ab (X) and for any y ∈ X,

|BαV (y) | ≤ Kα IAε1
(y)+ (Kα +K )IAc

ε1
(y).
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Proof: See Lemma 5.4 in [7]. �

We conclude this section with the following result, which is a consequence of the

so-called Dynkin formula associated with the controlled process (ξt )t ∈R+ .

Theorem 1 Suppose that Assumption A is satisfied and that the cost functionsCg and

Ci are bounded (below or above). Then we have, for any strategy u = (πn, γn) ∈ U
and (W,XW ) ∈ Ab (X)×B(X), that

Vα (u, x0) =W (x0)+Eux0

[∫
]0,+∞[

e−αs
[
XW (ξs)−αW (ξs )

]
ds
]

+E
u
x0

[∫
]0,+∞[

e−αs
∫

Ag

{Cg(ξs,a)

+

∫
X

W (y)Q(dy |ξs,a)λ(ξs,a)−W (ξs)λ(ξs,a)}π(da |s)]ds
]

+E
u
x0

[∑
n∈N∗

I{ξTn−∈Ξ}e
−αTn

[∫
Ai

{Ci (ξTn−,a)

+

∫
X

W (y)Q(dy |ξTn−,a)}γ(da |Tn−)−W (ξTn−)
]]
. (15)

Proof: See Corollary 4.3 in [7]. �

5 The discounted control problem

Theorem 2 below presents sufficient conditions based on the three local character-

istics of the process φ, λ, Q, and the semi-continuity properties of the set valued

action space, for the existence of a solution for an integro-differential HJB optimal-

ity equation associated with the discounted control problem as well as conditions

for the existence of an optimal selector. Moreover it shows that the solution of the

integro-differential HJB optimality equation is in fact unique and coincides with

the optimal value for the α-discounted problem, and the optimal selector derived

in Theorem 2 yields an optimal deterministic stationary strategy for the discounted

control problem.

Theorem 2 Suppose Assumptions A, B and C are satisfied. Then there exist W ∈
Ab (X) and XW ∈ B(X) satisfying, for any x ∈ X,

−αW (x)+XW (x)+ inf
a∈Ag (x)

{
Cg(x,a)+ qW (x,a)

}
= 0, (16)

and, for any z ∈ Ξ,

W (z) = inf
b∈Ai (z)

{
Ci (z,b)+QW (z,b)

}
. (17)
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Moreover there is a measurable mapping ϕ̂α : X→ A such that ϕ̂α (y) ∈ A(y) for

any y ∈ X and satisfying, for any x ∈ X,

Cg(x, ϕ̂α (x))+ qW (x, ϕ̂α(x)) = inf
a∈A(x)

{
Cg(x,a)+ qW (x,a)

}
, (18)

and, for any z ∈ Ξ,

Ci (z, ϕ̂α(z))+QW (z, ϕ̂α(z)) = inf
b∈A(z)

{
Ci (z,b)+QW (z,b)

}
. (19)

Furthermore we have that

a) the deterministic stationary strategy ϕ̂α is optimal for the α-discounted problem,

b) the function W ∈ Ab (X), solution of (16)-(17), is unique and coincides with

V∗α (x) = in fu∈UVα (u, x), and

c) V∗α (x) satisfies

|V∗α (x) | ≤ Kα +KIAc
ε1
(x). (20)

Proof: By Lemma 3, one can define recursively the sequence of functions
{
Wi

}
i∈N in

Lb (X) as follows: Wi+1(y) =BαWi (y), for i ∈ N and W0(y) = −Kα IAε1
(y)− (Kα +

K )IAc
ε1
(y) for any y ∈ X. By using Lemma 4 and the definition of W0, we obtain that

W1(y) ≥ W0(y) for any y ∈ X. Now, note that the operator Bα is monotone, that is,

V1 ≤ V2 impliesBαV1 ≤ BαV2. Consequently, it can be shown by induction on i that

the sequence
{
Wi

}
i∈N is increasing and, from Lemma 4 and the definition ofW0, that

for every i ∈ N,

|Wi+1(x) | = |BαWi (x) | ≤ Kα IAε1
(x)+ (Kα +K )IAc

ε1
(x). (21)

Therefore from (21) the sequence of functions
{
Wi

}
i∈N is uniformly bounded, that

is, for any i ∈ N, sup
y∈X

��Wi (y)�� ≤ Kα +K . As a result,
{
Wi

}
i∈N converges to a map-

ping W ∈ B(X). Since
{
Wi

}
i∈N is an increasing sequence of lower semicontinuous

functions, W ∈ Lb (X), KWi + qWi ∈ Lb (Kg), and so, Cg
+KWi + qWi ∈ Lb (Kg)

by Assumption (C2). Therefore, combining Assumptions (B1) and (C1) and

Lemma 2.1 in [28], it follows that limi→∞RWi (x) = RW (x) for any x ∈ X and

limi→∞TWi (z) = TW (z) for any z ∈ Ξ. By using the bounded convergence Theo-

rem, it implies that the mapping W satisfies the following equations

W (y) = BαW (y)

=

∫
[0,t∗ (y)[

e−(K+α)tRW (φ(y, t))dt + e−(K+α)t
∗(y)
TW (φ(y, t∗(y))), (22)

where y ∈ X. Applying Lemma 2 to the mapping W where the function F (respec-

tively G) is given by RW (respectively, TW ), it yields that the function W ∈ Ab (X)
and satisfies

−(α+K )W (x)+XW (x) = − inf
a∈Ag (x)

{
Cg(x,a)+ qW (x,a)+KW (x)

}
,
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for any x ∈ X and

W (z) = inf
b∈Ai (z)

{
Ci (z,b)+QW (z,b)

}
,

for any z ∈ Ξ. This shows the existence of W ∈ Ab (X) and XW ∈ B(X) satisfying

equations (16) and (17).

Now, under Assumptions B and C, for any x ∈X the mapping defined on A(x) by

a→ Cg(x,a)+ λ(x,a)
[
QW (x,a)−W (x)

]
+KW (x)

is lower semicontinuous and since Ψg is upper semicontinuous, it follows from

Proposition D.5 in [21] that there exists a measurable mapping ϕ
g
α : X→ Ag such

that ∀x ∈X ϕ
g
α (x) ∈A(x) and equation (18) holds. Similar arguments can be used to

show the existence of a measurable mapping ϕiα : Ξ→ Ai satisfying ϕiα (z) ∈ A(z)
for any z ∈Ξ and equation (19) holds. Therefore, the measurable mapping ϕ̂α defined

by ϕ̂α (x) = ϕiα (x) for any x ∈ X and ϕ̂α (z) = ϕiα (z) for any z ∈ Ξ satisfies the claim.

To show a) and b), notice that for an arbitrary control strategy u ∈ U we have, by

using Theorem 1, thatVα (u, x) ≥W (x) for any x ∈X and also thatVα (ϕ̂, x) =W (x)
for any x ∈ X. Indeed from (16) and (17) we have that

XW (ξs)−αW (ξs )+
∫

Ag

{Cg(ξs,a)

+

∫
X

W (y)Q(dy |ξs,a)λ(ξs,a)−W (ξs)λ(ξs,a)}π(da |s)]≥ 0

and, for any z ∈ Ξ,

∫
Ai

{Ci (ξTn−,a)+
∫

X

W (y)Q(dy |ξTn−,a)}γ(da |Tn−)−W (ξTn−) ≥ 0

with equality whenever the strategy ϕ̂ is used. From (15) the terms inside the

expected value are positive, being zero whenever the strategy ϕ̂ is used, which shows

thatVα (u, x) ≥W (x) andVα (ϕ̂, x) =W (x) as desired. Finally from (21) we have c)

sinceV∗α (x) =W (x) = supi∈NWi (x). �

6 The average control problem

The objective of this section is to provide sufficient conditions to show the existence

of a solution to an integro-differential HJB inequality as well as the existence on

optimal selector. This results is proved by using the so-called vanishing discount

approach. The second main result of this section (see Theorem 4) gives the existence

of a deterministic stationary optimal policy for the infinite-horizon long run average

continuous-time control problem according to Definition 3.
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Let us introduce

mα = inf
x∈X

V∗α (x), ρα = αmα, (23)

hα(x) =V∗α (x)−mα ≥ 0, (24)

where x ∈X. In what follows we refer to section 2 for the definition of the generalized

inferior limit limg. The following final assumption will be required.

Assumption D. lim
g

α→0
hα(x) <∞ for all x ∈ X.

It is easy to show that there exist a sequence {αn } satisfying limn→∞ αn = 0

and such that limn→∞ ραn
= ρ for some |ρ| ≤ KC +K . To see this, observe that by

combining equations (14), (20) and (23) we obtain that for any 0 < α < 1

|ρα | = |αmα | ≤ α| inf
x∈X

V∗α (x) | ≤ α sup
x∈X

|V∗α (x) | ≤ αKα +K ≤ KC +K . (25)

Let us introduce the function h∗ given by

h∗(x) = limg
n→∞hαn

(x). (26)

It is easy to see that h∗(x) ≥ 0 since hα(x) ≥ 0. Clearly,h∗(x) <∞ by Assumption

D and h∗ ∈ L+(X) by using Proposition 1.

Before showing the main results of this section, we need the following technical

result.

Lemma 5 The function h∗ defined in (26) satisfies the following inequality:

h∗(x) ≥
∫

[0,t∗ (x)[
e−Ks (Rh∗(φ(x, s))− ρ)ds+ e−Kt∗(x)

Th∗(φ(x, t∗(x))). (27)

Proof: See the Appendix. �

The following theorem provides sufficient conditions for the existence of a solution

and optimal selector to an integro-differential HJB inequality, associated to the long

run average control problem.

Theorem 3 Suppose that Assumptions A, B, C and D are satisfied. Then the following

holds:

a) There exist H ∈ A(X)∩L(X) bounded from below satisfying

ρ ≥ XH (x)+ inf
a∈Ag (x)

{
Cg(x,a)+ qH (x,a)

}
, (28)

for any x ∈ X, and

H (z) ≥ inf
b∈Ai (z)

{
Ci (z,b)+QH (z,b)

}
, (29)
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for any z ∈ Ξ.

b) There is a measurable mapping ϕ̂ : X→ A such that ϕ̂(y) ∈ A(y) for any y ∈ X

and satisfying

Cg(x, ϕ̂(x))+ qH (x, ϕ̂(x)) = inf
a∈A(x)

{
Cg(x,a)+ qH (x,a)

}
, (30)

for any x ∈ X, and

Ci (z, ϕ̂(z))+QH (z, ϕ̂(z)) = inf
b∈A(z)

{
Ci (z,b)+QH (z,b)

}
, (31)

for any z ∈ Ξ.

Proof: Let us introduce H (x) as

H (x) =
∫

[0,t∗ (x)[
e−Ks(Rh∗(φ(x, s))− ρ)ds+ e−Kt∗(x)

Th∗(φ(x, t∗(x))), (32)

for all x ∈ X.

We will prove first item a). Observe that H (x) = B0h∗(x) − ρ
∫

[0,t∗(x)[
e−Ksds.

Now by Lemma 3 it follows that H is bounded below and that H ∈ L̂(X) since

h∗ ∈ L(X) and t∗ is continuous by Assumption (B5). Observe that equation (27)

implies that H (x) ≤ h∗(x) showing that H ∈ L(X).
A straightforward application of Lemma 2 shows that H (x) ∈ A(X) and it also

follows that there exists a bounded from below measurable function XH satisfying

−KH (x)+XH (x)+ inf
a∈A(x)

{
Cg(x,a)+ qh∗(x,a)+Kh∗(x)

}
= ρ (33)

for any x ∈ X and

H (z) = inf
b∈A(z)

{
Ci (z,b)+Qh∗(z,b)

}
, (34)

for any z ∈ Ξ. Recalling that h∗(x) ≥ H (x), we obtainfrom (33) and (34) that for any

x ∈ X,

XH (x)+ inf
a∈A(x)

{
Cg(x,a)+ qH (x,a)

}
≤ −KH (x)+XH (x)+ inf

a∈A(x)

{
Cg(x,a)+ qh∗(x,a)+Kh∗(x)

}
= ρ (35)

and for any z ∈ Ξ,

inf
b∈A(z)

{
Ci (z,b)+QH (z,b)

}
≤ inf

b∈A(z)

{
Ci (z,b)+Qh∗(z,b)

}
= H (z). (36)

Combining equations (35), (36), we finally get that H ∈ A(X)∩L(X) and satisfies

equations (28) and (29) giving item a).



70 O.L.V. Costa and F. Dufour

Item b) is an easy consequence of the fact that H is lower semicontinuous on X,

Assumptions A, B, C and Proposition D.5 in [21]. �

The goal now is to establish a deterministic stationary optimal policy for the

long run average control problem as defined in Definition 3, based on a solution for

the integro-differential HJB inequality (28), (29) and its associated optimal selector

(30), (31). In order to do that we introduce the following notation for a measurable

selector ϕ, a function W ∈M(X) bounded from below, and any x ∈ X,

λϕ (x) = λ(x, ϕ(x)), Λϕ (x, t) =
∫ t

0

λϕ (φ(x, s))ds,

QϕW (x) =QW (x, ϕ(x)), qϕW (x) = qW (x, ϕ(x)),
λϕQϕW (x) = λ(x, ϕ(x))QW (x, ϕ(x)),

Cg,ϕ (x) = Cg(x, ϕ(x)), Ci,ϕ (z) = Cz (x, ϕ(z)), z ∈ Ξ

and for ρ, ϕ̂ as in Theorem 3,

Gϕ̂W (x) =
∫

]0,t∗ (x)[
e−Λ

ϕ̂ (x,s)λϕ̂Qϕ̂W (φ(x, s)))ds+ eΛ
ϕ̂ (x,t∗ (x))Qϕ̂W (φ(x, t∗(x))),

Lϕ̂W (x) =
∫

]0,t∗ (x)[
e−Λ

ϕ̂ (x,s)W (φ(x, s))ds,

Lϕ̂ (x) =
∫

]0,t∗ (x)[
e−Λ

ϕ̂ (x,s)ds,

Pϕ̂W (x) = e−Λ
ϕ̂ (x,t∗ (x))W (φ(x, t∗(x)),

T ϕ̂ (ρ,W )(x) = −ρLϕ̂ (x)+ Lϕ̂Cg,ϕ̂ (x)+Pϕ̂Ci,ϕ̂ (x)+Gϕ̂W (x).

We have the following auxiliary result.

Lemma 6 For H and ρ, ϕ̂ as in Theorem 3 we have that

H (x) ≥ T ϕ (ρ,H )(x) (37)

Jϕ̂m(t, x) ≤ H (x) (38)

where

Jϕ̂m(t, x) =E
ϕ̂
x

[∫
]0,t∧Tm[

[
Cg (ξs, ϕ̂)) − ρ]ds]

+E
ϕ̂
x

[∫
]0,t∧Tm[

Ci (
(
ξs−, ϕ̂)

)
dp∗(s)+T ϕ̂ (ρ,H )

(
ξt∧Tm

)]
.

Proof: See the Appendix. �

Theorem 4 Suppose that Assumptions A, B, C and D are satisfied and consider ϕ̂ as

in (30), (31). Then the deterministic stationary strategy ϕ̂ is optimal for the average

cost problem and for any x ∈ X,
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ρ =A(ϕ̂, x) =A∗ (x). (39)

Proof: Applying Proposition 4.6 in [8] it follows that limα↓0αV
∗
α (x) ≤ A∗(x).

Therefore,

ρ = lim
n→∞
αn inf

x∈X

V∗αn
(x) ≤ lim

n→∞
αnV

∗
αn
(x) ≤ A∗(x).

To get the reverse inequality, first observe that, since T ϕ̂ (ρ,H ) is bounded from

below by, say, −c0, we obtain from Lemma 6 that

−c0+E
ϕ̂
x

[∫
]0,t∧Tm[

[
Cg (ξs, ϕ̂))]ds+∫

]0,t∧Tm[

Ci (
(
ξs−, ϕ̂)

)
dp∗(s)

]
≤ H (x)+ ρEϕ̂x (t∧Tm).

Taking the limit as m goes to infinity, this yields

−c0+E
ϕ̂
x

[∫
]0,t[

[
Cg (ξs, ϕ̂))]ds+∫

]0,t[

Ci (
(
ξs−, ϕ̂)

)
dp∗(s)

]
≤ H (x)+ ρt,

and so,

A(x, ϕ̂)(x) ≤ ρ.

However,A∗ (x) ≤ A(x, ϕ̂)(x) giving the results. �

Acknowledgements The first author received financial support from CNPq (Brazilian National

Council for Scientific and Technological Development), grant 304149/2019-5, FAPESP (São Paulo

Research Foundation)/ Shell through the Research Centre for Gas Innovation, FAPESP Grant

Proc. 2020/15230-5, project INCT, grant CNPq 465755/2014-3, FAPESP 2014/50851-0 and FUSP

(University of São Paulo Support Foundation).

Appendix

In this appendix we present the proof of some auxiliary results needed along this

chapter.

Proof of Lemma 2: Write Vn (x) =
∫

[0,t∗(x)[
e−βsFn(φ(x, s))ds+ e−βt

∗(x)Gn(φ(x, t∗(x)))

for x ∈ X with Fn(x) =min{F (x),n} and Gn(x) =min{G(x),n} on X (respectively,

Ξ). Now, observe that for any x ∈ X, t∗(φ(x, t)) = t∗(x) − t, φ(φ(x, t), t∗(φ(x, t))) =
φ(x, t∗(x)) and φ(φ(x, t), s) = φ(x, t + s), for any (t, s) ∈ R2

+
with t + s ≤ t∗(x).Then,

it can be easily shown by a change of variable that for any x ∈ X and t ∈ [0, t∗(x)[,

Vn (φ(x, t)) = eβt
∫

[t,t∗(x)[
e−βsFn(φ(x, s))ds+ eβte−βt

∗(x)Gn(φ(x, t∗(x))),

and so,
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V (φ(x, t)) = eβt
∫

[t,t∗(x)[
e−βsF (φ(x, s))ds+ eβte−βt

∗(x)G(φ(x, t∗(x))) (40)

by the monotone convergence theorem. Consequently, the function V (φ(x, ·)) is

absolutely continuous on [0, t∗(x)]∩R+ and so, V ∈ A(X). Equation (40) implies

that for any x ∈ X XV (φ(x, t)) = βV (φ(x, t))−F (φ(x, t)), almost everywhere w.r.t.

the Lebesgue measure on [0, t∗(x)[. This implies that −βV (x)+XV (x) = −F (x) for

any x ∈ X. Moreover, we have V (z) = G(z) for any z ∈ Ξ, showing the result. �

Proof of the Lemma 3: Define Vn (x) =min{V (x),n} so that Vn ∈ Lb (X). By using

hypotheses (B2)-(B3) and the fact that λ is bounded byK on Kg, we obtain that qVn+
KVn ∈ L(Kg), and so, by Assumption (C2) Cg

0
+ qVn +KVn ∈ L(Kg). Therefore,

combining Lemma 17.30 in [1] with Assumptions (B1) and (C1), it yields that

RVn ∈ L(X). By using the same arguments, it can be shown that TVn ∈ L(Ξ).
Now consider y ∈ X and a sequence {yn}n∈N in X converging to y. By a slight

abuse of notation, for any y ∈ X, I[0,t∗(y)[ (t) e−(K+α)t RVn (φ(y, t)) denotes the

function defined on R+ which is equal to e−(K+α)tRVn (φ(y, t)) on [0, t∗(y)[ and zero

elsewhere. It can be shown easily by using the lower semicontinuity of the function

RVn and the continuity of the flow φ that lim
n→∞

I[0,t∗(yn )[(t) e
−(K+α)t

RVn (φ(yn, t)) ≥

I[0,t∗(y)[ (t) e−(K+α)tRVn (φ(y, t)), for any t ∈ [0, t∗(y)[. An application of Fatou’s

Lemma gives that

lim
n→∞

∫
[0,t∗ (yn )[

e−(K+α)tRVn (φ(yn, t))dt ≥
∫

[0,t∗(y)[
e−(K+α)tRVn (φ(y, t))dt.

The case t∗(y) =∞ is trivial. Now, if t∗(y) <∞ then combining the lower semicon-

tinuity of the function TV with the continuity of the flow φ and t∗ (see Assumptions

(B4)-(B5)), it gives easily that

lim
n→∞

e−(K+α)t
∗ (yn )TVn (φ(yn, t∗(yn))) ≥ e−(K+α)t

∗ (y)
TVn (φ(y, t∗(y))),

showing the results hold for Vn, that is, RVn ∈ Lb (X), TVn ∈ Lb (Ξ), and BαVn ∈
Lb (X). From Proposition 10.1 in [27], it follows that RV = limn→∞RVn ∈ L̂(X) and

similarly,TV = limn→∞TVn ∈ L̂(Ξ). Now, from the monotoneconvergence theorem,

we have BαV = limn→∞BαVn, and so BαV ∈ L̂(X). Clearly, these functions are

bounded from below, giving the result. �

Proof of the Lemma 5: From Theorem 2 we have that W (x) =V∗α (x) satisfies (16)

and (17), and thus from (23), (24) and after some algebraic manipulations we obtain

that

−(α+K )hα(x)+Xhα(x)+ inf
a∈Ag (x)

{
Cg(x,a)+ qhα(x,a)+Khα(x)

}
− ρα = 0,

(41)

for any x ∈ X,
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hα(z) = inf
b∈Ai (z)

{
Ci (z,b)+Qhα(z,b)

}
, (42)

for any z ∈ Ξ. Moreover, according to Theorem 2 there exists a measurable selector

ϕ̂α : X→A satisfying ϕ̂α (y) ∈ A(y) for any y ∈ X reaching the infimum in (41) and

(42). Thus,

−(α+K )hα (x)+Xhα(x)+Cg(x, ϕ̂α (x))+ qhα(x, ϕ̂α (x))+Khα(x)− ρα = 0,

(43)

for any x ∈ X,

hα(z) = Ci (z,b)+Qhα(z, ϕ̂α(z)) (44)

for any z ∈ Ξ. Taking the integral of (43) along the flow φ(x, t), we get from (43) and

(44) (see [8]) that for any x ∈ X,

hα(x) =
∫

[0,t∗(x)[
e−(K+α)t

(
Rhα (φ(x, t))− ρα

)
dt + e−(K+α)t

∗(x)
Thα (φ(x, t∗(x))),

(45)

where we recall that

Rhα (y) = Cg(y, ϕ̂α(y))+ qhα(y, ϕ̂α (y))+Khα(y), y ∈ X, (46)

Thα (z) = Ci (z, ϕ̂α(z))+Qhα(z, ϕ̂α(z)), z ∈ Ξ. (47)

According to Proposition 1 (i), we can find a sequence {xn} ∈X such that xn→ x and

lim
n→∞

hαn
(xn) = h∗(x). In what follows set, for notational simplicity, xn(t) = φ(xn, t),

x(t) = φ(x, t), an(t) = ϕ̂αn
(xn(t)), t∗n = t∗(xn). From continuity of t∗ and φ (see

Assumption (B4)) we have that, as n→∞, xn(t)→ x(t), and, whenever t∗(x) <∞,

xn (t∗n) → φ(x, t∗(x)). From the fact that Rhα is bounded from below and ρα is

bounded, we can apply the Fatou’s lemma in (45) to obtain that

h∗(x) = lim
n→∞

hαn
(xn) ≥

∫
]0,+∞[

lim
n→∞

(
I[0,t∗n ) (t)e

−(K+αn )t [Rhαn
(xn(t))− ραn

])
dt

+ lim
n→∞

e−(K+αn )t∗nThαn
(xn(t∗n)). (48)

The convergence of ραn
to ρ together with Assumption (B5) implies that, a.s. on

[0,∞),

lim
n→∞

I[0,t∗n ) (t)e
−(K+αn )t

{
Rhαn

(xn(t))− ραn

}
= I[0,t∗(x)) (t)e−Kt

{
lim
n→∞

Rhαn
(xn(t))− ρ

}
, (49)

and limn→∞ e
−(K+αn )t∗nThαn

(xn (t∗n)) = e−Kt∗(x) limn→∞Thαn
(xn (t∗n)). The goal

now is to show that
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lim
n→∞

Rhαn
(xn(t))) ≥ Rh∗(x(t)), (50)

and that

lim
n→∞

Thαn
(xn(t∗n)) ≥ Thα(x(t

∗(x))). (51)

Let us first show (50). For a fixed t ∈ (0, t∗(x)), there is no loss of generality in

assuming that t < t∗n for any n ∈ N and thus xn(t) ∈ X. Consider a subsequence {nj }
of {n} such that

lim
n→∞

Rhαn
(xn(t)) = lim

j→∞
Rhαnj

(xnj
(t)).

From Assumptions (B1) and (C1) the multifunctionΨg is compact valued and upper

semi-continuous so that, from the fact that xnj
(t)→ x(t), we can find a subsequence

of {anj
(t)} ∈A(xnj

(t)), still denoted by {anj
(t)} such that anj

(t)→ a ∈A(x(t)) (see

Theorem 17.16 in [1]) as j→∞. From (46) we have that

lim
n→∞

Rhαn
(xn(t)) = lim

j→∞

(
Cg(xnj

(t),anj
(t))+ qhαnj

(xni (t), xnj
(t))
)

+ lim
j→∞

(
Khαnj

(xnj
(t))
)
,

and therefore

lim
n→∞

Rhαn
(xn(t)) ≥ lim

j→∞

Cg(xnj
(t),anj

(t))

+ lim
j→∞

(
qhαnj

(xni (t), xnj
(t))+Khαnj

(xnj
(t))
)
. (52)

Lower semicontinuity of Cg on Kg yields to

lim
j→∞

Cg(xnj
(t),anj

(t)) ≥ Cg(x(t),a). (53)

From Proposition 1 (i) and (iii), the fact that Q is weakly continuous on Kg (As-

sumption (B2)), and the continuity of λ (Assumption (B3)), we get that

lim
j→∞

λ(xnj
(t),anj

(t))Qhαnj
(xnj

(t),anj
(t)) ≥ λ(x(t),a)Qh∗(x(t),a) (54)

and, recalling that K − λ(xnj
(t),anj

(t)) ≥ 0 from Assumption (A1), we get that

lim
j→∞

[
K − λ(xnj

(t),anj
(t))
]
hαnj

(xnj
(t),anj

(t)) ≥
[
K − λ(x(t),a)

]
h∗(x(t),a).

(55)

Combining (46), (52), (53), (54), (55), we conclude that

lim
n→∞

Rhαn
(xn(t))) ≥ Cg(x(t),a)+ qh∗(x(t),a)+Kh∗(x(t)) ≥ Rh∗(x(t)),

showing (50).
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Let us now show (51) for t∗(x) <∞. From the fact that Ψi is compact valued and

upper semi-continuousand xn (t∗n)→ x(t∗(x)), and using similar arguments as before

(in particular equation (47)), we can find a subsequence {anj
(t∗nj

)} ∈ A(xnj
(t∗nj

))
such that anj

(t∗nj
)→ b ∈ A(x(t∗(x))) (see again Theorem 17.16 in [1]), and that

lim
n→∞

Thαn
(xn(t∗n)) ≥ C

i (x(t∗(x)),b)+Qh∗(x(t∗(x)),b) ≥ Thα(x(t∗(x)))

showing (51).

Combining (48), (49), (50) and (51) we get that (27) holds, showing Lemma 5. �

Proof of the Lemma 6: From Theorem 3 we get that for any x ∈ X

ρ ≥ XH (φ(x, s))+Cg,ϕ̂ (φ(x, s))+ qϕ̂H ((φ(x, s))), (56)

and for the case t∗(x) <∞,

H (φ(x, t∗(x))) ≥ Ci,ϕ̂ (φ(x, t∗(x)))+Qϕ̂H (φ(x, t∗(x))). (57)

Multiplying (56) by e−Λϕ̂ (x,s) and taking the integral from 0 to t we obtain that

ρ

∫
]0,t[

e−Λ
ϕ̂ (x,s)ds ≥

∫
]0,t[

e−Λ
ϕ̂ (x,s) (XH (φ(x, s))− λϕ̂ (φ(x, s))H (φ(x, s)))ds

+

∫
]0,t[

e−Λ
ϕ̂ (x,s)Cg,ϕ̂ (φ(x, s))ds+

∫
]0,t[

e−Λ
ϕ̂ (x,s)λϕ̂Qϕ̂H (φ(x, s))ds. (58)

Replacing

∫
]0,t[

e−Λ
ϕ̂ (x,s) (XH (φ(x, s))− λϕ̂ (φ(x, s))H (φ(x, s)))ds

= e−Λ
ϕ̂ (x,t )H (φ(x, t))−H (x)

into (58) yields to

H (x) ≥− ρ
∫

]0,t[

e−Λ
ϕ̂ (x,s)ds+

∫
]0,t[

e−Λ
ϕ̂ (x,s)λϕ̂Qϕ̂H (φ(x, s))ds

+ e−Λ
ϕ̂ (x,t )H (φ(x, t))+

∫
]0,t[

e−Λ
ϕ̂ (x,s)Cg,ϕ̂ (φ(x, s))ds.

Taking the limit as t→ t∗(x) and using (57) for the case t∗(x) <∞ we obtain (37).

From (37) and Proposition 3.4 in [8] we obtain (38).
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Pathwise Approximations for the Solution of the

Non-Linear Filtering Problem

Dan Crisan, Alexander Lobbe, and Salvador Ortiz-Latorre

Abstract We consider high order approximations of the solution of the stochastic

filtering problem, derive their pathwise representation in the spirit of the earlier work

of Clark [2] and Davis [10, 11] and prove their robustness property. In particular,

we show that the high order discretised filtering functionals can be represented by

Lipschitz continuous functions defined on the observation path space. This property

is important from the practical point of view as it is in fact the pathwise version

of the filtering functional that is sought in numerical applications. Moreover, the

pathwise viewpoint will be a stepping stone into the rigorous development of machine

learning methods for the filtering problem. This work is a cotinuation of [5] where

a discretisation of the solution of the filtering problem of arbitrary order has been

established. We expand the work in [5] by showing that robust approximations can

be derived from the discretisations therein.

1 Introduction

With the present article on non-linear filtering we wish to honor the work of Mark

H. A. Davis in particular to commemorate our great colleague. The topic of filtering

is an area that has seen many excellent contributions by Mark. It is remarkable that
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he was able to advance the understanding of non-linear filtering from a variety of

angles. He considered many aspects of the field in his work, spanning the full range

from the theory of the filtering equations to the numerical solution of the filtering

problem via Monte-Carlo methods.

Mark Davis’ work on filtering can be traced back to his doctoral thesis where he

treats stochastic control of partially observableprocesses. The first article specifically

on the topic of filtering that was co-authored by Mark appeared back in 1975

and considered a filtering problem with discontinuous observation process [12].

There, they used the so-called innovations method to compute the evolution of the

conditional density of a process that is used to modulate the rate of a counting

process. This method is nowadays well-known and is a standard way also to compute

the linear (Kalman) filter explicitly. Early on in his career, Mark also contributed to

the dissemination of filtering in the mathematics community with his monograph

Linear Estimation and Stochastic Control [7], published in 1977, which deals with

filtering to a significant degree. Moreover, his paper An Introduction to Nonlinear

Filtering [9], written together with S. I. Marcus in 1981, has gained the status of a

standard reference in the field.

Importantly, and in connection to the theme of the present paper, Mark has worked

on computation and the robust filter already in 1980 [8]. Directly after the conception

of the robust filter by Clark in 1978 [2], Mark took up the role of a driving figure in the

subsequent development of robust, also known as pathwise, filtering theory [10, 11].

Here, he was instrumental in the development of the pathwise solution to the filtering

equations with one-dimensional observation processes. Additionally, also correlated

noise was already analysed in this work.

Robust filtering remains a highly relevant and challenging problem today. Some

more recent work on this topic includes the article [6] which can be seen as an

extension of the work by Mark, where correlated noise and a multidimensional

observation process are considered. The work [4] is also worth mentioning in this

context, as it establishes the validity of the robust filter rigorously.

Non-linear filtering is an important area within stochastic analysis and has nu-

merous applications in a variety of different fields. For example, numerical weather

prediction requires the solution of a high dimensional, non-linear filtering problem.

Therefore, accurate and fast numerical algorithms for the approximate solution of

the filtering problem are essential. In this contribution we analyse a recently devel-

oped high order time discretisation of the solution of the filtering problem from the

literature [5] and prove that the so discretised solution possesses a property known

as robustness. Thus, the present paper is a continuation of the previous work [5] by

two of the authors which gives a new high-order time discretisation for the filtering

functional. We extend this result to produce the robust version, of any order, of

the discretisation from [5]. The implementation of the resulting numerical method

remains open and is subject of future research. In subsequent work, the authors plan

to deal with suitable extensions, notably a machine learning approach to pathwise

filtering.

Robustness is a property that is especially important for the numerical approxi-

mation of the filtering problem in continuous time, since numerical observations can
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only be made in a discrete way. Here, the robustness property ensures that despite

the discrete approximation, the solution obtained from it will still be a reasonable

approximation of the true, continuous filter.

The present paper is organised as follows: In Section 2 we discuss the established

theory leading up to the contribution of this paper. We introduce the stochastic

filtering problem in sufficient generality in Subsection 2.1 whereafter the high order

discretisation from the recent paper [5] is presented in Subsection 2.2 together with

all the necessary notations. The Subsection 2.2 is concluded with the Theorem 1,

taken from [5], which shows the validity of the high order discretisation and is the

starting point for our contribution. Then, Section 3 serves to concisely present the

main result of this work, which is Theorem 2 below. Our Theorem is a general result

applying to corresponding discretisations of arbitrary order and shows that all of

these discretisations do indeed assume a robust version. In Section 4 we present the

proof of the main result in detail. The argument proceeds along the following lines.

First, we establish the robust version of the discretisations for any order by means of

a formal application of the integration by parts formula. In Lemma 1 we then show

that the new robust approximation is locally bounded over the set of observation

paths. Thereafter, Lemma 2 shows that the robustly discretised filtering functionals

are locally Lipschitz continuous over the set of observation paths. Based on the

elementary but important auxilliary Lemma 3 we use the path properties of the

typical observation in Lemma 4 to get a version of the stochastic integral appearing

in the robust approximation which is product measurable on the Borel sigma-algebra

of the path space and the chosen filtration. Finally, after simplifying the arguments

by lifting some of the random variables to an auxilliary copy of the probability

space, we can show in Lemma 5 that, up to a null-set, the lifted stochastic integral

appearing in the robust approximation is a random variable on the correct space. And

subsequently, in Lemma 6 that the pathwise integral almost surely coincides with the

standard stochastic integral of the observation process. The argument is concluded

with Theorem 3 where we show that the robustly discretised filtering functional is a

version of the high-order discretisation of the filtering functional as derived in the

recent paper [5].

Our result in Theorem 2 can be interpreted as a remedy for some of the shortcom-

ings of the earlier work [5] where the discretisation of the filter is viewed as a random

variable and the dependence on the observation path is not made explicit. Here, we

are correcting this in the sense that we give an interpretation of said random variable

as a continuous function on path space. Our approach has two main advantages.

Firstly, from a practitioner’s point of view, it is exactly the path dependent version

of the discretised solution that we are computing in numerical applications. Thus it

is natural to consider it explicitly. The second advantage lies in the fact that here we

are building a foundation for the theoretical development of machine learning ap-

proaches to the filtering problem which rely on the simulation of observation paths.

With Theorem 2 we offer a first theoretical justification for this approach.
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2 Preliminaries

Here, we begin by introducing the theory leading up to the main part of the paper

which is presented in Sections 3 and 4.

2.1 The filtering problem

Let (Ω,F ,P) be a probability space with a complete and right-continuous filtra-

tion (Ft )t≥0. We consider a dX × dY-dimensional partially observed system (X,Y )
satisfying the system of stochastic integral equations

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Xt = X0+

∫ t

0

f (Xs) ds+
∫ t

0

σ (Xs ) dVs,

Yt =
∫ t

0

h (Xs ) ds+Wt,

(1)

where V and W are independent (Ft )t≥0-adapted dV - and dY -dimensional standard

Brownian motions, respectively. Further, X0 is a random variable, independent of V
and W , with distribution denoted by π0. We assume that the coefficients

f = ( f i )i=1,...,dX
: RdX → RdX and σ =

(
σi, j
)
i=1,...,dX, j=1,...,dV

: RdX → RdX×dV

of the signal process X are globally Lipschitz continuous and that the sensor function

h = (hi )i=1,...,dY : RdX → RdY

is Borel-measurable and has linear growth. These conditions ensure that strong solu-

tions to the system (1) exist and are almost surely unique. A central object in filtering

theory is the observation filtration {Yt }t≥0 that is defined as the augmentation of the

filtration generated by the observation process Y , so that Yt = σ (Ys, s ∈ [0, t])∨N ,

whereN are all P-null sets of F .

In this context, non-linear filtering means that we are interested in determining,

for all t > 0, the conditional law, called filter and denoted by πt , of the signal X at

time t given the information accumulated from observing Y on the interval [0, t].
Furthermore, this is equivalent to knowing for every bounded and Borel measurable

function ϕ and every t > 0, the value of

πt (ϕ) = E
[
ϕ(Xt ) ��Yt ] .

A common approach to the non-linear filtering problem introduced above is

via a change of probability measure. This approach is explained in detail in the

monograph [1]. In summary, a probability measure P̃ is constructed that is abso-

lutely continuous with respect to P and such that Y becomes a P̃-Brownian motion

independent of X . Additionally, the law of X remains unchanged under P̃. The
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Radon-Nikodym derivative of P̃ with respect to P is further given by the process Z
that is given, for all t ≥ 0, by

Zt = exp
���
dY∑
i=1

∫ t

0

hi (Xs ) dY i
s −

1

2

dY∑
i=1

∫ t

0

h2
i (Xs) ds��� .

Note that Z is an (Ft )t≥0-adapted martingale under P̃. This process is used in the

definition of another, measure-valued process ρ that is given, for all bounded and

Borel measurable functions ϕ and all t ≥ 0, by

ρt (ϕ) = Ẽ
[
ϕ(Xt )Zt ��Yt ], (2)

where we denote by Ẽ the expectation with respect to P̃. We call ρ the unnormalised

filter, because it is related to the probability measure-valued process π through

the Kallianpur-Striebel formula establishing that for all bounded Borel measurable

functions ϕ and all t ≥ 0 we have P-almost surely that

πt (ϕ) =
ρt (ϕ)
ρt (1)

=

Ẽ
[
ϕ(Xt )Zt |Yt

]
Ẽ
[
Zt |Yt

] (3)

where 1 is the constant function. Hence, the denominator ρt (1) can be viewed as the

normalising factor for πt .

2.2 High order time discretisation of the filter

As shown by the Kallianpur-Striebel formula (3), πt (ϕ) is a ratio of two condi-

tional expectations. In the recent paper [5] a high order time discretisation of these

conditional expectations was introduced which leads further to a high order time

discretisation of πt (ϕ). The idea behind this discretisation is summarised as follows.

First, for the sake of compactness, we augment the observation process as Ŷt =
(Ŷ i

t )
dY
i=0
= (t,Y 1

t , . . . ,Y
dY
t ) for all t ≥ 0 and write

ĥ =
(
−

1

2

dY∑
i=1

h2
i , h1, . . . , hdY

)
.

Then, consider the log-likelihood process

ξt = log(Zt ) =
dY∑
i=0

∫ t

0

ĥi (Xs) dŶ i
s , t ≥ 0. (4)

Now, given a positive integer m, the order m time discretisation is achieved by a

stochastic Taylor expansion up to order m of the processes
(
ĥi (Xt )

)
t≥0, i = 0, . . . ,dY

in (4). Finally, we substitute the discretised log-likelihood back into the original
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relationships (2) and the Kallianpur-Striebel formula (3) to obtain a discretisation of

the filtering functionals. However, it is important to note that for the orders m > 2 an

additional truncation procedure is needed, which we will make precise shortly, after

introducing the necessary notation for the stochastic Taylor expansion.

2.2.1 Stochastic Taylor expansions

Let M =
{
α ∈ {0, . . . ,dV }l : l = 0,1, . . .

}
be the set of all multi-indices with range

{0, . . . ,dV }, where ∅ denotes the multi-index of length zero. For α = (α1, ..., αk ) ∈M
we adopt the notation |α| = k for its length, |α|0 = #{ j : α j = 0} for the number

of zeros in α, and α− = (α1, ..., αk−1) and −α = (α2, ..., αk ), for the right and left

truncations, respectively. By convention |∅| = 0 and −∅ = ∅− = ∅. Given two multi-

indices α, β ∈M we denote their concatenation by α ∗ β. For positive and non-zero

integers n and m, we will also consider the subsets of multi-indices

Mn,m = {α ∈M : n ≤ |α| ≤ m} , and

Mm =Mm,m = {α ∈ M : |α| = m} .

For brevity, and by slight abuse of notation, we augment the Brownian motion

V and now write V =
(
V i
)
dV
i=0
= (t,V1

t , . . . ,V
dV
t ) for all t ≥ 0. We will consider the

filtration {F
0,V
t }t≥0 defined to be the usual augmentation of the filtration generated

by the process V and initially enlarged with the random variable X0. Moreover, for

fixed t ≥ 0, we will also consider the filtration {H t
s = F

0,V
s ∨Yt }s≤t . For all α ∈M

and all suitably integrable H t
s -adapted processes γ = {γs }s≤t denote by Iα (γ·) s,t

the ItÃť iterated integral given for all s ≤ t by

Iα(γ·)s,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
γt, if |α| = 0∫ t

s

Iα−(γ·)s,u dV
α|α |
u , if |α| ≥ 1.

Based on the coefficient functions of the signal X , we introduce the differential

operators L0 and Lr , r = 1, ...,dV , defined for all twice continuously differentiable

functions g : RdX → R by

L0
g =

dX∑
k=1

fk
∂g

∂xk
+

1

2

dX∑
k,l=1

dV∑
r=1

σk,rσl,r
∂2
g

∂xk∂xl
and

Lrg =
dX∑
k=1

σk,r
∂g

∂xk
, r = 1, ...,dV .

Lastly, for α = (α1, ..., αk ) ∈ M, the differential operator Lα is defined to be the

composition Lα
= Lα1 ◦ · · · ◦ Lαk , where, by convention, L∅g = g.
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2.2.2 Discretisation of the log-likelihood process

With the stochastic Taylor expansion at hand, we can now describe the discretisation

of the log-likelihood in (4). To this end, let for all t > 0,

Π(t) =
{
{t0, . . . , tn} ⊂ [0, t]n+1 : 0 = t0 < t1 < · · · < tn = t, n = 1,2, . . .

}
be the set of all partitions of the interval [0, t]. For a given partition we call the

quantity δ = max{t j+1 − t j : j = 0, . . . ,n− 1} the meshsize of τ. Then we discretise

the log-likelihood as follows. For all t > 0, τ ∈ Π(t) and all positive integers m we

consider

ξ
τ,m
t =

n−1∑
j=0

ξ
τ,m
t ( j) =

n−1∑
j=0

dY∑
i=0

∑
α∈M0,m−1

Lα ĥi (Xtj )
∫ tj+1

tj

Iα(1)tj,sdŶ
i
s

=

n−1∑
j=0

{
κ

0,m
j
+

∫ tj+1

tj

〈
η

0,m
j

(s),dYs
〉}
,

where we define for all integers l ≤ m−1 and j = 0, . . . ,n−1 the quantities

κl,m =

n−1∑
j=0

κ
l,m
j
=

n−1∑
j=0

{
−

1

2

∑
α∈Ml,m−1

Lα〈h(·), h(·)〉(Xtj )
∫ tj+1

tj

Iα(1)tj,s ds
}

η
l,m
j

(s) =
( ∑
α∈Ml,m−1

Lαhi (Xtj )Iα(1)tj,s
)
i=1,...,dY

.

and 〈·, ·〉 denotes the euclidean inner product. Note that by setting, in the case of

m > 2,

μτ,m ( j) =
dY∑
i=0

∑
α∈M2,m−1

Lα ĥi (Xtj )
∫ tj+1

tj

Iα(1)tj,sdŶ
i
s

= κ
2,m
j
+

∫ tj+1

tj

〈
η

2,m
j

(s),dYs
〉
,

we may write the above as

ξ
τ,m
t = ξ

τ,2
t +

n−1∑
j=0

μτ,m ( j) .

As outlined before, the discretisations ξτ,m are obtained by replacing the pro-

cesses
(
ĥi (Xt )

)
t≥0, i = 0, . . . ,dY in (4) with the truncation of degree m − 1 of the

corresponding stochastic Taylor expansion of ĥi (Xt ). These discretisations are sub-

sequently used to obtain discretisation schemes of first and second order for the filter



86 Dan Crisan, Alexander Lobbe, and Salvador Ortiz-Latorre

πt (ϕ). However, they cannot be used directly to produce discretisation schemes of

any order m > 2 because they do not have finite exponential moments (required to

define the discretisation schemes). More precisely, the quantities μτ,m ( j) do not

have finite exponential moments because of the high order iterated integral involved.

For this, we need to introduce a truncation of μτ,m ( j) resulting in a (partial) tam-

ing procedure to the stochastic Taylor expansion of
(
ĥi (Xt )

)
t≥0. To achieve this,

we introduce for every positive integer q and all δ > 0 the truncation functions

Γq,δ : R→ R such that

Γq,δ (z) =
z

1+ (z/δ)2q
(5)

and set, for all j = 0, ...,n−1,

ξ̄
τ,m
t ( j) =

⎧⎪⎨⎪⎩ξ
τ,m
t ( j) , if m = 1,2

ξ
τ,2
t ( j)+ Γm,(tj+1−tj )

(
μτ,m ( j)

)
, if m > 2

.

Utilising the above, the truncated discretisations of the log-likelihood finally read

ξ̄
τ,m
t =

n−1∑
j=0

ξ̄
τ,m
t ( j) . (6)

We end this section with a remark about the properties of the truncation function

before we go on to discretising the filter.

Remark 1 The following two properties of the truncation function Γ, defined in (5),

are readily checked. For all positive integers q and all δ > 0 we have that

i) the truncation function is bounded, specifically, for all z ∈ R,

��Γq,δ (z)�� ≤ δ

(2q−1)1/2q
,

ii) and that its derivative is bounded for all z ∈ R as

q(1− q)−1

2q
≤

d

dz
Γq,δ (z) ≤ 1.

In particular, the truncation function is Lipschitz continuous.

2.2.3 Discretisation of the filter

Since ξ̄
τ,m
t in (6) is a discretisation of the log-likelihood we will now consider, for

all t > 0, τ ∈ Π (t) and all positive integers m, the discretised likelihood

Zτ,m
t = exp

(
ξ̄
τ,m
t

)
.
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The filter is now discretised, under the condition that the Borel measurable function

ϕ satisfies Ẽ
[
|ϕ(Xt )Zτ,m

t |
]
<∞, to the m-th order by

ρ
τ,m
t (ϕ) = Ẽ

[
ϕ(Xt )Zτ,m

t
��Yt ]

and

π
τ,m
t (ϕ) =

ρ
τ,m
t (ϕ)
ρ
τ,m
t (1)

. (7)

It remains to show that the achieved discretisation is indeed of order m.

2.2.4 Order of approximation for the filtering functionals

In the frameworkdeveloped thus far, we can state the main result of [5] which justifies

the construction and proves the high order approximation. To this end, we consider

the Lp-norms ‖·‖Lp = Ẽ[|·|p]1/p, p ≥ 1.

Theorem 1 (Theorem 2.3 in [5])

Let m be a positive integer, let t > 0, let ϕ be an (m + 1)-times continuously dif-

ferentiable function with at most polynomial growth and assume further that the

coefficients of the partially observed system (X,Y ) in (1) satisfy that

◦ f is bounded and max{2,2m−1}-times continuously differentiable with bounded

derivatives,

◦ σ is bounded and 2m-times continuously differentiable with bounded derivatives,

◦ h is bounded and (2m + 1)-times continuously differentiable with bounded

derivatives, and that

◦ X0 has moments of all orders.

Then there exist positive constants δ0 and C, such that for all partitions τ ∈ Π(t)
with meshsize δ < δ0 we have that

��ρt (ϕ)− ρτ,mt (ϕ)��L2 ≤ Cδm.

Moreover, there exist positive constants δ̄0 and C̄, such that for all partitions τ ∈ Π(t)
with meshsize δ < δ̄0,

E
[��πt (ϕ)− πτ,mt (ϕ)��] ≤ C̄δm.

Remark 2 Under the above assumption that h is bounded and ϕ has at most polyno-

mial growth, the required condition from Theorem 2.4 in [5] that there exists ε > 0

such that sup{τ∈Π(t ):δ<δ0 }
��πτ,mt (ϕ)��L2+ε <∞ holds.

3 Robustness of the approximation

The classical robustness of the filter as in Theorem 5.12 in [1] states that for every

t > 0 and bounded Borel measurable function ϕ the filter πt (ϕ) can be represented
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as a function of the observation path

Y[0,t](ω) = {Ys (ω) : s ∈ [0, t]}, ω ∈ Ω.

In particular, Y[0,t] is here a path-valued random variable. The precise meaning of

robustness is then that there exists a unique bounded Borel measurable function F t,ϕ

on the path spaceC([0, t];RdY ), that is the space of continuous RdY -valued functions

on [0, t], with the properties that

i) P-almost surely,

πt (ϕ) = F t,ϕ (Y[0,t])

and

ii) F t,ϕ is continuous with respect to the supremum norm1.

The volume [1] contains further details on the robust representation. In the present

paper, we establish the analogous result for the discretised filter π
τ,m
t (ϕ) from (7). It

is formulated as follows.

Theorem 2 Let t > 0, τ = {t0, . . . , tn} ∈ Π(t), let m be a positive integer and

let ϕ be a bounded Borel measurable function. Then there exists a function

Fτ,m
ϕ : C([0, t];RdY )→ R with the properties that

i) P-almost surely,

π
τ,m
t (ϕ) = Fτ,m

ϕ (Y[0,t])

and

ii) for every two boundedpaths y1, y2 ∈C([0, t];RdY ) there exists a positive constant

C such that ��Fτ,m
ϕ (y1)−Fτ,m

ϕ (y2)�� ≤ C‖ϕ‖∞‖y1 − y2‖∞.

Note that Theorem 2 implies the following statement in the total variation norm.

Corollary 1 Let t > 0, τ = {t0, . . . , tn} ∈ Π(t), and let m be a positive integer. Then,

for every two bounded paths y1, y2 ∈ C([0, t];RdY ) there exists a positive constant C
such that

��πτ,m,y1

t − π
τ,m,y2

t
��TV = sup

ϕ∈Bb, ‖ϕ ‖∞≤1

��Fτ,m
ϕ (y1)−Fτ,m

ϕ (y2)�� ≤ C‖y1 − y2‖∞,

where Bb is the set of bounded and Borel measurable functions.

Remark 3 A natural question that arises in this context is to seek the rate of pathwise

convergence of Fτ,m
ϕ to Fϕ (defined as the limit of Fτ,m

ϕ when the meshsize goes to

zero) as functions on the path space. The rate of pathwise convergence is expected to

be dependent on the Hölder constant of the observation path. Therefore, it is expected

to be not better than 1
2
− ε for a semimartingale observation. The absence of high

order iterated integrals of the observation process in the construction of Fτ,m
ϕ means

1 For a subset D ⊆ Rl and a function ψ : D → Rd we set ‖ψ ‖∞ = maxi=1, . . .,d ‖ψi ‖∞ =

maxi=1, . . .,d supx∈D |ψi (x) |
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that one cannot obtain pathwise high order approximations based on the work in

[5]. Such approximations will no longer be continuous in the supremum norm. Thus

we need to consider rough path norms in this context. In a different setting, Clark

showed in the earlier paper [3] that one cannot construct pathwise approximations

of solutions of SDEs by using only increments of the driving Brownian motion.

In the following and final part of the paper, we exhibit the proof of Theorem 2.

4 Proof of the robustness of the approximation

We begin by constructing what will be the robust representation. Consider, for all

y ∈ C([0, t];RdY ),

Ξ
τ,m
t (y) =

n−1∑
j=0

{
κ

0,m
j
+

〈
η

0,m
j

(t j+1), ytj+1

〉
−
〈
η

0,m
j

(t j ), ytj
〉
−

∫ tj+1

tj

〈
ys,dη

0,m
j

(s)
〉}

=

n−1∑
j=0

{
κ

0,m
j
+

〈
η

0,m
j

(t j+1), ytj+1

〉
−
〈
h(Xtj ), ytj

〉
−

∫ tj+1

tj

〈
ys,dη

0,m
j

(s)
〉}

=

〈
h(Xtn ), ytn

〉
−
〈
h(Xt0 ), yt0

〉

+

n−1∑
j=0

{
κ

0,m
j
+

〈
η

0,m
j

(t j+1)− h(Xtj+1
), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

0,m
j

(s)
〉}

and further, for m > 2,

Mτ,m
j

(y) = κ2,m
j
+

〈
η

2,m
j

(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη2,m

j
(s)
〉

so that we can define

Ξ̄
τ,m
t (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ξ
τ,m
t (y), if m = 1,2

Ξ
τ,2
t (y)+

n−1∑
j=0

Γm,(tj+1−tj )
(
Mτ,m

j
(y)
)
, if m > 2

.

Furthermore, set

Z
τ,m
t (y) = exp

(
Ξ̄
τ,m
t (y)

)
.

Example 1 The robust approximation for m = 1 and m = 2 are given as follows.

First, if m = 1, then
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Ξ
τ,1
t (y) =

n−1∑
j=0

{
κ

0,1
j
+

〈
η

0,1
j
(t j+1), ytj+1

〉
−
〈
h(Xtj ), ytj

〉
−

∫ tj+1

tj

〈
ys,dη

0,1
j
(s)
〉}

=

n−1∑
j=0

{
−

1

2
〈h, h〉(Xtj )(t j+1− t j )+

〈
h(Xtj ), ytj+1

− ytj
〉}

and also Ξ̄
τ,1
t (y) = Ξτ,1t (y) so thatZ

τ,1
t (y) = exp

(
Ξ
τ,1
t (y)

)
. If m = 2, then

Ξ
τ,2
t (y) = Ξτ,1t (y)+

n−1∑
j=0

{
κ

1,2
j
+

〈
η

1,2
j
(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

1,2
j
(s)
〉}

= Ξ
τ,1
t (y)−

∑
α∈M1

n−1∑
j=0

1

2
Lα〈h, h〉(Xtj )

∫ tj+1

tj

Vα
s −V

α
tj

ds

+

∑
α∈M1

n−1∑
j=0

∫ tj+1

tj

〈
Lαh(Xtj ), ytj+1

− ys
〉
dVα

s .

Therefore, also Ξ̄
τ,2
t (y) = Ξτ,2t (y) so thatZ

τ,2
t (y) = exp

(
Ξ
τ,2
t (y)

)
. �

First, we show that the newly constructedZ
τ,m
t is locally bounded.

Lemma 1 Let t > 0, let τ = {t0, . . . , tn} ∈ Π(t) be a partition with mesh size δ and

let m be a positive integer. Then, for all R > 0, p ≥ 1 there exists a positive constant

Bp,R such that

sup
‖y ‖∞≤R

��Zτ,m
t (y)��Lp ≤ Bp,R .

Proof Notice that, by Remark 1, in the case m ≥ 2, we have for all y ∈ C([0, t];RdY )
that

Ξ̄
τ,m
t (y) ≤ Ξτ,2t (y)+

nδ
(2m−1)1/2m

.

This implies that for all y ∈ C([0, t];RdY ),

Z
τ,m
t (y) = exp

(
Ξ̄
τ,m
t (y)

)
≤ exp

(
Ξ
τ,2
t (y)

)
exp

( nδ
(2m−1)1/2m

)
.

For m = 1, we clearly have Z
τ,1
t (y) = exp

(
Ξ
τ,1
t (y)

)
. Hence, it suffices to show the

result for m = 1,2 only. We have

Ξ
τ,2
t (y) = Ξτ,1t (y)+

n−1∑
j=0

{
κ

1,2
j
+

〈
η

1,2
j
(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

1,2
j
(s)
〉}
.

Now, by the triangle inequality, boundedness of y, and boundedness of h, we get

��Ξτ,1t (y)�� = ����
n−1∑
j=0

{
κ

0,1
j
+

〈
η

0,1
j
(t j+1), ytj+1

〉
−
〈
h(Xtj ), ytj

〉
−

∫ tj+1

tj

〈
ys,dη

0,1
j
(s)
〉}����
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=

����
n−1∑
j=0

{
κ

0,1
j
+

〈
h(Xtj ), ytj+1

− ytj
〉}����

=

����
n−1∑
j=0

{
−

1

2
〈h(Xtj ), h(Xtj )〉(t j+1− t j )+ 〈h(Xtj ), ytj+1

− ytj 〉
}����

≤
tdY ‖h‖2∞

2
+2R‖h‖∞ = C0,

where we denote the final constant by C0. Furthermore, by the triangle inequality,

boundedness of y, and boundedness of h and its derivatives,

����
n−1∑
j=0

{
κ

1,2
j
+

〈
η

1,2
j
(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

1,2
j
(s)
〉}����

=

∑
α∈M1

{����
n−1∑
j=0

1

2
Lα〈h, h〉(Xtj )

∫ tj+1

tj

Vα
s −V

α
tj

ds

+

n−1∑
j=0

∫ tj+1

tj

〈
Lαh(Xtj ), ytj+1

− ys
〉
dVα

s

����
}

≤
∑

α∈M1\{0}

{����
n−1∑
j=0

∫ tj+1

tj

1

2
Lα〈h, h〉(Xtj )(t j+1− s)+

〈
Lαh(Xtj ), ytj+1

− ys
〉
dVα

s

����
}

+

����
n−1∑
j=0

∫ tj+1

tj

1

2
L0〈h, h〉(Xtj )(s− t j )+

〈
L0h(Xtj ), ytj+1

− ys
〉
ds
����

≤
∑

α∈M1\{0}

{����
n−1∑
j=0

∫ tj+1

tj

1

2
Lα〈h, h〉(Xtj )(t j+1− s)+

〈
Lαh(Xtj ), ytj+1

− ys
〉
dVα

s

����
}

+

1

2
δt‖L0〈h, h〉‖∞+2dYRt‖L0h‖∞

= C1+

∑
α∈M1\{0}

{����
∫ t

0

1

2
Lα〈h, h〉(X �s�)(�s� − s)+

〈
Lαh(X �s� ), y �s� − ys

〉
dVα

s

����
}
.

Here, C1 is a constant introduced for conciseness. Then,

��Zτ,2
t (y)��Lp

=

����Zτ,1
t (y) exp

(n−1∑
j=0

{
κ

1,2
j
−
〈
η

1,2
j
(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,dη

1,2
j
(s)
〉})����Lp

≤ exp
(
C0+C1

)
�����exp
( ∑
α∈M1\{0}

{����
∫ t

0

1

2
Lα〈h, h〉(X �s�)(�s� − s)+

〈
Lαh(X �s� ), y �s� − ys

〉
dVα

s

����
})�����Lp
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<∞.

The lemma is thus proved. �

In analogy to the filter, we define the functions

Gτ,m
ϕ (y) = Ẽ[ϕ(Xt )Zτ,m

t (y)]

and

Fτ,m
ϕ (y) =

Gτ,m
ϕ (y)

Gτ,m

1
(y)
=

Ẽ[ϕ(Xt )Zτ,m
t (y)]

Ẽ[Z
τ,m
t (y)]

.

Lemma 2 Let τ ∈ Π(t) be a partition, let m be a positive integer and let ϕ be a

bounded Borel measurable function. Then the functions Gτ,m
ϕ : C([0, t];RdY ) → R

and Fτ,m
ϕ : C([0, t];RdY )→ R are locally Lipschitz continuous and locally bounded.

Specifically, for every two paths y1, y2 ∈ C([0, t];RdY ) such that there exists a real

number R > 0 with ‖y1‖∞ ≤ R and ‖y2‖∞ ≤ R, there exist constants LG , MG , LF ,

and MF such that

��Gτ,m
ϕ (y1)−Gτ,m

ϕ (y2)�� ≤ LG ‖ϕ‖∞‖y1 − y2‖∞ and ��Gτ,m
ϕ (y1)�� ≤ MG ‖ϕ‖∞

and

��Fτ,m
ϕ (y1)−Fτ,m

ϕ (y2)�� ≤ LF ‖ϕ‖∞‖y1 − y2‖∞ and ��Fτ,m
ϕ (y1)�� ≤ MF ‖ϕ‖∞ .

Proof We first show the results for Gτ,m
ϕ . Note that

��Zτ,m
t (y1)−Zτ,m

t (y2)�� ≤ (Zτ,m
t (y1)+Zτ,m

t (y2)
)��Ξ̄τ,mt (y1)− Ξ̄τ,mt (y2)��.

Then, by the Cauchy-Schwarz inequality, for all p ≥ 1 we have

��ϕ(Xt )Zτ,m
t (y1)− ϕ(Xt )Zτ,m

t (y2)��Lp ≤ 2B2p,R ‖ϕ‖∞��Ξ̄τ,mt (y1)− Ξ̄τ,mt (y2)��L2p .

(8)

Thus, for m > 2, we can exploit the effect of the truncation function and, similarly to

the proof of Lemma 1, it suffices to show the result for m = 1,2. To this end, consider

for all q ≥ 1,

��Ξτ,2t (y1)−Ξτ,2t (y2)��Lq ≤ ��Ξτ,1t (y1)−Ξτ,1t (y2)��Lq

+

�����
n−1∑
j=0

{〈
η

1,2
j
(t j+1), y1(t j+1)− y2(t j+1)

〉
−

∫ tj+1

tj

〈
y1(s)− y2(s),dη1,2

j
(s)
〉}�����Lq

.

First, we obtain for all q ≥ 1,
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��Ξτ,1t (y1)−Ξτ,1t (y2)��Lq =

�����
n−1∑
j=0

〈h(Xtj ), (y1(t j+1)− y2(t j+1))− (y1(t j )− y2(t j ))〉
�����Lq

≤ 2dY ‖h‖∞‖y1 − y2‖∞.

And second we have for all q ≥ 1 that

�����
n−1∑
j=0

{∫ tj+1

tj

〈
(y1(t j+1)− y1(s))− (y2(t j+1)− y2(s)),dη1,2

j
(s)
〉}�����Lq

≤

n−1∑
j=0

���������〈L0h(Xtj ), y1(t j+1)− y2(t j+1)
〉
(t j+1− t j )

����
+

����
∫ tj+1

tj

〈
L0h(Xtj ), y1(s)− y2(s)

〉
ds
����

+

∑
α∈M1\{0}

����〈Lαh(Xtj ), y1(t j+1)− y2(t j+1)
〉(
Vα
tj+1
−Vα

tj

) ����
+

����
∫ tj+1

tj

〈
Lαh(Xtj ), y1(s)− y2(s)

〉
dVα

s

���������Lq

≤

[
C̄1+ C̄2

n−1∑
j=0

∑
α∈M1\{0}

‖Vα
tj+1
−Vα

tj
‖Lq

]
‖y1 − y2‖∞

≤ C‖y1 − y2‖∞

This and Lemma 1 imply that Gτ,m
ϕ is locally Lipschitz and locally bounded. To

show the result for Fτ,m
ϕ we need to establish that 1/Gτ,m

1
is locally bounded. We

have, using Jensen’s inequality, that for m ≥ 2

Gτ,m

1
= Ẽ
[
Z

τ,m
t

]
≥ exp

(
Ẽ
[
Ξ̄
τ,m
t

] )
≥ exp

(
Ẽ
[
Ξ
τ,2
t

] )
exp

(
−

nδ
(2m−1)1/2m

)

and for m = 1 clearly

Gτ,1

1
= Ẽ
[
Z

τ,1
t

]
≥ exp

(
Ẽ
[
Ξ
τ,1
t

] )
.

Since the quantities Ẽ
[
Ξ
τ,1
t

]
and Ẽ

[
Ξ
τ,2
t

]
are finite, the lemma is proved. �

In the following, given t > 0, we set for every γ ∈ (0,1/2),

Hγ =

⎧⎪⎨⎪⎩ y ∈ C([0, t];RdY ) : sup
s1,s2∈[0,t]

‖ys1
− ys2

‖∞

|s1 − s2 |γ
<∞

⎫⎪⎬⎪⎭ ⊆ C([0, t];RdY )

and recall that Y[0,t] : Ω→ C([0, t];RdY ) denotes the random variable in path space

corresponding to the observation process Y .



94 Dan Crisan, Alexander Lobbe, and Salvador Ortiz-Latorre

Lemma 3 For all t > 0 and γ ∈ (0,1/2), we have P̃-almost surely that Y[0,t] ∈ Hγ.

Proof Recall that, under P̃, the observation processY is a Brownian motion and, by

the Brownian scaling property, it suffices to show the result for t = 1. Therefore, let

γ ∈ (0,1/2) and note that for all δ ∈ (0,1] we have

sup
s1,s2∈[0,1]

‖Ys1
−Ys2
‖∞

|s1 − s2 |γ
=max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ sup
s1,s2∈[0,1]
|s1−s2 |≤δ

‖Ys1
−Ys2
‖∞

|s1 − s2 |γ
, sup
s1,s2∈[0,1]
|s1−s2 |≥δ

‖Ys1
−Ys2
‖∞

|s1− s2 |γ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
The second element of the maximum above is easily bounded, P̃-almost surely, by

the sample path continuity. For the first element, note that there exists δ0 ∈ (0,1)
such that for all δ ∈ (0, δ0],

δγ ≥
√

2δ log(1/δ).

Therefore, it follows that P̃-almost surely,

sup
s1,s2∈[0,1]
|s1−s2 |≤δ0

‖Ys1
−Ys2
‖∞

|s1 − s2 |γ
≤ sup

s1,s2∈[0,1]
|s1−s2 |≤δ0

‖Ys1
−Ys2
‖∞√

2|s1− s2 | log(1/|s1− s2 |)
.

The Lévy modulus of continuity of Brownian motion further ensures that P̃-almost

surely,

limsup
δ↓0

sup
s1,s2∈[0,1]
|s1−s2 |≤δ

‖Ys1
−Ys2
‖∞√

2δ log(1/δ)
= 1.

The Lemma 3 thus follows. �

Lemma 4 Let τ = {0 = t1 < . . . < tn = t} ∈ Π(t) be a partition, let j ∈ {0, . . . ,n−1}

and let c be a positive integer. Then, there exists a version of the stochastic integral

C([0, t];RdY )×Ω � (y,ω) �→
∫ tj+1

tj

〈ys,dη
c,c+1
j

(s,ω)〉 ∈ R

such that it is equal onHγ ×Ω to a B(C([0, t];RdY ))×F -measurable mapping.

Proof For k a positive integer, define for y ∈ C([0, t];RdY ),

J
c,k
j

(y) =
k−1∑
i=0

〈
ysi, j ,

(
η
c,c+1
j

(si+1, j )− ηc,c+1
j

(si, j )
)〉
,

where si, j =
i(tj+1−tj )

k
+ t j , i = 0, . . . , k. Furthermore, we set �s� = si, j for s ∈

[
i(tj+1−tj )

k
+ t j,

(i+1)(tj+1−tj )
k

+ t j ). Then, for y ∈ Hγ, we have

Ẽ

[(
J

c,2l

j
(y)−

∫ tj+1

tj

〈ys,dη
c,c+1
j

(s)〉
)2]
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= Ẽ

[ (∫ tj+1

tj

〈y �s� − ys,dη
c,c+1
j

(s)〉
)2]

= Ẽ

[ ( ∑
α∈Mc

dY∑
i=0

∫ tj+1

tj

(yi
�s�
− yis)L

αhi (Xtj ) dIα(1)tj,s
)2]

≤ (dV +1)dY
dY∑
i=0

∑
α∈Mc

Ẽ

[ (∫ tj+1

tj

(yi
�s�
− yis)L

αhi (Xtj ) dIα(1)tj,s
)2]

= (dV +1)dY
dY∑
i=0

∑
α∈Mc

α|α |�0

Ẽ

[∫ tj+1

tj

(
(yi�s� − y

i
s)L

αhi (Xtj )
)2

d〈Iα(1)tj, ·〉s
]

+ (dV +1)dY
dY∑
i=0

∑
α∈Mc

α|α |=0

Ẽ

[(∫ tj+1

tj

(yi
�s�
− yis)L

αhi (Xtj ) d
[∫ s

tj

Iα−(1)tj,rdr
] )2]

≤ (dV +1)dY
K (t j+1− t j )2γ

22lγ
max
α∈Mc

‖Lαh(Xtj )‖∞
{ dY∑

i=0

∑
α∈Mc

α|α |�0

Ẽ

[∫ tj+1

tj

(Iα−(1)tj,s )
2 ds

]

+

dY∑
i=0

∑
α∈Mc

α|α |=0

Ẽ

[ (∫ tj+1

tj

Iα−(1)tj,s ds
)2]}

≤
(dV +1)dYCK (t j+1− t j )2γ

22lγ
,

Where the constant C is independent of l. Thus, by Chebyshev’s inequality, we get

for all ε > 0 that

P̃
(����J c,2l

j
(y)−

∫ tj+1

tj

〈ys,dη
c,c+1
j

(s)〉
���� > ε) ≤ 1

ε2

(dV +1)dYCK (t j+1 − t j )2γ

22lγ
.

However, the bound on the right-hand side is summable over l so that we conclude

using the first Borel-Cantelli Lemma that, for all ε > 0,

P̃
(
limsup
l→∞

����J c,2l

j
(y)−

∫ tj+1

tj

〈ys,dη
c,c+1
j

(s)〉
���� > ε) = 0.

Thus, for all y ∈ Hγ, the integral J
c,k
j

(y) converges P̃-almost surely to the integral∫ tj+1

tj
〈ys,dη

c,c+1
j

(s)〉. Hence, we can define the limit onHγ ×Ω to be

J c
j (y)(ω) = limsup

l→∞

J
c,l
j

(y)(ω); (y,ω) ∈ Hγ ×Ω.

Since the mapping
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C([0,T ];RdY )×Ω � (y,ω) �→ limsup
l→∞

J
c,l
j

(y)(ω) ∈ R

is jointly B(C([0,T ];RdY )) ⊗F measurable the lemma is proved. �

It turns out that proving the robustness result is simplified by first decoupling the

processes X and Y in the following manner. Let (Ω̊, F̊ , P̊) be an indentical copy of

the probability space (Ω,F , P̃). Then

G̊τ,m
ϕ (y) = E̊[ϕ(X̊t )Z̊τ,m

t (y)]

is the corresponding representation of Gτ,m
ϕ (y) in the new space, where Z̊

τ,m
t (y) =

exp( ˚̄
Ξ
τ,m
t (y)) with

Ξ̊
τ,m
t (y) =

n−1∑
j=0

κ̊
0,m
j
+

〈
η̊

0,m
j

(t j+1), ytj+1

〉
−
〈
h(X̊tj ), ytj

〉
−

∫ tj+1

tj

〈
ys, dη̊

0,m
j

(s)
〉

and, for m > 2,

M̊τ,m
j

(y) = κ̊2,m
j
−
〈
η̊

2,m
j

(t j+1), ytj+1

〉
−

∫ tj+1

tj

〈
ys,d η̊2,m

j
(s)
〉
,

so that, finally,

˚̄
Ξ
τ,m
t (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ξ̊
τ,m
t (y), if m = 1,2

Ξ̊
τ,2
t (y)+

n−1∑
j=0

Γm,(tj+1−tj )
(
M̊τ,m

j
(y)
)
, if m > 2.

Moreover, with J̊ c
j
(y) corresponding to Lemma 4 we can write for y ∈ Hγ,

Ξ̊
τ,m
t (y) =

n−1∑
j=0

κ̊
0,m
j
+

〈
η̊

0,m
j

(t j+1), ytj+1

〉
−
〈
h(X̊tj ), ytj

〉

−

m−1∑
c=0

n−1∑
j=0

J̊ c
j (y).

In the same way we get, mutatis mutandis, the expression for ˚̄
Ξ
τ,m
t (y) onHγ. Now,

we denote by

(Ω̌, F̌ , P̌) = (Ω× Ω̊,F ⊗ F̊ , P̃⊗ P̊)

the product probability space. In the following we lift the processes η̊ andY from the

component spaces to the product space by writingY(ω,ω̊) =Y (ω) and η̊
c,c+1
j

(ω,ω̊) =
η̊
c,c+1
j

(ω̊) for all (ω,ω̊) ∈ Ω̌.
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Lemma 5 Let c be a positive integer and let j ∈ {0, . . . ,n}. Then there exists a nullset

N0 ∈ F such that the mapping (ω,ω̊) �→ J̊ c
j
(Y[0,t](ω))(ω̊) coincides on (Ω\N0)×Ω̊

with an F̌ -measurable map.

Proof Notice first that the set

N0 = {ω ∈ Ω : Y[0,t](ω) �Hγ}

is clearly a member of F and we have that P̃(N0) = 0. With N0 so defined, the lemma

follows from the definition and measurability of (ω,ω̊) �→ J̊ c
j
(Y[0,t](ω))(ω̊). �

Lemma 6 Let c be a positive integer and j ∈ {0, . . . ,n}. Then we have P̌-almost surely

that ∫ tj+1

tj

〈Ys, dη̊c,c+1
j

(s)〉 = J̊ c
j
(Y[0,t]).

Proof Note that we can assume without loss of generality that dY = 1 because the

result follows componentwise. Then, let K > 0 and T = inf{s ∈ [0, t] : |Ys | ≤ K } to

define

YK
s = YsIs≤T +YT Is>T ; s ∈ [0, t].

Then Fubini’s theorem and Lemma 5 imply that

Ě

[(k−1∑
i=0

YK
si, j

(
η̊
c,c+1
j

(si+1, j )− η̊c,c+1
j

(si, j )
)
− J̊ c

j
(YK

[0,t](ω))
)2]

=

∫
Ω\N0

E̊
[ (
J̊

c,k
j

(YK
[0,t](ω))− J̊

c
j
(YK

[0,t](ω))
)2]

dP̃(ω)

Now, since the function s �→ YK
s (ω) is continuous and J̊ c

j
(YK

[0,t]
(ω)) is a version of

the integral
∫ tj+1

tj
YK
s (ω) dη̊

c,c+1
j

(s) we have for every ω ∈ Ω \ N0 that

lim
k→∞

E̊
[ (
J̊

c,k
j

(YK
[0,t](ω))− J̊

c
j
(YK

[0,t](ω))
)2]
= 0.

Moreover, clearly,

E̊
[ (
J̊

c,k
j

(YK
[0,t](ω))− J̊

c
j
(YK

[0,t](ω))
)2]
≤ 4K2E̊[η̊2

t ] <∞

So that we can conclude by the dominated convergence theorem that

lim
k→∞

Ě

[(k−1∑
i=0

YK
si, j

(
η
c,c+1
j

(si+1, j )− ηc,c+1
j

(si, j )
)
− J̊ c

j
(YK

[0,t](ω))
)2]

=

∫
Ω\N0

lim
k→∞

E̊
[ (
J̊

c,k
j

(YK
[0,t](ω))− J̊

c
j
(YK

[0,t](ω))
)2]

dP̃(ω) = 0

As K is arbitrary, the lemma is proved. �
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Finally, we are ready to show the main result, Theorem 2. We restate it here again,

in a slightly different manner which reflects the current line of argument.

Theorem 3 The random variable Fτ,m
ϕ (Y[0,t]) is a version of π

τ,m
t (ϕ).

Proof By the Kallianpur-Striebel formula it suffices to show that for all bounded

and Borel measurable functions ϕ we have P̃-almost surely

ρ
τ,m
t (ϕ) = Gτ,m

ϕ (Y[0,t]).

Furthermore, this is equivalent to showing that for all continuous and bounded

functions b : C([0, t];RdY )→ R the equality

Ẽ[ρ
τ,m
t (ϕ)b(Y[0,t])] = Ẽ[Gτ,m

ϕ (Y[0,t])b(Y[0,t])].

holds. As for the left-hand side we can write

Ẽ[ρ
τ,m
t (ϕ)b(Y[0,t])]

= Ẽ[ϕ(Xt )Zτ,m
t b(Y[0,t])]

= Ẽ[ϕ(Xt ) exp(ξ̄τ,mt )b(Y[0,t])]

= Ě[ϕ(X̊t ) exp( ˚̄ξ
τ,m
t )b(Y[0,t])]

= Ě[ϕ(X̊t ) exp(IBP( ˚̄ξ
τ,m
t ))b(Y[0,t])]

where IBP( ˚̄ξ
τ,m
t ) is given by the application of the integration by parts formula for

semimartingales as

IBP(ξ̊τ,mt ) =
n−1∑
j=0

IBP(ξ̊τ,mt )( j)

=

n−1∑
j=0

{
κ̊

0,m
j
+

〈
η̊

0,m
j

(t j+1),Ytj+1

〉
−
〈
h(X̊tj ),Ytj

〉
−

∫ tj+1

tj

〈
Ys,dη̊0,m

j
(s)
〉}

IBP( μ̊τ,m) ( j) = κ̊2,m
j
+

〈
η̊

2,m
j

(t j+1),Ytj+1

〉
−

∫ tj+1

tj

〈
Ys,dη̊2,m

j
(s)
〉

IBP( ˚̄ξ
τ,m
t ) ( j) =

⎧⎪⎨⎪⎩IBP(ξ̊
τ,m
t )( j), if m = 1,2

IBP(ξ̊τ,mt )( j)+ Γm,(tj+1−tj )
(
IBP( μ̊τ,m) ( j)

)
, if m > 2

.

And, on the other hand, the right-hand side is
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Ẽ[Gτ,m
ϕ (Y[0,t])b(Y[0,t])]

= Ẽ[ϕ(Xt )Zτ,m
t (Y[0,t])b(Y[0,t])]

= Ẽ[ϕ(Xt ) exp(Ξ̄τ,mt (Y[0,t]))b(Y[0,t])]

= Ẽ[E̊[ϕ(X̊t ) exp( ˚̄
Ξ
τ,m
t (Y[0,t]))]b(Y[0,t])]

= Ě[ϕ(X̊t ) exp( ˚̄
Ξ
τ,m
t (Y[0,t]))b(Y[0,t])],

where the last equality follows from Fubini’s theorem. As the representations coin-

cide, the theorem is thus proved. �
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Discrete-Time Portfolio Optimization under
Maximum Drawdown Constraint with Partial
Information and Deep Learning Resolution

Carmine de Franco, Johann Nicolle, and Huyên Pham

In Memory of Mark H Davis

Abstract We study a discrete-time portfolio selection problem with partial informa-

tion and maximum drawdown constraint. Drift uncertainty in the multidimensional

framework is modeled by a prior probability distribution. In this Bayesian frame-

work, we derive the dynamic programming equation using an appropriate change

of measure, and obtain semi-explicit results in the Gaussian case. The latter case,

with a CRRA utility function is completely solved numerically using recent deep

learning techniques for stochastic optimal control problems. We emphasize the in-

formative value of the learning strategy versus the non-learning one by providing

empirical performance and sensitivity analysis with respect to the uncertainty of the

drift. Furthermore, we show numerical evidence of the close relationship between

the non-learning strategy and a no short-sale constrained Merton problem, by illus-

trating the convergence of the former towards the latter as the maximum drawdown

constraint vanishes.

1 Introduction

This paper is devoted to the study of a constrained allocation problem in discrete

time with partial information. We consider an investor who is willing to maximize

the expected utility of her terminal wealth over a given investment horizon. The
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risk-averse investor is looking for the optimal portfolio in financial assets under

a maximum drawdown constraint. The maximum drawdown is a common metric

in finance and represents the largest drop in the portfolio value. Our framework

incorporates this constraint by setting a threshold representing the proportion of the

current maximum of the wealth process that the investor is willing to keep.

The expected rate of assets’ return (drift) is unknown, but information can be

learnt by progressive observation of the financial asset prices. The uncertainty about

the rate of return is modeled by a probability distribution, i.e., a prior belief on the

drift. To take into account the information conveyed by the prices, this prior will be

updated using a Bayesian learning approach.

An extensive literature exists on parameters uncertainty and especially on filtering

and learning techniques in a partial information framework. To cite just a few,

see [18], [20], [5], [16], [2], and [6]. Somme articles deal with risk constraints

in a portfolio allocation framework. For instance, paper [19] tackles dynamic risk

constraints and compares the continuous and discrete time trading while some papers

especially focus on drawdown constraints, see in particular seminal paper [11] or

[4]. More recently, the authors of [8] study infinite-horizon optimal consumption-

investment problem in continuous-time, and in paper [3], authors use forecasts of the

mean and covariance of financial returns from a multivariate hidden Markov model

with time-varying parameters to build the optimal controls.

As it is not possible to solve analytically our constrained optimal allocation

problem, we have applied a machine learning algorithm developed in [13] and

[1]. This algorithm, called Hybrid-Now, is particularly suited for solving stochastic

control problems in high dimension using deep neural networks.

Our main contributions to the literature is twofold: a detailed theoretical study

of a discrete-time portfolio selection problem including both drift uncertainty and

maximum drawdown constraint, and a numerical resolution using a deep learning

approach for an application to a model of three risky assets, leading to a five-

dimensional problem. We derive the dynamic programming equation (DPE), which is

in general of infinite-dimensional nature, following the change of measure suggested

in [9]. In the Gaussian case, the DPE is reduced to a finite-dimensional equation by

exploiting the Kalman filter. In the particular case of constant relative risk aversion

(CRRA) utility function, we reduce furthermore the dimensionality of the problem.

Then, we solve numerically the problem in the Gaussian case with CRRA utility

functions using the deep learning Hybrid-Now algorithm. Such numerical results

allow us to provide a detailed analysis of the performance and allocations of both

the learning and non-learning strategies benchmarked with a comparable equally-

weighted strategy. Finally, we assess the performance of the learning compared

to the non-learning strategy with respect to the sensitivity of the uncertainty of

the drift. Additionally, we provide empirical evidence of convergence of the non-

learning strategy to the solution of the classical Merton problem when the parameter

controlling the maximum drawdown vanishes.

The paper is organized as follows: Section 2 sets up the financial market model

and the associated optimization problem. Section 3 describes, in the general case,
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the change of measure and the Bayesian filtering, the derivation of the dynamic

programming equation and details some properties of the value function. Section

4 focuses on the Gaussian case. Finally, Section 5 presents the neural network

techniques used, and shows the numerical results.

2 Problem setup

On a probability space (Ω, F, P) equipped with a discrete filtration (Fk )k=0, ..., N

satisfying the usual conditions, we consider a financial market model with one

riskless asset assumed normalized to one, and d risky assets. The price process

(Si
k
)k=0,...,N of asset i ∈ [[1, d]] is governed by the dynamics

Si
k+1 = Si

k
eR

i
k+1, k = 0, . . . , N − 1, (1)

where Rk+1 = (R1
k+1
, . . . , RN

k+1
) is the vector of the assets log-return between time k

and k + 1, and modeled as:

Rk+1 = B + εk+1. (2)

The drift vector B is a d-dimensional random variable with probability distribution

(prior) μ0 of known mean b0 = E[B] and finite second order moment. Note that the

case of known drift B means that μ0 is a Dirac distribution. The noise ε = (εk )k
is a sequence of centered i.i.d. random vector variables with covariance matrix Γ

= E[εkε
′
k
], and assumed to be independent of B. We also assume the fundamental

assumption that the probability distribution ν of εk admits a strictly positive density

function g on Rd with respect to the Lebesgue measure.

The price process S is observable, and notice by relation (1) that R can be deduced

from S, and vice-versa. We will then denote by Fo =
{
F o
k

}
k=0, ..., N

the observation

filtration generated by the process S (hence equivalently by R) augmented by the

null sets of F, with the convention that for k = 0, F o
0

is the trivial algebra.

An investment strategy is anFo-progressively measurable processα = (αk )k=0, ..., N−1,

valued in Rd , and representing the proportion of the current wealth invested in each

of the d risky assets at each time k = 0, . . . , N − 1. Given an investment strategy α
and an initial wealth x0 > 0, the (self-financed) wealth process Xα evolves according

to

⎧⎪⎨⎪⎩
Xα
k+1 = Xα

k

(
1 + α′k

(
eRk+1 − �d

))
, k = 0, . . . , N − 1,

Xα
0 = x0.

(3)

where eRk+1 is the d-dimensional random variable with components
[
eRk+1

]
i
= eR

i
k+1

for i ∈ [[1, d]], and �d is the vector in Rd with all components equal to 1.

Let us introduce the process Zα
k

, as the maximum up to time k of the wealth

process Xα, i.e.,
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Zα
k := max

0≤�≤k
Xα
� , k = 0, . . . , N .

The maximum drawdown constraints the wealth Xα
k

to remain above a fraction

q ∈ (0, 1) of the current historical maximum Zα
k

. We then define the set of admissible
investment strategies Aq

0
as the set of investment strategies α such that

Xα
k ≥ qZα

k , a.s., k = 0, . . . , N .

In this framework, the portfolio selection problem is formulated as

V0 := sup
α∈Aq

0

E

[
U
(
Xα
N

)]
, (4)

where U is a utility function on (0,∞) satisfying the standard Inada conditions:

continuously differentiable, strictly increasing, concave on (0,∞) with U ′(0) = ∞
and U ′(∞) = 0.

3 Dynamic programming system

In this section, we show how Problem (4) can be characterized from dynamic pro-

gramming in terms of a backward system of equations amenable for algorithms. In a

first step, we will update the prior on the drift uncertainty, and take advantage of the

newest available information by adopting a Bayesian filtering approach. This relies

on a suitable change of probability measure.

3.1 Change of measure and Bayesian filtering

We start by introducing a change of measure under which R1,..., RN are mutually

independent, identically distributed random variables and independent from the drift

B, hence behaving like a noise. Following the methodology detailed in [9] we define

the σ-algebras

G0
k := σ(B, R1, . . . , Rk ), k = 0, . . . , N,

and G = (Gk )k the corresponding complete filtration. We then define a new proba-

bility measure P on (Ω,
∨N

k=1
Gk ) by

dP

dP





Gk := Λk, k = 0, . . . , N,

with
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Λk :=

k∏
�=1

g(R� )

g(ε� )
, k = 1, . . . , N, Λ0 = 1.

The existence of P comes from the Kolmogorov’s theorem since Λk is a strictly

positive martingale with expectation equal to one. Indeed, for all k = 1, ..., N ,

• Λk > 0 since the probability density function g is strictly positive

• Λk is Gk-adapted,

• As εk ⊥⊥ Gk−1, we have

E[Λk |Gk−1] = Λk−1E

[g(B + εk )

g(εk )


Gk−1

]
= Λk−1

∫
Rd

g(B + e)

g(e)
g(e)de = Λk−1

∫
Rd

g(z)dz = Λk−1.

Proposition Under P, (Rk )k=1,...,N , is a sequence of i.i.d. random variables, inde-

pendent from B, having the same probability distribution ν as εk . �

Proof. See Appendix 6.1. �

Conversely, we recover the initial measure P under which (εk )k=1,...,N is a se-

quence of independent and identically distributed random variables having proba-

bility density function g where εk = Rk − B. Denoting by Λk the Radon-Nikodym

derivative dP/dP restricted to the σ-algebra Gk :

dP

dP





Gk = Λk,

we have

Λk =

k∏
i=1

g(Ri − B)

g(Ri)
.

It is clear that, under P, the return and wealth processes have the form stated in

equations (2) and (3). Moreover, from Bayes formula, the posterior distribution of

the drift, i.e. the conditional law of B given the asset price observation, is

μk (db) := P
[
B ∈ db|F o

k

]
=
πk (db)

πk (Rd)
, k = 0, . . . , N, (5)

where πk is the so-called unnormalized conditional law

πk (db) := E
[
Λk�{B∈db } |F o

k

]
, k = 0, . . . , N .

We then have the key recurrence linear relation on the unnormalized conditional

law.

Proposition We have the recursive linear relation
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π� = ḡ(R� − ·)π�−1, � = 1, . . . , N, (6)

with initial condition π0 = μ0, where

ḡ(R� − b) =
g(R� − b)

g(R� )
, b ∈ Rd,

and we recall that g is the probability density function of the identically distributed

εk under P. �

Proof. See Appendix 6.2 . �

3.2 The static set of admissible controls

In this subsection, we derive some useful characteristics of the space of controls

which will turn out to be crucial in the derivation of the dynamic programming

system.

Given time k ∈ [[0, N]], a current wealth x = Xα
k
> 0, and current maximum wealth

z = Zα
k
≥ x that satisfies the drawdown constraint qz ≤ x at time k for an admissible

investment strategy α ∈ Aq
0
, we denote by Aq

k
(x, z) ⊂ Rd the set of static controls a

= αk such that the drawdown constraint is satisfied at next time k + 1, i.e. Xα
k+1
≥

qZα
k+1

. From the relation (3), and noting that Zα
k+1
= max[Zα

k
, Xα

k+1
], this yields

Aq
k

(x, z) ={
a ∈ Rd : 1 + a′

(
eRk+1 − �d

) ≥ q max
[ z

x
, 1 + a′

(
eRk+1 − �d

)]
a.s.
}
.

(7)

Recalling from Proposition 1, that the random variables R1, ..., RN are i.i.d. under P,

we notice that the set Aq
k

(x, z) does not depend on the current time k, and we will

drop the subscript k in the sequel, and simply denote by Aq (x, z).

Remembering that the support of ν, the probability distribution of εk , is Rd , the

following lemma characterizes more precisely the set Aq (x, z).

Lemma 1 For any (x, z) ∈ Sq :=
{
(x, z) ∈ (0,∞)2 : qz ≤ x ≤ z

}
, we have

Aq (x, z) =
{
a ∈ Rd+ : |a |

1
≤ 1 − q

z
x

}
,

where |a |
1
=
∑d

i=1
|ai | for a = (a1, . . . , ad) ∈ Rd+.

Proof. See Appendix 6.3. �

Let us prove some properties on the admissible set Aq (x, z).

Lemma 2 For any (x, z) ∈ Sq , the set Aq (x, z) satisfies the following properties:

1. It is decreasing in q: ∀q1 ≤ q2, Aq2 (x, z) ⊆ Aq1 (x, z),
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2. It is continuous in q,
3. It is increasing in x: ∀x1 ≤ x2, Aq (x1, z) ⊆ Aq (x2, z),
4. It is a convex set,
5. It is homogeneous: a ∈ Aq (x, z) ⇔ a ∈ Aq (λx, λz), for any λ > 0.

Proof. See Appendix 6.4. �

3.3 Derivation of the dynamic programming equation

The change of probability detailed in Subsection 3.1 allows us to turn the initial

partial information Problem (4) into a full observation problem as

V0 := sup
α∈Aq

0

E[U (Xα
N )] = sup

α∈Aq
0

E[ΛNU (Xα
N )]

= sup
α∈Aq

0

E

[
E
[
ΛNU (Xα

N )

F o
N

] ]
= sup

α∈Aq
0

E

[
U (Xα

N )πN (Rd)
]
, (8)

from Bayes formula, the law of conditional expectations, and the definition of the

unnormalized filter πN valued inM+, the set of nonnegative measures onRd . In view

of Equation (3), Proposition 1, and Proposition 2, we then introduce the dynamic

value function associated to Problem (8) as

vk (x, z, μ) = sup
α∈Aq

k
(x,z)

Jk (x, z, μ, α), k ∈ [[0, N]], (x, z) ∈ Sq, μ ∈ M+,

with

Jk (x, z, μ, α) = E
[
U
(
Xk,x,α
N

)
π
k,μ
N (Rd)

]
,

where Xk,x,α is the solution to Equation (3) on [[k, N]], starting at Xk,x,α
k

= x at

time k, controlled by α ∈ Aq
k

(x, z), and (π
k,μ
�

)�=k,...,N is the solution to (6) on

M+, starting from π
k,μ
k
= μ, so that V0 = v0(x0, x0, μ0). Here, Aq

k
(x, z) is the set

of admissible investment strategies embedding the drawdown constraint: Xk,x,α
�

≥
qZk,x,z,α

�
, � = k, . . . , N , where the maximum wealth process Zk,x,z,α follows the

dynamics: Zk,x,z,α
�+1

= max[Zk,x,z,α
�

, Xk,x,α
�+1

], � = k, . . . , N − 1, starting from Zk,x,z,α
k

= z at time k. The dependence of the value function upon the unnormalized filter μ
means that the probability distribution on the drift is updated at each time step from

Bayesian learning by observing assets price.

The dynamic programming equation associated to (8) is then written in backward

induction as
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⎧⎪⎪⎨⎪⎪⎩
vN (x, z, μ) = U (x)μ(Rd),

vk (x, z, μ) = sup
α∈Aq

k
(x,z)

E

[
vk+1

(
Xk,x,α
k+1
, Zk,x,z,α

k+1
, π

k,μ
k+1

)]
, k = 0, . . . , N − 1.

Recalling Proposition 2 and Lemma 1, this dynamic programming system is written

more explicitly as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
vN (x, z, μ) = U (x)μ(Rd), (x, z) ∈ Sq, μ ∈ M+,
vk (x, z, μ) = sup

a∈Aq (x,z)

E

[
vk+1

(
x
(
1 + a′

(
eRk+1 − �d

))
,

max
[
z, x
(
1 + a′

(
eRk+1 − �d

))]
, ḡ(Rk+1 − ·)μ

)]
,

(9)

for k = 0, . . . , N − 1. Notice from Proposition 1 that the expectation in the above

formula is only taken with respect to the noise Rk+1, which is distributed under P

according to the probability distribution ν with density g on Rd .

3.4 Special case: CRRA utility function

In the case where the utility function is of CRRA (Constant Relative Risk Aversion)

type, i.e.,

U (x) =
xp

p
, x > 0, for some 0 < p < 1, (10)

one can reduce the dimensionality of the problem. For this purpose, we introduce the

process ρ = (ρk )k defined as the ratio of the wealth over its maximum up to current

as:

ραk =
Xα
k

Zα
k

, k = 0, . . . , N .

This ratio process lies in the interval [q, 1] due to the maximum drawdown constraint.

Moreover, recalling (3), and observing that Zα
k+1
=max[Zα

k
, Xα

k+1
], together with the

fact that 1
max[z,x]

= min[ 1
z ,

1
x ], we notice that the ratio process ρ can be written in

inductive form as

ραk+1 = min
[
1, ραk

(
1 + α′k

(
eRk+1 − �d

))]
, k = 0, . . . , N − 1.

The following result states that the value function inherits the homogeneity prop-

erty of the utility function.

Lemma 3 For a utility function U as in (10), we have for all (x, z) ∈ Sq , μ ∈ M+,
k ∈ [[0, N]],

vk (λx, λz, μ) = λpvk (x, z, μ), λ > 0.



Portfolio Optimization with Partial Information and Maximum Drawdown Constraint 109

Proof. See Appendix 6.5. �

In view of the above Lemma, we consider the sequence of functions wk , k ∈
[[0, N]], defined by

wk (r, μ) = vk (r, 1, μ), r ∈ [q, 1], μ ∈ M+,
so that vk (x, z, μ) = zpwk ( xz , μ), and we call wk the reduced value function. From the

dynamic programming system satisfied by vk , we immediately obtain the backward

system for (wk )k as

⎧⎪⎪⎨⎪⎪⎩
wN (r, μ) = r p

p μ(Rd), r ∈ [q, 1], μ ∈ M+,
wk (r, μ) = sup

a∈Aq (r )

E

[
wk+1

(
min
[
1, r
(
1 + a′

(
eRk+1 − �d

))]
, ḡ(Rk+1 − ·)μ)],

(11)

for k = 0, . . . , N − 1, where

Aq (r) =
{
a ∈ Rd+ : a′�d ≤ 1 − q

r

}
.

We end this section by stating some properties on the reduced value function.

Lemma 4 For any k ∈ [[0, N]], the reduced value function wk is nondecreasing and
concave in r ∈ [q, 1].

Proof. See proof in Appendix 6.6. �

4 The Gaussian case

We consider in this section the Gaussian framework where the noise and the prior

belief on the drift are modeled according to a Gaussian distribution. In this special

case, the Bayesian filtering is simplified into the Kalman filtering, and the dynamic

programming system is reduced to a finite-dimensional problem that will be solved

numerically. It is convenient to deal directly with the posterior distribution of the

drift, i.e. the conditional law of the drift B given the assets price observation, also

called normalized filter. From (5) and Proposition 2, it is given by the inductive

relation

μk (db) =
g(Rk − b)μk−1(db)∫
Rd

g(Rk − b)μk−1(db)
, k = 1, . . . , N . (12)

4.1 Bayesian Kalman filtering

We assume that the probability law ν of the noise εk is Gaussian: N (0, Γ), and so

with density function
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g(r) = (2π)−
d
2 |Γ|− 1

2 e−
1
2
r′Γ−1r, r ∈ Rd . (13)

Assuming also that the prior distribution μ0 on the drift B is Gaussian with mean

b0, and invertible covariance matrix Σ0, we deduce by induction from (12) that the

posterior distribution μk is also Gaussian: μk ∼ N (B̂k, Σk ), where B̂k = E[B |F o
k

]

and Σk satisfy the well-known inductive relations:

B̂k+1 = B̂k + Kk+1(Rk+1 − B̂k ), k = 0, . . . , N − 1 (14)

Σk+1 = Σk − Σk (Σk + Γ)−1Σk, (15)

where Kk+1 is the so-called Kalman gain given by

Kk+1 = Σk (Σk + Γ)−1, k = 0, . . . , N − 1. (16)

We have the initialization B̂0 = b0, and the notation for Σk is coherent at time k = 0

as it corresponds to the covariance matrice of B. While the Bayesian estimation B̂k

of B is updated from the current observation of the log-return Rk , notice that Σk (as

well as Kk) is deterministic, and is then equal to the covariance matrix of the error

between B and its Bayesian estimation, i.e. Σk = E[(B − B̂k )(B − B̂k )′]. Actually,

we can explicitly compute Σk by noting from Equation (12) with g as in (13) and

μ0 ∼ N (b0, Σ0) that

μk ∼ e
− 1

2

(
b−
(
Σ−1

0
+Γ−1k

)−1 (
Γ−1∑k

j=1
R j+Σ

−1
0
b0

)) (
Σ−1

0
+Γ−1k

) (
b−
(
Σ−1

0
+Γ−1k

)−1 (
Γ−1∑k

j=1
R j+Σ

−1
0
b0

))

(2π)
d
2 |(Σ−1

0
+ Γ−1k)−1 | 12

.

By identification, we then get

Σk = (Σ−1
0 + Γ

−1k)−1 = Σ0(Γ + Σ0k)−1Γ. (17)

Moreover, the innovation process (ε̃k )k , defined as

ε̃k+1 = Rk+1 − E[Rk+1 |F o
k ] = Rk+1 − B̂k, k = 0, . . . , N − 1, (18)

is a Fo-adapted Gaussian process. Each ε̃k+1 is independent of F 0
k

(hence ε̃k ,

k = 1, . . . , N are mutually independent), and is a centered Gaussian vector with

covariance matrix:

ε̃k+1 ∼ N (0, Γ̃k+1

)
, with Γ̃k+1 = Σk + Γ.

We refer to [15] and [14] for these classical properties about the Kalman filtering

and the innovation process.

Remark 1 From (14), and (18), we see that the Bayesian estimator B̂k follows the

dynamics

⎧⎪⎨⎪⎩
B̂k+1 = B̂k + Kk+1 ε̃k+1, k = 0, . . . , N − 1

B̂0 = b0,
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which implies in particular that B̂k has a Gaussian distribution with mean b0, and

covariance matrix satisfying

Var(B̂k+1) = Var(B̂k ) + Kk+1(Σk + Γ)K ′k+1 = Var(B̂k ) + Σk (Σk + Γ)−1Σk .

Recalling the inductive relation (15) on Σk , this shows that Var(B̂k ) = Σ0 − Σk . Note

that, from Equation (15), (Σk )k is a decreasing sequence which ensures that Var(B̂k )

is positive semi-definite and is nondecreasing with time k. ♦

4.2 Finite-dimensional dynamic programming equation

From (18), we see that our initial portfolio selection Problem (4) can be reformulated

as a full observation problem with state dynamics given by

⎧⎪⎨⎪⎩ Xα
k+1
= Xα

k

(
1 + α′

k

(
eB̂k+ε̃k+1 − �d

))
,

B̂k+1 = B̂k + Kk+1 ε̃k+1, k = 0, . . . , N − 1.
(19)

We then define the value function on [[0, N]] × Sq × Rd by

ṽk (x, z, b) = sup
α∈Aq

k
(x,z)

E
[
U (Xk,x,b,α

N )
]
, k ∈ [[0, N]], (x, z) ∈ Sq, b ∈ Rd,

where the pair (Xk,x,b,α, B̂k,b) is the process solution to (19) on [[k, N]], starting from

(x, b) at time k, so that V0 = ṽ0(x0, x0, b0). The associated dynamic programming

system satisfied by the sequence (ṽk )k is

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
ṽN (x, z, b) = U (x), (x, z) ∈ Sq, b ∈ Rd,
ṽk (x, z, b) = sup

a∈Aq (x,z)

E

[
ṽk+1

(
x
(
1 + a′

(
eb+ε̃k+1 − �d

))
,

max
[
z, x
(
1 + a′

(
eb+ε̃k+1 − �d

))]
, b + Kk+1 ε̃k+1

)]
,

for k = 0, . . . , N − 1. Notice that in the above formula, the expectation is taken with

respect to the innovation vector ε̃k+1, which is distributed according to N (0, Γ̃k+1).

Moreover, in the case of CRRA utility functions U (x) = xp/p, and similarly as

in Section 3.4, we have the dimension reduction with

w̃k (r, b) = ṽk (r, 1, b), r ∈ [q, 1], b ∈ Rd,
so that ṽk (x, z, b) = zpw̃k ( xz , b), and this reduced value function satisfies the back-

ward system on [q, 1] × Rd:

⎧⎪⎪⎨⎪⎪⎩
w̃N (r, b) = r p

p , r ∈ [q, 1], b ∈ Rd,
w̃k (r, b) = sup

a∈Aq (r )

E

[
w̃k+1

(
min
[
1, r
(
1 + a′

(
eb+ε̃k+1 − �d

))]
, b + Kk+1 ε̃k+1

)]
,
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for k = 0, . . . , N − 1.

Remark 2 (No short-sale constrained Merton problem) In the limiting case when

q = 0, the drawdown constraint is reduced to a non-negativity constraint on the

wealth process, and by Lemma 1, this means a no-short selling and no borrowing

constraint on the portfolio strategies. When the drift B is also known, equal to b0,

and for a CRRA utility function, let us then consider the corresponding constrained

Merton problem with value function denoted by vM
k

, k = 0, . . . , N , which satisfies

the standard backward recursion from dynamic programming:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
vMN (x) =

xp

p
, x > 0,

vMk (x) = sup
a′�d ≤1

a∈[0,1]d

E

[
vMk+1

(
x
(
1 + a′

(
eb0+εk+1 − �d

))]
, k = 0, . . . , N − 1.

(20)

Searching for a solution of the form vM
k

(x) =Kk xp/p, with Kk ≥ 0 for all k ∈ [[0, N]],

we see that the sequence (Kk )k satisfies the recursive relation:

Kk = SKk+1, k = 0, . . . , N − 1,

starting from KN = 1, where

S := sup
a′�d ≤1

a∈[0,1]d

E

[(
1 + a′

(
eb0+ε1 − �d

))p]
,

by recalling that ε1, . . . , εN are i.i.d. random variables. It follows that the value

function of the constrained Merton problem, unique solution to the dynamic pro-

gramming system (20), is equal to

vMk (x) = SN−k xp

p
, k = 0, . . . , N,

and the constant optimal control is given by

aM
k = argmax

a′�≤1
a∈[0,1]d

E

[(
1 + a′

(
eR1 − �d

))p]
k = 0, . . . , N − 1.

♦

5 Deep learning numerical resolution

In this section, we exhibit numerical results to promote the benefits of learning

from new information. To this end, we compare the learning strategy (Learning) to

the non-learning one (Non-Learning) in the case of the CRRA utility function and
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the Gaussian distribution for the noise. The prior probability distribution of B is

the Gaussian distribution N (b0, Σ0) for Learning while it is the Dirac distribution

concentrated at b0 for Non-Learning.

We use deep neural network techniques to compute numerically the optimal

solutions for both Learning and Non-Learning. To broaden the analysis, in addition to

the learning and non-learning strategies, we have computed an ”admissible" equally

weighted (EW) strategy. More precisely, this EW strategy will share the quantity

Xk − qZk equally among the d assets. Eventually, we show numerical evidence

that the Non-Learning converges to the optimal strategy of the constrained Merton

problem, when the loss aversion parameter q vanishes.

5.1 Architectures of the deep neural networks

Neural networks (NN) are able to approximate nonlinear continuous functions, typ-

ically the value function and controls of our problem. The principle is to use a large

amount of data to train the NN so that it progressively comes close to the target

function. It is an iterative process in which the NN is tuned on a training set, then

tested on a validation set to avoid over-fitting. For more details, see for instance [12]

and [10].

The algorithm we use, relies on two dense neural networks: the first one is

dedicated to the controls (ANN ) and the second one to the value function (V FNN ).

Each NN is composed of four layers: an input layer, two hidden layers and an output

layer:

(i) The input layer is d+1-dimensional since it embeds the conditional expectations

of each of the d assets and the ratio of the current wealth to the current historical

maximum ρ.
(ii) The two hidden layers give the NN the flexibility to adjust its weights and biases

to approximate the solution. From numerical experiments, we see that, given

the complexity of our problem, a first hidden layer with d + 20 neurons and a

second one with d + 10 are a good compromise between speed and accuracy.

(iii) The output layer is d-dimensional for the controls, one for each asset representing

the weight of the instrument, and is one-dimensional for the value function. See

Figures 1 and 2 for an overview of the NN architectures in the case of d = 3

assets.
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Parameter ANN VFNN

Initializer uniform(0, 1) He_uniform

Regularizers L2 norm L2 norm

Activation functions Elu and Sigmoid for output layer Elu and Sigmoid for output layer

Optimizer Adam Adam

Learning rates: step N-1 5e-3 1e-3

steps k = 0,...,N-2 6.25e-4 5e-4

Scale 1e-3 1e-3

Number of elements in a training batch 3e2 3e2

Number of training batches 1e2 1e2

Size of the validation batches 1e3 1e3

Penalty constant 3e-1 NA

Number of epochs: step N-1 2e3 2e3

steps k = 0,...,N-2 5e2 5e2

Size of the training set: step N-1 6e7 6e7

steps k = 0,...,N-2 1.5e7 1.5e7

Size of the validation set: step N-1 2e6 2e6

steps k = 0,..., N-2 5e5 5e5

Table 1 Parameters for the neural networks of the controls ANN and the value function VFNN.

Fig. 1 ANN architecture with d = 3 assets Fig. 2 VFNN architecture with d = 3 assets

We follow the indications in [10] to setup and define the values of the various

inputs of the neural networks which are listed in Table 1.

To train the NN, we simulate the input data. For the conditional expectation B̂k , we

use its time-dependent Gaussian distribution (see Remark 1): B̂k ∼ N (b0, Σ0 − Σk ),

with Σk as in Equation (17). On the other hand, the training of ρ is drawn from

the uniform distribution between q and 1, the interval where it lies according to the

maximum drawdown constraint.

5.2 Hybrid-Now algorithm

We use the Hybrid-Now algorithm developped in [1] in order to solve numerically

our problem. This algorithm combines optimal policy estimation by neural networks
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and dynamic programming principle which suits the approach we have developped

in Section 4.

With the same notations as in Algorithm 1 detailed in the next insert, at time k,

the algorithm computes the proxy of the optimal control α̂k with ANN , using the

known function V̂k+1 calculated the step before, and uses VNN to obtain a proxy of

the value function V̂k . Starting from the known function V̂N := U at terminal time N ,

the algorithm computes sequentially α̂k and V̂k with backward iteration until time 0.

This way, the algorithm loops to build the optimal controls and the value function

pointwise and gives as output the optimal strategy, namely the optimal controls from

0 to N − 1 and the value function at each of the N time steps.

The maximum drawdown constraint is a time-dependent constraint on the max-

imal proportion of wealth to invest (recall Lemma 1). In practice, it is a constraint

on the sum of weights of each asset or equivalently on the output of ANN . For

that reason, we have implemented an appropriate penalty function that will reject

undesirable values:

GPenalty (A, r) = Kmax

(
|A|

1
≤ 1 − q

r
, 0
)
, A ∈ [0, 1]d, r ∈ [q, 1].
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This penalty function ensures that the strategy respects the maximum drawdown

constraint at each time step, when the parameter K is chosen sufficiently large.

Algorithm 1: Hybrid-Now
Input: the training distributions μUni f and μk

Gauss
;

� μUni f = U (q, 1)

� μk
Gauss

= N (b0, Σ0 − Σk )

Output:
- estimate of the optimal strategy (âk )N−1

k=0
;

- estimate of the value function
(
V̂k

)N−1

k=0
;

Set V̂N = U;

for k = N − 1, . . . , 0 do
Compute:

β̂k ∈ argmin

β∈R2d2+56d+283

E

[
GPenalty (ANN (ρk, B̂k ; β), ρk ) − V̂k+1

(
ρ
β
k+1
, B̂k+1

)]
where ρk ∼ μUni f , B̂k ∼ μkGauss

,

B̂k+1 = H̃k (B̂k, ε̃k+1) and ρ
β
k+1
= F
(
ρk, B̂k, ANN

(
ρk, B̂k ; β

)
, ε̃k+1

)
;

� F (ρ, b, a, ε ) = min
(
1, ρ
(
1 +
∑d

i=1
ai
(
eb

i+ε i − 1
)))

� H̃k (b, ε ) = b + Σ0(Γ + Σ0k)−1ε

Set âk = ANN

(
.; β̂k
)

;

� âk is the estimate of the optimal control at time k.

Compute:

θ̂k ∈ argmin

θ∈R2d2+54d+261

E

[(
V̂k+1

(
ρ
β̂k
k+1
, B̂k+1

)
− V FNN

(
ρk, B̂k ; θ

))2]
Set V̂k = V FNN

(
., θ̂k
)

;

� V̂k is the estimate of the value function at time k.

A major argument behind the choice of this algorithm is that, it is particularly

relevant for problems in which the neural network approximation of the controls and

value function at time k, are close to the ones at time k + 1. This is what we expect

in our case. We can then take a small learning rate for the Adam optimizer which

enforces the stability of the parameters’ update during the gradient-descent based

learning procedure.

5.3 Numerical results

In this section, we explain the setup of the simulation and exhibit the main results.

We have used Tensorflow 2 and deep learning techniques for Python developped in

[10]. We consider d = 3 risky assets and a riskless asset whose return is assumed
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Parameter Value

Number of risky assets d 3

Investment horizon in years T 1

Number of steps/rebalancing N 24

Number of simulations/trajectories Ñ 1000

Degree of the CRRA utility function p 0.8
Parameter of risk aversion q 0.7

Annualized expectation of the drift B
[
0.05 0.025 0.12

]
Annualized covariance matrix of the drift B

⎡⎢⎢⎢⎢⎢⎣
0.22 0 0

0 0.152 0

0 0 0.12

⎤⎥⎥⎥⎥⎥⎦
Annualized volatility of ε

[
0.08 0.04 0.22

]
Correlation matrix of ε

⎡⎢⎢⎢⎢⎢⎣
1 −0.1 0.2
−0.1 1 −0.25

0.2 −0.25 1

⎤⎥⎥⎥⎥⎥⎦
Annualized covariance matrix of the noise ε

⎡⎢⎢⎢⎢⎢⎣
0.0064 −0.00032 0.00352

−0.00032 0.0016 −0.0022

0.00352 −0.0022 0.0484

⎤⎥⎥⎥⎥⎥⎦
Table 2 Values of the parameters used in the simulation.

to be 0, on a 1-year investment horizon for the sake of simplicity. We consider 24

portfolio rebalancing during the 1-year period, i.e., one every two weeks. This means

that we have N = 24 steps in the training of our neural networks. The parameters

used in the simulation are detailed in Table 2.

First, we show the numerical results for the learning and the non-learning strate-

gies by presenting a performance and an allocation analysis in Subsection 5.3.1.

Then, we add the admissible constrained EW to the two previous ones and use

this neutral strategy as a benchmark in Subsection 5.3.2. Ultimately, in Subsection

5.3.3, we illustrate numerically the convergence of the non-learning strategy to the

constrained Merton problem when the loss aversion parameter q vanishes.

5.3.1 Learning and non-learning strategies

We simulate Ñ = 1000 trajectories for each strategy and exhibit the performance

results with an initial wealth x0 = 1. Figures 3 illustrates the average historical

level of the learning and non-learning strategies with a 95% confidence interval.

Learning outperforms significantly Non-Learning with a narrower confidence inter-

val revealing that less uncertainty surrounds Learning performance, thus yielding

less risk.

An interesting phenomenon, visible in Fig. 3, is the nearly flat curve for Learning

between time 0 and time 1. Indeed, whereas Non-Learning starts investing immedi-

ately, Learning adopts a safer approach and needs a first time step before allocating a

significant proportion of wealth. Given the level of uncertainty surrounding b0, this

first step allows Learning to fine-tune its allocation by updating the prior belief with
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the first return available at time 1. On the contrary, Non-Learning, which cannot

update its prior, starts investing at time 0.

Fig. 4 shows the ratio of Learning over Non-Learning. A ratio greater than one

means that Learning outperforms Non-Learning and underperforms when less than

one. It shows the significant outperformance of Learning over Non-Learning except

during the first period where Learning was not significantly invested and Non-

Learning had a positive return. Moreover, this graph reveals the typical increasing

concave curve of the value of information described in [17], in the context of

investment decisions and costs of data analytics, and in [6] in the resolution of

the Markowitz portfolio selection problem using a Bayesian learning approach.

Fig. 3 Historical Learning and Non-Learning

levels with a 95% confidence interval.

Fig. 4 Historical ratio of Learning over Non-

Learning levels.

Table 3 gathers relevant statistics for both Learning and Non-Learning such as:

average total performance, standard deviation of the terminal wealth XT , Sharpe ratio

computed as average total performance over standard deviation of terminal wealth.

The maximum drawdown (MD) is examined through two statistics: noting MDs̃
�

the

maximum drawdown of the �-th trajectory of a strategy s̃, the average MD is defined

as,

Avg MDs̃ =
1

Ñ

Ñ∑
�=1

MDs̃
�,

for Ñ trajectories of the strategy s̃, and the worst MD is defined as,

Worst MDs̃ = min
(
MDs̃

1, . . . ,MDs̃
Ñ

)
.

Finally, the Calmar ratio, computed as the ratio of the average total performance over

the average maximum drawdown, is the last statistic exhibited.

With the simulated dataset, Learning delivered, on average, a total performance

of 9.34% while Non-Learning only 6.40%. Integrating the most recent information

yielded a 2.94% excess return. Moreover, risk metrics are significantly better for

Learning than for Non-Learning. Learning exhibits a lower standard deviation of
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Statistic Learning Non-Learning Difference

Avg total performance 9.34% 6.40% 2.94%

Std dev. of XT 11.88% 16.67% -4.79%

Sharpe ratio 0.79 0.38 104.95%

Avg MD -1.53% -6.54% 5.01%

Worst MD -11.74% -27.18% 15.44%

Calmar ratio 6.12 0.98 525.26%

Table 3 Performance metrics: Learning and Non-Learning. The difference for ratios are computed

as relative improvement.

terminal wealth than Non-Learning (11.88% versus 16.67%), with a difference of

4.79%. More interestingly, the maximum drawdown is notably better controlled by

Learning than by Non-Learning, on average (−1.53% versus −6.54%) and in the

worst case (−11.74% versus −27.18%). This result suggests that learning from new

observations, helps the strategy to better handle the dual objective of maximizing

total wealth while controlling the maximum drawdown. We also note that learning

improves the Sharpe ratio by 104.95% and the Calmar ratio by 525.26%.

Fig. 5 and 6 focus more precisely on the portfolio allocation. The graphs of Fig.

5 show the historical average allocation for each of the three risky assets. First, none

of the strategies invests in Asset 2 since it has the lowest expected return according

to the prior, see Table 2. Whereas Non-Learning focuses on Asset 3, the one with the

highest expected return, Learning performs an optimal allocation between Asset 1

and Asset 3 since this strategy is not stuck with the initial estimate given by the prior.

Therefore, Learning invests little at time 0, then balances nearly equally both Assets

1 and 3, and then invests only in Asset 3 after time step 12. Instead, Non-Learning

is investing only in Asset 3, from time 0 until the end of the investment horizon.

Fig. 5 Historical Learning and Non-Learning asset allocations.

The curves in Fig. 6 recall each asset’s optimal weight, but the main features

are the colored areas that represent the average historical total percentage of wealth

invested by each strategy. The dotted line represents the total allocation constraint

they should satisfy to be admissible. To satisfy the maximum drawdown constraint,

admissible strategies can only invest in risky assets the proportion of wealth that,

in theory, could be totally lost. This explains why the non-learning strategy invests
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at full capacity on the asset that has the maximum expected return according to the

prior distribution.

We clearly see that both strategies satisfy their respective constraints. Indeed,

looking at the left panel, Learning is far from saturating the constraint. It has invested,

on average, roughly 10% of its wealth while its constraint was set around 30%. Non-

learning invests at full capacity saturating its allocation constraint. Remark that this

constraint is not a straight line since it depends on the value of the ratio: current

wealth over current historical maximum, and evolves according to time.

Fig. 6 Historical Learning and Non-Learning total allocations.

5.3.2 Learning, non-learning and constrained equally-weighted strategies

In this section, we add a simple constrained equally-weighted (EW) strategy to

serve as a benchmark for both Learning and Non-Learning. At each time step, the

constrained EW strategy invests, equally across the three assets, the proportion of

wealth above the threshold q.

Fig. 7 shows the average historical levels of the three strategies: Learning, Non-

Learning and constrained EW. We notice Non-Learning outperforms constrained

EW and both have similar confidence intervals. It is not surprising to see that Non-

Learning outperforms constrained EW since Non-Learning always bets on Asset 3,

the most performing, while constrained EW diversifies the risks equally among the

three assets.



Portfolio Optimization with Partial Information and Maximum Drawdown Constraint 121

Fig. 7 Historical Learning, Non-Learning and constrained EW (Const. EW) levels with a 95%

confidence interval.

Fig. 8 shows the ratio of Learning over constrained EW: it depicts the same concave

shape as Fig. 4. The outperformance of Non-Learning with respect to constrained

EW is plot in Fig. 9 and confirms, on average, the similarity of the two strategies.

Fig. 8 Ratio Learning over constrained EW

(Const. EW) according to time.

Fig. 9 Ratio Non-Learning over constrained EW

(Const. EW) according to time.

Table 4 collects relevant statistics for the three strategies. Learning clearly sur-

passes constrained EW: it outperforms by 5.49% while reducing uncertainty on

terminal wealth by 1.92% resulting in an improvement of 182.08% of the Sharpe

ratio. Moreover, it better handles maximum drawdown regarding both the average

and the worst case, exhibiting an improvement of 3.17% and 10.09% respectively,

enhancing the Calmar ratio by 647.56%.

The Non-Learning and the constrained EW have similar profiles. Even if Non-

Learning outperforms constrained EW by 2.5%, it has a higher uncertainty in ter-

minal wealth (+2.87%). This results in similar Sharpe ratios. Maximum drawdown,

both on average and considering the worst case are better handled by constrained EW

(−4.70% and −21.83% respectively) than by Non-Learning (−6.54% and −27.18%

respectively) thanks to the diversification capacity of constrained EW. The better per-
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Statistic Const. EW L NL L - Const. EW NL - Const. EW

Avg total performance 3.85% 9.34% 6.40% 5.49% 2.55%

Std dev. of XT 13.80% 11.88% 16.67% -1.92% 2.87%

Sharpe ratio 0.28 0.79 0.38 182.08% 37.63%

Avg MD -4.70% -1.53% -6.54% 3.17% -1.84%

Worst MD -21.83% -11.74% -27.18% 10.09% -5.34%

Calmar ratio 0.82 6.12 0.98 647.56% -19.56%

Table 4 Performance metrics: Constrained EW (Const. EW) vs Learning (L) and Non-Learning

(NL). The difference for ratios are computed as relative improvement.

formance of Non-Learning compensates the better maximum drawdown handling of

constrained EW, entailing a better Calmar ratio for Non-Learning 0.98 versus 0.82

for constrained EW.

5.3.3 Non-learning and Merton strategies

We numerically analyze the impact of the drawdown parameter q, and compare the

non-learning strategies (assuming that the drift is equal to b0), with the constrained

Merton strategy as described in Remark 2. Fig. 10 confirms that when the loss

aversion parameter q goes to zero, the non-learning strategy approaches the Merton

strategy.

Fig. 10 Wealth curves resulting from the Merton strategy and the non-learning strategy for different

values of q.

In terms of assets’ allocation, the Merton strategy saturates the constraint only

by investing in the asset with the highest expected return, Asset 3, while the non-

learning strategy adopts a similar approach and invests at full capacity in the same

asset. To illustrate this point, we easily see that the areas at the top and bottom-left

corner converge to the area at the bottom-right corner of Fig. 11.
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Fig. 11 Asset 3 average weights of the non-learning strategies with q ∈ {0.7, 0.4, 0.1} and the

Merton strategy.

As q vanishes, we observe evidence of the convergence of the Merton and the

non-learning strategies, materialized by a converging allocation pattern and resulting

wealth trajectories. It should not be surprising since both have in common not to

learn from incoming information conveyed by the prices.

5.4 Sensitivities analysis

In this subsection, we study the effect of changes in the uncertainty about the beliefs

of B. These beliefs take the form of an estimate b0 of B, and a degree of uncertainty

about this estimate, the covariance of Σ0 of B. For the sake of simplicity, we design Σ0

as a diagonal matrix whose diagonal entries are variances representing the confidence

the investor has in her beliefs about the drift. To easily model a change in Σ0, we

define the modified covariance matrix Σ̃ as

Σ̃unc := unc ∗ Σ0,

where unc > 0. From now on, the prior of B is N (b0, Σ̃unc).

A higher value of unc means a higher uncertainty materialized by a lower con-

fidence in the prior estimate of the expected return of B, b0. We consider learning

strategies with values of unc ∈ {1/6, 1, 3, 6, 12}. The value unc = 1 was used for

Learning in Subsection 5.3.
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Equation (2) implies that the returns’ probability distribution depends upon unc.

It implies that for each value of unc, we need to compute both Learning and Non-

Learning on the returns sample drawn from the same probability law to make relevant

comparisons.

Therefore, from a sample of a thousand returns paths’ draws, we plot in Fig. 12 the

average curves of the excess return of Learning over its associated Non-Learning,

for different values of the uncertainty parameter unc.

Fig. 12 Excess return of Learning over Non-Learning with a 95% confidence interval for different

levels of uncertainty.

Looking at Fig. 12, we notice that when uncertainty about b0 is low, i.e. unc = 1/6,

Learning is close to Non-Learning and unsurprisingly the associated excess return is

small. Then, as we increase the value of unc the curves steepen increasingly showing

the effect of learning in generating excess return.

Table 5 summarises key statistics for the ten strategies computed in this sec-

tion. When unc = 1/6, Learning underperforms Non-Learning. This is explained

by the fact that Non-Learning has no doubt about b0 and knows Asset 3 is the best

performing asset acoording to its prior, whereas Learning, even with low uncer-

tainty, needs to learn it generating a lag which explains the underperformance on

average. For values of unc ≥ 1 Learning outperforms Non-learning increasingly, as

can be seen on Fig. 13, at the cost of a growing standard deviation of terminal wealth.

The Sharpe ratio of terminal wealth is higher for Learning than for Non-Learning

for any value of unc. Nevertheless, an interesting fact is that the ratio rises from

unc = 1/6 to unc = 1, then reaches a level close to 0.8 for values of unc = 1, 3, 6
then decreases when unc = 12.

This phenomenon is more visible on Fig. 14 that displays the Sharpe ratio of termi-

nal wealth of Learning and Non-Learning according to the values of unc, and the

associated relative improvement. Clearly, looking at Figures 13 and 14, we remark
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unc = 1/6 unc = 1 unc = 3 unc = 6 unc = 12

Statistic L NL L NL L NL L NL L NL

Avg total performance 3.87% 4.35% 9.45% 6.00% 19.96% 10.25% 90.03% 16.22% 130.07% 30.44%

Std dev. of XT 5.81% 9.22% 12.10% 17.28% 25.01% 28.18 % 113.69% 41.24% 222.77% 70.84%

Sharpe ratio 0.67 0.47 0.78 0.35 0.80 0.36 0.79 0.39 0.58 0.43

Avg MD -2.51% -5.21% -1.40% -6.78% -1.90% -8.40% -2.68% -10.14% -3.58% -11.35%

Worst MD -7.64% -17.88% -5.46% -24.01% -7.99% -26.68% -15.62% -29.22% -16.98% -29.47%

Calmar ratio 1.54 0.83 6.77 0.89 10.49 1.22 33.65 1.60 36.32 2.68

Table 5 Performance and risk metrics: Learning (L) vs Non-Learning (NL) for different values of

uncertainty unc.

that while increasing unc gives more excess return, too high values of unc in the

model turn out to be a drag as far as Sharpe ratio improvement is concerned.

Fig. 13 Average total performance of Learning

(L) and Non-Learning (NL), and excess return,

for unc ∈ {1/6, 1, 3, 6, 12}.

Fig. 14 Sharpe ratio of terminal wealth of Learn-

ing (L) and Non-Learning (NL), and relative im-

provement, for unc ∈ {1/6, 1, 3, 6, 12}.

For any value of unc, Learning handles maximum drawdown significantly better

than Non-Learning whatever it is the average or the worst. This results in a better

performance per unit of average maximum drawdown (Calmar ratio), for Learning.

We also see that the maximum drawdown constraint is satisfied for every strategies

of the sample and for any value of unc since the worst maximum drawdown is always

above −30%, the lowest admissible value with a loss aversion parameter q set at 0.7.

Fig. 15 reveals how the average maximum drawdown behaves regarding the level of

uncertainty. Non-Learning maximum drawdown behaves linearly with uncertainty:

the wider the range of possible values of B the higher the maximum drawdown is on

average. It emphasizes its inability to adapt to an environment in which the returns

have different behaviors compared to their expectations. Learning instead, manages

to keep a low maximum drawdown for any value of unc. Given the previous remarks,

it is obvious that the gain in maximum drawdown from learning grows with the level

of uncertainty.
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Fig. 15 Average maximum

drawdown of Learning (L)

and Non-Learning (NL) and

the gain from learning for unc
∈ {1/6, 1, 3, 6, 12}.

Figures 16-20 represent portfolio allocations averaged over the simulations. They

depict, for each value of the uncertainty parameter unc, the average proportion of

wealth invested, in each of the three assets, by Learning and Non-Learning. The pur-

pose is not to compare the graphs with different values of unc since the allocation

is not performed on the same sample of returns. Rather, we can identify trends that

are typically differentiating Learning from Non-Learning allocations.

Since the maximum drawdown constraint is satisfied by the capped sum of total

weights that can be invested, the allocations of both Learning and Non-Learning are

mainly based on the expected returns of the assets.

Non-Learning, by definition, does not depend on the value of the uncertainty pa-

rameter. Hence, no matter the value of unc, its allocation is easy to characterize

since it saturates its constraint investing in the asset that has the best expected return

according to the prior. In our setup, Asset 3 has the highest expected return, so

Non-Learning invests only in it and saturates its constraint of roughly 30% during

all the investment period. The slight change of the average weight in Asset 3 comes

from ρ, the ratio wealth over maximum wealth, changing over time.

Fig. 16 Learning and Non-Learning historical assets’ allocations with unc = 1/6.
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Unlike Non-Learning, depending of the value of unc, Learning can perform more

sophisticated allocations because it can adjust the weights according to the incoming

information. Nonetheless, in Fig. 16, when unc is low, Learning and Non-Learning

look similar regarding their weights allocation since both strategies invest, as of time

0, a significant proportion of their wealth only in Asset 3.

On the right panel of Fig. 16, the progressive increase in the weight of Asset 3

illustrates the learning process. As time goes by, Learning progressively increases

the weight in Asset 3 since it has the highest expected return. It also explains why

Learning underperforms Non-Learning for low values of unc; contrary to Non-

Learning which invests at full capacity in Asset 3, Learning needs to learn that Asset

3 is the optimal choice.

Fig. 17 Learning and Non-Learning historical assets’ allocations with unc = 1.

Fig. 18 Learning and Non-Learning historical assets’ allocations with unc = 3.

However, as uncertainty increases, Learning and Non-Learning strategies start

differentiating. When unc ≥ 1, Learning invests little, if any, at time 0. In addition,

an increase in unc allows the inital drift to lie in a wider range and generates

investment opportunities for Learning. This explains why Learning invests in Asset

1 when unc = 1, 3, 6, 12 although the estimate b0 for this asset is lower than for

Asset 3. In Fig. 19, we see that Learning even invests in Asset 2 which has the lowest

expected drift.
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Fig. 19 Learning and Non-Learning historical assets’ allocations with unc = 6.

Fig. 20 Learning and Non-Learning historical assets’ allocations with unc = 12.

Figures 21-25 illustrate the historical total percentage of wealth allocated for

Learning and Non-Learning with different levels of uncertainty. As seen previously,

Non-Learning has fully invested in Asset 3 for any value of unc.

Fig. 21 Historical total allocations of Learning and Non-Learning with unc = 1/6.

Moreover, Learning has always less investment that Non-Learning for any level

of uncertainty. It suggests that Learning yields a more cautious strategy than Non-

Learning. This fact, in addition to its wait-and-see approach at time 0 and its ability



Portfolio Optimization with Partial Information and Maximum Drawdown Constraint 129

to better handle maximum drawdown, makes Learning a safer and more conservative

strategy than Non-Learning. This can be seen in Fig. 21, where both Learning and

Non-Learning have invested in Asset 3, but not at the same pace. Non-Learning

goes fully in Asset 3 at time 0, whereas Learning increments slowly its weight in

Asset 3 reaching 25% at the final step. When unc is low, there is no value added to

choose Learning over Non-Learning from a performance perspective. Nevertheless,

Learning allows for a better management of risk as Table 5 exhibits.

As unc increases, in addition to being cautious, Learning mixes allocation in

different assets, see Figures 22-25, while Non-Learning is stuck with the highest

expected return asset.

Fig. 22 Historical total allocations of Learning and Non-Learning with unc = 1.

Fig. 23 Historical total allocations of Learning and Non-Learning with unc = 3.

Learning is able to be opportunistic and changes its allocation given the prices

observed. For example in Fig. 22, Learning starts investing in Asset 1 and 3 at time

1 and stops at time 12 to weigh Asset 1 while keeping Asset 3. Similar remarks can

be made for Fig. 23, where Learning puts non negligeable weights in all three risky

assets for unc = 6 in Fig. 24.
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Fig. 24 Historical total allocations of Learning and Non-Learning with unc = 6.

Fig. 25 Historical total allocations of Learning and Non-Learning with unc = 12.

6 Conclusion

We have studied a discrete-time portfolio selection problem by taking into account

both drift uncertainty and maximum drawdown constraint. The dynamic program-

ming equation has been derived in the general case thanks to a specific change of

measure. More explicit results have been provided in the Gaussian case using the

Kalman filter. Moreover, a change of variable has reduced the dimensionality of the

problem in the case of CRRA utility functions. Next, we have provided extensive

numerical results in the Gaussian case with CRRA utility functions using recent deep

neural network techniques. Our numerical analysis has clearly shown and quantified

the better risk-return profile of the learning strategy versus the non-learning one.

Indeed, besides outperforming the non-learning strategy, the learning one provides

a significantly lower standard deviation of terminal wealth and a better controlled

maximum drawdown. Confirming the results established in [7], this study exhibits

the benefits of learning in providing optimal portfolio allocations.
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Appendix

6.1 Proof of Proposition 1

For all k = 1, ..., N , the law under P, of Rk given the filtration Gk−1 yields the

unconditional law under P of εk . Indeed, since (Λk )k is a (P,G)-martingale, we have

from Bayes formula, for all Borelian F ⊂ Rd ,

P[Rk ∈ F |Gk−1] = E[�{Rk ∈F } |Gk−1] =
E[Λk�{Rk ∈F } |Gk−1]

E[Λk |Gk−1]

= E[
Λk

Λk−1

�{Rk ∈F } |Gk−1] = E

[
g(B + εk )

g(εk )
�{Rk ∈F }

Gk−1

]
=

∫
Rd

g(B + e)

g(e)
�{B+e∈F }g(e)de =

∫
Rd

g(z)�{z∈F }dz

= P[εk ∈ F].

This means that, under P, Rk is independent from B and from R1, .., Rk−1 and that

Rk has the same probability distribution as εk . �

6.2 Proof of Proposition 2

For any borelian function f : Rd �→ R we have, on one hand, by definition of πk+1:

E
[
Λk+1 f (B) |F o

k+1

]
=

∫
Rd

f (b)πk+1(db),

and, on the other hand, by definition of Λk :

E[Λk+1 f (B) |F o
k+1] = E

[
Λk f (B)

g(Rk+1 − B)

g(Rk+1)






F o
k+1

]
= E

[
Λk f (B)g(Rk+1 − B)




F o
k+1

]
(g(Rk+1))−1

=

∫
Rd

f (b)
g(Rk+1 − b)

g(Rk+1)
πk (db),

where we use in the last equality the fact that Rk+1 is independent of B under P
(recall Proposition 1). By identification, we obtain the expected relation. �
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6.3 Proof of Lemma 1

Since the support of the probability distribution ν of εk is Rd , we notice that the law

of the random vector Yk := eRk − �d has support equal to (−1,∞)d . Recall from (7)

that a ∈ Aq
k

(x, z) iff

1 + a′Yk+1 ≥ q max
[ z

x
, 1 + a′Yk+1

]
, a.s. (21)

(i) Take some a ∈ Aq
k

(x, z), and assume that ai < 0 for some i ∈ [[1, d]]. Let us then

define the event Ωi
M = {Y i

k+1
≥ M,Y M

k+1
∈ [0, 1], j � i}, for M > 0, and observe that

P[Ωi
M ] > 0. It follows from (21) that

1 + aiM +max
j�i
|a j | ≥ q

z
x
, on Ωi

M,

which leads to a contradiction for M large enough. This shows that ai ≥ 0 for all

i ∈ [[1, d]], i.e. Aq
k

(x, z) ⊂ Rd+.
(ii) For ε ∈ (0, 1), let us define the event Ωε = {Y i

k+1
≤ −1 + ε, i = 1, . . . , d}, which

satisfies P[Ωε] > 0. For a ∈ Aq (x, z), we get from (21), and since a ∈ Rd+ by Step (i):

1 − (1 − ε)a′�d ≥ q
z
x
, on Ωε .

By taking ε small enough, this shows by a contradiction argument that

Aq
k

(x, z) ⊂
{
a ∈ Rd+ : 1 − a′�d ≥ q

z
x

}
. =: Ãq (x, z). (22)

(iii) Let us finally check the equality in (22). Fix some a ∈ Ãq (x, z). Since the random

vector Yk+1 is valued in (−1,∞)d , it is clear that

1 + a′Yk+1 ≥ 1 − a′�d ≥ q
z
x
≥ 0, a.s.,

and thus

1 + a′Yk+1 ≥ q
[
1 + a′Yk+1

]
, a.s.,

which proves (21), hence the equality Aq (x, z) = Ã(x, z). �

6.4 Proof of Lemma 2

1. Fix q1 ≤ q2 and (x, z) ∈ Sq2 ⊂ Sq1 . We then have
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a ∈ Aq2 (x, z) ⇒ a ∈ Rd+ and a′�d ≤ 1 − q2

z
x
≤ 1 − q1

z
x
=⇒ a ∈ Aq1 (x, z),

which means that Aq2 (x, z) ⊆ Aq1 (x, z).

2. Fix q ∈ (0, 1), and consider the decreasing sequence qn = q + 1
n , n ∈ N∗. For any

(x, z) ∈ Sqn , we then have Aqn (x, z) ⊆ Aqn+1 (x, z) ⊂ Aa (x, z), which implies that

the sequence of increasing sets Aqn (x, z) admits a limit equal to

lim
n→∞ Aqn (x, z) = ∪

n≥1
Aqn (x, z) = Aq (x, z),

since limn→∞ qn = q. This shows the right continuity of q �→ Aq (x, z). Similarly, by

considering the increasing sequence qn = q − 1
n , n ∈ N∗, we see that for any (x, z) ∈

Aq (x, z), the sequence of decreasing sets Aqn (x, z) admits a limit equal to

lim
n→∞ Aqn (x, z) = ∩

n≥1
Aqn (x, z) = Aq (x, z),

since limn→∞ qn = q. This proves the continuity in q of the set Aq (x, z).

3. Fix q ∈ (0, 1), and (x1, z), (x2, z) ∈ Sq s.t. x1 ≤ x2. Then,

a ∈ Aq (x1, z) =⇒ a ∈ Rd+ and a′�d ≤ 1 − q
z
x1

≤ 1 − q
z
x2

=⇒ a ∈ Aq (x2, z),

which shows that Aq (x1, z) ⊆ Aq (x2, z).

4. Fix q ∈ (0, 1), (x, z) ∈ Aa (x, z). Then, for any a1, a2 of the set Aq (x, z), and β ∈
(0, 1)], and denoting by a3 = βa1 + (1 − β)a2 ∈ Rd+, we have

a′3�d = βa′1�d + (1 − β)a′2�d ≤ β (1 − q
z
x
)
+ (1 − β)

(
1 − q

z
x
)
= 1 − q

z
x
.

This proves the convexity of the set Aq (x, z).

4. The homogeneity property of Aq (x, z) is obvious from its very definition. �

6.5 Proof of Lemma 3

We prove the result by backward induction on time k from the dynamic programming

equation for the value function.

• At time N , we have for all λ > 0,

vN (λx, λz, μ) =
(λx)p

p
= λpvN (x, z, μ),

which shows the required homogeneity property.

•Now, assume that the homogeneity property holds at time k +1, i.e vk+1(λx, λz, μ)
= λpvk+1(x, z, μ) for any λ > 0. Then, from the backward relation (9), and the
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homogeneity property of Aq (x, z) in Lemma 2, it is clear that vk inherits from vk+1

the homogeneity property. �

6.6 Proof of Lemma 4

1. We first show by backward induction that r �→ wk (r, ·) is nondecreasing in on

[q, 1] for all k ∈ [[0, N]].

• For any r1, r2 ∈ [q, 1], with r1 ≤ r2, and μ ∈ M+, we have at time N

wN (r1, μ) = U (r1)μ(Rd) ≤ U (r2)μ(Rd) = wN (r2, μ).

This shows that wN (r, ·) is nondecreasing on [q, 1].

• Now, suppose by induction hypothesis that r �→ wk+1(r, ·) is nondecreasing. De-

noting by Yk := eRk − �d the random vector valued in (−1,∞)d , we see that for all

a ∈ Aq (r1)

min
[
1, r1

(
1 + a′Yk+1

)] ≤ min
[
1, r2

(
1 + a′Yk+1

)]
, a.s.

since 1+ a′Yk+1 ≥ 1− a′�d ≥ q 1
r1
≥ 0. Therefore, from backward dynamic program-

ming Equation (11), and noting that Aq (r1) ⊂ Aq (r2), we have

wk (r1, μ) = sup
a∈Aq

(
r1)

E

[
wk+1

(
min
[
1, r1

(
1 + a′Yk+1

)]
, ḡ(Rk+1 − ·)μ)]

≤ sup
a∈Aq (r2)

E

[
wk+1

(
min
[
1, r2

(
1 + a′Yk+1

)]
, ḡ(Rk+1 − ·)μ)] = wk (r2, μ),

which shows the required nondecreasing property at time k.

2. We prove the concavity of r ∈ [q, 1] �→ wk (r, ·) by backward induction for all

k ∈ [[0, N]]. For r1, r2 ∈ [q, 1], and λ ∈ (0, 1), we set r = λr1 + (1 − λ)r2, and for

a1 ∈ Aq (r1), a2 ∈ Aq (r2), we set a =
(
λr1a1 + (1 − λ)r2a2

)
/r which belongs to

Aq (r). Indeed, since a1, a2 ∈ Rd+, we have a ∈ Rd+, and

a =
( λr1a1 + (1 − λ)r2a2

r

) ′
�d ≤ λr1

r
(
1 − q

r1

)
+

(1 − λ)r2

r
(
1 − q

r2

)
= 1 − q

r
.

• At time N , for fixed μ ∈ M+, we have

wN
(
λr1 + (1 − λ)r2, μ

)
= U (λr1 + (1 − λ)r2)

≥ λU (r1) + (1 − λ)U (r2) = λwN (r1, μ) + (1 − λ)wN (r2, μ),

since U is concave. This shows that wN (r, ·) is concave on [q, 1].

• Suppose now the induction hypothesis holds true at time k+1: wk+1(r, ·) is concave

on [q, 1]. From the backward dynamic programming relation (11), we then have
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λwk (r1, μ) + (1 − λ)wk (r2, μ)

≤ λE
[
wk+1

(
min[1, r1(1 + a′1Yk+1)], ḡ(Rk+1 − ·)μ)]

+(1 − λ)E
[
wk+1

(
min[1, r2(1 + a′2Yk+1)], ḡ(Rk+1 − ·)μ)]

≤ E
[
wk+1

(
λmin[1, r1(1 + a′1Yk+1)] + (1 − λ) min[1, r2(1 + a′2Yk+1)], ḡ(Rk+1 − ·)μ)]

= E
[
wk+1

(
min[1, r (1 + a′Yk+1)], ḡ(Rk+1 − ·)μ)] ≤ wk (r, μ),

where we used for the second inequality, the induction hypothesis joint with the

concavity of x �→ min(1, x), and the nondecreasing monotonicity of r �→ wk+1(r, ·).
This shows the required inductive concavity property of r �→ wk (r, ·) on [q, 1]. �
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Estimating the Matthew Effects: Switching

Pareto Dynamics

Robert J. Elliott

Abstract Pareto distributions can describe the clustering of observations and give

rise to sayings such as ‘The rich gets richer and the poor gets poorer’. They are

sometimes generated by counting processes whose rate depends on external factors.

In turn, these factors are modelled by a finite state Markov chain Z . New filters are

derived which estimate Z together with other parameters of the model.

1 Introduction

The Matthew effect is paraphrased by saying ‘The rich get richer and the poor get

poorer’. A probability describing such a distribution can be given by a power law of

which an example is the Pareto distribution.

If X is a real random variable with a Pareto distribution then there is a (positive)

value xm and a parameter α > 0 such that

P(X > x) =
⎧⎪⎨⎪⎩
( xm

x

)α
if x ≥ xm

1 if x < xm .

It is immediate that if X is Pareto with parameter α then

Y = log
( X
xm
)

is exponentially distributed with parameter α. In fact
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P(Y < y) = P
(
log
( X
xm
)
< y

)
= P
(
X < xmey

)
=

(
1−
( xm
xmey

)α)
= 1− e−αy.

Conversely, if Y is exponentially distributed then xmey is Pareto distributed with

minimum xm and index α.

2 Generating Pareto Random Variables

Our processes are defined on (Ω,F ,P). Consider a (counting) point process

Y = {Yt, t ≥ 0}

with jump times τ1, τ2, τ3, . . . .

Write τ0 = 0.

Suppose the compensator of Y is λt, that is λ is the rate of jumping. Write

Yt = σ{Ys : s ≤ t} and

Y = {Yt }

for the right continuous, complete filtration generated by Y . Then with

Yt :=
∑
n

It≥τn

Qt := Yt − λt is a (Y,P) martingale.

The times between the jumps of Y are independent and identically exponentially

distributed with parameter λ.

That is, for each n, Δn+1 := τn+1 − τn ∼ exp λΔn+1 . This generates a family of

i.i.d. exponential random variables Δ1,Δ2, . . . .

Consequently, xm exp Δ1, xm exp Δ2, . . . is a family of Pareto random variables

with minimum xm and parameter λ.

3 Switching Parameter Values

Suppose the parameter λ is not constant but can switch between valuesα1, α2, . . . , αN .

In a simple case perhaps N = 2 so there are just two values α1, α2 . The value αi is

determined by some ’state’ of the market, or the property of some Reddit post.

Suppose there is a finite, N, state Markov chain Z = {Zt, t ≥ 0} which represents

the (hidden) state loss of generality the state space of Z can be identified with unit
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vectors

S = {e1, e2, . . . , eN }, where ei = (0,0, . . .,1,0, . . . ,0)′ ∈ RN .

That is for each t > 0, Zt ∈ S. Suppose the rate matrix of Z is given by the matrix

A = (a ji, 1 ≤ i, j ≤ N ). Here a ji , j � i, is the rate of jumping from ei to ej . Then,

(see [2]), Z has the semimartingale representation

Zt = Z0+

∫ t

0

AZsds+Mt ∈ RN

where M is a (vector) martingale. That is, if Ft = σ{Zs, s ≤ t} and F = {Ft } is the

right continuous complete filtration generated by Z, then for s ≤ t

E[Mt |Fs] = Ms ∈ RN .

For our counting process we now suppose that at time t the rate is

αt = 〈α, Zt 〉 .

Then, with G = {Gt } has filtration generated by Y and Z, the process

Qt := Yt −
∫ t

0

〈α, Zs 〉ds

is a martingale.

4 Estimation

The problem now is: suppose the counting processY, or equivalently the jump times

τ1, τ2, . . . , are observed. We wish to estimate the state of Z and the parameters in

α = (α1, α2, . . . , αN )′.

A Filter

We shall use a ‘reference probability’ P. Suppose that under P

1) Z is a Markov chain with rate matrix A
2) Y is a counting process with compensation λt.

Then as in Section 1, Qt = Yt − λt is a P martingale.

Definition 1 Write

Λt = 1+

∫ t

0

Λs−

( 〈α, Zs−〉
λ

−1
)
(dYs − λds) (1)
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so:

Λt = exp
(
−

∫ t

0

( 〈α, Zs−〉
λ

−1
)
λds+

∫ t

0

log
〈α, Zs−〉
λ

dYs
)
.

Note that Λ is a (P,G) martingale. Define a probability measure P by

dP
dP

��Gt = Λt .

Theorem 1 Write

Qt = Yt −
∫ t

0

〈α, Zs〉ds.

Then Q = {Qt } is a (P,G) martingale.

Proof From [1], Lemma 15.2.1 this is so if and only if ΛtQt is a (P,G) martingale.

Now

ΛtQt =

∫ t

0

Λs−dQs +

∫ t

0

Qs−dΛs +

∑
0≤s≤t

ΔΛsΔQs

=

∫ t

0

Qs−dΛs +

∫ t

0

Λs−

〈α, Zs−〉
λ

(dYs − λds).

We wish to obtain a recursive estimate for

E[Zt |Yt ] ∈ RN .

By Bayes’ Theorem, (see [2], Theorem 3.2),

E[Zt |Yt ] =
E[ΛtZt |Yt ]
E[λt |Yt ]

.

Write

qt = E[ΛtZt |Yt ] ∈ RN .

This is an unnormalized conditional expected value of Zt givenYt .

If 1 = (1,1, . . .,1)′ ∈ RN is a vector of 1s then

〈Zt,1〉 = 1.

Consequently

〈qt,1〉 = E[Λt〈Zt,1〉 |Yt ]

= E[Λt |Yt ]

which gives the normalizing.

Notation Write diag
(αi

λ

)
for the N ×N diagonal matrix with

(α1

λ
, α2

λ
, . . . ,

αN

λ

)
down

the diagonal. �

Theorem 2 q satisfies the recursion
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qt = q0+

∫ t

0

Aqsds+
∫ t

0

(
diag
(αi
λ

)
− I
)
qs−(dYs − λds).

Proof Recall dZt = AZtdt + dMt ∈ RN . Then

Λt Zt = Λ0Z0 +

∫ t

0

Λs−dZs +
∫ t

0

(dΛs)Zs− .

(Note there are no common jump terms.)

From (1) this is:

= Λ0Z0 +

∫ t

0

Λs−(AZsds+ dMs)+
∫ t

0

Zs−Λs−

( 〈α, Zs−〉
λ

−1
)
(dYS − λds)

= Λ0Z0 +

∫ t

0

AΛsZsds+
∫ t

0

Λs−dMs +

∫ t

0

Λs−Zs−
( 〈α, Zs−〉
λ

−1
)
(dYs − λds).

We now take a conditional expectation under P given Yt and obtain

qt = q0+

∫ t

0

Aqsds+
∫ t

0

(
diag
(αi
λ

)
− I
)
qs (dYs − λds).

5 Parameter Estimation

We have seen that to change the rate from λ to 〈α, Zt 〉 the Girsanov density given by

(1) is used.

Write this density as Λα
t and the related probability Pα.

Suppose there is a second possible set of parameter values

α′ = (α′1, α
0
2, . . . , α

′
N )
′ ∈ RN

giving a related probability Pα′ .

Then the Girsanov density
Λ
α

t

Λα′

t

will change the probability Pα′ to Pα and the

compensator of Y from 〈α′, Zt〉 to 〈α, Zt 〉.
Suppose the model has been implemented with a parameter set

{A = (a ji), α′ = (α′
1
, . . . , α′

N
)′}.

Given the observations of Y we wish to re-estimate the parameters in α′. The

conditional expectation of the log-likelihood to change parameters α′ to α is

E
[
log
Λ
α
t

Λ
α′

t

���Yt ] = E
[
−

∫ t

0

( 〈α, Zs〉
λ
−1
)
λds+

∫ t

0

log
〈α, Zs−〉
λ

dYs ��Yt ] + R
where R represents terms which do not depend on α.

In turn, this is
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= E
[
−

∫ t

0

〈α, Zs〉+
∫ t

0

log〈α, Zs−〉,dYs ��Yt ]
+ terms which do not depend on α.

Write Jit =
∫ t

0
〈ei, Zs〉ds for the amount of time Z has spent in state ei upto time t.

Also,note

∫ t

0

log 〈α, Zs−〉dYs =
N∑
i=1

log αi

∫ t

0

〈ei, Zs−〉dYs

so

E
[
log
Λ
α
t

λα
′

t

���Yt ] = E
[
−

N∑
i=1

αi Jit +
N∑
i=1

log αi

∫ t

0

〈ei, Zs−〉dYs ��Yt ]
+ terms which do not depend on α.

To find the αi which maximizes this conditional expected log-likelihood the first

order condition gives

E[−Jit |Yt ]+
1

αi
E
[∫ t

0

〈ei, Zs−〉dYs |Yt
]
= 0

so the maximizing αi is given as

αi = E
[∫ t

0

〈ei, Zs−〉dYs |Yt
] /
E[Jit |Yt ].

Our final task is to find expressions for these quantities. Write Λt for Λα′

t . Recall

E[Jit |Yt ] =
E[Λt Jit |Yt ]
E[Λt |Yt ]

.

Also from Section 4

〈qt,111〉 = E[Λt |Yt ].

Notation For any process H = {Ht, t ≥ 0} write

σ(H )t = E[ΛtHt |Yt ].

Then

E[Jit |Yt ] = σ(J)t
/
〈qt,1〉 .

6 Recursive Estimates

Rather than σ(J)t we shall initially obtain a recursive estimate for
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σ(JZ )t = E
[
Λt Jt Zt |Yt ] ∈ RN .

As 〈Zt,1〉 = 1 we then would have

〈σ(JZ )t,1〉 = E[Λt Jt 〈Zt,1〉 |Yt ]

= E[Λt Jt |Yt ]
= σ(J)t .

Theorem 3 A recursive estimate for σ(JiZ )t is given by

σ(JiZ )t =
∫ t

0

Aσ(JiZ )sds+
∫ t

0

(
diag
(α
λ

)
− I
)
σ(JiZ )s−(dYs − λds)

+

∫ t

0

〈qs, ei〉ds ei .

Proof Recall

dZt = AZtdt + dMt ∈ RN (2)

dJit =
∫ t

0

〈eiZs〉ds (3)

and

dΛt = Λt−

( 〈α, Zt−〉
λ

−1
)
(dYt − λdt). (4)

Then
d (Λt Jit ) = ΛtdJit + J

i
t dΛt

= Λt 〈ei, Zt 〉dt + JitΛt−

( 〈α, Zt−〉
λ

−1
)
(dYt − λdt)

and
d (Λt Jit Zt ) = (Λt−Jit )dZt + d (Λt Jit )Zt

= Λt−Jit (AZtdt + dMt )+Λt〈ei, Zt〉 Ztdt

+Λt−Jit
( 〈α, Zt−〉
λ

−1
)
Zt−(dYt − λdt)

= A(Λt Jit Zt )dt + (Λt−Jit )dMt + 〈ei,Λt Zt〉dt ei

+

N∑
i=1

JitΛt− 〈ei, Zt−〉
(αi
λ
−1
)
(dYt − λdt)ei .

That is:
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Λt Jit Zt− = A
∫ t

0

Λs JisZsds+
∫ t

0

Λs−Jis−dMs

+

∫ t

0

〈ei,ΛsZs〉ds ei

+

N∑
i=1

∫ t

0

JisΛs− 〈ei, Zs−〉
(αi
λ
−1
)
(dYs − λds)ei .

Taking the conditional expectation under P givenYt gives

σ(JiZ ) =
∫ t

0

Aσ(JiZ )s +
∫ t

0

〈ei,qs〉ds ei

+

∫ t

0

(
diag
(σ
λ

)
− I
)
σ(JiZ )s−(dYs − λds).

Write

H i
t :=

∫ t

0

〈ei, Zs−〉dYs .

Theorem 4 A recursive estimate for σ(H iZ )t is given by

σ(H iZ )t =
∫ t

0

Aσ(H iZ )sds

+

∫ t

0

(
diag
(α
λ

)
− I
)
σ(H iZs−)(λYs−λds)+

∫ t

0

〈ei,qs−〉dYsei .

Proof

dH i
t = 〈ei, Zt−〉dYt (5)

so from (2) and (4)

d (ΛtH i
t ) = Λt−〈ei, Zt−〉dYt +H i

t−Λt−

( 〈α, Zt−〉
λ

−1
)
(dYt − λdt)

+ 〈ei, Zt−〉Λt−

( 〈α, Zt−〉
λ

−1
)
dYt .

Then

d (ΛtH i
t Zt ) = Λt−H i

t−(AZtdt + dMt )

+Λt− 〈ei, Zt−〉 Zt−dYt +H i
t−Λt−Zt−

( 〈α, Zt−〉
λ

−1
)
(dYt − λdt)

+ 〈ei, Zt−〉Λt−Zt−
( 〈α, Zt−〉
λ

−1
)
dYt .

That is:
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ΛtH i
t Zt =

∫ t

0

AΛsH i
sZsds+

∫ t

0

Λs−H i
s−dMs

+

∫ t

0

〈ei,Λs−Zs−〉dYs ei +
∫ t

0

〈ei,Λs−Zs−〉
(αi
λ
−1
)
dYs ei

+

∫ t

0

(
diag
(α
λ

)
− I
)
Λs−H i

s−Zs−(dYs − λds).

Taking the conditional expectation under P givenYt gives

σ(H iZ )t =
∫ t

0

Aσ(H iZ )s +
∫ t

0

〈ei,qs−〉dYsei

+

∫ t

0

(
diag
(α
λ

)
− I
)
σ(H iZ )s−(dYs − λds).

Remark 1 Again σ(H i)t = 〈σ(H iZ )t,111〉 and

E[H i
t |Yt ] = σ(H

i)t
/
〈qt,111〉 .

7 Implemention

Suppose we receive a sequence of data values d1,d2, . . . which we believe to be

Pareto distributed with parameter α and minimum xm. Then

Δ1 = log
d1

xm
, Δ2 = log

d2

xm
, . . .

are exponentially distributed with parameter α.

The Δi can be considered as inter-arrival times of a point processY as above, that

is

Δi = τi − τi−1 .

Between arrivals dYt = ΔYt = 0.

At an arrival time dYt =ΔYt = 1. The above theory can be used to estimate possible

values of α.

Note for example ∫ τi

τi−1

γs−dYs = γτi−

and in between jumps dYs = 0.
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Optimal Couplings on Wiener Space and An
Extension of Talagrand’s Transport Inequality

Hans Föllmer

Abstract For a probability measure Q on Wiener space, Talagrand’s transport in-
equality takes the formWH (Q,P)2 ≤ 2H(Q|P), where theWasserstein distanceWH

is defined in terms of the Cameron-Martin norm, and whereH(Q|P) denotes the rel-
ative entropy with respect to Wiener measure P. Talagrand’s original proof takes a
bottom-up approach, using finite-dimensional approximations. As shown by Feyel
and Üstünel in [3] and Lehec in [10], the inequality can also be proved directly on
Wiener space, using a suitable coupling of Q and P. We show how this top-down
approach can be extended beyond the absolutely continuous case Q� P. Here the
Wasserstein distance is defined in terms of quadratic variation, and H(Q|P) is re-
placed by the specific relative entropy h(Q|P) on Wiener space that was introduced
by N. Gantert in [7].

1 Introduction

There are many ways of quantifying the extent to which a probability measureQ on
the path spaceC[0,1] deviates from Wiener measure P. In this paper we discuss the
following two approaches and the relation between them. One involves the notion
of entropy, the other uses a Wasserstein distance, that is, the solution of an optimal
transport problem on Wiener space. We will do this in two stages.

In the first stage, the measure Q will be absolutely continuous with respect to
Wiener measure P, and we consider the relative entropy H(Q|P) of Q with respect
to P. On the other hand, we use the Wasserstein distance

WH (Q,P) = inf
(∫

||ω −η)||H P(dω)R(ω ,dη)
)1/2

, (1)
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where the infimum is taken over all transition kernels R on Wiener space which
transport P into Q, and where the transportation cost is defined by the Cameron-
Martin norm. Talagrand’s transport inequality

WH (Q,P)≤
√
2H(Q|P) (2)

on Wiener space shows that these two measures of deviation are closely related.
In fact, inequality (2) becomes an identity as soon as we introduce the additional
constraint that the transport should be adapted to the natural filtration on Wiener
space; this was first shown by R. Lassalle in [9].

On Wiener space, inequality (2) was first studied by Feyel and Üstünel [3]. In
Talagrand’s original version [13], the inequality is formulated on Euclidean space
R
n, including the case n = ∞; the Wasserstein distance is defined in terms of the

Euclidean norm, and the reference measure P is the product of standard normal
distributions. But the Lévy-Ciesielski construction of Brownian motion in terms of
the Schauder functions shows that inequality (2) on Wiener space can be viewed as
a direct translation of the Euclidean case for n= ∞, as explained in Section 3.

Talagrand’s original proof in [13] takes a bottom-up approach, using finite-
dimensional approximations. Instead, as shown by D. Feyel and A. S. Üstünel in
[3] and by J. Lehec in [10], Talagrand’s inequality can be proved directly on Wiener
space, using a suitable coupling of Q and P. This top-down approach involves the
computation of relative entropy in terms of the intrinsic drift of Q that was used in
[4] and [5] for the analysis of time reversal and large deviations on Wiener space.
The intrinsic drift bQ is such thatQ can be viewed as a weak solution of the stochas-
tic differential equation dW = dWQ + bQ(W )dt, that is, WQ is a Wiener process
under Q. CouplingWQ with the coordinate processW under Q immediately yields
inequality (2), and it solves the optimal transport problem for the Cameron-Martin
norm if the coupling is required to be adapted.

Clearly, inequality (2) is of interest only if the relative entropy is finite, and so
Q should be absolutely continuous with respect to Wiener measure. In the second
stage, we go beyond this restriction. Here we replaceH(Q|P) by the specific relative
entropy

h(Q|P) := liminf
N↑∞

2−NHN(Q|P),

where HN(Q|P) denotes the relative entropy of Q with respect to P on the σ -field
generated by observing the path along the N-th dyadic partition of the unit inter-
val. The notion of specific relative entropy on Wiener space was introduced by N.
Gantert in her thesis [7], where it serves as a rate function for large deviations of
the quadratic variation from its ergodic behaviour; cf. also [8]. In our context, the
specific relative entropy appears if we rewrite the finite-dimensional Talagrand in-
equality for n= 2N in the form

W 2
N(Q,P)≤ 2 ·2−NHN(Q|P), (3)
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where the Wasserstein metricWN is defined in terms of the discrete quadratic varia-
tion along the N-th dyadic partition. This suggests that a passage to the limit should
yield an extension of Talagrand’s inequality, where H(Q|P) is replaced by h(Q|P),
and whereWH is replaced by a Wasserstein metricWS that is defined in terms of
quadratic variation. Here again, we take a top-down approach. Instead of analyzing
the convergence on the left-hand side of (3), we argue directly on Wiener space,
assuming that the coordinate process W is a special semimartingale under Q. We
show that h(Q|P)< ∞ implies that Q admits the construction of an intrinsic Wiener
processWQ such that the pair (W,WQ) defines a coupling of P andQ. This coupling
solves the optimal transport problem defined byWS , and for a martingale measure
Q it yields the inequality

WS (Q,P)≤
√
2h(Q|P). (4)

If, more generally, Q is a semimartingale measure that admits a unique equivalent
martingale measure Q∗, then we obtain the following extension of Talagrand’s in-
equality on Wiener space:

WS (Q|P)2 ≤ 2
(
h(Q|P)+H(Q|Q∗)

)
. (5)

In this form, inequality (5) includes both (4) and Talagrand’s inequality (2) as special
cases.

The paper is organized as follows. In Section 2 we introduce the basic concepts
of relative entropy and of a Wasserstein distance. Section 3 describes the top-down
approach to inequality (2) in the absolutely continuous case; the exposition will
be reasonably self-contained because we repeatedly refer to it in the sequel. In the
second stage, we consider measuresQ onC[0,1] such that the coordinate processW
is a semimartingale under Q. Section 4 shows how the semimartingale structure of
Q is reflected in the specific relative entropy h(Q|P); this extends Theorem 1.2 in [7]
for martingale measures to the general case. In section 5 we show that the condition
h(Q|P) < ∞ implies that Q admits the construction of an intrinsic Wiener process
WQ. CouplingWQ with the coordinate processW under Q, we obtain the solution
of an optimal transport problem on Wiener space that yields inequalities (4) and (5).

2 Preliminaries

In this section we recall some basic notions, in particular the definitions of relative
entropy and of the Wasserstein distances that we are going to use.

For two probability measures μ and ν on some measurable space (S,S ), the
relative entropy of ν with respect to μ is defined as

H(ν|μ) =

{∫
log dν

dμ dν ifν � μ ,
+∞ otherwise.
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For ν � μ we can write

H(ν|μ) =
∫
h(

dν
dμ

)dμ ,

denoting by h the strictly convex function h(x) = x logx on [0,∞), and Jensen’s
inequality implies H(ν|μ) ≥ 0, with equality if and only if μ = ν . Sometimes we
will deal with different σ -fields S on the same space S, and then we will also use
the notation HS (ν|μ). We are going to use repeatedly the fact that

lim
n↑∞

HSn(ν|μ) = HS (ν|μ) (6)

if (Sn)n=1,2... is a sequence of σ -fields increasing to S .

Consider a measurable cost function c(·, ·) on S× S with values in [0,∞]; typi-
cally, c(·, ·) will be a metric on S. We define the correspondingWasserstein distance
between ν and μ as

W (ν,μ) = inf
γ∈Γ (μ,ν)

(

∫
c2(x,y)γ(dx,dy))1/2,

where Γ (μ ,ν) denotes the class of all probability measures γ on the product space
S× S with marginals μ and ν . Equivalently, we can write

W (ν,μ) = inf Ẽ[c2(X̃ ,Ỹ )]1/2,

where the infimum is taken over all couples (X̃ ,Ỹ ) of S-valued random variables
on some probability space (Ω̃ ,F̃ , P̃) such that X̃ and Ỹ have distributions μ and
ν , respectively. Such a couple, and also any measure γ ∈ Γ (μ ,ν), will be called
a coupling of μ and ν . We refer to [15] for a thorough discussion of Wasserstein
distances in various contexts.

In the sequel, the space S will be either a Euclidean space R
n, including the

infinite-dimensional case n= ∞, or the space

Ω =C0[0,1]

of all continuous functions ω on [0,1] with initial value ω(0) = 0.

For S = R
n with n ∈ {1, . . . ,∞} we are going to use the cost function c(x,y) =

||x−y||n, defined by the Euclidean norm ||x||n = (∑n
i=1 x2i )1/2. Thus, the correspond-

ing Wasserstein distance is given by

Wn(ν,μ) = inf
γ∈Γ (μ,ν)

(

∫
||x− y||2n)γ(dx,dy))

1/2.

Taking as reference measure the Gaussian measure

μn =
n

∏
i=1

N(0,1),
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Talagrand’s inequality on Euclidean space can now be stated as follows:

Theorem 1 For any n ∈ {0, . . . ,∞} and for any probability measure ν on Rn,

Wn(ν,μn)≤
√
2H(ν|μn). (7)

Talagrand’s proof in [13] takes a bottom-up approach. First the inequality is
proved in the one-dimensional case, using Vallender’s expression

W1(ν,μ) =
(∫ 1

0

(
qν(α)− qμ(α)

)2dα
)1/2 (8)

in [14] of the Wasserstein distance on R
1 in terms of the quantile functions qν and

qμ , followed by an integration by parts that involves the special form of the normal
distribution. The finite-dimensional case is shown by induction, applying the one-
dimensional inequality to the conditional distributions ν(dxn+1|x1, . . . ,xn) of ν . The
infinite-dimensional case n = ∞ follows by applying (7) to the finite-dimensional
marginals and taking the limit n ↑ ∞, using a standard martingale argument to obtain
convergence of the relative entropies on the right-hand side.

Let us now turn to the case S = Ω =C0[0,1]. We denote by (Ft)0≤t≤1 the right-
continuous filtration on Ω generated by the coordinate process

W = (Wt)0≤t≤1

defined by Wt(ω) = ω(t). We set F = F1 and denote by P the Wiener measure
on (Ω ,F ). Let H denote the Cameron-Martin space of all absolutely continuous
functions ω ∈ Ω such that the derivative ω̇ is square integrable on [0,1]. First we
will consider the cost function c(ω ,η) = ||ω −η ||H , where

||ω ||H =

{
(
∫ 1
0 ω̇2(t)dt)1/2 if ω ∈ H

+∞ otherwise.

The correspondingWasserstein distance will be denoted byWH , that is,

WH (Q,P) = inf
γ∈Γ (P,Q)

∫
||ω −η ||2H γ(dω ,dη)1/2,

for any probability measure Q on (Ω ,F ). In this setting, Talagrand’s inequality
takes the following form, first stated by D. Feyel and A. S. Ustunel in [3].

Theorem 2 For any probability measure Q on (Ω ,F ),

WH (Q,P)≤
√
2H(Q|P. (9)

In fact, inequality (9) can be viewed as a direct translation of Talagrand’s inequal-
ity on R∞. To see this, recall the Lévy-Ciesielski representation
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Wt(ω) = ∑
i∈I

Xi(ω)ei(t)

of Brownian motion in terms of the Schauder basis (ei)i∈I ofC0[0,1]. Under Wiener
measure P, the coordinates Xi are independent with distribution N(0,1). Thus, the
random vector (Xi(ω))i∈I , viewed as a measurable map T from Ω to R∞, has distri-
bution μ∞ under P. Relative entropy is invariant under T, and so we get

H(ν|μ∞) = H(Q|P),

where ν denotes the image of Q under T . On the other hand we have ||ω ||H =
||(Xi(ω))i∈I ||∞, and this implies

WH (Q,P) =W∞(ν,μ∞).

Thus, Talagrand’s inequality (7) for n = ∞ translates into inequality (9) on Wiener
space.

Having scetched the bottom-up approach to Talagrand’s inequality on Wiener
space, we are now going to focus on the top-down approach. It consists in proving
Talagrand’s inequality (9) directly on Wiener space, using a suitable coupling of Q
and P.

3 Intrinsic drift and optimal coupling in the absolutely
continuous case

Take any probability measure Q on (Ω ,F ) that is absolutely continuous with re-
spect to Wiener measure P. Let us first recall the following computation of the rela-
tive entroopy H(Q|P) in terms of the intrinsic drift of Q ; cf. [4], [5] or, for the first
two parts, Th. 7.11 in [11].

Proposition 1 There exists a predictable process bQ = (bQt (ω))0≤t≤1 with the fol-
lowing properties:
1) ∫ 1

0

(
bQt (ω)

)2dt < ∞ Q-a.s., (10)

that is, the process BQ defined by BQ
t (ω) =

∫ t
0 b

Q
s (ω)ds satisfies

BQ(ω) ∈ H Q-a.s.

2) WQ :=W −BQ is a Wiener process under Q, that is, W is a special semimartin-
gale under Q with canonical decomposition

W =WQ+BQ.
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3) The relative entropy of Q with respect to P is given by

H(Q|P) =
1
2
EQ

[∫ 1

0
(bQt )2dt

]
=

1
2
EQ

[
||BQ||2H

]
. (11)

The process bQ will be called the intrinsic drift of Q.

Proof For the convenience of the reader we scetch the argument; cf., e.g., [5] for
details.
1) By Itô’s representation theorem, the density φ = dQ

dP can be represented as a
stochastic integral of the Brownian motion W , that is, there exists a predictable
process (ξt)0≤t≤1 such that

∫ 1
0 ξt(ω)dt < ∞ P− a.s. and

φ = 1+
∫ 1

0
ξtdWt P-a.s.

Moreover, the process

φt := EP[φ |Ft ] = 1+
∫ t

0
ξsdWs, 0≤ t ≤ 1,

is a continuous martingale with quadratic variation

〈
φ
〉
t =

∫ t

0
ξ 2
s ds P-a.s.

and
inf

0≤t≤1
φt > 0 P-a.s. on {φ > 0},

hence Q-a.s.. Thus, the predictable process bQ defined by

bQt :=
ξt
φt
I{φt>0}, 0≤ t ≤ 1,

satisfies the integrability condition (10).
2) Applying Itô’s formula to logφt , we get

logφt =
∫ t

0

1
φs
dφs−

1
2

∫ t

0
(
1
φs
)2d

〈
φ
〉
s

=

∫ t

0
bQs dWs−

1
2

∫ t

0
(bQs )

2ds

=

∫ t

0
bQs dW

Q
s +

1
2

∫ t

0
(bQs )

2ds

The second part now follows from Girsanov’s theorem.
3) Equation (11) for H(Q|P) = EQ[logφ1] follows from the preceding equation for
t = 1. Indeed, if EQ

[∫ 1
0 (b

Q
s )

2ds
]
< ∞ then we get
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EQ
[∫ 1

0
bQs dW

Q
s
]
= 0,

and this implies (11). In the general case, the same argument applies up to each
stopping time Tn = inf{t|

∫ t
0(b

Q
s )

2ds> n}∧1, and for n ↑ ∞ we obtain (11). �

Remark 1 Apart from our present purpose, the intrinsic drift of Q is also an effi-
cient tool in proving a number of inequalities, including logarithmic Sobolev and
Shannon-Stam inequalities; see [10] and [2].

As observed by J. Lehec in [10], proposition 1 can be rephrased as follows in
terms of coupling, and in this form it yields an immediate proof of Talagrand’s
inequality on Wiener space.

Proposition 2 The processesWQ =W−BQ andW, defined on the probability space
(Ω ,F ,Q), form a coupling of P and Q such that

EQ
[
||W −WQ||2H

]
= 2H(Q|P). (12)

Corollary 1 Any probability measure Q on (Ω ,F ) satisfies Talagrand’s inequality

WH (Q,P)≤
√
2H(Q|P). (13)

Proof If Q is not absolutely continuous with respect to Wiener measure P then
we have H(Q|P) = ∞, and (13) holds trivially. In the absolutely continuous case,
inequality (13) follows immediately from equation (12) and the definition of the
Wasserstein distanceWH . �

Note that the coupling (WQ,W ) of P and Q, which is defined on the filtered
probability space (Ω ,F ,(Ft )0≤t≤1,Q), is adaptive in the following sense.

Definition 1 A coupling (X̃ ,Ỹ ) of P and Q will be called an adaptive coupling, if it
is defined on a filtered probability space (Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃) such that

1. Ỹ = (Ỹt) is adapted with respect to P̃ and (F̃t )0≤t≤1,
2. X̃ is a Wiener process with respect to P̃ and (F̃t)0≤t≤1. that is, each increment

X̃t − X̃s is independent of F̃s with law N(0, t− s).

Theorem 3 The optimal adaptive coupling of P and Q is given by (WQ,W ), that is,

EQ
[
||W −WQ||2H

]
≤ Ẽ

[
||Ỹ − X̃||2H

]
, (14)

for any adaptive coupling (X̃ ,Ỹ ) of P and Q, and equality holds iff

Ỹ =WQ(Ỹ )+BQ(Ỹ ), P̃− a.s.. (15)

Proof Take any adapted coupling (X̃ ,Ỹ ) of P andQ, defined on a filtered probability
space (Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃), such that

Ẽ
[
||Ỹ − X̃ ||2H

]
< ∞.
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Since Ỹ is adapted with continuous paths, B̃ := Ỹ − X̃ is an adapted continuous
process such that Ẽ

[
||B||2

H

]
< ∞. This implies B̃t =

∫ t
0 b̃sds for some predictable

process b̃ = (b̃s)0≤s≤1 such that Ẽ
[∫ 1

0 b̃2s ds
]
< ∞. Since X̃ is a Brownian motion

with respect to the filtration (F̃t), the process Ỹ is a special semimartingale with
canonical decomposition

Ỹt = X̃t +
∫ t

0
b̃sds (16)

under P̃ with respect to (F̃t). On the other hand, since Ỹ has law Q under P̃ and
WQ is a Brownian motion under Q, the processWQ(Ỹ ) is a Brownian motion under
P̃ with respect to the smaller filtration (F̃ 0

t ) generated by the adapted process Ỹ .
Thus, Ỹ has the canonical decomposition

Ỹt =WQ
t (Ỹ )+

∫ t

0
bQs (Ỹ )ds (17)

under P̃ with respect to (F̃ 0
t ). This implies

bQt (Ỹ ) = Ẽ
[
b̃t | G̃t

]
P̃⊗ dt− a.s.; (18)

cf., for example, Th. 8.1 in [11] or the proof of equation 68 in the general context of
Proposition 4 below. Applying Jensen’s inequality, we obtain

Ẽ
[
||Ỹ − X̃ ||2H

]
= Ẽ

[∫ 1

0
b̃2t dt

]
≥ Ẽ

[∫ 1

0
(bQt (Ỹ ))2dt

]
= EQ

[∫ 1

0
(bQt (W ))2dt

]
= 2H(Q|P).

Equality holds iff
b̃t = bQt (Ỹ ) P̃⊗ dt− a.s.,

and in this case (16) and (17) imply X̃ =WQ(Ỹ ) P̃-a.s.. �

Let us define WH ,ad(Q,P) as the infimum of the right hand side in (14), taken
only over the adaptive couplings of P and Q. Clearly we have

WH (Q,P)≤WH ,ad(Q,P), (19)

and Theorem 3 shows that the following identity holds, first proved by R. Lassalle
in [9].

Corollary 2 For any probability measure Q on (Ω ,F ) we have

WH ,ad(Q,P) =
√
2H(Q|P). (20)
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Remark 2 For a thorough discussion of optimal transport problems on Wiener space
under various constraints, with special emphasis on the effects of an enlargement of
filtration, we refer to [1].

The following example illustrates the difference betweenWH andWH ,ad . It also
shows how the finite-dimensional inequalities in (7) can be derived from Talagrand’s
inequality on Wiener space, thus completing the top-down approach.

For a probability measure ν on R1 we introduce the probability measure

Qν =

∫
Pxν(dx)

on (Ω ,F ), where Px denotes the law of the Brownian bridge from 0 to x ∈ R
1. If

ν � μ := N(0,1), then Qν is absolutely continuous with respect to P with density

dQν

dP
=

dν
dμ

(W1),

and the relative entropy is given by

H(Qν |P) =
∫
log

dν
dμ

(W1)dQν =
∫
log

dν
dμ

dν = H(ν|μ). (21)

Corollary 3 We have

WH (Qν ,P) =W1(ν,μ) and WH ,ad(Qν ,P) =
√
2H(ν|μ). (22)

Thus, inequality (19) implies

W1(ν,μ) ≤
√
2H(ν|μ). (23)

Inequality (23) is strict except for the case where ν = N(m,1) for some m ∈ R
1.

Proof 1) The second identity in (22) follows from Corollary 2 and equation (21).
2) To prove the first identity, take any coupling (X̃ ,Ỹ ) of P and Q, defined on some
probability space (Ω̃ ,F̃ , P̃), such that Z := Ỹ − X̃ ∈ H . Then the endpoints X̃1 and
Ỹ1 form a coupling of μ and ν . Since

(Ỹ1− X̃1)2 = Z2
1 = (

∫ 1

0
Żsds)2 ≤

∫ 1

0
Ż2
s ds= ||Ỹ − X̃ ||2H ,

we obtain
W 2

1 (ν,μ)≤ Ẽ
[
(Ỹ1− X̃1)2

]
≤ Ẽ

[
||Ỹ − X̃ ||2H

]
,

hence
W 2

1 (ν,μ)≤W 2
H (Q,P). (24)

We now show that the lower boundW 2
1 (ν,μ) is attained by the following coupling

(W,Y ) of P and Qν , defined on the Wiener space (Ω ,F ,P). The process Y is given
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by
Yt =Wt + t

(
fν (W1)−W1

)
, 0≤ t ≤ 1,

where fν (x) = qν(Φ(x)) and Φ denotes the distribution function of μ = N(0,1).
The endpoint Y1 = fν (W1) has distribution ν under P, and the conditional distri-
bution of Y given the endpoint Y1 = y coincides with the Brownian bridge Py.
Thus Y has distribution Qν under P, and (W,Y ) is a coupling of P and Qν , de-
fined on (Ω ,F ,P). Note that this coupling is not adaptive with respect to the
filtration (Ft), since Y anticipates the endpoint W1 of the Brownian path. Since
||Y −W ||2

H
= ( fν (W1)−W1)

2, we get

EP
[
||Y −W ||2H

]
=

∫ (
fν (x)− x

)2μ(dx)

=

∫ 1

0

(
qν(α)−Φ−1(α)

)2dα =W 2
1 (ν,μ),

using equation (8) in the last step. This completes the proof of the first identity in
(22)
3) Let us write Q = Qν . Theorem 3 shows that the optimal adapted coupling of Q
and P is given by (W,WQ) under Q. Since

(W1−WQ
1 )2 = (

∫ 1

0
bQt dt)2 ≤

∫ 1

0
(bQt )2dt = ||BQ||2H

and
W 2

1 (ν,μ)≤ EQ
[
(W1−WQ

1 )2
]
≤ EQ

[
||BQ||2H

]
= 2H(ν|μ),

equality in (23) implies, Q-a.s., that bQt (·) is almost everywhere constant in t, hence
equal to m(·) :=W1−WQ

1 . Since the process bQ is adapted to the filtration (Ft ),
m(·) is measurable with respect to F0 =

⋂
t>0Ft . But P is 0-1 on F0, and the

same is true for Q � P. This implies m(·) = m Q-a.s. for some m ∈ R1, that is,
W1 =WQ

1 +m and ν = N(m,1). �

Talagrand’s inequality in any finite dimension n> 1 follows in the same manner.
For our purpose it is convenient to use the following equivalent version, where the
reference measure is taken to be

μ̃n =
n

∏
i=1

N(0,
1
n
)

instead of μn = ∏n
i=1N(0,1) as in (7).

Corollary 4 For any probability measure ν on Rn,

nW 2
n (ν, μ̃n)≤ 2H(ν|μ̃n). (25)
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Proof We may assume ν � μ̃n. Let Tn : Ω → R
n denote the map that associates

to each path ω the vector of its increments ω(i/n)−ω((i− 1)/n) (i = 1, . . . ,n).
UnderWiener measure P, the distribution of Tn is given by μ̃n. DefineQν on (Ω ,F )
by

dQν

dP
=

dν
dμ

(Tn).

For any coupling (X̃ ,Ỹ ) of P and Qν such that Z := Ỹ − X̃ ∈ H , the vectors Xn :=
Tn(X̃) and Yn := Tn(Ỹ ) form a coupling of ν and μ̃n. Since

||Xn−Yn||2 =
n

∑
i=1

(

∫ i/n

(i−1)/n
Żsds)2 ≤

n

∑
i=1

1
n

∫ i/n

(i−1)/n
Ż2
s ds=

1
n
||Ỹ − X̃||2H ,

we obtain
W 2

n (ν, μ̃n)≤ Ẽ
[
||Yn−Xn||2

]
≤

1
n
Ẽ
[
(||Ỹ − X̃ ||2H

]
,

hence
W 2

n (ν, μ̃n)≤
1
n
W 2

H (Q,P)≤
2
n
H(Qν |P).

due to Corollary 1. Since H(Qν |P) = H(ν|μ̃n), we have proved (25). �

4 Specific Relative Entropy

The following concept of specific relative entropy on Wiener space was introduced
by N. Gantert in her thesis [7], where it plays the role of a rate function for large
deviations of the quadratic variation from its ergodic behaviour; cf. also [8]. In our
context, it will allow us to extend Talagrand’s inequality on Wiener space beyond
the absolutely continuous case Q� P.

From now on, the index N will refer to the N-th dyadic partition of the unit inter-
val, that is, DN = {k2−N |k = 1, . . . ,2N}. In particular we introduce the discretized
filtration

FN,t = σ({Ws|s ∈ DN ,s≤ t}), 0≤ t ≤ 1

on Ω =C0[0,1], and we set FN = FN,1 = σ({Ws|s ∈DN}).

Definition 2 For any probability measureQ on (Ω ,F ), the specific relative entropy
of Q with respect to Wiener measure P is defined as

h(Q|P) = liminf
N↑∞

2−NHN(Q|P), (26)

where HN(Q|P) denotes the relative entropy of Q with respect to P on the σ -field
FN .
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SinceH(Q|P)= limN HN(Q|P), we get h(Q|P)= 0 for anyQ such thatH(Q|P)<
∞. Thus, the notion of specific relative entropy is of interest only if we look beyond
the cases that we have considered so far.

Remark 3 Note that FN = σ(Tn) for n = 2N , where Tn : Ω → R
n maps a path ω to

the vector of its increments along theN-th dyadic partition; cf. the proof of Corollary
4. Identifying the restrictions of Q and P to FN with their images ν and μ̃n under
Tn, Talagrand’s finite-dimensional inequality (25) can be written in the form

2NW 2
N(Q,P)≤ 2HN(Q|P), (27)

with
WN(Q,P) := inf

(
ẼP̃

[〈
Ỹ − X̃

〉
N
])1/2

,

where the infimum is taken over all couplings of Q and P and
〈
·
〉
N denotes the dis-

crete quadratic variation along the N-th dyadic partition, that is,
〈
ω
〉
N = ||Tn(ω)||2n

for any continuous function ω ∈ Ω =C0[0,1]. For N ↑ ∞, the right hand side of (27)
increases to 2H(Q|P). Thus, an alternative version of the bottom-up approach to
Talagrand’s inequality on Wiener space consists in showing that, in the limit N ↑ ∞,
the left hand side of (27) can be replaced byWH (Q,P) if H(Q|P< ∞.

In order to go beyond the absolutely continuous case Q � P, let us rewrite the
finite-dimensional inequality (27) as

W 2
N(Q,P)≤ 2 ·2−NHN(Q|P). (28)

Taking the limit N ↑ ∞, the specific relative entropy h(Q|P) appears on the right
hand side of (28), while the left hand side suggests to define a new Wasserstein
distance on Wiener space in terms of quadratic variation. The resulting extension of
Talagrand’s inequality is contained in Theorems 6 and 7 below. Instead of analyzing
the limit behaviour of the left hand side of (28), we are going to use again a top-
down approach, arguing directly in terms of couplings on Wiener space. As a first
step in that direction, we now show how the specific relative entropy h(Q|P) reflects
the special structure of a semimartingale measure Q onC0[0,1].

Definition 3 Let QS denote the class of all probability measuresQ on Ω =C0[0,1]
such that the coordinate processW is a special semimartingale of the form

W =MQ+AQ (29)

under Q with respect to the filtration (Ft), where

1. MQ = (MQ)0≤t≤1 is a square-integrable martingale under Q
2. AQ = (AQ)0≤t≤1 is an adapted process with continuous paths of bounded varia-

tion such that its total variation |A|Q satisfies |A|Q1 ∈ L2(Q).

A probability measure Q ∈ QS will be called a martingale measure if AQ = 0, that
is, ifW is a square-integrable martingale under Q. The class of all such martingale
measures will be denoted by QM .
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Remark 4 Proposition 1 shows that any probabilitymeasureQ on (Ω ,F )with finite
relative entropyH(Q|P)<∞ belongs to the classQS , withMQ =WQ and AQ =BQ.

Let us now fix a measure Q ∈ QS . We denote by〈
W
〉
=

(〈
W
〉
t
)
0≤t≤1

the continuous quadratic variation process defined, Q-a.s., by the decomposition

W 2 =

∫
WdW +

〈
W
〉

of the continuous semimartingaleW 2 under Q. Our assumptions for Q ∈QS imply
that 〈

W
〉
t = lim

N↑∞ ∑
t∈DN

(
Wt −Wt−2−N

)2 in L1(Q) (30)

and that
lim
N↑∞ ∑

t∈DN

(
At −At−2−N

)2
= 0 in L1(Q) (31)

cf., e.g., Ch. VI in [12].
Let us introduce the finite measure q(ω ,dt) on [0,1] with distribution function〈

W
〉
(ω), defined Q-a.s., and denote by

q(ω ,dt) = qs(ω ,dt)+σ2(ω , t)dt (32)

its Lebesgue decomposition into a singular and an absolutely continuous part with
respect to Lebesgue measure λ on [0,1]; an explicit construction will be given in the
second part of the following proof.

Our next aim is to derive, for a large class of probability measures Q ∈ QS , a
lower bound for the specific relative entropy h(Q|P) in terms of the quadratic varia-
tion ofW under Q, that is, in terms of the random measure q(·, ·). In a first step we
focus on the case Q ∈ QM . The following theorem for martingale measures is es-
sentially due to N. Gantert in [7]; here we extend it to the case where the quadration
variation may have a singular component.

Theorem 4 For any martingale measure Q ∈ QM , the specific relative entropy of
Q with respect to Wiener measure P satisfies

h(Q|P) ≥
1
2
EQ

[
q(ω , [0,1])− 1+H(λ |q(ω , ·))

]
=

1
2
EQ

[
qs(ω , [0,1])

]
+EQ

[∫ 1

0
f
(
σ2(ω , t)

)
dt
]
, (33)

where f is the convex function on [0,∞) defined by f (x) = 1
2 (x− 1− logx) ≥ 0. In

particular,
h(Q|P)< ∞ =⇒ σ2(·, ·)> 0 Q⊗λ − a.s. (34)
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Proof 1) First we look at the general case Q ∈ QS . Thus we can writeW =M+
A, where M is a square-integrable Q-martingale and A is an adapted process with
continuous paths of bounded variation such that EQ

[
|A|21

]
< ∞.

For N ≥ 1 and i= 1, . . . ,2N we write ti = i2−N and denote by νN,i(ω , ·) the con-
ditional distribution of the incrementWti −Wti−1 under Q given the σ -field FN,ti−1 ,
by

mN,i = EQ
[
Wti −Wti−1 |FN,ti−1

]
= EQ

[
Ati −Ati−1 |FN,ti−1

]
its conditional mean, by

σ̃2
N,i = EQ

[
(Wti −Wti−1)

2|FN,ti−1

]
−m2

N,i

its conditional variance, and by

σ2
N,i = EQ

[
(Mti −Mti−1)

2|FN,ti−1

]
= EQ

[〈
W
〉
ti
−
〈
W
〉
ti−1

|FN,ti−1

]
(35)

the conditional variance of the martingale incrementMti −Mti−1 . We can write

HN(Q|P) =
2N

∑
i=1

EQ
[
H
(
νN,i(ω , ·)|N(0,2−N)].

Since

H
(
N(m,α)|N(0,β )

)
= f (

α
β
)+

m2

2β

for α,β > 0 and m ∈ R1, we get

H
(
νN,i|N(0,2−N)

)
= H

(
νN,i|N(mN,i, σ̃2

N,i)
)
+H

(
N(mN,i, σ̃2

N,i)|N(0,2
−N)

)
= H

(
νN,i|N(mN,i, σ̃2

N,i)
)
+ f (2Nσ̃2

N,i)+
1
2
2Nm2

N,i ,

hence

HN(Q|P) = HN(Q|Q∗
N)+EQ

[ 2N

∑
i=1

f (2N σ̃2
N,i)

]
+

1
2
2NIN , (36)

where we define

IN := EQ
[ 2N

∑
i=1

m2
N,i
]
, (37)

and whereQ∗
N denotes the probability measure on (Ω ,FN) such that the increments

Wti−Wti−1 have conditional distributionN(mN,i, σ̃2
N,i) given the σ -fieldFN,ti−1 . Note

that Jensen’s inequality yields
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IN ≤ EQ
[ 2N

∑
i=1

(Ati −Ati−1)
2],

hence
lim
N↑∞

IN = 0, (38)

due to (31). Note also thatHN(Q|P)< ∞ implies σ̃2
N,i(ω)> 0 Q-a.s., since f (0) =

∞.
2) LetQ⊗q denote the finite measure on Ω̄ =Ω × [0,1] defined byQ⊗q(dω ,dt)=
Q(dω)q(ω ,dt). On the σ -field

PN := σ({At × (t,1] | t ∈ DN ,At ∈ FN,t}),

the measure Q⊗ q is absolutely continuous with respect to the product measure
Q⊗λ , where λ denotes the Lebesgue measure on (0,1], and the density is given by

σ2
N(ω , t) :=

2N

∑
i=1

2Nσ2
N,i(ω)I(ti−1,ti](t).

The σ -fields PN increase to the predictable σ -field P on Ω̄ , generated by the
sets At × (t,1] with t ∈ [0,1] and At ∈ Ft . Applying the first part of Lemma 1 with
μ = Q⊗λ and ν = Q⊗ q, we see that the limit

σ2(ω , t) = lim
N↑∞

σ2
N(ω , t)

exists both Q⊗ q -a.s. and Q⊗λ -a.s., with

σ2(ω , t) ∈ [0,∞) Q⊗λ − a.s.

and
σ2(ω , t) ∈ (0,∞] Q⊗ q− a.s..

Moreover, the Lebesgue decomposition of Q⊗ q with respect to Q⊗λ on the pre-
dictable σ -field P takes the form

Q⊗ q [Ā] = Q⊗ q [Ā∩{σ2 = ∞}]+EQ⊗λ
[
σ2; Ā

]
,

for Ā ∈ P . This implies, Q-a.s., the Lebesgue decomposition

q(ω ,dt) = qs(ω ,dt)+σ2(ω , t)λ (dt),

of q(ω , ·) with respect to Lebesgue measure λ , where the singular part qs(ω , ·) is
given by the restriction of q(ω , ·) to the λ -null set

N(ω) := {t | σ2(ω , t) = ∞}. (39)
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3) Let us now focus on the case where Q is a martingale measure. For Q ∈ QM , we
have σ̃2

N,i = σ2
N,i and A= 0, hence IN = 0. Thus, equation (36) can be written as

2−NHN(Q|P) = 2−NHN(Q|Q∗
N)+EQ

[∫ 1

0
f (σ2

N(·, t))dt
]
. (40)

Since HN(Q|Q∗
N)≥ 0, we obtain

h(Q|P) ≥ lim
N↑∞

EQ
[∫ 1

0
f (σ2

N(·, t))dt
]

=
1
2
EQ

[
qs(ω ,(0,1])

]
+EQ

[∫ 1

0
f (σ2(·, t))dt

]
. (41)

where we apply the second part of Lemma 1 below, with μ =Q⊗λ and ν =Q⊗q.
Since f (0) = ∞, we see that h(Q|P) < ∞ implies that σ2(·, ·) is strictly positive
Q⊗λ -a.s.. �

Remark 5 The proof of Theorem 4 shows that we obtain existence of the limit

h(Q|P) = lim
N↑∞

2−NHN(Q|P) (42)

together with the equality

h(Q|P) =
1
2
EQ

[
qs(ω , [0,1])

]
+EQ

[∫ 1

0
f
(
σ2(ω , t)

)
dt
]
, (43)

if and only if Q is “almost locally Gaussian” in the sense that the measures Q∗
N

appearing in (36) satisfy
lim
N↑∞

2−NHN(Q|Q∗
N) = 0. (44)

This was already observed by N. Gantert in [7].

In the proof of Theorem 4 we have used the following general lemma.

Lemma 1 Consider two probability measures μ and ν on a measurable space
(S,S ) and a sequence of (Sn)n=1,2,... of sub-σ -fields increasing to S∞. Suppose
that ν is equivalent to μ on Sn with density φn.
1) The limit φ∞ = limn φn exists both μ-a.s. and ν-a,s,, with

φ∞ ∈ [0,∞) μ − a.s. and φ∞ ∈ (0,∞] ν − a.s.,

and the Lebesgue decomposition ν = νs+νa of ν with respect to μ on S∞ is given
by

νs(A) = ν(A∩{φ∞ = ∞}) and νa(A) =
∫
A

φ∞dμ .

2) If supn
∫
f (φn)dμ < ∞ for f (x) = 1

2 (x− 1− logx) then we have
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lim
n↑∞

∫
f (φn)dμ =

1
2

νs(S)+
∫

f (φ∞)dμ . (45)

Proof The first part is well-known; the proof uses standard martingale arguments.
To prove the second part, we write∫

2 f (φn)dμ =

∫
φndμ − 1+

∫
log(φ−1

n )dμ

= νs(S)+
∫

φ∞dμ − 1+HSn(ν|μ).

Due to (6), we get

lim
n↑∞

∫
f (φn)dμ =

1
2
(
νs(S)+

∫
φ∞dμ − 1+HS∞(ν|μ)

)
If the left hand side is finite, the relative entropy is finite and reduces to

∫
log(φ−1

∞ )dμ ,
and this yields equation (45). �

Let us now go beyond the case of a martingale measure. Take Q ∈ QS and
let W =M+A be the canonical decomposition of the semimartingaleW under Q.
As soon as the process A is non-deterministic, the conditional variances σ2

N,i of M
defined in (35) do no longer coincide with the conditional variances σ̃2

N,i ofW along
the N-th dyadic partition. Instead we have

σ̃2
N,i = σ2

N,i+ δN,i,

where
δN,i = α2

N,i+ 2EQ
[
(Mti −Mti−1)(Ati −Ati−1)|FN,ti−1

]
,

and where we denote by

α2
N,i = EQ

[
(Ati −Ati−1)

2|FN,ti−1

]
−m2

N,i

the conditional variances of A along the N-th dyadic partition.
Lemma 2 The differences δN,i and the conditional variances α2

N,i satisfy

lim
n↑∞

EQ
[ 2N

∑
i=1

|δN,i|
]
= lim

n↑∞
EQ

[ 2N

∑
i=1

α2
N,i
]
= 0.

Proof Since

JN := EQ
[ 2N

∑
i=1

α2
N,i
]
≤ EQ

[ 2N

∑
i=1

(Ati −Ati−1)
2],

we obtain
lim
n↑∞

JN = 0 (46)

due to (31). On the other hand, since
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|δN,i| ≤ α2
N,i+ 2σN,iαN,i, (47)

we get

EQ
[ 2N

∑
i=1

|δN,i|
]
≤ EQ

[ 2N

∑
i=1

α2
N,i
]
+ 2

2N

∑
i=1

EQ
[
σ2
N,i
]1/2EQ

[
α2
N,i
]1/2

≤ JN + 2EQ
[
M2

1
]1/2J1/2N ,

hence

lim
N↑∞

EQ
[ 2N

∑
i=1

|δN,i|= 0, (48)

due to (46). �

To prove our extended version of Theorem 4, we use an additional assumption.

Definition 4 We denote by Q0
S

the class of all probability measures Q ∈ QS such
that

lim
n↑∞

EQ
[
2−N

2N

∑
i=1

α2
N,iσ−2

N,i
]
= 0. (49)

Remark 6 Condition (49) is satisfied if σ2(·, ·) is bounded away from 0. Indeed, if
σ2(·, ·)≥ c Q⊗λ -a.s. for some c> 0 then

2N

∑
i=1

2Nσ2
N,i(ω)I(ti−1,ti](t) = σ2

N(ω , t)≥ EQ⊗λ
[
σ2|PN

]
≥ c Q⊗λ − a.s.;

cf. the second part of the proof of Theorem 4. Thus, (49) follows from Lemma 2.

Theorem 5 For any Q ∈ Q0
S
,

h(Q|P)≥
1
2
EQ

[
qs(ω , [0,1])

]
+EQ

[∫ 1

0
f
(
σ2(ω , t)

)
dt
]
. (50)

Proof 1) Let us return to the first part of the proof of Theorem 4. Since
HN(Q|Q∗

N)≥ 0, equation (36) yields

2−NHN(Q|P)≥ EQ
[ 2N

∑
i=1

f (2N σ̃2
N,i)2

−N]+ 1
2
IN .

Since f is convex with f ′(x) = 1
2 (1− x−1), we obtain

f (2N σ̃2
N,i)≥ f (2Nσ2

N,i)+
1
2
(1− 2−Nσ−2

N,i )2
NδN,i.

Due to (38), this implies
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h(Q|P)≥ liminf
N↑∞

EQ
[∫ 1

0
f
(
σ2
N(ω , t)

)
dt+

1
2

ΔN
]
,

where

ΔN =
2N

∑
i=1

(
δN,i− 2−Nσ−2

N,i δN,i
)
.

Applying the second part of Lemma 1 as in the proof of Theorem 4, we see that
inequality (50) holds as soon as we show that

lim
N↑∞

ΔN = 0 in L1(Q). (51)

2) In view of Lemma 2 it is enough to show convergence to 0 for

EQ
[ 2N

∑
i=1

2−Nσ−2
N,i |δN,i|

]

≤ EQ
[ 2N

∑
i=1

2−Nσ−2
N,iα

2
N,i

]
+ 2EQ

[
2−N

2N

∑
i=1

αN,iσ−1
N,i

]

≤ EQ
[ 2N

∑
i=1

2−Nσ−2
N,iα

2
N,i

]
+ 2EQ

[
2−N

2N

∑
i=1

σ−2
N,i α

2
N,i
]1/2

.

But the last two terms converge to 0 due to our assumption (49), and this completes
the proof of (51). �

Corollary 5 Let Q ∈ QS be such that ||AQ||H ∈ L2(Q). Then we have

h(Q|P) = 0 ⇐⇒ H(Q|P)< ∞,

and in this case the canonical decomposition (29) of W under Q takes the form
MQ =WQ and AQ = BQ .

Proof Let us assume h(Q|P) = 0. Inequality (33) implies qs(ω , ·) = 0 Q-a.s and
f
(
σ2(ω , t)

)
= 0 Q⊗ λ -a.s, hence σ2(ω , t) = 1 Q⊗ λ -a.s. Thus, W has quadratic

variation 〈
W
〉
t =

〈
MQ〉

t = t

under Q, and so MQ is a Wiener process under Q. Uniqueness of the canonical
decomposition ofW under Q yieldsMQ =WQ and AQ = BQ, hence

H(Q|P) =
1
2
EQ

[
||AQ||2H

]
< ∞

due to Proposition 1. Conversely, H(Q|P) < ∞ implies h(Q|P) = 0, as we have
already observed above, following the definition of h(Q|P). �
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5 Intrinsic Wiener Process and Optimal Coupling for
Semimartingale Measures

We fix a probability measure Q ∈ QS and denote by

W =M+A (52)

the canonical decomposition of the coordinate process W under Q. Recall the
Lebesgue decomposition

q(ω ,dt) = q(ω ,dt)+σ2(ω , t)dt

of the random measure q(ω , ·) on [0,1] with distribution function
〈
W
〉
(ω), and put

A(ω) := {t ∈ [0,1] | σ2(ω , t)< ∞}.

The following construction of an intrinsic Wiener process WQ for Q extends the
definition in Proposition 1 beyond the absolutely continuous case Q� P.

Lemma 3 If h(Q|P)< ∞ then the process WQ = (WQ
t )0≤t≤1, defined Q-a.s. by

WQ
t :=

∫ t

0
σ(·,s)−1IA(·)(s)dMs, (53)

is a Wiener process under Q.

Proof By Theorem 4, our assumption h(Q|P)< ∞ implies

EQ
[∫ 1

0
f (σ2(ω , t))dt

]
< ∞,

where f (x) = 1
2 (x− 1− logx), and in particular

0< σ2(·, ·)< ∞ Q⊗λ − a.s..

since f (0) =∞. Since
〈
M
〉
=
〈
W
〉
and λ

(
A(·)

)
= 1 Q-a.s., the predictable integrand

φs = σ(·,s)−1IA(·)(s) in (53) satisfies
∫ t

0
φ2
s d

〈
M
〉
s =

∫ t

0
σ−2
s IA(·)(s)σ2

s ds=
∫ t

0
IA(·)(s)ds= t.

Thus, the stochastic integrals in (53) are well defined, and they define a continuous
martingaleWQ under Q with quadratic variation

〈
WQ〉

t = t. This implies thatWQ

is a Wiener process under Q. �

For the rest of this section we assume that Q ∈ QS satisfies the condition

h(Q|P)< ∞, (54)
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and soWQ will be a Wiener process under Q.

Definition 5 WQ will be called the intrinsic Wiener process of Q.

Remark 7 If H(Q|P) < ∞ then the intrinsic Wiener process coincides with the
Wiener processWQ :=W −BQ defined in Proposition 1; cf. the proof of corollary
5.

Definition 6 An adaptive coupling (X̃ ,Ỹ ) of P and Q on a filtered probability space
(Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃)will be called a semimartingale coupling if Ỹ is a special semi-
martingale with respect to P̃ and (F̃t )0≤t≤1, and if the canonical decomposition
Ỹ = M̃+ Ã is such that

1. M̃ is a square-integrable martingale,
2. Ã is an adapted process with continuous paths of bounded variation such that its

total variation |Ã| satisfies |Ã|1 ∈ L2(P̃).

Clearly, the pair (WQ,W ) is a semimartingale coupling of P and Q, defined on
the filtered probability space (Ω ,F ,(Ft )0≤t≤1,Q). In fact, we are going to show
that (WQ,W ) is the optimal semimartingale coupling for the Wasserstein distance
WS (Q,P) defined below.

Proposition 3 For any semimartingale coupling (X̃ ,Ỹ ) of P and Q on some filtered
probability space (Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃) we have

Ẽ
[〈
Ỹ − X̃

〉
1
]
≥ EQ

[〈
W −WQ〉

1
]
, (55)

and equality holds if and only if X̃ =WQ(Ỹ ) P̃-a.s.. Moreover,

EQ
[〈
W −WQ〉

1
]
= EQ

[∫ 1

0

(
σ(·,s)− 1

)2ds+ qs(·,(0,1])
]
. (56)

.

Proof 1) First we show that the last equality holds. Recall from the proof of Theo-
rem 4 that qs(ω , ·) is given,Q-a.s., by the restriction of q(ω , ·) to the λ -nullsetN(ω)
defined in (39). Since A(·)∪N(·) = [0,1], we have

Wt =

∫ t

0
IA(·)(s)dWs+

∫ 1

0
IN(·)(s)dWs

=

∫ t

0
σ(·,s)dWQ

s +

∫ 1

0
IN(·)(s)dWs,

hence
(W −WQ)t =

∫ t

0

(
σ(·,s)− 1

)
dWQ

s +

∫ 1

0
IN(·)(s)dWs

and
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〈
W −WQ〉

t =
∫ t

0

(
σ(·,s)− 1

)2ds+ ∫ 1

0
IN(·)(s)d

〈
W
〉
s

+ 2
∫ t

0

(
σ(·,s)− 1

)
IN(·)(s)d

〈
WQ,W

〉
s.

The last term vanishes since, Q-a.s., N(ω) is a nullset with respect to
d
〈
WQ,W

〉
(ω)� d

〈
WQ〉(ω) = dt. This implies

EQ
[〈
W −WQ〉

1
]
= EQ

[∫ 1

0

(
σ(·,s)− 1

)2ds+ qs(·,(0,1])
]
.

2) Consider any semimartingale coupling (X̃ ,Ỹ ) of P and Q, defined on some fil-
tered probability space (Ω̃ ,F̃ ,(F̃t)0≤t≤1, P̃). Both X̃ and the process W̃ :=WQ(Ỹ ),
defined by

W̃t :=
∫ t

0
σ(Ỹ ,s)−1IA(Ỹ)(s)dỸs ,

are Wiener processes under P̃ with respect to the filtration (F̃t ). Projecting the first
on the second, we can write

X̃t =
∫ t

0
ρsdW̃s+ L̃t ,

where L̃= (L̃t )0≤t≤1 is a martingale orthogonal to W̃ . Since

t =
〈
X̃
〉
t =

∫ t

0
ρ2
s ds+

〈
L̃
〉
t ,

we get ρ2
t ≤ 1 and d

〈
L̃
〉
t = (1−ρ2

t )dt. This implies

d
〈
X̃ ,Ỹ

〉
= ρtd

〈
W̃ ,Ỹ

〉
= ρtσ−1(Ỹ , t)IA(Ỹ)(t)σ

2(Ỹ , t)dt

≤ σ(Ỹ , t)dt,

hence 〈
Ỹ − X̃

〉
1 =

〈
Ỹ
〉
1+

〈
X̃
〉
1− 2

〈
X̃ ,Ỹ

〉
1

≥
∫ 1

0
σ2(Ỹ , t)dt+ qs(Ỹ ,(0,1])+ 1− 2

∫ 1

0
σ(Ỹ , t)dt

=

∫ 1

0

(
σ(Ỹ , t)− 1

)2dt+ qs(Ỹ ,(0,1]).

Thus,
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Ẽ
[〈
Ỹ − X̃

〉
1
]
≥ Ẽ

[∫ 1

0
(σ

(
Ỹ , t)− 1

)2dt+ qs(Ỹ ,(0,1])
]

= EQ
[∫ 1

0

(
σ(·, t)− 1

)2dt+ qs(·,(0,1])
]

. = EQ
[〈
W −WQ〉

1
]
,

and equality holds iff ρt(·) = 1 P̃⊗ dt -a.s., that is, iff X̃ = W̃ =WQ(Ỹ ) P̃ -a.s.. �

Now consider the followingWasserstein distanceWS (Q,P), where the cost func-
tion is defined in terms of quadratic variation.

Definition 7 The Wasserstein distanceWS (Q,P) betweenQ andWiener measure P
is defined as

WS (Q,P) = inf
(
Ẽ
[〈
Ỹ − X̃

〉
1+ ||Ã||2S

]) 1
2 , (57)

where the infimum is taken over all semimartingale couplings (Ỹ , X̃) of Q and P on
some filtered probability space, where M̃+ Ã is the canonical decomposition of Ỹ ,
and where we set

||Ã||S =
(∫ 1

0
ã2t d

〈
Ỹ
〉
t
)1/2

if Ã is absolutely continuous with respect to
〈
Ỹ
〉
with density process ã, and

||Ã||S = ∞ otherwise.

Remark 8 In the absolutely continuous case Q� P we have

d
〈
Ỹ
〉
= d

〈
X̃
〉
= dt Q−a.s.,

and so the norm ||Ã||S reduces to the Cameron-Martin norm ||Ã||H .

As an immediate corollary to the preceding proposition we obtain the follow-
ing inequality for martingale measures. It provides a first extension of Talagrand’s
inequality (13) on Wiener space beyond the absolutely continuous case.

Theorem 6 For a martingale measure Q ∈ QM ,

W 2
S (Q,P) = EQ

[〈
W −WQ〉

1
]
≤ 2h(Q|P), (58)

and equality holds iff Q= P.

Proof 1) For Q ∈ QM , the pair (W,WQ) is a semimartingale coupling of Q and
P, defined on (Ω ,F ,(Ft )0≤t≤1,Q), such thatW −WQ =M−WQ is a martingale
under Q. Thus, the expected cost in (57) only involves the quadratic variation com-
ponent, and Proposition 3 implies

W 2
S (Q,P) = EQ

[〈
W −WQ〉

1
]
= EQ

[∫ 1

0

(
σ(·,s)− 1

)2ds+ qs(·,(0,1])
]
. (59)

Note that
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(σ − 1)2 ≤ σ2− 1− logσ2 = 2 f (σ2),

with equality iff σ2 = 1. Thus,

EQ
[〈
W −WQ〉

1
]
≤ EQ

[
2
∫ 1

0
f
(
σ2(·,s)

)
dt+ qs(·,(0,1])

]
≤ 2h(Q|P), (60)

where the second inequality follows from Theorem 4.
2) Equality in (58) implies equality in (60). It follows from part 1) that σ2(·, ·) =
1 Q⊗ λ -a.s.. This implies W = M =WQ under Q, hence Q = P. The converse is
obvious. �

Definition 8 We write Q ∈ Q∗
S

if the canonical decompositionW =M+A of the
coordinate processW under Q ∈ QS is such that

EQ
[
||A||2S

]
< ∞, (61)

that is, dAt = atd
〈
W
〉
t with

∫ 1
0 a2t d

〈
W
〉
t ∈ L1(Q), and if

G∗ := exp
(
−

∫ 1

0
atdM−

1
2

∫ 1

0
a2t d

〈
M
〉
t
)

satisfies
G∗ ∈ L2(Q) and EQ[G∗] = 1. (62)

Remark 9 For Q ∈ Q∗
S
, the probability measure Q∗ defined by

dQ∗ = G∗dQ (63)

is an equivalent martingale measure for Q; cf., for example, [6]. Note that QM ⊂
Q∗

S
, and that Q∗ = Q for Q ∈ QM .

Proposition 4 For Q ∈ Q∗
S
, the coupling (W,WQ) of Q and P is optimal for WS ,

that is,
W 2

S (Q,P) = EQ
[〈
W −WQ〉

1+ ||A||2S
]
. (64)

Proof ForQ∈Q∗
S
, the right-hand side in (64) is finite, and so we haveWS (Q,P)<

∞. Now take any semimartingale coupling (Ỹ , X̃) of Q and P, defined on some fil-
tered probability space (Ω̃ ,F̃ ,(F̃t )0≤t≤1, P̃), such that

Ẽ
[〈
Ỹ − X̃

〉
1+ ||Ã||2S

]
< ∞.

Since
Ẽ
[〈
Ỹ − X̃

〉
1
]
≥ EQ

[〈
W −WQ〉

1
]

(65)

by Proposition 3, it only remains to show that

Ẽ
[
||Ã||2S

]
≥ EQ

[
||A||2S

]
,



172 H. Föllmer

that is,

Ẽ
[∫ 1

0
ã2t d

〈
Ỹ
〉
t
]
≥ EQ

[∫ 1

0
a2t d

〈
W
〉
t
]
. (66)

We denote by P̃ the predictable σ -field on Ω̃ ×(0,1] corresponding to the filtration
(F̃t), and byP0 ⊆P the predictable σ -field corresponding to the smaller filtration
(F̃ 0

t ) generated by (Ỹt). Since Ẽ
[
||Ã||2

S

]
< ∞, we have

dÃt = ãtd
〈
Ỹ
〉
t = ãtdq(Ỹ , t),

where ã = (ãt) is P-measurable and square-integrable with respect to the finite
measure P̃⊗ q(Ỹ , ·) on P̃ . Let ã0 = (ã0t ) denote the process defined by the condi-
tional expectation

ã0 := EP̃⊗q(Ỹ ,·)
[
ã
∣∣P0],

and note that Jensen’s inequality implies

EP̃⊗q(Ỹ ,·)
[
(ã0)2

]
≤ EP̃⊗q(Ỹ ,·)

[
ã2
]
. (67)

For any A0
t ∈ F 0

t we can write

Ẽ
[
Ỹt+h− Ỹt ;A0

t
]
= Ẽ

[
M̃t+h− M̃t ;A0

t
]
+ Ẽ

[
Ãt+h− Ãt ;A0

t
]

= Ẽ
[∫ t+h

t
ãsd

〈
Ỹ
〉
s;A

0
t
]
= EP̃⊗q(Ỹ ,·)

[
ã;A0

t × (t, t+ h]
]

= EP̃⊗q(Ỹ ,·)
[
ã0;A0

t × (t, t+ h]
]
= Ẽ

[∫ t+h

t
ã0s d

〈
Ỹ
〉
s;A

0
t
]
.

This implies that the canonical decomposition of the semimartingale Ỹ in the smaller
filtration (F̃ 0

t ) is of the form

Ỹt = M̃0
t +

∫ t

0
ã0s d

〈
Ỹ
〉
s.

where M̃0 is a martingale with respect to (F̃ 0
t ). On the other hand, since the law of

Ỹ under P̃ is given by Q, we have

Ỹt =Mt(Ỹ )+
∫ t

0
as(Ỹ )d

〈
Ỹ
〉
s.

Uniqueness of the canonical decomposition implies

ã0 = a(Ỹ ) P̃⊗ q(Ỹ , ·)− a.s. (68)

Thus, inequality (67) yields

Ẽ
[∫ 1

0
ã2t d

〈
Ỹ
〉
t
]
≥ Ẽ

[∫ 1

0
a2t (Ỹ )d

〈
Ỹ
〉
t
]
= EQ

[∫ 1

0
a2t (W )d

〈
W
〉
t
]
,
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and so we have shown inequality (66). �

The following inequality extends Theorem 6 beyond the case of a martingale
measure. As explained in Remark 10 below, it contains inequality (58) forQ∈QM ,
Talagrand’s inequality (9) for Q� P, and Corollary 2 forWH ,ad as special cases.

Theorem 7 For Q ∈ Q∗
S
,

W 2
S (Q,P)≤ 2

(
h(Q|P)+H(Q|Q∗)

)
, (69)

where Q∗ is the equivalent martingale measure for Q defined by (63). Equality holds
iff H(Q|P)< ∞.

Proof 1) Proposition 4 combined with inequality (60) shows that

W 2
S (Q,P) = EQ

[〈
W −WQ〉

1+ ||A||2S
]

≤ 2h(Q|P)+EQ
[∫ 1

0
a2t d

〈
W
〉
t
]
. (70)

Since Q∗ is equivalent to Q, we have

H(Q|Q∗) = EQ
[
log

(
dQ∗/dQ)−1]

= EQ
[∫ 1

0
atdMt +

1
2

∫ 1

0
a2t d

〈
M
〉
t
]
.

But M is a square-integrable martingale under Q and EQ[
∫ 1
0 a2t d

〈
M
〉
t
]
< ∞ for Q ∈

Q∗
S
. This implies EQ

[∫ 1
0 atdMt

]
= 0, hence

H(Q|Q∗) =
1
2
EQ

[∫ 1

0
a2t d

〈
M
〉
t
]
.

Thus,

W 2
S (Q,P)≤ EQ

[〈
W −WQ〉

1+ ||A||2S
]
≤ 2h(Q|P)+ 2H(Q|Q∗).

and so we have shown inequality (69).
2) Equality in (69) implies equality in (70), hence

EQ
[〈
W −WQ〉

1
]
= 2h(Q|P).

Recall that the left-hand side satisfies equation (56). As in the proof of Theorem 6,
it follows that M =WQ. This impliesW =WQ+A and ||A||H = ||A||S ∈ L2(Q),
hence

H(Q|P) =
1
2
EQ

[
||A||2H

]
< ∞,

due to Proposition 1.
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Conversely, H(Q|P) < ∞ implies h(Q|P) = 0 and Q ∈ Q∗
S

with Q∗ = P, hence
H(Q|Q∗) = H(Q|P). Thus, the right-hand side of (69) reduces to 2H(Q|P) =
EQ

[
||BQ||2

H

]
. Moreover, sinceW =WQ+BQ and

〈
W
〉
t = t underQ, we get A=BQ,

and the left-hand side becomes W 2
S
(Q,P) =W 2

H ,ad(Q,P) = EQ
[
||BQ||2

H

]
. Thus,

equality holds in (69). �

Remark 10 Inequality (69) includes inequality (58) for martingale measures as a
special case. Indeed, for Q ∈QM ⊂ Q∗

S
we have Q=Q∗, hence H(Q|Q∗) = 0 and

W 2
S (Q,P)≤ 2h(Q|P).

Part 2) of the preceding proof shows how Talagrand’s inequality (9) and the identity
(20) forWH ,ad follow from Theorem 7.
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Who Are I: Time Inconsistency and
Intrapersonal Conflict and Reconciliation∗

Xue Dong He and Xun Yu Zhou

Abstract Time inconsistency is prevalent in dynamic choice problems: a plan of ac-

tions to be taken in the future that is optimal for an agent today may not be optimal

for the same agent in the future. If the agent is aware of this intra-personal con-

flict but unable to commit herself in the future to following the optimal plan today,

the rational strategy for her today is to reconcile with her future selves, namely to

correctly anticipate her actions in the future and then act today accordingly. Such a

strategy is named intra-personal equilibrium and has been studied since as early as in

the 1950s. A rigorous treatment in continuous-time settings, however, had not been

available until a decade ago. Since then, the study on intra-personal equilibrium for

time-inconsistent problems in continuous time has grown rapidly. In this chapter,

we review the classical results and some recent development in this literature.

1 Introduction

When making dynamic decisions, the decision criteria of an agent at different times

may not align with each other, leading to time-inconsistent behavior: an action that

is optimal under the decision criterion today may no longer be optimal under the

decision criterion at certain future time. A variety of preference models can lead

to time inconsistent behaviors, such as those involving present-bias, mean-variance

criterion, and probability weighting.
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In his seminal paper, Strotz (1955-1956) describes three types of agents when

facing time inconsistency. Type 1, a “spendthrift” (or a naiveté as in the more re-

cent literature), does not recognize the time-inconsistency and at any given time

seeks an optimal solution from the vantage point of that moment only. As a result,

his strategies are always myopic and change all the times. The next two types are

aware of the time inconsistency but act differently. Type 2 is a “precommitter” who

solves the optimization problem only once at time 0 and then commits to the result-

ing strategy throughout, even though she knows that the original solution may no

longer be optimal at later times. Type 3 is a “thrift” (or a sophisticated agent) who is

unable to precommit and realizes that her future selves may disobey whatever plans

she makes now. Her resolution is to compromise and choose consistent planning in

the sense that she optimizes taking the future disobedience as a constraint. In this

resolution, the agent’s selves at different times are considered to be the players of

a game, and a consistent plan chosen by the agent becomes an equilibrium of the

game from which no selves are willing to deviate. Such a plan or strategy is referred

to as an intra-personal equilibrium.

To illustrate the above three types of behavior under time inconsistency, consider

an agent who has a planning horizon with a finite end date T and makes decisions at

discrete times t ∈ {0,1, . . . ,T −1}. The agent’s decision drives a Markov state pro-

cess and the agent’s decision criterion at time t is to maximize an objective function

J(t,x;u), where x stands for the Markovian state at that time and u represents the

agent’s strategy. The agent considers Markovian strategies, so u is a function of time

s∈ {0,1, . . . ,T −1} and the Markovian state at that time. If the agent, at certain time

t with state x, is a “pre-committer”, she is committed to implementing throughout

the remaining horizon the strategy upc

(t,x) = {upc

(t,x)(s, ·)|s = t, t + 1, . . . ,T − 1} that

maximizes J(t,x;u), and this strategy is referred to as the pre-committed strategy of

the agent at time t with state x. If the agent is a “spendthrift”, at every time t with

state x, she is able to implement the pre-committed strategy at that moment only

and will change at the next moment; so the strategy that is actually implemented by

the agent throughout the horizon is un = {upc

(s,Xun
(s))

(s,Xun
(s))|s = 0,1, . . . ,T −1},

where Xun
denotes the state process under un. This strategy is referred to as the

naı̈ve strategy. If the agent is a “thrift”, she chooses an intra-personal equilibrium

strategy û: At any time t ∈ {0,1, . . . ,T − 1} with any state x at that time, û(t,x) is

the optimal action of the agent given that her future selves follow û; i.e.,

û(t,x) ∈ argmax
u

J(t,x;ut,u), (1)

where ut,u(t,x) := u and ut,u(s, ·) := û(s, ·) for s = t +1, . . . ,T −1.

All the three types of behavior are important from an economic perspective. First,

field and experimental studies reveal the popularity of commitment devices to help

individuals to fulfill plans that would otherwise be difficult to implement due to lack

of self control; see for instance Bryan et al. (2010). The demand for commitment

devices implies that some individuals seek for pre-committed strategies in the pres-

ence of time inconsistency. Second, empirically observed decision-making behavior
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implies that some individuals are naivetés. For example, Barberis (2012) shows that

a naı̈ve agent would take on a series independent, unfavorable bets and take a gain-

exit strategy, and this gambling behavior is commonly observed in casinos. Finally,

when an agent foresees the time-inconsistency and a commitment device is either

unhelpful or unavailable, the intra-personal equilibrium strategy becomes a rational

choice of the agent.

It is important to note that it is hard or perhaps not meaningful to determine

which type is superior than the others, simply because there is no uniform criteria

to evaluate and compare them. So a naı̈ve strategy, despite its name, is not necessar-

ily inferior to an intra-personal equilibrium in terms of an agent’s long-run utility.

Indeed, O’Donoghue and Rabin (1999) show that in an optimal stopping problem

with an immediate reward and present-biased preferences, a sophisticate agent has

a larger tendency to preproperate than a naiveté and thus leads to a lower long-

run utility. In this sense, studying the different behaviors under time inconsistency

sometimes falls into the realm of being “descriptive” as in behavioral science, rather

than being “normative” as in classical decision-making theory.

In this survey article, we focus on reviewing the studies on intra-personal equi-

librium of a sophisticated agent in continuous time. Intra-personal equilibrium for

time-inconsistent problems in discrete time, which is defined through the equilib-

rium condition (1), has been extensively studied in the literature and generated var-

ious economic implications. The extension to the continuous-time setting, however,

is nontrivial because in this setting, taking a different action from a given strategy at

only one time instant does not change the state process and thus has no impact on the

objective function value. As a result, it becomes meaningless to examine whether

the agent is willing to deviate from a given strategy at a particular moment by just

comparing the objective function values before and after the deviation. To address

this issue and to formalize the idea of Strotz (1955-1956), Ekeland and Pirvu (2008),

Ekeland and Lazrak (2006), and Björk and Murgoci (2010) assume that the agent’s

self at each time can implement her strategy in an infinitesimally small, but positive,

time period; consequently, her action has an impact on the state process and thus

on the objective function. In Section 2 below, we follow the framework of Björk

and Murgoci (2014) to define intra-personal equilibria, show a sufficient and neces-

sary condition for an equilibrium, and present the so-called extended HJB equation
that characterizes the intra-personal equilibrium strategy and the value under this

strategy. In Section 3, we further discuss various issues related to intra-personal

equilibria.

A close-loop strategy for a control system is a mapping from the historical path

of the system state and control to the space of controls. So at each time, the control

taken by the agent is obtained by plugging the historical path into this mapping.

For example, a Markovian strategy for a Markovian control system is a closed-

loop strategy. An open-loop strategy is a collection of controls across time (and

across scenarios in case of stochastic control), and at each time the control in this

collection is taken, regardless of the historical path of the system state and control.

For a classical, time-consistent controlled Markov decision problem, the optimal

close-loop strategy and the optimal open-loop strategy yield the same state-control
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path. For time-inconsistent problems, however, closed-loop and open-loop intra-

personal equilibria can be vastly different. In Section 4, we review the study of

open-loop intra-personal equilibrium and discuss its connection with closed-loop

intra-personal equilibrium.

Optimal stopping problems can be viewed as a special case of control problems,

so intra-personal equilibria can be defined similarly for time-inconsistent stopping

problems. These problems, however, have very special structures, and by exploiting

these structures new notions of intra-personal equilibria have been proposed in the

literature. We discuss these in Section 5.

If we discretize a continuous horizon of time and assume that the agent has

full self control in each subperiod under the discretization, we can define and de-

rive intra-personal equilibria as in the discrete-time setting. The limits of the intra-

personal equilibria as discretization becomes infinitely finer are used by some au-

thors to define intra-personal equilibria for continuous-time problems. In Section 6,

we review this thread of research.

Time-inconsistency arises in various economic problems, and for many of them,

intra-personal equilibria have been studied and their implications discussed in the

literature. In Section 7, we review this literature.

Finally, in Section 8, we review the studies on dynamic consistency preferences.

In these studies, starting from a preference model for an agent at certain initial time,

the authors attempt to find certain preference models for the agent’s future selves

such that the pre-committed strategy for the agent at the initial time is also optimal

for the agent at any future time and thus can be implemented consistently over time.

2 Extended HJB Equation

Strotz (1955-1956) is the first to study the behavior of a sophisticated agent in the

presence of time-inconsistency in a continuous-time model. Without formally defin-

ing the notion of intra-personal equilibrium, the author derives a consistent plan of

the sophisticated agent. Barro (1999) and Luttmer and Mariotti (2003) also inves-

tigate, for certain continuous-time models, consistent plans of sophisticated agents,

again without their formal definitions. In a series of papers, Ekeland and Lazrak

(2006), Ekeland and Lazrak (2008), and Ekeland and Lazrak (2010) study the classi-

cal Ramsey model with a nonexponential discount function and propose for the first

time a formal notion of intra-personal equilibrium for deterministic control prob-

lems in continuous time. Such a notion is proposed in a stochastic context by Björk

and Murgoci (2010), which is later split into two papers, Björk and Murgoci (2014)

and Björk et al. (2017), discussing the discrete-time and continuous-time settings,

respectively. In this section, we follow the framework of Björk et al. (2017) to de-

fine an intra-personal equilibrium strategy and present a sufficient and necessary

condition for such a strategy.
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2.1 Notations

We first introduce some notations. By convention, x ∈Rn is always a column vector.

When a vector x is a row vector, we write it as x ∈R1×n. Denote by A� the transpose

of a matrix A, and by tr(A) the trace of a square matrix A. For a differentiable

function ξ that maps x ∈ Rm to ξ (x) ∈ Rn, its derivative, denoted as ξx(x), is an

n×m matrix with the entry in the i-th row and j-th column denoting the derivative

of the i-th component of ξ with respect to the j-th component of x. In particular, for

a mapping ξ from Rm to R, ξx(x) is an m-dimensional row vector, and we further

denote by ξxx the Hessian matrix.

Consider ξ that maps (z,x) ∈ Z×X to ξ (z,x) ∈ Rl , where Z is a certain set and

X, which represents the state space throughout, is either Rn or (0,+∞). ξ is locally
Lipschitz in x ∈ X, uniformly in z ∈ Z if there exists a sequence of compact sets

{Xk}k≥1 with ∪k≥1Xk =X and a sequence of positive numbers {Lk}k≥1 such that for

any k ≥ 1, ‖ξ (z,x)−ξ (z,x′)‖ ≤ Lk‖x− x′‖,∀z ∈ Z,x,x′ ∈ Xk. ξ is global Lipschitz
in x ∈ X, uniformly in z ∈ Z if there exists constant L > 0 such that ‖ξ (z,x)−
ξ (z,x′)‖ ≤ L‖x− x′‖,∀z ∈ Z,x,x′ ∈ X. In the case X= Rn, ξ is of linear growth in
x ∈X, uniformly in z ∈ Z if there exists L > 0 such that ‖ξ (z,x)‖ ≤ L(1+‖x‖),∀z ∈
Z,x ∈ X. In the case X = (0,+∞), ξ has a bounded norm in x ∈ X, uniformly in
z∈Z, if there exists L> 0 such that ‖ξ (z,x)‖≤ Lx,∀z∈Z,x∈X. ξ is of polynomial
growth in x ∈ X, uniformly in z ∈ Z if there exists L > 0 and integer γ ≥ 1 such that

‖ξ (z,x)‖ ≤ L
(
1+ϕ2γ(x)

)
,∀z ∈ Z,x ∈ X, where ϕ2γ(x) = ‖x‖2γ when X= Rn and

ϕ2γ(x) = x2γ + x−2γ when X= (0,+∞).
Fix integers r ≥ 0, q ≥ 2r, and real numbers a < b. Consider ξ that maps (t,x) ∈

[a,b]×X to ξ (t,x) ∈ Rl . We say ξ ∈ Cr,q([a,b]×X) if for any derivative index α
with |α| ≤ q−2 j and j = 0, . . . ,r, the partial derivative

∂ j+α ξ (t,x)
∂ t j∂xα := ∂ j+α1+···+αn ξ (t,x)

∂ t j∂x
α1
1 ...∂xαn

n

exists for any (t,x)∈ (a,b)×X and can be extended to and continuous on [a,b]×X.

We say ξ ∈ C̄
r,q
([a,b]×X) if ξ ∈ Cr,q([a,b]×X) and

∂ j+α ξ (t,x)
∂ t j∂xα is of polynomial

growth in x ∈X, uniformly in t ∈ [a,b], for any derivative index α with |α| ≤ q−2 j
and j = 0, ...,r.

2.2 Time-Inconsistent Stochastic Control Problems

Let be given a probability space (Ω ,F ,P) with a standard d-dimensional Brown-

ian motion W (t) :=
(
W1(t), ...,Wd(t)

)�
, t ≥ 0, on the space, along with the filtration

(Ft)t≥0 generated by the Brownian motion and augmented by the P-null sets. Con-

sider an agent who makes dynamic decisions in a given period [0,T ], and for any

(t,x) ∈ [0,T )×X, the agent faces the following stochastic control problem:
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max

u
J(t,x;u)

subject to dXu(s) = μ(s,Xu(s),u(s,Xu(s)))ds
+σ(s,Xu(s),u(s,Xu(s)))dW (s), s ∈ [t,T ]

Xu(t) = x.

(2)

The agent’s dynamic decisions are represented by a Markov strategy u, which maps

(s,y) ∈ [0,T )×X to u(s,y) ∈U⊂Rm. The controlled diffusion process Xu under u
takes values in X, which as aforementioned is set to be either (0,+∞) or Rn. μ and

σ are measurable mappings from [0,T ]×X×U to Rn and to Rn×d , respectively,

where n stands for the dimension of X.

The agent’s goal at (t,x) ∈ [0,T ]×X is to maximize the following objective

function:

J(t,x;u) = Et,x

[∫ T

t
C
(
t,x,s,Xu(s),u(s,Xu(s))

)
ds+F

(
t,x,Xu(T )

)]
+G
(
t,x,Et,x[Xu(T )]

)
, (3)

where C is a measurable mapping from [0,T )×X× [0,T ]×X×U to R, and F and

G are measurable mappings from [0,T )×X×X to R. Here and hereafter, Et,x[Z]
denotes the expectation of Z conditional on Xu(t) = x. If C, F , and G are indepen-

dent of (t,x) and G
(
t,x,Et,x[Xu(T )]

)
is linear in Et,x[Xu(T )], then J(t,x;u) becomes

a standard objective function in classical stochastic control where time consistency

holds. Thus, with objective function (3), time inconsistency arises from the depen-

dence of C, F , and G on (t,x) as well as from the nonlinearity of G
(
t,x,Et,x[Xu(T )]

)
in Et,x[Xu(T )].

For any feedback strategy u, denote

μu(t,x) := μ(t,x,u(t,x)), σu(t,x) := σ(t,x,u(t,x)),

ϒ u(t,x) := σ(t,x,u(t,x))σ(t,x,u(t,x))�, Cτ,y,u(t,x) :=C
(
τ,y, t,x,u(t,x)

)
.

With a slight abuse of notation, u ∈U also denotes the feedback strategy u such that

u(t,x) = u,∀(t,x) ∈ [0,T ]×X; so U also stands for the set of all constant strategies

when no ambiguity arises.

We need to impose conditions on a strategy u to ensure the existence and unique-

ness of the SDE in (2) and the well-posedness of the objective function J(t,x;u).
This consideration leads to the following definition of feasibility:

Definition 1 A feedback strategy u is feasible if the following hold:

(i) μu, σu are locally Lipschitz in x ∈ X, uniformly in t ∈ [0,T ].
(ii) μu and σu are of linear growth in x ∈ X, uniformly in t ∈ [0,T ], when X = Rn

and have bounded norm in x ∈ X, uniformly in t ∈ [0,T ], when X= (0,+∞).
(iii) For each fixed (τ,y) ∈ [0,T )×X, Cτ,y,u(t,x) and F(τ,y,x) are of polynomial

growth in x ∈ X, uniformly in t ∈ [0,T ].
(iv) For each fixed (τ,y) ∈ [0,T )×X and x ∈ X, μu(t,x) and σu(t,x) are right-

continuous in t ∈ [0,T ) and limt ′≥t,(t ′,x′)→(t,x)Cτ,y,u(t ′,x′) = Cτ,y,u(t,x) for any

t ∈ [0,T ).
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Denote the set of feasible strategies as U.

We impose the following assumption:

Assumption 1 Any u ∈ U is feasible.

2.3 Intra-Personal Equilibrium

Here and hereafter, û ∈ U denotes a given strategy and we examine whether it is an

equilibrium strategy. For given t ∈ [0,T ), ε ∈ (0,T − t) and a ∈ U, define

ut,ε,a(s,y) :=

{
a(s,y), s ∈ [t, t + ε),y ∈ X

û(s,y), s /∈ [t, t + ε),y ∈ X.
(4)

Imagine that the agent at time t chooses strategy a and is able to commit herself

to this strategy in the period [t, t + ε). The agent, however, is unable to control her

future selves beyond this small time period, namely in the period [t + ε,T ) and

believes that her future selves will take strategy û. Then, ut,ε,a is the strategy that

the agent at time t expects herself to implement throughout the entire horizon. Note

that ut,ε,a is feasible because both û and a are feasible.

Definition 2 (Intra-Personal Equilibrium)
û ∈ U is an intra-personal equilibrium if for any x ∈X, t ∈ [0,T ), and a ∈ U, we

have

limsup
ε↓0

J(t,x;ut,ε,a)− J(t,x; û)
ε

≤ 0. (5)

For each positive ε , ut,ε,a leads to a possibly different state process and thus to a

different objective function value from those of û, so it is meaningful to compare the

objective function values of ut,ε,a and û to examine whether the agent is willing to

deviate from û to a in the period of time [t, t+ε). Due to the continuous-time nature,

the length of the period, ε , during which the agent at t exerts full self control, must

be set to be infinitesimally small. Then, J(t,x;ut,ε,a) and J(t,x; û) become arbitrarily

close to each other; so instead of evaluating their difference, we consider the rate
of increment in the objective function value, i.e., the limit on the left-hand side of

(5). Thus, under Definition 2, a strategy û is an intra-personal equilibrium if at any

given time and state, the rate of increment in the objective value when the agent

deviates from û to any alternative strategy is nonpositive. As a result, the agent has

little incentive to deviate from û.
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2.4 Sufficient and Necessary Condition

We first introduce the generator of the controlled state process. Given u ∈ U and

interval [a,b]⊆ [0,T ], consider ξ that maps (t,x)∈ [a,b]×X to ξ (t,x)∈R. Suppose

ξ ∈ C1,2([a,b]×X), and denote by ξt , ξx, and ξxx respectively its first-order partial

derivative in t, first-order partial derivative in x, and second-order partial derivative

in x. Define the following generator:

A uξ (t,x) = ξt(t,x)+ξx(t,x)μu(t,x)+
1

2
tr
(

ξxx(t,x)�ϒ u(t,x)
)
,

t ∈ [a,b],x ∈ X. (6)

For each fixed (τ,y) ∈ [0,T )×X, denote

f τ,y(t,x) := Et,x[F(τ,y,X û(T ))], (7)

g(t,x) := Et,x[X û(T )], t ∈ [0,T ],x ∈ X. (8)

In addition, for fixed (τ,y) ∈ [0,T )×X and s ∈ [0,T ], denote

cτ,y,s(t,x) := Et,x[Cτ,y,û(s,X û(s))], t ∈ [0,s],x ∈ X. (9)

In the following, A u f τ,y denotes the function that is obtained by applying the op-

erator A u to f τ,y(t,x) as a function of (t,x) while fixing (τ,y). Then, A u f t,x(t,x)
denotes the value of A u f τ ,y at (t,x) while (τ,y) is also set at (t,x).The above nota-

tions also apply to Cτ ,y,u and cτ,y,s.
To illustrate how to evaluate J(t,x;ut,ε,a)− J(t,x; û) and thus the rate of incre-

ment, let us consider the second term in the objective function (3). An informal

calculation yields

Et,x [F(t,x,Xut,ε,a(T ))]−Et,x

[
F(t,x,X û(T ))

]
= Et,x

[
Et+ε,Xut,ε,a (t+ε) [F(t,x,Xut,ε,a(T ))]

]
−Et,x

[
F(t,x,X û(T ))

]
= Et,x

[
f (t,x)(t + ε,Xa(t + ε))

]
− f (t,x)(t,x)

≈ A a f t,x(t,x)ε,

where the second equality holds because ut,ε,a(s, ·) = a(s, ·) for s ∈ [t, t + ε) and

ut,ε,a(s, ·) = û(s, ·) for s ∈ [t + ε,T ) in addition to the definition of f τ,y in (7). The

change of the other terms in the objective function when the agent deviates from û
to a in the period [t, t + ε) can be evaluated similarly. As a result, we can derive the

rate of increment in the objective value, namely the limit on the left-hand side of

(5), which in turn enables us to derive a sufficient and necessary condition for û to

be an intra-personal equilibrium.

To formalize the above heuristic argument, we need to impose the following

assumption:
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Assumption 2 For any fixed (τ,y) ∈ [0,T )×X and t ∈ [0,T ), there exists t̃ ∈ (t,T ]
such that (i) f τ,y,g ∈ C̄

1,2
([t, t̃]×X); (ii) cτ,y,s ∈ C1,2([t, t̃ ∧ s]×X) for each fixed

s ∈ (t,T ] and
∂ j+α cτ,y,s(t ′,x′)

∂ t j∂xα is of polynomial growth in x′ ∈ X, uniformly in t ′ ∈
[t, t̃ ∧ s] and s ∈ (t,T ], for any α with |α| ≤ 2−2 j and j = 0,1; and (iii) G(τ,y,z) is

continuously differentiable in z, with the partial derivative denoted as Gz(τ,y,z).

Theorem 1 Suppose Assumptions 1 and 2 hold. Then, for any (t,x)∈ [0,T )×X and
a ∈ U, we have

lim
ε↓0

J(t,x;ut,ε,a)− J(t,x; û)
ε

= Γ t,x,û(t,x;a), (10)

where for any (τ,y) ∈ [0,T )×X,

Γ τ ,y,û(t,x;a) : =Cτ,y,a(t,x)−Cτ,y,û(t,x)+
∫ T

t
A acτ,y,s(t,x)ds

+A a f τ,y(t,x)+Gz(τ,y,g(t,x))A ag(t,x). (11)

Moreover, Γ τ,y,û(t,x;a) = Γ τ,y,û(t,x; ã) for any a, ã ∈ U with a(t,x) = ã(t,x) and
Γ τ,y,û(t,x;a) = 0 if a(t,x) = û(t,x). Consequently, û is an intra-personal equilib-
rium if and only if

Γ t,x,û(t,x;u)≤ 0, ∀u ∈ U,x ∈ X, t ∈ [0,T ). (12)

Theorem 1 presents a sufficient and necessary condition (12) for an intra-personal

equilibrium û. Because Γ τ,y,û(τ,y; û(t,x)) = 0, we have

Γ τ,y,û(t,x;a) = Π τ,y(t,x;a)−Π τ,y(t,x; û),

where

Π τ,y(t,x;a) : =Cτ,y,a(t,x)+
∫ T

t
A acτ,y,s(t,x)ds+A a f τ,y(t,x)

+Gz(τ,y,g(t,x))A ag(t,x). (13)

As a result, condition (12) is equivalent to

max
u∈U

Γ t,x,û(t,x;u) = 0,x ∈ X, t ∈ [0,T ) (14)

or

û(t,x) ∈ argmax
u∈U

Π t,x(t,x;u),x ∈ X, t ∈ [0,T ). (15)

This can be regarded as a time-inconsistent version of the verification theorem in

(classical) stochastic control.

The proof of Theorem 1 can be found in Björk et al. (2017) and He and Jiang

(2019). Assumption 1 is easy to verify because it involves only the model parame-
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ters, i.e., μ , σ , C, F , and G. Assumption 2 imposes some regularity conditions on û,

which usually requires û to be smooth to a certain degree; see He and Jiang (2019)

for a sufficient condition for this assumption. As a result, the sufficient and neces-

sary condition (12) cannot tell us whether there exists any intra-personal equilibrium

among the strategies that do not satisfy Assumption 2. This condition, however, is

still very useful for us to find intra-personal equilibria for specific problems. Indeed,

in most time-inconsistent problems in the literature, intra-personal equilibrium can

be found and verified using (12); see Section 7.

2.5 Extended HJB

Define the continuation value of a strategy û, denoted as V û(t,x),(t,x) ∈ [0,T ]×X,

to be the objective value over time and state under this strategy, i.e.,

V û(t,x) : = J(t,x; û) = Ht,x(t,x)+G
(
t,x,g(t,x)

)
, (16)

where

Hτ,y(t,x) : = Et,x

[∫ T

t
Cτ,y,û(s,X û(s))ds+F(τ,y,X û(T ))

]
=
∫ T

t
cτ,y,s(t,x)ds+ f τ,y(t,x). (17)

Assuming certain regularity conditions and applying the operator A u to V û(t,x),
we derive

A uV û(t,x) =−Ct,x,û(t,x)+
∫ T

t
A uct,x,s(t,x)ds+A u f t,x(t,x)

+Gz
(
t,x,g(t,x)

)
A ug(t,x)+A u

τ,yHt,x(t,x)+A u
τ,yG(t,x,g(t,x))

+ tr

((
Ht,x

xy (t,x)+Gzy(t,x,g(t,x))�gx(t,x)
)�

ϒ u(t,x)
)

+
1

2
Gzz
(
t,x,g(t,x)

)
tr
(

gx(t,x)gx(t,x)�ϒ u(t,x)
)

where Hτ,y
xy (t,x) denotes the cross partial derivative of Hτ,y(t,x) in x and y, Gzy(τ,y,z)

the cross partial derivative of G(τ,y,z) in z and y, and Gzz(τ,y,z) the second-order

derivative of G(τ,y,z) in z. For each fixed (t,x), A u
τ,yHτ ,y(t,x) denotes the generator

of A u applied to Hτ,y(t,x) as a function of (τ,y), i.e., A u
τ,yHτ,y(t,x) := A u�(τ,y),

where �(τ,y) :=Hτ,y(t,x),(τ,y)∈ [0,T )×X, and A u
τ,yG(τ,y,g(t,x)) is defined sim-

ilarly.

Now, suppose û is an intra-personal equilibrium. Recalling (11) and the suffi-

cient and necessary condition (14), we derive the following equation satisfied by the

continuation value of an intra-personal equilibrium û:
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max
u∈U

[
A uV û(t,x)+Ct,x,u(t,x)− (

A u
τ,yHt,x(t,x)+A u

τ,yG(t,x,g(t,x))
)

− tr

((
Ht,x

xy (tx)+Gzy(t,x,g(t,x))�gx(t,x)
)�

ϒ u(t,x)
)

− 1

2
Gzz

(
t,x,g(t,x)

)
tr
(

gx(t,x)gx(t,x)�ϒ u(t,x)
)]

= 0,(t,x) ∈ [0,T )×X,

V û(T,x) = F(T,x,x)+G(T,x,x), x ∈ X. (18)

By (17), the definitions of cτ,y,s(t,x) and f τ,y(t,x), and the Feymann-Kac formula,

we derive the following equation for Hτ,y(t,x):

A ûHτ,y(t,x)+Cτ,y,û(t,x) = 0, (t,x) ∈ [0,T )×X,(τ,y) ∈ [0,T )×X,

Hτ ,y(T,x) = F(τ,y,x), x ∈ X,(τ,y) ∈ [0,T )×X. (19)

Similarly, we derive the following equation for g:

A ûg(t,x) = 0, (t,x) ∈ [0,T )×X,

g(T,x) = x, x ∈ X. (20)

Some remarks are in order. First, instead of a single equation for the value func-

tion of a time-consistent problem, the intra-personal equilibrium and its continuation

value satisfy a system of equations (18)–(20), which is referred to as the extended
HJB equation by Björk et al. (2017).

Second, compared to the HJB equation for a time-consistent problem, which

takes the form maxu∈U
[
A uV û(t,x)+Cu(t,x)

]
= 0, equation (18) has three addi-

tional terms in the first, second, and third lines of the equation, respectively. Here

and hereafter, when Cτ,y,u(t,x) does not depend on (τ,y), we simply drop the super-

script (τ,y). Similar notations apply to Hτ,y(t,x) and to the case when there is no

dependence on y. Now, recall that for the objective function (3), time inconsistency

arises from (i) the dependence of C, F , and G on (t,x) and (ii) the nonlinear depen-

dence of G
(
t,x,Et,x[Xu(T )]

)
on Et,x[Xu(T )]. If source (i) of time inconsistency is

absent, the first and second additional terms in (18) will vanish. If source (ii) of time

inconsistency is absent, the third additional term in (18) will disappear. In particular,

without time inconsistency, the extended HJB equation (18) reduces to the classical

HJB equation.

Third, consider the case in which G(t,x,Et,x[Xu(T )]) is linear in Et,x[Xu(T )] and

C, F , and G do not depend on x. In this case, the second and third lines of (18) vanish

and we can assume G ≡ 0 without loss of generality because G can be combined

with F . As a result, the extended HJB equation (18) specializes to

max
u∈U

[
A uV û(t,x)+Ct,u(t,x)

]
= ht(t,x),(t,x) ∈ [0,T )×X,

V û(T,x) = F(T,x), x ∈ X (21)
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where hτ(t,x) := Hτ
τ (t,x) (with the subscript τ denoting the partial derivative with

respect to τ) and thus satisfies

A ûhτ(t,x)+Cτ,û
τ (t,x) = 0, (t,x) ∈ [0,T )×X,τ ∈ [0,T ),

hτ(T,x) = Fτ(τ,x), x ∈ X,τ ∈ [0,T ). (22)

3 Discussions

3.1 Intra-Personal Equilibria with Fixed Initial Data

Consider an agent at time 0 with a fixed state x0 who correctly anticipates that her

self at each future time t faces the problem (2) and who has no control of future

selves at any time. A strategy û can be consistently implemented by the agent

throughout the entire horizon [0,T ] if the agent has no incentive to deviate from

it at any time along the state path. Actions that the agent might be taking were she

not on the state path are irrelevant. To be more precise, for any fixed initial data

(0,x0), we define û to be an intra-personal equilibrium starting from (0,x0) if (5)

holds for any a ∈ U, t ∈ [0,T ), and x ∈ X
0,x0,û
t , where X

0,x0,û
t denotes the set of all

possible states at time t along the state path starting from x0 at the initial time and

under the strategy û.

It is evident that the intra-personal equilibrium defined in Definition 2 is universal
in that it is an equilibrium starting from any initial data (0,x0). On the other hand,

starting from a fixed state x0 at time 0, the state process in the future might not

be able to visit the whole state space; so an equilibrium starting from (0,x0) is

not necessarily universal, i.e., it is not necessarily an equilibrium when the agent

starts from other initial data. For example, He et al. (2020) consider a continuous-

time portfolio selection problem in which an agent maximizes the median of her

terminal wealth. With a fixed initial wealth of the agent, the authors derive a set of

intra-personal equilibrium strategies starting from this particular initial wealth level.

They show that these strategies are no longer equilibria if the agent starts from some

other initial wealth levels, and in particular not universal equilibria in the sense of

Definition 2.

The first study of intra-personal equilibria starting from a fixed initial data dates

back to Peleg and Yaari (1973). In a discrete-time setting, the authors propose that

a strategy (s∗0,s
∗
1, . . .), where s∗t stands for the agent’s closed-loop strategy at time

t, is an equilibrium strategy if for any t, (s∗0, . . . ,s
∗
t−1,st ,s∗t+1, . . .) is dominated by

(s∗0, . . . ,s
∗
t−1,s

∗
t ,s

∗
t+1, . . .) for any st . They argue that the above definition is more

desirable than the following one, which is based on a model in Pollak (1968):

(s∗0,s
∗
1, . . .) is an equilibrium strategy if for any time t, (s0, . . . ,st−1,st ,s∗t+1, . . .) is

dominated by (s0, . . . ,st−1,s∗t ,s∗t+1, . . .) for any (s0, . . . ,st). It is clear that the equi-

librium strategies considered by Peleg and Yaari (1973) are the ones starting from

a fixed initial data while those studied by Pollak (1968) are universal. Recently, He
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and Jiang (2019), Han and Wong (2020), and Hernández and Possamaı̈ (2020) also

consider intra-personal equilibria with fixed initial data. Moreover, He and Jiang

(2019) propose a formal definition of X
0,x0,û
t , calling it the set of reachable states.

Finally, let us comment that the sufficient and necessary condition in Theorem

1 is still valid for intra-personal equilibria starting from fixed initial data (0,x0),

provided that we replace X in this condition with the set of reachable states X
0,x0,û
t ;

see He and Jiang (2019) for details. The extended HJB equation in Section 2.5 can

be revised and applied similarly.

3.2 Set of Alternative Strategies

In Definition 2, the set of strategies that the agent can choose at time t to implement

for the period [t, t + ε), denoted as D, is set to be the entire set of feasible strategies

U. This definition is used in Björk et al. (2017), Ekeland and Pirvu (2008), and

Ekeland et al. (2012). In some other works, however, D is set to be the set of constant

strategies U; see for instance Ekeland and Lazrak (2006, 2008, 2010), Björk and

Murgoci (2010), and Basak and Chabakauri (2010). He and Jiang (2019) show that

the choice of D is irrelevant as long as it at least contains U. Indeed, this can be

seen from the observation in Theorem 1 that Γ τ,y,û(t,x;a) = Γ τ,y,û(t,x;a(t,x)) for

any a ∈ U. He and Jiang (2019) also show that for strong intra-personal equilibrium,

which will be introduced momentarily, the choice of D is relevant.

3.3 Regular and Strong Intra-Personal Equilibrium

As noted in Remark 3.5 of Björk et al. (2017), condition (5) does not necessar-

ily imply that J(t,x;ut,ε,a) is less than or equal to J(t,x; û) however small ε > 0

might be and thus disincentivizes the agent from deviating from û. For example,

if J(t,x;ut,ε ,a)− J(t,x; û) = ε2, then (5) holds, but the agent can achieve a strictly

larger objective value if she deviates from û to a and thus is willing to do so.

To address the above issue, Huang and Zhou (2019) and He and Jiang (2019)

propose the notion of strong intra-personal equilibrium:

Definition 3 (Strong Intra-personal Equilibrium)
û ∈ U is a strong intra-personal equilibrium strategy if for any x ∈ X, t ∈ [0,T ),

and a ∈ D, there exists ε0 ∈ (0,T − t) such that

J(t,x;ut,ε ,a)− J(t,x; û)≤ 0, ∀ε ∈ (0,ε0]. (23)

It is straightforward to see that a strong intra-personal equilibrium implies the one

in Definition 2, which we refer to as a weak intra-personal equilibrium in this sub-

section.
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Huang and Zhou (2019) consider a stochastic control problem in which an

agent can control the generator of a time-homogeneous, continuous-time, finite-state

Markov chain at each time to maximize expected running reward in an infinite time

horizon. Assuming that at each time the agent can implement a time-homogeneous

strategy only, the authors provide a characterization of a strong intra-personal equi-

librium and prove its existence under certain conditions.

He and Jiang (2019) follow the framework in (2) and derive two necessary con-

ditions for a strategy to be strong intra-personal equilibrium. Using these condi-

tions, the authors show that strong intra-personal equilibrium does not exist for

the portfolio selection and consumption problems studied in Ekeland and Pirvu

(2008), Basak and Chabakauri (2010), and Björk et al. (2014). Motivated by this

non-existence result, the authors propose the so-called regular intra-personal equi-
librium and show that it exists for the above three problems and is stronger than the

weak intra-personal equilibrium and weaker than the strong intra-personal equilib-

rium in general.

3.4 Existence and Uniqueness

In most studies on time-inconsistent problems in the literature, a closed-form strat-

egy is constructed and verified to satisfy the sufficient and necessary condition (12)

or the extended HJB equation (18)–(20). The existence of intra-personal equilibrium

in general is difficult to prove because it essentially relies on a fixed point argument:

For each guess of intra-personal equilibrium û, we first calculate Γ τ,y,û in (12) and

Hτ,y(t,x) and g in (19) and (20), respectively, and then derive an updated intra-

personal equilibrium, denoted as Tû, from the condition (12) or from the equation

(18). The existence of an intra-personal equilibrium then boils down to the existence

of the fixed point of T. The mapping T is highly nonlinear; so the existence of its

fixed point is hard to establish. Additional difficulty is caused by the regularity con-

ditions that we need to pose on û to validate the sufficient and necessary condition

(12) or the extended HJB equation (18)–(20).

We are only aware of very few works on the existence of intra-personal equilibria

in continuous time. Yong (2012) proposes an alternative approach to defining the

strategy of a sophisticated agent, which will be discussed in detail in Section 6.

Assuming G ≡ 0, C and F to be independent of x in the objective function (3),

and σ(t,x,u) in the controlled diffusion process (2) to be independent of control u
and nondegenerate, Yong (2012) proves the existence of the sophisticated agent’s

strategy, which is used to imply the existence of an intra-personal equilibrium under

Definition 2. Wei et al. (2017) and Wang and Yong (2019) extend the result of Yong

(2012) by generalizing the objective function; however for the existence of intra-

personal equilibria, they need to assume the volatility σ to be independent of control

and nondegenerate. Hernández and Possamaı̈ (2020) study intra-personal equilibria

in a non-Markovian setting, where they consider a non-Markovian version of the

objective function in Yong (2012) and assume the drift μ of the controlled process to
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be in the range of the volatility matrix at each time. The authors prove the existence

of intra-personal equilibria when the volatility σ is independent of control.

Intra-personal equilibria can be non-unique; see Ekeland and Lazrak (2010), Cao

and Werning (2016), and He et al. (2020). For some problems, however, uniqueness

has been established in the literature. Indeed, Yong (2012), Wei et al. (2017), Wang

and Yong (2019), and Hernández and Possamaı̈ (2020) prove the uniqueness in var-

ious settings with the common assumption that the volatility σ is independent of

control.

3.5 Non-Markovian Strategies

In most studies on time-inconsistent problems, where the controlled state processes

are Markovian, the search for intra-personal equilibrium is restricted to the set of

Markovian strategies, i.e., strategies that are functions of time t and the current
state value x. Motivated by some practical problems such as rough volatility models

and principle-agent problems, Han and Wong (2020) and Hernández and Possamaı̈

(2020) define and search intra-personal equilibria in the class of non-Markovian or

path-dependent strategies, i.e., ones that depend on time t and the whole path of the

controlled state up to t.

4 Closed-Loop versus Open-Loop Intra-Personal Equilibria

A closed-loop or feedback control strategy is a function u that maps time t and the

controlled state path (xs)s≤t up to t to the space of actions. As a result, the action

taken by an agent under such a strategy is u(t,(xs)s≤t). An open-loop control is a

collection of actions over time and state of the nature, (u(t,ω))t≥0, where u(t,ω)
is the action to be taken at time t and in scenario ω , regardless of the state path

(xs)s≤t . For classical time-consistent control problems and under some technical

assumptions, the state-control paths under the optimal open-loop control and under

the optimal closed-loop control strategy are the same if the controlled system starts

from the same initial time and state; see for instance Yong and Zhou (1999).

In Section 2, intra-personal equilibrium is defined for closed-loop control strate-

gies, which is also the approach taken by most studies on time-inconsistent problems

in the literature. In some other works, intra-personal equilibrium is defined for open-

loop controls; see for instance Hu et al. (2012), Hu et al. (2017), Li et al. (2019),

and Hu et al. (2021).

Formally, under the same probabilistic framework in Section 2.2, we represent

an open-loop strategy by a progressively measurable process (u(t))t≥0 that takes

values in U. The controlled state process Xu takes the form

dXu(s) = μ(s,Xu(s),u(s))ds+σ(s,Xu(s),u(s))dW (s), s ∈ [t,T ]; Xu(t) = x.
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Denote by U the set of feasible open-loop controls, i.e., the set of progressively

measurable processes on [0,T ] satisfying certain integrability conditions. At time t
with state x, suppose the agent’s objective is to maximize J(t,x;u(·)) by choosing

u(·) ∈ U . Given û(·) ∈ U , for any t ∈ [0,T ), x ∈ X, ε ∈ (0,T − t), and a(·) ∈ U ,

define

ut,ε,a(s) :=

{
a(s), s ∈ [t, t + ε)
û(s), s /∈ [t, t + ε).

(24)

Suppose that at time t with state x, the agent chooses an open-loop control a(·),
but is only able to implement it in the period [t, t + ε). Anticipating that her future

selves will take the given control û(·), the agent expects herself to follow ut,ε,a in

the period [t,T ].

Definition 4 (Open-Loop Intra-Personal Equilibrium)
û(·) ∈ U is an open-loop intra-personal equilibrium if for any x ∈ X, t ∈ [0,T ),

and a ∈ U that is constant in a small period after t, we have

limsup
ε↓0

J(t,x;ut,ε,a(·))− J(t,x; û(·))
ε

≤ 0. (25)

The above is analogous to the definition of an intra-personal equilibrium for

closed-loop strategies. However, there is a subtle yet crucial difference between the

two definitions. For the one for open-loop controls, the perturbed control ut,ε,a(s)
defined by (24) and the original one û are identical on [t + ε,T ] as two stochastic

processes. In other words, the perturbation in the small time period [t, t+ε) will not

affect the control process beyond this period. This is not the case for the closed-loop

counterpart, because the perturbation (4) on [t, t + ε) changes the control in the pe-

riod, which will alter the state process in [t, t + ε) and in particular the state at time

t +ε . This in turn will change the control process on [t +ε,T ] upon substituting the

state process into the feedback strategy.

To characterize open-loop intra-personal equilibria, we only need to compute the

limit on the left-hand side of (25). This limit can be evaluated by applying the spike

variation technique that is used to derive Pontryagin’s maximum principle for time-

consistent control problems in continuous time (Yong and Zhou, 1999). As a result,

open-loop intra-personal equilibrium can be characterized by a flow of forward-

backward stochastic differential equations (SDEs); see Hu et al. (2012) for more

details. In contrast, the spike variation technique no longer works for closed-loop

equilibria because the perturbed control process is different from the original one

beyond the small time period for perturbation, as discussed above.

This discussion suggests that closed-loop and open-loop equilibria are likely dif-

ferent. This is confirmed by Hu et al. (2012). The authors consider a mean-variance

portfolio selection problem, where an agent decides the dollar amount invested in a

stock at each time, and derive an open-loop equilibrium; see Section 5.4.1 therein.

They then compare this equilibrium with the closed-loop equilibrium derived by
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Björk et al. (2014) for the same portfolio selection problem, and find that the state-

control path under these two equilibria are different.

It can be argued that closed-loop strategies are preferred to the open-loop ones

for three reasons. First, in many problems, agents’ actions naturally depend on some

state variables. For example, in a consumption problem, an agent’s consumption at

any time is more likely to depend directly on her wealth at that time. If her wealth

suddenly increases, she would probably consume more.

Second, closed-loop intra-personal equilibrium is invariant to the choice of con-

trol variables while open-loop intra-personal equilibrium might not. For example,

in a portfolio selection problem where an agent decides the allocation of her wealth

between a risk-free asset and a risky stock, the decision variable can be set to be the

dollar amount invested in the stock or the percentage of wealth invested in the stock.

Suppose û is a closed-loop intra-personal equilibrium representing the percentage

of wealth invested in the stock. Then, we have

limsup
ε↓0

J(t,x;ut,ε,a)− J(t,x; û)
ε

≤ 0. (26)

for all t ∈ [0,T ), x ∈ X, and a ∈ U, where the state variable x represents the agent’s

wealth. Now, suppose we represent the agent’s decision by the dollar amount in-

vested in the risky stock, and denote a control strategy as π . Then, the agent’s

objective function is J̃(t,x;π) = J(t,x;u) with u(s,y) = π(s,y)/y. Condition (26)

implies that

limsup
ε↓0

J̃(t,x;π t,ε,ã)− J̃(t,x; π̂)
ε

≤ 0,

for any t ∈ [0,T ), x ∈ X, and strategy ã that represents the dollar amount invested

in the stock, where π̂(s,y) := yû(s,y) and π t,ε,ã is defined similarly to ut,ε,a. Thus,

π̂ , which is the dollar amount investment strategy corresponding to the percent-

age investment strategy û, is also an intra-personal equilibrium. By contrast, for

the mean-variance portfolio selection problem studied by Hu et al. (2012), where

the agent’s decision is the dollar amount invested in the stock, the open-loop intra-

personal equilibrium yields a different control-state path from the one yielded by

its closed-loop counterpart derived by Björk et al. (2014). If we change the agent’s

decision variable to the percentage of wealth invested in the stock, the open-loop

intra-personal equilibrium and the closed-loop intra-personal equilibrium in Björk

et al. (2014) yield the same control-state path. This implies that open-loop equilibria

depend on the choice of control variables.

Third, open-loop intra-personal equilibrium may not be well-posed for some

problems. Consider the discrete-time version of the consumption problem studied

in Strotz (1955-1956): An agent decides the amount of consumption Ct at each

time t = 0,1, . . . ,T with the total budget x0, i.e., ∑T
t=0 Ct = x0. For this problem,

any consumption plan (Ĉt)t≥0 is an open-loop intra-personal equilibrium. Indeed,

at each time t, anticipating her future selves will consume Ĉs,s = t + 1, . . . ,T , the
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only amount of consumption Ct that the agent can choose at time t is Ĉt due to the

budget constraint (∑t−1
s=0 Ĉs)+Ct +(∑T

s=t+1 Ĉs) = x0. This leads to a trivial definition

of intra-personal equilibrium. The above issue can be rectified if we use closed-loop

strategies. To see this, we set xt to be the agent’s remaining budget at time t before

the consumption at that time. For closed-loop intra-personal equilibrium, we con-

sider a mapping from time t and the remaining budget xt to the consumption amount.

As a result, if the agent consumes more at time t, her future selves will consume

less because the remaining budget in the future becomes smaller; consequently, the

budget constraint is still satisfied. To elaborate, suppose the agent’s future selves’

strategies are to consume k̂s fractional of wealth at time s, s = t + 1, . . . ,T with

k̂s ∈ [0,1],s = t +1, . . . ,T −1 and k̂T = 1. Then, given that the agent at time t con-

sumes any amount Ct ∈ [0,xt ], the agent’s consumption in the future is Cs = k̂sxs,

s = t +1, . . . ,T , where xs = xs−1 −Cs−1, s = t +1, . . . ,T . As a result, the aggregate

consumption from time t to the end is ∑T
s=t Cs = xt . Recall that the aggregate con-

sumption strictly prior to time t is x0 −xt ; so the aggregate consumption throughout

the entire horizon is x0 satisfying the budget constraint. Thus, at each time t, the

agent can consume any amount up to his wealth level at that time and her future

selves will adjust their consumption according to a given strategy so that the budget

constraint is still satisfied.

Finally, we establish a connection between closed-loop and open-loop intra-

personal equilibria. If a closed-loop equilibrium û is independent of the state vari-

able x, then it follows from the definition that it is also an open-loop equilibrium.

For a general closed-loop equilibrium û, we can consider the following controlled

state process:

dX̂v(s) = μ̂(s, X̂v(s),v(s))ds+ σ̂(s, X̂v(s),v(s))dW (s), s ∈ [t,T ]; Xv(t) = x,

where μ̂(s,y,v) := μ(s,y, û(s,y)+ v), σ̂(s,y,v) := σ(s,y, û(s,y)+ v), and v(·) is a

progressively measurable control process. We further consider the following objec-

tive function:

Ĵ(t,x;v(·)) := Et,x

[∫ T

t
Ĉ
(
t,x,s, X̂v(s),v(s))

)
ds+F

(
t,x, X̂v(T )

)]
+G
(
t,x,Et,x[X̂v(T )]

)
,

where Ĉ(t,x,s,y,v) :=C(t,x,s,y, û(s,y)+v). Then, by definition, û is a closed-loop

equilibrium if and only if v̂(·) ≡ 0 is an open-loop equilibrium for the problem of

maximizing Ĵ(t,x;v(·)) in v(·) with the controlled state process X̂v. In particular,

we can characterize û by a flow of forward-backward SDEs by applying the spike

variation technique. In order to apply this technique, however, we need to assume

that μ̂(s,y,v) and σ̂(s,y,v) to be twice differentiable in y, which in turn requires û
to be twice differentiable; see Yong and Zhou (1999) for the detailed regularity con-

ditions needed for the spike variation technique. Thus, the spike variation technique

does not seem to be advantageous over the approached reviewed in Section 2.



Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation 195

5 Optimal Stopping

An optimal stopping problem is one to search an optimal random time τ to stop a

given, uncontrollable process (Xt)t≥0 (taking values in a state space X) in the set

of stopping times with respect to the filtration generated by the process. It is well

known that if the objective function of the optimal stopping problem depends on

the path of (Xt)t≥0 up to the stopping time only, this problem can be “embedded”

into a general control problem with (i) a closed-loop control strategy u taking bi-

nary values 0 and 1 representing the action of stopping and not stopping (Xt)t≥0

respectively; and (ii) a controlled state process (X̃u)t≥0 that is set to be (Xt)t≥0 until

the first time the control path under u takes value 0 and is set to be an absorbing
state afterwards; see for instance Section 3.4 of Bertsekas (2017). We call the con-

trol strategy u associated with a stopping time τ in the above embedding a stopping
rule, which maps each pair of time t and a path of the process X up to time t to

{0,1}. A stopping time τ is Markovian if the associated stopping rule is Markovian,

i.e., it is a mapping from the time–state space to {0,1}. With a Markovian stopping

time, at each time t, given that the process has not yet been stopped, whether to stop

at t depends on the value of the process at t only.

In view of the above embedding, intra-personal equilibrium stopping rules can

be defined naturally for time-inconsistent stopping problems; see for instance Tan

et al. (2018), Christensen and Lindensjö (2018), Ebert et al. (2020), and Christensen

and Lindensjö (2020). In particular, Tan et al. (2018) show that the smooth pasting

principle, which is the main approach used to construct explicit solutions for clas-

sical time-consistent optimal stopping, may fail to find an equilibrium when one

changes merely the exponential discounting to non-exponential one while keeping

everything else the same. The authors also construct an explicit example in which

no equilibrium exists. These results caution blindly extending the classical approach

for time-consistent stopping to their time-inconsistent counterpart.

By exploiting special structures of stopping problems in continuous time, Huang

and Nguyen-Huu (2018) propose an alternative approach to defining the optimal

stopping rule for a sophisticated agen; see also applications of this approach in

Huang et al. (2020), Ebert and Strack (2017), and Huang and Yu (2021). Precisely,

consider a Markov state process

dXt = μ(t,Xt)dt +σ(t,Xt)dWt

in Rn, where (Wt)t≥0 is an d-dimensional standard Brownian motion and μ and

σ are functions of time t and state x taking values in Rn and Rn×d , respectively.

Following the settings in the above papers, we consider Markovian stopping times

only in the following presentation, but the case of non-Markovian stopping times

can be investigated similarly. At each time t with state x, give that the state process

has not been stopped, the agent’s goal is to choose a Markovian stopping time τ ∈
[t,T ] to maximize an objective value J(t,x;τ). Here, J(t,x;τ) can be of the form

Et,x
[∫ τ

t g(t,x,s,Xs)ds+h(t,x,τ,Xτ)
]

for some functions g and h, or be a functional

of the distribution of Xτ conditional on Xt = x.
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Recall the embedding of optimal stopping problems into a general control frame-

work and the stopping rule associated with each stopping time as discussed at the

beginning of the present subsection. With a slight abuse of notation, we use τ to de-

note both a stopping time and a stopping rule. Let us now consider a given stopping

rule τ and the current time–state pair (t,x). If the agent decides to stop, then she has

the immediate reward J(t,x; t). If the agent decides not to stop at t but expects her

future selves will still follow the original rule τ , then she will stop at time L ∗τ , the

first time s > t at which τ would stop the process. In this case the objective value

is J(t,x;L ∗τ). Then, the optimal action of the agent at time t with state x is to stop

if J(t,x; t) > J(t,x;L ∗τ), to continue if J(t,x; t) < J(t,x;L ∗τ), and to follow the

originally assigned stopping rule τ in the break-even case J(t,x; t) = J(t,x;L ∗τ).
The above plan across all time t and state x constitutes a new stopping rule, denoted

as Θτ , which can be proved to be feasible in the sense that it can generate stopping

times; see Huang and Nguyen-Huu (2018) and Huang et al. (2020).

The above game-theoretic thinking shows that for any arbitrarily given stopping

rule τ , at any time t with any state x, the agent finds Θτ to be always no worse than

τ , assuming that her future selves will follow τ . Hence, an equilibrium stopping

rule τ can be defined as one that can not be strictly improved by taking Θτ instead.

Following Bayraktar et al. (2021), we name it as a mild intra-personal equilibrium
stopping rule:

Definition 5 A stopping rule τ is a mild intra-personal equilibrium if Θτ = τ .

So a mild intra-personal equilibrium is a fix-point of the operator Θ . If τ is to

stop the process at any time and with any state, then it is straightforward to see that

L ∗τ = τ . Consequently, by definition Θτ = τ and thus τ is a mild intra-personal

equilibrium. In other words, following Definition 5, immediate stop is automatically
a (trivial) mild intra-personal equilibrium.

For a general stopping rule τ , consider any time t and state x in the interior of the

stopping region of τ , where the stoping region refers to the set of time-state pairs at

which the stopping rule τ would stop the process. Then, it is also easy to see that

L ∗τ = τ at time t and state x, so one should immediately stop under Θτ as well. As

a result, the stopping region of Θτ is at least as large as that of τ , if we ignore the

time-state pairs that are on the boundary of the stopping region of τ . Therefore, we

expect the iterative sequence Θ nτ to converge as n → ∞, and the convergent point

τ∗ satisfies τ∗ = Θτ∗ and thus is a mild intra-personal equilibrium. It is, however

mathematically challenging to formalize the above heuristic derivation. Rigorous

proofs have been established in various settings by Huang and Nguyen-Huu (2018),

Huang et al. (2020), and Huang and Yu (2021). The above iterative algorithm, which

generates a sequence Θ nτ, n = 0,1, . . . , not only yields a mild intra-personal equi-

librium as the limit of the sequence, but also has a clear economic interpretation:

each application of Θ corresponds to an additional level of strategic reasoning; see

Huang and Nguyen-Huu (2018) and Huang et al. (2020) for elaborations.

As discussed in the above, immediate stop is always a mild equilibrium; so it

is expected that there exist multiple mild intra-personal equilibrium stopping rules;

see Huang and Nguyen-Huu (2018) and Huang et al. (2020). To address the issue
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of multiplicity, Huang and Zhou (2020) and Huang and Wang (2020) consider, in

the setting of an infinite-horizon, continuous-time optimal stopping under nonexpo-

nential discounting, the “optimal” mild intra-personal equilibrium stopping rule τ∗
which achieves the maximum of J(t,x;τ) over τ ∈ E for all t ∈ [0,T ), x ∈X, where

E is the set of all mild intra-personal equilibrium stopping rules.

Bayraktar et al. (2021) compare mild intra-personal equilibrium stopping rules

with weak (respectively strong) intra-personal equilibrium stopping rules obtained

by embedding optimal stopping into stochastic control and then applying Definition

2 (respectively Definition 3). Assuming the objective function to be a multiplication

of a discount function and a Markov process taking values in a finite or countably in-

finite state space, the authors prove that the optimal mild intra-personal equilibrium

is a strong intra-personal equilibrium.

6 Discretization Approach

In the discrete-time setting, an intra-personal equilibrium strategy of a sophisticated

agent can be easily defined and derived in a backward manner starting from the last

period. Thus, for a continuous-time problem, it is natural to discretize and then pass

to the limit. Specifically, one partitions the continuous-time period [0,T ] into a finite

number of subperiods, assumes the agent is able to commit in each subperiod but

not beyond it, and computes the strategy chosen by the agent. Sending the length of

the longest subperiod in the partition to zero, the limit of the above strategy, if it ex-

ists, can be regarded as the strategy of a sophisticated agent for the continuous-time

problem. This ideas was first employed by Pollak (1968) to study the consumption

problem of Strotz (1955-1956) and has recently been revisited and extensively stud-

ied by a series of papers; see for instance Yong (2012), Wei et al. (2017), Mei and

Yong (2019), and Wang and Yong (2019).

Specifically, consider the control problem in Section 2 and assume that in the

objective function in (3), C and F do not depend on x and G ≡ 0. For a partition Π
of [0,T ]: 0= t0 < t1 < · · ·< tN−1 < tN = T , we denote ‖Π‖ :=maxk=1,...,N |tk−tk−1|.
A control strategy ûΠ is an intra-personal equilibrium with respect to the partition

Π if

J(tk,xk; ûΠ )≥ J(tk,xk;uΠ
k,a) (27)

for any k = 0,1, . . . ,N − 1, reachable state xk at time k under ûΠ , and strategy a,

where uΠ
k,a(s, ·) := a(s, ·) for s ∈ [tk, tk+1) and uΠ

k,a(s, ·) = ûΠ (s, ·) for s ∈ [tk+1,T ).
In other words, û(s, ·),s ∈ [tk, tk+1), is optimal for an agent who can commit in the

period [tk, tk+1) and anticipates that her future selves will take strategy û beyond

time tk+1. In the aforementioned literature, the authors define a strategy û to be a

limiting intra-personal equilibrium if there exists a sequence of partition (Πm)m∈N
with limm→∞ ‖Πm‖= 0 such that the state process, control process, and continuation

value process under certain intra-personal equilibrium with respect to Πm converge
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to those under û, respectively, as m → ∞. Assuming that the diffusion coefficient of

the controlled state process is independent of control and non-degenerate and that

some other conditions hold, Wei et al. (2017) prove the above convergence for any

sequence of partitions with mesh size going to zero, and the limit of the continuation

value function satisfies a flow of PDEs. Moreover, this flow of PDEs admits a unique

solution, so the limiting intra-personal equilibrium uniquely exists. Furthermore, the

limiting equilibrium is also an equilibrium under Definition 2.

Whether the equilibrium with respect to Π converges when ‖Π‖ → 0 for a gen-

eral time-inconsistent problem, however, is still unknown. Moreover, the definition

of this equilibrium relies on the assumptions that C and F do not depend on x and

G ≡ 0. Otherwise, for a given partition Π , the optimal strategy the agent at time

tk implements in the subperiod [tk, tk+1) is semi-Markovian: the agent’s action at

time s ∈ [tk, tk+1) is a function of s, the state at s, and the state at tk. As a result,

the intra-personal equilibrium with respect to Π is non-Markovian; so we cannot

restrict limiting equilibria to be Markov strategies.

7 Applications

7.1 Present-bias Preferences

Present-biased preferences, also known as hyperbolic discounting, refer to the fol-

lowing observation in intertemporal choice: when considering time preferences be-

tween two moments, individuals become more impatient when the two moments are

closer to the present time. Thaler (1981) provides an illustrative example of present-

biased preferences: some people may prefer an apple today to two apples tomorrow,

but very few people would prefer an apple in a year to two apples in a year plus

one day. Noted as early as in Strotz (1955-1956), present-biased preferences lead

to time inconsistency. For example, consider an agent whose time preferences for

having apples are as described in the above illustrative example by Thaler (1981).

At time 0, faced with Option A of having one apple at time t = 365 (days) and Op-

tion B of having two apples at time s = 366 (days), the agent chooses Option B.

When time t = 365 arrives, however, if the agent gets to choose again, she would

choose Option A. This shows that the agent in the future will change her actions

planned today; hence time-inconsistency is present. For a review of the literature on

present-biased preferences, see Frederick et al. (2002).

In a time-separable discounted utility model, present-biased preferences can be

modeled by a non-exponential discount function. For example, consider an intertem-

poral consumption model in continuous time for an agent. The agent’s preference

value of a random consumption stream (Cs)s∈[t,T ] can be represented as

Et

[∫ T

t
h(s− t)u(Cs)ds

]
, (28)
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where u is the agent’s utility function, h is the agent’s discount function, and Et
denotes the expectation conditional on all the information available at time t. To

model present-biased preferences, we assume h(s+Δ)/h(s) to be strictly increasing

in s ≥ 0 for any fixed Δ > 0; hence it excludes the standard exponential discount

function. An example is the generalized hyperbolic discount function proposed by

Loewenstein and Prelec (1992): h(s) = (1+αs)−β/α ,s ≥ 0, where α > 0 and β >
0 are two parameters. Ebert et al. (2020) introduce a class of weighted discount

functions that is broad enough to include most commonly used non-exponential

discount functions in finance and economics.

In various continuous-time settings, Barro (1999), Ekeland and Lazrak (2006),

Ekeland and Lazrak (2008), Ekeland and Lazrak (2010), Ekeland and Pirvu (2008),

Marı́n-Solano and Navas (2010), and Ekeland et al. (2012) study intra-personal

equilibria for portfolio selection and consumption problems with present-biased

preferences. Ebert et al. (2020) and Tan et al. (2018) study real option problems

for agents with general weighted discount functions and derive equilibrium invest-

ment strategies. Harris and Laibson (2013) and Grenadier and Wang (2007) apply

a stochastic, piece-wise step discount function to a consumption problem and a real

option problem, respectively, and derive intra-personal equilibrium strategies. Asset

pricing for sophisticated agents with present-biased preferences and without com-

mitment has been studied by Luttmer and Mariotti (2003) and Björk et al. (2017).

7.2 Mean-Variance

A popular decision criterion in finance is mean–variance, with which an agent min-

imizes the variance and maximizes the mean of certain random quantity, e.g., the

wealth of a portfolio at the end of a period. Any mean–variance model is inherently

time inconsistent due to the variance part. To see this, consider a two-period deci-

sion problem with dates 0, 1, and 2 for an agent. The agent is offered various options

at time 1 that will yield certain payoffs at time 2. The set of options offered to the

agent at time 1 depends on the outcome of a fair coin that is tossed between time 0

and 1. If the toss yields a head, the agent is offered two options at time 1: Option H1

that yields $0 and $200 with equal probabilities and Option H2 that yields $50 and

$150 with equal probabilities. If the toss yields a tail, the agent is offered another

two options at time 1: Option T1 that yields $0 and $200 with equal probabilities

and Option T2 that yields $1050 and $1150 with equal probabilities. Suppose that

at both time 0 and 1, the agent’s decision criterion is to minimize the variance of

the terminal payoff at time 2. At time 0, the agent has not yet observed the outcome

of the toss; so she will need to make choices contingent on this outcome, i.e., she

chooses between the following four plans: (H1,T1), (H1,T2), (H2,T1), and (H2,T2),

where the first and second components of each of the above four plans stand for the

agent’s planned choice when the toss yields a head and a tail, respectively. Straight-

forward calculation shows that the plan (H2,T1) yields the smallest variance of the

terminal payoff; so at time 0 the agent plans to choose H2 when the toss yields a
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head and choose T1 when the toss yields a tail. At time 1, after having observed the

outcome of the toss, if the agent can choose again with the objective of minimizing

the variance of the terminal payoff, she would choose H2 if the outcome is a head

and T2 is the outcome is a tail. Consequently, what the agent plans at time 0 is dif-

ferent from what is optimal for the agent at time 1, resulting in time inconsistency.

The reason of having time inconsistency above can be seen from the following

conditional variance formula: var(X) = E[var(X |Y )]+var(E[X |Y ]), where X stands

for the terminal payoff and Y denotes the outcome of the coin toss. At time 0, the

agent’s objective is to maximize var(X) and at time 1, her objective is to maxi-

mize var(X |Y ). Although the plan (H2,T2) yields small variance of X given the

outcome of the toss Y and thus a small value of the average conditional variance

E[var(X |Y )], it yields very different expected payoffs conditional on having a head

and on having a tail, leading to a large value of var(E[X |Y ]). Consequently, var(X)
under plan (H2,T2) is larger than under plan (H2,T1), which yields a larger value

of E[var(X |Y )] than the former but a much smaller value of var(E[X |Y ]). Conse-

quently, (H2,T1) is preferred to (H2,T2) for the agent at time 0.

A lot of recent works study intra-personal equilibrium investment strategies for

agents with mean-variance preferences. For continuous-time models, see for in-

stance Basak and Chabakauri (2010), Björk et al. (2014), Pun (2018), Bensoussan

et al. (2014), Cui et al. (2016), Sun et al. (2016), Landriault et al. (2018), Bensous-

san et al. (2019), Kryger et al. (2020), and Han et al. (2021). In all these works,

the mean-variance criterion is formulated as a weighted average of the mean and

variance of wealth at a terminal time, i.e., at each time t, the agent’s objective is to

maximize Et [X ]− γt
2 vart(X), where Et and vart stand for the conditional mean and

variance of the terminal wealth X , respectively, and γt is a risk aversion parameter.

Alternatively, He and Jiang (2020b) and He and Jiang (2020a) study intra-personal

equilibria for mean-variance investors in a constrained formulation: at each time, an

investor minimizes the variance of terminal wealth with a target constraint of the

expected terminal wealth. Dai et al. (2021) consider a mean-variance model for log

returns. Hu et al. (2012), Hu et al. (2017), Czichowsky (2013), and Yan and Wong

(2020) investigate open-loop intra-personal equilibria for mean-variance portfolio

selection problems. For equilibrium mean-variance insurance strategies, see for in-

stance Zeng and Li (2011), Li et al. (2012), Zeng et al. (2013), Liang and Song

(2015), and Bi and Cai (2019).

7.3 Non-EUT Preferences

There is abundant empirical and experimental evidence showing that when mak-

ing choices under uncertainty, individuals do not maximize expected utility (EU);

see for instance a survey by Starmer (2000). Various alternatives to the EU model,

which are generally referred to as non-EU models, have been proposed in the lit-

erature. Some of these models employ probability weighting functions to describe

the tendency of overweighing extreme outcomes that occur with small probabilities,
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examples being prospect theory (PT) (Kahneman and Tversky, 1979, Tversky and

Kahneman, 1992) and rank-dependent utility (RDU) theory (Quiggin, 1982).

It has been noted that when applied to dynamic choice problems, non-EU models

can lead to time inconsistency; see Machina (1989) for a review of early works dis-

cussing this issue. For illustration, consider a casino gambling problem studied by

Barberis (2012): a gambler is offered 10 independent bets with equal probabilities

of winning and losing $1, plays these bets sequentially, and decides when to stop

playing. Suppose at each time, the gambler’s objective is to maximize the preference

value of the payoff at end of the game and the preferences are represented by a non-

EU model involving a probability weighting function. We represent the cumulative

payoff of playing the bets by a binomial tree with up and down movements stand-

ing for winning and losing, respectively. At time 0, the top most state (TMS) of the

tree at t = 10 represents the largest possible payoff achievable and the probability of

reaching this state is extremely small (2−10). The gambler overweighs this state due

to probability weighting and aspires to reach it. Hence, at time 0, her plan is to play

the 10-th bet if and when she has won all the previous 9 bets. Now, suppose she has

played and indeed won the first 9 bets. If she has a chance to re-consider her deci-

sion of whether to play the 10-th bet at that time, she may find it no longer favorable

to play because the probability of reaching the TMS at time 10 is 1/2 and thus this

state is not overweighed. Consequently, when deciding whether to play the 10-th

bet conditioning on she has won the first 9 bets, the gambler may choose differently

when she is at time 0 and when she is at time 9, showing time inconsistency.

In a continuous-time, complete market, Hu et al. (2021) study a portfolio selec-

tion problem in which an agent maximizes the following RDU of her wealth X at a

terminal time: ∫
R

u(x)w(1−FX (x)), (29)

where u is a utility function, w is a probability weighting function, and FX is the cu-

mulative distribution function of X . The authors derive an open-loop intra-personal

equilibrium and show that it is in the same form as in the classical Merton model

but with a properly scaled market price of risk. He et al. (2020) consider median and

quantile maximization for portfolio selection, where the objective function, namely

the quantile of the terminal wealth, can be regarded as a special case of RDU with

a particular probability weighting function w. The authors study closed-loop intra-

personal equilibrium and find that an affine trading strategy is an equilibrium if

and only if it is a portfolio insurance strategy. Ebert and Strack (2017) consider the

optimal time to stop a diffusion process with the objective to maximize the value

of the process at the stopping time under a PT model. Using the notion of mild

intra-personal equilibrium as previously discussed in Section 5, the authors show

that under reasonable assumptions on the probability weighting functions, the only

equilibrium among all two-threshold stopping rules is to immediately stop. Huang

et al. (2020) study mild intra-personal equilibrium stopping rules for an agent who

wants to stop a geometric Brownian motion with the objective of maximizing the

RDU value at the stopping time.
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Risk measures, such as value-at-risk (VaR) and conditional value-at-risk (VaR),

can also be considered to be non-EU models leading to time consistency. There are,

however, few studies on intra-personal equilibria for mean-risk models in continu-

ous time. For relevant studies in discrete-time settings, see for instance Cui et al.

(2019).

Models with Knightian uncertainty or ambiguity can also result in time incon-

sistency. For example, the α-maxmin model proposed by Ghirardato et al. (2004) is

dynamically inconsistent in general; see for instance Beissner et al. (2020). Li et al.

(2019) find an open-loop intra-personal equilibrium investment strategy for an agent

with α-maximin preferences. Huang and Yu (2021) consider a problem of stopping

a one-dimensional diffusion process with preferences represented by the α-maxmin

model and study the mild intra-personal equilibrium stopping rule for the problem.

8 Dynamically Consistent Preferences

Machina (1989) notes that, in many discussions of time inconsistency in the lit-

erature, a hidden assumption is consequentialism: at any intermediate time t of a

dynamic decision process, the agent employs the same preference model as used at

the initial time to evaluate the choices in the continuation of the dynamic decision

process from time t, conditional on the circumstances at time t. For example, con-

sider a dynamic consumption problem for an agent with present-bias preferences

and suppose that at the initial time 0, the agent’s preference value for a consumption

stream (Cs)s≥0 is represented by E[
∫ ∞

0 h(s)u(Cs)ds], where the discount function h
models the agent’s time preferences at the initial time 0 and u is the agent’s utility

function. The consequentialism assumption implies that at any intermediate time t,
the agent’s preferences for the continuation of the consumption stream, i.e., (Cs)s≥t ,

are represented by the same preference model as at the initial time 0, conditional

on the situations at time t, i.e., by Et [
∫ ∞

t h(s− t)u(Cs)ds], where the discount func-

tion h and u are the same as the ones in the preference model at the initial time

0. Similarly, for a dynamic choice problem with RDU preferences for the payoff

at a terminal time, the consequentialism assumption stipulates that the agent uses

the same utility function u and probability weighting function w at all intermediate

times t when evaluating the terminal payoff at those times.

The consequentialism assumption, however, has not been broadly validated be-

cause there are few experimental or empirical studies on how individuals dynami-

cally update their preferences. Machina (1989) consider a class of non-EU maximiz-

ers, referred to as γ-people, who adjust their preferences dynamically over time so

as to remain time consistent. The idea in Machina (1989) was further developed by

Karnam et al. (2017) who propose the notion of time-consistent dynamic preference
models. The idea of considering time-consistent dynamic preferences is also central

in the theory of forward performance criteria proposed and developed by Musiela

and Zariphopoulou (2006, 2008, 2009, 2010a,b, 2011); see also He et al. (2021) for

a related discussion.
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Formally, consider a dynamic choice problem in a period [0,T ). A preference

model at time 0 is specified for an agent, denoted as J0(u(·)), where (u(s))s∈[0,T )
denotes the agent’s dynamic choice. A family of dynamic preference models Jt , t ∈
(0,T ), are called time-consistent for the initial model J0 if the optimal strategy under

J0, namely, the pre-committed strategy for the agent at time 0, is also optimal under

Jt for the agent at any future time t ∈ (0,T ). Note that given the pre-committed

strategy at time 0, we can always find preference models at t > 0 such that this

strategy remains optimal. Thus, a more interesting question is whether we can find

a family of time-consistent dynamic preference models that are of the same type as

the initial preference model.

He et al. (2021) study portfolio selection in the Black-Scholes market for an agent

whose initial preference model for wealth at a terminal time is represented by RDU.

The authors show that there exists a family of time-consistent dynamic RDU models

if and only if (i) the probability weighting function in the initial model belongs to

a parametric class of functions proposed by Wang (1996); and (ii) the parameter

of the probability weighting function, the absolute risk aversion index of the utility

function, and the market price of risk must be coordinated with each other over time

in a specific way. Cui et al. (2012), Karnam et al. (2017), and He and Jiang (2020a)

find that mean-variance models become time consistent if the dynamic trade-off

between the mean and variance over time is set properly. For mean-CVaR models,

where an agent maximizes the mean and minimize the CVaR at certain confidence

level, Pflug and Pichler (2016) and Strub et al. (2019) note, in discrete-time settings,

that time consistency is retained as long as the tradeoff between the mean and CVaR

and the confidence level evolve dynamically in a certain way.

The problem of intra-personal equilibria and that of dynamically consistent pref-

erences can be considered primal–dual to each other: the former finds equilibrium

strategies given the time-inconsistent preferences, whereas the latter identifies pref-

erences given the problem is time-consistent. Diving deeper into this relationship

may call for innovative mathematical analysis and result in profound economic in-

sights.
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N -Player and Mean-Field Games in
Itô-Diffusion Markets with Competitive or
Homophilous Interaction

Ruimeng Hu and Thaleia Zariphopoulou

Abstract In Itô-diffusion environments, we introduce and analyze N-player and

common-noise mean-field games in the context of optimal portfolio choice in a

common market. The players invest in a finite horizon and also interact, driven either

by competition or homophily. We study an incomplete market model in which the

players have constant individual risk tolerance coefficients (CARA utilities). We

also consider the general case of random individual risk tolerances and analyze the

related games in a complete market setting. This randomness makes the problem

substantially more complex as it leads to (N or a continuum of) auxiliary “individual”

Itô-diffusion markets. For all cases, we derive explicit or closed-form solutions for

the equilibrium stochastic processes, the optimal state processes, and the values of

the games.

1 Introduction

In Itô-diffusion environments, we introduce N-player and common-noise mean-field

games (MFGs) in the context of optimal portfolio choice in a common market.

We build on the framework and notions of [12] (see, also, [11]) but allow for a

more general market model (beyond the log-normal case) and, also, consider more

complex risk preferences.

The paper consists of two parts. In the first part, we consider a common incomplete

market and players with individual exponential utilities (CARA) who invest while

interacting with each other, driven either by competition or homophily. We derive

the equilibrium policies, which turn out to be state (wealth)-independent stochastic

Ruimeng Hu

Department of Mathematics and Department of Statistics & Applied Probability, University of Cal-

ifornia, Santa Barbara, CA, 93106-3080, USA, e-mail: rhu@ucsb.edu and Thaleia Zariphopoulou

Departments of Mathematics and IROM, The University of Texas at Austin, Austin, USA, and the

Oxford-Man Institute, University of Oxford, Oxford, UK, e-mail: zariphop@math.utexas.edu

209© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 

G. Yin, T. Zariphopoulou (eds.), Stochastic Analysis, Filtering, and Stochastic Optimization, 

https://doi.org/10.1007/978-3-030-98519-6_9

mailto:rhu@ucsb.edu
mailto:zariphop@math.utexas.edu
https://doi.org/10.1007/978-3-030-98519-6_9
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98519-6_9&domain=pdf


210 Ruimeng Hu and Thaleia Zariphopoulou

processes. Their forms depend on the market dynamics, the risk tolerance coeffi-

cients, and the underlying minimal martingale measure. We also derive the optimal

wealth and the values of both the N-player and the mean-field games, and discuss

the competitive and homophilous cases.

In the second part, we assume that the common Itô-diffusion market is complete,

but we generalize the model in the direction of risk preferences, allowing the risk

tolerance coefficients to be random variables. For such preferences, we first analyze

the single-player problem, which is interesting in its own right. Among others, we

show that the randomness of the utility “distorts” the original market by inducing

a “personalized” risk premium process. This effect is more pronounced in the N-

player game where the common market is now replaced by “personalized” markets

whose stochastic risk premia depend on the individual risk tolerances. As a result, the

tractability coming from the common market assumption is lost. In the MFG setting,

these auxiliary individual markets are randomly selected (depending on the type

vector) and aggregate to a common market with a modified risk premium process.

We characterize the optimal policies, optimal wealth processes, and game values,

building on the aforementioned single-player problem.

To our knowledge, N-player games and MFGs in Itô-diffusion market settings

have not been considered before except in preprint [6]. Therein, the authors used

the same asset specialization framework and same CARA preferences as in [12]

but allowed for Itô-diffusion price dynamics. They studied the problem using a

forward-backward stochastic differential equation (FBSDE) approach. In our work,

we have different model settings regarding both the measurability of the coefficients

of the Itô-diffusion price processes and the individual risk tolerance inputs. We also

solve the problems using a different approach, based on the analysis of portfolio

optimization problems of exponential utilities in semi-martingale markets.

The theory of mean-field games was introduced by Lasry and Lions [13], who

developed the fundamental elements of the mathematical theory and, independently,

by Huang, Malhamé and Caines who considered a particular class [8]. Since then,

the area has grown rapidly both in terms of theory and applications. Listing precise

references is beyond the scope of this paper.

Our work contributes to N-player games and MFG in Itô-diffusion settings for

models with controlled processes whose dynamics depend linearly on the controls

and are state-independent, and, furthermore, the controls appear in both the drift

and the diffusion parts. Such models are predominant in asset pricing and in optimal

portfolio and consumption choice. In the context of the general MFG theory, the

models considered herein are restrictive. On the other hand, their structure allows us

to produce explicit/closed-form solutions for Itô-diffusion environments.

The paper is organized as follows. In Section 2, we study the incomplete market

case for both the N-player game and the MFG, and for CARA utilities. In Section 3,

we focus on the complete market case but allow for random risk tolerance coefficients.

In analogy to Section 2, we analyze both the N-player game and the MFG. We

conclude in Section 4.
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2 Incomplete Itô-diffusion common market and CARA utilities

We consider an incomplete Itô-diffusion market, in which we introduce an N-player

and a mean-field game for players who invest in a finite horizon while interacting

among them, driven either by competition or homophily. We assume that the players

(either at the finite or the continuum setting) have individual constant risk tolerance

coefficients. For both the N-player and the MFG, we derive in closed form the

optimal policies, optimal controlled processes, and the game values. The analysis

uses the underlying minimal martingale measure, related martingales, and their

decomposition.

2.1 The N -player game

Consider a probability space (Ω,F ,P) supporting two Brownian motions denoted

as (Wt,WY
t )t∈[0,T ], T < ∞, imperfectly correlated with the correlation coefficient

ρ ∈ (−1,1). We denote by (Ft )t∈[0,T ] the natural filtration generated by both W and

WY , and by (Gt )t∈[0,T ] the one generated only by WY . We then let (μt )t∈[0,T ] and

(σt )t∈[0,t] be Gt -adapted processes, with 0 < c ≤ σt ≤ C and |μt | ≤ C, t ∈ [0,T], for

some (possibly deterministic) constants c and C.

The financial market consists of a riskless bond (taken to be the numeraire and

with zero interest rate) and a stock whose price process (St )t∈[0,T ] satisfies

dSt = μtSt dt +σtSt dWt, S0 = s0 ∈ R+. (1)

In this market, N players, indexed by i ∈ I, I = {1,2, . . .,N }, have a common

investment horizon [0,T] and trade between the two accounts. Each player, say

player i, uses a self-financing strategy (πit )t∈[0,T ], representing (discounted by the

numeraire) the amount invested in the stock. Then, her wealth (X i
t )t∈[0,T ] satisfies

dX i
t = π

i
t (μt dt +σt dWt ) , X i

0 = xi ∈ R, (2)

with πi being an admissible policy, belonging to

A =
{
π : self-financing, F -progressively measurable

and EP

[∫ T

0

σ2
sπ

2
s ds

]
<∞
}
. (3)

As in [12] (see also [1, 4, 9, 10, 11, 20]), players optimize their expected terminal

utility but are, also, concerned with the performance of their peers. For an arbitrary

but fixed policy (π1, . . ., πi−1, πi+1, . . ., πN ), player i, i ∈ I, seeks to optimize
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V i (x1, . . ., xi, . . ., xN )

= sup
πi ∈A

EP

[
−exp

(
− 1

δi

(
X i
T − ciCT

)) �����X1
0 = x1, . . .,X i

0 = xi, . . .,XN
0 = xN

]
, (4)

where

CT :=
1

N

N∑
j=1

X j
T (5)

averages all players’ terminal wealth, with X j
T , j = 1, . . .,N , given by (2).

The parameter δi > 0 is the individual (absolute) risk tolerance while the constant

ci ∈ (−∞,1] models the individual interaction weight towards the average wealth of

all players. If ci > 0, the above criterion models competition while when ci < 0 it

models homophilous interactions (see, for example, [14]). The optimization criterion

(4) can be, then, viewed as a stochastic game among the N players, where the notion

of optimality is being considered in the context of a Nash equilibrium, stated below

(see, for example, [2]).

Definition 1 A strategy (π∗t )t∈[0,T ] = (π1,∗
t , . . ., π

N,∗
t )t∈[0,T ] ∈ A⊗N is called a Nash

equilibrium if, for each i ∈ I and πi ∈ A,

EP

[
−exp

(
− 1

δi

(
X i,∗
T − ciC∗T

)) �����X1
0 = x1, . . .,X i

0 = xi, . . .,XN
0 = xN

]
≥ EP

[
−exp

(
− 1

δi

(
X i
T − ciC

i,∗
T

)) �����X1
0 = x1, . . .,X i

0 = xi, . . .,XN
0 = xN

]
(6)

with

C∗T :=
1

N

N∑
j=1

X j,∗
T and Ci,∗

T :=
1

N
���

N∑
j=1, j�i

X j,∗
T + X i

T
�	
,

where X j,∗
T , j ∈ I, solve (2) with π j,∗ being used.

In this incomplete market, we recall the associated minimal martingale measure

Q
MM , defined on FT , with

dQMM

dP
= exp

(
−1

2

∫ T

0

λ2
s ds−

∫ T

0

λs dWs

)
, (7)

where λt :=
μt

σt
, t ∈ [0,T], is the Sharpe ratio process (see, among others, [5]). By

the assumptions on the model coefficients, we have that, for t ∈ [0,T], λt ∈ Gt and

|λt | ≤ K, (8)

for some (possibly deterministic) constant K . We also consider the processes

(W̃t )t∈[0,T ] and (W̃Y
t )t∈[0,T ] with W̃t = Wt +

∫ t

0
λs ds and W̃Y

t = WY
t + ρ

∫ t

0
λs ds,

which are standard Brownian motions under QMM with W̃t ∈ Ft and W̃Y
t ∈ Gt .
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Next, we introduce the QMM -martingale (Mt )t∈[0,T ],

Mt := EQMM

[
e−

1
2

(1−ρ2)
∫ T

0
λ2
s ds

����Gt ] . (9)

From (8) and the martingale representation theorem, there exists aGt -adapted process

ξ ∈ L2 (P) such that

dMt = ξt Mt dW̃Y
t = ξt Mt

(
ρdW̃t +

√
1− ρ2 dW⊥t

)
, (10)

where W⊥t is a standard Brownian motion independent of Wt appearing in the

decomposition WY
t = ρWt +

√
1− ρ2W⊥t .

In the absence of interaction among the players (ci ≡ 0, i ∈ I), the optimization

problem (4) has been analyzed by various authors (see, among others, [17, 18]). We

recall its solution which will be frequently used herein.

Lemma 1 (no interaction)
Consider the optimization problem

v(x) = sup
a∈A

EP
[
−e−

1
δ xT

���� x0 = x
]
, (11)

with δ > 0 and (xt )t∈[0,T ] solving

dxt = at (μt dt +σt dWt ) , x0 = x ∈ R, a ∈ A. (12)

Then, the optimal policy
(
a∗t
)
t∈[0,T ] and the value function are given by

a∗t = δ
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
, (13)

and

v(x) = −e−
1
δ xM

1

1−ρ2

0
= −e−

1
δ x
(
EQMM

[
e−

1
2

(1−ρ2)
∫ T

0
λ2
s ds

]) 1

1−ρ2

, (14)

with (ξt )t∈[0,T ] as in (10).

Proof We only present the key steps, showing that the process (ut )t∈[0,T ] ,

ut := −e−
1
δ xt
(
EQMM

[
e−

1
2

(1−ρ2)
∫ T

t
λ2
s ds

����Gt ])
1

1−ρ2

,

with u0 = v(x), x ∈ R, is a supermartingale for xt solving (12) for arbitrary α ∈ A
and becomes a martingale for α∗ as in (13). To this end, we write

ut = −e−
xt
δ M

1

1−ρ2

t eNt with Nt =
1

2

∫ t

0

λ2
u du,
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and observe that

dut = −ut
δ

dxt +
1

2δ2
ut d〈x〉t +ut dNt +

1

1− ρ2
ut
Mt

dMt

+
1

2(1− ρ2)

ρ2

1− ρ2
ut
M2

t

d〈M〉t − 1

δ(1− ρ2)

ut
Mt

d〈x,M〉t

= ut

(
−1

δ
at μt +

1

2

1

δ2
a2
t σ

2
t +

1

2
λ2
t +

ρ

1− ρ2 ξtλt +
ρ2

2(1− ρ2)2
ξ2t

− ρ

δ(1− ρ2)
atσt ξt

)
dt +ut

(
−1

δ
atσt dWt +

1

1− ρ2 ξt dWY
t

)

=
1

2
ut

(
−1

δ
σtat + λt +

ρ

1− ρ2 ξt
)2

dt +ut

(
−1

δ
atσt dWt +

1

1− ρ2 ξt dWY
t

)
.

Because ut < 0, the drift remains non-positive and vanishes for t ∈ [0,T] if and only

if the policy

a∗t = δ
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
is being used. Furthermore, a∗ ∈ A, as it follows from the boundedness assumption

on σ, inequality (8) and that ξ ∈ L2 (P) . The rest of the proof follows easily. �

Next, we present the first main result herein that yields the existence of a (wealth-

independent) stochastic Nash equilibrium.

Proposition 1 For δi > 0 and ci ∈ (−∞,1], introduce the quantities

ϕN :=
1

N

N∑
i=1

δi and ψN :=
1

N

N∑
i=1

ci, (15)

and
δ̄i := δi +

ϕN
1−ψN ci . (16)

The following assertions hold:

1. If ψN < 1, there exists a wealth-independent Nash equilibrium,
(
π∗t
)
t∈[0,T ] =(

π1,∗
t , . . ., π

i,∗
t , . . ., π

N,∗
t

)
t∈[0,T ]

, where πi,∗t , i ∈ I, is given by the Gt -adapted
process

πi,∗t = δ̄i
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
, (17)

with (ξt )t∈[0,T ] as in (10). The associated optimal wealth process
(
X i,∗
t

)
t∈[0,T ]

is

X i,∗
t = xi + δ̄i

∫ t

0

(
λu +

ρ

1− ρ2 ξu
)

(λu du+ dWu) (18)

and the game value for player i, i ∈ I, is given by
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V i (x1, x2, . . ., xN ) = −exp

(
− 1

δi
(xi − ci x̄)

)
M

1

1−ρ2

0

= −exp

(
− 1

δi
(xi − ci x̄)

) (
EQMM

[
e−

1
2

(1−ρ2)
∫ T

0
λ2
s ds

]) 1

1−ρ2

,

(19)

with x̄ = 1
N

∑N
i=1

xi .
2. If ψN = 1, then it must be that ci ≡ 1, for all i ∈ I, and there is no such wealth-

independent Nash equilibrium.

Proof We first solve the individual optimization problem (4) for player i ∈ I, taking

the (arbitrary) strategies (π1, . . ., πi−1, πi+1, . . ., πN ) of all other players as given. This

problem can be alternatively written as

vi ( x̃i) = sup
π̃i ∈A

EP

[
−exp

(
− 1

δi
x̃iT

) ����� x̃i0 = x̃i

]
, (20)

where x̃it := X i
t − ci

N

∑N
j=1

X j
t , t ∈ [0,T], solves

dx̃it = π̃
i
t (μt dt +σt dWt ) and x̃i0 = x̃i := xi − ci x̄.

From Lemma 1, we deduce that its optimal policy is given by

π̃i,∗t = δi
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

and thus the optimal policy of (4) can be written as

πi,∗t = δi
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
+

ci
N
���
∑
j�i

π
j
t + π

i,∗
t
�	
 . (21)

Symmetrically, all players j ∈ I follow an analogous to (21) strategy. Averaging over

j ∈ I yields

1

N

N∑
i=1

πi,∗t = ψN
1

N

N∑
i=1

πi,∗t +ϕN
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

with ψN and ϕN as in (15). If ψN < 1, the above equation gives

1

N

N∑
i=1

πi,∗t =
ϕN

1−ψN
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

and we obtain (17). The rest of the proof follows easily. �
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We have stated the above result assuming that we start at t = 0. This is without loss

of generality, as all arguments may be modified accordingly. For completeness, we

present in the sequel the time-dependent case, in the context of a Markovian market.

Remark 1 As discussed in [12, Remark 2.5], problem (4) may be alternatively and

equivalently represented as

V i (x1, . . ., xN )

= sup
πi ∈A

EP

[
−exp

(
− 1

δ′i

(
X i
T − c′iC

−i
T

)) �����X1
0 = x1, . . .,X i

0 = xi, . . .,XN
0 = xN

]
,

with C−iT := 1
N−1

∑N
j=1, j�i X j

T , and δi =
δ′i

1+ 1
N−1

c′i
and ci =

c′i
N−1
N +

c′
i

N

.

Remark 2 Instead of working with the minimal martingale measure in the incomplete

Itô-diffusion market herein, one may employ the minimal entropy measure, QME ,

given by

dQME

dP
= exp

(
−1

2

∫ T

0

(
λ2
s + χ

2
s

)
ds−
∫ T

0

λs dWs −
∫ T

0

χs dW⊥s

)
, (22)

where χt = −Z⊥t and
(
yt, Zt, Z⊥t

)
t∈[0,T ] solves the backward stochastic differential

equation (BSDE)

−dyt =
(
−1

2
λ2
t +

1

2
(Z⊥t )2− λt Zt

)
dt −
(
Zt dWt + Z⊥t dW⊥t

)
and yT = 0. (23)

The measures QME and QMM are related through the relative entropy H in that

−H (QME |P) = 1
1−ρ2 ln M0 (cf. [17]). We choose to work with QMM for ease of the

presentation.

From Lemma 1, we see that the Nash equilibrium process,

πi,∗t = δ̄i
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

resembles the optimal policy of an individual player of the classical optimal invest-

ment problem with exponential utility and modified risk tolerance, δ̄i . The latter

deviates from δi by

δ̄i − δi = ϕN
1−ψN ci .

In the competitive case, ci > 0, δ̄i > δi and their difference increases with ci ,
ϕN and ψN . At times t such that

λt

σt
+

ρ

1−ρ2

ξt
σt
> 0 (resp.

λt

σt
+

ρ

1−ρ2

ξt
σt
< 0), the

competition concerns make the player invest more (resp. less) in the risky asset than

without such concerns.

In the homophilous case, ci < 0, we have that δ̄i < δi . Furthermore, direct com-

putations show that their difference decreases with δi and each cj , j � i, while it
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increases with ci . In other words,

∂δ j

(
δ̄i − δi

)
< 0, ∀ j ∈ I, ∂c j

(
δ̄i − δi

)
< 0, ∀ j ∈ I� {i} , and ∂ci

(
δ̄i − δi

)
> 0.

At times t such that
λt

σt
+

ρ

1−ρ2

ξt
σt
> 0, the player would invest less in the risky asset,

compared to without homophilous interaction. This investment decreases if other

players become more risk tolerant (their δ′j s increase) or less homophilous (their c′j
s increase) or if the specific player i becomes more homophilous (ci decreases). The

case
λt

σt
+

ρ

1−ρ2

ξt
σt
< 0 follows similarly. The comparison between the competitive

and the homophilous case is described in Figure 1.

Fig. 1: The plot of δ̄i − δi versus ci and ψN , with N = 25 and ϕN = 6.

2.1.1 The Markovian case

We consider a single stochastic factor model in which the stock price process

(St )t∈[0,T ] solves

dSt = μ(t,Yt )St dt +σ(t,Yt )St dWt, (24)

dYt = b(t,Yt ) dt + a(t,Yt ) dWY
t , (25)

with S0 = S > 0 and Y0 = y ∈ R. The market coefficients μ,σ,a and b satisfy ap-

propriate conditions for these equations to have a unique strong solution. Further

conditions, added next, are needed for the validity of the Feynman-Kac formula in

Proposition 2.

Assumption 1 The coefficients μ,σ,a and b are bounded functions, and a,b have
bounded, uniformly in t, y-derivatives. It is further assumed that the Sharpe ratio
function λ(t, y) :=

μ(t,y)
σ(t,y)

is bounded and with bounded, uniformly in t, y-derivatives
of any order.

For t ∈ [0,T], we consider the optimization problem
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V i (t, x1, . . ., xi, . . ., xN, y) = sup
πi ∈A

EP

[
− exp

(
− 1

δi

(
X i
T − ciCT

)) ����
X1
t = x1, . . .,X i

t = xi, . . .,XN
t = xN,Yt = y

]
, (26)

with (X i
s)s∈[t,T ] solving dX i

s = μ(s,Ys)πis ds +σ(s,Ys)πis dWs and πi ∈ A, and CT

as in (5). We also consider the process (ζt )t∈[0,T ] with ζt := ζ (t,Yt ), where ζ :

[0,T]×R→ R+ is defined as

ζ (t, y) = EQMM

[
e−

1
2

(1−ρ2)
∫ T

t
λ2 (s,Ys ) ds ����Yt = y

]
.

Under QMM , the stochastic factor process (Yt )t∈[0,T ] satisfies

dYt = (b(t,Yt )− ρλ(t,Yt )a(t,Yt )) dt + a(t,Yt ) dW̃Y
t .

Thus, using the conditions on the market coefficients and the Feynman-Kac formula,

we deduce that ζ (t, y) solves

ζt +
1

2
a2(t, y)ζyy + (b(t, y)− ρλ(t, y)a(t, y))ζy =

1

2
(1− ρ2)λ2(t, y)ζ, (27)

with ζ (T, y) = 1. In turn, the function f (t, y) := 1
1−ρ2 ln ζ (t, y) satisfies

f t +
1

2
a2(t, y) fyy+ (b(t, y)− ρλ(t, y)a(t, y)) fy+

1

2
(1− ρ2)a2(t, y) fy2 =

1

2
λ2(t, y),

f (T, y) = 0. (28)

In the absence of competitive/homophilous interaction, this problem has been ex-

amined by various authors (see, for example, [18]).

Proposition 2 Under Assumption 1, the following assertions hold for t ∈ [0,T] .

1. If ψN < 1, there exists a wealth-independent Nash equilibrium
(
π∗s
)
s∈[t,T ]

=(
π1,∗
s , . . ., π

i,∗
s , . . ., π

N,∗
s

)
s∈[t,T ]

, where πi,∗s , i ∈ I, is given by the process

πi,∗s = πi,∗(s,Ys), (29)

with (Yt )t∈[0,T ] solving (25) and πi,∗ : [0,T]×R→ R defined as

πi,∗(t, y) := δ̄i

(
λ(t, y)

σ(t, y)
+ ρ

a(t, y)

σ(t, y)
fy (t, y)

)
, (30)

with δ̄i as in (16) and f (t, y) solving (28). The game value of player i, i ∈ I, is
given by
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V i (t, x1, . . ., xN, y) = −exp

(
− 1

δi

(
xi − ci

N
ΣNi=1xi

))
ζ (t, y)

1

1−ρ2

= −exp

(
− 1

δi

(
xi − ci

N
ΣNi=1xi

)
+ f (t, y)

)
.

2. If ψN = 1, there exists no such Nash equilibrium.

Proof To ease the notation, we establish the results when t = 0 in (26). To this end,

we first identify the process ξ in (10). For this, we rewrite the martingale in (9) as

Mt = ζ (t,Yt )e−
1
2

(1−ρ2)
∫ t

0
λ2 (s,Ys ) ds,

and observe that

dMt =

(
ζt (t,Yt )+ (b(t,Yt )− ρa(t,Yt )λ(t,Yt ))ζy (t,Yt )

+
1

2
a2(t,Yt )ζyy (t,Yt )

) Mt

ζ (t,Yt )
dt − 1

2
(1− ρ2)λ2(t,Yt )Mt dt

+ a(t,Yt )
ζy (t,Yt )
ζ (t,Yt )

Mt

(
ρdW̃t +

√
1− ρ2 dW⊥t

)

= a(t,Yt )
ζy (t,Yt )
ζ (t,Yt )

Mt

(
ρdW̃t +

√
1− ρ2 dW⊥t

)
,

where we used that ζ (t, y) satisfies (27). Therefore, ξt = a(t,Yt )
ζy (t,Yt )

ζ (t,Yt )
. In turn, using

that ζ (t, y)1/(1−ρ2) = e f (t,y), we obtain that

fy (t,Yt ) =
1

1− ρ2
ζy (t, y)

ζ (t, y)
and ξt = (1− ρ2)a(t,Yt ) fy (t,Yt ),

and we easily conclude by replacing ξt by (1− ρ2)a(t,Yt ) fy (t,Yt ) in (17).

It remains to show that the candidate investment process in (29) is admissible.

Under Assumption 1 we deduce that fy (t, y) is a bounded function, since ζ (t, y) is

bounded away from zero and ζy (t, y) is bounded. We easily conclude. �

Remark 3 In the Markovian model (24)–(25), the density of the minimal entropy

measure QME is fully specified. Indeed, the BSDE (23) admits the solution

yt = f (t,Yt ), Zt = ρa(t,Yt ) fy (t,Yt ) and Z⊥t =
√

1− ρ2a(t,Yt ) fy (t,Yt ),

and, thus, the density of QME is given by (22) with

χt ≡ χ(t,Yt ) = −
√

1− ρ2a(t,Yt ) fy (t,Yt ).
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2.1.2 A fully solvable example

Consider the family of models with autonomous dynamics

μ(t, y) = μy
1

2� +
1
2 , σ(t, y) = y

1
2� , b(t, y) = m− y, a(t, y) = β

√
y,

with μ > 0, β > 0, � � 0 and m > 1
2
β2. Notable cases are � = 1, which corresponds

to the Heston stochastic volatility model, and � = −1 that is studied in [3].

Equation (28) depends only on b(t, y), a(t, y) and the Sharpe ratio λ(t, y) = μ
√
y,

and thus its solution f (t, y) is independent of the parameter �. Using the ansatz

f (t, y) = p(t)y+ q(t) with p(T ) = q(T ) = 0, we deduce from (28) that p(t) and q(t)
satisfy

ṗ(t)− 1

2
(μ+ ρβp(t))2− p(t)+

1

2
β2p2(t) = 0,

q̇(t)+mp(t) = 0. (31)

In turn,

p(t) =
1+ ρμβ−√Δ

(1− ρ2) β2

1− e−
√
Δ(T−t)

1− 1+ρμβ−√Δ
1+ρμβ+

√
Δ

e−
√
Δ(T−t)

, Δ = 1+ β2μ2+2ρμβ > 0,

and q(t) = m
∫ T
t

p(s)ds.

From (30), we obtain that the Nash equilibrium strategy
(
πi,∗s
)
s∈[t,T ]

, t ∈ [0,T],

for player i is given by the process

πi,∗s = δ̄i (μ+ ρβp(s))Y
1
2

(1− 1
� )

s .

If � = 1, the policy becomes deterministic, πi,∗s = δ̄i (μ+ ρβp(s)), and the equilibrium

wealth process solves

dX i,∗
s = δi (μ+ ρβp(s))(μYs ds+

√
Ys dWs).

2.2 The common-noise MFG

We analyze the limit as N ↑∞ of the N-player game studied in Section 2.1. We first

give an intuitive and informal argument that leads to a candidate optimal strategy in

the mean-field setting, and then propose a rigorous formulation for the MFG. The

analysis follows closely the arguments developed in [12].

For the N-player game, we denote by ηi = (xi, δi,ci) the type vector for player

i, where xi is her initial wealth, and ηi and ci are her risk tolerance coefficient and

interaction parameter, respectively. Such type vectors induce an empirical measure
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mN , called the type distribution,

mN (A) =
1

N

N∑
i=1

1ηi (A), for Borel sets A ⊂ Z,

which is a probability measure on the spaceZ := R× (0,∞)× (−∞,1].

We recall (cf. (17)) that the equilibrium strategies (πi,∗t )t∈[0,T ], i ∈ I, are given as

the product of the common (type-independent) process
λt

σt
+

ρ

1−ρ2

ξt
σt

and the modified

risk tolerance parameter δ̄i = δi +
ϕN

1−ψN
ci . Therefore, it is only the coefficient δ̄i

that depends on the empirical distribution mN through ψN and ϕN , as both these

quantities can be obtained by averaging appropriate functions over mN . Therefore,

if we assume that mN converges weakly to some limiting probability measure as

N ↑ ∞, we should intuitively expect that the corresponding equilibrium strategies

also converge. This is possible, for instance, by letting the type vector η = (x, δ,c) be

a random variable in the space Z with limiting distribution m, and take ηi as i.i.d.

samples of η. The sample ηi is drawn and assigned to player i at initial time t = 0.
We would then expect (πi,∗)t∈[0,T ] to converge to the process

lim
N↑∞
πi,∗t =

(
δi +

δ̄

1− c̄
ci

) (
λt
σt
+
ρ

1− ρ2
ξt
σt

)
, (32)

where c̄ and δ̄ represent the average interaction and risk tolerance coefficients.

Next, we introduce the mean-field game in the incomplete Itô-diffusion market

herein, and we show that (32) indeed arises as its equilibrium strategy. We model a

single representative player, whose type vector is a random variable with distribution

m, and all players in the continuum act in this common incomplete market.

2.2.1 The Itô-diffusion common-noise MFG

To describe the heterogeneous population of players, we introduce the type vector

η = (x, δ,c) ∈ Z, (33)

where δ > 0 and c ∈ (−∞,1] represent the risk tolerance coefficient and interaction

parameter, and x is the initial wealth. This type vector is assumed to be independent

of both W and WY , which drive the stock price process (1), and is assumed to have

finite second moments.

To formulate the mean-field portfolio game, we now let the filtered probability

space (Ω,F ,P) support W,WY as well as η. We assume that η has second moments

under P. We denote by (F MF
t )t∈[0,T ] the smallest filtration satisfying the usual

assumptions for which η is F MF
0

-measurable and both W,WY are adapted. As

before, we denote by (Ft )t∈[0,T ] the natural filtration generated by W and WY, and

by (Gt )t∈[0,T ] the one generated only by WY .
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We also consider the wealth process (Xt )t∈[0,T ] of the representative player solv-

ing

dXt = πt (μt dt +σt dWt ) , (34)

with X0 = x ∈ R and π ∈ AMF , where

AMF =

{
π : self-financing, F MF

t -progressively measurable

and EP

[∫ T

0

σ2
sπ

2
s ds

]
<∞
}
.

Similarly to the framework in [12], there exist two independent sources of random-

ness in the model: the first is due to the evolution of the stock price process, described

by the Brownian motions W and WY . The second is given by η, which models the

type of the player, i.e., the triplet of initial wealth, risk tolerance, and interaction

parameter in the population continuum. The first source of noise is stochastic and

common to each player in the continuum while the second is static, being assigned

at time zero and with the dynamic competition starting right afterwards.

In analogy to the N-player setting, the representative player optimizes the expected

terminal utility, taking into account the performance of the average terminal wealth

of the population, denoted by X . As in [12], we introduce the following definition

for the MFG considered herein.

Definition 2 For each π ∈ AMF , let X := EP[XT |FT ] with (Xt )t∈[0,T ] solving (34),

and consider the optimization problem

V (x) = sup
π∈AMF

EP

[
−exp

(
−1

δ

(
XT − cX

)) �����F MF
0 ,X0 = x

]
. (35)

A strategy π∗ ∈ AMF is a mean-field equilibrium if π∗ is the optimal strategy of the

above problem when X
∗

:= EP[X∗T |FT ] is used for X , where
(
X∗t
)
t∈[0,T ] solves (34)

with π∗ being used.

Next, we state the main result.

Proposition 3 If EP[c] < 1, there exists a unique wealth-independent MFG equilib-
rium

(
π∗t
)
t∈[0,T ], given by the F MF

0
∨Gt process

π∗t =
(
δ+

EP[δ]
1−EP[c]

c
) (
λt
σt
+
ρ

1− ρ2
ξt
σt

)
, (36)

with ξ as in (10). The corresponding optimal wealth is given by

X∗t = x+
(
δ+

EP[δ]
1−EP[c]

c
) ∫ t

0

(
λs +

ρ

1− ρ2 ξs
)

(λs ds+ dWs) , (37)

and
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V (x) = −exp

(
−1

δ
(x− cm)

)
M

1

1−ρ2

0

= −exp

(
−1

δ
(x− cm)

) (
EQMM

[
e−

1
2

(1−ρ2)
∫ T

0
λ2
s ds

]) 1

1−ρ2

,

where m = EP[x]. If EP[c] = 1, there is no such Nash equilibrium.

Proof We first observe that π∗ in (36) is F MF
t -measurable since

(
λt

σt
+

ρ

1−ρ2

ξt
σt

)
∈

Gt , and thus(
λt

σt
+

ρ

1−ρ2

ξt
σt

)
∈ Ft , while the factor

(
δ+ EP[δ]

1−EP[c]
c
)
∈ F MF

0
(independent of Ft ).

Furthermore, π∗ is also square-integrable under standing assumptions, and thus

admissible. To show that it is also indeed an equilibrium policy, we shall first define

X using π∗, and then verify that the optimal strategy to the representative player’s

problem (35) coincides with π∗t when this specific X is used in (35). To this end, we

introduce the process X t := EP[X∗t |Ft ] with (X∗t )t∈[0,T ] as in (37). Then,

X t = EP

[
x+
(
δ+

EP[δ]
1−EP[c]

c
) ∫ t

0

(
λs +

ρ

1− ρ2 ξs
)

(λs ds+ dWs)
���Ft ]

= m+
(
EP[δ]+

EP[δ]
1−EP[c]

EP[c]

) ∫ t

0

(
λs +

ρ

1− ρ2 ξs
)

(λs ds+ dWs)

= m+
(

EP[δ]
1−EP[c]

) ∫ t

0

(
λs +

ρ

1− ρ2 ξs
)

(λs ds+ dWs) ,

where we have used that
∫ t

0

(
λs +

ρ

1−ρ2 ξs

)
(λs ds+ dWs) is Gt -measurable and thus

Ft -measurable, and that
(
δ+ EP[δ]

1−EP[c]
c
)

is independent of Ft .
Next, we introduce the auxiliary process ( x̃t )t∈[0,T ], x̃t := Xt − cX t, with

(Xt )t∈[0,T ] as in (34). Then,

dx̃t = π̃t (μt dt +σt dWt ) and x̃0 = x̃ := x− cm,

and π̃t = πt − c
(

EP[δ]
1−EP[c]

) (
λt

σt
+

ρ

1−ρ2

ξt
σt

)
. In turn, we consider the optimization prob-

lem

v( x̃) := sup
π̃∈AMF

EP

[
−exp

(
−1

δ
x̃T

) �����F MF
0 , x̃0 = x̃

]
.

From Lemma 1, we deduce that the optimal strategy is given by

π̃∗t = δ
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
,

and, thus,

π∗t = δ
(
λt
σt
+
ρ

1− ρ2
ξt
σt

)
+ c
(

EP[δ]
1−EP[c]

) (
λt
σt
+
ρ

1− ρ2
ξt
σt

)
.
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The rest of the proof follows easily. �

If we view η = (x, δ,c) in the N-player game in Section 2.1 as i.i.d. samples on the

spaceZ with distribution m, then limN↑∞ψN = EP[c] and limN↑∞ ϕN = EP[δ] a.s..

We then obtain the convergence of the corresponding optimal processes, namely, for

t ∈ [0,T],

lim
N↑∞
πi,∗t = π

∗
t , and lim

N↑∞
X i,∗
t = X∗t .

2.2.2 The Markovian case

In analogy to the N-player case, we have the following result.

Proposition 4 Assume that the stock price process follows the single factor model
(24)–(25). Then, if EP[c] < 1, there exists a unique wealth-independent Markovian
mean-field game equilibrium, given by the process

(
π∗t
)
t∈[0,T ] ,

π∗t = π∗(η, t,Yt ) =
(
δ+

EP[δ]
1−EP[c]

c
) (
λ(t,Yt )
σ(t,Yt )

+ ρ
a(t,Yt )
σ(t,Yt )

fy (t,Yt )
)
,

with the F MF
0

-measurable random function π∗(η, t, y) :Z× [0,T]×R,

π∗(η, t, y) :=

(
δ+

EP[δ]
1−EP[c]

c
) (
λ(t, y)

σ(t, y)
+ ρ

a(t, y)

σ(t, y)
fy (t, y)

)
.

If EP[c] = 1, there is no such mean-field game stochastic equilibrium.

3 Complete Itô-diffusion common market and CARA utilities
with random risk tolerance coefficients

In this section, we focus on the complete common market case, but we extend the

model by allowing random individual risk tolerance coefficients. We start with a

background result for the single-player problem, which is new and interesting in

its own right. Building on it, we analyze both the N-player and the MFG. The

analysis shows that the randomness of the individual risk tolerance gives rise to

virtual “personalized” markets, in that the original common risk premium process

now differs across players, depending on their risk tolerance. This brings substantial

complexity as the tractability coming from the original common market is now lost.
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3.1 The Itô-diffusion market and random risk tolerance coefficients

We consider the complete analog of the Itô-diffusion market studied in Section 2.

Specifically, we consider a market with a riskless bond (taken to be the numeraire

and offering zero interest rate) and a stock whose price process (St )t∈[0,T ] solves

dSt = St (μt dt +σt dWt ) ,

with S0 > 0, and (Wt )t∈[0,T ] being a Brownian motion in a probability space (Ω,F ,P).

The market coefficients (μt )t∈[0,T ] and (σt )t∈[0,T ] are Ft -adapted processes, where

(Ft )t∈[0,T ] is the natural filtration generated by W , and with 0 < c ≤ σt ≤ C and

|μt | ≤ C, t ∈ [0,T], for some (possibly deterministic) constants c and C.

In this market, N players, indexed by i ∈ I, I = {1,2, . . .,N }, trade between the

two accounts in [0,T], with individual wealths
(
X i
t

)
t∈[0,T ]

solving

dX i
t = π

i
t (μt dt +σt dWt ) , (38)

and X i
0
= xi ∈ R.

Each of the players, say player i, has random risk tolerance, δiT , defined on

(Ω,F ,P) with the following properties:

Assumption 2 For each i ∈ I, the risk tolerance δiT is an FT -measurable random
variable with δiT ≥ δ > 0 and EP

(
δiT

)2
<∞.

The objective of each player is to optimize

V i (x1, . . ., xi, . . ., xN ) = sup
A

EP

[
− exp

(
− 1

δiT

(
X i
T −

ci
N

N∑
j=1

X j
T

))
�����X1

0 = x1, . . .,X i
0 = xi, . . .,XN

0 = xN

]
, (39)

with ci ∈ (−∞,1], X j , j ∈ I, solving (38), and A defined similarly to (3).

As in Section 2.1, we are interested in a Nash equilibrium solution, which is

defined as in Definition 1. Before we solve the underlying stochastic N-player game,

we focus on the single-player case. This is a problem interesting in its own right and,

to our knowledge, has not been studied before in such markets. A similar problem

was considered in a single-period binomial model in [15] and in a special diffusion

case in [16] in the context of indifference pricing of bonds. For generality, we present

below the time-dependent case.

3.2 The single-player problem

We consider the optimization problem
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vt (x) = sup
π∈A

EP
[
−e−

1
δT

xT ����Ft, xt = x
]
, (40)

with δT ∈ FT satisfying Assumption 2 and (xs)s∈[t,T ] solving (38) with xt = x ∈ R.

We define (Zt )t∈[0,T ] by

Zt = exp

(
−1

2

∫ t

0

λ2
s ds−

∫ t

0

λs dWs

)
,

and recall the associated (unique) risk neutral measure Q, defined on FT and given

by
dQ
dP
= ZT . (41)

We introduce the process (δt )t∈[0,T ] ,

δt := EQ[δT |Ft ], (42)

which may be thought as the arbitrage-free price of the risk tolerance “claim” δT .

We also introduce the measure Q̂, defined on FT , with

dQ̂
dP
=
δT

EQ[δT ]
ZT .

Direct calculations yield that under measure Q̂, the process
(
St
δt

)
t∈[0,T ]

is an Ft -
martingale.

By the model assumptions and the martingale representation theorem, there exists

an Ft -adapted process (ξt )t∈[0,T ] with ξ ∈ L2 (P) such that

dδt = ξtδt dWQt , (43)

with WQt =Wt +
∫ t

0
λs ds. Next, we introduce the process

Ht := E
Q̃

[
1

2

∫ T

t

(λs − ξs)2 ds
�����Ft

]
, (44)

where Q̃ is defined on FT by

dQ̃
dP
= exp

(
−1

2

∫ T

0

(λs − ξs)2 ds−
∫ T

0

(λs − ξs) dWs

)
. (45)

Under Q̃, the process

(
W Q̃t
)
t∈[0,T ]

with

W Q̃t :=Wt +

∫ t

0

(λs − ξs) ds (46)
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is a standard Brownian motion, and
(

1
δt

St
)
t∈[0,T ]

is a martingale with dynamics

d
(

St
δt

)
= (σt − ξt ) St

δt
dW Q̃t .

Direct calculations yield

dQ̃
dQ
= δT .

Alternatively, Ht may be also represented as

Ht =
EQ[δT

∫ T
t

1
2

(λs − ξs)2 ds |Ft ]
EQ[δT |Ft ] = EQ

[
δT
δt

∫ T

t

1

2
(λs − ξs)2 ds

�����Ft
]
, (47)

which is obtained by using that

dQ̃
dQ
= exp

(
−1

2

∫ T

0

ξ2s ds+
∫ T

0

ξs dWQs

)
.

Finally, we introduce the processes (Mt )t∈[0,T ] and (ηt )t∈[0,T ] with

Mt = EQ̃

[
1

2

∫ T

0

(λs − ξs)2 ds���Ft ] and dMt = ηt dW Q̃t . (48)

We are now ready to present the main result.

Proposition 5 The following assertions hold:

1. The value function of (40) is given by

vt (x) = −exp

(
− x
δt
−Ht

)
,

with δ and H as in (42) and (44).
2. The optimal strategy

(
π∗s
)
s∈[t,T ] is given by

π∗s = δs
λs −ηs − ξs
σs

+
ξs
σs

x∗s, (49)

with ξ, η as in (43) and (48), and x∗ solving (38) with π∗ being used.
3. The optimal wealth

(
x∗s
)
s∈[t,T ] solves

dx∗s = λs
(
δs (λs −ηs − ξs)+ ξsx∗s

)
ds+
(
δs (λs −ηs − ξs)+ ξsx∗s

)
dWs,

with x∗t = x, and is given by
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x∗s = xΦt,s +

∫ s

t

δu (λu − ξu)(λu −ηu − ξu)Φu,s du

+

∫ s

t

δu (λu −ηu − ξu)Φu,s dWu, (50)

where, for 0 ≤ u ≤ s ≤ T ,

Φu,s := exp

(∫ s

u

(
λv − 1

2
ξv

)
ξv dv+

∫ s

u

ξv dWv

)
.

Using (50), (49) gives the explicit representation of the optimal policy,

π∗s = δs
λs −ηs − ξs
σs

+
ξs
σs

(
xΦt,s +

∫ s

t

δu (λu − ξu)(λu −ηu − ξu)Φu,s du

+

∫ s

t

δu (λu −ηu − ξu)Φu,s dWu

)
.

3.2.1 The Markovian case

We assume that the stock price process (St )t∈[0,T ] solves

dSt = μ(t, St )St dt +σ(t, St )St dWt ,

with the initial price S0 > 0, and the functions μ(t, St ) and σ(t, St ) satisfying appro-

priate conditions, similar to the ones in Subsection 2.1.1 and Assumption 1. The risk

tolerance is assumed to have the functional representation

δT = δ(ST ),

for some function δ : R+→ R+ bounded from below and such that EP
[
δ2(ST )

]
<∞,

(cf. Assumption 2).

The value function in (40) takes the form

V (t, x, S) = sup
π∈A

EP
[
−e−

1
δ (ST )

xT ���xt = x, St = S
]
,

and, in turn, Proposition 5 yields

V (t, x, S) = −exp

(
x

δ(t, S)
−H (t, S)

)
,

with δ(t, S) and H (t, S) solving

δt +
1

2
σ2(t, S)S2δSS = 0, δ(T, S) = δ(S),

and
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Ht +
1

2
σ2(t, S)S2HSS +

1

δ(t, S)
σ2(t, S)S2δS (t, S)HS

+
1

2

(
λ(t, S)− 1

δ(t, S)
σ(t, S)SδS (t, S)

)2
= 0, H (T, S) = 0.

Clearly,

δ(t, S) = EQ [ δ(ST ) | St = S],

and

H (t, S) = E
Q̃

⎡⎢⎢⎢⎢⎣
∫ T

t

1

2

(
λ(u, Su)−σ(u, Su)Su

δS (u, Su)

δ(u, Su)

)2
du

����St = S
⎤⎥⎥⎥⎥⎦ ,

and, furthermore,

ξt =
δS (t, St )
δ(t, St )

Stσ(t, St ) and ηt = HS (t, St )Stσ(t, St ).

Using the above relations and (49), we derive the optimal investment process,

π∗s = δ(s, Ss)

(
λ(s, Ss)

σ(s, Ss)
− SsHS (s, Ss)

)
+ δS (s, Ss)Ss

(
−1+

1

δ (s, Ss)
x∗s

)
.

For completeness, we note that if δT ≡ δ > 0, the above expression simplify to

(see [18])

V (t, x, S) = −e−
1
δ x−H (t,S),

with H (t, S) solving

Ht +
1

2
σ2(t, S)S2HSS +

1

2
λ2(t, S) = 0, H (T, S) = 0.

The optimal strategy reduces to

π∗s = δ
(
λ(s, Ss)

σ(s, Ss)
− SsHS (s, Ss)

)
.

3.3 N -player game

We now study the N-player game. The concepts and various quantities are in direct

analogy to those in Section 2.1 and, thus, we omit various intermediate steps and

only focus on the new elements coming from the randomness of the risk tolerance

coefficients.

Proposition 6 For i ∈ I, let
δit = EQ[ δiT

���Ft ],
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with Q as in (41) and
(
ξit
)
t∈[0,T ]

be such that

dδit = ξ
i
t δ

i
t dWQt .

Define the measure Q̃i on FT as

dQ̃i

dP
= exp

(
−1

2

∫ T

0

(λs − ξis)2 ds−
∫ T

0

(
λs − ξis

)
dWs

)
, (51)

and the processes (M i
t )t∈[0,T ] and (ηt )t∈[0,T ] with

M i
t = EQ̃i

[
1

2

∫ T

0

(
λs − ξis

)2
ds
����Ft

]
and dM i

t = η
i
t dW Q̃

i

t . (52)

Let also,

ψN =
1

N

N∑
i=1

ci,

and assume that ψN < 1. Then

1. The player i’s game value (39) is given by

V i (x1, . . ., xi, . . ., xN )

= −exp��− 1

EQ[δiT ]

(
xi − ci

N
ΣNj=1x j

) −E
Q̃i

[
1

2

∫ T

0

(
λs − ξis

)2
ds
]�
 .

2. The equilibrium strategies (π1,∗
t , . . ., π

N,∗
t )t∈[0,T ] are given by

πi,∗t = ci π̄∗t +
1

σt

���δit (λt − ξit −ηit )+
(
X i,∗
t −

ci
N

N∑
j=1

X j,∗
t

)
ξit
�	
, (53)

where π̄∗t := 1
N Σ

N
j=1
π
j,∗
t is defined as

π̄∗t =
1

1−ψN
1

σt

(
λtϕ

1
N (t)−ϕ2

N (t)+ϕ3
N (t)−ϕ4

N (t) X̄∗t
)
, (54)

with

ϕ1
N (t) =

1

N
ΣNj=1δ

j
t , ϕ

2
N (t) =

1

N
ΣNj=1δ

j
t (ξ

j
t +η

j
t ),

ϕ3
N (t) =

1

N
ΣNj=1X j,∗

t ξ
j
t , ϕ

4
N (t) = ΣNj=1cjξ

j
t .

3. The associated optimal wealth processes
(
X i,∗
t

)
t∈[0,T ]

are given by
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X i,∗
t = ci X̄∗t +

(
x̃iΦi

0,t +

∫ t

0

(λs − ξis)δis (λs −ηis − ξis)Φi
s,t ds

+

∫ t

0

δis (λs −ηis − ξis)Φi
s,t dWs

)
, (55)

with

X̄∗t :=
1

1−ψN
(

1

N
ΣNi=1

(
x̃iΦi

0,t +

∫ t

0

δis (λs − ξis)(λs −ηis − ξis)Φi
s,t ds

+

∫ t

0

δis (λs −ηis − ξis)Φi
s,t dWs

))
,

where x̃i = xi − ci
N Σ

N
j=1

x j , and

Φi
s,t := exp

(∫ t

s

(
λu − 1

2
ξiu

)
ξiu du+

∫ t

s

ξiu dWu

)
. (56)

Proof Using the dynamics of X1, . . .,XN in (38), problem (39) reduces to

v ( x̃) = sup
π̃i ∈A

EP
⎡⎢⎢⎢⎢⎣−exp��− 1

δiT
X̃ i
T
�

⎤⎥⎥⎥⎥⎦ ,

where X̃ i
t = X i

t − ci
N Σ

N
j=1

X j
t satisfies dX̃ i

t = π̃
i
t (μt dt +σt dWt ) with X̃ i

0
= x̃i . Taking

π j ∈ A, j � i, as fixed and using Proposition 5, we deduce that πi,∗ satisfies

π̃i,∗t = π
i,∗
t −

ci
N

(
Σj�iπ

j
t + π

i,∗
t

)
= δit
λt −ηit − ξit
σt

+
ξit
σt

X̃ i,∗
t , (57)

where X̃ i,∗
t is the wealth process X̃ i

t associated with the strategy π̃i,∗t .

At equilibrium, π
j
t in (57) coincides with π

j,∗
t . Therefore, averaging over i ∈ I

gives

π̄∗t −ψN π̄∗t =
1

σt

(
λtϕ

1
N (t)−ϕ2

N (t)+ϕ3
N (t)−ϕ4

N (t) X̄∗t
)
.

Dividing both sides by 1−ψN yields (54), and then (53) follows.

To obtain explicit expressions of X i,∗
t and X̄∗t , we solve for X̃ i,∗

t using the optimal

strategy deduced in Section 3.2 (cf. (49)). We then obtain

X̃ i,∗
t = X i,∗

t −
ci
N

N∑
j=1

X j,∗
t = x̃iΦi

0,t +

∫ t

0

δis (λs − ξis)(λs −ηis − ξis)Φi
s,t ds

+

∫ t

0

δis (λs −ηis − ξis)Φi
s,t dWs,

with Φi
s,t as in (56). We conclude by averaging over all i ∈ I. �
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3.4 The Itô-diffusion common-noise MFG

Let (Ω,F ,P) be a probability space that supports the Brownian motion W as well as

the random type vector

θ = (x, δT ,c),

which is independent of W . As before, we denote by (Ft )t∈[0,T ] the natural filtration

generated by W , and (F MF
t )t∈[0,T ] with F MF

t = Ft ∨σ(θ). In the mean-field setting,

we model the representative player. One may also think of a continuum of players

whose initial wealth x and the interaction parameter c are random, chosen at initial

time 0, similar to the MFG in Section 2.2 herein. However, now, their risk tolerance

coefficients have two sources of randomness, related to their form and their terminal

(at T) measurability, respectively. Specifically, at initial time 0, it is determined how

these coefficients will depend on the final information, provided at T . For example,

in the Markovian case, this amounts to (randomly) selecting at time 0 the functional

form of δ(·) and, in turn, the risk tolerance used for utility maximization is given by

the random variable δ(ST ), which depends on the information FT through ST .
Similarly to (39), we are concerned with the optimization problem

V (x) = sup
π∈AMF

EP

[
−exp

(
− 1

δT

(
Xπ
T − cX

)) �����F MF
0 , X0 = x

]
, (58)

and the definition of the mean-field game is analogous to Definition 2.

Let the processes (δt )t∈[0,T ] and (ξt )t∈[0,T ] be given by

δt = EQ[δT |F MF
t ] and dδt = ξtδt dWQt , (59)

with Q defined on F MF
T by (41). The process (δt )t∈[0,T ] may be interpreted as the

arbitrage-free price of the risk tolerance “claim” δT for this representative player.

Let also Q̃ be defined on F MF
T by

dQ̃
dQ
= δT ,

and consider the martingale Mt = E
Q̃

[
1
2

∫ T
0

(λs − ξs)2 ds
����F MF

t

]
and (ηt )t∈[0,T ] to

be such that

dMt = ηt dW Q̃t , (60)

with W Q̃t =Wt +
∫ t

0
(λs − ξs) ds. The processes δ, ξ and η are all F MF

t -adapted.

We now state the main result of this section.

Proposition 7 If EP[c] < 1, there exists a MFG equilibrium
(
π∗t
)
t∈[0,T ], given by
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π∗t =
c

1−EP[c]

1

σt

(
λtEQ[δT |Ft ]−EQ[δT (ξt +ηt ) |Ft ]+EP[X∗t ξt |Ft ]

−EP[cξt |Ft ]EP[X∗t |Ft ]
)
+

1

σt

(
δt (λt − ξt −ηt )+ (X∗t − cEP[X∗t |Ft ])ξt

)
, (61)

with δ, ξ and η as in (59) and (60), and
(
X∗t
)
t∈[0,T ] being the associated optimal

wealth process, solving
dX∗t = π∗t (μt dt +σt dWt ). (62)

The value of the MFG is given by

V (x) = −exp��− 1

EQ[δT |F MF
0

]
(x− cm)−E

Q̃

[
1

2

∫ T

0

(λs − ξs)2 ds���F MF
0

]�
,
with m = EP[x].

For the proof, we will need the following lemma.

Lemma 2 If X is a F MF
s -measurable integrable random variable, then EP[X |Ft ] =

EP[X |Fs], for s ∈ [0, t].

Proof Let P := {A =C∩D : C ∈ Fs, D ∈ σ{Wu −Ws, s ≤ u ≤ t}} and L = {A ∈ F :

EP[X1A] = EP[EP[X |Fs]1A]}. Then, the following assertions hold:

(1) P is a π-system since both Fs and σ{Wu −Ws, s ≤ u ≤ t} are σ-algebras and

closed under intersection. Also Fs ⊆ P and σ{Wu −Ws, s ≤ u ≤ t} ⊆ P by taking

D =Ω and C =Ω.

(2) P ⊆ L. For any A ∈ P, A =C∩D with C ∈ Fs, D ∈ σ{Wu −Ws, s ≤ u ≤ t}, it

holds that

EP[EP[X |Fs]1A] = EP[EP[X |Fs]1C1D] = EP[EP[X1C |Fs]1D] = EP[X1C]EP[1D],

where we have consecutively used that C ⊥ D, the metastability of 1C , and the

independence between 1D and Fs .
Furthermore, by the independence between 1D and F MF

s = Ft ∨σ(θ), we deduce

EP[X1A] = EP[X1C1D] = EP[X1C]EP[1D],

and conclude that A ∈ L. Therefore P ⊆ L.

(3) L is a λ-system. It is obvious that Ω ∈ L and A ∈ L imply that Ac ∈ L. For a

sequence of disjoint sets A1, A2, . . . in L, one has
���X1∪∞

i=1
Ai

��� ≤ |X | and, thus, by the

dominated convergence theorem, we deduce that

EP[X1∪∞
i=1

Ai ] =

∞∑
i=1

EP[X1Ai ]. (63)

Similarly, by the inequalities ‖EP[X |Fs]1∪∞
i=1

Ai ‖1 ≤ ‖EP[X |Fs]‖1 ≤ ‖X ‖1, we have
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EP[EP[X |Fs]1∪∞
i=1

Ai ] =

∞∑
i=1

EP[EP[X |Fs]1Ai ]. (64)

Since Ai ∈ L, ∀i, the right-hand-sides of (63) and (64) are equal, which implies

∪∞
i=1

Ai ∈ L.

Therefore, by the π-λ theorem, we obtain that Ft = σ(Fs ∪σ{Wu −Ws, s ≤ u ≤
t}) ⊆ σ(P) ⊆ L. Noticing that EP[X |Fs] is Ft -measurable by definition, we have

that EP[X |Ft ] = EP[X |Fs]. �

Proof (Proposition 7) Let
(
Xα
t

)
t∈[0,T ] be given by Xα

t = x+
∫ t

0
μsαs ds+

∫ t

0
σsαs dWs

for an admissible policy αt (F MF
t -adapted) and define X t := EP[Xα

t |Ft ]. Then,

X t = m+EP

[∫ t

0

μsαs ds���Fs] +EP

[∫ t

0

σsαs dWs
���Fs] .

Using Lemma 2, the adaptivity of μt , σt with respect to Ft , and the definition of Itô

integral, we rewrite the above as

X t = m+
∫ t

0

μsEP [αs |Fs] ds+
∫ t

0

σsEP [αs |Fs] dWs .

Direct arguments yield that the optimization problem (58) reduces to

V ( x̃) = sup
π̃∈AMF

EP

[
−exp

(
− 1

δT
X̃T

) ���F MF
0 , X̃0 = x̃

]
,

where (X̃t )t∈[0,T ] solves

dX̃t ≡ d(Xt − cX t ) = π̃t (μt dt +σt dWt ), (65)

with X̃0 = x̃ = x− cm and π̃t := πt − cEP[αt |Ft ]. Then, (49) yields

π̃∗t = δt
λt −ηt − ξt
σt

+
ξt
σt

X̃∗t , (66)

with δt, ξt, ηt given in (59) and (60), and (X̃∗t )t∈[0,T ] solving (65) with π̃∗ being used.

On the other hand, using that π̃∗t = π∗t − cEP[αt |Ft ], we obtain

π∗t − cEP[αt |Ft ] = δt λt −ηt − ξt
σt

+
ξt
σt

X̃∗t .

In turn, using that, at equilibrium, α = π∗, we get

(1−EP[c])EP[π∗t |Ft ] =
1

σt

(
λtEP[δt |Ft ]−EP[δt (ξt +ηt ) |Ft ]+EP[X̃∗t ξt |Ft ]

)
.

Further calculations give
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π∗t = c
1

1−EP[c]

1

σt

(
λtEP[δt |Ft ]−EP[δt (ξt +ηt ) |Ft ]+EP[X∗t ξt |Ft ]

−EP[X∗t |Ft ]EP[cξt |Ft ]
)
+
δt (λt −ηt )− δt ξt + X∗t ξt − cξtEP[X∗t |Ft ]

σt
. (67)

Finally, we obtain

EP[δt |Ft ] = EP[EQ[δT |F MF
t ]|Ft ] = EP

[
EP

[
δT ZT

Zt

���F MF
t

] ���Ft ]
= EP

[
δT ZT

Zt

���Ft ] = EQ[δT |Ft ],

and a similar derivation for EP[ δt (ξt +ηt ) | Ft ]. We conclude by checking the ad-

missibility of π∗ which follows from model assumptions, the form of π∗, and equa-

tion (62). �

4 Conclusions and future research directions

In Itô-diffusion environments, we introduced and studied a family of N-player and

common-noise mean-field games in the context of optimal portfolio choice in a

common market. The players aim to maximize their expected terminal utility, which

depends on their own wealth and the wealth of their peers.

We focused on two cases of exponential utilities, specifically, the classical CARA

case and the extended CARA case with random risk tolerance. The former was

considered for the incomplete market model while the latter for the complete one.

We provided the equilibrium processes and the values of the games in explicit

(incomplete market case) and in closed form (complete market case). We note that in

the case of random risk tolerances, for which even the single-player case is interesting

in its own right, the optimal strategy process depends on the state process, even if

the preferences are of exponential type.

A natural extension is to consider power utilities (CRRA), which are also com-

monly used in models of portfolio choice. This extension, however, is by no means

straightforward. Firstly, in the incomplete market case, the underlying measure de-

pends on the individual risk tolerance, which is not the case for the CARA utilities

considered herein (see (7) for the minimal martingale measure and (22)-(23) for the

minimal entropy measure, respectively). Secondly, while it is formally clear how to

formulate the random risk tolerance case for power utilities, its solution is far from

obvious. The authors are working in both these directions.

Our results may be used to study such models when the dynamics of the common

market and/or the individual preferences are not entirely known. This could extend

the analysis to various problems in reinforcement learning (see, for example, the

recent work [14] in a static setting). It is expected that results similar to the ones in
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[19] could be derived and, in turn, used to build suitable algorithms (see, also, [7]

for a Markovian case).
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A Variational Characterization of

Langevin–Smoluchowski Diffusions

Ioannis Karatzas and Bertram Tschiderer

Abstract We show that Langevin–Smoluchowski measure on path space is invari-

ant under time-reversal, followed by stochastic control of the drift with a novel

entropic-type criterion. Repeated application of these forward-backward steps leads

to a sequence of stochastic control problems, whose initial/terminal distributions

converge to the Gibbs probability measure of the diffusion, and whose values de-

crease to zero along the relative entropy of the Langevin–Smoluchowski flow with

respect to this Gibbs measure.

Key words: Langevin–Smoluchowski diffusion, relative entropy, Gibbs measure,

time reversal, stochastic control, alternating forward-backward dynamics

MSC 2010 subject classifications: Primary 93E20, 94A17; secondary 35Q84,

60G44, 60J60

1 Introduction

Diffusions of Langevin–Smoluchowski type have some important properties. They

possess invariant (Gibbs) probability measures described very directly in terms

of their potentials and towards which, under appropriate conditions, their time-

marginals converge as time increases to infinity and in a manner that conforms to

the second law of thermodynamics: the relative entropy of the current distribution,

with respect to the invariant one, decreases to zero. The seminal paper [24] revealed

another remarkable, local aspect of this decrease towards equilibrium: the family

Ioannis Karatzas

Department of Mathematics, Columbia University, 2990 Broadway, New York, NY 10027, USA

e-mail: ik1@columbia.edu

Bertram Tschiderer

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria

e-mail: bertram.tschiderer@univie.ac.at

239© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

G. Yin, T. Zariphopoulou (eds.), Stochastic Analysis, Filtering, and Stochastic Optimization, 

https://doi.org/10.1007/978-3-030-98519-6_10

, Corrected  

Publication 2022

The original version of this chapter was revised: The author affiliation has now been amended. The 

correction to this chapter is available at https://doi.org/10.1007/978-3-030-98519-6_19. 

mailto:ik1@columbia.edu
mailto:bertram.tschiderer@univie.ac.at
https://doi.org/10.1007/978-3-030-98519-6
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98519-6_10&domain=pdf
https://doi.org/10.1007/978-3-030-98519-6_19


240 Ioannis Karatzas and Bertram Tschiderer

of time-marginals is, at (almost) every point in time, a curve of steepest descent

among all probability density functions with finite second moment, when distances

are measured according to the Wasserstein metric in configuration space.

We establish in this paper yet another variational property of such diffusions, this

time a global one: their law is invariant under the combined effects of time-reversal,

and of stochastic control of the drift under a novel, entropic-type criterion. Here, one

minimizes over admissible controls the relative entropy of the “terminal” state with

respect to the invariant measure, plus an additional term thought of as “entropic cost

of time-reversal”: the difference in relative entropy with respect to the Langevin–

Smoluchowski measure on path space, computed based on the “terminal” state as

opposed to on the entire path. Quite similar, but different, cost criteria have been

considered in [12, 13, 16, 38, 39].

The setting under consideration bears similarities to the celebrated Schrödinger

bridge problem, but also considerable differences. Both problems are posed on

a fixed time horizon of finite length, and both involve the relative entropy with

respect to the invariant measure. But here this entropy is modified by the addition

of the above-mentioned entropic cost of time-reversal, and there is no fixed, target

distribution on the terminal state. Yet the trajectory that emerges as the solution of

the stochastic control problem has time-marginals that replicate exactly those of the

original Langevin–Smoluchowskiflow, whence the “invariance”property mentioned

in the abstract.

We refer to [7, 8, 9, 30] for overviews on the classical Schrödinger bridge problem,

to [44] for the related semimartingale transport problem, and to the recent paper [3]

for a detailed study of the mean-field Schrödinger problem. A related controllability

problem for a Fokker–Planck equation and its connection to Schrödinger systems

and stochastic optimal control, is considered in [6]. More information about the

Schrödinger equation, diffusion theory, and time reversal, can be found in the book

[34].

1.1 Preview

In Section 2 we introduce the Langevin–SmoluchowskimeasureP on path space, un-

der which the canonical process (X (t))t�0 has dynamics (3) with initial distribution

P(0). Then, in Section 3, this process is studied under time-reversal. That is, we fix

a terminal time T ∈ (0,∞) and consider the time-reversed process X (s) = X (T − s),
0 � s � T . Standard time-reversal theory shows that X is again a diffusion, and gives

an explicit description of its dynamics.

Section 4 develops our main result, Theorem 1. An equivalent change of proba-

bility measurePγ ∼P adds to the drift of X a measurable, adapted process γ(T − s),
0 � s � T . In broad brushes, this allows us to define, in terms of relative entropies,

the quantities

Hγ := H (Pγ |Q)��σ (X (T )) , Dγ := H (Pγ |P)��σ (X ) −H (Pγ |P)��σ (X (T )) . (1)
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Here, Q is the probability measure on path space, inherited from the Langevin–

Smoluchowski dynamics (3) with initial distribution given by the invariant Gibbs

probability measure Q. Theorem 1 establishes then the variational characterization

inf
γ

(
Hγ
+Dγ )

= H
(
P(T ) |Q

)
, (2)

where P(T ) denotes the distribution of the random variable X (T ) under P. The

process γ∗ that realizes the infimum in (2) gives rise to a probability measure Pγ∗ ,

under which the time-reversed diffusion X is of Langevin–Smoluchowski type in its

own right, but now with initial distribution P(T ). In other words, with the constraint

of minimizing the sum of the entropic quantities Hγ and Dγ of (1), Langevin–

Smoluchowski measure on path space is invariant under time-reversal.

Sections 5 – 7 develop ramifications of the main result, including the fol-

lowing consistency property: starting with the time-reversal X of the Langevin–

Smoluchowski diffusion, the solution of a related optimization problem, whose

value is now H (P(2T ) |Q), leads to the original forward Langevin–Smoluchowski

dynamics, but now with initial distribution P(2T ). Iterating these procedures we

obtain an alternating sequence of forward-backward Langevin–Smoluchowski dy-

namics with initial distributions (P(kT ))k∈N0
converging to Q in total variation,

along which the values of the corresponding optimization problems as in (2) are

given by (H (P(kT ) |Q))k∈N and decrease to zero.

2 The setting

Let us consider a Langevin–Smoluchowski diffusion process (X (t))t�0 of the form

dX (t) = −∇Ψ
(
X (t)
)
dt +dW (t), (3)

with values in Rn. Here (W (t))t�0 is standard n-dimensional Brownian motion, and

the “potential”Ψ : Rn→ [0,∞) is aC∞-function growing, along with its derivatives

of all orders, at most exponentially as |x | → ∞; we stress that no convexity assump-

tions are imposed on this potential. We posit also an “initial condition” X (0) = Ξ,

a random variable independent of the driving Brownian motion and with given dis-

tribution P(0). For concreteness, we shall assume that this initial distribution has a

continuous probability density function p0( · ).
Under these conditions, the Langevin–Smoluchowski equation (3) admits a path-

wise unique, strong solution, up until an “explosion time” e; such explosion never

happens, i.e., P(e =∞) = 1, if in addition the second-moment condition (12) and

the coercivity condition (11) below hold. The condition (11) propagates the finite-

ness of the second moment to the entire collection of time-marginal distributions

P(t) = Law(X (t)), t � 0, which are then determined uniquely. In fact, adapting

the arguments in [42] to the present situation, we check that each time-marginal

distribution P(t) has probability density p(t, · ) such that the resulting function
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(t, x) �→ p(t, x) is continuous and strictly positive on (0,∞)×Rn; differentiable with

respect to the temporal variable t for each x ∈Rn; smooth in the spatial variable x for

each t > 0; and such that the logarithmic derivative (t, x) �→ ∇ log p(t, x) is continuous

on (0,∞)×Rn. These arguments also lead to the Fokker–Planck [20, 21, 41, 43], or

forward Kolmogorov [28], equation

∂p(t, x) = 1
2
Δp(t, x)+div

(
∇Ψ(x) p(t, x)

)
, (t, x) ∈ (0,∞)×Rn (4)

with initial condition p(0, x) = p0(x), for x ∈ Rn.

Here and throughout this paper, ∂ denotes differentiation with respect to the

temporal argument; whereas∇, Δ and div stand, respectively, for gradient, Laplacian

and divergence with respect to the spatial argument.

2.1 Invariant measure, likelihood ratio, and relative entropy

We introduce now the function

q(x) := e−2Ψ(x), x ∈Rn (5)

and note that it satisfies the stationary version

1
2
Δq(x)+div

(
∇Ψ(x) q(x)

)
= 0, x ∈Rn (6)

of the forward Kolmogorov equation (4). We introduce also the σ-finite measure Q

on the Borel subsets B(Rn) of Rn, which has density q as in (5) with respect to

n-dimensional Lebesgue measure. This measure Q is invariant for the diffusion of

(3); see Exercise 5.6.18 in [27]. When finite, Q can be normalized to an invariant

probability measure for (3), to which the time-marginals P(t) “converge” as t→∞;

more about this convergence can be found in Section 7. We shall always assume

tacitly that such a normalization has taken place when Q is finite, i.e., when

Q(Rn) =
∫
Rn

q(x) dx =
∫
Rn

e−2Ψ(x) dx <∞. (7)

One way to think of the above-mentioned convergence, is by considering the

likelihood ratio

�(t, x) :=
p(t, x)
q(x)

, (t, x) ∈ (0,∞)×Rn. (8)

It follows from (4), (6) that this function satisfies the backward Kolmogorov equation

∂�(t, x) = 1
2
Δ�(t, x)−

〈
∇�(t, x) ,∇Ψ(x)

〉
, (t, x) ∈ (0,∞)×Rn. (9)

In terms of the likelihood ratio function (8), let us consider now for each t � 0 the

relative entropy
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H
(
P(t) |Q

)
:=EP

[
log�
(
t,X (t)

)]
=

∫
Rn

log

( p(t, x)
q(x)

)
p(t, x) dx (10)

of the probability distribution P(t) with respect to the invariant measure Q. The

expectation in (10) is well-defined in [0,∞], if Q is a probability measure. As we are

not imposing this as a blanket assumption, we shall rely on [26, Appendix C], where

it is shown that the relative entropy H (P(t) |Q) is well-defined and takes values in

(−∞,∞], whenever P(t) belongs to the space P2(Rn) of probability measures with

finite second moment (see also [31] for a more general discussion). This, in turn, is

the case whenever P(0) has finite second moment, and the coercivity condition

∀ x ∈Rn, |x | � R :
〈
x ,∇Ψ(x)

〉
� −c |x |2 (11)

is satisfied by the potential Ψ in (3), for some real constants c � 0 and R � 0; see

the first problem on page 125 of [20], or Appendix B in [26]. The prototypical such

potential isΨ(x) = 1
2
|x |2, leading to Ornstein–Uhlenbeck dynamics in (3); butΨ ≡ 0

and the “double well” Ψ(x) = (x2 − a2)2 for a > 0, are also allowed. In particular,

the coercivity condition (11) does not imply that the potential Ψ is convex.

We shall impose throughout Sections 2 – 6 the coercivity condition (11), as well

as the finite second-moment condition

∫
Rn

|x |2 p0(x) dx <∞. (12)

This amounts to P(0) ∈P2(Rn), as has been already alluded to. In Section 7 we will

see that these two conditions (11) and (12) are not needed when Q is a probability

measure.

However, we shall impose throughout the entire paper the crucial assumption

that the initial relative entropy is finite, i.e.,

H
(
P(0) |Q

)
=

∫
Rn

log

( p0(x)
q(x)

)
p0(x) dx <∞. (13)

Under either the conditions “(11) + (12)”, or the condition (7), the decrease of the

relative entropy1 function [0,∞) � t �→ H (P(t) |Q) ∈ (−∞,∞] implies then that the

quantity H (P(t) |Q) in (10) is finite for all t � 0 whenever (13) holds.

In fact, under the conditions (11) – (13), the rate of decrease for the relative

entropy, measured with respect to distances traveled in P2(Rn) in terms of the

quadratic Wasserstein metric

W2(μ, ν) =
(

inf
Y∼μ,Z∼ν

E|Y − Z |2
)1/2
, μ, ν ∈P2(Rn)

1 A classical aspect of thermodynamics; for a proof of this fact under the conditions “(11) + (12)”

and without assuming finiteness of Q, see Theorem 3.1 in [25]; when Q is a probability measure,

we refer to Appendix 1.
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(cf. [1, 2, 45]) is, at Lebesgue-almost all times t0 ∈ [0,∞), the steepest possible along

the Langevin–Smoluchowski curve (P(t))t�0 of probability measures. Here, we are

comparing the curve (P(t))t�0 against all such curves (Pβ(t))t�t0 of probability

measures generated as in (3) — but with an additional drift ∇B for suitable (smooth

and compactly supported) perturbations B of the potential Ψ in (3). This local

optimality property of Langevin–Smoluchowski diffusions is due to [24]; it was

established by [25] in the form just described. We develop in this paper yet another,

global this time, optimality property for such diffusions.

2.2 The probabilistic setting

In (10) and throughout this paper, we are denoting by P the unique probability

measure on the space Ω = C([0,∞);Rn) of continuous, Rn-valued functions, under

which the canonical coordinate process X (t,ω) =ω(t), t � 0 has the property that

W (t) := X (t)− X (0)+
∫ t

0

∇Ψ
(
X (θ)

)
dθ, t � 0 (14)

is standard Rn-valued Brownian motion, and independent of the random variable

X (0) with distribution

P
[
X (0) ∈ A

]
=

∫
A

p0(x) dx, A ∈B(Rn).

The P-Brownian motion (W (t))t�0 of (14) is adapted to, in fact generates, the

canonical filtration F = (F (t))t�0 with

F (t) := σ
(
X (s) : 0 � s � t

)
. (15)

By analogy to the terminology “Wiener measure”, we call P the “Langevin–

Smoluchowski measure” associated with the potential Ψ.

3 Reversal of time

The densities p(t, · ) and q( · ) satisfy the forward Kolmogorov equations (4) and

(6), respectively. Whereas, their likelihood ratio �(t, · ) in (8) satisfies the backward

Kolmogorov equation (9). This suggests that, in the study of relative entropy and of

its temporal dissipation, it might make sense to look at the underlying Langevin–

Smoluchowski diffusion under time-reversal. Such an approach proved very fruitful

in [12], [38], [19] and [25]; it will be important in our context here as well.

Thus, we fix an arbitrary terminal time T ∈ (0,∞) and consider for 0 � s � T the

time-reversed process
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X (s) := X (T − s), G(s) := σ
(
X (u) : 0 � u � s

)
; (16)

along with the filtration G = (G(s))0�s�T this process generates. Then standard

theory on time-reversal shows that the process W = (W (s))0�s�T , with

W (s) := X (s)− X (0)+
∫ s

0

(
∇Ψ
(
X (u)

)
−∇L

(
T −u,X (u)

))
du, (17)

is a (G,P)-standard Brownian motion with values in Rn and independent of the

random variable X (0) = X (T ) (see, for instance, [17, 18, 22, 33, 35, 37] for the

classical results; an extensive presentation of the relevant facts regarding the time

reversal of diffusion processes can be found in Appendix G of [26]). Here

L(t, x) := log�(t, x), (t, x) ∈ (0,∞)×Rn

is the logarithm of the likelihood ratio function in (8); and on the strength of (9), this

function solves the semilinear Schrödinger-type equation

∂L(t, x) = 1
2
ΔL(t, x)−

〈
∇L(t, x) ,∇Ψ(x)

〉
+

1
2
|∇L(t, x) |2. (18)

Another way to express this, is by saying that the so-called Hopf–Cole transform

� = eL turns the semilinear equation (18), into the linear backward Kolmogorov

equation (9). This observation is not new; it has been used in stochastic control to

good effect by Fleming [14, 15], Holland [23], and in a context closer in spirit to this

paper by Dai Pra and Pavon [13], Dai Pra [11].

4 A stochastic control problem

Yet another way to cast the equation (18), is in the Hamilton–Jacobi–Bellman form

∂L(t, x) = 1
2
ΔL(t, x)−

〈
∇L(t, x) ,∇Ψ(x)

〉
− min

g∈Rn

(〈
∇L(t, x) , g

〉
+

1
2
|g |2
)
, (19)

where the minimization is attained by the gradient g∗ = −∇L(t, x). This, in turn,

suggests a stochastic control problem related to the backwards diffusive dynamics

dX (s) =
(
∇L
(
T − s,X (s)

)
−∇Ψ

(
X (s)
))

ds+dW (s) (20)

of (17), which we formulate now as follows.

For any measurable process [0,T ]×Ω � (t,ω) �→ γ(t,ω) ∈Rn such that the time-

reversed process γ(T − s), 0 � s � T is adapted to the backward filtration G of (16),

and which satisfies the condition

P

[∫ T

0

|γ(T − s) |2 ds <∞
]
= 1, (21)
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we consider the exponential (G,P)-local martingale

Zγ (s) := exp

(∫ s

0

〈
γ(T −u) , dW (u)

〉
− 1

2

∫ s

0

|γ(T −u) |2 du
)

(22)

for 0 � s � T . We denote by Γ the collection of all processes γ as above, for which

Zγ is a true (G,P)-martingale. This collection is not empty: it contains all such

uniformly bounded processes γ, and quite a few more (e.g., conditions of Novikov

[27, Corollary 3.5.13] and Kazamaki [40, Proposition VIII.1.14]).

Now, for every γ ∈ Γ, we introduce an equivalent probability measure Pγ ∼P on

path space, via
dPγ

dP

����G(s) = Zγ (s) , 0 � s � T . (23)

Then, by the Girsanov theorem [27, Theorem 3.5.1], the process

W
γ
(s) :=W (s)−

∫ s

0

γ(T −u) du, 0 � s � T (24)

is standard Rn-valued Pγ-Brownian motion of the filtration G, thus independent of

the random variable X (0) = X (T ). Under the probability measurePγ , the backwards

dynamics of (20) take the form

dX (s) =
(
∇L
(
T − s,X (s)

)
+γ(T − s)−∇Ψ

(
X (s)
))

ds+dW
γ
(s); (25)

and it follows readily from these dynamics and the semilinear parabolic equation

(18), that the process

Mγ (s) := L
(
T − s,X (s)

)
+

1
2

∫ s

0

|γ(T −u) |2 du, 0 � s � T (26)

is a local G-submartingale under Pγ , with decomposition

dMγ (s) = 1
2
��∇L (T − s,X (s)) +γ(T − s)��2 ds+

〈
∇L
(
T − s,X (s)

)
, dW

γ
(s)
〉
. (27)

In fact, introducing for n ∈N0 the sequence

σn := inf

{
s � 0:

∫ s

0

(��∇L (T −u,X (u))��2+ |γ(T −u) |2) du � n
}
∧T (28)

of G-stopping times with σn ↑ T , we see that the stopped process Mγ ( · ∧σn ) is a

G-submartingale under Pγ , for every n ∈N0. In particular, we observe

H
(
P(T ) |Q

)
=EP

[
L
(
T,X (T )

)]
= EPγ

[
L
(
T,X (0)

)]

� EPγ

[
L
(
T −σn,X (σn)

)
+

1
2

∫ σn

0

|γ(T −u) |2 du
]
,

(29)
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since we have Pγ
= P on the σ-algebra G(0) = σ(X (0)) = σ(X (T )). Now (29)

holds for every n ∈N0, thus

H
(
P(T ) |Q

)
� liminf

n→∞
EPγ

[
L
(
T −σn,X (σn)

)
+

1
2

∫ σn

0

|γ(T −u) |2 du
]
. (30)

But as we remarked already, the minimum in (19) is attained by g∗ = −∇L(t, x);
likewise, the drift term in (27) vanishes, if we select the process γ∗ ∈ Γ via

γ∗(t,ω) := −∇L
(
t,ω(t)

)
, thus γ∗(T − s) = −∇L

(
T − s,X (s)

)
(31)

for 0 � s, t � T . With this choice, the backwards dynamics of (25) take the form

dX (s) = −∇Ψ
(
X (s)
)
ds+dW

γ∗ (s); (32)

that is, precisely of the Langevin–Smoluchowski type (3), but now with the “initial

condition” X (0) = X (T ) and independent driving G-Brownian motion Wγ∗
, under

Pγ∗ . Since Pγ∗ =P holds on the σ-algebra G(0) = σ(X (0)) = σ(X (T )), the initial

distribution of X (0) under Pγ∗ is equal to P(T ). Furthermore, with γ = γ∗, the

process of (26), (27) becomes a Pγ∗ -local martingale, namely

Mγ∗ (s) = L
(
T,X (T )

)
+

∫ s

0

〈
∇L
(
T −u,X (u)

)
, dW

γ∗ (u)
〉

(33)

for 0 � s � T ; and we have equality in (29), thus also

H
(
P(T ) |Q

)
= lim

n→∞
EPγ∗

[
L
(
T −σn,X (σn)

)
+

1
2

∫ σn

0

|γ∗(T −u) |2 du
]
. (34)

We conclude that the infimum over γ ∈ Γ of the right-hand side in (30) is attained

by the process γ∗ of (31), which gives rise to the Langevin–Smoluchowski dynamics

(32) for the time-reversed process X (s) = X (T − s), 0 � s � T , under Pγ∗ . We

formalize this discussion as follows.

Theorem 1 Consider the stochastic control problem of minimizing over the class

Γ of measurable, adapted processes γ satisfying (21) and inducing an exponential

martingale Zγ in (22), with the notation of (28) and with the backwards dynamics

of (25), the expected cost

I(γ) := liminf
n→∞

EPγ

[
L
(
T −σn,X (σn)

)
+

1
2

∫ σn

0

|γ(T −u) |2 du
]
. (35)

Under the assumptions of Section 2, the infimum infγ∈ΓI(γ) is equal to the

relative entropy H (P(T ) |Q) and is attained by the “score process” γ∗ of (31). This

choice leads to the backwards Langevin–Smoluchowski dynamics (32), and with

γ = γ∗ the limit in (35) exists as in (34).
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Proof It only remains to check that the minimizing process of (31) belongs indeed

to the collection Γ of admissible processes. By its definition, this process γ∗ is

measurable, and its time-reversal is adapted to the backward filtration G of (16).

Theorem 4.1 in [25] gives

EP

[∫ T

0

��∇L (T −u,X (u))��2 du
]
=EP

[∫ T

0

��∇L (θ,X (θ)) ��2 dθ

]
<∞, (36)

which implies a fortiori that the condition in (21) is satisfied for γ = γ∗.

We must also show that the process Zγ∗ defined in the manner of (22), is a true

martingale. A very mild dose of stochastic calculus leads to

dL
(
T − s,X (s)

)
=

〈
∇L
(
T − s,X (s)

)
, dW (s)

〉
+

1
2
��∇L (T − s,X (s))��2 ds

on account of (18), (20). Therefore, we have

∫ s

0

〈
γ∗(T −u) , dW (u)

〉
− 1

2

∫ s

0

|γ∗(T −u) |2 du

= −

∫ s

0

〈
∇L
(
T −u,X (u)

)
, dW (u)

〉
− 1

2

∫ s

0

��∇L (T −u,X (u))��2 du

= L
(
T,X (T )

)
− L
(
T − s,X (s)

)
= log

(
�
(
T,X (T )

)
�
(
T − s,X (s)

)
)
,

which expresses the exponential process of (22) with γ = γ∗ as

Zγ∗ (s) =
�
(
T,X (T )

)
�
(
T − s,X (s)

) , 0 � s � T .

Now, let us argue that the process Zγ∗ is a true (G,P)-martingale. It is a positive

local martingale, thus a supermartingale. It will be a martingale, if it has constant

expectation. But Zγ∗ (0) ≡ 1, so it is enough to show that EP[Zγ∗ (T )] = 1. Let us

denote by P(s, y; t, ξ) the transition kernel of the Langevin–Smoluchowskidynamics,

so that P[X (s) ∈ dy,X (t) ∈ dξ] = p(s, y) P(s, y; t, ξ) dydξ for 0 � s < t � T and

(y, ξ) ∈Rn ×Rn. Then the invariance of Q gives

∫
Rn

q(y) P(0, y;T, ξ) dy = q(ξ) , ξ ∈Rn; (37)

consequently
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EP

[
Zγ∗ (T )

]
= EP

[ p(T,X (T ))
q
(
X (T )

) q
(
X (0)

)
p
(
0,X (0)

) ] (38)

=

∫
Rn

∫
Rn

p(T, ξ)
q(ξ)

q(y)
p(0, y)

p(0, y) P(0, y;T, ξ) dydξ (39)

=

∫
Rn

p(T, ξ)
q(ξ)

(∫
Rn

q(y) P(0, y;T, ξ) dy

)
dξ (40)

=

∫
Rn

p(T, ξ) dξ = 1, (41)

implying that Zγ∗ is a true martingale and completing the proof of Theorem 1. �

Results related to Theorem 1 have been established in [12, 13, 16, 38, 39].

Remark 1 (Reincarnation of time-marginals) Let us denote by P∗(s) the distribution

of the random variable X (s) = X (T − s) under the probability measure Pγ∗ , for

0 � s � T . Since (X (s))0�s�T is under Pγ∗ a Langevin–Smoluchowski diffusion in

its own right, we deduce

P∗(s) = P(T + s), 0 � s � T (42)

on the strength of uniqueness in distribution for the Langevin–Smoluchowski flow,

and of its time-homogeneity. In other words, the branch (P(T + s))0�s�T of the

original Langevin–Smoluchowski curve of time-marginals, gets “reincarnated” as

(P∗(s))0�s�T , the curve of time-marginals arising from the solution of the stochastic

control problem in Theorem 1. But now, under the probability measurePγ∗ , the states

of the Langevin–Smoluchowski diffusion (X (s))0�s�T corresponding to the curve

(P∗(s))0�s�T traverse the time interval [0,T ] in the opposite temporal direction.

4.1 Entropic interpretation of the expected cost when Q(Rn) < ∞

Let us observe from (22) – (24) that

log

(
dPγ

dP

����G(σn )

)
=

∫ σn

0

〈
γ(T −u) , dW

γ
(u)
〉
+

1
2

∫ σn

0

|γ(T −u) |2 du (43)

holds for every γ ∈ Γ and n ∈ N0. Thus, as the Pγ -expectation of the stochastic

integral in (43) vanishes, the expected quadratic cost, or “energy”, term in (35) is

itself a relative entropy:

EPγ

[
1
2

∫ σn

0

|γ(T −u) |2 du
]
=EPγ

[
log

(
dPγ

dP

����G(σn )

)]
.
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By contrast, when Q is a probability measure on B(Rn), and denoting by Q the

probability measure induced on Ω = C([0,∞);Rn) by the canonical process driven

by the dynamics (3) with Q as the distribution of X (0), the first term in (35) can be

cast as

EPγ

[
L
(
T −σn,X (σn)

) ]
=EPγ

[
log

(
dP

dQ

����σ (X (σn ))

)]
(44)

=EPγ

[
log

(
dPγ

dQ

����σ (X (σn ))

)
− log

(
dPγ

dP

����σ (X (σn ))

)]
.

(45)

It follows that, in this case, the expected cost of (35) is equal to the sum Hγ
n +D

γ
n of

two non-negative quantities:

Hγ
n :=EPγ

[
log

(
dPγ

dQ

����σ (X (σn ))

)]
,

the relative entropy of the probability measure Pγ with respect to the probability

measure Q, when both measures are restricted to the σ-algebra generated by the

random variable X (σn); and

Dγ
n := EPγ

[
log

(
dPγ

dP

����G(σn )

)]
−EPγ

[
log

(
dPγ

dP

����σ (X (σn ))

)]
, (46)

the difference between the relative entropies of the probability measure Pγ with

respect to the probability measure P, when restricted to the σ-algebra generated by

the collection of random variables (X (u∧σn))0�u�T and by the random variable

X (σn), respectively. The difference in (46) is non-negative, because conditioning

on a smaller σ-algebra can only decrease the relative entropy; this difference can be

thought of as an “entropic cost of time-reversal”.

It develops from this discussion that the expected cost on the right-hand side of

(35) is non-negative, when Q is a probability measure.

5 From local to square-integrable martingales

Whenever the process Mγ of (26), (27) happens to be a true submartingale under

Pγ (as, for instance, with γ ≡ 0 on account of Theorem 4.1 in [25]), the expected

cost (35) takes the form

EPγ

[
L
(
0,X (0)

)
+

1
2

∫ T

0

|γ(T −u) |2 du
]
.

Likewise, we derive from Theorem 1 the identity
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H
(
P(T ) |Q

)
=EPγ∗

[
L
(
0,X (0)

)
+

1
2

∫ T

0

��∇L (T −u,X (u))��2 du
]
,

whenever the process Mγ∗ of (33) is a true Pγ∗ -martingale. This is the case, for

instance, whenever

EPγ∗

[〈
Mγ∗,Mγ∗

〉
(T )

]
=EPγ∗

[∫ T

0

��∇L (T −u,X (u))��2 du
]
<∞ (47)

holds; and then the stochastic integral in (33) is an L2(Pγ∗ )-bounded martingale

(see, for instance, [27, Proposition 3.2.10] or [40, Corollary IV.1.25]). Using (42),

we can express the expectation of (47) more explicitly as

∫
Rn

∫ T

0

|∇ log�(t, x) |2 p(2T − t, x) dt dx. (48)

The shift in the temporal variable makes it difficult to check whether the quantity in

(48) is finite. At least, we have not been able to apply directly arguments similar to

those in Theorem 4.1 of [25], where the expectation (47) is taken with respect to the

probability measure P, in the manner of (36) (and thus, the argument 2T − t in (48)

is replaced by t). This problem is consonant with the fact that the expression in (44),

(45) is not quite a relative entropy, but a linear combination of relative entropies.

The goal of this section is to find a square-integrablePγ∗ -martingale Mγ∗
, which

is closely related to the local martingale Mγ∗ of (33). The idea is to correct the shift

in the temporal variable appearing in (48), by reversing time once again.

First, we need to introduce some notation. We denote by p∗(s, · ) the probability

density function of the random variable X (s) = X (T − s) under the probability

measure Pγ∗ , for 0 � s � T . From (42), we deduce the relation

p∗(s, x) = p(T + s, x), (s, x) ∈ [0,T ]×Rn.

For (s, x) ∈ [0,T ]×Rn, the associated likelihood ratio function and its logarithm are

defined respectively by

λ(s, x) :=
p∗(s, x)
q(x)

, Λ(s, x) := logλ(s, x) = L(T + s, x). (49)

From the definition (49), and the equations (18), (19), we see that the function

(s, x) �→ Λ(s, x) satisfies again the semilinear Schrödinger-type equation

− ∂Λ(s, x)+ 1
2
ΔΛ(s, x)−

〈
∇Λ(s, x) ,∇Ψ(x)

〉
= min

b∈Rn

(〈
∇Λ(s, x) , b

〉
+

1
2
|b|2
)
. (50)

In the setting introduced above, for each 0 � s � T , the relative entropy with

respect to Q of the distribution P∗(s) of X (s) under Pγ∗ is
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H
(
P∗(s) |Q

)
=EPγ∗

[
Λ
(
s,X (s)

)]
=

∫
Rn

log

( p∗(s, x)
q(x)

)
p∗(s, x) dx. (51)

Again, the assumption that H (P(0) |Q) is finite, and the decrease of the relative

entropy function [0,∞) � t �→ H (P(t) |Q) ∈ (−∞,∞], imply that the relative entropy

in (51) is finite for all 0 � s � T .

Finally, the relative Fisher information of P∗(s) with respect to Q is defined as

I
(
P∗(s) |Q

)
:= EPγ∗

[ ��∇Λ(s,X (s))��2 ] = ∫
Rn

��∇Λ(s, x)��2 p∗(s, x) dx. (52)

5.1 Reversing time once again

Let us consider on the filtered probability space (Ω,F,Pγ∗ ) the canonical pro-

cess (X (t))0�t�T , whose time-reversal (16) satisfies the backwards Langevin–

Smoluchowski dynamics (32). Reversing time once again, we find that the process

X (t) = X (T − t), 0 � t � T satisfies the stochastic differential equation

dX (t) =
(
∇Λ
(
T − t,X (t)

)
−∇Ψ

(
X (t)
))

dt +dWγ∗ (t), (53)

where the process

Wγ∗ (t) :=Wγ∗ (T − t)−Wγ∗ (T )−
∫ t

0

∇ logp∗
(
T − θ,X (θ)

)
dθ, 0 � t � T

is Brownian motion on (Ω,F,Pγ∗ ). We recall here Proposition 4.1 from [26].

Comparing the equation (53) with (3), we see that the Pγ∗ -Brownian motion

(Wγ∗ (t))0�t�T and the P-Brownian motion (W (t))0�t�T are related via

W (t) =Wγ∗ (t)+
∫ t

0

∇Λ
(
T − θ,X (θ)

)
dθ, 0 � t � T .

5.2 The dynamics of the relative entropy process

We look now at the relative entropy process

Λ
(
T − t,X (t)

)
= log

( p∗ (T − t,X (t))
q
(
X (t)
) )

, 0 � t � T (54)

on (Ω,F,Pγ∗ ). Applying Itô’s formula and using the equation (50), together with

the forward dynamics (53), we obtain the following result.

Proposition 1 On the filtered probability space (Ω,F,Pγ∗ ), the relative entropy

process (54) is a submartingale with stochastic differential
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dΛ
(
T − t,X (t)

)
=

1
2
��∇Λ(T − t,X (t))��2 dt +

〈
∇Λ
(
T − t,X (t)

)
, dWγ∗ (t)

〉
(55)

for 0 � t � T . In particular, for 0 � t � T , the process

Mγ∗ (t) := Λ
(
T − t,X (t)

)
−Λ
(
T,X (0)

)
− 1

2

∫ t

0

��∇Λ(T − θ,X (θ)) ��2 dθ

is an L2(Pγ∗ )-bounded martingale, with stochastic integral representation

Mγ∗ (t) =
∫ t

0

〈
∇Λ
(
T − θ,X (θ)

)
, dWγ∗ (θ)

〉
, 0 � t � T . (56)

Proof The last thing we need to verify for the proof of Proposition 1, is that

EPγ∗

[〈
Mγ∗
,Mγ∗〉(T )] =EPγ∗

[∫ T

0

��∇Λ(T − t,X (t))��2 dt
]
<∞. (57)

We observe that the expectation in (57) is equal to

EPγ∗

[∫ T

0

��∇Λ(s,X (s))��2 ds
]
=EP

[∫ 2T

T

��∇L (t,X (t))��2 dt
]
. (58)

This is because (16) and (49) give the relation ∇Λ(s,X (s)) = ∇L(t,X (2T − t)) with

t =T + s ∈ [T,2T ]; and because the Pγ∗ -distribution of X (2T − t) = X (s) is the same

as the P-distribution of X (T + s) = X (t), on account of (42). But, as (36) holds for

any finite time horizon T > 0, the quantity in (58) is finite as well. �

5.3 Relative entropy dissipation

Exploiting the trajectorial evolution of the relative entropy process (54), provided

by Proposition 1, allows us to derive some immediate consequences on the decrease

of the relative entropy function [0,T ] � s �−→ H (P∗(s) |Q) ∈ (−∞,∞) and its rate of

dissipation. The submartingale-property of the relative entropy process (54) shows

once more, that this function is non-decreasing. More precisely, we have the following

rate of change for the relative entropy.

Corollary 1 For all s, s0 � 0, we have

H
(
P∗(s) |Q

)
−H
(
P∗(s0) |Q

)
= − 1

2

∫ s

s0

I
(
P∗(u) |Q

)
du. (59)

Proof Let s, s0 � 0 and choose T � max{s, s0}. Taking expectations under Pγ∗ in

(55), and noting that the stochastic integral process in (56) is a martingale, leads to
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EPγ∗

[
Λ
(
s,X (s)

) ]
−EPγ∗

[
Λ
(
s0,X (s0)

)]
= − 1

2

∫ s

s0

EPγ∗

[��∇Λ(u,X (u))��2] du.

Recalling the entropy (51) and the Fisher information (52), we obtain (59). �

Corollary 2 For Lebesgue-almost every s � 0, the rate of relative entropy dissipation

equals
d

ds
H
(
P∗(s) |Q

)
= − 1

2
I
(
P∗(s) |Q

)
.

6 From backwards dynamics “back” to forward dynamics

Starting with the forward Langevin–Smoluchowski dynamics (3), we have seen in

Section 4 that the combined effects of time-reversal, and of stochastic control of the

drift under an entropic-type criterion, lead to the backwards dynamics

dX (s) = −∇Ψ
(
X (s)
)
ds+dWγ∗ (s), 0 � s � T, (60)

which are again of the Langevin–Smoluchowski type, but now viewed on the fil-

tered probability space (Ω,G,Pγ∗ ). We will see now that this universal property of

Langevin–Smoluchowski measure is consistent in the following sense: starting with

the backwards Langevin–Smoluchowski dynamics of (60), after another reversal of

time, the solution of a related stochastic control problem leads to the original forward

Langevin–Smoluchowski dynamics (3) we started with. This consistency property

should come as no surprise, but its formal proof requires the results of Section 5,

which perhaps appeared artificial at first sight.

Let us recall from Subsection 5.1 that reversing time in (60) leads to the forward

dynamics

dX (t) =
(
∇Λ
(
T − t,X (t)

)
−∇Ψ

(
X (t)
))

dt +dWγ∗ (t), 0 � t � T (61)

on the filtered probability space (Ω,F,Pγ∗ ). By analogy with Section 4, we define

an equivalent probability measure Πβ ∼ Pγ∗ as follows.

For any measurable process [0,T ]×Ω � (t,ω) �→ β(t,ω) ∈ Rn, adapted to the

forward filtration F of (15) and satisfying the condition

Pγ∗

[∫ T

0

|β(t) |2 dt <∞
]
= 1, (62)

we consider the exponential (F,Pγ∗ )-local martingale

Zβ (t) := exp

(∫ t

0

〈
β(θ) , dWγ∗ (θ)

〉
− 1

2

∫ t

0

|β(θ) |2 dθ

)
(63)
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for 0 � t � T . We denote by B the collection of all processes β as above, for which

Zβ is a true (F,Pγ∗ )-martingale.

Now, for every β ∈ B, we introduce an equivalent probability measure Πβ ∼Pγ∗

on path space, via

dΠβ

dPγ∗

����F (t )
= Zβ (t) , 0 � t � T . (64)

Then we deduce from the Girsanov theorem that, under the probability measure Πβ ,

the process

W β (t) :=Wγ∗ (t)−
∫ t

0

β(θ) dθ, 0 � t � T (65)

is Rn-valued F-Brownian motion, and the dynamics (61) become

dX (t) =
(
∇Λ
(
T − t,X (t)

)
+ β(t)−∇Ψ

(
X (t)
))

dt +dW β (t). (66)

We couple these dynamics with the stochastic differential (55) and deduce that

the process

Nβ (t) := Λ
(
T − t,X (t)

)
+

1
2

∫ t

0

|β(θ) |2 dθ, 0 � t � T (67)

is a local Πβ-submartingale with decomposition

dNβ (t) = 1
2
��∇Λ(T − t,X (t)) + β(t)��2 dt +

〈
∇Λ
(
T − t,X (t)

)
, dW

β
(t)
〉
. (68)

In fact, introducing for n ∈N0 the sequence

τn := inf

{
t � 0:

∫ t

0

(��∇Λ(T − θ,X (θ)) ��2+ |β(θ) |2) dθ � n
}
∧T (69)

of F-stopping times with τn ↑ T , we see that the stopped process Nβ ( · ∧ τn) is an

F-submartingale under Πβ , for every n ∈N0. In particular, we observe

H
(
P(2T ) |Q

)
= H
(
P∗(T ) |Q

)
=EPγ∗

[
Λ
(
T,X (T )

)]
=EΠβ

[
Λ
(
T,X (0)

)]

� EΠβ

[
Λ
(
T − τn,X (τn)

)
+

1
2

∫ τn

0

|β(θ) |2 dθ

]
,

(70)

since we have Πβ
= Pγ∗ on the σ-algebra F (0) = σ(X (0)) = σ(X (T )). Now (70)

holds for every n ∈N0, thus

H
(
P(2T ) |Q

)
� liminf

n→∞
EΠβ

[
Λ
(
T − τn,X (τn)

)
+

1
2

∫ τn

0

|β(θ) |2 dθ

]
. (71)

But the minimum in (50) is attained by b∗ = −∇Λ(s, x); likewise, the drift term

in (68) vanishes, if we select the process β∗ ∈ B via
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β∗(t,ω) := −∇Λ
(
T − t,ω(t)

)
, thus β∗(t) = −∇Λ

(
T − t,X (t)

)
(72)

for 0 � t � T . With this choice, the forward dynamics of (66) take the form

dX (t) = −∇Ψ
(
X (t)
)
dt +dW β∗ (t); (73)

that is, precisely the forward Langevin–Smoluchowski dynamics (3) we started with,

but now with the “initial condition” X (0) = X (T ) and independent driving F-

Brownian motion W β∗ , under the probability measure Πβ∗ . Since Πβ∗ =Pγ∗ holds

on the σ-algebra F (0) =σ(X (0)) = σ(X (T )), the initial distribution of X (0) under

Π
β∗ is equal to P(2T ). Furthermore, with β = β∗, the process of (67), (68) becomes

a Πβ∗ -local martingale, namely

Nβ∗ (t) = Λ
(
T,X (0)

)
+

∫ t

0

〈
∇Λ
(
T − θ,X (θ)

)
, dW

β∗ (θ)
〉

for 0 � t � T ; and we have equality in (70), thus also

H
(
P(2T ) |Q

)
= lim

n→∞
EΠβ∗

[
Λ
(
T − τn,X (τn)

)
+

1
2

∫ τn

0

|β∗(θ) |2 dθ

]
. (74)

We conclude that the infimum over β ∈ B of the right-hand side in (71) is attained

by the process β∗ of (72), which gives rise to the Langevin–Smoluchowskidynamics

(73) for the process (X (t))0�t�T , under Πβ∗ . We formalize this result as follows.

Theorem 2 Consider the stochastic control problem of minimizing over the class

B of measurable, adapted processes β satisfying (62) and inducing an exponential

martingale Zβ in (63), with the notation of (69) and with the forward dynamics of

(66), the expected cost

J (β) := liminf
n→∞

EΠβ

[
Λ
(
T − τn,X (τn)

)
+

1
2

∫ τn

0

|β(θ) |2 dθ

]
. (75)

Under the assumptions of Section 2, the infimum infβ ∈B J (β) is equal to the

relative entropy H (P(2T ) |Q) and is attained by the “score process” β∗ of (72).

This choice leads to the forward Langevin–Smoluchowski dynamics (73), and with

β = β∗ the limit in (75) exists as in (74).

Proof We have to show that the minimizing process β∗ belongs to the collection B

of admissible processes. By its definition in (72), the process β∗ is measurable, and

adapted to the forward filtration F of (15). Thanks to (57) in Proposition 1, we have

EPγ∗

[∫ T

0

|β∗(t) |2 dt
]
=EPγ∗

[∫ T

0

��∇Λ(T − t,X (t))��2 dt
]
<∞,

which implies a fortiori that the condition in (62) is satisfied for β = β∗.

It remains to check that the process Zβ∗ defined in the manner of (63), is a true

martingale. From Proposition 1 we have the stochastic differential
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dΛ
(
T − t,X (t)

)
=

1
2
��∇Λ(T − t,X (t))��2 dt +

〈
∇Λ
(
T − t,X (t)

)
, dWγ∗ (t)

〉
,

and therefore

∫ t

0

〈
β∗(θ) , dWγ∗ (θ)

〉
− 1

2

∫ t

0

|β∗(θ) |2 dθ

= −

∫ t

0

〈
∇Λ
(
T − θ,X (θ)

)
, dWγ∗ (θ)

〉
− 1

2

∫ t

0

��∇Λ(T − θ,X (θ)) ��2 dθ

= Λ
(
T,X (0)

)
−Λ
(
T − t,X (t)

)
= log

(
λ
(
T,X (0)

)
λ
(
T − t,X (t)

) ),
which expresses the exponential process of (63) with β = β∗ as

Zβ∗ (t) =
λ
(
T,X (0)

)
λ
(
T − t,X (t)

) , 0 � t � T .

The process Zβ∗ is a positive local martingale, thus a supermartingale. To see that

it is a true (F,Pγ∗ )-martingale, it suffices to argue that it has constant expectation. But

Zβ∗ (0) ≡ 1, so we have to show EPγ∗ [Zβ∗ (T )] = 1. We denote again by P(s, y; t, ξ)
the transition kernel of the Langevin–Smoluchowski dynamics, note that

Pγ∗
[
X (s) ∈ dy,X (t) ∈ dξ

]
= p∗(s, y) P(s, y; t, ξ) dydξ

for 0 � s < t � T and (y, ξ) ∈Rn×Rn, and recall the invariance property (37) of Q,

to deduce EPγ∗ [Zβ∗ (T )] = 1 in the manner of (38) – (41). This implies that Zβ∗ is

a true martingale and completes the proof of Theorem 2. �

6.1 Entropic interpretation of the expected cost when Q(Rn) < ∞

By analogy with Subsection 4.1, we interpret now the expected cost on the right-hand

side of (75) in terms of relative entropies. From (63) – (65), we deduce that

log

(
dΠβ

dPγ∗

����F (τn )

)
=

∫ τn

0

〈
β(θ) , dW β (θ)

〉
+

1
2

∫ τn

0

|β(θ) |2 dθ (76)

holds for every β ∈ B and n ∈N0. Therefore, as theΠβ-expectation of the stochastic

integral in (76) vanishes, the expected quadratic cost, or “energy”, term in (75) is

equal to the relative entropy

EΠβ

[
1
2

∫ τn

0

|β(θ) |2 dθ

]
= EΠβ

[
log

(
dΠβ

dPγ∗

����F (τn )

)]
.
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In order to interpret the first term in (75), let us assume that Q, and thus also the

induced measure Q on path space, are probability measures. Then we have

EΠβ

[
Λ
(
T − τn,X (τn)

)]
=EΠβ

[
log

(
dPγ∗

dQ

����σ (X(τn ))

)]
=EΠβ

[
log

(
dΠβ

dQ

����σ (X(τn ))

)
− log

(
dΠβ

dPγ∗

����σ (X(τn ))

)]
.

We conclude that, in this case, the expected cost of (75) is equal to the sum Hβ
n +D

β
n

of two non-negative quantities:

Hβ
n :=EΠβ

[
log

(
dΠβ

dQ

����σ (X(τn ))

)]
,

the relative entropy of the probability measure Πβ with respect to the probability

measure Q when both are restricted to the σ-algebra generated by the random

variable X (τn); and

Dβ
n := EΠβ

[
log

(
dΠβ

dPγ∗

����F (τn )

)]
−EΠβ

[
log

(
dΠβ

dPγ∗

����σ (X(τn ))

)]
,

the difference between the relative entropies of the probability measure Πβ with

respect to the probability measure Pγ∗ , when restricted to the σ-algebra generated

by the collection of random variables (X (θ∧ τn))0�θ�T and by the random variable

X (τn), respectively.

7 The case of finite invariant measure, and an iterative procedure

Let us suppose now that the diffusion process (X (t))t�0 as in (3) is well-defined,

along with the curve P(t) = Law(X (t)), t � 0 of its time-marginals; and that the

invariant measure Q of Subsection 2.1 is finite, i.e., (7) holds, and is thus normalized

to a probability measure.

Then, neither the coercivity condition (11), nor the finite second-moment condi-

tion (12), are needed for the results of Sections 4 – 6. The reason is that the relative

entropy H (P(t) |Q) is now well-defined and non-negative, as both P(t) and Q are

probability measures. Since the function t �→ H (P(t) |Q) is decreasing and the initial

relative entropy H (P(0) |Q) is finite on account of (13), it follows that this function

takes values in [0,∞). It can also be shown in this case that

lim
t→∞
↓ H
(
P(t) |Q

)
= 0, (77)

i.e., the relative entropy decreases down to zero; see [19, Proposition 1.9] for a

quite general version of this result. This, in turn, implies that the time-marginals
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(P(t))t�0 converge to Q in total variation as t → ∞, on account of the Pinsker–

Csiszár inequality

2 ‖P(t)−Q‖2TV � H
(
P(t) |Q

)
.

The entropic decrease to zero is actually exponentially fast, whenever the Hessian

of the potential Ψ dominates a positive multiple of the identity matrix; see, e.g., [4],

[32, Section 5], [36, Proposition 1’], [45, Formal Corollary 9.3], or [26, Remark

3.23]. As another consequence of (77), the initial relative entropy H (P(0) |Q) can

be expressed as

H
(
P(0) |Q

)
=

1
2
EP

[∫ ∞

0

��∇L (t,X (t))��2 dt
]
. (78)

We prove the claims (77) and (78) in Appendix 1.

In this context, i.e., with (7) replacing (11) and (12), and always under the standing

assumption (13), Theorem 4.1 in [25] continues to hold, as do the results in Sections 4

– 6. By combining time-reversal with stochastic control of the drift, these results

lead to an alternating sequence of forward and backward Langevin–Smoluchowski

dynamics, with time-marginals starting at P(0) and converging along (P(kT ))k∈N0

in total variation to the invariant probability measure Q. Along the way, the values of

the corresponding stochastic control problems decrease along (H (P(kT ) |Q))k∈N
to zero.

Appendix 1: The decrease of the relative entropy without convexity assumption

We present a probabilistic proof of the claims (77) and (78), which complements

the proof of the more general Proposition 1.9 in [19]. We stress that no convexity

assumptions are imposed on the potential Ψ.

Proof of (77) and (78): Since Q is assumed to be a probability measure in Section 7,

the relative entropy H (P(t) |Q) is non-negative for every t � 0. Thus, [25, Corollary

4.3] gives the inequality

H
(
P(0) |Q

)
= H
(
P(T ) |Q

)
+

1
2
EP

[∫ T

0

��∇L (t,X (t))��2 dt
]

�
1
2
EP

[∫ T

0

��∇L (t,X (t))��2 dt
] (79)

for everyT ∈ (0,∞). LettingT ↑∞ in (79), we deduce from the monotone convergence

theorem that

1
2
EP

[∫ ∞

0

��∇L (t,X (t))��2 dt
]
� H
(
P(0) |Q

)
. (80)

By analogy with Subsection 2.2, we denote by Q the Langevin–Smoluchowski

measure associated with the potential Ψ, but now with distribution
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Q
[
X (0) ∈ A

]
= Q(A) =

∫
A

q(x) dx, A ∈B(Rn)

for the random variable X (0). Since Q is a probability measure, the Langevin–

Smoluchowski measure Q is a well-defined probability measure on the path space

Ω = C([0,∞);Rn).
Let us recall now the likelihood ratio of (8). We denote the corresponding like-

lihood ratio process by ϑ(t) := �(t,X (t)), t � 0. The following remarkable insight

comes from Pavon [38] and Fontbona–Jourdain [19]: For any given T ∈ (0,∞), the

time-reversed likelihood ratio process

ϑ(s) := �
(
T − s,X (s)

)
=

p
(
T − s,X (T − s)

)
q
(
X (s)
) , 0 � s � T (81)

is a Q-martingale of the backwards filtration G = (G(s))0�s�T in (16). For a simple

proof of this result in the setting of this paper we refer to [26, Appendix E].

Let us pick arbitrary times 0 � t1 < t2 <∞. For any given T ∈ (t2,∞), the martin-

gale property of the process (81) amounts, with s1 = T − t1 and s2 = T − t2, to

EQ

[
ϑ(s1) ��G(s2)

]
= ϑ(s2) ⇐⇒ EQ

[
ϑ(t1) ��σ (X (θ) : t2 � θ � T

)]
= ϑ(t2).

Because T ∈ (t2,∞) is arbitrary, this gives

EQ

[
ϑ(t1) |H (t2)

]
= ϑ(t2) , H (t) := σ

(
X (θ) : t � θ <∞

)
. (82)

In other words, the likelihood ratio process (ϑ(t))t�0 is a backwardsQ-martingale of

the filtration H = (H (t))t�0. We denote by H (∞) :=
⋂

t�0H (t) the tail σ-algebra

of the Langevin–Smoluchowski diffusion (X (t))t�0. The ergodicity of this process

under the probability measure Q implies that the tail σ-algebraH (∞) is Q-trivial,

i.e.,H (∞) = {∅,Ω} modulo Q; see Appendix 2 for a proof of this claim.

We recall now the martingale version of Theorem 9.4.7 (backwards submartingale

convergence) in [10]. This says that (ϑ(t))t�0 is a Q-uniformly integrable family,

that the limit

ϑ(∞) := lim
t→∞
ϑ(t) (83)

exists Q-a.e., that the convergence in (83) holds also in L1(Q), and that for every

t � 0 we have

EQ

[
ϑ(t) |H (∞)

]
= ϑ(∞) , Q-a.e. (84)

But since the tail σ-algebraH (∞) is Q-trivial, the random variable ϑ(∞) is Q-a.e.

constant, and (84) identifies this constant as ϑ(∞) ≡ 1.

In terms of the function f (x) := x log x for x > 0 (and with f (0) := 0), we can

express the relative entropy H (P(t) |Q) as

H
(
P(t) |Q

)
=EP

[
logϑ(t)

]
=EQ

[
f
(
ϑ(t)
)]
� 0, t � 0. (85)
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The convexity of f , in conjunction with (82), shows that the process ( f (ϑ(t)))t�0

is a backwards Q-submartingale of the filtration H, with decreasing expectation as

in (85). By appealing to the backwards submartingale convergence theorem [10,

Theorem 9.4.7] once again, we deduce that ( f (ϑ(t)))t�0 is a Q-uniformly integrable

family, which converges, a.e. and in L1 under Q, to

lim
t→∞

f
(
ϑ(t)
)
= f
(
ϑ(∞)

)
= f (1) = 0.

In particular,

lim
t→∞
↓ H
(
P(t) |Q

)
= lim

t→∞
EQ
[
f
(
ϑ(t)
)]
=EQ

[
lim
t→∞

f
(
ϑ(t)
)]
= 0, (86)

proving (77). From (86) and (79) it follows now that (80) holds as equality, proving

(78). �

Appendix 2: The triviality of the tail σ-algebraH (∞)

We recall the filtered probability space (Ω,F (∞),F,Q). Here, Ω = C([0,∞);Rn)
is the path space of continuous functions, F (∞) = σ(

⋃
t�0F (t)), the canonical

filtration F = (F (t))t�0 is as in (15), and the Langevin–Smoluchowski measure Q

is represented by

Q(B) =
∫
Rn

Px (B) dQ(x) , B ∈B(Ω), (87)

where Px denotes the Langevin–Smoluchowski measure with initial distribution δx ,

for every x ∈Rn, and B(Ω) is the Borel σ-field2 on Ω.

For every s � 0, we define a measurable map θs : Ω→ Ω, called shift transfor-

mation, by requiring that θs (ω)(t) = ω(s+ t) hold for all ω ∈ Ω and t � 0. A Borel

set B ∈ B(Ω) is called shift-invariant if θ−1
s (B) = B holds for any s � 0. Since

the Gibbs probability measure Q is the unique invariant measure for the Langevin–

Smoluchowski diffusion (X (t))t�0, [5, Theorem 3.8] implies that the probability

measure Q of (87) is ergodic, meaning that Q(B) ∈ {0,1} holds for every shift-

invariant set B. As a consequence of the ergodicity of Q, the Birkhoff Ergodic

Theorem [5, Theorem 3.4] implies that, for every A ∈B(Rn), the limit

lim
t→∞

1

t

∫ t

0

1A

(
X (s)
)
ds = Q(A) (88)

exists Q-a.e.

Lemma 1 The tail σ-algebraH (∞) is Q-trivial, i.e.,H (∞) = {∅,Ω} modulo Q.

2 There are several equivalent ways to define the Borel σ-field on Ω. Two possible constructions

appear in Problems 2.4.1 and 2.4.2 in [27].
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Proof We follow a reasoning similar to that in [19, Remark 1.10]. According to

[29, Theorem 1.3.9], it suffices to show that the Langevin–Smoluchowski diffusion

(X (t))t�0 is recurrent in the sense of Harris, i.e.,

Px
[∫ ∞

0

1A

(
X (s)
)
ds =∞

]
= 1 (89)

is satisfied for every x ∈Rn and all A ∈B(Rn) with Q(A) > 0.

For the proof of (89), we fix x ∈ Rn and A ∈ B(Rn) with Q(A) > 0. By its

definition, the event

B :=

{∫ ∞

0

1A

(
X (s)
)
ds =∞

}

is shift-invariant. Thus, by the ergodicity ofQ, the probabilityQ(B) is equal to either

zero or one. Outside the set B, we have

lim
t→∞

1

t

∫ t

0

1A

(
X (s)
)
ds = 0.

But since Q(A) > 0, theQ-a.e. limit (88) implies thatQ(Bc) = 0 and henceQ(B) = 1.

From the definition (87) of the probability measureQ it follows thatPx (B) = 1 for Q-

a.e. x ∈Rn. Since Q is equivalent to Lebesgue measure, we also have thatPx (B) = 1

for Lebesgue-a.e. x ∈Rn.

Furthermore, the shift-invariance of B and the Markov property of the Langevin–

Smoluchowski diffusion give

Px (B) =Px (θ−1
t (B)

)
=EPx

[
PX(t ) (B)

]
= Tt
(
Px (B)

)
=

∫
Rn

P(0, x; t,dy)Py(B)

(90)

for every t � 0. Here, P(0, x; t, y) denotes the transition kernel of the Langevin–

Smoluchowski dynamics, so that Px[X (t) ∈ dy] = P(0, x; t, y) dy; and Tt denotes the

operator

Tt f (x) :=

∫
Rn

P(0, x; t,dy) f (y) , (t, x) ∈ [0,∞)×Rn

acting on bounded measurable functions f : Rn→R. Since (Tt )t�0 is a strong Feller

semigroup under the assumptions of this paper, the function Rn � x �→ Tt f (x) is

continuous. Now (90) implies the continuity of the function Rn � x �→ Px (B). On

the other hand, we have already seen that the function Rn � x �→ Px (B) ∈ [0,1]

is Lebesgue-a.e. equal to one. But such a function is constant everywhere, i.e.,

Px (B) = 1 for every x ∈Rn, proving (89). �
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Incomplete Stochastic Equilibria with
Exponential Utilities Close to Pareto Optimality

Constantinos Kardaras, Hao Xing, and Gordan Žitković

Abstract We study existence and uniqueness of continuous-time stochastic Radner

equilibria in an incomplete markets model. An assumption of “smallness” type—

imposed through the new notion of “closeness to Pareto optimality”—is shown to

be sufficient for existence and uniqueness. Central role in our analysis is played by a

fully-coupled nonlinear system of quadratic BSDEs.

Introduction

The equilibrium problem

The focus of the present paper is the problem of existence and uniqueness of a

competitive (Radner) equilibrium in an incomplete continuous-time stochastic model

of a financial market. A discrete version of our model was introduced by Radner

in [26] as an extension of the classical Arrow-Debreu framework, with the goal

of understanding how asset prices in financial (or any other) markets are formed,

under minimal assumption on the ingredients or the underlying market structure.

One of those assumptions is often market completeness; more precisely, it is usually

postulated that the range of various types of transactions the markets allow is such

that the wealth distribution among agents, after all the trading is done, is Pareto

optimal, i.e., that no further redistribution of wealth can make one agent better off
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without hurting somebody else. Real markets are not complete; in fact, as it turns out,

the precise way in which completeness fails matters greatly for the output and should

be understood as an a-priori constraint. Indeed, it is instructive to ask the following

questions: Why are markets incomplete in the first place? Would rational economic

agents not continue introducing new assets into the market, as long as it is still

useful? The answer is that they, indeed, would, were it not for exogenously-imposed

constraints out there, no markets exist for most contingencies; those markets that do

exist are heavily regulated, transactions costs are imposed, short selling is sometimes

prohibited, liquidity effects render replication impossible, etc. Instead of delving into

the modeling issues regarding various types of completeness constraints, we point

the reader to [31] where a longer discussion of such issues can be found.

The “fast-and-slow” model

The particular setting we subscribe to here is one of the simplest from the financial

point of view. It, nevertheless, exhibits many of the interesting features found in

more general incomplete structures and admits a straightforward continuous-time

formulation. It corresponds essentially to the so-called “fast-and-slow” completeness

constraint, introduced in [31].

One of the ways in which the “fast-and-slow” completeness constraint can be

envisioned is by allowing for different speeds at which information of two different

kinds is incorporated and processed. The discrete-time version of the model is

described in detail in [25, p. 213], where it goes under the heading of “short-lived”

asset models. Therein, at each node in the event tree, the agents have access to a

number of short-lived assets, i.e., assets whose life-span ends in one unit of time, at

which time all the dividends are distributed. The prices of such assets are determined

in the equilibrium, but their number is typically not sufficient to guarantee local (and

therefore global) completeness of the market. In our, continuous time model, the

underlying filtration is generated by two independent Brownian motions (B and W ).

Positioned the “node” (ω, t), we think of dBt and dWt as two independent symmetric

random variables, realized at time t + dt, with values ±√dt. Allowing the agents to

insure each other only with respect to the risks contained in dB, we denote the

(equilibrium) price of such an "asset" by −λt dt. As already hinted to above, one

possible economic rationale behind this type of constraint is obtained by thinking of

dB as the readily-available (fast) information, while dW models slower information

which will be incorporated into the process λt indirectly, and only at later dates. For

simplicity, we also fix the spot interest rate to 0, allowing agents to transfer wealth

from t to t + dt costlessly and profitlessly. While, strictly speaking, this feature puts

us in the partial-equilibrium framework, this fact will not play a role in our analysis,

chiefly because our agents draw their utility only from the terminal wealth (which is

converted to the consumption good at that point).

For mathematical convenience, and to be able to access the available continuous-

time results, we concatenate all short-lived assets with payoffs dBt and prices −λt dt
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into a single asset Bλ
t = Bt +

∫ t

0
λu du. It should not be thought of as an asset that

carries a dividend at time T , but only as a single-object representation of the family

of all infinitesimal, short-lived assets.

As a context for the ”fast-and-slow” constraint, we consider a finite number I of

agents; we assume that all of their utility functions are of exponential type, but allow

for idiosyncratic risk-aversion parameters and non-traded random endowments. The

exponential nature of the agents’ utilities is absolutely crucial for all of our results

as it induces a “backward” structure to our problem, which, while still very difficult

to analyze, allows us to make a significant step forward.

The representative-agent approach, and its failure in incomplete
markets

The classical and nearly ubiquitous approach to existence of equilibria in complete

markets is using the so-called representative-agent approach. Here, the agents’ en-

dowments are first aggregated and then split in a Pareto-optimal way. Along the

way, a pricing measure is produced, and then, a-posteriori, a market is constructed

whose unique martingale measure is precisely that particular pricing measure. As

long as no completeness constraints are imposed, this approach works extremely

well, pretty much independently of the shape of the agents’ utility functions (see,

e.g., [14, 13, 18, 19, 20, 9, 1, 30] for a sample of continuous-time literature). A con-

venient exposition of some of these and many other results, together with a thorough

classical literature overview can be found in the Notes section of Chapter 4. of [21]).

The incomplete case requires a completely different approach and what were

once minute details, now become salient features. The failure of representative-

agent methods under incompleteness are directly related to the inability of the

market to achieve Pareto optimality by wealth redistribution. Indeed, when not every

transaction can be implemented through the market, one cannot reduce the search

for the equilibrium to a finite-dimensional “manifold” of Pareto-optimal allocations.

Even more dramatically, the whole nature of what is considered a solution to the

equilibrium problem changes. In the complete case, one simply needs to identify a

market-clearing valuation measure. In the present “fast-and-slow” formulation, the

very family of all replicable claims (in addition to the valuation measure) has to be

determined. This significantly impacts the “dimensionality” of the problem and calls

for a different toolbox.

Our probabilistic-analytic approach

The direction of the present paper is partially similar to that of [31], where a much

simpler model of the “fast-and-slow” type is introduced and considered. Here, how-

ever, the setting is different and somewhat closer to [29] and [8]. The fast component
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is modeled by an independent Brownian motion, instead of the one-jump process.

Also, unlike in any of the above papers, pure PDE techniques are largely replaced or

supplemented by probabilistic ones, and much stronger results are obtained.

Doing away with the Markovian assumption, we allow for a collection of un-

bounded random variables, satisfying suitable integrability assumptions, to act as

random endowments and characterize the equilibrium as a (functional of a) solu-

tion to a nonlinear system of quadratic Backward Stochastic Differential Equations

(BSDE). Unlike single quadratic BSDE, whose theory is by now quite complete (see

e.g., [23, 5, 6, 12, 15, 3] for a sample), the systems of quadratic BSDEs are much

less understood. The main difficulty is that the comparison theorem may fail to hold

for BSDE systems (see [17]). Moreover, Frei and dos Reis (see [16]) constructed a

quadratic BSDE system which has bounded terminal condition but admits no so-

lution. The strongest general-purpose result seems to be the one of Tevzadze (see

[28]), which guarantees existence under an “L∞-smallness” condition placed on the

terminal conditions.

Like in [28], but unlike in [31] or [8], our general result imposes no regularity

conditions on the agents’ random endowments. Unlike [28], however, our smallness

conditions come in several different forms. First, we show existence and uniqueness

when the random-endowment allocation among agents is close to a Pareto optimal

one. In contrast to [28], we allow here for unbounded terminal conditions (random

endowments), and measure their size using an “entropic” BMO-type norm strictly

weaker than the L∞-norm. In addition, the equilibrium established is unique in a

global sense (as in [24], where a different quadratic BSDE system is studied).

Another interesting feature of our general result is that it is largely independent of

the number of agents. This leads to the following observation: the equilibrium exists

as soon as “sufficiently many sufficiently homogeneous” (under an appropriate notion

of homogeneity) agents share a given total endowment, which is not assumed to be

small. This is precisely the natural context of a number of competitive equilibrium

models with a large number of small agents, none of whom has a dominating sway

over the price.

Another parameter our general result is independent of is the time horizon T .

Indirectly, this leads to our second existence and uniqueness result which holds

when the time horizon is sufficiently small, but the random endowments are not

limited in size. Under the additional assumption of Malliavin differentiabilty, a lower

bound on how small the horizon has to be to guarantee existence and uniqueness

turns out to be inversely proportional to the size of the (Malliavin) derivatives

of random endowments. This extends [8, Theorem 3.1] to a non-Markovian setting.

Interestingly, both the L∞-smallness of the random endowments and the smallness of

the time-horizon are implied by the small-entropic-BMO-norm condition mentioned

above, and the existence theorems under these conditions can be seen as special cases

of our general result.



Incomplete Stochastic Equilibria 271

Some notational conventions

As we will be dealing with various classes of vector-valued random variables and

stochastic processes, we try to introduce sufficiently compact notation to make

reading more palatable.

A time horizon T > 0 is fixed throughout. An equality sign between random

variables signals almost-sure equality, while one between two processes signifies

Lebesgue-almost everywhere, almost sure equality; any two processes that are equal

in this sense will be identified; this, in particular, applied to indistinguishable càdlàg

processes. Given a filtered probability space (Ω,FT ,F = {Ft }t∈[0,T ],P) satisfying

the usual conditions, T denotes the set of all [0,T]-valued F-stopping times, and

P2 denotes the set of all predictable processes {μt }t∈[0,T ] such that
∫ T

0
μ2
t dt < ∞,

a.s. The integral
∫ ·

0
μu dBu of μ ∈ P2 with respect to an F-Brownian motion B

is alternatively denoted by μ · B, while the stochastic (Doléans-Dade) exponential

retains the standard notation E (·). The Lp-spaces, p ∈ [1,∞] are all defined with

respect to (Ω,FT ,P) and L0 denotes the set of (P-equivalence classes) of finite-

valued random variables on this space. For a continuous adapted process {Yt }t∈[0,T ],

we set

| |Y | |S∞ = | | supt∈[0,T ] |Yt | | |L∞,
and denote the space of all such Y with | |Y | |S∞ <∞ by S∞. For p ≥ 1, the space of

all μ ∈ P2 with | |μ| |pH p = E

[∫ T
0
|μu |p du

]
< ∞ is denoted by Hp , an alias for the

Lebesgue space Lp on the product [0,T]×Ω.

Given a probability measure P̂ and a P̂-martingale M , we define its BMO-norm

by

| |M | |2
BMO(P̂)

= sup
τ∈T

������EP̂τ [〈M〉T −〈M〉τ]
������L∞,

where EP̂τ [·] denotes the conditional expectation EP̂[·|Fτ] with respect to Fτ , com-

puted under P̂. The set of all P̂-martingales M with finite | |M | |BMO(P̂) is denoted

by BMO(P̂), or, simply, BMO, when P̂ = P. When applied to random variables,

X ∈ BMO(P̂) means that X = MT , for some M ∈ BMO(P̂). In the same vein, we

define (for some, and then any, (P̂,F)-Brownian motion B)

bmo(P̂) = {μ ∈ P2 : μ · B ∈ BMO(P̂)},
with the norm | |μ| |bmo(P̂) = | |μ · B | |BMO(P̂) . The same convention as above is used:

the dependence on P̂ is suppressed when P̂ = P.

Many of our objects will take values in RI , for some fixed I ∈ N. Those are

typically denoted by bold letters such as E,G,μ,ν,α, etc. If specific components are

needed, they will be given a superscript - e.g., G = (Gi)i . Unquantified variables

i, j always range over {1,2, . . ., I}. The topology of Rk is induced by the Euclidean

norm | · |2, defined by |x |2 =
√∑

k
��xk ��2 for x ∈ Rk . All standard operations and
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relations (including the absolute value |·| and order ≤) between Rk-valued variables

are considered componentwise.

1 The Equilibrium Problem and its BSDE Reformulation

We work on a filtered probability space (Ω,FT ,F = {Ft }t∈[0,T ],P), where F is the

standard augmentation of the filtration generated by a two-dimensional standard

Brownian motion {(Bt,Wt )}t∈[0,T ]. The augmented natural filtrations FB and FW of

the two Brownian motions B and W will also be considered below.

1.1 The financial market, its agents, and equilibria

Our model of a financial market features one liquidly traded risky asset, whose

value, denoted in terms of a prespecified numéraire which we normalize to 1, is

given by

dBλ
t = λt dt + dBt, t ∈ [0,T], (1)

for some λ ∈ P2. Given that it will play a role of a “free parameter” in our analysis,

the volatility in (1) is normalized to 1; this way, λ can simultaneously be interpreted

as the market price of risk. The reader should consult the section ‘The “fast-and-

slow” model’ in the introduction for the proper economic interpretation of this asset

as a concatenation of a continuum of infinitesimally-short-lived securities.

We assume there is a finite number I ∈ N of economic agents, all of whom trade

the risky asset as well as the aforementioned riskless, numéraire, asset of constant

value 1. The preference structure of each agent is modeled in the von Neumann-

Morgenstern framework via the following two elements:

i) an exponential utility function with risk tolerance coefficient δi > 0:

U i (x) = −exp(−x/δi), x ∈ R, and

ii) a random endowment Ei ∈ L0(FT ).

The pair (E,δ), where E = (Ei)i , δ = (δi)i , of endowments and risk-tolerance co-

efficients fully characterizes the behavior of the agents in the model; we call it the

population characteristics—E is the initial allocation and δ the risk profile. In

general, any RI -valued random vector will be refereed to as an allocation.

Each agent maximizes the expected utility of trading and random endowment:

E

[
U i (π · Bλ

T +Ei)
]
→max . (2)

Here {πt }t∈[0,T ] is a one-dimensional process which represents the number of shares

of the asset kept by the agent at time t. As usual, this strategy is financed by investing
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in or borrowing from the interestless numéraire asset, as needed. To describe the

admissible strategies of the agent, we follow the convention in [11]:

For λ ∈ P2, we denote byMλ
a the set of absolutely continuous local martingale

measures for Bλ, i.e., all probability measures Q
 P such that EQ[h(Bλ
τ −Bλ

σ )] = 0

for all pairs of stopping times σ ≤ τ ≤ T and for all bounded Fσ-measurable random

variables h. For a probability measure Q
 P, let H (Q|P) be the relative entropy of

Qwith respect to P, i.e., H (Q|P) = E
[
dQ
dP log

dQ
dP

]
≥ 0. For λ ∈ P2 such thatMλ � ∅,

where

Mλ = {Q ∈Mλ
a |H (Q|P) <∞},

a strategy π is said to be λ-admissible if π ∈ Aλ, where

Aλ =
{
π ∈ P2 | π · Bλ is a Q-martingale for all Q ∈Mλ

}
.

We note that the setAλ corresponds - up to finiteness of the utility - exactly to the set

Θ2 in [11]. This admissible class contains, in particular, all π ∈ P2 such that π · Bλ

is bounded (uniformly in t and ω).

Definition 1 (Equilibrium)
Given a population with characteristics (E,δ), a process λ ∈ P2 withMλ � ∅ is

called an equilibrium (market price of risk) if there exists an I-tuple (πi)i such

that

i) each πi is an optimal strategy for the agent i under λ, i.e.

πi ∈ argmaxπ∈AλE

[
U i (π · Bλ

T +Ei)
]
,

ii) the market clears, i.e.,
∑

i π
i = 0.

The set of all equilibria is denoted by Λδ (E,P), or simply, Λδ (E), when the the

probability P is clear from the context.

Remark 1 The assumptions on the agents’ random endowments that we introduce

below and the proof techniques we employ make it clear that bmo is a natural space

to search for equilibria in. There is, however, no compelling economic argument

to include bmo into the definition of an equilibrium, so we do not. It turns out,

nevertheless, that whenever an equilibrium λ is mentioned in the rest of the paper it

will be in the bmo context, and we will assume automatically that any equilibrium

market price of risk belongs to bmo. In particular, all uniqueness statements we make

will be with respect to bmo as the ambient space.

1.2 A simple risk-aware reparametrization

It turns out that a simple reparametrization in our “ingredient space” leads to sub-

stantial notational simplification. It also sheds some light on the economic meaning
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of various objects. The main idea is to think of the risk- tolerance coefficients

as numéraires, as they naturally carry the same currency units as wealth. When

expressed in risk-tolerance units, the random endowments and strategies become

unitless and we introduce the following notation

G = 1
δE, i.e., Gi = 1

δi Ei, and ρ = 1
δ π, i.e., ρi = 1

δi π
i . (3)

Since Aλ is invariant under this reparametrization, the equilibrium conditions be-

come

ρi ∈ argmaxρ∈Aλ
i
E

[
U (ρ · Bλ

T +Gi)
]

and
∑

i α
i ρi = 0, (4)

where U (x) = −exp(−x), and αi = δi/(
∑

j δ
j ) ∈ (0,1) - with

∑
i α

i = 1 - are the

(relative) weights of the agents. The set of all equilibria with risk-denominated

random endowments G = (Gi)i and relative weightsα = (αi)i is denoted byΛα (G,P)

(this notation overload should not cause any confusion in the sequel).

Since the market-clearing condition in (4) now involves the relative weights αi

as “conversion rates”, it is useful to introduce the aggregation operator A : RI → R
by

A[x] =
∑

i α
i xi, for x ∈ RI, (5)

so that the market-clearing condition now simply reads A[ρ] = 0, pointwise.

1.3 A solution of the single-agent utility-maximization problem

Before we focus on the questions of existence and uniqueness of an equilibrium, we

start with the single agent’s optimization problem. Here we suppress the index i and

first introduce an assumptions on the risk-denominated random endowment:

G is bounded from above and G ∈ EBMO, (6)

where EBMO denotes the set of all G ∈ L0 for which there exists (necessarily unique)

processes mG and nG in bmo, as well a constant XG
0

, such that G = XG
T , where

XG
t = XG

0 +

∫ t

0

mG
u dBu +

∫ t

0

nGu dWu +
1
2

∫ t

0

(
(mG

u )2+ (nGu )2
)

du. (7)

The supermartingale XG admits the following representation

XG
t = − logEt [exp(−G)], so that U (XG

t ) = Et [U (G)] for t ∈ [0,T], (8)

and can be interpreted as the certainty-equivalent process (without access to the

market) of G, expressed in the units of risk tolerance.

Remark 2
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1. When G is bounded from above, as we require it to be in (6), a sufficient condition

for G ∈ EBMO is e−G ∈ BMO. This follows directly from the boundedness of

the (exponential) martingale e−XG
t away from zero.

2. The condition (6) amounts to the membership MG ∈ BMO, where MG = mG ·
B+ nG ·W . Then −MG ∈ BMO and, by Theorem 3.1, p. 54 in [22], E (−MG )

satisfies the reverse Hölder inequality (Rp) with some p > 1. Therefore, for

ε < p−1, we have

E[e−(1+ε)G] = E[e−(1+ε)(XG
0
+MG

T +
1
2
〈MG 〉T )

]

= e−(1+ε)XG
0 E

[(
E (−MG )T

)1+ε]
<∞.

On the other hand, by (1) above, we clearly have L∞ ⊆ EBMO, so

G ∈ L∞ ⇒ G ∈ EBMO⇒ E[e−(1+ε)G] <∞ for some ε > 0.

In particular our condition (6), while implied by the boundedness of G, itself

implies the conditions G+ =max{G,0} ∈ L∞, e−G ∈ ∪p>1L
p , imposed in [11].

We recall in Proposition 1 some results about the nature of the optimal solution to the

utility-maximization problem (2) from [11]; the proof if given in Section 3 below.

Proposition 1 (Single agent’s optimization problem: existence and duality)
Suppose that λ ∈ bmo and that G satisfies (6). Then both primal and dual problems

have finite values and the following statements hold:

1. There exists a unique ρλ,G ∈ Aλ such that

ρλ,G ∈ argmax
ρ∈Aλ

E

[
U (ρ · Bλ

T +G)
]
.

2. There exists a unique Qλ,G ∈Mλ such that

Q
λ,G ∈ argmin

Q∈Mλ

(H (Q|P)+EQ[G]).

3. There exists a constant cλ,G such that

cλ,G + ρλ,G · Bλ
T +G = − log(Zλ,G

T ), where Zλ,G
T =

dQλ,G

dP . (9)

The process ρλ,G and the probability measure Qλ,G are called the primal and

the dual optimizers, respectively. While they were first obtained by convex-duality

methods, they also admit a BSDE representation (see, e.g., [27]), where a major role

is played by (the risk-denominated version) of the so-called certainty-equivalent
process:

Yλ,G
t =U−1

(
Et

[
U (ρλ,G · Bλ

T − ρλ,G · Bλ
t +G)

] )
, t ∈ [0,T]. (10)
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The optimality of ρλ,G implies that

U (Yλ,G
t ) = esssup

ρ∈Aλ

Et

[
U (ρ · Bλ

T − ρ · Bλ
t +G)

]
, t ∈ [0,T]. (11)

Hence Yλ,G
t can be interpreted as the risk-denominated certainty equivalent of the

agent i, when he/she trades optimally from t onwards, starting from no wealth.

Finally, with

Zλ,G
t = Et

[
dQλ,G

dP

]
= E (−λ · B− νλ,G ·W )t, t ∈ [0,T] for some νλ,G ∈ P2, (12)

we have the following BSDE characterization for single agent’s optimization prob-

lem.

Lemma 1 (Single agent’s optimization problem: a BSDE characterization)
For λ ∈ bmo and G satisfying (6), let Yλ,G be as in (10), let μλ,G = λ− ρλ,G and

let νλ,G be defined by (12). Then the triplet (Yλ,G, μλ,G, νλ,G ) is the unique solution
to the BSDE

dYt = μt dBt + νt dWt +
(

1
2
ν2t − 1

2
λ2
t + λt μt

)
dt, YT = G, (13)

in the class where (μ, ν) ∈ bmo. Such a unique solution also satisfiesYλ,G−XG ∈ S∞.

Given the results of Propositions 1 and 1 above, we fix the notation Yλ,G , μλ,G , νλ,G ,

Q
λ,G , Zλ,G and ρλ,G for λ and G. We also introduce the vectorized versions Yλ,G ,

μλ,G , νλ,G , Qλ,G , and Zλ,G , so that, e.g., μλ,G = (μλ,G
i
)i and G = (Gi)i .

1.4 A BSDE characterization of equilibria

The BSDE-based description in Lemma 1 of the solution of a single agent’s optimiza-

tion problem is the main ingredient in the following characterization, whose proof

is given in Subsection 3.3 below. We use the risk-aware parametrization introduced

in Subsection 1.2, and remind the reader that Λα (G) denotes the set of all equilibria

in bmo when G = (Gi)i are the agents’ risk-denominated random endowments and

α = (αi)i are the relative weights.

Theorem 1 (BSDE characterization of equilibria)
For a process λ ∈ bmo, and an allocation G which satisfies (6) componentwise,

the following are equivalent:
1. λ ∈ Λα (G), i.e., λ is an equilibrium for the population (G,α).
2. λ = A[μ] for some solution (Y,μ,ν) of the BSDE system:

dYt = μt dBt +νt dWt +
(

1
2
ν2
t − 1

2
A[μt ]

2+ A[μt ]μt

)
dt, YT = G, (14)

with (μ,ν) ∈ bmoI .
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Remark 3

1. Spelled out “in coordinates”, the system (14) becomes

⎧⎪⎨⎪⎩
dY i

t = μ
i
t dBt + ν

i
t dWt +

(
1
2

(νit )
2− 1

2
(
∑

j α
j μ

j
t )

2+ (
∑

j α
j μ

j
t )μ

i
t

)
dt,

Y i
T = Gi, i ∈ {1,2, . . ., I},

(14)

and the market-clearing condition λ = A[μt ] reads λ =
∑

j α
j μj .

2. While quite meaningless from the competitive point of view, in the case I = 1 of

the above characterization still admits a meaningful interpretation. The notion

of an equilibrium here corresponds to the choice of λ under which an agent, with

risk-denominated random endowment G ∈ EBMO would choose not to invest in

the market at all. The system (14) reduces to a single equation

dYt = μt dBt + νt dWt + ( 1
2
μ2
t +

1
2
ν2t ) dt, YT = G,

which admits a unique solution, namely Y = XG , so that λ = mG is the unique

equilibrium. This case also singles out the space EBMO as the natural environ-

ment for the random endowments Gi in this context.

2 Main Results

We first present our main result, then discuss its implications on models with short

time horizons or a large population of agents. All proofs are postponed until Section

3.

2.1 Equilibria close to Pareto optimality

Whenever equilibrium is discussed, Pareto optimality is a key concept. Passing to the

more-convenient risk-aware notation, we remind the reader the following definition,

where, as usual, A[x] =
∑

i α
i xi:

Definition 2 For ξ ∈ L0(FT ), an allocation ξ is called ξ-feasible if A[ξ] ≤ ξ. An

allocation ξ is said to be Pareto optimal if there is no A[ξ]-feasible allocation ξ̃ ,

such that E[U (ξ̃i)] ≥ E[U (ξi)] for all i, and E[U (ξ̃i)] > E[U (ξi)] for some i.

In our setting, Pareto optimal allocations admit a very simple characterization; this

is a direct consequence of the classical result [4] of Borch so we omit the proof.

Lemma 2 A (sufficiently integrable) allocation ξ is Pareto optimal if and only if its
components agree up to a constant, i.e., if there exist ξc ∈ L0(FT ) and constants
(ci)i such that ξi = ξc + ci for all i.
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Next, we introduce a concept which plays a central role in our main result. Given

a population with the (risk-denominated) initial allocation G whose components

satisfy (6), let (mi,ni) ∈ bmo be an alias for the pair (mGi
,nG

i
) defined in (7). We

define distance to Pareto optimality H (G) of G by

H (G) = inf
ξc

max
i
| |(mi −mc,ni − nc) | |bmo(Pc ),

where the infimum is taken over the set of ξc ∈ EBMO, with (mc,nc) = (mξc
,nξc

)

as in (7), and the probability measure Pc is given by

dPc/dP = E (−mc · B− nc ·W )T = exp(−ξc)/E[exp(−ξc)]. (15)

Remark 4

1. Suppose that H (G) = 0 and that the infimum is attained. Then (mi,ni) = (mc,nc),

for all i, implying that all components of G coincide with ξc up to some additive

constants, making G Pareto optimal. On the other hand, since each agent has

exponential utility, shifting all components of G by the same amount ξc is

equivalent to a measure change from P to Pc . Therefore, λ ∈ Λα (G,P) if and

only if λ −mc ∈ Λα (G− ξc,Pc), i.e., translation in endowments does not affect

the wellposedness of the equilibrium. As a consequence, to show Λα (G,P) � ∅,
it suffices to prove Λα (G− ξc,Pc) � ∅ for some ξc , which is the strategy we

follow below.

2. Our “distance to Pareto optimality” is conceptually similar to the “coefficient

of resource utilization” of Debreu (see [10]), well known in economics. There,

however, seems to be no simple and direct mathematical connection between

the two.

In our first main result below, we assume that G is sufficiently close to some
Pareto optimal allocation, i.e., that H (G) ≤ ε∗, for some sufficiently small ε∗:

Theorem 2 (Existence and uniqueness close to Pareto optimality)
Let (6) hold for all components in G. There exists a sufficiently small constant ε∗,

independent of the number of agents I, such that if

H (G) ≤ ε∗, (16)

Then there exists a unique equilibrium λ ∈ bmo. Moreover, the triplet (Yλ,G,μλ,G,
νλ,G ), defined in Lemma 1, is the unique solution to (14) with (μλ,G,νλ,G ) ∈ bmoI .

Remark 5 A similar global uniqueness has been obtained in [24, Theorem 4.1] for

a different quadratic BSDE system arising from a price impact model.

The proof of Theorem 2 will be presented in Section 2.1. For the time being, let

us discuss two important cases in which (16) holds:

- First, given ξc ∈ EBMO and 1 ≤ i ≤ I, let XGi
and X ξc

be defined by (7) with

terminal conditions Gi and ξc , respectively. A simple calculation shows that
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d(XGi

t − X ξc

t ) = (mi
t −mc

t ) dBc
t + (nit − nc

t ) dW c
t +

1
2

(
(mi

t −mc
t )2+ (nit − nc

t )2
)

dt,

with the terminal condition Gi − ξc , for a two-dimensional Pc-Brownian motion

(Bc,W c), where Pc is given by (15). If, furthermore, Gi − ξc ∈ L∞, it follows that

| |(mi −mc,ni − nc) | |2bmo(Pc ) = 2sup
τ
| |EPcτ [XGi

T − ξc]− (XGi

τ − ξcτ ) | |
L∞

≤ 4| |Gi − ξc | |L∞ .
Therefore, assumption (16) holds, if

inf
ξc

max
i
| |Gi − ξc | |L∞ ≤

(ε∗)2

4
. (17)

- The second case in which (16) can be verified is in the case of a "large" number of

agents. Indeed, an interesting feature of (17) is its lack of dependence on I, leading to

the existence of equilibria in an economically meaningful asymptotic regime. Given

a total endowment EΣ ∈ L∞ to be shared among I agents, i.e.,
∑

i Ei = EΣ, one can

ask the following question: how many and what kind of agents need to share this total

endowment so that they can form a financial market in which an equilibrium exists?

The answer turns out to be “sufficiently many sufficiently homogeneous agents”. In

order show that, we first make precise what we mean by sufficiently homogeneous.

For the population characteristics E = (Ei)i and δ = (δi)i , with E ∈ (L∞)I , we define

the endowment heterogeneity index χE (E) ∈ [0,1] by

χE (E) =max
i, j

| |Ei −E j | |L∞
||Ei | |L∞ + | |E j | |L∞ .

We think of a population of agents as “sufficiently homogeneous” if χE (E) ≤ χE
0

for

some, given, critical index χE
0

. With this in mind, we have the following corollary

of Theorem 2:

Corollary 1 (Existence of equilibria for sufficiently many sufficiently homoge-
neous agents)

Given a critical endowment homogeneity index χE
0
∈ [0, 1

2
), a critical risk

tolerance δ0 > 0, as well as the total endowment EΣ ∈ L∞, there exists I0 =

I0(| |EΣ | |L∞, χE0 , δ0) ∈ N, so that any population (E,δ) = (Ei, δi)i satisfying

I ≥ I0,
∑

i Ei = EΣ, χE (Ei) ≤ χE
0
, and mini δ

i ≥ δ0,
admits an equilibrium.

Condition (17) can be thought of as a smallness-in-size assumption placed on the

random endowments, possibly after translation. It turns out that it can be “traded” for

a smallness-in-time condition which we now describe. We start by briefly recalling

the notion of Malliavin differentiation on the Wiener space. LetΦ be the set of random

variables ζ of the form ζ = ϕ(I(h1), . . .,I(hk )), where ϕ ∈ C∞
b

(Rk,R) (smooth
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functions with bounded derivatives of all orders) for some k, h j = (h j,b, h j,w ) ∈
L

2([0,T];R2) and I(h j ) = h j,b · BT + h j,w ·WT , for each j = 1, . . ., k. If ζ ∈ Φ, we

define its Malliavin derivative as the 2-dimensional process

Dθ ζ =

k∑
j=1

∂ϕ

∂x j
(I(h1), . . .,I(hk ))h j

θ, θ ∈ [0,T].

We denote by Db
θ ζ and Dw

θ ζ the two components of Dθ ζ and for ζ ∈Φ, p ≥ 1, define

the norm

| |ζ | |1,p =
⎡⎢⎢⎢⎢⎣E

⎡⎢⎢⎢⎢⎣|ζ |p +
(∫ T

0

|Dθ ζ |2dθ
)p/2⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
1/p

.

For p ∈ [1,∞), the Banach space D1,p is the closure of Φ under | | · | |1,p . For p =∞,

we define D1,∞ as the set of all those G ∈ D1,1 with DbG,DwG ∈ S∞.

Corollary 2 (Existence of equilibria on sufficiently small time horizons)
Suppose that (6) holds for all components of G and that there exists ξc ∈ EBMO

such that Gi − ξc ∈ D1,∞ for all i. Then a unique equilibrium exists as soon as

T < T∗ =
(ε∗)2

maxi
(
| |Db (Gi − ξc) | |2S∞ + | |Dw (Gi − ξc) | |2S∞

) . (18)

Remark 6 In a Markovian setting where G = g(BT ,WT ), for some functions g = (gi)i ,

we only need to assume there exists some gc ∈ L∞ such that ∂b (gi−gc), ∂w (gi−gc) ∈
L
∞, for any i, where ∂b (gi −gc) and ∂w (gi −gc) are weak derivatives of gi −gc . A

similar “smallness in time" result has been proven in [8, Theorem 3.1] (and in [30]

in a simpler model) in a Markovian setting. Corollary 2 extends the result of [8] to a

non-Markovian setting.

3 Proofs

3.1 Proof of Proposition 1

For λ ∈ bmo, we record thatMλ � ∅. Indeed, thanks to the bmo property of λ, the

process Zλ = E (−λ · B) is a martingale and satisfies the reverse Hölder inequality

Rp for some p > 1 (see [22, Theorem 3.1]). That, in turn, implies the reverse Hölder

inequality R log R, and, so, the probability Qλ defined via dQλ/dP = Zλ
T satisfies

H (Qλ |P) <∞, and, consequently Qλ ∈Mλ.

The statements of Proposition 1 will follow from [11, Theorem 2.2], once we

verify that Zλ satisfies the reverse Hölder inequality R log R under P as well, where

dP/dP = e−G/E[e−G]. For that, we note that e−G/E[e−G] = E (−mG · B− nG ·W )T ,

where (mG,nG ) is as in (7). Given λ ∈ bmo, the bmo property of (mG,nG ) and [22,
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Theorem 3.6] imply that λ −mG ∈ bmo(P), and, so, Zλ = E (−(λ −m) · B)T , where

B =
∫ ·

0
mudu+ B is a P-martingale. It remains to use the same argument as in the

previous paragraph to show that Zλ indeed satisfies the reverse Hölder inequality

R log R under P.

3.2 Proof of Lemma 1

Let (m,n) = (mG,nG ) from (7); more generally, we suppress the superscripts λ and

G throughout to increase legibility. A combination of (9) and (10) yields that

Y = −c− ρ · Bλ− log Z,

and a simple calculation confirms that (Y, μ, ν) satisfies (13). Next, we show Y −X ∈
S∞. We start by defining the probability measure P via dP/dP = E (−m · B−n ·W )T
so that under P, D = Y − X is the certainty-equivalent process corresponding to the

zero endowment. By (11), we have D ≥ 0 as well as

dDt = (μt −mt ) dB+ (νt − nt ) dW

+
(

1
2

(νt − nt )2− 1
2

(λt −mt )
2+ (λt −mt )(μt −mt )

)
dt, with DT = 0, (19)

where B = B+
∫ ·

0
mudu and W =W +

∫ ·
0

nudu are P-Brownian motions. Using the

notation Qλ, as well as the argument of Proof of Proposition 1 above, we can deduce

that Qλ ∈ Mλ−m (where P in the definition ofMλ−m is replaced by P). We claim

that

Dτ ≤ Hτ (Qλ |P), for any τ ∈ T . (20)

Proposition 1, applied under P and with zero random endowment produces the dual

optimizer Qλ,G , with P-density Zλ−m,G . If we project both sides of the equality

cλ,G + ρλ,G · Bλ
T = − log(Zλ−m,G

T ) under Qλ,G onto Fτ we obtain

Dτ = Hτ (Qλ,G |P).

No integrability issues arise here since H (Qλ,G |P) < ∞ and ρλ,G · Bλ is a Qλ,G-

martingale (by part (iii) of Proposition 1). The required inequality (20) follows from

the optimality of Qλ,G in part (ii) of Proposition 1.

The right-hand side of (20) can be written as

Hτ (Qλ |P) = E
Q
λ

τ

[
1
2

∫ T

τ
(λt −mt )

2dt −
∫ T

τ
(λt −mt )dBλ

t

]
≤ 1

2
| |λ −m | |2

bmo(Qλ )
.

Given that both λ and m belong to bmo we have λ−m ∈ bmo(Qλ) by [22, Theorem

3.6]. Therefore, we can combine (20) and the fact that D ≥ 0 to conclude that D ∈ S∞.

Consequently, it suffices to apply the standard bmo-estimate for quadratic BSDEs
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(see Lemma 9) to (19), to obtain (μ−m, ν−n) ∈ bmo(P). Since (m,n) ∈ bmo, another

application of [22, Theorem 3.6] confirms that (μ, ν) ∈ bmo.

Lastly, we show that there can be at most one solution to (13) with (μ, ν) ∈ bmo.

Let (Y, μ, ν) and (Ỹ, μ̃, ν̃) be two solutions with (μ, ν), ( μ̃, ν̃) ∈ bmo. For δY = Ỹ −Y ,

we have

d(δY )t = δμtdBλ
t + δνtdWν

t , δYT = 0.

Here δμ = μ̃− μ, δν = ν̃− ν, ν = 1
2

(ν+ ν̃), and Wν =W +
∫ ·

0
νtdt is a Qλ,ν-Brownian

motion, where Qλ,ν is defined via dQλ,ν/dP = E (−λ · B− ν ·W )T . By [22, Theorem

3.6], both δμ · Bλ and δν ·Wν are BMO(Qλ,ν)-martingales. Hence δYT = 0 implies

that δY = 0 and, consequently, δμ = δν = 0.

3.3 Proof of Theorem 1

(1) ⇒ (2). Given an equilibrium λ ∈ Λα (G) and i ∈ {1,2, . . ., I}, let ρλ,G
i

be the

primal optimizer of agent i, and let (Y i, μi, νi) be defined as in Lemma 1 where (13)

has the terminal condition Y i
T =Gi . Since λ is an equilibrium,

∑
i α

i ρλ,G
i
= 0, and so

λ = λ−∑i α
i ρλ,G

i
=
∑

i α
iμi , for μi = λ− ρλ,Gi

, implying that (Y,μ,ν) = (Y i, μi, νi)i
solves the system (14). The property (μ,ν) ∈ bmoI follows from Lemma 1.

(2) ⇒ (1). Given a solution (Y,μ,ν) of (14), we set λ =
∑

i α
iμi . This way,

individual equations in (14) turn into BSDEs of the form (13). If we set ρλ,i =
λ − μi the market clearing condition

∑
i αi ρ

λ,i = 0 holds. Since (μi, νi) ∈ bmo the

uniqueness part of Lemma 1 implies that λ, ρi maximizes single-agents’ utilities.

3.4 Proof of Theorem 2

In order to prove Theorem 2, we start with a refinement of the classical result on

uniform equivalence of bmo spaces (see Theorem 3.6, p. 62 in [22]), based on a

result of Chinkvinidze and Mania (see [7]).

Lemma 3 Let σ ∈ bmo be such that | |σ | |bmo =:
√

2R for some R < 1. If P̂ ∼ P is such
that dP̂ = E (σ · B̃)T dP, for some F-Brownian motion B̃, then, for all ζ ∈ bmo, we
have

(1+ R)−1 | |ζ | |bmo ≤ ||ζ | |bmo(P̂) ≤ (1− R)−1 | |ζ | |bmo. (21)

Proof Since M = σ · B̃ is a BMO-martingale, Theorem 3.6. in [22] states that the

spaces bmo and bmo(P̂) coincide and that the norms | | · | |bmo and | | · | |bmo(P̂) are

uniformly equivalent. This norm equivalence is refined in [7]; Theorem 2 there

implies that

(1+ R)−1 | |ζ | |bmo ≤ ||ζ | |bmo(P̂) ≤ (1+ R̂) | |ζ | |bmo, where R̂ =
√

1
2
| |σ | |2

bmo(P̂)
. (22)
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Clearly, only the second inequality in (21) needs to be discussed; it is obtained by

substituting ζ = σ into the second inequality in (22):

√
2R̂ = | |σ | |bmo(P̂) = (1+ R̂) | |σ | |bmo ≤

√
2(1+ R̂)R, so that (1+ R̂) ≤ (1− R)−1.

Coming back to Theorem 2, suppose that (16) is satisfied. Then there exists

ξc ∈ EBMO such that

max
i
| |(mi −mc,ni − nc) | |bmo(Pc ) ≤ ε∗. (23)

To simplify notation, we introduce m = (mi)i and n = (ni)i . A calculation shows

that (component-by-component)

d(Yt − ξct ) =(μt −mc
t ) dBc

t + (νt − nc
t ) dW c

t

+
(

1
2

(νt − nc
t )2− 1

2
(λt −mc

t )2+ (λt −mc
t )(μt −mc

t )
)

dt,

YT − ξcT =G− ξc,
where λ = A[μ], ξct = − log(Et [exp(−ξc)]), and Bc,W c are Pc-Brownian motions.

This is exactly the type of system covered in (14). Therefore, to ease notation, we

treat, throughout this section, P as Pc , B as Bc , W as W c , and G, λ,μ,ν as their

shifted versions, i.e., eg. G as G− ξc , λ as λ−mc , etc. As a result, (23) translates to

max
i
| |(mi,ni) | |bmo ≤ ε∗. (24)

We proceed by setting up a framework for the Banach fixed-point theorem. First

observe that since (mi,ni) ∈ bmo for all i, then bmo is a natural space in which

the fixed-point theorem can be applied. Given λ ∈ bmo and G = (Gi)i , let Yλ =

(Yλ,Gi
)i and X = (XGi

)i , denote the agents’ certainty-equivalent processes with and

without assess the market, respectively; we also set (μλ,G,νλ,G ) = (μλ,G
i
, νλ,G

i
)i ,

where (μλ,G
i
, νλ,G

i
)i is defined in Lemma 1. This allows us to define (a simple

transformation of) the excess-demand map

F : λ �→ A[μλ,G],

where the aggregation operator A[·] is defined in (5). The significance of this map

lies in the simple fact that λ is an equilibrium if and only if F (λ) = λ, i.e., if λ is a

fixed point of F.

Before proceeding to studying properties of F, we first record the following

a-priori estimate on λ in equilibrium.

Lemma 4 If λ ∈ bmo is an equilibrium, then

| |λ | |bmo ≤ max
i
| |(mi,ni) | |bmo.

Proof Aggregating all single equations in (14) and (7), we obtain
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dA[Yλ
t −Xt ]=(λt−A[mt ])dBt+A[νλt −nt ]dWt+

1
2

(λ2
t +A[(νλt )2])dt−1

2
A[m2

t +n
2
t ]dt .

Let (σn)n be a reducing sequence for local martingale part above. For any τ ∈ T ,

integrating the previous dynamics from τ∧σn to σn and projecting onto Fτ yields

Eτ

[
A[Yλ

σn
−Xσn ]

]
− A[Yλ

τ∧σn
−Xτ∧σn ] =

= 1
2
Eτ

[∫ σn

τ∧σn

(λ2
t + A[(νλt )2])dt

]
− 1

2
Eτ

[∫ σn

τ∧σn

A[m2
t + n

2
t ]dt

]
. (25)

Sending n→∞, since Yλ−X ≥ 0 (component-by-component) and is also bounded

(see Lemma 1) and A[XT ] = A[G] = A[Yλ
T ], we obtain

| |λ | |2bmo ≤ ||λ2+ A[(νλ)2]| |bmo ≤ ||A[m2+ n2]| |bmo

≤ A[| |(m, n) | |2bmo] ≤ max
i
| |(mi,ni) | |2bmo.

For the third inequality, note that Eτ[
∫ T
τ

A[m2
t + n

2
t ]dt] ≤ A[| |(m, n) | |2bmo] holds for

all stopping times τ. �

For arbitrary λ ∈ bmo, the following estimate gives an explicit upper bound on

the (nonnegative) difference Dλ,i = Yλ,i − X i .

Lemma 5 Suppose that | |λ | |bmo <
√

2. Then,

0 ≤
√

Dλ,i ≤ ||λ | |bmo+ | |(mi,ni) | |bmo√
2− ||λ | |bmo

, for all i.

Proof Let Qλ be the probability such that dQλ = Zλ
T dP, where Zλ = E (−λ · B).

Since Qλ ∈Mλ, then the argument that leads to (20) also implies that

Yλ,i
τ ≤ Hτ (Qλ |P)+E

Q
λ

τ [Gi], for any τ ∈ T . (26)

On the right-hand side of (26),

Hτ (Qλ |P) = E
Q
λ

τ

[
1
2

∫ T

τ
λ2
udu−

∫ T

τ
λudBλ

u

]
≤ 1

2
| |λ | |2

bmo(Qλ )
.

Since | |λ | |bmo(Qλ ) ≤
√

2| |λ | |bmo/
(√

2− ||λ | |bmo

)
, as follows from Lemma 3, we ob-

tain

Hτ (Qλ |P) ≤ ||λ | |2bmo(√
2− ||λ | |bmo

)2 .
Furthermore, recalling that X i

T =Gi and dX i
t =mi

tdBt +nitdWt +
1
2

((mi
t )

2+ (nit )
2)dt,

we note that

E
Q
λ

τ [Gi] = Eτ[(Zλ
T /Z

λ
τ )Gi] = Eτ[(Zλ

T /Z
λ
τ )X i

T ].
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Given that Zλ is a BMO-martingale and | |(mi,ni) | |bmo <∞ , the integration-by-parts

formula implies that

Eτ[(Zλ
T /Z

λ
τ )X i

T ] =

= X i
τ −Eτ

[∫ T

τ
(Zλ

u/Z
λ
τ )λumi

udu
]
+ 1

2
Eτ

[∫ T

τ
(Zλ

u/Z
λ
τ )
(
(mi

u)2+ (niu)2
)

du
]

= X i
τ −EQ

λ

τ

[∫ T

τ
λumi

udu
]
+ 1

2
E
Q
λ

τ

[∫ T

τ

(
(mi

u)2+ (niu)2
)

du
]
.

A use of Holder’s inequality then gives

E
Q
λ

τ [Gi]− X i
τ ≤ ||λ | |bmo(Qλ ) | |mi | |bmo(Qλ ) +

1
2
| |(mi,ni) | |2bmo(Qλ )

≤ 2| |λ | |bmo | |(mi,ni) | |bmo+ | |(mi,ni) | |2bmo(√
2− ||λ | |bmo

)2 ,

where, again, the last inequality follows from Lemma 3. A Combination of the above

estimates shows that

Dλ,i
τ = Yλ,i

τ − X i
τ ≤ �� | |λ | |bmo+ | |(mi,ni) | |bmo√

2− ||λ | |bmo

��
2

,

which completes the proof. �

Lemma 6 Suppose that λ ∈ bmo satisfies

| |λ | |bmo <

√
2− ||(mi,ni) | |bmo

2
.

Then, it holds that

| |(μλ,i, νλ,i) | |bmo ≤

≤ (
√

2+ | |(mi,ni) | |bmo) | |(mi,ni) | |bmo+ | |λ | |bmo( | |λ | |bmo+ | |(mi,ni) | |bmo)√
2−2| |λ | |bmo− ||(mi,ni) | |bmo

.

In particular, the previous is also a bound for both | |μλ,i | |bmo and | |νλ,i | |bmo.

Proof Set Y = Yλ, μ = μλ and ν = νλ to increase legibility, and define

f i =
| |λ | |bmo+ | |(mi,ni) | |bmo√

2− ||λ | |bmo

,

and D = Y −X . Note that Di
T = 0 and 0 ≤ Di ≤ ( f i)2 from Lemma 5. Since

dDi
t = (μit −mi

t )dBt + (νit − nit )dWt +
1
2

(
(νit )

2− λ2
t +2μitλt − (mi

t )
2− (nit )

2
)

dt,
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an application of Itô’s lemma gives

d(Di
t )

2 =2Di
t (μ

i
t −mi

t )dBt +2Di
t (ν

i
t − nit )dWt

+Di
t

(
(νit )

2− λ2
t +2μitλt − (mi

t )
2− (nit )

2
)

dt

+
(
(μit −mi

t )
2+ (νit − nit )

2
)

dt.

Next, we take a reducing sequence (σn)n for the local martingales on the right-hand

side above, as well as and an arbitrary τ ∈ T . If we integrate the above dynamics

between σn∧ τ and σn, and use the facts that (νi)2 ≥ 0, λ2−2μiλ ≤ (μi − λ)2, and

Di ≥ 0, we obtain

(Di
σn

)2 ≥ (Di
σn

)− (Di
τ∧σn

)2 ≥2

∫ σn

τ∧σn

Di
t (μ

i
t −mi

t )dBt +2

∫ σn

τ∧σn

Di
t (ν

i
t − nit )dWt

−
∫ σn

τ∧σn

Di
t

(
(μit − λt )2+ (mi

t )
2+ (nit )

2
)

dt

+

∫ σn

τ∧σn

(
(μit −mi

t )
2+ (νit − nit )

2
)

dt.

Given that Di ≤ ( f i)2, a projection of both sides above on Fτ yields

Eτ

[∫ σn

τ∧σn

(
(μit −mi

t )
2+ (νit − nit )

2
)

dt
]

≤ Eτ[Di
σn

]+ ( f i)2
Eτ

[∫ σn

τ∧σn

(
(μi − λ)2+ (mi

t )
2+ (nit )

2
)

dt
]
.

Sending n→∞ first on the right-hand side then the left, helped by the facts that Di

is bounded and Di
T = 0, implies that

| |(μi, νi)− (mi,ni) | |2bmo ≤ ( f i)2
(
| |μi − λ | |2bmo+ | |(mi,ni) | |2bmo

)
.

Taking square roots on both sides, and using the elementary inequality
√

x2+ y2 ≤
|x | + |y | for any x, y, and the fact that | |μi − λ | |bmo ≤ ||(μi, νi) | |bmo + | |λ | |bmo, we

obtain

| |(μi, νi)− (mi,ni) | |bmo ≤ f i
(
| |λ | |bmo+ | |(μi, νi) | |bmo+ | |(mi,ni) | |bmo

)
.

Finally, since | |(μi, νi) | |bmo ≤ ||(μi, νi)− (mi,ni) | |bmo+ | |(mi,ni) | |bmo, it follows that

(1− f i) | |(μi, νi) | |bmo ≤ ||(mi,ni) | |bmo+ f i
(
| |λ | |bmo+ | |(mi,ni) | |bmo

)
,

from which the result follows after simple algebra. �

Define B(r) = {λ ∈ bmo : | |λ | |bmo ≤ r }. The following result shows that the

excess-demand map F maps B(r) into itself for an appropriate choice of r .
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Lemma 7 There exists a sufficiently small ε∗ independent of the number of the agents
I, such that whenever maxi | |(mi,ni) | |bmo ≤

√
2ε for ε ≤ ε∗, F mapsB(2ε ) into itself.

Proof Suppose that maxi | |(mi,ni) | |bmo ≤
√

2ε for some ε ∈ (0,1) determined later.

Let us consider λ ∈ B(
√

2εa), where a ∈ [1,1/ε ) will also be determined later.

Our goal is to choose a sufficiently small ε such that A[μλ] ∈ B(
√

2εa)for some

a ∈ [1,1/ε ), whenever λ is chosen from the same ball. If this task is successful,

given a ≥ 1, Lemma 4 implies that all possible equilibria are already in the same

ball. Hence the local uniqueness immediately implies global uniqueness in bmo.

For λ ∈ B(
√

2εa), Lemma 5 gives

0 ≤
√

Dλ,i ≤ ε (1+ a)

1− aε
=: φ(ε,a).

Note that φ is an increasing function of both arguments. For Lemma 6 we need

φ < 1. Therefore, only ε ∈ (0,1) such that φ(ε,1) < 1 can be used, i.e., ε ∈ (0,1/3).

Taking ε ∈ (0,1/3) and a ∈ [1,1/ε ), in order to have φ(ε,a) < 1, it is necessary and

sufficient that

a <
1− ε
2ε
=: a(ε ).

Note that a is decreasing in ε with a(0+) =∞ and a(1/3) = 1, and that a(ε ) < 1/ε
holds for all ε ∈ (0,1/3).

Now, in order to have | |μλ,i | |bmo ≤
√

2εa, by Lemma 6 we need to ensure that

2(1+ ε )ε +2aε2(1+ a)√
2(1−2aε − ε ) ≤ a

√
2ε,

or, equivalently, that

q(a, ε ) := 3εa2− (1−2ε )a+ (1+ ε ) ≤ 0.

Fix a > 1, say a =
√

2, there exists a sufficiently small ε∗ such that q(
√

2, ε ) ≤ 0 for

any ε ≤ ε∗. Note that the choice of ε∗ is independent of the number of the agent I. For

such choice of ε , we have | |μλ,i | |bmo ≤ 2ε for all i. As a weighted sum of individual

component, | |F[λ]| |bmo ≤ A[| |μλ | |bmo], hence F[λ] ∈ B(2ε ) as well. �

Finally we check that F is a contraction on B(2ε ) for sufficiently small ε .

Lemma 8 There exists a sufficiently small ε∗ independent of the number of the agents
I, such that whenever maxi | |(mi,ni) | |bmo ≤

√
2ε for ε ≤ ε∗, F is a contraction on

B(2ε ).

Proof We drop the superscript i to increase legibility. Set δY =Yλ−Y λ̃, and note that

| |δY | |S∞ <∞ from Lemma 5 and δYT = 0. Set (μ, ν) = (μλ, νλ) and ( μ̃, ν̃) = (μλ̃, νλ̃).

Denote λ̄ = (λ+ λ̃)/2, μ̄= (μ+ μ̃)/2, and ν̄ = (ν+ ν̃)/2. Calculation using (13) gives

dδYt = (μt − μ̃t )dBt + (νt − ν̃t )dWt +
1
2

(
ν2t − ν̃2t + λ̃2

t − λ2
t +2μtλt −2μ̃t λ̃t

)
dt

= (μt − μ̃t )dBλ̄
t + (νt − ν̃t )dW ν̄

t − (λt − λ̃t )(λ̄t − μ̄t )dt,
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where Bλ̄ = B+
∫ ·

0
λtdt, W ν̄ =W +

∫ ·
0
ν̄tdt are Brownian motions under Qλ̄,ν̄ , and

Q
λ̄,ν̄ is defined via dQλ̄,ν̄/dP= E (−λ̄ ·B− ν̄ ·W )T . For an arbitrary τ ∈ T , integrating

the previous dynamics on [τ,T], taking conditional expectation E
Q
λ̄,ν̄

τ on both sides,

(both local martingales are BMO(Qλ̄,ν̄)-martingales, due to μ, μ̃, ν, ν̃ ∈ bmo from

Lemma 6 and [22, Theorem 3.6]), and finally using δYT = 0, we obtain

|δYτ | ≤ EQλ̄,ν̄

τ

[∫ T

τ
|λt − λ̃t | |λ̄t − μ̄t |dt

]
≤ ||λ̄ − μ̄| |bmo(Qλ̄,ν̄ ) | |λ − λ̃ | |bmo(Qλ̄,ν̄ ) .

This implies that

| |δY | |S∞ ≤ ||λ̄ − μ̄| |bmo(Qλ̄,ν̄ ) | |λ − λ̃ | |bmo(Qλ̄,ν̄ ) . (27)

To establish the Lipschitz continuity of F, we use Itô’s formula to get

d(δYt )2 =2δYt (μt − μ̃t )dBλ̄
t +2δYt (νt − ν̃t )dW ν̄

t −2δYt (λt − λ̃t )(λ̄t − μ̄t )dt

+
(
(μt − μ̃t )2+ (νt − ν̃t )2

)
dt.

For an arbitrary τ ∈ T , an integration of the above dynamics between τ and T , and

using (27) and δYT = 0, yields that

E
Q
λ̄,ν̄

τ

[∫ T

τ

(
(μt − μ̃t )2+ (νt − ν̃t )2

)
dt
]
≤

≤ 2| |δY | |S∞EQ
λ̄,ν̄

τ

[∫ T

τ
(λt − λ̃t )(λ̄t − μ̄t )dt

]
≤ 2| |λ̄ − μ̄| |2

bmo(Qλ̄,ν̄ ) | |λ − λ̃ | |
2

bmo(Qλ̄,ν̄ ),

which, in turn, implies that

| |( μ̃, ν̃)− (μ, ν) | |bmo(Qλ̄,ν̄ ) ≤
√

2 | |λ̄ − μ̄| |bmo(Qλ̄,ν̄ ) | |λ − λ̃ | |bmo(Qλ̄,ν̄ ) .

Note that Lemma 6 and the estimates in Lemma 7 also imply that | | ν̄ | |bmo ≤ 2ε , where

2ε is taken from Lemma 7. Therefore, | |(λ̄, ν̄) | |bmo ≤ 4ε and, similarly, | |λ̄ − μ̄| |bmo ≤
4ε . Therefore, it follows from Lemma 3 that

| |( μ̃, ν̃)− (μ, ν) | |bmo ≤
√

2
1+2
√

2ε

(1−2
√

2ε )2
| |λ̄ − μ̄| |bmo | |λ − λ̃ | |bmo

≤ 1+2
√

2ε

(1−2
√

2ε )2
8ε | |λ − λ̃ | |bmo.

Choosing sufficiently small ε so that 1+2
√

2ε

(1−2
√

2ε )2
8ε < 1, the proof is complete after

aggregating all components. �
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Proof (of Theorem 2) We have shown in the sequence of lemmas above that, when

(24) holds, the excess-demand map F is a contraction on B(2ε ) and that (μλ,νλ) ∈
bmoI . The Banach fixed point theorem implies that F has a unique fixed point λ
with | |λ | |bmo ≤ 2ε . Therefore the system (14) admits a solution (Y,μ,ν) with (μ,ν) ∈
bmoI . Hence λ is an equilibrium by Theorem 1. For the uniqueness of equilibrium,

Lemma 4 implies that any equilibrium λ satisfies | |λ | |bmo ≤ maxi | |(mi,ni) | |bmo ≤√
2ε . However, we have already shown that there can be only one equilibrium λ in

B(2ε ). Therefore we immediately have global uniqueness of equilibrium. Given the

unique λ, by Lemma 1, (Y,μ,ν) is the unique solution to (14) with (μ,ν) ∈ bmoI .�

3.5 Proof of Corollary 1

Summing both sides of | |Ei −E j | |L∞ ≤ χE0 ( | |Ei | |L∞ + | |E j | |L∞ ) over j, we obtain

I | |Ei | |L∞ − ||EΣ | |L∞ ≤ ‖IEi −∑j E j ‖L∞ ≤ ∑j | |Ei −E j | |L∞
≤ χE0 I | |Ei | |L∞ + χE0

∑
j | |E j | |L∞,

which implies

(1− χE0 ) | |Ei | |L∞ ≤ 1
I | |EΣ | |L∞ + χE0 1

I

∑
j | |E j | |L∞ .

Summing both sides of the previous inequality over i yields

∑
i | |Ei | |L∞ ≤ 1

1−2χE
0

| |EΣ | |.

The previous two inequalities combined then imply

| |Ei | |L∞ ≤ 1

1−2χE
0

1
I | |EΣ | |L∞, for all i.

Therefore

max
i

| |Ei | |L∞
δi

≤ 1

1−2χE
0

1
Iδ0
| |EΣ | |L∞,

where the right-hand side is strictly less than (ε∗)2/4 for sufficiently large I. Hence

(17) is satisfied when I ≥ I0, for some I0, and the existence of equilibrium follows

from Theorem 2.

3.6 Proof of Corollary 2

Throughout the proof, we treat G as G− ξc and suppress the superscript i when we

work with each component.
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Recalling (6) and Remark 2, we have E[G2] < ∞, which combined with the

assumption DbG,DwG ∈ S∞ implies G ∈ D1,2. Let G = E[G]+MT , where MT =m ·
BT +n ·WT for some (m,n). Clark-Ocone formula implies that Eθ [DθG] = (mθ,nθ ),

for any θ ≤ T , hence (m,n) ∈ S∞ as well. As a result, there exists a constant C
such that 〈M〉T ≤ CT , implying that G has at most Gaussian tail by Bernstein

inequality (see Equation (4.i) in [2]), hence E[exp(−2G)] <∞. Now combining the

previous inequality with DbG,DwG ∈ S∞, we obtain exp(−G) ∈D1,2, consequently,

Vt = Et [exp(−G)] ∈ D1,2 and

Dk
θVt = −Et [e−GDk

θG] for all θ ≤ t ≤ T and k = b or w.

Applying Clark-Ocone formula to Vt yields

Vt = E[Vt ]+

∫ t

0

Eθ [Db
θVt ]dBθ +

∫ t

0

Eθ [Dw
θ Vt ]dWθ .

On the other hand, dVθ = −VθmθdBθ −VθnθdWθ . Therefore Eθ [Db
θVt ] = −Vθmθ and

Eθ [Dw
θ Vt ] = −Vθmθ , for θ ≤ t. Hence,

mθ = −
Eθ [Db

θVt ]

Vθ
=
Eθ [e−GDb

θ G]

Eθ [e−G]
≤ ||DbG | |S∞,

which implies | |m | |S∞ ≤ ||DwG | |S∞ , and similarly, | |n| |S∞ ≤ ||DwG | |S∞ .

The statement now follows from Theorem 2 since, for T < T∗, where T∗ is given

in Corollary 2, we have

max
i
| |(mi,ni) | |2bmo < T∗max

i
(| |mi | |2S∞ + | |ni | |2S∞ )

≤ T∗max
i

( | |DbGi | |2S∞ + | |DwGi | |2S∞ ) ≤ (ε∗)2.

3.7 An a-priori bmo-estimate

Lemma 9 (An a-priori bmo-estimate for a single BSDE)
Given λ ∈ P2, let (Y, μ, ν) be a solution of the BSDE

dYt = μt dBt + νt dWt + ( 1
2
ν2t − 1

2
λ2
t + μtλt ) dt, YT = ξ.

If Y ∈ S∞, then (μ, ν) ∈ bmo.

Proof For β > 1 and two stopping times τ ≤ σ ∈ T , Itô’s formula yields
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e−βYσ ≥e−βYσ − e−βYτ = −β
∫ σ

τ
e−βYu (μudBu + νudWu)

− β
∫ σ

τ
e−βYu

(
1
2
ν2u − 1

2
λ2
u + λuμu

)
du+ 1

2
β2

∫ σ

τ
e−βYu (μ2

u + ν
2
u)du

≥− β
∫ σ

τ
e−βYu (μudBu + νudWu)+ 1

2
(β2− β)

∫ σ

τ
e−βYu (μ2

u + ν
2
u) du,

where we used the elementary fact that a2−b2+2bc ≤ a2+c2, for all a,b,c. We pick

a reducing sequence {σn}n∈N for the stochastic integral above, project onto Fτ , and

then let n→∞ to get

eβ | |Y | |S∞ ≥ 1
2

(β2− β)Eτ[
∫ T
τ

eβYu (μ2
u + ν

2
u) du]

≥ 1
2

(β2− β)e−β | |Y | |S∞Eτ[

∫ T

τ
(μ2

u + ν
2
u) dt].

This implies

Eτ

[∫ T

τ
(μ2

u + ν
2
u) du

]
≤ 2

β2− β e2β | |Y | |S∞ .

Since the above inequality holds for arbitrary τ ∈ T , the statement follows. �

References

1. Anderson, R.M., Raimondo, R.C.: Equilibrium in continuous-time financial markets: Endoge-

nously dynamically complete markets. Econometrica 76(4), 841–907 (2008)

2. Barlow, M., Jacka, S., Yor, M.: Inequality for a pair of processes stopped at a random time.

Proc. London Math. Soc. 52(3), 142–172 (1986)

3. Barrieu, P., El Karoui, N.: Monotone stability of quadratic semimartingales with applications

to unbounded general quadratic BSDEs. Ann. Probab. 41, 1831–2853 (2013)

4. Borch, K.: The safety loading of reinsurance premiums. Skand. Aktuarietidskr. 1960, 163–184

(1961) (1960)

5. Briand, P., Hu, Y.: BSDE with quadratic growth and unbounded terminal value. Probab.

Theory Relat. Fields 136(4), 604–618 (2006)

6. Briand, P., Hu, Y.: Quadratic BSDEs with convex generators and unbounded terminal condi-

tions. Probab. Theory Relat. Fields 141(3-4), 543–567 (2008)

7. Chikvinidze, B., Mania, M.: New proofs of some results on bounded mean oscillation mar-

tingales using Backward stochastic differential equations. J. Theor. Probab. 27, 1213–1228

(2014)

8. Choi, J.H., Larsen, K.: Taylor approximation of incomplete Radner equilibrium models (2014).

To appear in Finance Stoch.

9. Dana, R.A., Pontier, M.: On existence of an Arrow-Radner equilibrium in the case of complete

markets. A remark. Math. Oper. Res. 17(1), 148–163 (1992)

10. Debreu, G.: The coefficient of resource utilization. Econometrica 19(3), 273–292 (1951)

11. Delbaen, F., Grandits, P., Rheinländer, T., Samperi, D., Schweizer, M., Stricker, C.: Exponential

hedging and entropic penalties. Math. Finance 12(2), 99–123 (2002)

12. Delbaen, F., Hu, Y., Bao, X.: Backward SDEs with superquadratic growth. Probab. Theory

Relat. Fields 150, 145–192 (2011)



292 Constantinos Kardaras, Hao Xing, and Gordan Žitković

13. Duffie, D.: Stochastic equilibria: existence, spanning number, and the “no expected financial

gain from trade” hypothesis. Econometrica 54(5), 1161–1183 (1986)

14. Duffie, D., Huang, C.F.: Implementing Arrow-Debreu equilibria by continuous trading of few

long-lived securities. Econometrica 53(6), 1337–1356 (1985)

15. Elie, R., Briand, P.: A simple constructive approach to quadratic BSDEs with or without delay.

Stoch. Process. Appl. 123(8), 2921–2939 (2013)

16. Frei, C., dos Reis, G.: A financial market with interacting investors: does an equilibrium exist?

Math. Financ. Econ. 4(3), 161–182 (2011)

17. Hu, Y., Peng, S.: On the comparison theorem for multidimensional BSDEs. C. R. Math. Acad.

Sci. Paris 343(2), 135–140 (2006)

18. Karatzas, I., Lakner, P., Lehoczky, J.P., Shreve, S.E.: Equilibrium in a simplified dynamic,

stochastic economy with heterogeneous agents. In: Stochastic analysis, pp. 245–272. Academic

Press, Boston, MA (1991)

19. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Existence and uniqueness of multi-agent equilibrium

in a stochastic, dynamic consumption/investment model. Math. Oper. Res. 15(1), 80–128

(1990)

20. Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Equilibrium models with singular asset prices. Math.

Finance 1, 11–29 (1991)

21. Karatzas, I., Shreve, S.E.: Methods of mathematical finance, Applications of Mathematics
(New York), vol. 39. Springer-Verlag, New York (1998)

22. Kazamaki, N.: Continuous exponential martingales and BMO, Lecture Notes in Mathematics,
vol. 1579. Springer-Verlag, Berlin (1994)

23. Kobylanski, M.: Backward stochastic differential equations and partial differential equations

with quadratic growth. Ann. Probab. 28(2), 558–602 (2000)

24. Kramkov, D., Pulido, S.: A system of quadratic BSDEs arising in a price impact model (2014).

To appear in Ann. Appl. Probab.

25. Magill, M., Quinzii, M.: Theory of Incomplete Markets, Volume 1. MIT Press, Cambridge

and London (1996)

26. Radner, R.: Equilibrium under uncertainty. Econometrica 36(1), 31–58 (1982)

27. Rouge, R., El Karoui, N.: Pricing via utility maximization and entropy. Math. Finance 10(2),

259–276 (2000). INFORMS Applied Probability Conference (Ulm, 1999)

28. Tevzadze, R.: Solvability of backward stochastic differential equations with quadratic growth.

Stochastic Process. Appl. 118(3), 503–515 (2008)

29. Zhao, Y.: Stochastic equilibria in a general class of incomplete brownian market environments.

Ph.D. thesis, The University of Texas at Austin (2012)

30. Žitković, G.: Financial equilibria in the semimartingale setting: complete markets and markets

with withdrawal constraints. Finance Stoch. 10(1), 99–119 (2006)

31. Žitković, G.: An example of a stochastic equilibrium with incomplete markets. Finance Stoch.

16(2), 177–206 (2012)



Finite Markov Chains Coupled to General

Markov Processes and An Application to

Metastability I

Thomas G. Kurtz and Jason Swanson

Abstract We consider a diffusion given by a small noise perturbation of a dynamical

system driven by a potential function with a finite number of local minima. The

classical results of Freidlin and Wentzell show that the time this diffusion spends in

the domain of attraction of one of these local minima is approximately exponentially

distributed and hence the diffusion should behave approximately like a Markov chain

on the local minima. By the work of Bovier and collaborators, the local minima can be

associated with the small eigenvalues of the diffusion generator. Applying a Markov

mapping theorem, we use the eigenfunctions of the generator to couple this diffusion

to a Markov chain whose generator has eigenvalues equal to the eigenvalues of the

diffusion generator that are associated with the local minima and establish explicit

formulas for conditional probabilities associated with this coupling. The fundamental

question then becomes to relate the coupled Markovchain to the approximateMarkov

chain suggested by the results of Freidlin and Wentzel.

1 Introduction

Fix ε > 0 and consider the stochastic process,

Xε (t) = Xε (0)−
∫ t

0

∇F (Xε (s)) ds+
√

2εW (t), (1)

where F ∈ C3(Rd) and W is a standard d-dimensional Brownian motion. For the

precise assumptions on F , see Section 3.1. Let ϕ be the solution to the differential
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equation ϕ′ = −∇F (ϕ). We will use ϕx to denote the solution with ϕx (0) = x. The

process Xε is a small-noise perturbation of the deterministic process ϕ.

Suppose thatM = {x0, . . . , xm} is the set of local minima of the potential function

F . The points x j are stable points for the process ϕ. For Xε , however, they are not

stable. The process Xε will initially gravitate toward one of the x j and move about

randomly in a small neighborhood of this point. But after an exponential amount of

time, a large fluctuation of the noise term will move the process Xε out of the domain

of attraction of x j and into the domain of attraction of one of the other minima. We

say that each point x j is a point of metastability for the process Xε .

If X is a cadlag process in a complete, separable metric space S adapted to a right

continuous filtration (assumptions that are immediately satisfied for all processes

considered here) and H is either open or closed, then τX
H
= inf{t > 0 : X (t) or X (t−) ∈

H } is a stopping time (see, for example, [8, Proposition 1.5]). If x ∈ S, let τXx = τ
X
{x }

.

We may sometimes also write τX (H ), and if the process is understood, we may omit

the superscript.

Let

Dj = {x ∈ Rd : lim
t→∞
ϕx (t) = x j } (2)

be the domains of attraction of the local minima. It is well-known (see, for example,

[9], [4, Theorem 3.2], [5, Theorems 1.2 and 1.4], and [7]) that as ε→ 0, τXε (Dc
j
)

is asymptotically exponentially distributed under Px j . It is therefore common to

approximate the process Xε by a continuous time Markov chain on the set M

(or equivalently on {0, . . . ,m}). In fact, metastability can be defined in terms of

convergence, in an appropriate sense, to a continuous time Markov chain. (See the

survey article [15] for details.) Beltrán and Landim [2, 3] introduced a general method

for proving the metastability of a Markov chain. Along similar lines, Rezakhanlou

and Seo [19] developed such a method for diffusions. For an alternative approach

using intertwining relations, see [1].

In this project, for each ε > 0, we wish to capture this approximate Markov chain

behavior by coupling Xε to a continuous time Markov chain, Yε , on {0, . . . ,m}. We

will refer to the indexed collection of coupled processes, {(Xε,Yε ) : ε > 0}, as a

coupling sequence. Our objective is to investigate the possibility of constructing a

coupling sequence which satisfies

P(Xε (t) ∈ Dj | Yε (t) = j)→ 1 (3)

as ε → 0, for all j. We also want the transition rate for Yε to go from i to j to

be asymptotically equivalent as ε → 0 to the transition rate for Xε to go from a

neighborhood of xi to a neighborhood of x j . That is, we would like

Ei[τ
Yε
j

] ∼ Exi [τ
Xε

Bρ (x0 )
] (4)

as ε→ 0, for all i and j, where Bρ(x) is the ball of radius ρ centered at x.

In this paper (Part I), we develop our general coupling construction. The construc-

tion goes beyond the specific case of interest here. It is a construction that builds
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a coupling between a Markov process on a complete and separable metric space

and a continuous-time Markov chain where the generators of the two processes have

common eigenvalues. The coupling is done in such a way that observations of the

chain yield quantifiable conditional probabilities about the process. This coupling

construction is built in Section 2 and uses the Markov mapping theorem (Theorem

19). In Section 3, we apply this construction method to reversible diffusions in Rd

driven by a potential function with a finite number of local minima.

With this coupling construction in hand, we can build the coupling sequences

described above. In our follow-up work (Part II), we take up the question of the

existence and uniqueness of a coupling sequence that satisfies requirements (3) and

(4).

2 The general coupling

2.1 Assumptions and definitions

Given a Markov process X with generator A satisfying Assumption 1, we will use

the Markov mapping theorem to construct a coupled pair, (X,Y ), in such a way that

for a specified class of initial distributions, Y is a continuous-time Markov chain

on a finite state space. The construction then allows us to explicitly compute the

conditional distribution of X given observations of Y .

For explicit definitions of the notation used here and throughout, see the Appendix.

Assumption Let E be a complete and separable metric space.

(i) A ⊂ C(E)×C(E).
(ii) A has a stationary distribution� ∈ P (E), which implies

∫
E
A f d� = 0 for all

f ∈ D(A).
(iii) For some m, there exist signed measures �1, . . . ,�m on E and positive real

numbers λ1, . . . , λm such that, for each k ∈ {1, . . . ,m} and f ∈ D(A),
∫
E

A f d�k = −λk

∫
E

f d�k, (5)

�k (dx) = ηk (x)�(dx), where ηk ∈ C(E), (6)

�k (E) = 0. (7)

We define �0 =� and η0 = 1. �

Remark If (1,0) ∈ A, then (5) implies (7). �

Remark In what follows, we will make use of the assumption that the functions ηk
are continuous. However, this assumption can be relaxed by appealing to the methods

in Kurtz and Stockbridge [14]. �
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Assumption Let E be a complete and separable metric space. Let A ⊂ C(E)×C(E),
m ∈ N, Q ∈ R(m+1)×(m+1) , and ξ (1), . . . , ξ (m) ∈ Rm+1.

(i) A and m satisfy Assumption 1.

(ii) Q is the generator of a continuous-time Markov chain with state space E0 =

{0,1, . . . ,m} and eigenvalues {0,−λ1, . . . ,−λm}.

(iii) The vectors ξ (1), . . . , ξ (m) are right eigenvectors of Q, corresponding to the

eigenvalues −λ1, . . . ,−λm.

(iv) For each i ∈ {0,1, . . . ,m}, the function

αi (x) = 1+

m∑
k=1

ξ
(k)
i
ηk (x) (8)

satisfies αi (x) > 0 for all x ∈ E.

We define ξ (0) = (1, . . . ,1)T , so that the function α : E → Rm+1 is given by α =∑m
k=0
ξ (k)ηk . �

Remark Given (A,m,Q) satisfying (i) and (ii) of Assumption 4, it is always possible

to choose vectors ξ (1), . . . , ξ (m) satisfying (iii) and (iv). This follows from the fact

that each ηk is a bounded function. �

Definition Suppose (A,m,Q, ξ (0), . . . , ξ (m) ) satisfies Assumption 4. For 0 ≤ j � i ≤
m, define

qij (x) =Qij

α j (x)
αi (x)

. (9)

Note that qij ∈ C(E). Let S = E ×E0. Define B ⊂ C(S)×C(S) by

B f (x, i) = A f (x, i)+
∑
j�i

qij (x)( f (x, j)− f (x, i)), (10)

where we take

D(B) = { f (x, i) = f1 (x) f2(i) : f1 ∈ D(A), f2 ∈ B(E0)} (11)

In particular, A f (x, i) = f2(i)A f1(x).
For each i ∈ E0, define the measure α(i, ·) on E by

α(i,Γ) =
∫
Γ

αi (x)�(dx), (12)

for all Γ ∈ B(E). Note that by (8), (7), and (6), these are probability measures. �
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2.2 Construction of the coupling

We are now ready to construct our coupled pair, (X,Y ), which will have generator B,

to prove, for appropriate initial conditions, that the marginal process Y is a Markov

chain with generator Q, and to establish our conditional probability formulas. We

first require two lemmas.

Lemma 1 In the setting of Definition 6, let X be a cadlag solution of the martingale

problem for A. Then there exists a cadlag processY such that (X,Y ) solves the (local)

martingale problem for B. If X is Markov, then (X,Y ) is Markov. If the martingale

problem for A is well-posed, then the martingale problem for B is well-posed.

Remark We are not requiring the qij to be bounded, so for the process we construct,

f (X (t),Y (t))− f (X (0),Y (0))−
∫ t

0

B f (X (s),Y (s)) ds

may only be a local martingale. �

Proof (Proof of Lemma 1) Let X (t) be a cadlag solution to the martingale problem

for A. Let {Nij : i, j ∈ E0, i � j} be a family of independent unit rate Poisson processes,

which is independent of X . Then the equation

Y (t) = k +
∑
i�j

( j − i)Nij

(∫ t

0

1{i } (Y (s))qij (X (s)) ds
)

(13)

has a unique solution, and as in [12], the process Z = (X,Y ) is a solution of the

(local) martingale problem for B. If X is Markov, the uniqueness of the solution of

(13) ensures that (X,Y ) is Markov. Similarly, Awell-posed implies B is well posed.�

Lemma 2 Let A satisfy Assumption 1. Taking ψ(x, i) = 1+
∑

j�i qij (x) ≥ 1, if A
satisfies Condition 17, then B satisfies Condition 17 with E replaced by S = E×E0.

Proof Since D(A) is closed under multiplication, D(B) defined in (11) is closed

under multiplication.

Since we are assuming that R(A) ⊂ C̄(E), for each f ∈ D(B), there exists cf > 0

such that |B f (x, i) | ≤ cfψ(x).
Condition 17(iii) for A and the separability of B(E0) implies Condition 17(iii)

for B0.

Since A is a pre-generator and B is a perturbation of A by a jump operator, B0 is

a pre-generator. �

Theorem Suppose A satisfies Condition 17 and (A,m,Q, ξ (1), . . . , ξ (m) ) satisfies As-

sumption 4. Let B be given by (10) and for pi ≥ 0,
∑m

i=0 pi = 1, define

ν(Γ× {i}) = piα(i,Γ), Γ ∈ B(E), i ∈ E0.
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If Ỹ is a cadlag E0-valued Markov chain with generator Q and initial distribution

{pi }, then there exists a solution (X,Y ) of the martingale problem for (B, ν) such that

Y and Ỹ have the same distribution on DE0
[0,∞), and

P(X (t) ∈ Γ | F Y
t ) = α(Y (t),Γ), (14)

for all t ≥ 0 and all Γ ∈ B(E). �

Proof We apply Theorem 19 to the operator B ⊂ C(S)×C(S).
Let γ : S→ E0 be the coordinate projection. Let α̃ be the transition function from

E0 into S given by the product measure α̃(i, ·) = α(i, ·) ⊗ δE0

i
, where α(i, ·) is given

by (12). Then α̃(i, γ−1(i)) = 1 and

ψ̃(i) ≡
∫
S

ψ(z)α̃(i,dz) =
∫
E

ψ(x, i)αi (x)�(dx) = 1+
∑
j�i

Qij <∞,

for each i ∈ E0. Define

C =
{(∫

S

f (z)α̃(·,dz),
∫
S

B f (z)α̃(·,dz)
)

: f ∈ D(B)
}
⊂ Rm+1×Rm+1.

The result follow by Theorem 19, if we can show that Cv = Qv for every vector

v ∈ D(C). Given f ∈ D(B), let

f (i) =
∫
S

f (z)α̃(i,dz) =
∫
E

f (x, i)α(i,dx) =
∫
E

f (x, i)αi (x)�(dx).

Note that

C f (i) =
∫
E

B f (x, i)αi (x)�(dx).

Since λ0 = 0, by (5) and the definition of qij (x),

C f (i) = −
m∑
k=0

ξ
(k)
i
λk

∫
E

f (x, i)ηk (dx)+
∑
j�i

Qij

∫
E

α j (x)( f (x, j)− f (x, i))�(dx).

By assumption Qξ (k) = −λkξ (k) , so −ξ
(k)
i
λk =

∑m
j=0Qij ξ

(k)
j

and

−

m∑
k=0

ξ
(k)
i
λk

∫
E

f (x, i)ηk (dx) =
m∑
k=0

m∑
j=0

Qij ξ
(k)
j

∫
E

f (x, i)ηk (dx)

=

m∑
j=0

Qij

m∑
k=0

ξ
(k)
j

∫
E

f (x, i)ηk (dx)

=

m∑
j=0

Qij

∫
E

f (x, i)α j (x)�(dx).
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This gives

C f (i) = Qii

∫
E

f (x, i)αi (x)�(dx)+
∑
j�i

Qij

∫
S

f (x, j)α j (x)�(dx)

=

m∑
j=0

Qij f ( j) =Q f (i).

It follows that Ỹ is a solution to the martingale problem for (C, p).
By Theorem 19(a), there exists a solution Z = (X,Y ) of the martingale problem for

(B, ν) such that Y = γ(Z ) and Ỹ have the same distribution on DE0
[0,∞). Theorem

19(b) implies (14). �

Remark In what follows, we may still write expectations with the notation Ex or

Ei, even when we have a coupled process, (X,Y ). The meaning will be determined

by context, depending on whether the integrand of the expectation involves only X
or only Y . �

3 Reversible diffusions

3.1 Assumptions on the potential function

We now consider the special case of our coupling when X is a reversible diffusion on

R
d driven by a potential functionF and a small white noise perturbation. We will need

to use several results from the literature about the eigenvalues and eigenfunctions of

the generator of X . We assume the following on F .

Assumption (i) F ∈ C3(Rd) and lim |x |→∞ F (x) =∞.

(ii) F has m+1 ≥ 2 local minimaM = {x0, . . . , xm}.
(iii) There exist constants ai > 0 and ci > 0 such that a2 < 2a1−2, and

c1 |x |a1 − c2 ≤ |∇F (x) |2 ≤ c3 |x |a2
+ c4, (15)

c1 |x |a1 − c2 ≤ ( |∇F (x) | −2ΔF (x))2 ≤ c3 |x |a2
+ c4. (16)

Remark Note that 2 < a1 ≤ a2. To see this, observe that (15) implies a1 ≤ a2. Thus,

a1 ≤ a2 < 2a1−2, which implies a1 > 2. �

Lemma 3 Under Assumption 10, there exist constants c̃i > 0 such that

c̃1 |x | ã1 − c̃2 ≤ |F (x) | ≤ c̃3 |x | ã2
+ c̃4, (17)

where ãi = ai/2+1.

Proof Since
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F (x) = F (0)+
∫ 1

0

∇F (sx) · x ds,

it follows from (15) that

|F (x) | ≤ |F (0) |+ |x |(c3 |x |a2
+ c4)1/2,

and the upper bound in (17) follows immediately.

Since F →∞, there exists C > 0 such that F (x) > −C for all x ∈ Rd , and since

|∇F | → ∞, there exists R > 0 such that |∇F (x) | ≥ 1 whenever |x | ≥ R.

Recall that ϕx satisfies ϕ′x = −∇F (ϕx ) and ϕx (0) = x, and define

Tx = inf{t ≥ 0 : |ϕx (t) | < R}.

Suppose there exists x such that Tx =∞. Then, for all t > 0,

−C < F (ϕx (t)) = F (x)+
∫ t

0

∇F (ϕx (s)) · ϕ′x (s) ds

= F (x)−
∫ t

0

|∇F (ϕx (s)) |2 ds

≤ F (x)− t.

Therefore, F (x) ≥ t −C for all t, a contradiction, and we must have Tx <∞ for all

x ∈ Rd .

Let L = sup |x |≤R F (x). By (15) and the fact that F →∞, we may choose R′ ≥ R
and C′ > 0 such that F (x) > L and |∇F (x) | ≥ C′ |x |a1/2 whenever |x | > R′.

Fix x ∈ Rd with |x | > 2R′, so that F (x) > L. Since |ϕx (Tx) | = R, it follows

that F (ϕx (Tx )) ≤ L. By the continuity of ϕx , we may choose T ′ ∈ (0,Tx] such that

F (ϕx (T ′)) = L. We then have

L = F (x)+
∫ T ′

0

∇F (ϕx (t)) · ϕ′x (t) dt

= F (x)−
∫ T ′

0

|∇F (ϕx (t)) | |ϕ′x (t) | dt.

Let T ′′ = inf{t ≥ 0 : |ϕx (t) | < |x |/2}. Note that F (ϕx (T ′)) = L implies |ϕx (T ′) | ≤
R′ < |x |/2, and thereforeT ′′ ≤ T ′. Moreover, for all t < T ′′, we have |ϕx (t) | ≥ |x |/2 >
R′, which implies

|∇F (ϕx (t)) | ≥ C′ |ϕx (t) |a1/2 ≥ C′
(
|x |
2

)a1/2

.

Thus,

L ≤ F (x)−C′
(
|x |
2

)a1/2∫ T ′′

0

|ϕ′x (t) | dt.
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But
∫ T ′′

0
|ϕ′x (t) | dt is the length of ϕx from t = 0 to t = T ′′, which is bounded below

by

|ϕx (T ′′)− ϕx (0) | ≥ |ϕx (0) | − |ϕx (T ′′) | = |x | −
|x |
2
=

|x |
2
.

Therefore, for all |x | > 2R′, we have F (x) ≥ C′′ |x |a1/2+1 − |L |, where C′′ =
2−a1/2−1C′, and this proves the lower bound in (17). �

3.2 Spectral properties of the generator

Having established our assumptions on F , we now turn our attention to the diffusion

process, Xε, given by (1). To simplify notation, we may sometimes omit the ε. The

process X has generator A = εΔ−∇F · ∇. To show that A meets the requirements

of our coupling from Section 2, we must prove certain results about its eigenvalues

and eigenfunctions. For this, we begin with some notation, a lemma, and two results

from the literature.

Define π(x) = πε (x) = e−F (x)/2ε . Let

V = Vε :=
Δπ

π
=

1

4ε2
|∇F |2−

1

2ε
ΔF . (18)

Lemma 4 Let Vε be given by (18), where F satisfies Assumption 10. Recall the

constants ai from (15)-(16). For all ε ∈ (0,1), there exist constants ci,ε > 0 such that

c1,ε |x |a1 − c2,ε ≤ Vε (x) ≤ c3,ε |x |a2
+ c4,ε .

In particular, Vε →∞ for all ε ∈ (0,1).

Proof Fix ε ∈ (0,1). By (15) and (16), for x sufficiently large,

c |x |a1 ≤ ( |∇F (x) | −2ΔF)2 ≤ C |x |a2,

and

c |x |a1 ≤ |∇F (x) |2 ≤ C |x |a2,

for some 0 < c ≤ C <∞. Note that

4V1 = |∇F |2−2ΔF = ( |∇F | −2ΔF)+ ( |∇F |2− |∇F |).

Hence, for x sufficiently large, V1(x) ≤ C1 |x |a2 . Also,

V1(x) ≥
1

4
(c |x |a1 −C2 |x |a2/2).

Since a1 > a2/2, it follows that for x sufficiently large, V1(x) ≥ c̃|x |a1 . Therefore,

there exist constants c̃i > 0 such that
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c̃1 |x |a1 − c̃2 ≤ V1(x) ≤ c̃3 |x |a2
+ c̃4,

and

c̃1 |x |a1 − c̃2 ≤ |∇F (x) |2 ≤ c̃3 |x |a2
+ c̃4,

for all x ∈ Rd . Note that

Vε =
1

ε

(
V1 +

(
1− ε

4ε

)
|∇F |2

)
,

so that
1

ε
V1 ≤ Vε ≤

1

ε
V1+

1

ε2
|∇F |2.

From here, the lemma follows easily. �

The following two theorems are from [6]. Theorem 12 is a consequence of [6,

Theorem 4.5.4] and [6, Lemma 4.2.2]. Theorem 13 is part of [6, Theorem 2.1.4].

Theorem Let H = −Δ+W , where W is continuous with W →∞. Let λ denote the

smallest eigenvalue of H , and ψ the corresponding eigenfunction, normalized so that

‖ψ‖L2 (Rd ) = 1. Define U f = ψ f and H̃ =U−1(H − λ)U. If

ĉ1 |x | â1 − ĉ2 ≤ |W (x) | ≤ ĉ3 |x | â2
+ ĉ4,

where âi > 0, ĉi > 0, and â2 < 2â1− 2, then e−H̃t is an ultracontractive symmetric

Markov semigroup on L2(Rd,ψ(x)2 dx). That is, for each t ≥ 0, the operator e−H̃t is

a bounded operator mapping L2(Rd,ψ(x)2 dx) to L∞(Rd,ψ(x)2 dx). �

Theorem Let e−Ht be an ultracontractive symmetric Markov semigroup on L2(Ω, μ),
where Ω is a locally compact, second countable Hausdorff space and μ is a Borel

measure on Ω. If μ(Ω) <∞, then each eigenfunction of H belongs to L∞(Ω, μ). �

This next proposition establishes the spectral properties of A that are needed to

carry out the construction of our coupling.

Proposition Fix ε > 0. The operator H = −Δ+Vε is a self-adjoint operator on

L2(Rd) with discrete, nonnegative spectrum λ̂k ↑∞ and corresponding orthonormal

eigenfunctionsψk . Each ψk is locally Hölder continuous. Moreover, λ̂0 = 0 is simple

and ψ0 is proportional to π. We define μ by μ(dx) = π(x)2 dx and� = Z−1μ, where

Z = μ(Rd ). The operator H̃ given by H̃ f = π−1H (π f ) is a self-adjoint operator on

L2(�) with eigenvalues λ̂k and orthogonal eigenfunctions η̂k = ψk/π. The functions

η̂k have norm one in L2(μ), whereas the functions ηk = Z1/2η̂k have norm one in

L2(�).
For f ∈ C∞c (Rd), we have −εH̃ f = εΔ f −∇F · ∇ f . Hence, if we define A by

A = {( f ,−εH̃ f ) : f ∈ C∞c (Rd)},

then A is the generator for the diffusion process given by (1). For each x ∈ Rd , (1)

has a unique, global solution for all time, so that the process X with X (0) = x is a
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solution to the martingale problem for (A, δx). The operator A is graph separable, and

D(A) is separating and closed under multiplication. The measure � is a stationary

distribution for A. Moreover,

∫
A f d�k = −λk

∫
f d�k,

where �k (dx) = ηk (x)�(dx) and λk = ελ̂k . The signed measures �k satisfy

�k (Rd) = 0, and each ηk belongs to C(Rd), the space of bounded, continuous

functions on Rd. �

Proof Note that V → ∞ by Lemma 4. Therefore, by [18, Theorem XIII.67], we

have that H is a self-adjoint operator on L2(Rd) with compact resolvent. It follows

(see [6, pp. 108–109, 119–120, and Proposition 1.4.3]) that H has a purely discrete

spectrum and there exists a complete, orthonormal set of eigenfunctions {ψk }
∞
k=0

with corresponding eigenvalues λ̂k ↑ ∞. Moreover, λ̂0 is simple and ψ0 is strictly

positive.

SinceV is locally bounded, and (−Δ+V − λ̂k )ψk = 0, [10, Theorem 8.22] implies

that, for each compact K ⊂ Rd, ψk is Hölder continuous on K with exponent γ(K ).
Define U : L2(μ) → L2(Rd) by U f = π f , so that H̃ = U−1HU. Since U is an

isometry, H̃ is self-adjoint on L2(μ) and has the same eigenvalues as H . Note that,

for any f ∈ D(H̃), it follows from Green’s identity that

〈 f , H̃ f 〉L2 (μ) = 〈π f ,H (π f )〉L2 (Rd ) =

∫
|∇(π f ) |2+

∫
V (π f )2

=

∫
|∇(π f ) |2+

∫
(Δπ)π f 2

=

∫
|∇(π f ) |2 −

∫
∇π · ∇(π f 2).

Using the product rule, ∇(gh) = g∇h+ h∇g, this simplifies to

〈 f , H̃ f 〉L2 (μ) =

∫
( |∇π |2 f 2

+2 f π(∇ f ·∇π)+ |∇ f |2π2− |∇π |2 f 2−π(∇( f 2) ·∇π))

=

∫
(2 f π(∇ f · ∇π)+ |∇ f |2π2− π(∇( f 2) · ∇π)) =

∫
|∇ f |2π2,

showing that H̃ cannot have a negative eigenvalue. Hence, λ̂0 ≥ 0.

By (17), we have π ∈ L2(Rd), so that π ∈ D(H ) with Hπ = 0. Hence, since λ̂0 is

nonnegative and has multiplicity one, it follows that λ̂0 = 0 and ψ0 is proportional

to π.

Observe that, if f ∈ C∞c , then, using the product rule for the Laplacian and the

identity V = Δπ/π, we have

−H̃ f = −
1

π
H (π f ) =

1

π
(Δ(π f )−Vπ f ) =

1

π
( fΔπ+2∇π · ∇ f + πΔ f − fΔπ).

Since 2ε∇π/π = −∇F , we have −εH̃ f = εΔ f −∇F · ∇ f .
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Since∇F is locally Lipschitz, (1)has a unique solution up to an explosion time (see

[17, Theorem V.38]). Since lim |x |→∞ F =∞ by assumption and lim |x |→∞ AF (x) =∞
by Lemma 4.2, it follows that F is a Liapunov function for Xε proving that Xε does

not explode.

By [13, Remark 2.5], A is graph separable. Clearly D(A) is closed under multi-

plication. Since D(A) separates points and Rd is complete and separable, D(A) is

separating (see [8, Theorem 3.4.5]).

If f ∈ C∞c , then

∫
A f d� = −ε〈1, H̃ f 〉L2 (�) = −ε〈H̃1, f 〉L2 (�) = 0,

so that� is a stationary distribution for A. For k ≥ 1, since �k (dx) = ηk (x)�(dx),
we have∫

A f d�k = −ε〈ηk, H̃ f 〉L2 (�) = −ε〈H̃ηk, f 〉L2 (�) = −λk

∫
f d�k .

Also, �k (Rd) = 〈ηk,1〉L2 (�) = 0, since ηk and η0 = 1 are orthogonal.

Finally, since ηk = Z1/2ψk/π and ψk is locally Hölder continuous, it follows that

each ηk belongs toC(Rd), and the fact that they are bounded follows from Theorems

12 and 13. �

3.3 The coupled process

By Proposition 14, the pair (A,m) satisfies Assumption 1 with E = Rd , so we have

the following.

Theorem Let A be the generator for (1) where F satisfies Assumption 10, and let

(−λ0, η0), . . . , (−λm, ηm) be the first m + 1 eigenvalues and eigenvectors of A. Let

Q ∈R(m+1)×(m+1) be the generator of a continuous-time Markovchainwith state space

E0 = {0,1, . . . ,m} and eigenvalues {0,−λ1, . . . ,−λm} and eigenvectors ξ (1), . . . , ξ (m)

such that αi defined by (8) is strictly positive. Let B be defined as in Definition 6.

Let Ỹ be a continuous time Markov chain with generatorQ and initial distribution

p = (p0, . . . , pm) ∈ P (E0). Then there exists a cadlag Markov process (X,Y ) with

generator B and initial distribution ν given by

ν(Γ× {i}) = piα(i,Γ), Γ ∈ B(Rd ), (19)

such that Y and Ỹ have the same distribution on DE0
[0,∞), and

P(X (t) ∈ Γ | Y (t) = j) =
∫
Γ

α j (x)�(dx), (20)

for all t ≥ 0, all 0 ≤ j ≤ m, and all Γ ∈ B(E). �
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Remark That Q with these properties exists can be seen from [16, Theorem 1].

Remark 5 ensures the existence of the eigenvectors. �

Proof Note that under the assumptions of the theorem, (A,m,Q, ξ (1), . . . , ξ (m) ) sat-

isfies Assumption 4. By Proposition 14, the rest of the hypotheses of Theorem 8

are also satisfied. Consequently, the process (X,Y ) exists, and by uniqueness of the

martingale problem for B, (X,Y ) is Markov. �

We can now construct the coupling sequences described in the introduction.

For each ε > 0, choose a matrix Qε and eigenvectors ξ
(1)
ε , . . . , ξ

(m)
ε that satisfy the

assumptions of Theorem 15. If (Xε,Yε ) is the Markov process described in Theorem

15, then the family, {(Xε,Yε ) : ε > 0}, forms a coupling sequence.

The coupling sequence is determined by the collection, {Qε, ξ
(1)
ε , . . . , ξ

(m)
ε : ε > 0}.

By making different choices for the matrices and eigenvectors, we can obtain different

coupling sequences. In our follow-up paper, we will consider the question of existence

and uniqueness of a coupling sequence that satisfies conditions (3) and (4).
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Appendix

Let E be a complete and separable metric space,B(E) theσ-algebra of Borel subsets

of E, and P (E) the family of Borel probability measures on E. Let M (E) be the

collection of all real-valued, Borel measurable functions on E, and B(E) ⊂ M (E) the

Banach space of bounded functions with ‖ f ‖∞ = supx∈E | f (x) |. Let C(E) ⊂ B(E)
be the subspace of bounded continuous functions, whileC(E) denotes the collection

of continuous, real-valued functions on E. A collection of functions D ⊂ C(E) is

separating if μ, ν ∈ P (E) and
∫
f dμ =

∫
f dν for all f ∈ D implies μ = ν.

Condition (i) B ⊂ C(E) ×C(E) and D(B) is closed under multiplication and

separating.

(ii) There exists ψ ∈ C(E), ψ ≥ 1, such that for each f ∈ D(B), there exists a

constant cf such that

|B f (x) | ≤ cfψ(x), x ∈ E .

(We write B f even though we do not exclude the possibility that B is multival-

ued. In the multivalued case, each element of B f must satisfy the inequality.)

(iii) There exists a countable subset Bc ⊂ B such that every solution of the (local)

martingale problem for Bc is a solution of the (local) martingale problem for

B.

(iv) B0 f ≡ ψ−1B f is a pre-generator, that is, B0 is dissipative and there are se-

quences of functions μn : E → P (E) and λn : E → [0,∞) such that for each
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( f ,g) ∈ B,

g(x) = lim
n→∞
λn (x)

∫
E

( f (y)− f (x))μn(x,dy) (21)

for each x ∈ E. �

Remark Condition 17(iii) holds if B0 is graph-separable, that is, there is a countable

subset B0,c of B0 such that B0 is a subset of the bounded, pointwise closure of B0,c.

An operator is a pre-generator if for each x ∈ E, there exists a solution of the

martingale problem for (B, δx). �

For a measurable E0-valued process Y , where E0 is a complete and separable

metric space, let

F̂ Y
t = completion of σ

(∫ r

0

g(Y (s)) ds : r ≤ t,g ∈ B(E0)
)
∨σ(Y (0)).

Theorem Let (S,d) and (E0,d0) be complete, separable metric spaces. Let B satisfy

Condition 17. Let γ : S → E0 be measurable, and let α̃ be a transition function

from E0 into S (that is, α̃ : E0 ×B(S)→ R satisfies α̃(y, ·) ∈ P (S) for all y ∈ E0

and α̃(·,Γ) ∈ B(E0) for all Γ ∈ B(S)) satisfying
∫
h ◦γ(z) α̃(y,dz) = h(y), y ∈ E0,

h ∈ B(E0), that is, α̃(y, γ−1(y)) = 1. Assume that ψ̃(y) ≡
∫
S
ψ(z)α̃(y,dz) < ∞ for

each y ∈ E0 and define

C =
{(∫

S

f (z)α̃(·,dz),
∫
S

B f (z)α̃(·,dz)
)

: f ∈ D(B)
}
.

Let μ ∈ P (E0) and define ν =
∫
α̃(y, ·) μ(dy).

a) If Ỹ satisfies
∫ t

0
E[ψ̃(Ỹ (s))]ds < ∞ a.s. for all t > 0 and Ỹ is a solution of the

martingale problem for (C, μ), then there exists a solution Z of the martingale

problemfor (B, ν) such that Ỹ has the same distributionon ME0
[0,∞) asY = γ◦Z .

If Y and Ỹ are cadlag, then Y and Ỹ have the same distribution on DE0
[0,∞).

b) Let TY
= {t :Y (t) is F̂ Y

t measurable} (which holds for Lebesgue-almost every t).
Then for t ∈ TY ,

P(Z (t) ∈ Γ | F̂ Y
t ) = α̃(Y (t),Γ), Γ ∈ B(S).

c) If, in addition, uniqueness holds for the martingale problem for (B, ν), then

uniqueness holds for the ME0
[0,∞)-martingale problem for (C, μ). If Ỹ has sample

paths in DE0
[0,∞), then uniqueness holds for the DE0

[0,∞)-martingale problem

for (C, μ).
d) If uniqueness holds for the martingale problem for (B, ν), then Y restricted to TY

is a Markov process. �

Remark If Y is cadlag with no fixed points of discontinuity (that is Y (t) = Y (t−)
a.s. for all t), then F̂ Y

t = F
Y
t for all t. �
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Remark The main precursor of this Markov mapping theorem is [13, Corollary 3.5].

The result stated here is a special case of Corollary 3.3 of [11]. �
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Finite Markov Chains Coupled to General

Markov Processes and An Application to

Metastability II

Thomas G. Kurtz and Jason Swanson

Abstract We consider a diffusion given by a small noise perturbation of a dynamical

system driven by a potential function with a finite number of local minima. The

classical results of Freidlin and Wentzell show that the time this diffusion spends in

the domain of attraction of one of these local minima is approximately exponentially

distributed and hence the diffusion should behave approximately like a Markov chain

on the local minima. By the work of Bovier and collaborators, the local minima can

be associated with the small eigenvalues of the diffusion generator. In Part I of this

work [10], by applying a Markov mapping theorem, we used the eigenfunctions

of the generator to couple this diffusion to a Markov chain whose generator has

eigenvalues equal to the eigenvalues of the diffusion generator that are associated

with the local minima and established explicit formulas for conditional probabilities

associated with this coupling. The fundamental question now becomes to relate the

coupled Markov chain to the approximate Markov chain suggested by the results of

Freidlin and Wentzel. In this paper, we take up this question and provide a complete

analysis of this relationship in the special case of a double-well potential in one

dimension.

1 Introduction

In the interest of self-containment, we will first recap the essential definitions from

Part I of this work [10]. Fix ε > 0 and consider the stochastic process,

Xε (t) = Xε (0)−
∫ t

0

∇F (Xε (s)) ds+
√

2εW (t), (1)
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where F ∈ C3(Rd ) and W is a standard d-dimensional Brownian motion. Let ϕ be

the solution to the differential equation ϕ′ = −∇F (ϕ). We will use ϕx to denote

the solution with ϕx (0) = x. The process Xε is a small-noise perturbation of the

deterministic process ϕ.

Suppose F ∈C3(Rd) and lim |x |→∞ F (x) =∞, and thatM = {x0, . . . , xm} is the set

of local minima of the F , with m ≥ 1. The points x j are stable points for the process

ϕ. For Xε , however, they are not stable. The process Xε will initially gravitate toward

one of the x j and move about randomly in a small neighborhood of this point. But

after an exponential amount of time, a large fluctuation of the noise term will move

the process Xε out of the domain of attraction of x j and into the domain of attraction

of one of the other minima. We say that each point x j is a point of metastability for

the process Xε .

If X is a cadlag process in a complete, separable metric space S adapted to a right

continuous filtration (assumptions that are immediately satisfied for all processes

considered here) and H is either open or closed, then τX
H
= inf{t > 0 : X (t) or X (t−) ∈

H } is a stopping time (see, for example, [6, Proposition 1.5]). If x ∈ S, let τXx = τ
X
{x }

.

We may sometimes also write τX (H ), and if the process is understood, we may omit

the superscript.

Let

Dj = {x ∈ Rd : lim
t→∞
ϕx (t) = x j } (2)

be the domains of attraction of the local minima. It is well-known (see, for example,

[7], [1, Theorem 3.2], [2, Theorems 1.2 and 1.4], and [4]) that as ε→ 0, τXε (Dc
j
)

is asymptotically exponentially distributed under Px j . It is therefore common to

approximate the process Xε by a continuous time Markov chain on the set M (or

equivalently on {0, . . . ,m}).
In this project, for each ε > 0, we wish to capture this approximate Markov chain

behavior by coupling Xε to a continuous time Markov chain, Yε , on {0, . . . ,m}. We

refer to the indexed collection of coupled processes, {(Xε,Yε ) : ε > 0} as a coupling

sequence.

In [10], we developed a general coupling procedure that goes beyond the specific

case of interest here. It is a construction that builds a coupling between a Markov

process on a complete and separable metric space and a continuous-time Markov

chain where the generators of the two processes have common eigenvalues. The

coupling is done in such a way that observations of the chain yield quantifiable

conditional probabilities about the process.

We then applied this construction to the special case of a reversible diffusion onRd

driven by a potential function and a small white noise perturbation. We summarize

here the results in this special case. Assume there exist constants ai > 0 and ci > 0

such that a2 < 2a1−2, and

c1 |x |a1 − c2 ≤ |∇F (x) |2 ≤ c3 |x |a2
+ c4, (3)

c1 |x |a1 − c2 ≤ ( |∇F (x) | −2ΔF (x))2 ≤ c3 |x |a2
+ c4. (4)

Let
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A = {( f ,−εH̃ f ) : f ∈ C∞c (Rd)}

be the generator for (1), and let (−λ0, η0), . . . , (−λm, ηm) be the firstm+1 eigenvalues

and eigenfunctions of A. By [10, Proposition 3.7], the functions ηk are continuous

and bounded. We may therefore choose a matrix, Q ∈ R(m+1)×(m+1) , and vectors,

ξ (1), . . . , ξ (m) , such that

(i) Q is the generator of a continuous-time Markov chain with state space E0 =

{0,1, . . . ,m},
(ii) ξ (k) is a right eigenvector of Q with eigenvalue −λk , and

(iii) for 0 ≤ i ≤ m, the functions,

αi (x) = 1+

m∑
k=1

ξ
(k)
i
ηk (x),

are strictly positive.

We then choose a probability measure, p = (p0, . . . , pm), on E0, define the measure

ν on Rd ×E0 by

ν(Γ× {i}) = piα(i,Γ), Γ ∈ B(Rd ), (5)

and let (Xε,Yε ) be the cadlag Markov process on Rd ×E0 with initial distribution ν

and generator,

B f (x, i) = A f (x, i)+
∑
j�i

Qij

α j (x)
αi (x)

(x)( f (x, j)− f (x, i)). (6)

Note that all of these objects (A, λk , ηk , Q, ξ (k) , p, and so on) depend on ε, though

this dependence is suppressed in the notation for readability.

By [10, Theorem 3.8], the process Xε solves (1), the process Yε has generator Q,

and

P(X (t) ∈ Γ | Y (t) = j) =
∫
Γ

α j (x)�(dx), (7)

for all t ≥ 0, all 0 ≤ j ≤ m, and all Γ ∈ B(E).
In this way, for each ε > 0, we create a coupling, (Xε,Yε ). We referred to the

indexed collection of coupled processes, {(Xε,Yε ) : ε > 0}, as a coupling sequence.

Our objective is to investigate the possibility of constructing a coupling sequence

which satisfies both

P(Xε (t) ∈ Dj | Yε (t) = j)→ 1 (8)

and

Ei[τ
Yε
j

] ∼ Exi [τ
Xε

Bρ (x0 )] (9)

as ε→ 0, for all i and j, where Bρ(x) is the ball of radius ρ centered at x.

In the current paper, we consider this question in the case of a double-well potential

in one dimension. That is, suppose d = 1 andM = {x0, x1}, where x0 < 0 < x1. Let

F be decreasing on (−∞, x0) and (0, x1), and increasing on (x0,0) and (x1,∞),
and satisfy F (x0) < F (x1). Then the domains of attraction are D0 = (−∞,0) and
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D1 = (0,∞). There are many possible coupling sequences, so for each such sequence,

we can ask if it satisfies any of the following:

P(Xε (t) < 0 | Yε (t) = 0)→ 1, (10)

P(Xε (t) > 0 | Yε (t) = 1)→ 1, (11)

E1[τ
Yε
0

] ∼ Ex1 [τ
Xε

Bρ (x0 )
], (12)

E0[τ
Yε
1

] ∼ Ex0 [τ
Xε

Bρ (x1 )
], (13)

as ε→ 0, where 0 < ρ < |x0 | ∧ x1.

Let −λε be the second eigenvalue of the generator of Xε . It is known (see, for

example, [12, 13] or [1, 2]), that in (18) and (19), we have

Ex1[τ
Xε

Bρ (x0 )] ∼
2π

|F ′′(0)F ′′(x1) |1/2
e(F (0)−F (x1 ))/ε ∼

1

λε
,

Ex0[τ
Xε

Bρ (x1 )] ∼
2π

|F ′′(0)F ′′(x0) |1/2
e(F (0)−F (x0 ))/ε .

Thus, (12) and (13) are equivalent to (36) and (37), respectively. Moreover, Theo-

rem 9 shows that, in our coupling construction, (10) is equivalent to the assertion

that, given Y (t) = 0, the distribution of X (t) is asymptotically equivalent to the sta-

tionary distribution, conditioned to be on (−∞,0). Theorem 10 gives the analogous

equivalency for (11).

In Section 4, we will show that, in our coupling construction, (11) implies (12),

which implies (10), and (13) implies (12). We also show by example that there are no

other implications among these conditions. For example, we can couple Xε andYε so

that (10), (12), and (13) are satisfied, but (11) is not. In other words, it is possible to

build the Markov chain with asymptotically the same transition rates as the process,

but the two do not remain synchronized, in the sense that (11) fails. Or, as another

example, we can couple the processes so that (10)-(12) are satisfied, but (13) is not.

In other words, we can have a coupling where the Markov chain accurately tracks

the diffusion, but the transition rates of the two processes are not the same.

In the case of the double-well potential, for fixed ε > 0, the dynamics of the

coupling (Xε,Yε ) are uniquely determined by two parameters, ξ1,ε and ξ2,ε (see

Lemma 11). If we identify coupling sequences whose parameters are asymptotically

equivalent as ε→ 0, then there is a unique coupling sequence satisfying (10)-(13).

Heuristically, we build this sequence by choosing the ξ’s so that α j ≈ cj,ε1D j
. More

specifically, we choose them so that α0 = −η1/η1(∞)+ 1 and α1 = η1/|η1(−∞) |+
1. We then prove sharp enough bounds on the behavior of η1 to show that the

approximation α j ≈ cj,ε1D j
is sufficiently accurate.

The outline of the paper is as follows. In Section 2, we address the issue of

how the minima should be ordered so that they correspond to the eigenvalues of

the generator of the diffusion. This is a necessary prerequisite for attaining the

asymptotic behavior in (8) and (9). In Section 3, we specialize to the case of the

double-well potential in d = 1. We begin there with the study the structure of the
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second eigenfunction. In particular, we narrow down the location of the nodal point,

show that the eigenfunction is asymptotically flat near the minima, and establish key

estimates on the behavior of the eigenfunction near the saddle point. Then, in Section

4, we use these results to give a complete analysis of our coupling sequences for the

double-well potential.

2 Ordering the local minima

Heretofore, no mention has been made of the order in which the local minima,

M = {x0, . . . , xm}, are listed. No particular order is necessary in order to construct a

coupling sequence. But if that sequence is to exhibit the behavior in (8) and (9), then

the minima should be ordered so that they correspond with the eigenvalues of A.

To describe this ordering, we first establish some notation and terminology. For

any two sets A,B ⊂ Rd, define the set of paths from A to B as

P∗(A,B) = {ω ∈ C([0,1];Rd) :ω(0) ∈ A, ω(1) ∈ B}.

Given F : Rd → R, the height of the saddle, or communication height, between A
and B is defined as

F̂(A,B) = inf
ω∈P∗ (A,B)

sup
t ∈[0,1]

F (ω(t)).

The set of minimal paths from A to B is

P (A,B) = {ω ∈ P∗(A,B) : sup
t ∈[0,1]

F (ω(t)) = F̂ (A,B)}.

A gate, G(A,B), is a minimal subset of {z ∈ Rd : F (z) = F̂(A,B)} such that all

minimal paths intersect G(A,B). In general,G(A,B) is not unique. The set of saddle

points, S(A,B), is the union of all gates.

Assumption (i) For x, y ∈ M, G(x, y) is unique and consists of a finite set of

isolated points {z∗
i
(x, y)}.

(ii) The Hessian matrix of F is non-degenerate at each x ∈ M and at each saddle

point z∗
i
(x, y).

(iii) The minimaM = {x0, . . . , xm} can be labeled in such a way that, withMk =

{x0, . . . , xk }, each saddle point z∗(xk,Mk−1) is unique, the Hessian matrix of

F at z∗(xk,Mk−1) is non-degenerate, and

F̂ (xk,Mk \ xk )−F (xk ) < F̂(xi,Mk \ xi )−F (xi), (14)

for all 0 ≤ i < k ≤ m. �

We shall assume our potential function F satisfies Assumption 1, and that the

minima are ordered as in (iii).
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3 Structure of the second eigenfunction

3.1 Tools and preliminary results

From this point forward, we take d = 1. Note that εη ′′
k
− F ′η ′

k
= −λkηk for all

integers k ≥ 0. We will make use of the fact that the eigenfunctions satisfy the

integral equations in the following lemma.

Lemma 1 For any k ∈ N,

ηk (x) = ηk (∞)−
λk

ε

∫ ∞

x

∫ u

x

exp

(
F (v)−F (u)

ε

)
ηk (u) dv du (15)

= ηk (−∞)−
λk

ε

∫ x

−∞

∫ x

u

exp

(
F (v)−F (u)

ε

)
ηk (u) dv du. (16)

Proof Fix k ∈ N. Since ηk is bounded by Proposition [10, Proposition 3.7], we may

choose C1 > 0 such that |ηk (x) | ≤ C1 for all x ∈ R. Now fix x ∈ R. Since a1 > 2, we

may choose α ∈ (1,a1/2). By [10, Lemma 3.3], assumptions (3) and (4) imply that

c̃1 |x | ã1 − c̃2 ≤ |F (x) | ≤ c̃3 |x | ã2
+ c̃4, (17)

where ãi = ai/2+ 1. It follows that limu→∞ u−αeF (u)/ε
= ∞. Also by (3), for u

sufficiently large, |u−αF ′(u) | ≥ C |u|a1/2−α for some C > 0. Hence, by L’Hôptal’s

rule,

lim
u→∞

∫ u

x
eF (v)/ε dv

u−αeF (u)/ε = lim
u→∞

1

−αu−(α+1)
+u−αF ′(u)

= 0,

and so we may choose C2 > 0 such that
∫ u

x
eF (v)/ε dv ≤ C2u−αeF (u)/ε for all u ≥ x.

Therefore,

∫ ∞

x

∫ u

x

�����exp

(
F (v)−F (u)

ε

)
ηk (u)

����� dv du ≤ C1C2

∫ ∞

x

u−α du <∞,

and so the right-hand side of (15) is well-defined.

Let

y(x) = ηk (∞)−
λk

ε

∫ ∞

x

∫ u

x

exp

(
F (v)−F (u)

ε

)
ηk (u) dv du.

Then

y
′(x) =

λk

ε

∫ ∞

x

exp

(
F (x)−F (u)

ε

)
ηk (u) du,

and

y
′′(x) = −

λk

ε
ηk (x)+F ′(x)

λk

ε2

∫ ∞

x

exp

(
F (x)−F (u)

ε

)
ηk (u) du.
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Thus, εy′′ −F ′y′ = −λkηk = εη ′′k −F
′η ′

k
, so that y − ηk is an eigenfunction corre-

sponding to λ0. That is, y and ηk differ by a constant. But y(∞) = ηk (∞), so y = ηk
and this proves (15).

By replacing F with x �→ F (−x), equation (15) gives

ηk (−x) = ηk (−∞)−
λk

ε

∫ ∞

x

∫ u

x

exp

(
F (−v)−F (−u)

ε

)
ηk (−u) dv du,

which gives

ηk (x) = ηk (−∞)−
λk

ε

∫ ∞

−x

∫ x

−u

exp

(
F (v′)−F (−u)

ε

)
ηk (−u) dv′du

= ηk (−∞)−
λk

ε

∫ x

−∞

∫ x

u′
exp

(
F (v′)−F (u′)

ε

)
ηk (u′) dv′du′,

proving (16). �

We now assume that for some fixed x̃0 < 0 < x̃1:

(i) F is strictly decreasing on (−∞, x̃0) and (0, x̃1), and strictly increasing on

( x̃0,0) and ( x̃1,∞).
(ii) F ′′( x̃0) > 0, F ′′(0) < 0, F ′′( x̃1) > 0.

(iii) F ( x̃0) � F ( x̃1).

ThenM = { x̃0, x̃1} and m = 1. If F ( x̃0) < F ( x̃1), then

F̂( x̃1, { x̃0})−F ( x̃1) = F (0)−F ( x̃1) < F (0)−F ( x̃0) = F̂( x̃0, { x̃1})−F ( x̃0),

which would imply x0 = x̃0, and x1 = x̃1. On the other hand, if F ( x̃1) < F ( x̃0), then

x0 = x̃1 and x1 = x̃0. For now, we will not assume either ordering of the local minima,

so that our assumptions are symmetric under the reflection x �→ −x. Because of this,

results that are stated in terms of x̃0 can be applied to x̃1 by replacing F (x) with

F (−x).
Let η = η1 and λ = λ1. By Courant’s nodal domain theorem [3, Section VI.6,

p.454], replacing η by −η if necessary, there exists r = rε ∈ R such that

η(x)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
< 0 if x < rε,
= 0 if x = rε,
> 0 if x > rε .

It therefore follows from Lemma 1 that η is strictly increasing.

By [2, Theorem 1.2],

λ =
|F ′′(0)F ′′(x1) |1/2

2π
e−(F (0)−F (x1 ))/ε (1+O(ε1/2| logε |)). (18)

By [1, (3.3)], we have
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Ex j [τXBρ (x1− j )] ∼
2π

|F ′′(0)F ′′(x j ) |1/2
e(F (0)−F (x j ))/ε, (19)

for 0 < ρ < | x̃0 | ∧ | x̃1 |. And the following special case of [2, Proposition 3.3] gives

us a way to estimate the shape of the eigenfunction.

Theorem Let h(y) = Py (τX(x0−ε,x0+ε) < τ
X
rε
) and φ(y) = |η(y) |/|η(x0 + ε) |. Then

there exists C, α, ε0 > 0 such that

h(y) ≤ φ(y) ≤ h(y)(1+Cεα/2),

for all y < rε and all ε ∈ (0, ε0). �

To apply this result, we will use the following two lemmas, which formulate the

Freidlin and Wentzell results in our specific case.

Lemma 2 Let a < ã < x̃0 < b̃ < b < 0 and fix δ > 0. Then there exists ε0 > 0 such

that

exp

(
1− δ

ε
(F (a)∧F (b)−F ( x̃0))

)
≤ Ex[τX(a,b)c ]

≤ exp

(
1+ δ

ε
(F (a)∧F (b)−F ( x̃0))

)
,

for all ã ≤ x ≤ b̃ and all ε ∈ (0, ε0). The analogous result also holds when 0 < a <
ã < x̃1 < b̃ < b.

Proof By Theorem 18, ε logEx[τX(a,b)c ] → L := F (a) ∧ F (b) − F ( x̃0) as ε → 0,

uniformly in x on [ã, b̃]. Thus, there exists ε0 such that ε ∈ (0, ε0) implies

ε logEx[τ(a,b)c ] ≤ (1+ δ)L, which gives the upper bound. The lower bound is de-

duced similarly. �

Lemma 3 Let a < x̃0 < b < 0 or 0 < a < x̃1 < b and define G = (a,b). Assume

F (a) � F (b) and choose y ∈ {a,b} such that F (y) = F (a) ∨ F (b). Then, for all

compact K ⊂ G and all γ > 0, there exists ε0 > 0 such that

exp

(
−
|F (a)−F (b) |+ γ

ε

)
≤ Px (X (τXGc ) = y) ≤ exp

(
−
|F (a)−F (b) | − γ

ε

)
,

for all x ∈ K and all ε ∈ (0, ε0).

Proof We prove only the case where a < x̃0 < b and F (a) > F (b), so that y = a.

The proofs of the other cases are similar. We use Theorem 20, Proposition 21, and

Lemma 12. Note that, according to the discussion preceding Theorem 20, we have

VG (x, y) = V (x, y) for all x, y ∈ [a,b].

Fix x ∈ K . In this case,

MG = VG ({ x̃0}, {a,b}) = VG ( x̃0,a)∧VG ( x̃0,b) = 2(F (b)−F ( x̃0)),
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and

MG (x,a) =min{VG ( x̃0, x)+VG (x,a),VG ( x̃0, {a,b})+VG (x,a),
VG (x, x̃0)+VG ( x̃0,a)}

=min{2(F (x)−F ( x̃0))+VG (x,a),2(F (b)−F ( x̃0))+VG (x,a),
2(F (a)−F ( x̃0))}

If a < x < x̃0, then VG (x,a) = 2(F (a)−F (x)), so that

MG (x,a) = 2min{F (a)−F ( x̃0),F (b)−F ( x̃0)+F (a)−F ( x̃0),F (a)−F ( x̃0)}
= 2(F (a)−F ( x̃0)).

If x̃0 ≤ x < b, then VG (x,a) = 2(F (a)−F ( x̃0)), so that

MG (x,a) = 2min{F (x)+F (a)−2F ( x̃0),F (b)+F (a)−2F ( x̃0),F (a)−F ( x̃0)}
= 2(F (a)−F ( x̃0)).

Thus, MG (x,a)−MG = 2(F (a)−F (b)), and the result follows from Theorem 20.�

3.2 Location of the nodal point

Our first order of business is to identify an interval in which the nodal point (that is,

the zero of the second eigenfunction) is asymptotically located. The essential feature

of the interval is that it is bounded away from the minima as ε→ 0.

The statement of this result is Corollary 4. To prove this result, we need four

lemmas, all concerning stopping times of X .

Lemma 4 There exists R > 0 such that sup{Ex[τX
K

] : x ∈ Rd, ε ∈ (0,1)} <∞, where

K = BR(0).

Proof In this proof, for r > 0, let σr = τ
F (X)
(−∞,r]

= inf{t ≥ 0 : F (X (t)) ≤ r}.
Choose C1,C2, L > 0 such that

(i) V (x) ≥ C1 |x |a1 ,

(ii) C1 |x |a1 ≤ |∇F (x) |2 ≤ C2 |x |a2 , and

(iii) C1 |x | ã1 ≤ F (x) ≤ C2 |x | ã2 ,

for all |x | > L, where ã j are as in (17). Choose R > L such that

I := (1∨ sup
|x |≤L

F (x),C1Rã1 ]∩N � ∅,

and choose b ∈ I .
Suppose ω ∈ {τK > t}. Then, for all s ≤ t, we have that |X (s) | > R > L, and so it

follows that F (X (s)) ≥ C1 |X (s) | ã1 > C1Rã1 ≥ b. Thus, ω ∈ {σb > t}, and we have
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shown that τK ≤ σb a.s. It therefore suffices to show that Ex[σb] is bounded above

by a constant that does not depend on x or ε.

Fix ε ∈ (0,1). Let r = a1/ã2 and C3 = C1C−r2
. We will first prove that if x ∈ Rd,

n ∈ N, and b ≤ n < F (x) ≤ n+1, then

Ex[σn] ≤ 2C−1
3 n−r . (20)

Let x and n satisfy the assumptions. Using Itô’s rule, we can write

F (X (t)) = F (x)+
√

2εM (t)−2ε

∫ t

0

ψ(X (s)) ds,Px-a.s.

where M (t) =
∫ t

0
∇F (X (s)) dW (s) and ψ = εV + |∇F |2/(4ε). Let W̃ (s) = M (T (s)),

where the stopping time T (s) is defined by T (s) = inf{t ≥ 0 : [M]t > s}. By [9,

Theorem 3.4.6], W̃ is a standard Brownian motion, and M (t) = W̃ ([M]t ). Moreover,

by [9, Problem 3.4.5], s < [M]t if and only if T (s) < t, and [M]T (s) = s for all s ≥ 0.

Let

Ŵ (t) = W̃ (t)−
1

2
√

2ε
t,

and define σ̃n = τ
√

2εŴ
(−∞,n−F (x)] = inf{t ≥ 0 : Ŵ (t) ≤ (n−F (x))/

√
2ε}. We will prove

that [M]σn
≤ σ̃n a.s. Note that

{σ̃n < [M]σn
} =
⋃
s∈Q

(
{s < [M]σn

} ∩

{
Ŵ (s) ≤

n−F (x)
√

2ε

})

=

⋃
s∈Q

(
{T (s) < σn} ∩

{
Ŵ ([M]T (s) ) ≤

n−F (x)
√

2ε

})
.

On the event {T (s) < σn}, we have, for all u ≤ T (s),

F (X (u)) > n ≥ b > sup
|x |≤L

F (x), (21)

where the first inequality comes from the definition of σn. It follows that |X (u) | > L.

Thus, by (i), we have V (X (u)) > 0, and so ψ(X (u)) > |∇F (X (u)) |2/(4ε). Hence,

n < F (X (T (s))) ≤ F (x)+
√

2εM (T (s))−
1

2

∫ T (s)

0

|∇F (X (u)) |2 du

= F (x)+
√

2εW̃ B([M]T (s) )−
1

2
[M]T (s)

= F (x)+
√

2εŴ ([M]T (s) ).

Therefore, Ŵ([M]T (s) ) > (n−F (x))/
√

2ε a.s. on the event {T (s)< σn}, which shows

that P(σ̃n < [M]σn
) = 0.

Note that for all |x | > L, we have
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|∇F (x) |2 ≥ C1 |x |a1
= C1( |x | ã2 )a1/ã2 ≥ C1(C−1

2 F (x))a1/ã2
= C3F (x)r .

Thus, as in (21), we obtain

σ̃n ≥ [M]σn
=

∫ σn

0

|∇F (X (u)) |2 du ≥ C3

∫ σn

0

F (X (u))r du ≥ C3nrσn .

Hence, using [9, Exercise 3.5.10], which gives the Laplace transform of σ̃n, we have

Ex[σn] ≤ C−1
3 n−rEx[σ̃n] = 2C−1

3 n−r (F (x)− n) ≤ 2C−1
3 n−r,

which proves (20). It now follows by induction and the Markov property that

Ex[σb] ≤ 2C−1
3

n∑
j=b

j−r,

whenever b ≤ n < F (x) ≤ n+1. Since

ã2 =
a2

2
+1 <

2a1−2

2
+1 = a1,

it follows that r > 1. Hence, C4 :=
∑∞

j=b
j−r < ∞. Since σb = 0, Px-a.s., whenever

F (x) ≤ b, we have that Ex[σb] ≤ 2C−1
3
C4 for all x ∈ Rd. �

Lemma 5 Let x < x̃0. Then there exists ε0 > 0 such that

sup{Ey[τXx ] : y < x, ε ∈ (0, ε0)} <∞.

Proof Choose R > |x | as in Lemma 4, so that there existsC1 > 0 such that Ey[τX
−R

] ≤

C1 for all y < −R and all ε ∈ (0,1).
Suppose−R < x < x̃0 and ε ∈ (0,1). Let J = (−R−1, x). Since τX

Jc ≤ τ
X
x P−R-a.s.,

the strong Markov property gives

E−R[τXx ] = E−R[τXJc ]+E−R[EX(τX
Jc

)[τXx ]] = E−R[τXJc ]+ pεE−R−1[τXx ],

where pε = P−R(X (τXJc ) = −R−1). Also by the strong Markov property and Lemma

4,

E−R−1[τXx ] = E−R−1[τX−R]+E−R[τXx ] ≤ C1+E−R[τXx ].

Thus,

E−R[τXx ] ≤
E−R[τX

Jc ]+ pεC1

1− pε
.

By Theorem 19, there existsC2 > 0,T > 0, and ε0 ∈ (0,1) such that for all ε ∈ (0, ε0),

E−R[τXJc ] =

∫ ∞

0

P(τXJc > t) dt ≤ T +
∫ ∞

T

e−ε
−2C2 (t−T ) dt ≤ T +

ε2
0

C2

=: C3.
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Choose 0 < r < | x̃0 | such that F ( x̃0+ r) < F (−R−1), and choose γ < F (−R−1)−
F ( x̃0+ r). By Lemma 3, making ε0 smaller, if necessary, we have

pε ≤ P−R(X (τX(−R−1, x̃0+r )c ) = −R−1) ≤ exp

(
−
F (−R−1)−F ( x̃0+ r)− γ

ε

)
,

for all ε ∈ (0, ε0). By making ε0 even smaller, if necessary, we have pε < 1/2 for all

ε ∈ (0, ε0). Thus,

E−R[τXx ] ≤ 2C3+C1 =: C4,

for all ε ∈ (0, ε0).
Now, if y < −R < x < x0, then

Ey[τXx ] = Ey[τX−R]+E−R[τXx ] ≤ C1 +C4,

for all ε ∈ (0, ε0), and if −R ≤ y < x < x0, then

C4 ≥ E−R[τXx ] = E−R[τXy ]+Ey[τXx ] ≥ Ey[τXx ],

for all ε ∈ (0, ε0). �

Lemma 6 For all x̃0 < x < 0 and all δ > 0, there exists C > 0 and ε0 > 0 such that

for all 0 < ε < ε0 and all y < x, we have

Ey[τXx ] ≤ C exp

(
1+ δ

ε
(F (x)−F ( x̃0))

)
.

Proof Suppose x̃0 < x < 0 and fix δ > 0. Choose R > | x̃0 | as in Lemma 4, so that

there existsC1 > 0 such that Ey[τX
−R

] ≤ C1 for all y < −R and all ε ∈ (0,1). By making

R larger, if necessary, we may assume F (x) < F (−R−1). Let J := (−R−1, x). As

in the proof of Lemma 5,

E−R[τXx ] ≤
E−R[τX

Jc ]+ pεC1

1− pε
,

where pε = P−R (X (τX
Jc ) = −R− 1). Using Lemma 3, we may choose ε0 > 0 such

that pε ≤ 1/2 for all ε ∈ (0, ε0), giving

E−R[τXx ] ≤ 2E−R[τXJc ]+C1.

As in the proof of Lemma 5, if y < −R, then

Ey[τXx ] = Ey[τX−R]+E−R[τXx ] ≤ E−R[τXx ]+C1,

and if −R ≤ y, then

Ey[τXx ] ≤ E−R[τXy ]+Ey[τXx ] = E−R[τXx ] ≤ E−R[τXx ]+C1.

Thus,
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Ey[τXx ] ≤ 2E−R[τXJc ]+2C1,

for all y < x and all ε ∈ (0, ε0).
By Lemma 2, making ε0 smaller if necessary, we have

E−R[τXJc ] ≤ exp

(
1+ δ

2ε
(F (x)−F ( x̃0))

)
,

for all ε ∈ (0, ε0), which proves the lemma with C = 2+2C1. �

Lemma 7 Let �η (dx) = |η(x) |1(−∞,rε ) (x)�(dx) and �̂ = �η ((−∞,rε))−1�η . It

then follows that P�̂ (τXrε > t) = e
−λt for all t ≥ 0.

Proof Let I = (−∞,rε). Let X I denote X killed upon leaving I . Note that X I

with X I (0) = x solves the martingale problem for (AI, δx), where AI
= {( f , A f ) :

f ∈ C∞c (R), f (r) = 0}. Choose ϕn ∈ C∞c (R) such that 0 ≤ ϕn ≤ 1, ϕn(r) = 0, and

ϕn→ 1I pointwise. Then

P�̂ (τr > t) = P�̂ (X I (t) ∈ I ) = E�̂[1I (X I (t))] = lim
n→∞

hn(t),

where hn(t) = E�̂[ϕn (X I (t))]. Let PI
t f (x) = Ex[ f (X I (t))]. Fix t ≥ 0 and let ψn =

PI
t ϕn. Then

hn(t) =
∫
I

ψn d�̂ = −
1

�η (I )

∫
I

ψnη d�,

so that

h′n(t) = −
1

�η (I )

∫
I

(AIψn)η d� = −
1

�η (I )

∫
I

(εψ′′n −F
′ψ′n)η d�

= −
1

�η (I )

∫
I

ψn (εη ′′ −F ′η ′) d� =
λ

�η (I )

∫
I

ψnη d� = −λhn(t).

Thus, hn(t) = hn(0)e−λt . Note that hn(0) =
∫
I
ϕn d�̂ → �̂(I ) = 1 as n → ∞. It

therefore follows that P�̂ (τr > t) = e−λt . �

Theorem Let x ∈ ( x̃0,0) satisfy F (x) − F ( x̃0) < F (0) − F (x1). Then there exists

ε0 > 0 such that for all 0 < ε < ε0, we have x < rε . �

Proof Choose δ > 0 such that (1+ δ)(F (x)−F ( x̃0)) < F (0)−F (x1). By Lemma 6,

there exists ε0 > 0 and C1 > 0 such that

Ey[τXx ] ≤ C1 exp

(
1+ δ

ε
(F (x)−F ( x̃0))

)
,

for all ε ∈ (0, ε0) and all y < x. By (18), there exists a constantC2 > 0, not depending

on ε, such that λ ≤ C2e−(F (0)−F (x1 ))/ε . By making ε0 smaller if necessary, we may

assume

ε log(C1C2) < F (0)−F (x1)− (1+ δ)(F (x)−F ( x̃0)),
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for all ε ∈ (0, ε0).
Fix ε < ε0. Suppose rε ≤ x. By Lemma 7,

C−1
2 exp

(
1

ε
(F (0)−F (x1))

)
≤ λ−1

= E�̂[τXrε ] =

∫ rε

−∞

Ey[τXrε ]�̂(dy)

≤

∫ rε

−∞

Ey[τXx ]�̂(dy) ≤ sup
y<rε

Ey[τXx ] ≤ sup
y<x

Ey[τXx ] ≤C1 exp

(
1+ δ

ε
(F (x)−F ( x̃0))

)
,

which implies

exp

(
F (0)−F (x1)− (1+ δ)(F (x)−F ( x̃0))

ε

)
≤ C1C2,

a contradiction. �

Corollary Suppose F ( x̃0) < F ( x̃1), so that x0 = x̃0 and x1 = x̃1. Choose ξ ∈ (x0,0)
such that F (ξ)−F (x0) = F (0)−F (x1). Then for all δ > 0, there exists ε0 > 0 such

that rε ∈ (ξ − δ, δ) for all 0 < ε < ε0. �

Proof Without loss of generality, we may assume ξ − δ > x0 and δ < x1. Taking

x = ξ − δ in Theorem 3, we may choose ε1 such that ξ − δ < rε for all ε < ε1. For

the upper bound on rε , we apply Theorem 3 to x �→ F (−x). In this case, the theorem

says that if x ∈ (−x1,0) satisfies F (−x) −F (x1) < F (0)−F (x0), then there exists

ε2 > 0 such that x < r̃ε for all ε < ε2, where r̃ε is the nodal point of x �→ −η(−x),
that is, r̃ε = −rε . Taking x = −δ and ε0 = ε1∧ ε2 finishes the proof. �

3.3 Behavior near the minima

Corollary 4 divides the domain of the second eigenfunction, η, into three intervals:

two infinite half-lines that each contain one of the two minima, and a bounded

interval separating the half-lines that contains the nodal point. Our next order of

business is to show that η is asymptotically flat on the infinite half-lines. Theorem 5

gives this result for the half-line containing x̃0. Applying Theorem 5 to x �→ F (−x)
gives the result for the half-line containing x̃1.

We begin with a lemma. Recall a j, ã j and cj, c̃j from (3), (4), and (17). In applying

this lemma, note that
ã2

ã1

=

a2+2

a1+2
<

2a1

a1+2
<
a1

2
,

where the first inequality comes from a2 < 2a1−2 and the second from a1 > 2.

Lemma 8 Let x ∈ ( x̃0,0). Suppose p satisfies

2

a1

< p <
ã1

ã2

≤ 1.



An Application to Metastability 323

Then there exists u0 < −1 and C > 0 such that

e−F (u)/ε
∫ x

u

eF (v)/ε dv ≤ Cε |u|−pa1/2,

for all u < u0 and all ε > 0.

Proof Choose t < x̃0 such that F (t) = F (x). Using (3), we may choose u0 < −1 and

C′ > 0 such that

(i) −|u0 |
p < t,

(ii) F (θ) > 0 and |F ′(θ) | ≥ C′|θ |a1/2, for all θ < −|u0 |
p , and

(iii) c̃3 |u|pã2−ã1 <
c̃1

2
and c̃4− c̃2 ≤

c̃1

4
|u| ã1 , for all u < u0.

Let G(u) =
∫ x

u
eF (v)/ε dv and H (u) = eF (u)/ε . Fix u < u0 and let v = −|u|p < −|u0 |

p .

Note that u < v.

By Cauchy’s generalized law of the mean,

G(u)−G(v)
H (u)−H (v)

=

G′(θ)
H ′(θ)

,

for some u < θ < v. From this, we get

G(u)
H (u)

=

G(v)
H (u)

+

G′(θ)
H ′(θ)

(
1−

H (v)
H (u)

)

=

G(v)
H (u)

+

ε

|F ′(θ) |

(
1−

H (v)
H (u)

)

≤
G(v)
H (u)

+

ε

|F ′(θ) |
.

By (ii),
ε

|F ′(θ) |
≤

ε

C′ |θ |a1/2
≤

ε

C′ |v |a1/2
=

ε

C′ |u|pa1/2
.

It therefore suffices to show that

G(v)
H (u)

≤ C′′ε |u|−pa1/2, (22)

for some constant C′′ that does not depend on u or ε.

By (17),

F (v)−F (u) ≤ c̃3 |v |
ã2
+ c̃4− c̃1 |u| ã1 − c̃2

= (c̃3 |u|pã2−ã1 − c̃1) |u| ã1
+ c̃4− c̃2 ≤ −

c̃1

4
|u| ã1,

where the last inequality comes from (iii). By (i), we have v < t, so that F (v) > F (w)
for all w ∈ (v, x). Hence,
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G(v)
H (u)

=

∫ x

v

e(F (w)−F (u))/ε dw ≤ |v |e(F (v)−F (u))/ε

≤ |u|p exp

(
−
c̃1

4ε
|u| ã1

)

=

(
ε |u|−pa1/2

) 1

ε
|u|pã1 exp

(
−
c̃1

4ε
|u| ã1

)
.

Since x �→ xpe−c̃1x/4 is bounded on [0,∞), this proves (22). �

Theorem Let x ∈ ( x̃0,0) satisfy F (x) − F ( x̃0) < F (0) − F (x1). Then there exists

C > 0 and ε0 > 0 such that for all 0 < ε < ε0,�����1− η(x)η(−∞)

����� ≤ C
ε

exp

(
−

1

ε
(F (0)−F (x1)−F (x)+F ( x̃0))

)
. (23)

Proof Again by (18), there exists a constant C1 > 0, not depending on ε, such that

λ ≤ C1e−(F (0)−F (x1 ))/ε .

Let ε0 be as in Theorem 3, and let ε ∈ (0, ε0). Choose t < x̃0 such that F (t) = F (x).
By Theorem 3, x < rε . Since η is increasing, η(u) < 0 for all u ≤ x. Therefore, by

(16),

0 < η(x)− η(−∞) =
λ

ε

∫ x

−∞

∫ x

u

e(F (v)−F (u))/ε |η(u) | dv du

≤
λ

ε
|η(−∞) |

∫ x

−∞

∫ x

u

e(F (v)−F (u))/ε dv du.

Thus, �����1− η(x)η(−∞)

����� ≤ λε
∫ x

−∞

∫ x

u

e(F (v)−F (u))/ε dv du

≤
C1

ε
e−(F (0)−F (x1 ))/ε

∫ x

−∞

∫ x

u

e(F (v)−F (u))/ε dv du. (24)

Choose p as in Lemma 8. Then there exist u0 < 0 and C2 > 0 such that

∫ u0

−∞

∫ x

u

e(F (v)−F (u))/ε dv du ≤ C3ε,

where C3 = C2 |u0 |
1−pa1/2/(pa1/2− 1). By the proof of Lemma 8, we have u0 < t,

and so ∫ t

u0

∫ x

u

e(F (v)−F (u))/ε dv du ≤
∫ t

u0

(x −u) du ≤ |u0 |
2.

Lastly,

∫ x

t

∫ x

u

e(F (v)−F (u))/ε dv du≤
∫ x

t

∫ x

u

e(F (x)−F (x̃0 ))/ε dv du≤ |u0 |
2e(F (x)−F (x̃0 ))/ε .
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Thus,

∫ x

−∞

∫ x

u

e(F (v)−F (u))/ε dv du ≤ C3ε+ |u0 |
2
+ |u0 |

2e(F (x)−F (x̃0 ))/ε

≤ C4e(F (x)−F (x̃0 ))/ε,

whereC4 = (C3ε0+ |u0 |
2)e−(F (x)−F (x̃0 ))/ε0

+ |u0 |
2. Finally, combining this with (24),

we obtain (23), where C = C1C4. �

3.4 Behavior near the nodal point

From this point forward, for definiteness, we assume F ( x̃0) < F ( x̃1), so that x0 = x̃0

and x1 = x̃1.

Having shown that η is asymptotically flat near the minima, we would now like to

show that it behaves, weakly, like a simple function that is constant on the domains of

attraction defined in (2). That is, we want to show that
∫
D0
η d� ∼ η(x0)�(D0) and∫

D1
η d� ∼ η(x1)�(D1). (Note that we cannot use Theorem 22 since η depends on

ε.) Combined with
∫
η d� = 0, this would give us the relative magnitudes of η(x0)

and η(x1). By Theorem 5, this is equivalent to understanding the relative magnitudes

of η(−∞) and η(∞), respectively.

Lemma 9 Choose δ ∈ (0, x1) such that ξ−δ ∈ (x0,0). Let k be a positive integer and

let g : R→ R be bounded. If g is continuous at x0 and x1, then

∫ ξ−δ

−∞

g(x) |η(x) |ke−F (x)/ε dx ∼ g(x0) |η(−∞) |k
√

2πε

F ′′(x0)
e−F (x0 )/ε, (25)

and ∫ ∞

δ

g(x) |η(x) |ke−F (x)/ε dx ∼ g(x1) |η(∞) |k
√

2πε

F ′′(x1)
e−F (x1 )/ε, (26)

as ε→ 0.

Proof By writing g = g
+−g−, g+ and g

− nonnegative, we may assume without loss

of generality that g is nonnegative. By Corollary 4 and the fact that η is increasing,

we have that, for ε sufficiently small, |η(x) | ≤ |η(−∞) | for all x ∈ (−∞, ξ− δ). Thus,

∫ ξ−δ

−∞

g(x) |η(x) |ke−F (x)/ε dx ≤ |η(−∞) |k
∫ ξ−δ

−∞

g(x)e−F (x)/ε dx.

Similarly,

∫ ξ−δ

−∞

g(x) |η(x) |ke−F (x)/ε dx ≥ |η(ξ − δ) |k
∫ ξ−δ

−∞

g(x)e−F (x)/ε dx.
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Hence, by Theorem 5,

∫ ξ−δ

−∞

g(x) |η(x) |ke−F (x)/ε dx ∼ |η(−∞) |k
∫ ξ−δ

−∞

g(x)e−F (x)/ε dx.

By Theorem 22, this proves (25). Replacing F with x �→ F (−x), Theorem 5 shows

that η(δ) ∼ η(∞). Thus, the same argument can be used to obtain (26). �

Lemma 10 There exists δ0 > 0 such that for all δ ∈ (0, δ0),
∫ δ

ξ−δ

η(x)e−F (x)/ε dx = o
(∫ ξ−δ

−∞

|η(x) |e−F (x)/ε dx +
∫ ∞

δ

|η(x) |e−F (x)/ε dx
)
,

as ε→ 0.

Proof Without loss of generality, we may assume F (x0) = 0. Let γ = (F (0) −
F (x1))/4 > 0. By the continuity of F , we may choose δ0 > 0 such that F (−δ0) >
F (x1) and

F (−δ/2)−F (x0− δ)−F (x1) > 2γ, (27)

for all δ ∈ (0, δ0).
Let δ ∈ (0, δ0) be arbitrary. By Theorem 2 applied to x �→ F (−x), there exists

δ′ > 0 and 0 < ε0 < x1 such that

|η(x) | ≤ (1+ δ′) |η(x1− ε) |Px(τXx1−ε
< τXrε ),

for all x ∈ (ξ − δ,−δ)∩ (rε,∞) and all ε ∈ (0, ε0). For any such x and ε, since X is

continuous and

x0− δ < rε < x < −δ/2 < x1 − ε,

it follows that on {τXx1−ε
< τXrε }, we have τX

−δ/2
< τX

x0−δ
, Px-a.s. Hence,

|η(x) | ≤ (1+ δ′) |η(x1− ε) |Px (τX−δ/2 < τ
X
x0−δ

).

By making ε0 smaller, if necessary, and using Theorem 5 applied to x �→ F (−x),
this gives

|η(x) | ≤ (1+ δ′)2 |η(∞) |Px (τX−δ/2 < τ
X
x0−δ

),

for all x ∈ (ξ − δ,−δ)∩ (rε,∞) and all ε ∈ (0, ε0). By (27), we may apply Lemma 3,

so that by making ε0 smaller, if necessary, we obtain

|η(x) | ≤ (1+ δ′)2 |η(∞) | exp

(
−

1

ε
(F (−δ/2)−F (x0− δ)−2γ),

)
(28)

for all x ∈ (ξ− δ,−δ)∩ (rε,∞) and all ε ∈ (0, ε0). By (27), for fixed x ∈ (ξ− δ,−δ)∩
(rε,∞) and ε ∈ (0, ε0), we may write

|η(x) | ≤ (1+ δ′)2 |η(∞) |e−F (x1)/ε .
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For fixed x ∈ (−∞,rε], by the monotonicity of η, we have |η(x) | ≤ |η(−∞) |. There-

fore, for all x ∈ (ξ − δ,−δ) and all ε ∈ (0, ε0), we have

|η(x) | ≤ (1+ δ′)2( |η(−∞) |+ |η(∞) |e−F (x1)/ε ).

By Proposition 23, after making ε0 smaller, if necessary, we have

∫ −δ

ξ−δ

|η(x) |e−F (x)/ε dx ≤ (1+ δ′)2( |η(−∞) |+ |η(∞) |e−F (x1)/ε )
∫ −δ

ξ−δ

e−F (x)/ε dx

≤ (1+ δ′)3( |η(−∞) |+ |η(∞) |e−F (x1)/ε )
ε

F ′(ξ − δ)
. (29)

Let m = min{F ′(ξ − δ),F ′(−δ), |F ′(δ) |}. Choose c ∈ {−δ, δ} such that F (c) =
F (−δ) ∧ F (δ). By Proposition 23, by making ε0 smaller, if necessary, we also

have

∫ δ

−δ

|η(x) |e−F (x)/ε dx ≤ ( |η(−∞) |+ |η(∞) |)
(∫ 0

−δ

e−F (x)/ε dx +
∫ δ

0

e−F (x)/ε dx
)

≤ (1+ δ′)( |η(−∞) |+ |η(∞) |)
2ε

m
e−F (c)/ε

≤ (1+ δ′)( |η(−∞) |+ |η(∞) |e−F (x1)/ε )
2ε

m
(30)

Combining (29) and (30) gives

∫ δ

ξ−δ

|η(x) |e−F (x)/ε dx ≤ (1+ δ′)3( |η(−∞) |+ |η(∞) |e−F (x1)/ε )
3ε

m
. (31)

Using Lemma 9, again making ε0 smaller, if necessary, we have

∫ δ

ξ−δ

|η(x) |e−F (x)/ε dx

≤ (1+ δ′)4 
�
√

F ′′(x0)
2πε

∫ ξ−δ

−∞

|η(x) |e−F (x)/ε dx

+

√
F ′′(x1)

2πε

∫ ∞

δ

|η(x) |e−F (x)/ε dx�
 3ε

m

≤
3ε1/2(1+ δ′)4

√
F ′′(x0)∨F ′′(x1)
m

×

(∫ ξ−δ

−∞

|η(x) |e−F (x)/ε dx +
∫ ∞

δ

|η(x) |e−F (x)/ε dx
)
,

which completes the proof. �

Remark Although we have narrowed down the location of the nodal point, rε , to the

interval (ξ− δ, δ), the work in [8] suggests that the nodal point actually converges to
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ξ. Moreover, the caption to [8, Fig. 3], states that a step function with discontinuity

at ξ is a candidate limit for η as ε→ 0. However, (28) shows that η(x) = o(η(∞))
for all x < 0. In fact, together with Theorem 5 applied to x �→ F (−x), it follows that

η/η(∞)→ 1(0,∞) , pointwise on R \ {0}. �

Proposition We have

η(∞)
|η(−∞) |

∼

√
F ′′(x1)
F ′′(x0)

e(F (x1 )−F (x0 ))/ε,

as ε→ 0. �

Proof Choose δ such that Lemma 9 and Lemma 10 hold. Let

κ1,ε =

∫ ξ−δ

−∞

η(x)e−F (x)/ε dx = −
∫ ξ−δ

−∞

|η(x) |e−F (x)/ε dx,

κ2,ε =

∫ ∞

δ

η(x)e−F (x)/ε dx =
∫ ∞

δ

|η(x) |e−F (x)/ε dx,

κ3,ε =

∫ δ

ξ−δ

η(x)e−F (x)/ε dx.

Since
∫
R
η(x)e−F (x)/ε dx = 0, we have that |κ1,ε | = |κ2,ε |+ κ3,ε . By Lemma 10, we

also have that κ3,ε = o( |κ1,ε |+ |κ2,ε |).
Since κ3,ε = o( |κ1,ε |+ |κ2,ε |), there exists ε0 > 0 such that |κ1,ε |+ |κ2,ε | > 0 and

|κ3,ε |

|κ1,ε |+ |κ2,ε |
< 1,

for all ε ∈ (0, ε0). Hence, for any such ε, we may write

2
(

κ3, ε

|κ1, ε |+ |κ2, ε |

)
1−
(

κ3, ε

|κ1, ε |+ |κ2, ε |

) = 2κ3,ε

|κ1,ε |+ |κ2,ε | − κ3,ε
=

κ3,ε

|κ2,ε |
,

which implies |κ2,ε | > 0 for all such ε, and also shows that κ3,ε/|κ2,ε | → 0 as

ε→ 0. Therefore, |κ1,ε |/|κ2,ε | = 1+ κ3,ε/|κ2,ε | → 1 as ε→ 0. That is, |κ1,ε | ∼ |κ2,ε |.

Applying Lemma 9 finishes the proof. �

In the following theorem, we improve the results of Lemma 9 in the case k = 1,

to extend the intervals of integration to include the entire domains of attraction.

Theorem If g ∈ L∞(R) is continuous at x0 and x1, then

∫ 0

−∞

g(x)η(x)e−F (x)/ε dx ∼ g(x0)η(−∞)

√
2πε

F ′′(x0)
e−F (x0 )/ε, (32)

and
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∫ ∞

0

g(x)η(x)e−F (x)/ε dx ∼ g(x1)η(∞)

√
2πε

F ′′(x1)
e−F (x1 )/ε, (33)

as ε→ 0, provided the integrals exist for sufficiently small ε. Consequently,

∫
gη d� ∼ (g(x0)−g(x1))η(−∞), (34)

as ε→ 0. �

Proof Without loss of generality, we may assume F (x0) = 0. Choose δ so that

Lemma 10 applies. By (31) and Proposition 7,

�����
∫ 0

ξ−δ

g(x)η(x)e−F (x)/ε dx
����� ≤ ‖g‖∞ (1+ δ′)4 
�1+

√
F ′′(x1)
F ′′(x0)

�
 |η(−∞) | 6εm ,
for ε sufficiently small, where m = min{F ′(ξ − δ),F ′(−δ), |F ′(δ) |}. Thus, to prove

(32), it suffices to show that

∫ ξ−δ

−∞

g(x)η(x)e−F (x)/ε dx ∼ g(x0)η(−∞)

√
2πε

F ′′(x0)
.

But this follows from (25) with k = 1 and the fact that η < 0 on (−∞, ξ − δ).
Using Proposition 7, to prove (33), it suffices to show that

∫ ∞

0

g(x)η(x)e−F (x)/ε dx ∼ −g(x1)η(−∞)

√
2πε

F ′′(x0)
.

As above, by (31) and Proposition 7, it suffices to show that

∫ ∞

δ

g(x)η(x)e−F (x)/ε dx ∼ −g(x1)η(−∞)

√
2πε

F ′′(x0)
.

But this follows from (26), Proposition 7, and the fact that η > 0 on (δ,∞). Finally,

combining these results with Proposition 7 and Theorem 22, we obtain

η(−∞)−1

∫
gη d�→ g(x0)−g(x1),

as ε→ 0. �
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4 Asymptotic behavior of the coupled process

Recall that we are assuming F is a double-well potential in one dimension, with

x0 < 0 < x1 and F (x0) < F (x1). Here, the x j ’s are the local minima and 0 is the

local maximum.

Our construction of the coupling is dependent on our choice of Q ∈ R2×2 and

ξ = ξ (1) in the coupling construction outlined in the introduction (see [10, Theorem

3.8] for more details). We begin with a lemma that characterizes all the admissible

choices for Q and ξ.

Lemma 11 Let ξ0, ξ1 ∈ R. Define a j = λξ j/(ξ j − ξ1−j ). Then

Q =
(
−a0 a0

a1 −a1

)

is the generator of a continuous-time Markov chain with state space E0 = {0,1},

eigenvalues {0,−λ}, and corresponding eigenvectors (1,1)T and ξ = (ξ1, ξ2)T satis-

fying α j = 1+ ξ jη > 0 if and only if the following conditions hold:

(i) −
1

η(∞)
≤ ξ j ≤

1

|η(−∞) |
, for j = 0,1, and

(ii) ξ0ξ1 < 0.

Proof Note that the a j are defined precisely so that Q has the given eigenvalues and

eigenvectors. Also, α j = 1+ ξ jη > 0 if and only if (i). And the a j are both positive

if and only if (ii). �

For any such choice of ξ as in Lemma 11, we obtain a coupled process (X,Y )
with generator B given by (6) and initial distribution ν given by (5). This process is

cadlag, X satisfies the SDE given by (1), Y is a continuous-time Markov chain with

generator Q, and, by (7),

P(X (t) ∈ Γ | Y (t) = j) =
∫
Γ

α j (x)�(dx) =�(Γ)+ ξ j
∫
Γ

η(x)�(dx), (35)

for j = 0,1 and all Borel setsΓ ⊂ R. Recall that� = μ(R)−1μ and μ(dx) = e−F (x)/ε dx.

For each fixed ε > 0, we may choose a different ξ. Hence, all of these objects, in

fact, depend on ε. We will, however, suppress that dependence in the notation.

Theorem The following are equivalent to (10):

(a) ξ0 = o( |η(−∞) |−1) as ε→ 0.

(b) E[g(X (t)) | Y (t) = 0]− E�[g(X (0)) | X (0) < 0]→ 0 as ε→ 0, for each t ≥ 0

and each bounded, measurable g : R→ R that is continuous at x0 and x1. �

Proof Note that



An Application to Metastability 331

E[g(X (t)) | Y (t) = 0]−E�[g(X (0)) | X (0) < 0]

=

∫
g(x)(1+ ξ0η(x))�(dx)−�((−∞,0))−1

∫ 0

−∞

g(x)�(dx).

Since �((−∞,0))−1→ 1 and
���∫ ∞0 g d���� ≤ ‖g‖∞�((0,∞))→ 0, in order to prove

that (a) and (b) are equivalent, it suffices to show that ξ0 = o( |η(−∞) |−1) if and only

if ξ0
∫
gη d�→ 0 for all g satisfying the hypotheses. But this follows from (34).

That (b) implies (10) is trivial. Assume (10). Since

P(X (t) < 0 | Y (t) = 0) =�((−∞,0))+ ξ0
∫ 0

−∞

η(x)�(dx),

and�((−∞,0))→ 1, it follow that ξ0
∫ 0

−∞
η(x)�(dx)→ 0. By (34) with g = 1(−∞,0) ,

we have
∫ 0

−∞
η(x)�(dx) ∼ η(−∞), and (a) follows. �

Theorem The following are equivalent to (11):

(a) ξ1 ∼ |η(−∞) |−1.

(b) E[g(X (t)) | Y (t) = 1]− E�[g(X (0)) | X (0) > 0]→ 0 as ε→ 0, for each t ≥ 0

and each bounded, measurable g : R→ R that is continuous at x0 and x1.

Moreover, (11) implies (10). �

Proof Note that

E[g(X (t)) | Y (t) = 1]−E�[g(X (0)) | X (0) > 0]

=

∫
g(x)(1+ ξ1η(x))�(dx)−�((0,∞))−1

∫ ∞

0

g(x)�(dx)

=

∫
g d�−�((0,∞))−1

∫
(0,∞)

g d�+ ξ1
∫

gη d�

To prove that (a) and (b) are equivalent, by (39), it suffices to show that ξ1∼ |η(−∞) |−1

if and only if ξ1
∫
gη d�→−(g(x0)−g(x1)) for all g satisfying the hypotheses. But

this follows from (34).

That (b) implies (11) is trivial. Assume (11). Since

P(X (t) > 0 | Y (t) = 1) =�((0,∞))+ ξ1
∫ ∞

0

η(x)�(dx),

and �((0,∞))→ 0, it follows that ξ1
∫ ∞

0
η(x)�(dx)→ 1. By (34) with g = 1(0,∞) ,

we have
∫ ∞

0
η(x)�(dx) ∼ |η(−∞) |, and (a) follows.

Finally, assume (11). Then (a) holds. By Lemma 11, we have −η(∞)−1 ≤ ξ0 < 0

for sufficiently small ε. In particular, |ξ0 | ≤ η(∞)−1, so Theorem 9(a) follows from

Proposition 7. �

Theorem Let 0 < ρ < |x0 | ∧ x1. Then ξ0 = o(ξ1) if and only if
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E1[τY0 ] ∼ Ex1[τXBρ (x0 )] ∼ λ
−1 ∼

2π

|F ′′(0)F ′′(x1) |1/2
e(F (0)−F (x1 ))/ε, (36)

as ε→ 0. And ξ1/ξ0 ∼ η(∞)/η(−∞) if and only if

E0[τY1 ] ∼ Ex0[τXBρ (x1 )] ∼
2π

|F ′′(0)F ′′(x0) |1/2
e(F (0)−F (x0 ))/ε, (37)

as ε→ 0. Moreover, (37) implies (36), which implies (10). Also, (11) implies (36).�

Proof By (19) and (18), we need only determine the asymptotics of a0 and a1. Recall

that a j = λξ j/(ξ j − ξ1−j ). Thus,

E j[τY1−j ] = a
−1
j = λ

−1

(
1−
ξ1−j

ξ j

)
∼

(
1−
ξ1−j

ξ j

)
2π

|F ′′(0)F ′′(x1) |1/2
e(F (0)−F (x1 ))/ε,

(38)

so the first biconditional follows immediately. The second biconditional then follows

from Proposition 7.

By Proposition 7, we have (37) implies (36). By Lemma 11, we have |ξ0/ξ1 | ≥

|ξ0η(−∞) |, so that ξ0 = o(ξ1) implies ξ0 = o( |η(−∞) |−1). Hence, (36) implies that

Theorem 9(a) holds, which is equivalent to (10).

Finally, suppose (11) holds. By Theorems 9 and 10, we have that ξ1 ∼ |η(−∞) |−1

and ξ0 = o( |η(−∞) |−1), so that ξ0 = o(ξ1), which is equivalent to (36). �

Theorem The Markov chain fully tracks the diffusion, in the sense that (10)-(13) all

hold, if and only if ξ0 ∼ −η(∞)−1 and ξ1 ∼ |η(−∞) |−1. �

Proof Suppose (10)-(13) hold. Then, by Theorem 10, we have ξ1∼ |η(−∞) |−1. Since

(13) is equivalent to (37), we also have, by Theorem 11, that ξ1/ξ0 ∼ η(∞)/η(−∞).
Thus, ξ0 ∼ −η(∞)−1.

Conversely, suppose ξ0 ∼ −η(∞)−1 and ξ1 ∼ |η(−∞) |−1. Theorem 10 gives us

(11) and (10). Theorem 11 gives us (37) and (36), which are equivalent to (13) and

(12), respectively. �

In this section, we have established that (11) implies (12) implies (10), and (13)

implies (12). Example 13 shows that it is possible to have all four conditions holding.

The remaining examples illustrate that there are no implications besides those already

mentioned.

Example Let ξ0 = − f (ε)η(∞)−1 and ξ1 = g(ε) |η(−∞) |−1, where 0 < f ,g ≤ 1 with

f ,g→ 1 as ε→ 0. By Lemma 11 and Theorem 12, this is the most general family

of choices such that the resulting coupling sequence satisfies (10)-(13). �

In the remaining examples, let

L(ε) =
√

F ′′(x1)
F ′′(x0)

e−(F (x1 )−F (x0 ))/ε,
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so that by Proposition 7, we have η(∞)/η(−∞)∼−L(ε)−1. Choose 0 < f ≤ 1 and h ≥
L, and let g = L/h, so that 0 < g ≤ 1. Let ξ0 =− f (ε)η(∞)−1 and ξ1 = g(ε) |η(−∞) |−1.

By Lemma 11, these are admissible choices for ξ0 and ξ1.

Note that ξ0 ∼ − f (ε)L(ε) |η(−∞) |−1, so that by Theorem 9, we have (10) in all

these examples. Also note that by Theorem 10, we have (11) if and only if h ∼ L.

For applying Theorem 11, note that ξ1/ξ0 ∼ −g/( f L) = −1/( f h). Thus, (12) holds

if and only if f h→ 0 and (13) holds if and only f h ∼ L.

Example Let f = h = 1. Then none of (11), (12), or (13) hold, so we see that (10)

does not imply any of the other conditions. �

Example Let f = 1 and h =
√
L. In this case, we have (12), but neither (11) nor (13)

hold. Hence, (12) implies neither (11) nor (13). �

Example Let f = h = L. In this case, (11) and (12) hold, but (13) does not, showing

that (11) does not imply (13). �

Example Let f = h =
√
L. Here we have (12) and (13), but not (11), showing that

(13) does not imply (11). �
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Appendix 1

Let b : Rd → Rd be Lipschitz and let ϕx,b be the unique solution to ϕ′
x,b
= b(ϕx,b)

with ϕx,b (0) = x. For ε > 0, let Xε,b be defined by

Xε,b (t) = Xε,b (0)+
∫ t

0

b(Xε,b (s)) ds+
√

2εW (t),

whereW is a standard d-dimensional Brownian motion. As in Section 1, if F : Rd→

R is given, then ϕx = ϕx,−∇F and Xε = Xε,−∇F . For the F we use later, −∇F is not

Lipschitz. This will cause no difficulty, however, since it will be locally Lipschitz,

and we will only apply these theorems on compact sets.

This first theorem is [11, Theorem 2.40]. It describes the asymptotic mean time

to leave a domain of attraction.

Theorem Let F : Rd → R have continuous and bounded derivatives up to second

order. Let D be a bounded open domain in Rd with boundary ∂D of class C2 and

〈−∇F (x),n(x)〉 < 0 for all x ∈ ∂D, where n(x) is the outward unit normal vector to

∂D at x.

Let x0 ∈ D. Assume that if G is a neighborhood of x0, then there exists a neigh-

borhood G̃ of x0 such that G̃ ⊂ G and, for all x ∈ G̃, we have ϕx ([0,∞)) ⊂ G and

ϕx (t)→ x0 as t→∞. Further assume that, for each x ∈ D, we have ϕx ((0,∞)) ⊂ D.
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Then for any x ∈ D,

(i) lim
ε→0

2ε logEx[τ(Dc )] = inf
y∈∂D

2(F (y)−F (x0)) =: V0, and

(ii) for all ζ > 0, we have lim
ε→0

Px (e(V0−ζ )/(2ε) < τ(Dc ) < e(V0+ζ )/(2ε) ) = 1.

Moreover, both convergences hold uniformly in x on each compact subset of D. �

This next theorem is [11, Lemma 2.34(b)]. It asserts that the diffusion cannot

linger for long inside the domain of attraction without quickly coming into a small

neighborhood of the associated minimum.

Theorem Assume the hypotheses of Theorem 18. Fix δ > 0. Then there existsC > 0,

T > 0, and ε0 > 0 such that

Px (τ(Dc ∪ Bδ (x0)) > t) ≤ e−C(t−T )/(2ε),

for all x ∈ D \ Bδ (x0), all t > T , and all ε < ε0. �

The last result we need gives the probability of leaving the domain of attraction

through a given point. To state this result, we need some preliminary notation and

definitions. See [11, Section 5.3] for more details.

Let u : [0,T ]→ Rd . If u is absolutely continuous, define

IT (u) =
1

2

∫ T

0

|u′(s)− b(u(s)) |2 ds,

and define IT (u) =∞ otherwise.

Let G be a bounded domain in Rd with ∂G of class C2 and define

V (x, y) = inf{IT (u) | T > 0,u : [0,T ]→ Rd,u(0) = x,u(T ) = y}

VG (x, y) = inf{IT (u) | T > 0,u : [0,T ]→G∪ ∂G,u(0) = x,u(T ) = y}.

The functions V and VG are continuous on Rd ×Rd and (G ∪ ∂G) × (G ∪ ∂G),
respectively. We have VG (x, y) ≥ V (x, y) for all x, y ∈ G∪∂G. Also, for all x, y ∈ G,

if VG (x, y) ≤ minz∈∂G V (x, z), then VG (x, y) = V (x, y).
Note that if ϕx,b (t) = y for some t > 0 and ϕx,b ([0, t]) ⊂G∪∂G, thenVG (x, y) = 0.

An equivalence relation on G∪ ∂G is defined by x ∼G y if and only if VG (x, y) =
VG (y, x) = 0. It can be shown that if the equivalence class of y is nontrivial, then

ϕy,b ([0,∞)) is contained in that equivalence class.

The ω-limit set of a point y ∈ Rd is denoted by ω(y) and defined as the set of

accumulation points of ϕy,b ([0,∞)). Assume that G contains a finite number of

compact sets K1, . . . ,K� such that each Ki is an equivalence class of ∼G . Assume

further that, for all y ∈ Rd, if ω(y) ⊂ G∪ ∂G, then ω(y) ⊂ Ki for some i.
The function VG is constant on Ki ×K j , so we let VG (Ki,K j ), VG (x,Ki ), and

VG (Ki, x) denote this common value. Also, VG (Ki, ∂G) = infy∈∂G VG (Ki, y).
Given a finite set L and a nonempty, proper subset Q ⊂ L, let G(Q) denote the

set of directed graphs on L with arrows i → j, i ∈ L \Q, j ∈ L, j � i, such that:
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(i) from each i ∈ L \Q exactly one arrow is issued; (ii) for each i ∈ L \Q there is a

chain of arrows starting at i and finishing at some point in Q. If j is such a point we

say that the graph leads i to j. For i ∈ L \Q and j ∈ Q, the set of graphs in G(Q)
leading i to j is denoted by Gi, j (Q).

With L = {K1, . . . ,K�, ∂G}, let

MG = min
g∈G(∂G)

∑
(α→β)∈g

VG (α, β).

If x ∈ G and y ∈ ∂G, then with L = {K1, . . . ,K�, x, y, ∂G}, let

MG (x, y) = min
g∈Gx,y ({y,∂G })

∑
(α→β)∈g

VG (α, β).

The following theorem is [11, Theorem 5.19].

Theorem Under the above assumptions and notation, for any compact set K ⊂ G,

γ > 0, and δ > 0, there exists ε0 > 0 and δ0 ∈ (0, δ) so that for any x ∈ K , y ∈ ∂G,

and ε ∈ (0, ε0), we have

exp

(
−
MG (x, y)−MG +2γ

2ε

)
≤ Px (Xε,b (τ) ∈ Bδ0

(y))

≤ exp

(
−
MG (x, y)−MG −2γ

2ε

)
,

where τ = τXε,b (Rd \G). �

The next two results are auxiliary results which are needed to apply Theorem 20.

The first is [11, Proposition 2.37].

Proposition Under the assumptions of Theorem 18, we have

V (x0, y) = 2(F (y)−F (x0)),

for all y ∈ D. �

Lemma 12 Let b = −∇F , where F is as in Theorem 18. If there exists T0 > 0 such

that ϕx (T0) = y, then V (x, y) = 0 and V (y, x) = 2(F (x)−F (y)).

Proof Since ϕ′x = b(ϕx ), we have IT0
(ϕx ) = 0, which implies V (x, y) = 0. Let T > 0

and let ϕ : [0,T ]→ Rd satisfy ϕ(0) = y and ϕ(T ) = x. Then
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IT (ϕ) =
1

2

∫ T

0

|ϕ′(s)− b(ϕ(s)) |2 ds

=

1

2

∫ T

0

|ϕ′(s)+ b(ϕ(s)) |2 ds−2

∫ T

0

〈
ϕ′(s),b(ϕ(s))

〉
ds

=

1

2

∫ T

0

|ϕ′(s)+ b(ϕ(s)) |2 ds+2

∫ T

0

〈
ϕ′(s),∇F (ϕ(s))

〉
ds

=

1

2

∫ T

0

|ϕ′(s)+ b(ϕ(s)) |2 ds+2(F (x)−F (y)).

This shows thatV (y, x) ≥ 2(F (x)−F (y)).Now let ψ(t) = ϕx (T0− t). Then ψ(0) = y,

ψ(T0) = x, and ψ′ = −b(ψ). Hence, V (y, x) ≤ IT0
(ψ) = 2(F (x)−F (y)). �

Appendix 2

Finally, we need two classical results of Laplace that allow us to estimate exponential

integrals. The following two results can be found in [5, pp. 36–37]. The notation

a ∼ b means that a/b→ 1.

Theorem Let I ⊂ R be a (possibly infinite) open interval, F ∈ C2(I ), and x0 ∈ I .
Suppose g is continuous at x0. If F (x0) is the unique global minimum of F on I ,
and F ′′(x0) > 0, then

∫
I

g(x)e−F (x)/ε dx ∼ g(x0)

√
2πε

F ′′(x0)
e−F (x0)/ε, (39)

as ε→ 0, provided the left-hand side exists for sufficiently small ε. �

Proposition Let −∞ < a < x0 < b ≤ ∞ and F ∈ C1(a,b). Suppose g is continuous

at x0. If F (x0) is the unique global minimum of F on [x0,b) and F ′(x0) > 0, then

∫ b

x0

g(x)e−F (x)/ε dx ∼ g(x0)
ε

F ′(x0)
e−F (x0 )/ε, (40)

as ε→ 0, provided the left-hand side exists for sufficiently small ε. �
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Maximally Distributed Random Fields under

Sublinear Expectation

Xinpeng Li and Shige Peng

Abstract This paper focuses on the maximal distribution on sublinear expectation

space and introduces a new type of random fields with the maximally distributed

finite-dimensional distribution. The corresponding spatial maximally distributed

white noise is constructed, which includes the temporal-spatial situation as a spe-

cial case due to the symmetrical independence property of maximal distribution.

In addition, the stochastic integrals with respect to the spatial or temporal-spatial

maximally distributed white noises are established in a quite direct way without the

usual assumption of adaptability for integrand.

1 Introduction

In mathematics and physics, a random field is a type of parameterized family of

random variables. When the parameter is time t ∈ R+, we call it a stochastic process,

or a temporal random field. Quite often the parameter is space x ∈ Rd , or time-space

(t, x) ∈ R+ × Rd. In this case, we call it a spatial or temporal-spatial random field.

A typical example is the electromagnetic wave dynamically spread everywhere in

our R3-space or more exactly, in R+ × R3-time-space. In principle, it is impossible

to know the exact state of the electromagnetic wave of our real world , namely, it is

a nontrivial random field parameterized by the time-space (t, x) ∈ R+ × R3.

Classically, a random field is defined on a given probability space (Ω,F , P). But

for the above problem, can we really get to know the probability P? This involves

the so called problem of uncertainty of probabilities.

Xinpeng Li

Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, 266237,

Qingdao, China. e-mail: lixinpeng@sdu.edu.cn

Shige Peng (�)

School of Mathematics, Shandong University, 250100, Jinan, China. e-mail: peng@sdu.edu.cn

339© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022 

G. Yin, T. Zariphopoulou (eds.), Stochastic Analysis, Filtering, and Stochastic Optimization, 

https://doi.org/10.1007/978-3-030-98519-6_14

mailto:lixinpeng@sdu.edu.cn
mailto:peng@sdu.edu.cn
https://doi.org/10.1007/978-3-030-98519-6_14
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98519-6_14&domain=pdf


340 Xinpeng Li and Shige Peng

Over the past few decades, non-additive probabilities or nonlinear expectations

have become active domains for studying uncertainties, and received more and more

attention in many research fields, such as mathematical economics, mathematical

finance, statistics, quantum mechanics. A typical example of nonlinear expectation

is sublinear one, which is used to model the uncertainty phenomenon characterized

by a family of probability measures {Pθ }θ∈Θ in which the true measure is unknown,

and such sublinear expectation is usually defined by

E[X] := sup
θ∈Θ

EPθ
[X].

This notion is also known as the upper expectation in robust statistics (see Huber

[9]), or the upper prevision in the theory of imprecise probabilities (see Walley

[20]), and has the closed relation with coherent risk measures (see Artzner et al.

[1], Delbaen [4], Föllmer and Schied [6]). A first dynamical nonlinear expectation,

called g-expectation was initiated by Peng [12].

The foundation of sublinear expectation theory with a new type of G-Brownian

motion and the corresponding Itô’s stochastic calculus was laid in Peng [13], which

keeps the rich and elegant properties of classical probability theory except linearity of

expectation. Peng [15] initially defined the notion of independence and identical dis-

tribution (i.i.d.) based on the notion of nonlinear expectation instead of the capacity.

Based on the notion of new notions, the most important distribution calledG-normal

distribution introduced, which can be characterized by the so-calledG-heat equation.

The notions ofG-expectation andG-Brownian motion can be regarded as a nonlinear

generalization of Wiener measure and classical Brownian motion. The correspond-

ing limit theorems as well as stochastic calculus of Itô’s type underG-expectation are

systematically developed in Peng [18]. Besides that, there is also another important

distribution, called maximal distribution. The distribution of maximally distributed

random variable X can be calculated simply by

E[ϕ(X )] = max
v∈[−E[−X],E[X]]

ϕ(v), ϕ ∈ Cb (R).

The law of large numbers under sublinear expectation (see Peng [18]) shows that

if {Xi }
∞
i=1

is a sequence of independent and identical distributed random variables

with limc→∞ E[( |X1 | − c)+] = 0, then the sample average converges to maximal

distribution in law, i.e.,

lim
n→∞
E[ϕ(

X1 + · · · + Xn

n
)] = max

v∈[−E[−X1],E[X1]]
ϕ(v), ∀ϕ ∈ Cb (R).

We note that the finite-dimensional distribution for quadratic variation process of

G-Brownian motion is also maximal distributed.

Recently, Ji and Peng [10] introduced a new G-Gaussian random fields, which

contains a type of spatial white noise as a special case. Such white noise is a

natural generalization of the classical Gaussian white noise (for example, see Walsh

[21], Dalang [2] and Da Prato and Zabczyk [3]). As pointed in [10], the space-
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indexed increments do not satisfy the property of independence. Once the sublinear

G-expectation degenerates to linear case, the property of independence for the space-

indexed part turns out to be true as in the classical probability theory.

In this paper, we introduce a very special but also typical random field, called

maximally distributed random field, in which the finite-dimensional distribution is

maximally distributed. The corresponding space-indexed white noise is also con-

structed. It is worth mentioning that the space-indexed increments of maximal white

noise is independent, which is essentially different from the case of G-Gaussian

white noise. Thanks to the symmetrical independence of maximally distributed

white noise, it is natural to view the temporal-spatial maximally distributed white

noise as a special case of the space-indexed maximally distributed white noise.

The stochastic integrals with respect to spatial and temporal-spatial maximally dis-

tributed white noises can be constructed in a quite simple way, which generalize

the stochastic integral with respect to quadratic variation process of G-Brownian

motion introduced in Peng [18]. Furthermore, due to the boundedness of maximally

distributed random field, the usual assumption of adaptability for integrand can be

dropped. We emphasize that the structure of maximally distributed white noise is

quite simple, it can be determined by only two parameters μ and μ, and the calcula-

tion of the corresponding finite-dimensional distribution is taking the maximum of

continuous function on the domain determined by μ and μ. The use of maximally

distributed random fields for modelling purposes in applications can be explained

mainly by the simplicity of their construction and analytic tractability combined with

the maximal distributions of marginal which describe many real phenomena due to

the law of large numbers with uncertainty.

This paper is organized as follows. In Section 2, we review basic notions and

results of nonlinear expectation theory and the notion and properties of maximal

distribution. In Section 3, we first recall the general setting of random fields under

nonlinear expectations, and then introduce the maximally distributed random fields.

In Section 4, we construct the spatial maximally distributed white noise and study

the corresponding properties. The properties of spatial as well as temporal-spatial

maximally distributed white noise and the related stochastic integrals are established

in Section 5.

2 Preliminaries

In this section, we recall some basic notions and properties in the nonlinear expecta-

tion theory. More details can be found in Denis et al. [5], Hu and Peng [8] and Peng

[13, 14, 15, 16, 18, 19].

Let Ω be a given nonempty set andH be a linear space of real-valued functions

on Ω such that if X ∈ H , then |X | ∈ H .H can be regarded as the space of random

variables. In this paper, we consider a more convenient assumption: if random

variables X1,· · · ,Xd ∈ H , then ϕ(X1, X2, · · · , Xd) ∈ H for each ϕ ∈ Cb.Lip (Rd).
Here Cb.Lip (Rd) is the space of all bounded and Lipschitz functions on Rd.
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We call X = (X1, · · · , Xn), Xi ∈ H , 1 ≤ i ≤ n, an n-dimensional random vector,

denoted by X ∈ H n.

Definition 1 A nonlinear expectation Ê onH is a functional Ê : H → R satisfying

the following properties: for each X,Y ∈ H ,

(i) Monotonicity: Ê[X] ≥ Ê[Y ] if X ≥ Y ;

(ii) Constant preserving: Ê[c] = c for c ∈ R;

The triplet (Ω,H , Ê) is called a nonlinear expectation space. If we further assume

that

(iii) Sub-additivity: Ê[X + Y ] ≤ Ê[X] + Ê[Y ];

(iv) Positive homogeneity: Ê[λX] = λÊ[X] for λ ≥ 0.

Then Ê is called a sublinear expectation, and the corresponding triplet (Ω,H , Ê) is

called a sublinear expectation space.

Let (Ω,H , Ê) be a nonlinear (resp., sublinear) expectation space. For each given

n-dimensional random vector X , we define a functional on Cb.Lip (Rn) by

FX [ϕ] := Ê[ϕ(X )], for each ϕ ∈ Cb.Lip (Rn).

FX is called the distribution of X . It is easily seen that (Rn,Cb.Lip (Rn), FX ) forms

a nonlinear (resp., sublinear) expectation space. If FX is not a linear functional on

Cb.Lip (Rn), we say X has distributional uncertainty.

Definition 2 Two n-dimensional random vectors X1 and X2 defined on nonlinear

expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2) respectively, are called identically

distributed, denoted by X1
d
= X2, if FX1

= FX2
, i.e.,

Ê1[ϕ(X1)] = Ê2[ϕ(X2)], ∀ϕ ∈ Cb.Lip (Rn).

Definition 3 Let (Ω,H , Ê) be a nonlinear expectation space. An n-dimensional

random vector Y is said to be independent from another m-dimensional random

vector X under the expectation Ê if, for each test function ϕ ∈ Cb.Lip (Rm+n), we

have

Ê[ϕ(X,Y )] = Ê[Ê[ϕ(x,Y )]x=X].

Remark 1 Peng [15] (see also Peng [18]) introduced the notions of the distribution

and the independence of random variables under a nonlinear expectation, which play

a crucially important role in the nonlinear expectation theory.

For simplicity, the sequence {Xi }
n
i=1

is called independence if Xi+1 is independent

from (X1, · · · , Xi ) for i = 1, 2, · · · , n−1. Let X̄ and X be two n-dimensional random

vectors on (Ω,H , Ê). X̄ is called an independent copy of X , if X̄ d
= X and X̄ is

independent from X .

Remark 2 It is important to note that “Y is independent from X” does not imply that

“X is independent from Y” (see Peng [18]).
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In this paper, we focus on an important distribution on sublinear expectation space

(Ω,H , Ê), called maximal distribution.

Definition 4 An n-dimensional random vector X = (X1, · · · , Xn) on a sublinear

expectation space (Ω,H , Ê) is said to be maximally distributed, if there exists a

bounded and closed convex subset Λ ⊂ Rn such that, for every continuous function

ϕ ∈ C(Rn),
Ê[ϕ(X )] = max

x∈Λ
ϕ(x).

Remark 3 Here Λ characterizes the uncertainty of X . It is easy to check that this

maximally distributed random vector X satisfies

X + X̄ d
= 2X,

where X̄ is an independent copy of X . Conversely, suppose a random variable X
satisfying X + X̄ d

= 2X , if we further assume the uniform convergence condition

limc→∞ Ê[( |X | −c)+] = 0 holds, then we can deduce that X is maximally distributed

by the law of large numbers (see Peng [18]). An interesting problem is that is X still

maximally distributed without such uniform convergence condition? We emphasize

that the law of large numbers does not hold in this case, a counterexample can be

found in Li and Zong [11].

Proposition 1 Let g(p) = maxv∈Λ v · p be given. Then an n-dimensional random

variable is maximally distributed if and only if for each ϕ ∈ C(Rn), the following

function

u(t, x) := Ê[ϕ(x + tX )] = max
v∈Λ
ϕ(x + tv), (t, x) ∈ [0,∞) × Rn (1)

is the unique viscosity solution of the the following nonlinear partial differential

equation

∂tu − g(Dxu) = 0, u|t=0 = ϕ(x). (2)

This property implies that, each sublinear function g on Rn determines uniquely

a maximal distribution. The following property is easy to check.

Proposition 2 Let X be an n-dimensional maximally distributed random vector

characterized by its generating function

g(p) := Ê[X · p], p ∈ Rn .

Then, for any function ψ ∈ C(Rn), Y = ψ(X ) is also an R-valued maximally

distributed random variable:

E[ϕ(Y )] = max
v∈[ρ,ρ]

ϕ(v), ρ = max
γ∈Λ
ψ(γ), ρ = min

γ∈Λ
ψ(γ).



344 Xinpeng Li and Shige Peng

Proposition 3 Let X = (X1, · · · , Xn) be an n-dimensional maximal distribution on

a sublinear expectation space (Ω,H , Ê). If the corresponding generating function

satisfies, for all p = (p1, · · · , pn) ∈ Rn,

g(p) = Ê[X1p1 + · · · + Xnpn] = Ê[X1p1] + · · · + Ê[Xnpn],

then {Xi }
n
i=1

is a sequence of independent maximally distributed random variables.

Moreover, for any permutation π of {1, 2, · · · , n}, the sequence {Xπ (i) }
n
i=1

is also

independent.

Proof For i = 1, · · · , n, we denote μi = Ê[Xi] and μ
i
= −Ê[−Xi]. Since

g(p) = Ê[X1 · p1 + · · · + Xn · pn] = Ê[X1 · p1] + Ê[X2 · p2] + · · · + Ê[Xn · pn]

=

n∑
i=1

max
vi ∈[μ

i
,μi ]

pivi = max
(v1, · · · ,vn )∈⊗ni=1

[μ
i
,μi ]

(p1v1 + · · · + pnvn),

it follows Proposition 1 that (X1, · · · , Xn) is an n-dimensional maximally distributed

random vector such that, ∀ϕ ∈ C(Rn),

Ê[ϕ(X1, · · · , Xn)] = max
(v1, · · · ,vn )∈⊗ni=1

[μ
i
,μi ]
ϕ(v1, · · · , vn).

It is easy to check that {Xi }
n
i=1

is independent, and so does the permuted sequence

{Xπ (i) }
n
i=1

. �

Remark 4 The independence of maximally distributed random variables is symmet-

rical. But, as discussed in Remark 2, under a sublinear expectation, X is independent

from Y does not automatically imply that Y is also independent from X . In fact, Hu

and Li [7] proved that, if X is independent fromY , andY is also independent from X ,

and both of X and Y have distributional uncertainty, then (X,Y ) must be maximally

distributed.

3 Maximally distributed random fields

In this section, we first recall the general setting of random fields defined on a

nonlinear expectation space introduced by Ji and Peng [10].

Definition 5 Under a given nonlinear expectation space (Ω,H , Ê), a collection of

m-dimensional random vectors W = (Wγ)γ∈Γ is called an m-dimensional random

field indexed by Γ, if for each γ ∈ Γ, Wγ ∈ H
m.

In order to introduce the notion of finite-dimensional distribution of a random

field W , we denote the family of all sets of finite indices by

JΓ := {γ = (γ1, · · · , γn) : ∀n ∈ N, γ1, · · · , γn ∈ Γ, γi � γj if i � j}.
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Definition 6 Let (Wγ)γ∈Γ be an m-dimensional random field defined on a nonlinear

expectation space (Ω,H , Ê). For each γ = (γ1, · · · , γn) ∈ JΓ and the corresponding

random vector Wγ = (Wγ1
, · · · ,Wγn ), we define a functional on Cb.Lip (Rn×m) by

F
W
γ [ϕ] = Ê[ϕ(Wγ)]

The collection (FWγ [ϕ])γ∈JΓ is called the family of finite-dimensional distributions

of (Wγ)γ∈Γ.

It is clear that, for each γ ∈ JΓ, the triple (Rn×m,Cb.Lip (Rn×m), FWγ ) constitutes a

nonlinear expectation space.

Let (W (1)
γ )γ∈Γ and (W (2)

γ )γ∈Γ be two m-dimensional random fields defined on

nonlinear expectation spaces (Ω1,H1, Ê1) and (Ω2,H2, Ê2) respectively. They are

said to be identically distributed, denoted by (W (1)
γ )γ∈Γ

d
= (W (2)

γ )γ∈Γ, or simply

W (1) d
= W (2) , if for each γ = (γ1, · · · , γn) ∈ JΓ,

Ê1[ϕ(W (1)
γ )] = Ê2[ϕ(W (2)

γ )], ∀ϕ ∈ Cb.Lip (Rn×m).

For any given m-dimensional random field W = (Wγ)γ∈Γ, the family of its finite-

dimensional distributions satisfies the following properties of consistency:

(1) Compatibility: For each (γ1, · · · , γn, γn+1) ∈ JΓ and ϕ ∈ Cb.Lip (Rn×m),

F
W
γ1, · · · ,γn

[ϕ] = FWγ1, · · · ,γn,γn+1
[ϕ̃], (3)

where the function ϕ̃ is a function on R(n+1)×m defined for any y1, · · · , yn, yn+1 ∈

R
m,

ϕ̃(y1, · · · , yn, yn+1) = ϕ(y1, · · · , yn);

(2) Symmetry: For each (γ1, · · · , γn) ∈ JΓ, ϕ ∈ Cb.Lip (Rn×m) and each permu-

tation π of {1, · · · , n},

F
W
γπ (1), · · · ,γπ (n) [ϕ] = F

W
γ1, · · · ,γn

[ϕπ] (4)

where we denote ϕπ (y1, · · · , yn) = ϕ(yπ (1), · · · , yπ (n) ), for y1, · · · , yn ∈ R
m.

The following theorem generalizes the classical Kolmogorov’s existence theorem to

the situation of sublinear expectation space, which is a variant of Theorem 3.8 in

Peng [17]. The proof can be founded in Ji and Peng [10].

Theorem 1 Let {Fγ, γ ∈ JΓ} be a family of finite-dimensional distributions satisfying

the compatibility condition (3) and the symmetry condition (4). Then there exists

an m-dimensional random field W = (Wγ)γ∈Γ defined on a nonlinear expectation

space (Ω,H , Ê) whose family of finite-dimensional distributions coincides with

{Fγ, γ ∈ JΓ}. Moreover, if we assume that each Fγ in {Fγ, γ ∈ JΓ} is sublinear, then

the corresponding expectation Ê on the space of random variables (Ω,H ) is also

sublinear.
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Now we consider a new random fields under a sublinear expectation space.

Definition 7 Let (Wγ)γ∈Γ be an m-dimensional random field, indexed by Γ, defined

on a sublinear expectation space (Ω,H , Ê). (Wγ)γ∈Γ is called a maximally distributed

random field if for each γ = (γ1, · · · , γn) ∈ JΓ, the following (n × m)-dimensional

random vector

Wγ =(Wγ1
, · · · ,Wγn )

=(W (1)
γ1
, · · ·W (m)

γ1
, · · · ,W (1)

γn
, · · · ,W (m)

γn
), W ( j)

γi ∈ H ,

is maximally distributed.

For each γ = (γ1, · · · , γn) ∈ JΓ, we define

g
W
γ (p) = Ê[Wγ · p], p ∈ Rn×m,

Then (gWγ )γ∈JΓ constitutes a family of sublinear functions:

g
W
γ : Rn×m �→ R, γ = (γ1, · · · , γn), γi ∈ Γ, 1 ≤ i ≤ n, n ∈ N,

which satisfies the properties of consistency in the following sense:

(1) Compatibility: For any (γ1, · · · , γn, γn+1) ∈ JΓ and p = (pi)n×mi=1
∈ Rn×m,

g
W
γ1, · · · ,γn,γn+1

(p̄) = g
W
γ1, · · · ,Wγn

(p), (5)

where p̄ =
(
p
0

)
∈ R(n+1)×m ;

(2) Symmetry: For any permutation π of {1, · · · , n},

g
W
γπ (1), · · · ,γπ (n) (p) = g

W
γ1, · · · ,γn

(π−1(p)), (6)

where π−1(p) = (p(1), . . . , p(n) ),

p(i) = (p(π−1 (i)−1)m+1, . . . , p(π−1 (i)−1)m+m ) , 1 ≤ i ≤ n.

If the above type of family of sublinear functions (gγ )γ∈JΓ is given, following

the construction procedure in the proof of Theorem 3.5 in Ji and Peng [10], we can

construct a maximally distributed random field on sublinear expectation space.

Theorem 2 Let (gγ)γ∈JΓ be a family of real-valued functions such that, for each

γ = (γ1, · · · , γn) ∈ JΓ, the real function gγ is defined on Rn×m �→ R and satisfies

the sub-linearity. Moreover, this family (gγ)γ∈JΓ satisfies the compatibility condition

(5) and symmetry condition (6). Then there exists an m-dimensional maximally

distributed random field (Wγ)γ∈Γ on a sublinear expectation space (Ω,H , Ê) such

that for each γ = (γ1, · · · , γn) ∈ JΓ, Wγ = (Wγ1
, · · · ,Wγn ) is maximally distributed

with generating function
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g
W
γ (p) = Ê[Wγ · p] = gγ (p), for any p ∈ Rn×m.

Furthermore, if there exists another maximally distributed random field (W̄γ)γ∈Γ,
with the same index set Γ, defined on a sublinear expectation space (Ω̄, H̄ , Ē) such

that for each γ = (γ1, · · · , γn) ∈ JΓ, W̄γ is maximally distributed with the same

generating function gγ, namely,

Ē[W̄γ · p] = gγ (p) for any p ∈ Rn×m,

then we have W d
= W̄ .

4 Maximally distributed white noise

In this section, we formulate a new type of maximally distributed white noise on Rd.

Given sublinear expectation space Ω,H , Ê, let Lp (Ω) be the completion of H

under the Banach norm ‖X ‖ := Ê[|X |p]
1
p . For any X,Y ∈ L1(Ω), we say that X = Y

if Ê[|X − Y |] = 0. As shown in Chapter 1 of Peng [18], Ê can be continuously

extended to the mapping from L1(Ω) to R and properties (i)-(iv) of Definition 1 still

hold. Moreover, (Ω,L1(Ω), Ê) also forms a sublinear expectation space, which is

called the complete sublinear expectation space.

Definition 8 Let (Ω,L1(Ω), Ê) be a complete sublinear expectation space and Γ =

B0(Rd) := {A ∈ B(Rd), λA < ∞}, where λA denotes the Lebesgue measure of

A ∈ B(Rd). Let g : R �→ R be a given sublinear function, i.e.,

g(p) = μp+ − μp−, −∞ < μ ≤ μ < +∞.

A random field W = {WA}A∈Γ is called a one-dimensional maximally distributed

white noise if

(i) For each A1, · · · , An ∈ Γ, (WA1
, · · · ,WAn

) is a Rn-maximally distributed ran-

dom vector under Ê, and for each A ∈ Γ,

Ê[WA · p] = g(p)λA, p ∈ R. (7)

(ii) Let A1, A2, · · · , An be in Γ and mutually disjoint, then {WAi
}n
i=1

are indepen-

dent sequence, and

WA1∪A2∪···∪An
= WA1

+WA2
+ · · · +WAn

. (8)

Remark 5 For each A ∈ Γ, we can restrict that WA takes values in [λAμ, λAμ].

Indeed, let

dA(x) := min
y∈[λAμ,λAμ]

{|x − y |},
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by the definition of maximal distribution,

Ê[dA(WA)] = max
v∈[λAμ,λAμ]

min
y∈[λAμ,λAμ]

{|v − y |} = 0,

which implies that dA(WA) = 0.

We can construct a spatial maximal white noise satisfying Definition 8 in the

following way.

For each γ = (A1, · · · , An) ∈ JΓ , Γ = B0(Rd ), consider the mapping gγ (·) :

R
n → R defined as follows:

gγ (p):=
∑

k∈{0,1}n

g(k · p)λB(k), p ∈ Rn, (9)

where k = (k1, · · · , kn) ∈ {0, 1}n, and B(k) = ∩n
j=1

Bj , with

Bj =

{
Aj if k j = 1,

Ac
j

if k j = 0.

For example, given A1, A2, A3 ∈ Γ and p = (p1, p2, p3) ∈ R3,

gA1,A2,A3
(p) = g(p1 + p2 + p3)λA1∩A2∩A3

+ g(p1 + p2)λA1∩A2∩A
c
3
+ g(p2 + p3)λAc

1
∩A2∩A3

+ g(p1 + p3)λA1∩A
c
2
∩A3

+ g(p1)λA1∩A
c
2
∩Ac

3
+ g(p2)λAc

1
∩A2∩A

c
3
+ g(p3)λAc

1
∩Ac

2
∩A3
.

Obviously, for each γ = (A1, · · · , An) ⊂ Γ, gγ (·) defined by (9) is a sublinear

function defined on Rn due to the sub-linearity of function g(·). The following

property shows that the consistency conditions (5) and (6) also hold for {gγ }γ∈JΓ .

Proposition 4 The family {gγ }γ∈JΓ defined by (9) satisfies the consistency conditions

(5) and (6).

Proof For compatibility (5), given A1, · · · , An, An+1 ∈ Γ and p̄T = (pT , 0) ∈ Rn+1,

we have

gA1, · · · ,An+1
(p̄) =

∑
k∈{0,1}n+1

g(k · p̄)λB(k)

=

∑
k′ ∈{0,1}n

g(k ′ · p)(λB(k′)∩An+1
+ λB(k′)∩Ac

n+1
)

=

∑
k′ ∈{0,1}n

g(k ′ · p)λB(k′) = gA1, · · · ,An
(p).

The symmetry (6) can be easily verified since the operators k · p and B(k) = ∩n
j=1

Bj

are also symmetry. �
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Now we present the existence of the maximally distributed white noises under the

sublinear expectation.

Theorem 3 For each given sublinear function

g(p) = max
μ∈[μ,μ]

(μ · p) = μp+ − μp−, p ∈ R,

there exists a one-dimensional maximally distributed random field (Wγ)γ∈Γ on a

sublinear expectation space (Ω,L1(Ω), Ê) such that, for each γ = (A1, · · · , An) ∈
JΓ, Wγ = (WA1

, · · · ,WAn
) is maximally distributed.

Furthermore, (Wγ)γ∈Γ is a spatial maximally distributed white noise under

(Ω,L1(Ω), Ê), namely, conditions (i) and (ii) of Definition 8 are satisfied.

If (W̄γ)γ∈Γ is another maximally distributed white noise with the same sublinear

function g in (9), then W̄ d
= W .

Proof Thanks to Proposition 4 and Theorem 2, the existence and uniqueness of the

maximally distributed random fieldW in a sublinear expectation space (Ω,L1(Ω), Ê)
with the family of generating functions defined by (9) hold. We only need to verify

that the maximally distributed random field W satisfies conditions (i) and (ii) of

Definition 8.

For each A ∈ Γ, Ê[WA ·p] = g(p)λA by Theorem 2 and (9), thus (i) of Definition 8

holds.

We note that if {Ai }
n
i=1

are mutually disjoint, then for p = (p1, · · · , pn) ∈ Rn, by

(9), we have

Ê[p1WA1
+ · · · + pnWAn

] = g(p1)λA1
+ · · · + g(pn)λAn

,

thus the independence of {WAi
}n
i=1

can be implied by Proposition 3.

In order to prove (8), we only consider the case of two disjoint sets. Suppose that

A1 ∩ A2 = ∅, A3 = A1 ∪ A2,

an easy computation of (9) shows that

gA1,A2,A3
(p) =g(p1 + p3)λA1

+ g(p2 + p3)λA2

= max
v1∈[μλA1

,μλA1
]

max
v2∈[μλA2

,μλA2
]

max
v3=v1+v2

(p1 · v1 + p2 · v2 + p3 · v3).

Thus, for each ϕ ∈ C(R3),

Ê[ϕ(WA1
,WA2

,WA3
)] = max

v1∈[μλA1
,μλA1

]
max

v2∈[μλA2
,μλA2

]
max

v3=v1+v2

ϕ(v1, v2, v3).

In particular, we set ϕ(v1, v2, v3) = |v1 + v2 − v3 |, it follows that

Ê[|WA1
+WA2

−WA1∪A2
|] = 0.

which implies that
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WA1∪A2
= WA1

+WA2
.

Finally, (ii) of Definition 8 holds. �

Remark 6 The finite-dimensional distribution of maximally distributed whiten noise

can be uniquely determined by two parameters μ and μ, which can be simply

calculated by taking the maximum of the continuous function over the domain

determined by μ and μ.

Similar to the invariant property of G-Gaussian white noise introduced in Ji and

Peng [10], it also holds for maximally distributed white noise due to the well-known

invariance of the Lebesgue measure under rotation and translation.

Proposition 5 For each p ∈ Rd and O ∈ O(d) := {O ∈ Rd×d : OT
= O−1}, we set

Tp,O (A) = O · A + p, A ∈ Γ.

Then, for each A1, · · · , An ∈ Γ,

(WA1
, · · · ,WAn

) d
= (WTp,O (A1 ), · · · ,WTp,O (An ) ).

5 Spatial and temporal maximally distributed white noise and

related stochastic integral

In Ji and Peng [10], we see that a spatial G-white noise is essentially different

from the temporal case or the temporal-spatial case, since there is no independence

property for the spatialG-white noise. But for the maximally distributed white noise,

spatial or temporal-spatial maximally distributed white noise has the independence

property due to the symmetrical independence for maximal distribution.

Combining symmetrical independence and boundedness properties of maximal

distribution, the integrand random fields can be largely extended when we consider

the stochastic integral with respect to spatial maximally distributed white noise. For

stochastic integral with respect to temporal-spatial case, the integrand random fields

can even contain the “non-adapted” situation.

5.1 Stochastic integral with respect to the spatial maximally

distributed white noise

We firstly define the stochastic integral with respect to the spatial maximally dis-

tributed white noise in a quite direct way.

Let {Wγ }γ∈Γ , Γ = B0(Rd), be a one-dimensional maximally distributed white

noise defined on a complete sublinear expectation space (Ω,L1(Ω), Ê), with g(p) =
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μp+ − μp−, −∞ < μ ≤ μ < ∞. We introduce the following type of random fields,

called simple random fields.

Given p ≥ 1, set

Mp,0
g (Ω) = {η(x, ω) =

n∑
i=1

ξi (ω)1Ai
(x), A1, · · · , An ∈ Γ are mutually disjoint

i = 1, 2, . . . , n, ξ1, · · · , ξn ∈ Lp (Ω), n = 1, 2, · · · , }.

For each simple random fields η ∈ Mp,0
g (Ω) of the form

η(x, ω) =
n∑
i=1

ξi (ω)1Ai
(x), (10)

the related Bohner’s integral for η with respect to the Lebesgue measure λ is

IB (η) =
∫
Rd

η(x, ω)λ(dx) :=

n∑
i=1

ξi (ω)λAi
.

It is immediate that IB (η) : Mp,0
g (Ω) �→ Lp (Ω) is a linear and continuous mapping

under the norm for η, defined by,

‖η‖M p = Ê[

∫
Rd

|η(x, ω) |pλ(dx)]
1
p .

The completion of Mp,0
g (Ω) under this norm is denoted by Mp

g (Ω) which is a Banach

space. The unique extension of the mapping IB is denoted by

∫
Rd

η(x, ω)λ(dx) := IB (η), η ∈ Mp
g (Ω).

Now for a simple random field η ∈ Mp,0
g (Ω) of form (10), we define its stochastic

integral with respect to W as

IW (η) :=

∫
Rd

η(x, ω)W (dx) =
n∑
i=1

ξi (ω)WAi
.

With this formulation, we have the following estimation.

Lemma 1 For each η ∈ M1,0
g (Ω) of form (10), we have

Ê
[�����
∫
Rd

η(x, ω)W (dx)
�����
]
≤ κÊ

[∫
Rd

|η(x, ω) |λ(dx)
]

(11)

where κ = max{|μ|, |μ|}.

Proof We have
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Ê[|

∫
Rd

η(x, ω)W (dx) |] = Ê[|

N∑
i=1

ξi (ω)WAi
|] ≤ Ê[

N∑
i=1

|ξi (ω) | · |WAi
|]

≤ κÊ[

N∑
i=1

|ξi (ω) | · λAi
] = κÊ[‖η‖M1

g (Ω)].

The last inequality is due to the boundedness of maximal distribution (see Remark

5). �

This lemma shows that IW : M1,0
g (Ω) �→ L1(Ω) is a linear continuous mapping.

Consequently, IW can be uniquely extended to the whole domain M1
g (Ω). We still

denote this extended mapping by

∫
Rd

ηW (dx) := IW (η).

Remark 7 Different from the stochastic integrals with respect to G-white noise in

Ji and Peng [10] which is only defined for the deterministic integrand, here the

integrand can be a random field.

5.2 Maximally distributed random fields of temporal-spatial types and

related stochastic integral

It is well-known that the framework of the classical white noise defined in a prob-

ability space (Ω,F , P) with 1-dimensional temporal and d-dimensional spatial pa-

rameters is in fact a R1+d-indexed space type white noise. But Peng [17] and then

Ji and Peng [10] observed a new phenomenon: Unlike the classical Gaussian white

noise, the d-dimensional space-indexed G-white noise cannot have the property of

incremental independence, thus spatial G-white noise is essentially different from

temporal-spatial or temporal one. Things will become much direct for the case of

maximally distributed white noise due to the incremental independence property of

maximal distributions. This means that a time-space maximally distributed (1+ d)-
white noise is essentially a (1+ d)-spatial white noise. The corresponding stochastic

integral is also the same. But in order to make clear the dynamic properties, we

still provide the description of the temporal-spatial white-noise on the time-space

framework:

R
+ × Rd = {(t, x1, . . . , xd) ∈ R+ × Rd},

where the index t ∈ [0,∞) is specially preserved to be the index for time.

Let Γ = {A ∈ B(R+ × Rd ), λA < ∞}, the maximally distributed white noise

{WA}A∈Γ is just like in the spatial case with dimension 1 + d.

More precisely, let
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Ω = {ω ∈ RΓ : ω(A ∪ B) = ω(A) +ω(B),
∀A, B ∈ Γ, A∪ B = ∅},

and W = (Wγ (ω) = ωγ )γ∈Γ the canonical random field.

For T > 0, denote the temporal-spatial sets before time T by

ΓT := {A ∈ Γ : (s, x) ∈ A⇒ 0 ≤ s < T }.

Set FT = σ{WA, A ∈ ΓT }, F =
∨
T≥0

FT , and

Lip (ΩT ) ={ϕ(WA1
, . . . ,WAn

), ∀n ∈ N,
Ai ∈ ΓT , i = 1, . . . , n, ϕ ∈ Cb.Lip (Rn)}.

We denote

Lip (Ω) =
∞⋃
n=1

Lip (Ωn).

For each X ∈ Lip (Ω), without loss of generality, we assume X has the form

X =ϕ(WA11
, · · · ,WA1m

, · · · ,WAn1
, · · · ,WAnm

),

where Aij = [ti−1, ti ) × Aj , 1 ≤ i ≤ n, 1 ≤ j ≤ m, 0 = t0 < t1 < · · · < tn < ∞,

{A1, · · · , Am} ⊂ B0(Rd) are mutually disjoint and ϕ ∈ Cb.Lip (Rn×m). Then the

corresponding sublinear expectation for X can be defined by

Ê[X] = Ê[ϕ(WA11
, · · · ,WA1m

, · · · ,WAn1
, · · · ,WAnm

)
= max

vi j ∈[μ,μ]
ϕ(λA11

v11, · · · , λA1m
v1m, · · · , λAn1

vvn1, · · · , λAnm
vnm),

1 ≤ i ≤ m, 1 ≤ j ≤ n

and the related conditional expectation of X under Ft , where t j ≤ t < t j+1, denoted

by Ê[X |Ft ], is defined by

Ê[ϕ(WA11
, · · · ,WA1m

, · · · ,WAn1
, · · · ,WAnm

) |Ft ]
=ψ(WA11

, · · · ,WA1m
, · · · ,WAj1

, · · · ,WAjm
),

where

ψ(x11, · · · , x1m, · · · , x j1, · · · , x jm) = Ê[ϕ(x11, · · · , x1m, · · · , x j1, · · · , x jm, W̃ )].

Here

W̃ = (WA( j+1)1, · · · ,WA( j+1)m , · · · ,WAn1
, · · · ,WAnm

).
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It is easy to verify that Ê[·] defines a sublinear expectation on Lip (Ω) and

the canonical process (Wγ)γ∈Γ is a one-dimensional temporal-spatial maximally

distributed white noise on (Ω, Lip (Ω), Ê).
For each p ≥ 1, T ≥ 0, we denote by Lp

g (ΩT )(resp., Lp
g (Ω)) the completion

of Lip (ΩT )(resp., Lip (Ω)) under the norm ‖X ‖p := (Ê[|X |p])1/p. The conditional

expectation Ê[· |Ft ] : Lip (Ω) → Lip (Ωt ) is a continuous mapping under ‖ · ‖p and

can be extended continuously to the mapping Lp
g (Ω) → Lp

g (Ωt ) by

|Ê[X |Ft ] − Ê[Y |Ft] | ≤ Ê[|X − Y | |Ft ] for X,Y ∈ Lip (Ω).

It is easy to verify that the conditional expectation Ê[·|Ft] satisfies the following

properties, and the proof is very similar to the corresponding one of Proposition 5.3

in Ji and Peng [10].

Proposition 6 For each t ≥ 0, the conditional expectation Ê[· |Ft ] : Lp
g (Ω) →

Lp
g (Ωt ) satisfies the following properties: for any X,Y ∈ Lp

g (Ω), η ∈ L
p
g (Ωt ),

(i) Ê[X |Ft] ≥ Ê[Y |Ft ] for X ≥ Y .

(ii) Ê[η |Ft ] = η.

(iii) Ê[X + Y |Ft ] ≤ Ê[X |Ft ] + Ê[Y |Ft ].
(iv) Ê[ηX |Ft ] = η+Ê[X |Ft ] + η−Ê[−X |Ft ] if η is bounded.

(v) Ê[Ê[X |Ft ] |Fs] = Ê[X |Ft∧s] for s ≥ 0.

Now we define the stochastic integral with respect to the spatial-temporal maxi-

mally distributed white noise W , which is similar to the spatial situation.

For each given p ≥ 1, let Mp,0(ΩT ) be the collection of simple processes with

the form:

f (s, x;ω) =
n−1∑
i=0

m∑
j=1

Xij (ω)1Aj
(x)1[ti,ti+1) (s), (12)

where Xij ∈ Lp
g (ΩT ), i = 0, · · · , n − 1, j = 1, · · · ,m, 0 = t0 < t1 < · · · < tn = T ,

and {Aj }
m
j=1
⊂ Γ is mutually disjoint.

Remark 8 Since we only require Xij ∈ Lp
g (ΩT ), the integrand may “non-adapted”.

This issue is essentially different from the requirement of adaptability in the definition

of stochastic integral with respect to temporal-spatial G-white noise in Ji and Peng

[10].

The completion of Mp,0(ΩT ) under the norm ‖ · ‖M p , denoted by Mp
g (ΩT ), is a

Banach space, where the Banach norm ‖ · ‖M p is defined by

‖ f ‖M p :=

(
Ê
[∫ T

0

∫
Rd

| f (s, x) |pdsλ(dx)
]) 1

p

=

⎧⎪⎪⎨⎪⎪⎩Ê
⎡⎢⎢⎢⎢⎢⎣
n−1∑
i=0

m∑
j=1

|Xij |
p (ti+1 − ti )λAj

⎤⎥⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

1
p

.
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For f ∈ Mp,0(ΩT ) with the form as (12), the related stochastic integral with

respect to the temporal-spatial maximally distributed white noise W can be defined

as follows:

IW ( f ) =
∫ T

0

∫
Rd

f (s, x)W (ds, dx) :=

n−1∑
i=0

m∑
j=1

XijW ([t j, t j+1) × Aj ). (13)

Similar to Lemma 1, we have

Lemma 2 For each f ∈ M1,0([0,T ] × Rd ),

Ê
[�����
∫ T

0

∫
Rd

f (s, x)W (ds, dx)
�����
]
≤ κÊ

[∫ T

0

∫
Rd

| f (s, x) |dsdx
]
, (14)

where κ = max{|μ|, |μ|}.

Thus IW : M1,0(ΩT ) �→ L1
g(ΩT ) is a continuous linear mapping. Consequently,

IW can be uniquely extend to the domain M1
g (ΩT ). We still denote this mapping by

∫ T

0

∫
Rd

f (s, x)W (ds, dx) := IW ( f ) for f ∈ M1
g (ΩT ).

Remark 9 Thanks to the boundedness of maximally distributed white noise, the do-

main of integrand M1
g (ΩT ) is much larger since the usual requirement of adaptability

for integrand can be dropped.

It is easy to check that the stochastic integral has the following properties.

Proposition 7 For each f , g ∈ M1
g (ΩT ), 0 ≤ s ≤ r ≤ t ≤ T ,

(i)
∫ t

s

∫
Rd

f (u, x)W (du, dx) =
∫ r

s

∫
Rd

f (u, x)W (du, dx)+
∫ t

r

∫
Rd

f (u, x)W (du, dx).
(ii)
∫ t

s

∫
Rd

(α f (u, x) + g(u, x))W (du, dx)
= α
∫ t

s

∫
Rd

f (u, x)W (du, dx) +
∫ t

s

∫
Rd

g(u, x)W (du, dx), where α ∈ L1
g(ΩT ) is

bounded.

Remark 10 In particular, if we only consider temporal maximally distributed white

noise and further assume that μ ≥ 0. In this case, the index set Γ = {[s, t) : 0 ≤

s < t < ∞}. The canonical process W ([0, t)) is the quadratic variation process of

G-Brownian motion, more details about the quadratic variation process can be found

in Peng [18].
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Pairs Trading under Geometric Brownian

Motion Models

Phong Luu, Jingzhi Tie, and Qing Zhang

Abstract This survey paper is concerned with pairs trading strategies under ge-

ometric Brownian motion models. Pairs trading is about trading simultaneously a

pair of securities, typically stocks. The idea is to monitor the spread of their price

movements over time. A pairs trade is triggered by their price divergence (e.g., one

stock moves up a significant amount relative to the other) and consists of a short

position in the strong stock and a long position in the weak one. Such a strategy

bets on the reversal of their price strengths and the eventual convergence of the price

spread. Pairs trading is popular among trading institutions because its risk neutral

nature. In practice, the trader needs to decide when to initiate a pairs position (how

much divergence is enough) and when to close the position (how to take profits or

cut losses). It is the main goals of this paper to address these issues and theoretical

findings along with related practical considerations.
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1 Introduction

This paper is about strategies for simultaneously trading a pair of stocks. The idea is

to track the price movements of these two securities over some period of time and

compare their relative price strength. A pairs trade is triggered when their prices

diverge, e.g., one stock moves up substantially relative to the other. A pairs trade

is entered and consists of a short position in the stronger stock and a long position

in the weaker one. Such a strategy bets on the reversal of their price strength and

eventual convergence of their price spread.

Pairs trading was introduced by Garry Bamberger and followed by Nunzio

Tartaglia’s quantitative group at Morgan Stanley in the 1980s. Tartaglia’s group

used advanced statistical tools and developed high tech trading systems by incor-

porating trader’s intuition and disciplined filtering rules. They were able to identify

pairs of stocks and trade them with a great success. See Gatev et al. [7] for related

backgrounddetails. In addition, there are studies addressing why pairs trading works.

For related in-depth discussions in connection with the cause of the price divergence

and subsequent convergence, we refer the reader to the books by Vidyamurthy [21]

and Whistler [22].

Empirical studies and related considerations can be found in papers by Do and

Faff [4, 5], Gatev et al. [7], and books by Vidyamurthy [21] and Whistler [22]. Issues

involved in these works include statistical characterization of the spread process,

performance of pairs trading with various trading thresholds, and the impact of

trading costs in connection with pairs trading.

A major advantage of pairs trading is its ‘market neutral’ nature in the sense that

it helps to hedge market risks. For example, if the market crashes and takes both

stocks with it, the trade would result in a gain on the short side and a loss on the

long side of the position. The gain and loss cancel out each other and to some extent,

reduce the market risk.

In pairs trading, a crucial step is to determine when to initiate a pairs trade (i.e.,

how much spread divergence is sufficient to trigger a trade) and when to close the

position (when to lock in profits). Following empirical developments documented in

Gatev et al. [7], increasing efforts were made addressing theoretical aspects of pairs

trading. The main focus was devoted to development of mathematical models that

capture the spread movements, filtering techniques, optimal entry and exit timings,

money management and risk control. For example, in Elliott et al. [6], the price

spread is assumed to be a mean reversion process with additive noise. Several

filtering techniques were explored to identify entry points. One exit rule with a fixed

holding period was discussed in detail. In Deshpande and Barmish [3], a general

(mean-reversion based) framework was developed. Using a ‘spread’ function, they

were able to determine the numbers of shares of each stock every moment and how to

adjust them over time. They showed that such an algorithm leads to positive expected

returns.

Some recent efforts on pairs trading have been devoted to in-depth analysis based

on mean reversion models. For example, Kuo et al. [11] considered an optimal selling

rule. The objective is to determine the time of closing an existing pairs position in
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order to maximize an expected return or to cut losses short. In particular, given a

fixed cut-loss level, the optimal target level can be determined under a mean reversion

model. Further results on mean reversion models can be found in Song and Zhang

[18]. They have developed a complete system with both entry and exit signals. They

have shown that the optimal trading rule can be determined by threshold levels. The

calculation of these levels only involves algebraic equations.

We would like to point out that almost all literature on pairs trading is mean

reversion based one way or the other. On the one hand, this makes the trading

more intuitive. On the other, such constraint adds a severe limitation on its potential

applications. In order to meet the mean-reversion requirement, tradable pairs are

typically selected among stocks from the same industrial sector. From a practical

viewpoint, it is highly desirable to have a broad range of stock selections for pairs

trading. Mathematically speaking, this amounts to the possibility of treating pairs

trading under models other than mean reversion. In Tie et al. [19], they have developed

a new method to treat the pairs-trading problem under general geometric Brownian

motions. In particular, under a two-dimensional geometric Brownian motion model,

they were able to fully characterize the optimal policy in terms of two threshold

lines obtained by solving the associated variational inequalities. The principal idea

of pairs trading is that one builds the position of a pair when the cost is low and

closes the position when the pairs’ value is high. These two threshold switching lines

quantify exactly how low is low and how high is high. These policies are easy to

compute and implement. The most striking feature of these results is the simplicity

of the solution: Clean-cut assumptions and closed-form trading policies.

One important consideration in trading has yet received deserved attention: How

to trade with cutting losses. There are many scenarios when cutting losses may arise.

A typical one is a margin call. This is often proceeded with heavy losses leading to an

enforced closure of part or the entire pairs position. Often in practice, a pairs trader

chooses a pre-determined stop-loss level due to a money management consideration.

From a modeling point of view, the prices of the pairs may cease to behave as the

model prescribes due to undesirable events such as acquisition (or bankruptcy) of

one stock in the pairs position. It is necessary to modify the trading rule accordingly

in order to accommodate a pre-determined stop loss level. On the other hand, from

a control theoretical viewpoint, forcing a stop loss amounts to imposing a hard state

constraint. This often poses substantial challenges when solving the problem. Such

issues were addressed in Liu et al. [13] recently. They were able to establish regions

in terms of threshold lines to characterize trading rules. They also obtained sufficient

conditions that guarantee the optimality of these trading rules.

In this paper, we mainly involve stocks. Nevertheless, the idea of pairs trading

is not limited to stock trading. For example, the optimal timing of investments in

irreversible projects can also be considered as a pairs-trading problem. Back in 1986,

McDonald and Siegel [15] considered optimal timing of investment in an irreversible

project. Two factors are included in their model: The value of the project and its cost.

Greater project value growth potential and lesser future project cost will postpone the

transaction. See also Hu and Øksendal [9] for more rigorous mathematical treatment.

In terms of pairs trading, their results are about a pairs trading selling rule. Extension
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along this line can be found in Tie and Zhang [20]. They treated the pairs selling

rule under a regime-switching model. They were also able to show threshold type

selling policies.

The problem under consideration is closely related to traditional portfolio se-

lection problems. Following Merton’s work in the late 60’s, much progress along

this direction has been made. A thorough treatment of the problem can be found

in Davis and Norman [2] in which they studied Merton’s investment/consumption

problem with the transaction costs and established wedge-shaped regions for the pair

of bank and stock holdings. To some extent, pairs trading resembles portfolio selec-

tion. Rather than balancing between bank and stock holdings, pairs trading involves

positions consisting of two stocks. In portfolio selection, risk control is achieved

through adjusting proportion of stock holdings; while, in pairs trading, the risk is

limited by focusing on highly correlated stocks that are traded in opposite directions.

Early theoretical development along portfolio selection with transaction costs using

viscosity solutions can be found in Zariphopoulou [23]. Further in-depth studies and

a complete solution to investment and consumption problem with transaction costs

can be found in Shreve and Soner [17].

Mathematical trading rules have been studied for many years. In addition to the

work by Hu and Øksendal [9] and Song and Zhang [18], Zhang [25] considered

a selling rule determined by two threshold levels, a target price and a stop-loss

limit. In [25], such optimal threshold levels are obtained by solving a set of two-

point boundary value problems. Guo and Zhang [8] studied the optimal selling

rule under a model with switching Geometric Brownian motion. Using a smooth-fit

technique, they obtained the optimal threshold levels by solving a set of algebraic

equations. These papers are concerned with the selling side of trading in which the

underlying price models are of GBM type. Some subsequent efforts were devoted

to strategies on complete trading systems including buying and selling decision

making. For example, Dai et al. [1] developed a trend-following rule based on a

conditional probability indicator. They showed that the optimal trading rule can be

determined by two threshold curves which can be obtained by solving the associated

Hamilton-Jacobi-Bellman (HJB) equations. A similar idea was developed following

a confidence interval approach by Iwarere and Barmish [10]. In addition, Merhi and

Zervos [16] studied an investment capacity expansion/reduction problem following a

dynamic programming approach under a geometric Brownian motion market model.

In connection with mean reversion trading, Zhang and Zhang [24] obtained a buy-

low and sell-high policy by characterizing the ‘low’ and ‘high’ levels in terms of the

mean reversion parameters.

In this paper, we focus on the mathematical aspects of pairs trading. We present key

ideas used in derivation of solutions to the associated HJB equations and summarize

the main results. In §2, we consider pairs trading under geometric Brownian motions.

It can be seen that pairs trading ideas are more general and they do not have to be

cast under a mean reversion framework. In §3, we address pairs trading with a stop-

loss constraint. We establish threshold type trading policies and provide sufficient

conditions that guarantee the optimality of these policies. In §4, we consider a two-

dimensional geometric Brownian model with regime-switching. We focus on related
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optimal pairs selling rules. Proofs of these results are omitted and can be found in

[13, 19, 20]. Finally, some concluding remarks are given in §5.

2 Pairs Trading under a GBM

In this section, we consider pairs trading under a two-dimensional geometric Brow-

nian motion model. A share of pairs position Z consists of one share long position

in stocks X1 and one share short position in X2. Let (X1
t ,X2

t ) denote their prices at t
satisfying the following stochastic differential equation:

d

����
X1
t

X2
t

����
 =

����
X1
t

X2
t

����

⎡⎢⎢⎢⎢⎢⎢⎢⎣

����
μ1

μ2

����
dt +

����
σ11 σ12

σ21 σ22

����
d

����
W1

t

W2
t

����

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

where μi , i = 1,2, are the return rates, σij , i, j = 1,2, the volatility constants, and

(W1
t ,W2

t ) a 2-dimensional standard Brownian motion.

We consider the case that the net position at any time can be either long (with

one share of Z) or flat (no stock position of either X1 or X2). Let i = 0,1 denote

the initial net position and let τ0 ≤ τ1 ≤ τ2 ≤ · · · denote a sequence of buying and

selling (stopping) times. If initially the net position is long (i = 1), then one should

sell Z before acquiring any shares in the future. That is, to first sell the pair at τ0,

then buy at τ1, sell at τ2, buy at τ3, and so on. The corresponding trading sequence

is denoted by Λ1 = (τ0, τ1, τ2, . . .). Likewise, if initially the net position is flat (i = 0),

then one should start to buy a share of Z. That is, to first buy at τ1, sell at τ2, then

buy at τ3, an so forth. The corresponding sequence of stopping times is denoted by

Λ0 = (τ1, τ2, . . .).
Let K denote the fixed percentage of transaction costs associated with buying or

selling of stocks Xi , i = 1,2. For example, the cost to establish the pairs position Z

at t = t1 is (1+K )X1
t1
− (1−K )X2

t1
and the proceeds to close it at a later time t = t2

is (1−K )X1
t2
− (1+K )X2

t2
. For ease of notation, let βb = 1+K and βs = 1−K .

Given the initial state (x1, x2), net position i = 0,1, and the decision sequences

Λ0 and Λ1, the corresponding reward functions
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J0(x1, x2,Λ0)=E
{
[e−ρτ2 (βsX1

τ2
− βbX2

τ2
)I{τ2<∞}−e

−ρτ1 (βbX1
τ1
− βsX2

τ1
)I{τ1<∞}]

+[e−ρτ4 (βsX1
τ4
− βbX2

τ4
)I{τ4<∞} − e

−ρτ3 (βbX1
τ3
− βsX2

τ3
)I{τ3<∞}]+ · · ·

}
,

J1(x1, x2,Λ1)=E
{
e−ρτ0 (βsX1

τ0
− βbX2

τ0
)I{τ0<∞}

+[e−ρτ2 (βsX1
τ2
− βbX2

τ2
)I{τ2<∞}−e

−ρτ1 (βbX1
τ1
− βsX2

τ1
)I{τ1<∞}]

+[e−ρτ4 (βsX1
τ4
− βbX2

τ4
)I{τ4<∞}−e

−ρτ3 (βbX1
τ3
− βsX2

τ3
)I{τ3<∞}]+ · · ·

}
,

(2)

where ρ > 0 is a given discount factor and IA is the indicator function of an event A.

For i = 0,1, let Vi (x1, x2) denote the value functions with (X1
0
,X2

0
) = (x1, x2) and

initial net positions i = 0,1. That is, Vi (x1, x2) = supΛi
Ji (x1, x2,Λi), i = 0,1.

Remark. Note that the ‘one-share’ assumption can be easily relaxed. For example,

one can consider any pairs Z consisting of n1 shares of long position in X1 and n2

shares of short position in X2. This case can be treated by changing of the state

variables (X1
t ,X2

t )→ (n1X1
t ,n2X2

t ). Due to the nature of GBMs, the corresponding

system equation in (1) will stay the same. The new allocations will only affect the

reward function in (2) implicitly. In addition, we only focus on the ‘long’ side of

pairs trading and note that the ‘short’ side of trading can also be treated by simply

switching the roles of the two stocks X1 and X2. �

Example. In this example, we consider stock prices of Target Corp. (TGT) and Wal-

Mart Stores Inc. (WMT). In Figure 1, daily closing prices of both stocks from 1985

to 2014 are plotted. The data is divided into two parts. The first part (1985-1999)will

be used to calibrate the model and the second part (2000-2014) to backtest the per-

formance of our results. Using the prices (1985-1999) and following the traditional

least squares method, we obtain μ1 = 0.2059, μ2 = 0.2459, σ11 = 0.3112, σ12 =

0.0729, σ21 = 0.0729, σ22 = 0.2943.

We assume (A1): ρ > μ1 and ρ > μ2. Under these conditions, we can show that,

for all x1, x2 > 0,

0 ≤ V0(x1, x2) ≤ x2, and βsx1− βbx2 ≤ V1(x1, x2) ≤ βbx1+Kx2. (3)

Formally, the associated HJB equations have the form: For x1, x2 > 0,

min
{
ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2)+ βbx1 − βsx2

}
= 0,

min
{
ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− v0(x1, x2)− βsx1+ βbx2

}
= 0,

(4)

where

A =
1

2

⎧⎪⎨⎪⎩a11x2
1

∂2

∂x2
1

+2a12x1x2

∂2

∂x1∂x2

+ a22x2
2

∂2

∂x2
2

⎫⎪⎬⎪⎭+ μ1x1

∂

∂x1

+ μ2x2

∂

∂x2

,
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Fig. 1 Daily Closing Prices of TGT and WMT from 1985 to 2014.

and a11 = σ
2
11
+σ2

12
, a12 = σ11σ21 +σ12σ22, and a22 = σ

2
21
+σ2

22
.

We convert these HJB equations into single variable equations. Let y = x2/x1 and

vi (x1, x2) = x1wi (x2/x1), for some function wi (y) and i = 0,1. By direct calculation,

we have

∂vi

∂x1

= wi (y)− yw′i (y),
∂vi

∂x2

= w
′
i (y),

∂2
vi

∂x2
1

=

y
2
w
′′
i
(y)

x1

,
∂2
vi

∂x2
2

=

w
′′
i
(y)
x1

, and
∂2
v1

∂x1∂x2

= −
yw
′′
i
(y)

x1

.

We can writeAvi in terms of wi and obtain

Avi = x1

{
1

2
[a11−2a12+ a22] y

2
w
′′
i (y)+ (μ2− μ1)yw′i (y)+ μ1wi (y)

}
.

Let L[wi (y)] = λy2
w
′′
i
(y) + (μ2 − μ1)yw′i (y) + μ1wi (y) with λ = (a11 − 2a12 +

a22)/2. Then, the above HJB equations can be given as follows:

min
{
ρw0 (y)−Lw0(y), w0(y)−w1(y)+ βb− βsy

}
= 0,

min
{
ρw1 (y)−Lw1(y), w1(y)−w0(y)− βs+ βby

}
= 0.

(5)

In this paper, we only consider the case when λ � 0. If λ = 0, the problem reduces to

a first order case and can be similarly treated. To solve these equations, we first focus
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on (ρ−L)wi(y) = 0, i = 0,1. These are the Euler equations and their solutions are of

the form y
δ , for some δ. We substitute this into the equation (ρ−L)wi = 0 and obtain

the corresponding characteristic equation δ2− (1+ (μ1− μ2)/λ) δ− (ρ− μ1)/λ = 0.

There are two real roots

δ1 =
1

2

(
1+
μ1− μ2

λ
+

√(
1+
μ1 − μ2

λ

)2
+

4ρ−4μ1

λ

)
> 1,

δ2 =
1

2

(
1+
μ1− μ2

λ
−

√(
1+
μ1 − μ2

λ

)2
+

4ρ−4μ1

λ

)
< 0.

(6)

The general solution of (ρ−L)wi (y) = 0 should be of the form: wi (y) = ci1yδ1 +

ci2yδ2 , for some ci1 and ci2, i = 1,2.

Intuitively, if X1
t is small and X2

t is large, then one should buy X1 and sell (short)

X2. I.e., to open a pairs position Z. If, on the other hand, X1
t is large and X2

t is small,

then one should close the pairs position Z by selling X1 and buying back X2. In view

of this, the first quadrant P = {(x1, x2) : x1 > 0 and x2 > 0} into three regions Γ1, Γ2,

and Γ3 where Γ1 = {(x1, x2) ∈ P : x2 ≤ k1x1}, Γ2 = {(x1, x2) ∈ P : k1x1 < x2 < k2x1},

and Γ3 = {(x1, x2) ∈ P : x2 ≥ k2x1}. This is illustrated in Figure 2.

x1

x2

O

x2 = k1x1

x2 = k2x1

Γ1

Γ2

Γ3
(ρ−A)v0 = 0
v1 = v0 +βsx1 −βbx2

(ρ−A)v0 = 0
(ρ−A)v1 = 0

(ρ−A)v1 = 0
v0 = v1 −βbx1 +βsx2

Buy X1, Sell Short X2

Hold

Sell X1, Buy Back X2

Fig. 2 Regions Γ1, Γ2, and Γ3
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With a little bit abuse of notation, we can write the corresponding Γi, i = 1,2,3,

in terms of y(= x2/x1): Γ1 = {y : 0 < y ≤ k1}, Γ2 = {y : k1 < y < k2}, and Γ3 = {y :

y ≥ k2}. Here 0 < k1 < k2 are slopes (thresholds) to be determined so that on

Γ1 : (ρ−L)w0 = 0, w1 = w0 + βs− βby;

Γ2 : (ρ−L)w0 = 0, (ρ−L)w1 = 0;

Γ3 : w0 = w1 − βb+ βsy, (ρ−L)w1 = 0.

(7)

Recall the boundedness of the value function in (3) and δ2 < 0. The coefficient

of the term y
δ2 in w0 on Γ1 has to be zero. Thus, w0 = C0y

δ1 for some C0 on Γ1.

Likewise, on Γ3, the coefficient of yδ1 must be zero because δ1 > 1. The solution is

w1 = C1y
δ2 for some C1 on Γ3. Finally, these functions are extended to Γ2 and are

given by w0 = C0y
δ1 and w1 = C1y

δ2 . The solutions on each region should have the

form:

Γ1 : w0 = C0y
δ1, w1 = C0y

δ1 + βs− βby;

Γ2 : w0 = C0y
δ1, w1 = C1y

δ2 ;

Γ3 : w0 = C1y
δ2 − βb+ βsy, w1 = C1y

δ2 .

Next we use smooth-fit conditions to determine the values for parameters: k1, k2,

C0, and C1. Necessarily, the continuity of w1 and its first order derivative at y = k1

imply C1kδ2

1
= C0kδ1

1
+ βs− βbk1 and C1δ2kδ2−1

1
=C0δ1kδ1−1

1
− βb. These equations

can be written in matrix form:


����
kδ1

1
−kδ2

1

δ1kδ1−1

1
−δ2kδ2−1

1

����


����
C0

C1

����
 =

����
βbk1− βs

βb

����
 . (8)

Similarly, the smooth-fit conditions for w0 at y = k2 lead to equations:


����
kδ1

2
−kδ2

2

δ1kδ1−1

2
−δ2kδ2−1

2

����


����
C0

C1

����
 =

����
βsk2 − βb

βs

����
 . (9)

Solve for C0 an C1 and express the corresponding inverse matrices in terms of k1

and k2 to obtain
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����
C0

C1

����
=
1

δ1− δ2


����
βb(1− δ2)k1−δ1

1
+ βsδ2k−δ1

1

βb(1− δ1)k1−δ2

1
+ βsδ1k−δ2

1

����

=

1

δ1− δ2


����
βs(1− δ2)k1−δ1

2
+ βbδ2k−δ1

2

βs(1− δ1)k1−δ2

2
+ βbδ1k−δ2

2

����
 .
(10)

The second equality yields two equations of k1 and k2. We can simplify them and

write

(1− δ2)(βbk1−δ1

1
− βsk1−δ1

2
) = δ2(βbk−δ1

2
− βsk−δ1

1
),

(1− δ1)(βbk1−δ2

1
− βsk1−δ2

2
) = δ1(βbk−δ2

2
− βsk−δ2

1
).

To solve these equations, let r = k2/k1 and replace k2 by rk1 to obtain

(1− δ2)(βb− βsr1−δ1 )k1 = δ2(βbr−δ1 − βs)

and

(1− δ1)(βb− βsr1−δ2 )k1 = δ1(βbr−δ2 − βs).

We have

k1 =
δ2(βbr−δ1 − βs)

[(1− δ2)(βb− βsr1−δ1 )]
=

δ1(βbr−δ2 − βs)
[(1− δ1)(βb− βsr1−δ2 )]

.

Using the second equality and write the difference of both sides, we have

f (r) := δ1(1− δ2)(βbr−δ2 − βs)(βb− βsr1−δ1 )

−δ2(1− δ1)(βbr−δ1 − βs)(βb− βsr1−δ2 ) = 0.

where β = βb/βs (> 1). Then we can show f (β2 ) > 0 and f (r)→ −∞, as r →∞.

Therefore, there exists r0 > β
2 so that f (r0) = 0. Using this r0, we write k1 and k2:

k1 =

δ2(βbr−δ1

0
− βs)

(1− δ2)(βb− βsr1−δ1

0
)
=

δ1(βbr−δ2

0
− βs)

(1− δ1)(βb− βsr1−δ2

0
)
,

k2 =

δ2(βbr1−δ1

0
− βsr0)

(1− δ2)(βb− βsr1−δ1

0
)
=

δ1(βbr1−δ2

0
− βsr0)

(1− δ1)(βb− βsr1−δ2

0
)
.

(11)

Finally, we can use these k1 and k2 to express C0 and C1 given in (10).

Theorem. Assume (A1). Then the solutions of the HJB equations (4) can be given

as v0(x1, x2) = x1w0 (x2/x1) and v1(x1, x2) = x1w1(x2/x1) where
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w0 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�
βb(1− δ2)k1−δ1

1
+ βsδ2k−δ1

1

δ1− δ2
�
 yδ1, if 0 < y < k2,


�
βb(1− δ1)k1−δ2

1
+ βsδ1k−δ2

1

δ1− δ2
�
 yδ2

+ βsy− βb, if y ≥ k2,

w1 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

�
βb(1− δ2)k1−δ1

1
+ βsδ2k−δ1

1

δ1− δ2
�
 yδ1

+ βs− βby, if 0 < y ≤ k1,


�
βb(1− δ1)k1−δ2

1
+ βsδ1k−δ2

1

δ1− δ2
�
 yδ2, if y > k1.

The optimal trading rule can be determined by two threshold lines (x2 = k1x1 and

x2 = k2x1) as follows:

Theorem. Assume (A1). Then, vi (x1, x2) = x1wi (x2/x1) =Vi (x1, x2), i = 0,1. More-

over, if initially i = 0, letΛ∗
0
= (τ∗

1
, τ∗

2
, τ∗

3
, . . .) such that τ∗

1
= inf{t ≥ 0 : (X1

t ,X2
t ) ∈ Γ3},

τ∗
2
= inf{t ≥ τ∗

1
: (X1

t ,X2
t ) ∈ Γ1}, τ

∗
3
= inf{t ≥ τ∗

2
: (X1

t ,X2
t ) ∈ Γ3}, and so on. Simi-

larly, if initially i = 1, letΛ∗
1
= (τ∗

0
, τ∗

1
, τ∗

2
, . . .) such that τ∗

0
= inf{t ≥ 0 : (X1

t ,X2
t ) ∈ Γ1},

τ∗
1
= inf{t ≥ τ∗

0
: (X1

t ,X2
t ) ∈ Γ3}, τ

∗
2
= inf{t ≥ τ∗

1
: (X1

t ,X2
t ) ∈ Γ1}, and so on. Then

Λ
∗
0

and Λ∗
1

are optimal. �

Example 1 (cont.) We backtest our pairs trading rule using the stock prices of TGT

and WMT from 2000 to 2014. Using the parameters mentioned earlier, based on the

historical prices from 1985 to 1999, we obtain the pair (k1, k2) = (1.03905,1.28219).
A pairs trading (long X1 and short X2) is triggered when (X1

t ,X2
t ) enters Γ3. The

position is closed when (X1
t ,X2

t ) enters Γ1. Initially, we allocate trading the capital

$100K. When the first long signal is triggered, buy $50K TGT stocks and short the

same amount of WMT. Such half-and-half capital allocation between long and short

applies to all trades. In addition, each pairs transaction is charged $5 commission.

In Figure 3, the corresponding ratio X2
t /X1

t , the threshold levels k1 and k2, and the

corresponding equity curve are plotted. There are total 3 trades and the end balance

is $155.914K.

We can also switch the roles of X1 and X2, i.e., to long WMT and short TGT

by taking X1=WMT and X2=TGT. In this case, the new (k̃1, k̃2) = (1/k2,1/k1) =
(1/1.28219,1/1.03905). These levels and the corresponding equity curve is given

in Figure 4. Such trade leads to the end balance $132.340K. Note that both types of

trades have no overlap, i.e., they do not compete for the same capital. The grand total

profit is $88254 which is a 88.25% gain.

Note also that there are only 5 trades in the fifteen year period leaving the capital in

cash most of the time. This is desirable because the cash sitting in the account can

be used for other types of shorter term trading in between, at least drawing interest

over time.
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3 Pairs Trading with Cutting Losses

In this section, we consider our above-mentioned pairs trading rule with cutting

losses. Recall that a pairs position consists of a long position in stock X1 and

a short position in X2. The objective is to open (buy) and close (sell) the pairs

positions sequentially to maximize the discounted reward function J0 and J1 in (2).

In practice, unexpected events could cause substantial losses. This normally occurs

when the long side X1
t shrinks while the short side X2

t rises. To limit the downside

risk of the pairs position, we impose a hard cut loss level and require X2
t /X1

t ≤ M.

Here M is a constant representing a stop-loss level to account for market reaction to

undesirable events. The introduction of such stop-loss level amounts to imposing a

hard state constraint which makes the corresponding optimal control problem much

more difficult.

Let τM denote the corresponding exit time, i.e., τM = {t : X2
t /X1

t ≥ M}. Then,

τn ≤ τM , for all n.

Our goal is to findΛ0 andΛ1 so as to maximize the reward functions J0(x1, x2,Λ0)
and J1(x1, x2,Λ1) under such state constraints. For i = 0,1, let Vi (x1, x2) denote

the corresponding value functions with the initial state (X1
0
,X2

0
) = (x1, x2) and net

positions i = 0,1.

Example The main purpose of imposing a hard stop-loss level M is to limit losses

to an acceptable level to account for undesirable market moves to unforeseeable

events. The stock prices of Ford Motor (F) and General Motors (GM) are highly

correlated historically. They make good candidates for pairs trading. In Figure 5, the

daily closing price ratio (F/GM) from 1977 to 2009 is plotted. It can be seen that

the ratio remains ‘normal’ for most of the time during this period of time. The ratio

starts to rise when approaching the subprime crisis. This would normally trigger a

pairs position longing GM and shorting F. Finally, it spikes prior to GM’s chapter

11 filing on June 1, 2009 causing heavy losses to any F/GM pair positions. Such

hypothetical losses can be limited if one had a hard limit M in place to begin with

to force close the position before prices getting out of control.

The choice of M depends on the investor’s risk preference. Smaller M (tighter

stop-loss control) will cause frequent stop outs and limit profit potential. Larger M
(loose stop-loss), on the other hand, will leave more room for the position to run

with higher risks. �

Let H denote the feasible region under the hard state constraint x2/x1 ≤ M. Then,

H = {(x1, x2) : 0 < x1,0 < x2 ≤ Mx1}. We can show the same inequalities in (3) hold

on H . The associated HJB equations on H can be given as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
min{ρv0(x1, x2)−Av0(x1, x2), v0(x1, x2)− v1(x1, x2)+ βbx1 − βsx2} = 0,

min{ρv1(x1, x2)−Av1(x1, x2), v1(x1, x2)− v0(x1, x2)− βsx1+ βbx2} = 0,

(12)

with the boundary conditions v0(x1,Mx1) = 0 and v1(x1,Mx1) = βsx1− βbMx1.
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Fig. 5 Daily closing ratio of F/GM from 1977 to 2009

Following similar approach as in the previous section, we divide the feasible

region H into four regions Γ1 = {(x1, x2) ∈ H : 0 < x2 ≤ k1x1}, Γ2 = {(x1, x2) ∈
H : k1x1 < x2 ≤ k2x1}, Γ3 = {(x1, x2) ∈ H : k2x1 < x2 ≤ k3x1}, and Γ4 = {(x1, x2) ∈
H : k3x1 < x2 ≤ Mx1}, where 0 < k1 < k2 < k3 < M are threshold slopes to be

determined. The control actions on Γ1, Γ2, and Γ3 are similar as before. Γ4 is the hold

and see region due to possible cut-loss at x2 = Mx1. This is illustrated in Figure 6.

Using the smooth-fit approach, we can show that the k1 and k2 are identical as

the ones given in (11) with δ1 and δ2 in (6).

To determine k3, let

f1(x) =
Mδ1 βs(x(1− δ2)+ βδ2)

xδ1
+

Mδ2 βs (x(δ1−1)− βδ1)
xδ2

+ βs(1−M β)(δ1−δ2).

We assume (A2): There is a k3 in (k2,M) such that f1 (k3) = 0.

A sufficient condition for this can be given as (A2’) f1(k3) > 0.

On each of the regions Γi, i = 1,2,3,4, we can write the solutions of the HJB

equations in terms of δi, i = 1,2, with coefficients Cj , j = 0,1, ...,4. Then using

smooth-fit conditions, we can specify these constants as follows:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C0 =
1

Mδ1

[
(Mδ1,Mδ2 )K0(k1)


����
βsk1 − βb

βb

����
+ βs−M βb

]
,

C1 = C0+

(δ2−1) βbk1−δ1

1
− βsδ2k−δ1

1

δ1− δ2
,

C2 =

(1− δ1) βbk1−δ2

1
+ βsδ1k−δ2

1

δ1− δ2
,

C3 = C1+

(1− δ2) βsk1−δ1

3
+ βbδ2k−δ1

3

δ1− δ2
,

C4 = C2+

(δ1−1) βsk1−δ2

3
− βbδ1k−δ2

3

δ1− δ2
,

(13)

where

K0 (x) =
1

δ1− δ2


����
−δ2x−δ1 x1−δ1

δ1x−δ2 −x1−δ2

����
 .
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Finally, we need an additional condition to guarantee all inequalities in the HJB

equations to hold. We assume (A3): Either f ′
2
(M) < 0, or f ′′

2
(M) < 0, where,

f2(y) = (C1y
δ1
+C2y

δ2 )− (C3y
δ1
+C4y

δ2 )+ βby− βs.

A sufficient condition fo (A3) can be given as (A3’): μ1 ≥ μ2. Under these

conditions, we have the following theorems.

Theorem Assume (A1), (A2), and (A3). Then the following functions vi (x1, x2) =
x1wi (x2/x1), i = 0,1, satisfy the HJB equations (12) where

w0 (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C0y

δ1, 0 < y < k2,

C1y
δ1 +C2y

δ2 + βsy− βb, k2 � y � k3,

C3y
δ1
+C4y

δ2, k3 < y � M;

w1 (y) =
⎧⎪⎨⎪⎩C0y

δ1 + βs− βby, 0 < y < k1,

C1y
δ1 +C2y

δ2, k1 � y � M .

Theorem Assume (A1), (A2), and (A3) and v0(x1, x2) ≥ 0. Then, vi (x1, x2) =
x1wi (x2/x1) = Vi (x1, x2), i = 0,1. Moreover, if i = 0, let Λ∗

0
= (τ∗

1
, τ∗

2
, τ∗

3
, ...) =

(τ0
1
, τ0

2
, τ0

3
, ...)∧τM where τ0

1
= inf{t ≥ 0 : (X1

t ,X2
t ) ∈ Γ3}, τ

0
2
= inf{t ≥ τ0

1
: (X1

t ,X2
t ) ∈

Γ1}, τ
0
3
= inf{t ≥ τ0

2
: (X1

t ,X2
t ) ∈ Γ3}, . . ..

Similarly, if i = 1, letΛ∗
1
= (τ∗

0
, τ∗

1
, τ∗

2
, ...) = (τ0

0
, τ0

1
, τ0

2
, ...)∧τM where τ0

0
= inf{t ≥

0 : (X1
t ,X2

t ) ∈ Γ1}, τ
0
1
= inf{t ≥ τ0

0
: (X1

t ,X2
t ) ∈ Γ3}, τ

0
2
= inf{t ≥ τ0

1
: (X1

t ,X2
t ) ∈ Γ1},....

Then Λ∗
0

and Λ∗
1

are optimal. �

Next, we consider the daily closing prices of Target Corp. (TGT) and Wal-Mart

Stores Inc. (WMT) from 1985 to 2019. The data are divided into two parts. The first

part (1985-1999) is used to calibrate the model and the second part (2000-2014)

to backtest the performance of our results. Let X1=WMT and X2=TGT. Using the

traditional least squares method, we have

μ1 = 0.2459, μ2 = 0.2059,σ11 = 0.2943,σ12 = 0.0729,σ21 = 0.0729,σ22 = 0.3112.

(14)

And also, we take K = 0.001 and ρ = 0.5. Using these parameters, we obtain

(k1, k2, k3) = (0.780,0.963,1.913).
Backtesting 1: (WMT-TGT): We backtest our pairs-trading rule using the daily

closing prices of WMT and TGT from 2000/1/2 to 2019/3/15. Use (k1, k2, k3) =
(0.780,0.963,1.913). Assume initial capital $100K. We keep the 50:50 allocations

in longs and shorts. In Figure 7, the ratio of XTGT
t /XWMT

t , the threshold levels

(k1, k2, k3), and the equity curve are plotted with the x-axis representing the number

of trading days. Also, when there is no pairs position, we factor in a 3% interest for

the cash position. The overall end balance is $195.46K. For comparison purpose, a

money market return with 3% interest rate is also plotted in Figure 7. In this example,

the stop loss with M = 2 was not triggered and there was no forced stops.
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Backtesting 2: (GM-F). Next, we backtest using the daily closing prices of GM

and F from 1998/1/2 to 2009/6/30. We take M = 2 and follow similar calculation

(with 2:1 ratio of F/GM) to obtain (k1, k2, k3) = (0.760,0.892,1.946). Also assume

the initial capital $100K. We keep the 50:50 distribution in dollar amount between

longs and shorts. In Figure 8, the ratio 2XF
t /X

GM
t , the threshold levels (k1, k2, k3),

and the equity curve are plotted. Similarly as in the previous example, when there

is no pairs position, a 3% interest was factored in for the cash position. The overall

end balance is $149.52K after hitting stop-loss limit M = 2 on 2009/3/6.

On the other hand, without cutting losses, the initial $100K will end up with

$86.38K in debt when the last pairs closed on GM’s bankruptcy (2009/6/1). A pure

money market return with 3% interest rate is also provided in Figure 8.

4 A Pairs Selling Rule with Regime Switching

Market models with regime-switching are important in market analysis. In this paper,

we consider a geometric Brownian motion with regime-switching. The market mode

is represented by a two-state Markov chain. We focus on the selling part of pairs

trading and generalize the results of Hu and Øksendal [9] by incorporating models

with regime switching. We show that the optimal selling rule can be determined

by two threshold curves and establish a set of sufficient conditions that guarantee

the optimality of the policy. We also include several numerical examples under a

different set of parameter values.

We consider two stocks X1 and X2. Let {X1
t , t ≥ 0} denote the prices of stock X1

and {X2
t , t ≥ 0} that of stock X2. Let also αt be a two-state Markov chain representing
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regime mode. They satisfy the following stochastic differential equation:

d

����
X1
t

X2
t

����
 =

����
X1
t

X2
t

����

⎡⎢⎢⎢⎢⎢⎢⎢⎣

����
μ1(αt )

μ2(αt )

����
dt +

����
σ11(αt ) σ12(αt )

σ21(αt ) σ22(αt )

����
d

����
W1

t

W2
t

����

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (15)

where μi , i = 1,2, are the return rates, σij , i, j = 1,2, the volatility constants, and

(W1
t ,W2

t ) a 2-dimensional standard Brownian motion.

LetM = {1,2} denote the state space for αt and let Q = 
��
−λ1 λ1

λ2 −λ2

��
, with λ1 > 0

and λ2 > 0, be its generator. We assume αt and (W1
t ,W2

t ) are independent.

In this section, we consider a pairs selling rule under the regime switching model.

Again, we assume the corresponding pairs position consists of a one-share long

position in stock X1 and a one-share short position in stock X2. The problem is to

determine an optimal stopping time τ to close the pairs position by selling X1 and

buying back X2.

Given the initial state (X1
0
,X2

0
) = (x1, x2), α0 = i = 1,2, and the selling time τ, the

corresponding reward function

J(x1, x2, i, τ) = E
[
e−ρτ (βsX1

τ − βbX2
τ )
]
, (16)

where ρ > 0 is a given discount factor, βb = 1+K , βs = 1−K , andK is the transaction

cost in percentage.

The problem is to find an {Ft } = σ{(X1
r ,X2

r , αr ) : r ≤ t} stopping time τ to

maximize J. Let V (x1, x2, i) denote the corresponding value functions:
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V (x1, x2, i) = sup
τ

J(x1, x2, i, τ). (17)

As in the previous sections, we impose the following conditions: (B1) For i = 1,2,

ρ > μ1(i) and ρ > μ2(i).
Under these conditions, we can obtain

βsx1− βbx2 ≤ V (x1, x2, i) ≤ βsx1. (18)

To consider the associated HJB equations, for i = 1,2, let

Ai =
1

2

⎡⎢⎢⎢⎢⎣a11(i)x2
1

∂2

∂x2
1

+2a12(i)x1x2

∂2

∂x1∂x2

+ a22(i)x2
2

∂2

∂x2
2

⎤⎥⎥⎥⎥⎦
+μ1(i)x1

∂

∂x1

+ μ2(i)x2

∂

∂x2

(19)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11(i) = σ2
11
(i)+σ2

12
(i),

a12(i) = σ11(i)σ21(i)+σ12(i)σ22(i),

a22(i) = σ2
21
(i)+σ2

22
(i).

Using these generators, the associated HJB equations have the form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min{(ρ−A1)v(x1, x2,1)− λ1(v(x1, x2,2)− v(x1, x2,1)),

v(x1, x2,1)− βsx1 + βbx2} = 0,

min{(ρ−A2)v(x1, x2,2)− λ2(v(x1, x2,1)− v(x1, x2,2)),

v(x1, x2,2)− βsx1 + βbx2} = 0.

(20)

To solve the HJB equations (20), we can introduce change of variables: y = x2/x1

and v(x1, x2, i) = x1wi (x2/x1), for some functions wi (y) and i = 1,2.

Consider characteristic equations for (ρ−A1)v1 − λ1(v2 − v1) = 0 and (ρ−
A2)v2− λ2(v1− v2) = 0:

[ρ+ λ1− θ1(δ)][ρ+ λ2− θ2(δ)]− λ1λ2 = 0, (21)

where, for i = 1,2. θi (δ) = σiδ(δ−1)+ [(μ2(i)− μ1(i)]δ+ μ1(i) and σi = [a11(i)−
2a12(i)+ a22(i)]/2.

It can be seen the above equation has four zeros: δ1 ≥ δ2 > 1 > 0 > δ3 ≥ δ4.

Heuristically, one should close the pairs position when X1
t is large and X2

t is small.

In view of this, we introduce H1 = {(x1, x2) : x2 ≤ k1x1} and H2 = {(x1, x2) : x2 ≤

k2x1}, for some k1 and k2 (to be determined) so that one should sell when (X1
t ,X2

t )
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enters Hi provided αt = i, i = 1,2. In this paper, we only consider the case: k1 < k2.

Other cases can be treated similarly.

To represent the solutions to the HJB equations on each of these regimes, we

apply the smooth-fit approach and obtain:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 =
−δ4 βs + (δ4−1) βbk2

η3(δ3− δ4)kδ3

2

,

C2 =
δ3 βs+ (1− δ3) βbk2

η4(δ3− δ4)kδ4

2

,

C3 =
γ2(βs− a1)+ (1− γ2)(βb+ a2)k1

(γ2− γ1)kγ1

1

,

C4 =
−γ1(βs − a1)+ (γ1−1)(βb+ a2)k1

(γ2− γ1)kγ2

1

,

where η j = (ρ+ λ1− θ1(δ j ))/λ1, for j = 1,2,3,4, and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
γ1 =

1

2
+

μ1(1)− μ2(1)
2σ1

+

√(
1

2
+

μ1(1)− μ2(1)
2σ1

)2
+

ρ+ λ1− μ1(1)
σ1

,

γ2 =
1

2
+

μ1(1)− μ2(1)
2σ1

−

√(
1

2
+

μ1(1)− μ2(1)
2σ1

)2
+

ρ+ λ1− μ1(1)
σ1

.

(22)

Let

g(r) =
A1− γ2(βs− a1)rγ1

(1− γ2)(βb+ a2)rγ1 − B1r
−

A2+ γ1(βs− a1)rγ2

(γ1−1)(βb+ a2)rγ2 − B2r
, (23)

where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A1 =
−δ4 βs(γ2− δ3)
η3(δ3− δ4)

+

δ3 βs(γ2− δ4)
η4(δ3− δ4)

− γ2a1,

A2 =
−δ4 βs(δ3− γ1)
η3(δ3− δ4)

+

δ3 βs(δ4− γ1)
η4(δ3− δ4)

+ γ1a1,

B1 =
(δ4−1)(γ2− δ3) βb

η3(δ3− δ4)
+

(1− δ3) βb(γ2− δ4)
η4(δ3− δ4)

− (γ2−1)a2,

B2 =
(δ4−1)(δ3− γ1) βb

η3(δ3− δ4)
+

(1− δ3) βb(δ4− γ1)
η4(δ3− δ4)

− (1− γ1)a2,

with a1 = λ1 βs/(ρ+ λ1− μ1(1)) and a2 = −λ1 βb/(ρ+ λ1− μ2(1)).
We assume (B2): g(r) has a zero r0 > 1.

Using this r0, we can obtain
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
k1 =

A1− γ2(βs− a1)rγ1

0

(1− γ2)(βb+ a2)rγ1

0
− B1r0

,

k2 = r0k1 =

A1r0− γ2(βs − a1)rγ1+1

0

(1− γ2)(βb+ a2)rγ1

0
− B1r0

.

(24)

We can express C1, C2, C3, and C4 in terms of k1 and k2. The solutions to the

HJB equations have the form v(x1, x2, α) = x1wα (x2/x1), α = 1,2, with

w1 (y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

βs − βby for y ∈ Γ1,

C3y
γ1
+C4y

γ2
+ a1+ a2y for y ∈ Γ2,

C1y
δ3 +C2y

δ4 for y ∈ Γ3;

w2 (y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
βs − βby for y ∈ Γ1∪Γ2,

C1η3y
δ3 +C2η4y

δ4 for y ∈ Γ3,

where

Γ1 = (0, k1], Γ2 = (k1, k2), and Γ3 = [k2,∞).

To guarantee the variational inequalities in the HJB equations, we need the fol-

lowing conditions:

k1 ≤ min

{
(ρ− μ1(1)) βs

(ρ− μ2(1)) βb

,
(ρ− μ1(2)) βs

(ρ− μ2(2)) βb

}
; (25)

w1 (y) ≤ βs − βby+
1

λ2

[(ρ− μ1(2)) βs− (ρ− μ2(2)) βby] on Γ2. (26)

In addition, let φ(y) = w1(y)− βs + βby. Then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
φ′′(k1) = C3γ1(γ1−1)kγ1−2

1
+C4γ2(γ2−1)kγ2−2

1
, and

φ(k2) = C3kγ1

2
+C4kγ2

2
+ a1+ a2k2 − βs+ βby.

We need conditions

φ′′(k1) ≥ 0 and φ(k2) ≥ 0. (27)

Finally, on Γ3, let ψ(y) = w2 (y)− βs+ βby. Then,

ψ′′(k2) = C1η3δ3(δ3−1)kδ3−2

2
+C2η4δ4(δ4−1)kδ4−2

2
.

We need

ψ′′(k2) ≥ 0 and C1y
δ3
+C2y

δ4 ≥ βs − βby on Γ3. (28)
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Theorem. Assume (B1) and (B2). Assume also (25), (26), (27), and (28) hold.

Then, v(x1, x2, α) = x1wα (x2/x1) =V (x1, x2, α), α = 1,2. Let D = {(x1, x2,1) : x2 >

k1x1} ∪ {(x1, x2,2) : x2 > k2x1}. Let τ∗ = inf{t : (X1
t ,X2

t , αt ) � D}. Then τ∗ is

optimal. �

Finally, we give an example to illustrate the results.

Example In this example, we take

μ1 (1) = 0.20, μ2 (1) = 0.25, μ1 (2) = −0.30, μ2 (2) = −0.35,

σ11(1) = 0.30, σ12(1) = 0.10, σ21(1) = 0.10, σ22(1) = 0.35,

σ11(2) = 0.40, σ12(2) = 0.20, σ21(2) = 0.20, σ22(2) = 0.45,

λ1 = 6.0, λ2 = 10.0, K = 0.001, ρ = 0.50.

Then, we use the function g(r) in (23) and find the unique zero r0 = 1.020254> 1.

Using this r0 and (24), we obtain k1 = 0.723270 and k2 = 0.737920. Then, we

calculate and get C1 = 0.11442, C2 = −0.00001, C3 = 0.29121, C4 = 0.00029,

η3 = 0.985919, and η4 = −1.541271. With these numbers, we verify all variational

inequalities required in (B2). The graphs of the value functions are given in Figure 9.

�

Fig. 9 Value Functions V (x1, x2, 1) and V (x1, x2, 2)

5 Conclusions

In this paper, we have surveyed pairs trading under geometric Brownian motion

models. We were able to obtain closed-form solutions. The trading rules are given in

terms of threshold levels and are simple and easy to implement. The major advantage

of pairs trading is its risk-neutral nature, i.e., it can be profitable regardless of the
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general market directions. Pairs trading is a natural extension to McDonald and

Siegel’s [15] irreversible project investment decision making. We were able to obtain

similar results under suitable conditions.

Some initial efforts in connection with numerical computations and implementa-

tion have been done in Luu [14]. In particular, stochastic approximation techniques

(see Kushner and Yin [12]) can be used to effectively estimate these threshold levels

directly. Finally, it would be interesting to examine how these methods work through

backtests for a larger selection of stocks.

It would be interesting to extend the results to incorporate more involved models

(e.g., models with incomplete observation in market mode αt ). In this case, nonlinear

filtering methods such as the Wonham filter can be used for calculation of the

conditional probabilities of α = i given the stock prices up to time t. Some ideas

along this line have been used in Dai et al. [1] in connection with the trend-following

trading.
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Equilibrium Model of Limit Order Books: A
Mean-Field Game View

Jin Ma and Eunjung Noh

Abstract In this paper, we propose a continuous time equilibrium model of the (sell-

side) limit order book (LOB) in which the liquidity dynamics follows a non-local,

reflected mean-field stochastic differential equation (SDE) with state-dependent in-

tensity. To motivate the model we first study an N-seller static mean-field type

Bertrand game among the liquidity providers. We shall then formulate the continu-

ous time model as the limiting mean-field dynamics of the representative seller, and

argue that the frontier of the LOB (e.g., the best ask price) is the value function of a

mean-field stochastic control problem by the representative seller. Using a dynamic

programming approach, we show that the value function is a viscosity solution of the

corresponding Hamilton-Jacobi-Bellman equation, which can be used to determine

the equilibrium density function of the LOB, in the spirit of [32].

1 Introduction

With the rapid growth of electronic trading, the study of order-driven markets

has become an increasingly prominent focus in quantitative finance. Indeed, in

the current financial world more than half of the markets use a limit order book

(LOB) mechanism to facilitate trade. There has been a large amount of liter-

ature studying LOB from various angles, combined with some associated op-

timization problems such as placement, liquidation, executions, etc. (see, e.g.

[1, 3, 4, 5, 7, 14, 18, 20, 30, 35, 36, 39, 40] to mention a few). Among many

important structural issues of LOB, one of the focuses has been the dynamic move-
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ment of the LOB, both its frontier and its “density" (or “shape"). The latter was

shown to be a determining factor of the “liquidity cost" (cf. [32]), an important

aspect that impacts the pricing of the asset. We refer to, e.g., [2, 19, 26, 32] for the

study of LOB particularly concerning its shape formation.

In this paper, we assume that all sellers are patient and all buyers are impatient. We

extend dynamic model of LOB proposed in [32] in two major aspects. The guiding

idea is to specify the expected equilibrium utility function, which plays an essential

role in the modeling of the shape of the LOB in that it endogenously determines both

the dynamic density of the LOB and its frontier. More precisely, instead of assuming,

more or less in an ad hoc manner, that the equilibrium price behaves like an “utility

function", we shall consider it as the consequence of a Bertrand-type game among

a large number of liquidity providers (sellers who set limit orders). Following the

argument of [13], we first study an N-seller static Bertrand game, where a profit

function of each seller involves not only the limit order price less the waiting cost,

but also the average of the other sellers’ limit order prices observed. We show that the

Nash equilibrium exists in such a game. With an easy randomization argument, we

can then show that, as N→∞, the Nash equilibrium converges to an optimal strategy

of a single player’s optimization problem with a mean-field nature, as expected.

We note that the Bertrand game in finance can be traced back to as early as 1800s,

when Cournot [15] and Bertrand [8] first studied oligopoly models of markets with

a small number of competitive players. We refer to [17] and [41] for background and

references. Since Cournot’s model uses quantity as a strategic variable to determine

the price, while Bertrand model does the opposition, we choose to use the Bertrand

game as it fits our problem better. We shall assume that the sellers use the same

marginal profit function, but with different choices of the price-waiting cost prefer-

ence to achieve the optimal outcome (see Sect. 3 for more detailed formulation).

We would like to point out that our study of Bertrand game is in a sense “mo-

tivational" for the second main feature of this paper, that is, the continuous time,

mean-field type dynamic liquidity model. More precisely, we assume that the liquid-

ity dynamics is a pure-jump Markov process, with a mean-field type state dependent

jump intensity. Such a dynamic game is rather complicated, and is expected to in-

volve systems of nonlinear, mean-field type partial differential equations (see, e.g.,

[23, 27]). We therefore consider the limiting case as the number of sellers tends

to infinity, and argue that the dynamics of the total liquidity follows a pure jump

SDE with reflecting boundary conditions and mean-field-type state-dependent jump

intensity. We note that such SDE is itself new and therefore interesting in its own

right.

We should point out that the special features of our underlying liquidity dy-

namics (mean-field type; state-dependent intensity; and reflecting boundary con-

ditions) require the combined technical tools in mean-field games, McKean-

Vlasov SDEs with state-dependent jump intensity, and SDEs with discontinuous

paths and reflecting boundary conditions. In particular, we refer to the works

[10, 11, 12, 21, 22, 24, 25, 29, 31, 33, 37] (and the references cited therein) for

the technical foundation of this paper. Furthermore, apart from justifying the under-

lying liquidity dynamics, another main task of this paper is to substantiate the corre-
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sponding stochastic control problem, including validating the dynamic programming

principle (DPP) and showing that the value function is a viscosity solution to the

corresponding Hamilton-Jacobi-Bellman (HJB) equation.

This paper is organized as follows. In Sect. 2, we introduce necessary notations

and preliminary concepts, and study the well-posedness of a reflected mean-field

SDEs with jumps that will be essential in our study. We shall also provide an Itô’s

formula involving reflected mean-field SDEs with jumps for ready reference. In

Sect. 3 we investigate a static Bertrand game with N sellers, and its limiting behavior

as N tends to infinity. Based on the results, we then propose in Sect. 4 a continuous

time mean-field type dynamics of the representative seller, as well as a mean-field

stochastic control problem as the limiting version of dynamic Bertrand game when

the number of sellers becomes sufficiently large. In Sect. 5 and Sect. 6 we validate

the Dynamic Programming Principle (DPP), derive the HJB equation, and show that

the value function is a viscosity solution to the corresponding HJB equation.

2 Preliminaries

Throughout this paper we let (Ω,F ,P) be a complete probability space on which

is defined two standard Brownian motions W = {Wt : t ≥ 0} and B = {Bt : t ≥ 0}.
Let (A,BA ) and (B,BB ) be two measurable spaces. We assume that there are two

Poisson random measures N s and N b , defined on R+ ×A ×R+ and R+ ×B, and

with Lévy measures νs (·) and νb (·), respectively. In other words, we assume that the

Poisson measures N s and N b have mean measures N̂ s (·) := (m× νs ×m)(·) and

N̂ b (·) := (m× νb)(·), respectively, where m(·) denotes the Lebesgue measure on

R+, and we denote the compensated random measures Ñ s (A) := (N s −N̂ s)(A) =

N s (A)− (m×νs×m)(A) and Ñ b (B) := (N b−N̂ b)(B) =N b (B)− (m×νb)(B), for

any A ∈B(R+×A×R+) and B ∈B(R+×B). For simplicity, throughout this paper

we assume that both νs and νb are finite, that is, νs (A), νb (B) <∞, and we assume

the Brownian motions and Poisson random measures are mutually independent. We

note that for any A ∈B(A×R+) and B ∈B(B), the processes (t,ω) �→ Ñ s ([0, t]×
A,ω), Ñ b ([0, t]× B,ω) are both FN s,N b

-martingales. Here FN s,N b
denotes the

filtration generated by N s and N b .

For a generic Euclidean space E and for T > 0, we denote C([0,T]; E) and

D([0,T]; E) to be the spaces of continuous and càdlàg functions, respectively. We

endow both spaces with “sup-norms", so that both of them are complete metric

spaces. Next, for p ≥ 1 we denote Lp (F ; E) to be the space of all E-valued F -

measurable random variable ξ defined on the probability space (Ω,F ,P) such that

E[|ξ |p] < ∞. Also, for T ≥ 0, we denote Lp
F

([t,T]; E) to be all E-valued F-adapted

process η on [t,T], such that ‖η‖p,T := E[
∫ T
t
|ηs |pds]1/p < ∞. We often use the

notations Lp (F;C([0,T]; E)) and Lp (F;D([0,T]; E)) when we need to specify the

path properties for elements in Lp
F

([0,T]; E).
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For p ≥ 1 we denote by Pp (E) the space of probability measures μ on (E,B(E))

with finite p-th moment, i.e. ‖μ‖pp :=
∫
E
|x |pμ(dx) <∞. Clearly, for ξ ∈ Lp (F ; E),

its law L(ξ) = Pξ := P ◦ ξ−1 ∈Pp (E). We endow Pp (E) with the following p-

Wasserstein metric:

Wp (μ, ν) := inf
{(∫

E×E
|x− y |pπ(dx,dy)

) 1
p

: π ∈Pp (E ×E)

with marginals μ and ν
}

(1)

= inf
{
‖ξ − ξ ′‖Lp (Ω) : ξ, ξ ′ ∈ Lp (F ; E) with Pξ = μ, Pξ′ = ν

}
.

Furthermore, we suppose that there is a sub-σ-algebra G ⊂ F such that (i) the

Brownian motion W and Poisson random measures N s,N b are independent of G;

and (ii) G is “rich enough" in the sense that for every μ ∈P2(R), there is a random

variable ξ ∈ L2(G; E) such that μ = Pξ . Let F = FW,B,N s,N b∨G = {Ft }t≥0, where

Ft = FW
t ∨F B

t ∨F N
s

t ∨F N b

t ∨G, t ≥ 0, be the filtration generated by W , B, N s ,

N b , and G, augmented by all the P-null sets so that it satisfies the usual hypotheses
(cf. [38]).

Let us introduce two spaces that are useful for our analysis later. We write

C1,1
b

(P2(R)) to denote the space of all differentiable functions f : P2(R)→ R such

that ∂μ f exists, and is bounded and Lipschitz continuous. That is, for some constant

C > 0, it holds

(i) |∂μ f (μ, x) | ≤ C, μ ∈P2(R), x ∈ R;

(ii) |∂μ f (μ, x)−∂μ f (μ′, x ′) | ≤ C{|x− x ′ |+W2(μ, μ′)}, μ, μ′ ∈P2(R), x, x ′ ∈ R.

We shall denote C2,1
b

(P2(R)) to be the space of all functions f ∈ C1,1
b

(P2(R)) such

that

(i) ∂μ f (·, x) ∈ C1,1
b

(P2(R)) for all x ∈ R;

(ii) ∂2
μ f : P2(R)×R×R→ R⊗R is bounded and Lipschitz continuous;

(iii) ∂μ f (μ, ·) : R→ R is differentiable for every μ ∈P2(R), and its derivative

∂y∂μ f : P2(R)×R→ R⊗R is bounded and Lipschitz continuous.

2.1 Mean-field SDEs with reflecting boundary conditions

In this subsection we consider the following (discontinuous) SDE with reflection,

which will be a key element of our discussion: for t ∈ [0,T],

Xs = x+
∫ s

t

∫
A×R+
θ(r,Xr−,PXr , z)1[0,λ(r,Xr−,PXr )](y)Ñ s (drdzdy) (2)

+

∫ s

t

b(r,Xr,PXr )dr +
∫ s

t

σ(r,Xr,PXr )dBr + βs +Ks, s ∈ [t,T],
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where θ, λ, b, σ are measurable functions defined on appropriate subspaces of

[0,T]×Ω×R×P2(R)×R, β is an F-adapted process with càdlàg paths, and K is a

“reflecting process". That is, it is an F-adapted, non-decreasing, and càdlàg process

so that

(i) X · ≥ 0, P-a.s.;

(ii)
∫ T

0
1{Xr>0}dKc

r = 0, P-a.s. (Kc denotes the continuous part of K); and

(iii) ΔKt = (Xt−+ΔYt )− for all t ∈ [0,T], where Y = X −K .

We call SDE (2) a mean-field SDE with discontinuous paths and reflections
(MFSDEDR), and we denote the solution by (X t,x,K t,x ), although the superscript is

often omitted when context is clear. If b,σ = 0 and β is pure jump, then the solution

(X,K ) becomes pure jump as well (i.e., dKc ≡ 0). We note that the main feature of

this SDE is that the jump intensity λ(· · · ) of the solution X is “state-dependent" with

mean-field nature. Its well-posedness thus requires some attention since, to the best

of our knowledge, it has not been studied in the literature.

We shall make use of the following Standing Assumptions.

Assumption 2.1 The mappings λ : [0,T]×R×P2(R) �→ R+, b : [0,T]×Ω×R×
P2(R) �→ R, σ : [0,T]×Ω×R×P2(R) �→ R, and θ : [0,T]×Ω×R×P2(R)×R �→
R are all uniformly bounded and continuous in (t, x), and satisfy the following
conditions, respectively:

(i) For fixed μ ∈ P2(R) and x, z ∈ R, the mappings (t,ω) �→ θ(t,ω, x, μ, z),
(b,σ)(t,ω, x, μ) are F-predictable;

(ii) For fixed μ ∈ P2(R), (t, z) ∈ [0,T] ×R, and P-a.e. ω ∈ Ω, the functions
λ(t, ·, μ), b(t,ω, ·, μ), σ(t,ω, ·, μ), θ(t,ω, ·, μ, z) ∈ C1

b
(R);

(iii) For fixed (t, x, z) ∈ [0,T]×R2, and P-a.e. ω ∈ Ω, the functions λ(t, x, ·),
b(t,ω, x, ·), σ(t,ω, x, ·), θ(t,ω, x, ·, z) ∈ C1,1

b
(P2(R));

(iv) There exists L > 0, such that for P-a.e. ω ∈ Ω, it holds that

|λ(t, x, μ)− λ(t, x ′, μ′) |+ |b(t,ω, x, μ)− b(t,ω, x ′, μ′) |
+|σ(t,ω, x, μ)−σ(t,ω, x ′, μ′) |+ |θ(t,ω, x, μ, z)− θ(t,ω, x ′, μ′, z) |

≤ L
( |x− x ′ |+W1(μ, μ′)

)
, t ∈ [0,T], x, x ′, z ∈ R, μ, μ′ ∈P2(R).

Remark 2.2 (i) The requirements on the coefficients in Assumption 2.1 (such as

boundedness) are stronger than necessary, only to simplify the arguments. More

general (but standard) assumptions are easily extendable without substantial diffi-

culties.

(ii) Throughout this paper, unless specified, we shall denote C > 0 to be a generic

constant depending only on T and the bounds in Assumption 2.1. Furthermore, we

shall allow it to vary from line to line.

It is well-known that (see, e.g., [9]), as a mean-field SDE, the solution to (2) may

not satisfy the so-called “flow property", in the sense that X t,x
r � X s,X t,x

s
r ,0 ≤ t ≤ s ≤

r ≤ T . It is also noted in [9] that if we consider the following accompanying SDE of

(2): for s ∈ [t,T],
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X t,ξ
s = ξ +

∫ s

t

b(r,X t,ξ
r ,PX t, ξ

r
)dr +

∫ s

t

σ(r,X t,ξ
r ,PX t, ξ

r
)dBr + βs +K t,ξ

s

+

∫ s

t

∫
A×R+
θ(r,X t,ξ

r− ,PX t, ξ
r
, z)1

[0,λ(r,X
t, ξ
r− ,PXt, ξ

r
)]

(y)Ñ s (drdzdy) (3)

and then using the law PX t, ξ to consider a slight variation of (3):

X t,x,ξ
s = x+

∫ s

t

b(r,X t,x,ξ
r ,P

X
t, ξ
r

)dr +
∫ s

t

σ(r,X t,x,ξ
r ,P

X
t, ξ
r

)dBr + βs +K t,x,ξ
s

+

∫ s

t

∫
A×R+
θ(r,X t,x,ξ

r− ,PX t, ξ
r
, z)1

[0,λ(r,X
t,x, ξ
r− ,P

X
t, ξ
r

)]
(y)Ñ s (drdzdy), (4)

where ξ ∈ L2(Ft ;R), then we shall argue below that the following flow property

holds: (
X s,X

t,x, ξ
s ,X

t, ξ
s

r ,X s,X
t, ξ
s

r

)
= (X t,x,ξ

r ,X t,ξ
r ), 0 ≤ t ≤ s ≤ r ≤ T, (5)

for all (x, ξ) ∈ R× L2(Ft ;R). We should note that although both SDEs (3) and (4)

resemble the original equation (2), the process X t,x,ξ has the full information of the

solution given the initial data (x, ξ), where ξ provides the initial distribution Pξ , and

x is the actual initial state.

To prove the well-posedness of SDEs (3) and (4), we first recall the so-called

“Discontinuous Skorohod Problem" (DSP) (see, e.g., [16, 31]). Let Y ∈ D([0,T]),

Y0 ≥ 0. We say that a pair (X,K ) ∈ D([0,T])2 is a solution to the DSP(Y ) if

(i) X = Y +K ;

(ii) Xt ≥ 0, t ≥ 0; and

(iii) K is nondecreasing, K0 = 0, and Kt =
∫ t

0
1{Xs−=0}dKs , t ≥ 0.

It is well-known that the solution to DSP exists and is unique, and it can be shown

(see [31]) that the condition (iii) amounts to saying that
∫ t

0
1{Xs−>0}dKc

s = 0, where

Kc denotes the continuous part of K , and ΔKt = (Xt− +ΔYt )−. Furthermore, it is

shown in [16] that solution mapping of the DSP, Γ : D([0,T]) �→ D([0,T]), defined

by Γ(Y ) = X , is Lipschitz continuous under uniform topology. That is, there exists a

constant L > 0 such that

sup
t∈[0,T ]

|Γ(Y 1)t −Γ(Y 2)t | ≤ L sup
t∈[0,T ]

|Y 1
t −Y 2

t |, Y 1,Y 2 ∈ D([0,T]). (6)

Before we proceed to prove the well-posedness of (3) and (4), we note that the

two SDEs can be argued separately. Moreover, while (3) is a mean-field (or McKean-

Vlasov)-type of SDE, (4) is actually a standard SDE (although with state-dependent

intensity) with discontinuous paths and reflection, given the law of the solution to (3),

PX t, ξ , and it can be argued similarly but much simpler. Therefore, in what follows we

shall focus only on the well-posedness of SDE (3). Furthermore, for simplicity we

shall assume b ≡ 0, as the general case can be argued similarly without substantial

difficulty.
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The scheme of solving the SDE (3) is more or less standard (see, e.g., [31]). We

shall first consider an SDE without reflection: for ξ ∈ L2(Ft ;R) and s ∈ [t,T],

Y t,ξ
s = ξ +

∫ s

t

∫
A×R+
θ(r,Γ(Y t,ξ )r−,PΓ(Y t, ξ )r , z)1

[0,λ
Γ(t, ξ )
r− ]

(y)Ñ s (drdzdy)

+

∫ s

t

σ(r,Γ(Y t,ξ )r,PΓ(Y t, ξ )r )dBr + βs, (7)

where λ
Γ(t,ξ )
r− := λ(r,Γ(Y t,ξ )r−,PΓ(Y t, ξ )r ). Clearly, if we can show that (7) is well-

posed, then by simply setting X t,ξ
s = Γ(Y t,ξ )s and K t,ξ

s = X t,ξ
s −Y t,ξ

s , s ∈ [t,T], we see

that (X t,ξ,K t,ξ ) would solve SDE (3)(!). We should note that a technical difficulty

caused by the presence of the state-dependent intensity is that the usual L2-norm

does not work as naturally as expected, as we shall see below. We nevertheless have

the following result.

Theorem 2.3 Assume that Assumptions 2.1 is in force. Then, there exists a solution
Y t,ξ ∈ L2

F
(D([t,T])) to SDE (7). Furthermore, such solution is pathwisely unique.

Proof Assume t = 0. For a given T0 > 0, and y ∈ L1
F
(D([0,T0])), consider a mapping

T :

T (y)s := ξ +

∫ s

0

∫
A×R+
θ(r,Γ(y)r−,PΓ(y)r , z)1[0,λ(r,Γ(y)r−,PΓ(y)r )](u)Ñ s (drdzdu)

+

∫ s

0

σ(r,Γ(y)r,PΓ(y)r )dBr + βs, s ≥ 0. (8)

We shall argue that T is a contraction mapping on L1
F
(D([0,T0])) for T0 > 0 small

enough.

To see this, denote, for η ∈ D([0,T0]), |η |∗s := sup0≤r≤s |ηr |, and define θs (z) :=

θ(s,Γ(y)s,PΓ(y)s , z), λs := λ(s,Γ(y)s,PΓ(y)s ), σs := σ(s,Γ(y)s,PΓ(y)s ), s ∈ [0,T0].

Then, we have

E[|T (y) |∗T0
] ≤ C

{
E|ξ |+E

[∫ T0

0

∫
A×R+

��θr (z)1[0,λr ](u)��νs (dz)dudr
]

+E
[(∫ T0

0

|σr |2dr
)1/2]}

≤ CE|ξ |+CE
[∫ T0

0

∫
A

|θr (z)λr |νs (dz)dr
]

+CE
[(∫ T0

0

|σr |2dr
)1/2]

<∞,

thanks to Assumption 2.1. Hence, T (y) ∈ L1
F
(D([0,T0])).

We now show that T is a contraction mapping on L1
F
(D([0,T0])). For y1, y2 ∈

L1
F
(D([0,T0])), we denote θi , λi , and σi , respectively, as before, and denote Δϕ :=
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ϕ1 − ϕ2, for ϕ = θ, λ,σ, and ΔT (s) := T (y1)s −T (y2)s , s ≥ 0. Then, we have, for

s ∈ [0,T0],

ΔT (s) =

∫ s

0

ΔσrdBr +

∫ s

0

∫
A×R+

[
Δθr (z)1[0,λ1

r ](y)

+θ2r (z)
(1[0,λ1

r ](y)−1[0,λ2
r ](y)

)]Ñ s (drdzdy).

Clearly, ΔT = T (y1) −T (y2) is a martingale on [0,T0]. Since Ñ = N −N̂ and

|1[0,a](·)−1[0,b](·) | ≤ 1[a∧b,a∨b](·) for any a,b ∈ R, we have, for 0 ≤ s ≤ T0,

E|ΔT |∗s ≤ E
[(∫ s

0

|Δσr |2dr
) 1

2
]
+2E

[∫ s

0

∫
A×R+

��θ2r (z)
(1[0,λ1

r ](y)−1[0,λ2
r ](y)

)
+Δθr (z)1[0,λ1

r ](y)��νs (dz)dydr
]

:= I1+ I2. (9)

Recalling from Remark 2.2-(ii) for the generic constant C > 0, and by Assumption

2.1-(iv), (6), and the definition of W1(·, ·) (see (1)), we have

I1 ≤ CE
[(∫ s

0

{|y1− y2 |∗,2r +W1(PΓ(y1)r ,PΓ(y2)r )2}dr
)1/2]

≤ CE
[√

s
(|y1− y2 |∗s +E|y1− y2 |∗s

)] ≤ C
√

T0‖y1− y2‖L1 (D([0,T0]))

I2 ≤ C
(
E

[∫ s

0

∫
A

|Δθr (z) |νs (dz)dr
]
+E

[∫ s

0

|Δλr |dr
] )

(10)

≤ CE
[∫ s

0

(
|Γ(y1)r −Γ(y2)r |+W1(PΓ(y1)r ,PΓ(y2)r )

)
dr
]

≤ CE
[∫ s

0

|Γ(y1)−Γ(y2) |∗rdr
]
≤ CT0‖y1− y2‖L1 (D([0,T0])) .

Combining (9) and (10), we deduce that

‖ΔT ‖L1 (D([0,T0])) ≤ C(T0+
√

T0)‖y1− y2‖L1 (D([0,T0])), s ∈ [0,T0]. (11)

Therefore, by choosing T0 such that C(T0 +
√

T0) < 1, we see that the mapping

T is a contraction on L1(D([0,T0])), which implies that (7) has a unique so-

lution in L1
F
(D([0,T0])). Moreover, we note that T0 depends only on the univer-

sal constant in Assumption 2.1. We can repeat the argument for the time interval

[T0,2T0], [2T0,3T0], · · · , and conclude that (7) has a unique solution in L1
F
(D([0,T]))

for any given T > 0.

Finally, we claim that the solution Y ∈ L2
F
(D([0,T])). Indeed, by Burkholder-

Davis-Gundy’s inequality and Assumption 2.1, we have
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E[|Y |∗,2s ] ≤ C
{
E|ξ |2+E

[∫ s

0

∫
A×R+

��θr (z)1[0,λr ](y))��2νs (dz)dydr
]

+E[

∫ s

0

|σr |2dr]+E| β |∗,2T

}
(12)

≤ C
{
E|ξ |2+E

[∫ s

0

[
1+ |Yr |2+W1(0,Γ(Y )r )

]2dr
]
+E| β |∗,2T

}
≤ C

{
E|ξ |2+

∫ s

0

(1+E[|Y |∗,2r ])dr +E| β |∗,2T

}
, s ∈ [0,T].

Here, in the last inequality above we used the fact that

W1(0,Γ(Y )r )2 ≤ (‖Γ(Y )r ‖L1 (Ω) )
2 ≤ (E|Γ(Y ) |∗r )2 ≤ CE[|Y |∗,2r ], r ∈ [0, s].

Applying the Gronwall inequality, we obtain that E[|Y |∗,2T ] < ∞. The proof is now

complete. �

Remark 2.4 (i) It is worth noting that once we solved X t,ξ , then we know PX t, ξ ,

and (4) can be viewed as a standard SDEDR with coefficient λ̃(s, x) := λ(s, x,P
X

t, ξ
s

),

which is Lipschitz in x. This guarantees the existence and uniqueness of the solution

(X t,x,ξ,K t,x,ξ ) to (4).

(ii) The uniqueness of the solutions to (3) and (4) implies that X t,x,ξ
s |x=ξ=

X t,ξ
s , s ∈ [t,T]. That is, X t,x,ξ

s |x=ξ solves the same SDE as X t,ξ
s , s ∈ [t,T]. (See more

detail in [34].)

(iii) Given (t, x) ∈ [0,T]×R, if Pξ1
= Pξ2

for ξ1, ξ2 ∈ L2(Ft ;R), then X t,x,ξ1 and

X t,x,ξ2 are indistinguishable. So, X t,x,Pξ := X t,x,ξ , i.e. X t,x,ξ depends on ξ only

through its law.

2.2 An Itô’s formula

We shall now present an Itô’s formula that will be frequently used in our future

discussion. We note that a similar formula for mean-field SDE can be found in [9],

and the one involving jumps was given in the recent work [22]. The one presented

below is a slight modification of that of [22], taking the particular state-dependent

intensity feature of the dynamics into account. Since the proof is more or less standard

but quite lengthy, we refer to [34] for the details.

In what follows we let (Ω̃, F̃ , P̃) be a copy of the probability space (Ω,F ,P), and

denote Ẽ[·] to be the expectation under P̃. For any random variable ϑ defined on

(Ω,F ,P), we denote, when there is no danger of confusion, ϑ̃ ∈ (Ω̃, F̃ , P̃) to be a

copy of ϑ such that P̃ϑ̃ = Pϑ . We note that that Ẽ[·] acts only on the variables of the

form ϑ̃.

We first define the following classes of functions.

Definition 2.5 We say that F ∈ C1,2, (2,1)
b

([0,T]×R×R×P2(R)), if
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(i) F (t,v, ·, ·) ∈ C2,1
b

(R×P2(R)), for all t ∈ [0,T] and v ∈ R;
(ii) F (·,v, x, μ) ∈ C1

b
([0,T]), for all (v, x, μ) ∈ R×R×P2(R);

(iii) F (t, ·, x, μ) ∈ C2
b

(R), for all (t, x, μ) ∈ [0,T]×R×P2(R);
(iv) All derivatives involved in the definitions above are uniformly bounded over

[0,T]×R×R×P2(R) and Lipschitz continuous in (x, μ), uniformly with respect to
t.

We are now ready to state the Itô’s formula. Let V t,v be an Itô process given by

V t,v
s = v+

∫ s

t

bV (r,V t,v
r )dr +

∫ s

t

σV (r,V t,v
r )dBV

r , (13)

where v ∈ R and (BV
t )t∈[0,T ] is a standard Brownian motion independent of

(Bt )t∈[0,T ]. For notational simplicity, in what follows for the coefficients ϕ =

b,σ, β, λ, we denote ϕ
t,x,ξ
s := ϕ(s,X t,x,ξ

s ,P
X

t, ξ
s

), θ
t,x,ξ
s (z) := θ(s,X t,x,ξ

s ,P
X

t, ξ
s
, z),

ϕ̃
t,ξ
s := ϕ(s, X̃ t, ξ̃

s ,PX t, ξ
s

), and θ̃
t,ξ
s (z) := θ(s, X̃ t, ξ̃

s , PX t, ξ
s
, z). Similarly, denote bt,vs :=

bV (s,V t,v
s ) and σt,v

s := σV (s,V t,v
s ). Also, let us write Θt

s := (s,V t,v
s ,X

t,x,ξ
s ,P

X
t, ξ
s

),

from which we have Θt
t = (t,v, x,Pξ ).

Proposition 2.6 (Itô’s Formula) Let Φ ∈ C1,2, (2,1)
b

([0,T] ×R ×R ×P2(R)), and
(X t,ξ,X t,x,ξ,V t,v) be the solutions to (3), (4) and (13), respectively, on [t,T]. Then,
for 0 ≤ t ≤ s ≤ T , it holds

Φ(Θt
s)−Φ(Θt

t )

=

∫ s

t

(
∂tΦ(Θt

r )+ ∂xΦ(Θt
r )bt,x,ξr +

1

2
∂2
xxΦ(Θt

r )(σ
t,x,ξ
r )2+ ∂vΦ(Θt

r )bt,vr

+
1

2
∂2
vvΦ(Θt

r )(σt,v
r )2
)
dr

+

∫ s

t

∂xΦ(Θt
r )σ

t,x,ξ
r dBr +

∫ s

t

∂vΦ(Θt
r )σt,v

r dBV
r +

∫ s

t

∂xΦ(Θt
r−)1{Xr−=0}dKr

+

∫ s

t

∫
A

(
Φ(r,V t,v

r ,X
t,x,ξ
r− + θ

t,x,ξ
r (z),P

X
t, ξ
r

)−Φ(Θt
r−)

−∂xΦ(Θt
r−)θ

t,x,ξ
r− (z)

)
λ
t,x,ξ
r νs (dz)dr (14)

+

∫ s

t

∫
A×R+

(
Φ(r,V t,v

r ,X
t,x,ξ
r− + θ

t,x,ξ
r (z),P

X
t, ξ
r

)−Φ(Θt
r−)
)
1

[0,λ
t,x, ξ
r ]

(y)Ñ s(drdzdy)

+

∫ s

t

Ẽ

[
∂μΦ(Θt

r, X̃
t, ξ̃
r )b̃t,ξr +

1

2
∂y (∂μΦ)(Θt

r, X̃
t, ξ̃
r )(σ̃

t,ξ
r )2

+

∫ 1

0

∫
A

(
∂μΦ(Θt

r, X̃
t, ξ̃
r +ρθ̃

t,x,ξ
r (z))−∂μΦ(Θt

r, X̃
t, ξ̃
s )
)
θ̃
t,ξ
r (z)λ̃

t,ξ
r ν

s (dz)dρ
]
dr .
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3 A Bertrand game among the sellers (static case)

In this section we analyze a price setting mechanism among liquidity providers

(investors placing limit orders), and use it as the basis for our continuous time model

in the rest of the paper. To begin with, recall that in this paper we assume all sellers

are patient and all buyers are impatient. We therefore consider only the sell-side

LOB. Following the ideas of [13, 27, 28], we shall consider the process of the (static)

price setting as a Bertrand-type of game among the sellers, each placing a certain

number of sell limit orders at a specific price, and trying to maximize her expected

utility. To be more precise, we assume that sellers use the price at which they place

limit orders as their strategic variable, and the number of shares submitted would be

determined accordingly. Furthermore, we assume that there is a waiting cost, also as

a function of the price. Intuitively, a higher price will lead to a longer execution time,

hence a higher waiting cost. Thus, there is a competitive game among the sellers for

better total reward. Finally, we assume that the sellers are homogeneous in the sense

that they have the same subjective probability measure, so that they share the same

degree of risk aversion.

We now give a brief description of the problem. We assume that there are N
sellers, and the jth seller places limit orders at price pj = X + l j , j = 1,2, · · · ,N ,

where X is the fundamental price. Without loss of generality, we may assume X = 0.

As a main element in an oligopolistic competitions (cf. e.g., [28]), we assume that

each seller i is equipped with a demand function, denoted by hN
i (p1, p2, · · · , pN ), for

a given price vector p = (p1, p2, · · · , pN ), reflecting the seller’s perceived demand

from the buyers. The seller i will determine the number of shares of limit orders

to be placed in the LOB based on the values of his/her demand function, given the

price vector. Hence this is a Bertrand-type game1. More specifically, we assume

that the demand functions hN
i , i = 1,2, · · · ,N , are smooth and satisfy the following

properties:

∂hN
i

∂pi
< 0, and

∂hN
i

∂pj
> 0, for j � i. (15)

We note that (15) simply amounts to saying that each seller expects less demand (for

her orders) when her own price increases, and more demand when other seller(s)

increase their prices. Furthermore, we shall assume that the demand functions are

invariant under permutations of the other sellers’ prices, in the sense that, for fixed

p1, · · · , pN and all i, j ∈ {1, · · · ,N },
hN
i (p1, · · · , pi, · · · , pj, · · · , pN ) = hN

j (p1, · · · , pj, · · · , pi, · · · , pN ). (16)

It is worth noting that the combination of (15) and (16) is the following fact: if a

price vector p is ordered by p1 ≤ p2 ≤ · · · ≤ pN , then for any i < j, it holds that

1 A Cournot game is one such that the price pi is the function of the numbers of shares q =
(q1, · · · , qN ) through a demand function. The two games are often exchangeable if the demand

functions are invertible (see, e.g., [28]).
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hN
j (p) = hN

j (p1, ··, pj, ··, pi, ··, pN ) ≤ hN
i (p1, ··, pi, ··, pi, ··, pN ) ≤ hN

i (p). (17)

That is, the demand functions are ordered in a reversed way, which in a sense indicates

that the shape of LOB should be a non-increasing function of prices in the LOB.

Finally, for each i, we denote the price vector for “other" prices for seller i by p−i .
For seller i, the “least favorable" price for given p−i is one that would generate zero

demand, which is often referred to as the choke price. We shall assume such a price

exists, and denote it by p̂i (p−i) <∞, namely,

hN
i (p1, · · · , pi−1, p̂i, pi+1, · · · , pN ) = 0. (18)

We note that the existence of the choke price, together with the monotonicity property

(15), indicates the possibility that hN
j (p) < 0, for some j and some price vector p.

But since the size of order placement cannot be negative, such scenario becomes

unpractical. To amend this, we introduce the notion of actual demand, denoted by

{ĥi (p)}, which we now describe.

Consider an ordered price vector p = (p1, · · · , pN ), with pi ≤ pj , i ≤ j, and we

look at hN
N (p). If hN

N (p) ≥ 0, then by (17) we have hN
i (p) ≥ 0 for all i = 1, · · · ,N .

In this case, we denote ĥi (p) = hN
i (p) for all i = 1, · · · ,N . If hN

N (p) < 0, then we

set ĥN (p) = 0. That is, the N-th seller does not act at all. We assume that the

remaining N − 1 sellers will observe this fact and modify their strategy as if there

are only N − 1 sellers. More precisely, we first choose a choke price p̂N so that

hN
N (p1, · · · , pN−1, p̂N ) = 0, and define

hN−1
i (p1, p2, · · · , pN−1) := hN

i (p1, p2, · · · , pN−1, p̂N ), i = 1, · · · ,N −1,

and continue the game among the N −1 sellers.

In general, for 1 ≤ n ≤ N −1, assume the (n+1)-th demand functions {hn+1
i }n+1

i=1

are defined. If hn+1
n+1

(p1, · · · , pn+1) < 0, then other n sellers will assume (n+ 1)-th

seller sets a price at p̂n+1 with zero demand (i.e., hn+1
n+1

(p1, p2, · · · , pn, p̂n+1) = 0), and

modify their demand functions to

hn
i (p1, p2, · · · , pn) := hn+1

i (p1, p2, · · · , pn, p̂n+1), i = 1, · · · ,n. (19)

We can now define the actual demand function {ĥi }Ni=1
.

Definition 3.1 (Actual demand function) Assume that {hN
i }Ni=1

is a family of demand
functions. The family of “actual demand functions", denoted by {ĥi }Ni=1

, are defined
in the following steps: for a given ordered price vector p,

(i) if hN
N (p) ≥ 0, then we set ĥi (p) = hN

i (p) for all i = 1, · · · ,N;
(ii) if hN

N (p) < 0, then we define recursively for n = N − 1, · · ·1 the demand
functions {hn

i }ni=1
as in (19). In particular, if there exists an n < N such that

hn+1
n+1

(p1, p2, · · · , pn, pn+1) < 0 and hn
n (p1, p2, · · · , pn) ≥ 0, then we set
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ĥi (p) =
⎧⎪⎨⎪⎩hn

i (p1, p2, · · · , pn) i = 1, · · · ,n
0 i = n+1, · · · ,N ;

(20)

(iii) if there is no such n, then ĥi (p) = 0 for all i = 1, · · · ,N .

We note that the actual demand function will always be non-negative, but for each

price vector p, the number #{i : ĥi (p) > 0} ≤ N , and could even be zero.

3.1 The Bertrand game and its Nash equilibrium

Besides the demand function, a key ingredient in the placement decision mak-

ing process is the “waiting cost" for the time it takes for the limit order to be

executed. We shall assume that each seller has her own waiting cost function

cNi � cNi (p1, p2, · · · , pN,Q), where Q is the total number of shares available in the

LOB. Similar to the demand function, we shall assume the following assumptions

for the waiting cost.

Assumption 3.2 For each seller i ∈ {1, · · · ,n} with n ∈ [1,N], each cNi is smooth in
all variables such that

(i) (Monotonicity) ∂cN
i

∂pi
> 0, and ∂cN

i

∂p j
< 0, for j � i;

(ii) (Exchangeability) cNi (p1, ··, pi, ··, pi, ··, pN ) = cNj (p1, ··, pj, ··, pi, ··, pN );

(iii) cNi (p)��pi=0 = 0, and ∂cN
i

∂pi

���pi=0+
∈ (0,1);

(iv) limpi→∞
pi

cN
i (p)

= 0, i = 1, · · · ,N .

Remark 3.3 (a) Assumption 3.2-(i), (ii) ensure that the price ordering leads to the

same ordering for waiting cost functions, similar to what we argued before for

demand functions. In particular, the second part of Assumption 3.2-(i) is due to

(15). That is, if other seller submits an order at a higher price, the demand for seller

i increases, which would lead to faster execution, hence shorter waiting time and

lower waiting cost.

(b) Consider the function Ji (p,Q) = pi − cNi (p,Q). Assumption 3.2 amounts to

saying that Ji (p,Q)��pi=0 = 0,
∂Ji (p,Q)

∂pi

���pi=0+
> 0, and limpi→∞ Ji (p,Q) < 0. Thus,

there exists p0
i = p0

i (p−i,Q) > 0 such that
∂Ji (p,Q)

∂pi

���pi=p0
i

= 0, and
∂Ji (p,Q)

∂pi

���pi>p0
i

< 0.

(c) Since Ji (0,Q) = 0, and
∂Ji (p,Q)

∂pi

���pi=0+
> 0, one can easily check that Ji (p0

i ,Q) >

0. This, together with Assumption 3.2-(iv), shows that there exists p̃i = p̃i (p−i,Q) >
p0
i , such that Ji (pi,Q)��pi=p̃i = 0 (or, equivalently cNi (p1, · · · , pi−1, p̃i, pi+1, · · · , pN,Q) =

p̃i). Furthermore, remark above implies that Ji (pi,Q) < 0 for all pi > p̃i (p−i,Q). In

other words, any selling price higher than p̃i (p−i,Q) would yield a negative profit,

and therefore should be prevented.
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The Bertrand game among sellers can now be formally introduced: each seller

chooses its price to maximize profit in a non-cooperative manner, and their decision

will be based not only on her own price, but also on the actions of all other sellers.

We denote the profit of each seller by

Πi (p1, p2, ··, pN,Q) := ĥi (p1, p2, ··, pN )×
(
pi − cNi (p1, p2, ··, pN,Q)

)
, (21)

and each seller tries to maximize her profit Π. For each fixed Q, we are looking for

a Nash equilibrium price vector p∗,N (Q) = (p∗,N
1

(Q), · · · , p∗,NN (Q)). We note that in

the case when ĥi (p∗,N ) = 0 for some i, the i-th seller will not participate in the game

(with zero profit), so we shall modify the price

p∗,Ni (Q) � cNi (p∗,N
1
, · · · , p∗,NN ,Q) = cNi (p∗,N,Q), (22)

and consider a subgame involving the N −1 sellers, and so on. That is, for a subgame

with n sellers, they solve

p∗,ni = argmax
p≥0
Πn
i (p∗,n

1
, p∗,n

2
, · · · , p∗,n

i−1
, p, p∗,n

i+1
, · · · , p∗,nn ,Q), i = 1, · · · ,n (23)

to get p∗,n = (p∗,n
1
, · · · , p∗,nn ,c

∗,n+1

n+1
, · · · ,c∗,NN ). More precisely, we define a Nash Equi-

librium as follows.

Definition 3.4 A vector of prices p∗ = p∗(Q) = (p∗
1
, p∗

2
, · · · , p∗N ) is called a Nash

equilibrium if

p∗i = argmax
p≥ci
Πi (p∗1, p

∗
2, · · · , p∗i−1, p, p

∗
i+1, · · · , p∗N,Q), (24)

and p∗i = c∗,ii (p∗,Q) whenever ĥi (p∗) = 0, i = 1,2, · · · ,N .

We assume the following on a subgame for our discussion.

Assumption 3.5 For n = 1, · · · ,N , we assume that there exists a unique solution to
the system of maximization problems in equation (23).

Remark 3.6 We observe from Definition of the Nash Equilibrium that, in equilib-

rium, a seller is actually participating in the Bertrand game only when her actual

demand function is positive, and those with zero actual demand function will be

ignored in the subsequent subgames. However, a participating seller does not nec-

essarily have positive profit unless she sets the price higher than the waiting cost. In

other words, it is possible that ĥi (p∗) > 0, but p∗i = ci (p∗,Q), so that Πi (p∗,Q) = 0.

We refer to such a case the boundary case, and denote the price to be c∗,bi .

The following result details the procedure of finding the Nash equilibrium for the

Bertrand competition. The idea is quite similar to that in [13], except for the general

form of the waiting cost. We sketch the proof for completeness.
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Proposition 3.7 Assume that Assumption 3.2 is in force. Then there exists a Nash
equilibrium to the Bertrand game (21) and (24).

Moreover, the equilibrium point p∗, after modifications, should take the following
form:

p∗ = (p∗1, · · · , p∗k,c∗,bk+1
, · · · ,c∗,bn ,c

∗
n+1, · · · ,c∗N ), (25)

from which we can immediately read: ĥi (p∗) > 0 and p∗i > c∗i , i = 1, · · · , k; ĥi (p∗) > 0

but p∗i ≤ c∗i , i = k +1, · · · ,n; and ĥi (p∗) ≤ 0, i = n+1, · · · ,N .

Proof We start with N sellers, and we shall drop the superscript N from all the

notations, for simplicity. Let p∗ = (p∗
1
, p∗

2
, · · · , p∗N ) be the candidate equilibrium prices

(obtained by, for example, the first-order condition). By exchangeability, we can

assume without loss of generality that the prices are ordered: p∗
1
≤ p∗

2
≤ · · · ≤ p∗N ,

and so are the corresponding cost functions c∗
1
≤ c∗

2
≤ · · · ≤ c∗N , where c∗i = ci (p∗,Q)

for i = 1, · · · ,N .

We first compare p∗,NN and c∗,NN .

Case 1. p∗N > c∗N . We consider the following cases:

(a) If hN
N (p∗) > 0, then by Definition 3.1 we have ĥi (p∗) = hN

i (p∗) > 0, for all i,
and p∗ = (p∗

1
, p∗

2
, · · · , p∗N ) is an equilibrium point.

(b) If hN
N (p∗) ≤ 0, then in light of the definition of actual demand function

(Definition 3.1), we have ĥN (p∗) = 0. Thus, the N-th seller will have zero profit

regardless where she sets the price. We shall require in this case that the N-th seller

reduces her price to c∗N , and we shall consider remaining (N −1)-sellers’ candidate

equilibrium prices p∗,N−1 = (p∗,N−1

1
, · · · , p∗,N−1

N−1
).

Case 2. p∗N ≤ c∗N . In this case the N-th seller would have a non-positive profit

at the best. Thus, she sets p∗N = c∗N , and quits the game, and again the problem is

reduced to a subgame with (N −1) sellers, and to Case 1-(b). We should note that in

the “boundary case" described in Remark 3.6, we will write p∗N = c∗,bN .

Repeating the same procedure for the subgames (for n = N −1, · · · ,2), we see that

eventually we will get a modified equilibrium point p∗ of the form (25), proving the

proposition. �

3.2 A linear mean-field case

In this subsection, we consider a special case, studied in [27], but with the modified

waiting cost functions. More precisely, we assume that there are N sellers, each with

demand function

hN
i (p1, · · · , pN ) � A− Bpi +Cp̄N

i , (26)
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where A,B,C > 0, and B > C, and p̄N
i =

1
N−1

N∑
j�i

pj . We note that the structure of

the demand function (26) obviously reflects a mean-field nature, and one can easily

check that it satisfies all the assumptions mentioned in the previous subsection.

Furthermore, as was shown in [27, Proposition 2.4], the actual demand function

takes the form: for each n ∈ {1, · · · ,N −1},
hn
i (p1, · · · , pn) = an − bnpi + cn p̄ni , for i = 1, · · · ,n,

where p̄ni =
1

n−1

n∑
j�i

pj , and the parameters (an,bn,cn) can be calculated recursively

for n = N, · · · ,1, with aN = A, bN = B and cN = C. We note that in these works the

(waiting) costs are assumed to be constant.

Let us now assume further that the waiting cost is also linear. For example, for

n = 1, · · · ,N ,

cni = cni (pi, p̄ni ,Q) � xn(Q)pi − yn(Q) p̄ni , xn(Q), yn(Q) > 0.

Note that the profit function for seller i is

Πi (p1, · · · , pn,Q) = (an − bnpi + cn p̄ni ) ·
(
pi − (xnpi − yn p̄ni )

)
. (27)

An easy calculation shows that the critical point for the maximizer is

p∗,ni =
an

2bn
+

(
cn

2bn
− yn

2(1− xn)

)
p̄ni , (28)

which is the optimal choice of seller i if the other sellers set prices with average

p̄ni =
1

n−1

∑n
j�i p∗j . Now, let us define

p̄n :=
1

n

n∑
i=1

p∗i =
an(1− xn)

2bn(1− xn)− cn(1− xn)+ bnyn
. (29)

Then, it is readily seen that p̄ni =
n

n−1
p̄n − 1

n−1
p∗i , which means (plugging back into

(28))

p∗,ni =
an

2bn +
cn
n−1
− 1

n−1

bnyn
1−xn

+
1

n−1
n

2bn (1−xn )
cn (1−xn )−bnyn

+ 1
n

p̄n. (30)

For the sake of argument, let us assume that the coefficients (an,bn,cn, xn(Q),
yn(Q)) converge to (a,b,c, x(Q), y(Q)) as n→∞. Then, we see from (29) and (30)

that
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
lim
n→∞ p̄n =

a(1− x)

2b(1− x)− c(1− x)+ by
=: p̄;

lim
n→∞ p∗,ni =

a
2b
+

c(1− x)− by
2b(1− x)

lim
n→∞ p̄n =

a(1− x)

(2b− c)(1− x)+ by
=: p∗.

(31)

It is worth noting that if we assume that there is a “representative seller" who

randomly sets prices p = pi with equal probability 1
n , then we can randomize the

profit function (27):

Πn(p, p̄) = (an − bnp+ cn p̄)
(
p− (xnp− yn p̄)

)
, (32)

where p is a random variable taking value {pi } with equal probability, and p̄ ∼ E[p],

thanks to the Law of Large Numbers, when n is large enough. In particular, in the

limiting case as n→∞, we can replace the randomized profit function Πn in (32)

by:

Π∞ = Π(p,E[p]) := (a− bp+ cE[p])
(
p− (xp− yE[p])

)
. (33)

A similar calculation as (28) shows that (p∗,E[p∗]) ∈ argmaxΠ(p,E[p]) will take the

form

p∗ =
c(1− x)− by

2b(1− x)
E[p∗]+

a
2b

and E[p∗] =
a(1− x)

2b(1− x)− c(1− x)+ by
.

Consequently, we see that p∗ = a(1−x)
(2b−c)(1−x)+by , as we see in (31).

Remark 3.8 The analysis above indicates the following facts: (i) If we consider the

sellers in a “homogeneous" way, and as the number of sellers becomes large enough,

all of them will actually choose the same strategy, as if there is a “representative

seller" that sets the prices uniformly; (ii) The limit of equilibrium prices actually

coincides with the optimal strategy of the representative seller under a limiting profit

function. These facts are quite standard in mean-field theory, and will be used as the

basis for our dynamic model for the (sell) LOB in the next section.

4 Mean-field type liquidity dynamics in continuous time

In this section we extend the idea of Bertrand game to the continuous time setting.

To begin with, we assume that the contribution of each individual seller to the LOB

is measured by the “liquidity" (i.e., the number of shares of the given asset) she

provides, which is the function of the selling price she chooses, hence under the

Bertrand game framework.
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4.1 A general description

We begin by assuming that there are N sellers, and denote the liquidity that the

i-th seller “adds" to the LOB at time t by Qi
t . We shall assume that it is a pure

jump Markov process, with the following generator: for any f ∈ C([0,T]×RN ), and

(t,q) ∈ [0,T]×RN ,

A i,N [ f ](t,q) :=

∫
R

λi (t,q, θ)
(

f (t,q−i (qi + hi (t, θ, z))− f (t,q)

−〈∂xi f , hi (t, θ, z) 〉
)
νi (dz), (34)

where q ∈ RN , and q−i (y) = (q1, · · · ,qi−1, y,qi+1, · · · ,qN ). Furthermore, hi denotes

the demand function for the i-th seller, and θ ∈ Rk is a certain market parameter

which will be specified later. Roughly speaking, (34) indicates that the i-th seller

would act (or “jump") at stopping times {τij }∞j=1
with the waiting times τi

j+1
− τij

having exponential distribution with intensity λi (·), and jump size being determined

by the demand function hi (· · · ). The total liquidity provided by all the sellers is then

a pure jump process with the generator

A N [ f ](t,q, θ) =
N∑
i=1

A i,N [ f ](t,q), q ∈ RN, N ∈ N, t ∈ [0,T]. (35)

We now specify the functions λi and hi further. Recalling the demand function

introduced in the previous section, we assume that there are two functions λ and h,

such that for each i, and for (t, x,q, p) ∈ [0,T]×R×R2N ,

λi (t,q, θ) = λ(t,qi, pi, μN ), hi (t, θ, z) = h(t, x,qi, pi, z), (36)

where μN := 1
N

∑N
i=1
δpi , x denotes the fundamental price at time t, and pi is the

sell price. We shall consider p = (p1, · · · , pN ) as the control variable, as the Bertrand

game suggests. Now, if we assume νi = ν for all i, then we have a pure jump Markov
game of mean-field-type, similar to the one considered in [6], in which each seller

adds liquidity (in terms of number of shares) dynamically as a pure jump Markov

process, denoted by Qi
t , t ≥ 0, with the kernel

ν(t,qi, μN, pi,dz) = λ(t,qi, pi, μN )[ν ◦ h−1(t, x,qi, pi, ·)](dz). (37)

Furthermore, in light of the static case studied in the previous section, we shall assume

that the seller’s instantaneous profit at time t > 0 takes the form (pit − cit )ΔQi
t , where

cit is the “waiting cost" for i-th seller at time t. We observe that the submitted sell

price pi can be written as pi = x+ li , where x is the fundamental price and li is the

distance from x that the i-th seller chooses to set. Now let us assume that there is an

invertible relationship between the selling prices p and the corresponding number of

shares q, e.g., p = ϕ(q) (such a relation is often used to convert the Bertrand game

to Cournot game, see, e.g., [27]), and consider l as the control variable. We can then
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rewrite the functions λ and h of (36) in the following form:

λi (t,q, θ) = λ(t,qi, li, μ̃N (ϕ(q))), hi (t,q, θ) = h(t, x,qi, li, z). (38)

To simplify the presentation, in what follows, we shall assume that λ does not depend

on the control variable li , and that both λ and h are time-homogeneous. In other

words, we assume that each Qi follows a pure jump SDE studied in §2:

Qi
t = qi +

∫ t

0

∫
A×R+

h(Xr,Qi
r−, lir, z)1[0,λ(Qi

r−,μN
ϕ (Qr )

)](y)N s (drdzdy), (39)

where Qt = (Q1
t , · · · ,QN

t ), N s is a Poisson random measure on R+ ×R×R+, and

{Xt }t≥0 is the fundamental price process of the underlying asset which we assume

to satisfy the SDE (cf. [32]):

X t,x
s = x+

∫ s

t

b(X t,x
r )dr +

∫ s

t

σ(X t,x
r )dWr, (40)

where b and σ are deterministic functions satisfying some standard conditions.

We shall assume that the i-th seller is aiming at maximizing the expected total

accumulated profit:

E

{∑
t≥0

(pit − cit )ΔQi
t

}
= E

{∫ ∞

0

∫
A

h(Xt,Qi
t, l

i
t, z)(Xt + lit − cit )λ(Qi

t, μ
N
ϕ(Qt ) )ν

s (dz)dt
}
. (41)

We remark that in (41) the time horizon is allowed to be infinity, which can be

easily converted to finite horizon by setting h(Xt, · · · ) = 0 for t ≥ T , for a given time

horizon T > 0, which we do not want to specify at this point. Instead, our focus will

be mainly on the limiting behavior of the equilibrium when N →∞. In fact, given

the “symmetric" nature of the problem (i.e., all seller’s having the same λ and h),

as well as the results in the previous section, we envision a “representative seller" in

a limiting mean-field type control problem whose optimal strategy coincides with

the limit of N-seller Nash equilibrium as N →∞, just as the well-known continuous

diffusion cases (see, e.g., [29] and [9, 12]). We should note such a result for pure

jump cases has been substantiated in a recent work [6], in which it was shown

that, under reasonable conditions, in the limit the total liquidity Qt =
∑N

i=1
Qi

t will

converge to a pure jump Markovian process with a mean-field type generator. Based

on this result, as well as the individual optimization problem (39) and (41), it is

reasonable to consider the following (limiting) mean-filed type pure jump stochastic

control problem for a representative seller, whose total liquidity has a dynamics that

can be characterized by the following mean-field type pure jump SDE:

Qt = q+
∫ t

0

∫
A×R+

h(Xr,Qr−, lr, z)1[0,λ(Qr−,PQr )](y)N s (drdzdy), (42)
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where λ(Q,PQ) := λ(Q,E[ϕ(Q)]) by a slight abuse of notation, and with the cost

functional:

Π(q, l) = E
{∫ ∞

0

∫
A

h(Xt,Qt, lt, z)(Xt + lt − ct )λ(Qt,PQt )ν
s (dz)dt

}
. (43)

4.2 Problem formulation

With the general description in mind, we now give the formulation of our problem.

First, we note that the liquidity of the LOB will not only be affected by the liquidity

providers (i.e., the sellers), but also by liquidity consumer, that is, the market buy

orders as well as the cancellations of sell orders (which we assume is free of charge).

We shall describe its collective movement (in terms of number of shares) of all such

consumptional orders as a compound Poisson process, denoted by βt =
∑Nt

i=1
Λt ,

t ≥ 0, where {Nt } is a standard Poisson process with parameter λ, and {Λi } is a

sequence of i.i.d. random variables taking values in a set B ⊆ R, with distribution

ν. Without loss of generality, we assume that counting measure of β coincides with

the canonical Poisson random measureN b , so that the Lévy measure is νb = λν. In

other words, βt :=
∫ t

0

∫
B

z Ñ b (drdz), and the total liquidity satisfies the SDE:

Q0
t = q+

∫ t

0

∫
A×R+

h(Xr,Q0
r−, lr, z)1[0,λ(Q0

r−,PQ0
r

)](y)N s (drdzdy)− βt . (44)

We remark that there are two technical issues for the dynamics (44). First, the

presence of the buy order process β brings in the possibility that Q0
t < 0, which should

never happen in reality. We shall therefore assume that the buy order has a natural

upper limit: the total available liquidity Q0
t . That is, if we denote Sβ = {t : Δβt � 0},

then for all t ∈ Sβ , we have Q0
t = (Q0

t− −Δβt )+. Consequently, we can assume that

there exists a process K = {Kt }, where K is a non-decreasing, pure jump process

such that (i) SK = Sβ; (ii) ΔKt := (Q0
t− −Δβt )−, t ∈ SK ; and (iii) the Q0-dynamics

(44) can be written as, for t ≥ 0,

Qt = q+
∫ t

0

∫
A×R+

h(Xr,Qr−, lr, z)1[0,λ(Qr−,PQr )](y)N s (drdzdy)− βt +Kt

= q+
∫ t

0

∫
A×R+

h(Xr,Qr−, lr, z)1[0,λ(Qr−,PQr )](y)Ñ s (drdzdy) (45)

−
∫ t

0

∫
B

z Ñ b (drdz)+

∫ t

0

∫
A

h(Xr,Qr, lr, z)λ(Qr,PQr )νs (dz)dr +Kt .

where K is a “reflecting process", and Ñ s (drdzdy) is the compensated Poisson

martingale measure of N s . That is, (45) is a (pure jump) mean-field SDE with

reflection as was studied in §2.
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Now, in light of the discussion of MFSDEDR in §2, we shall consider the following

two MFSDEDRs that are slightly more general than (45): for ξ ∈ L2(Ft ;R), q ∈ R,

and 0 ≤ s ≤ t,

Qt,ξ
s = ξ +

∫ s

t

∫
A×R+

h(X t,x
r ,Q

t,ξ
r− , lr, z) 1

[0,λ(Q
t, ξ
r− ,PQt, ξ

r
)]

(y)Ñ s (drdzdy)

−
∫ s

t

∫
B

z Ñ b (drdz)+

∫ s

t

a(X t,x
r ,Q

t,ξ
r ,PQt, ξ

r
, lr )dr +K t,ξ

s , (46)

Qt,q,ξ
s = q+

∫ s

t

∫
A×R+

h(X t,x
r ,Q

t,q,ξ
r− , lr, z) 1

[0,λ(Q
t,q, ξ
r− ,P

Q
t, ξ
r

)]
(y)Ñ s (drdzdy)

−
∫ s

t

∫
B

z Ñ b (drdz)+

∫ s

t

a(X t,x
r ,Q

t,q,ξ
r ,P

Q
t, ξ
r
, lr )dr +K t,q,ξ

s , (47)

where l = {ls } is the control process for the representative seller, and Qs = Qt,q,ξ
s ,

s ≥ t, is the total liquidity of the sell-side LOB. We shall consider the following set

of admissible strategies:

Uad := {l ∈ L1
F
([0,∞);R+) : l is F-predictable}. (48)

The objective of the seller is to solve the following mean-field stochastic control

problem:

v(x,q,Pξ )= sup
l∈Uad

Π(x,q,Pξ, l) = sup
l∈Uad

E

[∫ ∞

0

e−ρrL(X x
r ,Q

q,ξ
r ,PQξ

r
, lr )dr

]
(49)

where L(x,q, μ, l) :=
∫
A

h(x,q, l, z)c(x,q, l)λ(q, μ)νs (dz), and Uad is defined in (48).

Here we denote X x := X0,x , Qq,ξ :=Q0,q,ξ .

Remark 4.1 (i) In (46) and (47), we allow a slightly more general drift function a,

which in particular could be a(x,q, μ, l) = λ(q, μ)
∫
A

h(x,q, l, z)νs (dz), as is in (45).

(ii) In (49), the pricing function c(x,q, l) is a more general expression of the

original form x + l − c in (43), taking into account the possible dependence of the

waiting cost ct on the sell position l and the total liquidity q at time t.

(iii) Compared to (43), we see that a discounting factor e−ρt is added to the cost

functional Π(· · · ) in (49), reflecting its nature as the “present value".

In the rest of the paper we shall assume that the market parameters b,σ, λ, h, the

pricing function c in (46) – (49), and the discounting factor ρ satisfy the following

assumptions.

Assumption 4.2 All functions b,σ ∈ C0(R), λ ∈ L0(R×P2(R);R+), h ∈ L0(R2 ×
R+× A), and c ∈ L0(R×R+×R+) are bounded, and satisfy the following conditions,
respectively:

(i) b and σ are uniformly Lipschitz continuous in x with Lipschitz constant L > 0;
(ii) σ(0) = 0 and b(0) ≥ 0;
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(iii) λ and h satisfy Assumption 2.1;
(iv) For l ∈ R+, c(x,q, l) is Lipschitz continuous in (x,q), with Lipschitz constant

L > 0;
(v) h is non-increasing, and c is non-decreasing in the variable l;
(vi) ρ > L+ 1

2
L2, where L > 0 is the Lipschitz constant in Assumption 2.1;

(vii) For (x, μ, l) ∈ R+×P2(R)×R+, Π(x,q, μ, l) is convex in q.

Remark 4.3 (i) The monotonicity assumptions in Assumption 4.2-(v) are inherited

from §3. Specifically, they are the assumption (15) for h, and Assumption 3.1-(i) for

c, respectively.

(ii) Under Assumption 4.2, one can easily check that the SDEs (40) as well as

(46) and (47) all have pathwisely unique strong solutions in L2
F
(D([0,T])), thanks

to Theorem 2.3; and Assumption 4.2-(ii) implies that X t,x
s ≥ 0, s ∈ [t,∞), P-a.s.,

whenever x ≥ 0.

5 Dynamic programming principle

In this section we substantiate the dynamic programming principle (DPP) for the

stochastic control problem (46)–(49). We begin by examining some basic properties

of the value function.

Proposition 5.1 Under the Assumptions 2.1 and 4.2, the value function v(x,q,Pξ )

is Lipschitz continuous in (x,q,Pξ ), non-decreasing in x, and decreasing in q.

Proof We first check the Lipschitz property in x. For x, x ′ ∈ R, denote X x = X0,x

and X x′ = X0,x′ as the corresponding solutions to (40), respectively. Denote ΔXt =

X x
t − X x′

t , and Δx = x − x ′. Then, applying Itô’s formula to |ΔXt |2 and by some

standard arguments, one has

|ΔXt |2 = |Δx |2+
∫ t

0

(2αs + β
2
s ) |ΔXs |2ds+

∫ t

0

2βs |ΔXs |2dWs,

where α, β are two processes bounded by the Lipschitz constants L in Assumption

2.1, thanks to Assumption 4.2. Thus, one can easily check, by taking expectation

and applying Burkholder-Davis-Gundy and Gronwall inequalities, that

E[|ΔX |∗,2t ] ≤ |Δx |2e(2L+L2)t, t ≥ 0. (50)

Furthermore, it is clear that, under Assumption 4.2, the function L(x,q, μ, l) is

uniformly Lipschitz in x, uniformly in (q, μ, l). That is, for some generic constant

C > 0 we have
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|Π(x,q,Pξ, l)−Π(x ′,q,Pξ, l) | ≤ CE
[∫ ∞

0

∫
A

e−ρt |ΔXt |νs (dz)dt
]

≤ CE
[∫ ∞

0

e−ρt
√
E[|ΔX |∗,2t ]dt

]
≤ C |Δx |

∫ ∞

0

e−ρte(L+ 1
2
L2)tdt ≤ C |x− x ′ |.

Here the last inequality is due to Assumption 4.2-(vi). Consequently, we obtain

|v(x,q,Pξ )− v(x ′,q,Pξ ) | ≤ C |x− x ′ |, ∀x, x ′ ∈ R. (51)

To check the Lipschitz properties for q and Pξ , we denote, for (q,Pξ ) ∈ R+ ×
P2(R), hq,ξ

s ≡ h(Xs,Q
t,q,ξ
s , ls, z), λ

q,ξ
s ≡ λ(Qt,q,ξ

s ,P
Q

t, ξ
s

), and cq,ξs ≡ c(Xs,Q
t,q,ξ
s , ls),

s ≥ t. Furthermore, for q,q′ ∈R+ and Pξ,Pξ′ ∈P2(R), we denoteΔψr ≡ψq,ξr −ψq
′,ξ′

r

for ψ = h, λ,c. Now, by Assumptions 2.1 and 4.2, and following a similar argument

of Theorem 2.3, one shows that

|Π(x,q,Pξ, l)−Π(x,q′,Pξ′, l) |
≤ E

{∫ ∞

0

∫
A

e−ρr
(
hq,ξ
r cq,ξr |Δλr |+ cq,ξr λ

q′,ξ′
r |Δhr |+ hq′,ξ′

r λ
q′,ξ′
r |Δcr |)νs (dz)dr

}
≤ E

{∫ ∞

0

∫
A

e−ρr |Qt,q,ξ
r −Qt,q′,ξ′

r |νs (dz)dr
}
≤ C
(
|q− q′ |+W1(Pξ,Pξ′ )

)
,

which implies that

|v(x,q,Pξ )− v(x,q′,P′ξ ) | ≤ C
(
|q− q′ |+W1(Pξ,Pξ′ )

)
. (52)

Finally, the respective monotonicity of the value function on x and q follows

from the comparison theorem of the corresponding SDEs and Assumption 4.2. This

completes the proof. �

We now turn our attention to the DPP. The argument will be very similar to that

of [32], except for some adjustments to deal with the mean-field terms. But, by using

the flow-property (5) we can carry out the argument without substantial difficulty.

Theorem 5.2 Assume that Assumptions 2.1 and 4.2 are in force. Then, for any
(x,q,Pξ ) ∈ R2×P2(R) and for any t ∈ (0,∞),

v(x,q,Pξ ) = sup
l∈Uad

E

[∫ t

0

e−ρsL(X x
s ,Q

q,ξ ;l
s ,P

Q
ξ ;l
s
, ls)ds

+e−ρtv(X x
t ,Q

q,ξ ;l
t ,P

Q
ξ ;l
t

)
]
. (53)

Proof Let us denote the right side of (53) by ṽ(x,q,Pξ ) = supl Π̃(x,q,Pξ ; l). We first

note that Xr and (Qt,ξ
r ,Q

t,q,ξ
r ) have the flow property. So, for any l ∈ Uad ,
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Π(x,q,Pξ ; l) = E
[∫ ∞

0

e−ρsL(X x
s ,Q

q,ξ ;l
s ,P

Q
ξ ;l
s
, ls)ds

]
= E

[∫ t

0

e−ρsL(X x
s ,Q

q,ξ ;l
s ,P

Q
ξ ;l
s
, ls)ds

+e−ρtE
{∫ ∞

t

e−ρ(s−t) L(X x
s ,Q

q,ξ ;l
s ,P

Q
ξ ;l
s
, ls)ds���Ft }] (54)

= E
[∫ t

0

e−ρsL(X x
s ,Q

q,ξ ;l
s ,P

Q
ξ ;l
s
, ls)ds+ e−ρtΠ(X x

t ,Q
q,ξ ;l
t ,P

Q
ξ ;l
t

; l)
]

≤ E
[∫ t

0

e−ρsL(X x
s ,Q

q,ξ ;l
s ,P

Q
ξ ;l
s
, ls)ds+ e−ρtv(X x

t ,Q
q,ξ ;l
t ,P

Q
ξ ;l
t

)
]

= Π̃(x,q,Pξ ; l).

This implies that v(x,q,Pξ ) ≤ ṽ(x,q,Pξ ).

To prove the other direction, let us denote Γ = R+ ×R×P2(R), and consider,

at each time t ∈ (0,∞), a countable partition {Γi }∞i=1
of Γ and (xi,qi,Pξi ) ∈ Γi , ξi ∈

L2(Ft ), i = 1,2, · · · , such that for any (x,q, μ) ∈ Γi and for fixed ε > 0, it holds |x− xi | ≤
ε, qi −ε ≤ q ≤ qi , and W2(μ,Pξi ) ≤ ε. Now, for each i, choose an ε-optimal strategy

li ∈Uad , such that v(t, xi,qi,Pξi ) ≤ Π(t, xi,qi,Pξi ; li)+ε, whereΠ(t, xi,qi,Pξi ; li) :=

E[
∫ ∞
t

e−ρ(s−t) L(X t,xi
s ,Q

t,qi,ξi
s ,P

Q
t, ξi
s
, lis)ds] and v(t, xi,qi,Pξi ) = supli ∈Uad

Π(t, xi,qi,

Pξi ; li).
Then, by definition of the value function and the Lipschitz properties (Proposition

5.1) with some constant C > 0, for any (x,q, μ) ∈ Γi , it holds that

Π(t, x,q, μ; li) ≥ Π(t, xi,qi,Pξi ; li)−Cε ≥ v(t, xi,qi,Pξi )− (C+1)ε

≥ v(t, x,q, μ)− (2C+1)ε. (55)

Now, for any l ∈ Uad , we define a new strategy l̃ as follows:

l̃s := ls1[0,t](s)+
[∑

i

lis1Γi (X x
t ,Q

q,ξ ;l
t ,P

Q
ξ ;l
t

)
]
1(t,∞) (s). (56)

Then, clearly l̃ ∈ Uad . To simplify notation, let us denote

I1 =

∫ t

0

e−ρsL(X x
s ,Q

q,ξ ;l
s ,P

Q
ξ ;l
s
, ls)ds. (57)

By applying (55) and flow property, we have
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v(x,q, μ) ≥ Π(x,q, μ; l̃)

=E
[
I1+ e−ρtE

{∫ ∞

t

e−ρ(s−t) L(X x
s ,Q

q,ξ ;l
s ,P

Q
ξ ;l
s
, ls)ds���Ft }]

=E
[
I1+ e−ρtΠ(t,X x

t ,Q
q,ξ
t ,PQξ

t
; l̃)

]
=E

[
I1+ e−ρt

∑
i

Π(t,X x
t ,Q

q,ξ
t ,PQξ

t
; li)1Γi (X x

t ,Q
q,ξ
t ,PQξ

t
)
]

≥E
[
I1+ e−ρtv(X x

t ,Q
q,ξ
t ,PQξ

t
)
]
− (2C+1)ε = Π̃(x,q,Pξ ; l)− (2C+1)ε.

Since ε > 0 is arbitrary, we get v(x,q,Pξ ) ≥ ṽ(x,q,Pξ ), proving (53). �

Remark 5.3 We should note that while it is difficult to specify all the boundary

conditions for the value function, the case when q = 0 is relatively clear. Note that

q = 0 means there is zero liquidity for the asset. Then by definition of the liquidity

dynamics (45) we see that Qt will stay at zero until the first positive jump happens.

During that period of time there would be no trade, thus by DPP (53) we should have

v(x,0, μ) ≡ 0. (58)

Furthermore, since the value function v is non-increasing in q, thanks to Proposition

5.1, and is always non-negative, we can easily see that the following boundary

condition is also natural

∂qv(x,0, μ) ≡ 0. (59)

We shall use (58) and (59) frequently in our future discussion.

6 HJB equation and its viscosity solutions

In this section, we shall formally derive the HJB equation associated to the stochastic

control problem studied in the previous section, and show that the value function of

the control problem is indeed a viscosity solution of the HJB equation.

To begin with, we first note that, given the DPP (53), as well as the boundary

conditions (58) and (59), if the value function v is smooth, then by standard arguments

with the help of the Itô’s formula (14) and the fact that

∂qv(Xt−,Qt−,PXt− )1{Qt−=0}dKt = ∂qv(Xt−,0,PXt− )1{Qt−=0}dKt ≡ 0,

it is not difficult to show that the value function should satisfy the following HJB

equation: for (x,q, μ) ∈ R×R+×P2(R),

⎧⎪⎨⎪⎩
ρv(x,q, μ) = sup

l∈R+
[J l[v](x,q, μ)+ L(x,q, μ, l)],

v(x,0, μ) = 0, ∂qv(x,0, μ) = 0,
(60)
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where J l is an integro-differential operator defined by, for any φ ∈ C2, (2,1)
b

(R×R+×
P2(R)),

J l[φ](x,q, μ) �=
(
b(x)∂x +σ

2(x)
1

2
∂2
xx + a(x,q, μ, l)∂q

)
φ(x,q, μ)

+

∫
A

(
φ(x,q+ h(x,q, l, z), μ)−φ(x,q, μ)−∂qφ(x,q, μ)h(x,q, l, z)

)
λ(q, μ)νs (dz)

−
∫
B

(
φ(x,q− z, μ)−φ(x,q, μ)− ∂qφ(x,q, μ)z

)
νb (dz)

+Ẽ
[
∂μφ(x,q, μ, ξ̃)a(x, ξ̃, μ, l)

]
+ Ẽ

[∫ 1

0

∫
A

(
∂μφ(x,q, μ, ξ̃ +γh(x, ξ̃, l, z))

−∂μφ(x,q, μ, ξ̃)
)
h(x, ξ̃, l, z)λ(ξ̃, μ)νs (dz)dγ

]
−Ẽ

[∫ 1

0

∫
B

(
∂μφ(x,q, μ, ξ̃ −γz)− ∂μφ(x,q, μ, ξ̃)

)
× zνb (dz)dγ

]
. (61)

We note that in general, whether there exists smooth solutions to the HJB equation

(60) is by no means clear. We therefore introduce the notion of viscosity solution for

(60). To this end, write D := R×R+×P2(R), and for (x,q, μ) ∈ D , we denote

U (x,q, μ) :=
{
ϕ ∈ C2, (2,1)

b
(D ) : v(x,q, μ) = ϕ(x,q, μ)

}
;

U (x,q, μ) :=
{
ϕ ∈ U (x,q, μ) : v−ϕ has a strict maximum at (x,q, μ)

}
;

U (x,q, μ) :=
{
ϕ ∈ U (x,q, μ) : v−ϕ has a strict minimum at (x,q, μ)

}
.

Definition 6.1 We say a continuous function v : D �→ R+ is a viscosity subsolution
(supersolution, resp.) of (60) in D if

ρϕ(x,q, μ)− sup
l∈R+

[J l[ϕ](x,q, μ)+ L(x,q, μ, l)] ≤ 0, (resp. ≥ 0) (62)

for every ϕ ∈ U (x,q, μ) (resp. ϕ ∈ U (x,q, μ)).
A function v : D �→ R+ is called a viscosity solution of (60) on D if it is both a

viscosity subsolution and a viscosity supersolution of (60) on D .

Our main result of this section is the following theorem.

Theorem 6.2 Assume that the Assumptions 2.1 and 4.2 are in force. Then, the value
function v, defined by (49), is a viscosity solution of the HJB equation (60).

Proof For a fixed �̄ := ( x̄, q̄, μ̄) ∈ D with μ̄ = Pξ̄ and ξ̄ ∈ L2(F ;R), and any η > 0,

consider the set D�̄,η := {� = (x,q, μ) ∈ D : ‖�− �̄‖ < η}, where ‖�− �̄‖ :=
(
|x −

x̄ |2+ |q− q̄ |2+W2(μ, μ̄)
)1/2

, and μ = Pξ with ξ ∈ L2(F ;R).

We first prove that the value function v is a subsolution to the HJB equation (60).

We proceed by contradiction. Suppose not. Then there exist some ϕ ∈ U (�) and
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ε0 > 0 such that

ρϕ(�̄)− sup
l∈R+

[J l[ϕ](�̄)+ L(�̄, l)] =: 2ε0 > 0. (63)

Since Al (�) :=J l[ϕ](�) + L(�, l) is uniformly continuous in �, uniformly in l,
thanks to Assumption 4.2, one shows that there exists η > 0 such that for any

� ∈ D�̄,η , it holds that

ρϕ(�)− sup
l∈R+

[J l[ϕ](�)+ L(�, l)] ≥ ε0. (64)

Furthermore, since ϕ ∈U (�), we assume without loss of generality that 0 = v(�̄)−
ϕ(�̄) is the strict maximum. Thus for the given η > 0, there exists δ > 0, such that

max
{
v(�)−ϕ(�) : � �D�̄,η

}
= −δ < 0. (65)

On the other hand, for a fixed ε ∈ (0,min(ε0, δρ)), by the continuity of v we can

assume, modifying η > 0 if necessary, that

|v(�)− v(�̄) | = |v(�)−ϕ(�̄) | < ε, � ∈ D�̄,η . (66)

Next, for any T > 0 and any l ∈Uad we set τT := inf{t ≥ 0 : Θ̄t �D�̄,η }∧T , where

Θ̄t := (X x̄
t ,Q

q̄, ξ̄,l
t ,P

Q
q̄, ξ̄
t

). Applying Itô’s formula (14) to e−ρtϕ(Θ̄t ) from 0 to τT and

noting that v(�̄) = ϕ(�̄) we have

E

[∫ τT

0

e−ρtL(Θ̄t, lt )dt + e−ρτ
T

v(Θ̄τT )
]

= E
[∫ τT

0

e−ρtL(Θ̄t, lt )dt + e−ρτ
T

ϕ(Θ̄τT )+ e−ρτ
T

[v−ϕ](Θ̄τT )
]

(67)

= E
[∫ τT

0

e−ρt
(
L(Θ̄t, lt )+J l[ϕ](Θ̄t )− ρϕ(Θ̄t )

)
dt + e−ρτ

T

[v−ϕ](Θ̄τT )
]
+ v(�̄)

≤ E
[
− ε
ρ

(1− e−ρτ
T

)+ e−ρτ
T

[v−ϕ](Θ̄τT )
]
+ v(�̄)

= E
[
e−ρτ

T ( ε
ρ
+ [v−ϕ](Θ̄τT )

)
: τT < T

]
+E

[
e−ρτ

T ( ε
ρ
+ [v−ϕ](Θ̄τT )

)
: τT = T

]
+ v(�̄)− ε

ρ
.

Now note that on the set {τT < T } we must have Θ̄τT �D�̄,η , thus [v−ϕ](Θ̄τT ) ≤ −δ,
thanks to (65). On the other hand, on the set {τT = T } we have Θ̄τT = Θ̄T ∈ D�̄,η ,

and then (66) implies that [v − ϕ](Θ̄T ) ≤ v(�̄)− ϕ(Θ̄T )+ ε. Plugging these facts in

(67), we can easily obtain that
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E

[∫ τT

0

e−ρtL(Θ̄t, lt )dt + e−ρτ
T

v(Θ̄τT )
]

≤
( ε
ρ
− δ
)
P{τT < T }+ (

ε

ρ
+ ε)e−ρT + v(�̄)− ε

ρ

≤
( ε
ρ
+ ε
)
e−ρT + v(�̄)− ε

ρ
.

Here in the last inequality above we used the fact that ε/ρ− δ < 0, by definition of

ε. Letting T →∞ we have

E

[∫ τT

0

e−ρtL(Θ̄t, lt )dt + e−ρτ
T

v(Θ̄τT )
]
≤ v(�̄)− ε

ρ
.

Since l ∈Uad is arbitrary, this contradicts the dynamic programming principle (53).

The proof that v is viscosity supersolution of (60) is more or less standard, again

with the help of Itô’s formula (14). We only give a sketch here.

Let �̄ ∈ D and ϕ ∈ U (�̄). Without loss of generality we assume that 0 = v(�̄)−
ϕ(�̄) is a global minimum. That is, v(�)−ϕ(�) ≥ 0 for all � ∈D . For any h > 0 and

l ∈ Uad , we apply DPP (53) to get

0 ≥ E
[∫ h

0

e−ρtL(Θt, lt )dt + e−ρhv(Θh)
]
− v(�)

≥ E
[∫ h

0

e−ρtL(Θt, lt )dt + e−ρhϕ(Θh)
]
−ϕ(�). (68)

Applying Itô’s formula to e−ρtϕ(Θt ) from 0 to h we have

0 ≥ E
[∫ h

0

e−ρt
(
L(Θt, lt )+J l[ϕ](Θt )− ρϕ(Θt )

)
dt
]
. (69)

Dividing both sides by h and sending h to 0, we obtain ρϕ(x,q,Pξ ) ≥J l[ϕ](x,q,Pξ )+

L(x,q,Pξ, l). By taking supremum over l ∈ Uad on both sides, we conclude

ρϕ(x,q,Pξ ) ≥ sup
l∈Uad

[J l[ϕ](x,q,Pξ )+ L(x,q,Pξ, l)].

The proof is now complete. �

Finally, we remark that, as the limiting case of a Bertrand-type of game for a

large number of sellers, the value function v(x,q,Pξ ) in (49) can be thought of as

the discounted lifelong expected utility of a representative seller, and thus can be

considered as “equilibrium" discounted expected utility for all sellers. Moreover, as

one can see in Proposition 5.1, the value function v(x,q,Pξ ) is uniformly Lipschitz

continuous, non-decreasing in x, and decreasing in q. Also, by Assumption 4.2-

(vii), the value function is convex in q. Consequently, we see that the value function

v(x,q,Pξ ) resembles the expected utility function U (x,q) in [32] which was defined

by the following properties:
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(i) the mapping x �→U (x,q) is non-decreasing, and
∂U (x,q)

∂q < 0,
∂2U (x,q)

∂q2 > 0;

(ii) the mapping (x,q) �→U (x,q) is uniformly Lipschitz continuous.

In particular, we may identify the two functions by setting U (x,q) = v(x,q,Pξ ) |ξ≡q ,

which amounts to saying that the equilibrium density function of a LOB is fully

described by the value function of a control problem of the representative seller’s

Bertrand-type game. This would enhance the notion of “endogenous dynamic equi-

librium LOB model" of [32] in a rather significant way.
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Bounded Regret for Finitely Parameterized
Multi-Armed Bandits

Kishan Panaganti, Dileep Kalathil, and Pravin Varaiya

Abstract We consider multi-armed bandits where the model of the underlying

stochastic environment is characterized by a common unknown parameter. The true

parameter is unknown to the learning agent. However, the set of possible parame-

ters, which is finite, is known a priori. We propose an algorithm that is simple and

easy to implement, which we call Finitely Parameterized Upper Confidence Bound

(FP-UCB) algorithm, which uses the information about the underlying parameter

set for faster learning. In particular, we show that the FP-UCB algorithm achieves a

bounded regret under a structural condition on the underlying parameter set. We also

show that, if the underlying parameter set does not satisfy this structural condition,

the FP-UCB algorithm achieves a logarithmic regret, but with a smaller preceding

constant compared to the standard UCB algorithm. We also validate the superior

performance of the FP-UCB algorithm through extensive numerical simulations.

1 Introduction

The Multi-Armed Bandit (MAB) problem is a canonical formalism for studying how

an agent learns to take optimal actions through repeated interactions with a stochas-

tic environment. The learning agent receives a reward at each time step which will

depend on the action of the agent as well as the stochastic uncertainty of the environ-

ment. The goal of the agent is to act so as to maximize the cumulative reward. When

the model of the environment is known, computing the optimal action is a standard

optimization problem. The challenge in MAB is that the agent does not know the

stochastic model of environment a priori. The agent needs to explore, i.e., take ac-
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tions to gather information and estimate the model of the system. At the same time

the agent must exploit the available information to maximize the cumulative reward.

This exploration vs. exploitation trade-off is at the core of the MAB problem.

Lai and Robbins in their seminal paper [19] formulated the non-Bayesian stochas-

tic MAB problem and characterized the performance of a learning algorithm using

the metric of regret. They showed that no learning algorithm can achieve a re-

gret better than O(logT ). They also proposed a learning algorithm that achieves

an asymptotic logarithmic regret, matching the fundamental lower bound. A simple

index-based algorithm called UCB algorithm was introduced in [5] which achieves

the order optimal regret in a non-asymptotic manner. This approach led to a number

of interesting algorithms, among them linear bandits [13], contextual bandits [11],

combinatorial bandits [10], and decentralized and multi-player bandits [15].

Thompson (Posterior) Sampling is another class of algorithms that give superior

numerical performance for MAB problems. The posterior sampling heuristic was

first introduced by Thompson [25], but the first rigorous performance guarantee, an

O(logT ) regret, was given in [2]. The Thompson sampling idea has been used in al-

gorithms for bandits with multiple plays [17], contextual bandits [3], general online

learning problem [14], and reinforcement learning [23]. Both classes of algorithms

have been used in a number of practical applications, like communication networks

[24], smart grids [16], and recommendation systems [29].

Our contribution: We consider a class of multi-armed bandits problems where

the reward corresponding to each arm is characterized by a common unknown pa-

rameter with a finite set of possible values. This restriction is inspired by real-world

applications. For example, in recommendation systems and e-commerce applica-

tions (Amazon, Netflix), it is typical to assume that each user has a certain ‘type’

parameter (denoted by θ in our formulation), and the set of possible parameter val-

ues is finite. The preferences of the user is characterized by her type (for exam-

ple, prefer science books over fiction books). The set of all possible types and the

preferences of each type may be known a priori, but the type of a new user may

be unknown. So, instead of learning the preferences of this user over all possible

choices, it may be easier to learn the type parameter of this user from a few obser-

vations. In this work, we propose an algorithm that explicitly uses the availability of

such structural information about the underlying parameter set which enables faster

learning.

We propose an algorithm that is simple and easy to implement, which we call FP-

UCB algorithm, which uses the structural information for faster learning. We show

that the proposed FP-UCB algorithm can achieve a bounded regret (O(1)) under

some structural condition on the underlying parameter set. This is in sharp contrast

to the increasing (O(logT )) regret of standard multi-armed bandits algorithms. We

also show that, if the underlying parameter set does not satisfy the structural con-

dition, the FP-UCB algorithm achieves a regret of O(logT ), but with a smaller

preceding constant compared to the standard UCB algorithm. The regret achieved

by our algorithm also matches with the fundamental lower bound given by [1]. One

remarkable aspect of our algorithm is that, it is oblivious to whether the underlying

parameter set satisfies the necessary condition or not, thereby avoiding re-tuning
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of the algorithm depending on the problem instance. Instead, it achieves the best

possible performance given the problem instance.

Related work: Finitely parameterized multi-armed bandits problem were first

studied by Agrawal et al. [1]. They proposed an algorithm for this setting, and

proved that it achieves a bounded regret when the parameter set satisfies some

necessary condition, and logarithmic regret otherwise. However, their algorithm is

rather complicated, which limits practical implementations and extension to other

settings. The regret analysis is also involved and asymptotic in nature, different from

the recent simpler index-based bandits algorithms and their finite time analysis. [1]

also provided a fundamental lower bound for this class of problems. Compared to

this work, our FP-UCB algorithm is simple, easy to implement, and easy to ana-

lyze, while providing non-asymptotic performance guarantees that match the lower

bound.

Some recent works exploit the available structure of the MAB problem to get

tighter regret bounds. In particular, [4] [20] [22] [12] consider the problem setting

similar to our paper where the mean reward of each arm is characterized by a single

unknown parameter. [4] assumes that the reward functions are continuous in the

global parameter and gives a bounded regret result. [20] gives specific conditions on

the mean reward to achieve a bounded regret. [22] considers a latent bandit problem

where the reward distributions are partitioned into a number of clusters and indexed

by a latent parameter corresponding to the cluster. [12] characterizes the minimal

rates at which sub-optimal arms have to be explored depending on the structural

information, and proposes an algorithm that achieves these rates. [8] [7] [26] exploit

a different structural information where it is shown that if the mean value of the

best arm and the second best arm (but not the identity of the arms) are known,

a bounded regret can be achieved. There also are bandit algorithms that exploit

side information [28] [9], and recently in the context of contextual bandits [6]. Our

problem formulation, algorithm, and analysis are different from these works. We

also note that our problem formulation is fundamentally different from the system

identification problems [21] [18] because the goal here is to learn an optimal policy

online.

2 Problem Formulation

We consider the following sequential decision-making problem. In each time step

t ∈ {1,2, . . . ,T}, the agent selects an arm (action) from the set of L possible arms,

denoted a(t) ∈ [L] = {1, . . . ,L}. Each arm i, when selected, yields a random real-

valued reward. Let Xi(τ) be the random reward from arm i in its τth selection. We

assume that Xi(τ) is drawn according to a probability distribution Pi(·;θ o) with

mean μi(θ o). Here θ o is the (true) parameter that determines the distribution of the

stochastic rewards. The agent does not know θ o or the corresponding mean value

μi(θ o). The random rewards obtained from playing an arm repeatedly are i.i.d. and

independent of the plays of the other arms. The rewards are bounded with support
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in [0,1]. The goal of the agent is to select a sequence of actions that maximizes

the expected cumulative reward, E[∑T
t=1 μa(t)(θ o))]. The action a(t) depends on the

history of observations available to the agent until time t. So, a(t) is stochastic and

the expectation is with respect to its randomness.

Clearly, the optimal choice is to select the best arm (the arm with the highest

mean value) all the time, i.e., a(t) = a∗(θ o),∀t, where a∗(θ o) = argmaxi∈[L] μi(θ o).
However, the agent will be able to make this optimal decision only if she knows the

parameter θ o or the corresponding mean values μi(θ o) for all i. The goal of a MAB

algorithm is to learn to make the optimal sequence of decisions without knowing

the true parameter θ o.

We consider the setting where the agent knows the set of possible parameters Θ .

We assume that Θ is finite. If the true parameter were θ ∈ Θ , then agent selecting

arm i will get a random reward drawn according to a distribution Pi(·;θ) with mean

μi(θ). We assume that for each θ ∈Θ , the agent knows Pi(·;θ) and μi(θ) for all i ∈
[L]. The optimal arm corresponding to the parameter θ is a∗(θ) = argmaxi∈[L] μi(θ).
We emphasize that the agent does not know the true parameter θ o (and hence the

optimal action a∗(θ o)) except that it is in the finite set Θ .

In the multi-armed bandits literature, it is standard to characterize the perfor-

mance of an online learning algorithm using the metric of regret. Regret is defined

as the performance loss of an algorithm as compared to the optimal algorithm with

complete information. Since this is b(t) = a∗(θ o), the expected cumulative regret of

a multi-armed bandits algorithm after T time steps is defined as

E[R(T )] := E

[
T

∑
t=1

(μa∗(θ o)(θ o)−μa(t)(θ o))

]
. (1)

The goal of a MAB learning algorithm is to select actions sequentially in order

to minimize E[R(T )].

3 UCB Algorithm for Finitely Parameterized Multi-Armed
Bandits

In this section, we present our algorithm for finitely parameterized multi-armed ban-

dits and the main theorem. We first introduce a few notations for presenting the

algorithm and the results succinctly.

Let ni(t) be the number of times arm i has been selected by the algorithm until

time t, i.e., ni(t) = ∑t
τ=1�{a(τ) = i}. Here �{.} is an indicator function. Define the

empirical mean corresponding to arm i at time t as,

μ̂i(t) :=
1

ni(t)

ni(t)

∑
τ=1

Xi(τ). (2)
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Define the set A := {a∗(θ) : θ ∈Θ}, which is the collection of optimal arms cor-

responding to all parameters in Θ . Intuitively, a learning agent can restrict selection

to arms from the set A. Clearly, A ⊂ [L] and this reduction can be useful when |A| is

much smaller than L.

Our FP-UCB Algorithm is given in Algorithm 1. Figure 1 gives an illustration of

the episodes and time slots of the FP-UCB algorithm.

For stating the main result, we introduce a few more notations. We define the

confusion set B(θ o) and C(θ o) as,

B(θ o) := {θ ∈Θ : a∗(θ) �= a∗(θ o) and μa∗(θ o)(θ o) = μa∗(θ o)(θ)},
C(θ o) := {a∗(θ) : θ ∈ B(θ o)}.

Intuitively, B(θ o) is the set of parameters that can be confused with the true pa-

rameter θ o. If B(θ o) is non-empty, selecting a∗(θ o) and estimating the empirical

mean is not sufficient to identify the true parameter because the same mean reward

can result from other parameters in B(θ o). So, if B(θ o) is non-empty, more explo-

ration (i.e., selecting sub-optimal arms other than a∗(θ o)) is necessary to identify

the true parameter. This exploration will contribute to the regret. On the other hand,

if B(θ o) is empty, the optimal parameter can be identified with much less explo-

ration, which results in a bounded regret. C(θ o) is the corresponding set of arms

that needs to be explored sufficiently to identify the optimal parameter. So, whether

B(θ o) is empty or not is the structural condition that decides the performance of the

algorithm.

We make the following assumption.

Assumption (Unique best action) For all θ ∈Θ , the optimal action, a∗(θ), is unique.

We note that this is a standard assumption in the literature. This assumption can

be removed at the expense of more notations. We define Δi as,

Δi := μa∗(θ o)(θ o)−μi(θ o), (3)

which is the difference between the mean value of the optimal arm and the mean

value of arm i for the true parameter θ o. This is the standard optimality gap notion

used in the MAB literature [5]. Without loss of generality assume natural logarithms.

For each arm in i ∈C(θ o), we define,

βi := min
θ :θ∈B(θ o),a∗(θ)=i

|μi(θ o)−μi(θ)|. (4)

We use the following Lemma to compare our result with classical MAB result.

The proof for this lemma is given in the appendix.

Lemma 1 Let Δi and βi be as defined in (3) and (4) respectively. Then, for each
i ∈C(θ o), βi > 0. Moreover, βi > Δi.

We now present the finite time performance guarantee for our FP-UCB algo-

rithm.
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Algorithm 1 FP-UCB

1: Initialization: Select each arm in the set A once
2: Initialize episode number k = 1, time step t = |A|+1
3: while t ≤ T do
4: tk = t −1
5: Compute the set

Ak =
{

a∗(θ),θ ∈Θ : ∀i ∈ A, |μ̂i(tk)−μi(θ)| ≤
√

3log(k)
ni(tk)

}
6: if |Ak| �= 0 then
7: Select each arm in the set Ak once
8: t ← t + |Ak|
9: else

10: Select each arm in the set A once
11: t ← t + |A|
12: end if
13: k ← k+1
14: end while

� � � �

tk

episode 1 episode k

1 + t1 1 + tk1 |A| = t1
�

A1

Ak

episode 2

A2

1 + t2
� �

t2

� � �

Fig. 1: An illustration of the episodes and time slots of the FP-UCB algorithm.

Theorem 1 Under the FP-UCB algorithm,

E[R(T )]≤ D1, if B(θ o) empty, and

E[R(T )]≤ D2 +12log(T ) ∑
i∈C(θ o)

Δi

β 2
i
, if B(θ o) non-empty, (5)

where D1 and D2 are problem dependent constants that depend only on the problem
parameters |A| and (μi(θ),θ ∈Θ), but do not depend on T .

Remark 1 (Comparison with the classical MAB results) Both UCB type algorithms

and Thompson Sampling type algorithms give a problem dependent regret bound

O(logT ). More precisely, assuming that the optimal arm is arm 1, the regret of the

UCB algorithm, E[RUCB(T )], is given by [5]

E[RUCB(T )] = O

(
L

∑
i=2

1

Δi
logT

)
.

On the other hand, the FP-UCB algorithm achieves the regret, E[RFP-UCB(T )],
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O(1), if B(θ o) empty, and O

(
∑

i∈C(θ o)

Δi

β 2
i

logT

)
, if B(θ o) non-empty.

Clearly, for some MAB problems, FP-UCB algorithm achieves a bounded re-

gret (O(1)) as opposed to the increasing regret (O(logT )) of the standard UCB

algorithm. Even in the cases where FP-UCB algorithm incurs an increasing regret

(O(logT )), the preceding constant (Δi/β 2
i ) is smaller than the preceding constant

(1/Δi) of the standard UCB algorithm because βi > Δi.

We now give the asymptotic lower bound for the finitely parameterized multi-

armed bandits problem from [1], for comparing the performance of our FP-UCB

algorithm.

Theorem 2 (Lower bound [1])
For any uniformly good control scheme under the parameter θ o,

liminf
T→∞

E[R(T )]
log(T )

≥ min
h∈H

max
θ∈B(θ o)

∑u∈A\{a∗(θ o)} hu(μa∗(θ o)(θ o)−μu(θ o))

∑u∈A\{a∗(θ o)} huDu(θ o‖θ)
.

where H is a probability simplex with |A|−1 vertices and, for any u ∈ A\{a∗(θ o)},
Du(θ o‖θ) =

∫
Pu(x;θ o) log(Pu(x;θ o)/Pu(x;θ))dx is the KL-divergence between the

probability distributions Pu(·;θ o) and Pu(·;θ).

Remark 2 (Optimality of the FP-UCB algorithm) From Theorem 2, the achievable
regret of any multi-armed bandits learning algorithm is lower bounded by Ω(1)
when B(θ o) is empty, and Ω(logT ) when B(θ o) is non-empty. Our FP-UCB algo-
rithm achieves these bounds and hence achieves the order optimal performance.

4 Analysis of the FP-UCB Algorithm

In this section, we give the proof of Theorem 1. For reducing the notation, without

loss of generality we assume that the true optimal arm is arm 1, i.e., a∗ = a∗(θ o)= 1.
We will also denote μ j(θ o) as μo

j , for any j ∈ A.

Now, we can rewrite the expected regret from (1) as

E[R(T )] = E

[
T

∑
t=1

(μo
1 −μo

a(t))

]

=
L

∑
i=2

Δi E

[
T

∑
t=1

�{a(t) = i}
]
=

L

∑
i=2

Δi E [ni(T )] .

Since the algorithm selects arms only from the set A, this can be written as

E[R(T )] = ∑
i∈A

Δi E [ni(T )] . (6)
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We first prove the following important propositions.

Proposition 1 For all i ∈ A\C(θ o), i �= 1, under FP-UCB algorithm,

E [ni(T )]≤Ci, (7)

where Ci is a problem dependent constant that does not depend on T .

Proof Consider an arm i∈ A\C(θ o), i �= 1. Then, by definition, there exists a θ ∈Θ
such that a∗(θ) = i. Fix a θ which satisfies this condition. Define

α1(θ) := |μ1(θ o)−μ1(θ)|.

It is straightforward to note that when i ∈ A\C(θ o), then the θ which we considered

above is not in B(θ o). Hence, by definition, α1(θ)> 0.

For notational convenience, we will denote μ j(θ) simply as μ j, for any j ∈ A.

Notice that the algorithm picks ith arm once in t ∈ {1, . . . , |A|}. Define KT (note that

this is a random variable) to be the total number of episodes in time horizon T for

the FP-UCB algorithm. It is straightforward that KT ≤ T . Now,

E[ni(T )] = 1+E

[
T

∑
t=|A|+1

�{a(t) = i}
]

(a)
= 1+E

[
KT

∑
k=1

(�{i ∈ Ak}+�{Ak =∅})
]

≤ 1+
T

∑
k=1

[P({i ∈ Ak})+P({Ak =∅})] (8)

= 1+
T

∑
k=1

[P({i ∈ Ak,1 ∈ Ak})+P({i ∈ Ak,1 /∈ Ak})+P({Ak =∅})]

≤ 1+
T

∑
k=1

[P({i ∈ Ak,1 ∈ Ak})+P({i ∈ Ak,1 /∈ Ak})+P({i /∈ Ak,1 /∈ Ak})]

≤ 1+
T

∑
k=1

[P({i ∈ Ak,1 ∈ Ak})+P({1 /∈ Ak})]. (9)

Here (a) follows from the algorithm definition.

We will first analyze the second summation term in (9). First observe that, we

can write n j(tk) = 1+∑k−1
τ=1(�{ j ∈ Aτ}+�{Aτ =∅}) for any j ∈ A and episode k.

Thus, n j(tk) lies between 1 and k. Now,
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T

∑
k=1

P({1 /∈ Ak}) (a)
=

T

∑
k=1

P

(⋃
j∈A

{
|μ̂ j(tk)−μo

j |>
√

3logk
n j(tk)

})
(b)
≤

T

∑
k=1

∑
j∈A

P

(
|μ̂ j(tk)−μo

j |>
√

3logk
n j(tk)

)

(c)
=

T

∑
k=1

∑
j∈A

P

(∣∣∣∣∣ 1

n j(tk)

n j(tk)

∑
τ=1

Xj(τ)−μo
j

∣∣∣∣∣>
√

3logk
n j(tk)

)
(d)
≤

T

∑
k=1

∑
j∈A

k

∑
m=1

P

(∣∣∣∣∣ 1

m

m

∑
τ=1

Xj(τ)−μo
j

∣∣∣∣∣>
√

3logk
m

)
(e)
≤

T

∑
k=1

∑
j∈A

k

∑
m=1

2exp

(
−2m

3logk
m

)
=

T

∑
k=1

∑
j∈A

2k−5 ≤ 4|A|. (10)

Here (a) follows from algorithm definition, (b) from the union bound, and (c) from

the definition in (2). Inequality (d) follows by conditioning the random variable

n j(tk) that lies between 1 and k for any j ∈ A and episode k. Inequality (e) follows

from Hoeffding’s inequality [27, Theorem 2.2.6].

For analyzing the first summation term in (9), define the event Ek := {n1(tk) <
12logk/α2

1 (θ)}. Denote the complement of this event as Ec
k . Now the first summa-

tion term in (9) can be written as

T

∑
k=1

P({i ∈ Ak,1 ∈ Ak}) =
T

∑
k=1

P({i ∈ Ak,1 ∈ Ak,Ec
k})︸ ︷︷ ︸

= Term1

+
T

∑
k=1

P({i ∈ Ak,1 ∈ Ak,Ek})︸ ︷︷ ︸
= Term2

.

(11)

Analyzing Term1 in (11), we get,

P({i ∈ Ak,1 ∈ Ak,Ec
k})

= P

(⋂
j∈A

{|μ̂ j(tk)−μo
j |<
√

3logk
n j(tk)

}
⋂
j∈A

{|μ̂ j(tk)−μ j|<
√

3logk
n j(tk)

}
⋂

Ec
k

)

≤ P

(
{|μ̂1(tk)−μo

1 |<
√

3logk
n1(tk)

}, |{μ̂1(tk)−μ1|<
√

3logk
n1(tk)

},Ec
k

)
= 0. (12)

This is because the events {|μ̂1(tk)−μo
1 |<
√

3logk
n1(tk)

} and {|μ̂1(tk)−μ1|<
√

3logk
n1(tk)

}
are disjoint under Ec

k , that is, when n1(tk)≥ 12log(k)/α2
1 (θ). To see this, notice that
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|μ̂1(tk)−μo

1 |<
√

3logk
n1(tk)

}
⊆
{
|μ̂1(tk)−μo

1 |<
α1(θ)

2

}
,{

|μ̂1(tk)−μ1|<
√

3logk
n1(tk)

}
⊆
{
|μ̂1(tk)−μ1|< α1(θ)

2

}
,

for n1(tk) ≥ 12logk/α2
1 (θ). Moreover, since |μo

1 − μ1| = α1(θ), {|μ̂1(tk)− μo
1 | <

α1(θ)/2} and {|μ̂1(tk)−μ1|< α1(θ)/2} are disjoint sets. Hence, their subsets are

also disjoint.

For analyzing Term2 in (11), we start by setting up few notations. Define

n′1(tk) := 1+∑k−1
τ=1�{1 ∈ Aτ}. Note that, according to the FP-UCB algorithm, arm

1 can be selected if Aτ is empty as well, so n′1(tk) ≤ n1(tk). Define ki(θ) and m(k)
as,

ki(θ) := min
{

k : k ≥ 3,k > �12log(k)/α2
1 (θ)�

}
, (13)

m(k) := max{1,k−�12log(k)/α2
1 (θ)�}. (14)

Note that ki(θ) is a problem dependent constant and does not depend on T . Also,

m(k) = k−�12log(k)/α2
1 (θ)� for all k ≥ ki(θ). We claim that for all k ≥ ki(θ),{

n′1(tk)< 12log(k)/α2
1 (θ)
}⊆ {1 /∈ Aτ , for some τ,m(k)≤ τ ≤ k−1} . (15)

To see this, suppose there exists no τ, m(k) ≤ τ ≤ k− 1, such that 1 /∈ Aτ . Then,

1 ∈ Aτ for all τ, where m(k) ≤ τ ≤ k− 1. So, by definition n′1(tk) ≥ (k−m(k)) =
�12log(k)/α2

1 (θ)� for k ≥ ki(θ). So, the complement of the RHS of (15) is a subset

of the complement of the LHS of (15). Hence the claim follows.

Now,

T

∑
k=1

P({i ∈ Ak,1 ∈ Ak,Ek})≤
T

∑
k=1

P(Ek)

(a)
≤

T

∑
k=1

P
(
n′1(tk)< 12log(k)/α2

1 (θ)
)

(b)
≤ ki(θ)+

T

∑
k=ki(θ)

P(n′1(tk)< 12log(k)/α2
1 (θ))

(c)
≤ ki(θ)+

T

∑
k=ki(θ)

P({1 /∈ Aτ , for some τ,m(k)≤ τ ≤ k−1})

(d)
= ki(θ)+

T

∑
k=ki(θ)

P

⎛⎝ k−1⋃
τ=m(k)

⋃
j∈A

|μ̂ j(τ)−μo
j |>
√

3logτ
n j(tτ)

⎞⎠
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≤ ki(θ)+
T

∑
k=ki(θ)

k−1

∑
τ=m(k)

∑
j∈A

P

(
|μ̂ j(τ)−μo

j |>
√

3logτ
n j(tτ)

)
(e)
≤ ki(θ)+

T

∑
k=ki(θ)

k−1

∑
τ=m(k)

2|A|
τ5

(16)

≤ ki(θ)+
T

∑
k=ki(θ)

2|A|k
(m(k))5

= ki(θ)+
T

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

( f )
= ki(θ)+Ki(θ), (17)

where Ki(θ) is a problem dependent constant that does not depend on T .

In the above analysis, (a) follows from the definition of Ek and the observation

that n′1(tk) ≤ n1(tk). Considering T to be greater than or equal to ki(θ)|A|, equality

(b) follows; note that this is an artifact of the proof technique and does not affect

the theorem statement since E[ni(T ′)], for any T ′ less than ki(θ)|A|, can be trivially

upper bounded by E[ni(T )]. Inequality (c) follows from (15), (d) by the FP-UCB

algorithm, (e) is similar to the analysis in (10), and (f) follows from the fact that

k > �12log(k)/α2
1 (θ)� for all k ≥ ki(θ).

Now, using (17) and (12) in (11), we get,

T

∑
k=1

P({i ∈ Ak,1 ∈ Ak})≤ ki(θ)+Ki(θ). (18)

Using (18) and (10) in (9), we get,

E[ni(T )]≤Ci,

where Ci = 1+ 4|A|+minθ :a∗(θ)=i(ki(θ)+Ki(θ)), which is a problem dependent

constant that does not depend on T . This concludes the proof. �

Proposition 2 For any i ∈C(θ o), under the FP-UCB algorithm,

E [ni(T )]≤ 2+4|A|+ 12log(T )
β 2

i
. (19)

Proof Fix an i ∈ C(θ o). Then there exists θ ∈ B(θ o) such that a∗(θ) = i. Fix θ
which satisfies this condition. Define the event F(t) :=

{
ni(t −1)< 12logT/β 2

i
}
.

Now,
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E[ni(T )] = 1+E

[
T

∑
t=|A|+1

�{a(t) = i}
]

= 1+E

[
T

∑
t=|A|+1

�{a(t) = i,F(t)}
]
+E

[
T

∑
t=|A|+1

�{a(t) = i,Fc(t)}
]
.

(20)

Analyzing the first summation term in (20) we get,

E

[
T

∑
t=|A|+1

�{a(t) = i,F(t)}
]
= E

[
T

∑
t=|A|+1

�{a(t) = i}�{ni(t −1)< 12logT/β 2
i
}]

≤ 1+12logT/β 2
i . (21)

We use the same decomposition as in the proof of Proposition 1 for the second

summation term in (20). Thus we get,

E

[
T

∑
t=|A|+1

�{a(t) = i,Fc(t)}
]
=

E

[
KT

∑
k=1

�{i ∈ Ak,Fc(tk +1)}+�{Ak =∅,Fc(tk +1)}
]

≤
T

∑
k=1

P({i ∈ Ak,1 ∈ Ak,Fc(tk +1)}) (22)

+
T

∑
k=1

P({1 /∈ Ak,Fc(tk +1)}), (23)

following the analysis in (9). First, consider (23). From the analysis in (10) we have

T

∑
k=1

P({1 /∈ Ak,Fc(tk +1)})≤
T

∑
k=1

P({1 /∈ Ak})≤ 4|A|. (24)

For any i ∈ A and episode k under event Fc(tk +1), we have

ni(tk)≥ 12logT
β 2

i
≥ 12log tk

β 2
i

≥ 12logk
β 2

i

since tk satisfies k ≤ tk ≤ T . From (4), it further follows that√
3logk
n j(tk)

≤ βi

2
≤ |μi(θ o)−μi(θ)|

2
.

So, following the analysis in (12) for (22), we get
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P({i ∈ Ak,1 ∈ Ak,Fc(tk +1)})

= P

⎛⎝⋂ j∈A{|μ̂ j(tk)−μ j(θ o)|<
√

3logk
n j(tk)

},⋂
j∈A{|μ̂ j(tk)−μ j(θ)|<

√
3logk
n j(tk)

},Fc(tk +1)

⎞⎠
≤ P

⎛⎝{|μ̂i(tk)−μi(θ o)|<
√

3logk
ni(tk)

},
{|μ̂i(tk)−μi(θ)|<

√
3logk
ni(tk)

},Fc(tk +1)

⎞⎠= 0. (25)

Using equations (21), (24), and (25) in (20), we get

E[ni(T )]≤ 2+4|A|+ 12log(T )
β 2

i
.

This completes the proof. �

We now give the proof of our main theorem.

Proof (of Theorem 1)

From (6),

E[R(T )] = ∑
i∈A

ΔiE[ni(T )] = ∑
i∈A\C(θ o)

ΔiE[ni(T )]+ ∑
i∈C(θ o)

ΔiE[ni(T )]. (26)

Whenever B(θ o) is empty, notice that C(θ o) is empty. So, using Proposition 1,

(26) becomes

E[R(T )] = ∑
i∈A

ΔiE[ni(T )]≤ ∑
i∈A

ΔiCi ≤ |A|max
i∈A

ΔiCi.

Whenever B(θ o) is non-empty, C(θ o) is non-empty. Analyzing (26), we get,

E[R(T )] = ∑
i∈A\C(θ o)

ΔiE[ni(T )]+ ∑
i∈C(θ o)

ΔiE[ni(T )]

(a)
≤ ∑

i∈A\C(θ o)

ΔiCi + ∑
i∈C(θ o)

ΔiE[ni(T )]

(b)
≤ ∑

i∈A\C(θ o)

ΔiCi + ∑
i∈C(θ o)

Δi

(
2+4|A|+ 12log(T )

β 2
i

)
≤ |A|max

i∈A
Δi(2+Ci +4|A|)+12log(T ) ∑

i∈C(θ o)

Δi

β 2
i
.

Here (a) follows from Proposition 1 and (b) from Proposition 2. Setting

D1 := |A|max
i∈A

ΔiCi and D2 := |A|max
i∈A

Δi(2+Ci +4|A|) (27)
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proves the regret bounds in (5) of the theorem. �

We now provide the following lemma to characterize the problem dependent con-

stants Ci given in Proposition 1. The proof for this lemma is given in the appendix.

Lemma 2 Under the hypotheses in Proposition 1, we have

Ci ≤ 1+4|A|+ min
θ :a∗(θ)=i

(2Ei(θ)(Ei(θ)+1)|A|+4|A|α10
1 (θ)),

where Ei(θ) = max{3,�144/α4
1 (θ)�} and α1(θ) = |μ1(θ o)−μ1(θ)|.

Now, using the above lemma with (27), we have a characterization of the problem

dependent constants in Theorem 1.

5 Simulations

In this section, we present detailed numerical simulation to illustrate the perfor-

mance of FP-UCB algorithm compared to the other standard multi-armed bandits

algorithms.

We first consider a simple setting to illustrate intuition behind FP-UCB algo-

rithm. Consider Θ = {θ 1,θ 2} with [μ1(θ 1)μ2(θ 1)] = [0.9,0.5] and [μ1(θ 2),μ2(θ 2)]
= [0.2,0.5]. Consider the reward distributions Pi, i = 1,2 to be Bernoulli. Clearly,

a∗(θ 1) = 1 and a∗(θ 2) = 2.

Suppose the true parameter is θ 1, i.e., θ o = θ 1. Then, it is easy to note that, in

this case B(θ o) is empty, and hence C(θ o) is empty. So, according to Theorem 1,

FP-UCB will achieve an O(1) regret. The performance of the algorithm for this

setting is shown in Fig. 2. Indeed, the regret doesn’t increase after some time steps,

which shows the bounded regret property. We note that in all the figures, the regret

is averaged over 10 runs, with the thick line showing the average regret and the band

around shows the ±1 standard deviation.

Now, suppose the true parameter is θ 2, i.e., θ o = θ 2. In this case B(θ o) is non-

empty. In fact, B(θ o) = θ 1 and C(θ o) = 1. So, according to Theorem 1, FP-UCB

will achieve an O(logT ) regret. The performance of the algorithm shown in Fig. 3

suggests the same. Fig. 4 plots the regret scaled by log t, and the curve converges to

a constant value, confirming the O(logT ) regret performance.

We consider a problem with 4 arms where the mean values for the arms (cor-

responding to the true parameter θ o) are μ(θ o) = [0.6,0.4,0.3,0.2]. Consider the

parameter set Θ such that μ(θ) for any θ is a permutation of μ(θ o). Note that the

cardinality of the parameter set, |Θ |= 24, in this case. It is straightforward to show

that B(θ o) is empty for this case. We compare the performance of FP-UCB algo-

rithm for this case with two standard multi-armed bandits algorithms. Fig. 5 shows

the performance of standard UCB algorithm and that of FP-UCB algorithm. Fig.

6 compares the performance of standard Thompson sampling algorithm with that

of FP-UCB algorithm. The standard bandits algorithm incurs an increasing regret,
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while FP-UCB achieves a bounded regret. For μ(θ ′) = [0.4,0.6,0.3,0.2], we have

a∗(θ ′) = 2. Now we give a typical value for the k2(θ ′), defined in (13), used in

the proof. For this θ ′ we have k2(θ ′) = min
{

k : k ≥ 3,k > �12log(k)/α2
1 (θ

′)�} =
min
{

k : k ≥ 3,k > �12log(k)/0.22�}= 2326 since α1(θ ′) = 0.2. When the reward

distributions are not necessarily Bernoulli, note that ki(θ) is 3 for any θ with

a∗(θ) = i satisfying α1(θ)> 2
√

3/e.
As before assume that μ(θ o) = [0.6,0.4,0.3,0.2]. But consider a larger param-

eter set Θ such that for any θ ∈ Θ , μ(θ) ∈ {0.6,0.4,0.3,0.2}4. Note that, due to

repetitions in the mean rewards for the arms, definition of a∗(θ) needs to be up-

dated, and the algorithmic way is to pick the minimum arm index out of which are

having the same mean rewards. For example, consider μ(θ) = [0.5,0.6,0.6,0.2],
and so as per our new definition, a∗(θ) = 2. Even in this scenario, we have B(θ o) to

be empty. Thus, FP-UCB achieves an O(1) regret rather than O(log(T )) as opposed

to standard UCB algorithm and Thompson sampling algorithm.

We now consider a case where FP-UCB incurs an increasing regret. We again

consider a problem with 4 arms where the mean values for the arms are μ(θ o) =
[0.4,0.3,0.2,0.2]. But consider a larger parameter set Θ such that for any θ ∈ Θ ,

μ(θ) ∈ {0.6,0.4,0.3,0.2}4. Note that the cardinality of Θ , |Θ |= 44 in this case. It

is easy to observe that B(θ o) is non-empty, for instance θ with mean arm values

[0.4,0.6,0.3,0.2] is in B(θ o). Fig. 7 compares the performance of standard UCB

and FP-UCB algorithms for this case. We see FP-UCB incurring O(log(T )) regret

here. Also note that the performance of the FP-UCB in this case also is superior to

the standard UCB algorithm.

Fig. 2 Fig. 3 Fig. 4

Fig. 5 Fig. 6 Fig. 7
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6 Conclusion and Future Work

We proposed an algorithm for finitely parameterized multi-armed bandits. Our FP-

UCB algorithm achieves bounded regret if the parameter set satisfies some neces-

sary condition and logarithmic regret in other cases. In both cases, the theoretical

performance guarantees for our algorithm are superior to the standard UCB algo-

rithm for multi-armed bandits. Our algorithm also shows superior numerical perfor-

mance.

In the future, we will extend this approach to linear bandits and contextual ban-

dits. Reinforcement learning problems where the underlying MDP is finitely pa-

rameterized is another research direction we plan to explore. We will also develop

similar algorithms using Thompson sampling approaches.
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Appendix

6.1 Proof of Lemma 1

Proof Fix an i ∈C(θ o). Then there exists a θ ∈ B(θ o) such that a∗(θ) = i. For this

θ , by the definition of B(θ o), we have

μ1(θ o) = μ1(θ). (28)

Using Assumption 1, it follows that

μi(θ) = μa∗(θ)(θ)> μ1(θ) = μ1(θ o) = μa∗(θ o)(θ o)> μi(θ o).

Thus, βi = minθ :θ∈B(θ o),a∗(θ)=i |μi(θ o)−μi(θ)|> 0.
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Now, for any given θ considered above, suppose |μi(θ)− μi(θ o)| ≤ Δi. Since

Δi > 0 by definition, this implies that

μa∗(θ)(θ) = μi(θ)≤ Δi +μi(θ o) (a)
= μ1(θ o)−μi(θ o)+μi(θ o) = μ1(θ o) (b)

= μ1(θ),

where (a) follows from definition of Δi and (b) from (28). This is a contradiction

because μa∗(θ)(θ)> μ1(θ).
Thus, |μi(θ)−μi(θ o)|> Δi for any θ ∈ B(θ o) such that a∗(θ) = i. So, βi > Δi.�

6.2 Proof of Lemma 2

Proof We have Ci = 1+4|A|+minθ :a∗(θ)=i(ki(θ)+Ki(θ)).
First recall that ki(θ) := min

{
k : k ≥ 3,k > �12log(k)/α2

1 (θ)�
}

. Since log(x)≤
(x−1)/

√
x for all 1 ≤ x < ∞, we have{

k : k ≥ 3,k >
12(k−1)

α2
1 (θ)

√
k
+1

}
⊆ {k : k ≥ 3,k > �12log(k)/α2

1 (θ)�
}
.

The LHS of the above equation simplifies to
{

k : k ≥ 3,k > 144/α4
1 (θ)
}

. Thus, we

have ki(θ)≤ max{3,�144/α4
1 (θ)�}.

Now, recall that Ki(θ) is defined as

Ki(θ) =
T

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

≤
∞

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

=
Ei(θ)

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

+
∞

∑
k=Ei(θ)+1

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5
. (29)

We analyze the first summation in (29). Thus, we get,

Ei(θ)

∑
k=ki(θ)

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

≤
Ei(θ)

∑
k=ki(θ)

2|A|k ≤
Ei(θ)

∑
k=1

2|A|k = Ei(θ)(Ei(θ)+1)|A|. (30)

Since log(x)≤ (x−1)/
√

x for all 1 ≤ x < ∞, we have

k−
⌈

12log(k)
α2

1 (θ)

⌉
≥ k− 12log(k)

α2
1 (θ)

−1 ≥ (k−1)(α2
1 (θ)

√
k−12)

α2
1 (θ)

√
k

.

Using this, the second summation in (29) can be bounded as
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∞

∑
k=Ei(θ)+1

2|A|k
(k−
⌈

12log(k)
α2

1 (θ)

⌉
)5

≤
∞

∑
k=Ei(θ)+1

2|A|k7/2α10
1 (θ)

((k−1)(α2
1 (θ)

√
k−12))5

(a)
≤

∞

∑
k=Ei(θ)+1

2|A|k7/2α10
1 (θ)

(k−1)5

≤ 2|A|α10
1 (θ)

∞

∑
k=4

k7/2

(k−1)5

(b)
≤ 4|A|α10

1 (θ) (31)

where (a) follows from the observation that (α2
1 (θ)

√
k−12)> 1 for k ≥ Ei(θ)+1

and (b) follows from calculus (an integral bound).

Thus using (30) and (31) in (29), we get Ki(θ)≤Ei(θ)(Ei(θ)+1)|A|+4|A|α10
1 (θ).

This concludes the proof of this lemma. �



Developing the Path Signature Methodology and
Its Application to Landmark-Based Human
Action Recognition

Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin

Abstract Landmark-based human action recognition in videos is a challenging task

in computer vision. One key step is to design a generic approach that generates

discriminative features for the spatial structure and temporal dynamics. To this end,

we regard the evolving landmark data as a high-dimensional path and apply path

signature techniques to provide an expressive, robust, non-linear, and interpretable

representation for the sequential events. We do not extract signature features from

the raw path, rather we propose path disintegrations and path transformations as

preprocessing steps. Path disintegrations turn a high-dimensional path linearly into

a collection of lower-dimensional paths; some of these paths are in pose space

while others are defined over a multi-scale collection of temporal intervals. Path

transformations decorate the paths with additional coordinates in standard ways to

allow the truncated signatures of transformed paths to expose additional features. For

spatial representation, we apply the non-linear signature transform to vectorize the

paths that arise out of pose disintegration, and for temporal representation, we apply

it again to describe this evolving vectorization. Finally, all the features are joined

together to constitute the input vector of a linear single-hidden-layer fully-connected

network for classification. Experimental results on four diverse datasets demonstrated
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that the proposed feature set with only a linear shallow network is effective and

achieves comparable state-of-the-art results to the advanced deep networks, and

meanwhile, is capable of interpretation.

1 Introduction

Human action recognition (HAR) is one of the most challenging tasks in computer

vision with a wide range of applications, such as human-computer interaction, video

surveillance, behavioral analysis, etc. A vast literature has been devoted to this task

in recent years, among which are some informative surveys [1, 2, 3, 4, 5, 6, 7, 8].

An attractive option of HAR is Landmark-based HAR (LHAR) where the object is

regarded as a system of correlated labelled landmarks. Johansson’s classic moving

light-spots experiment [9] demonstrated that people can detect motion patterns and

recognize actions from several bright spots distributed on the body, which has

stimulated research on pose estimation and LHAR [10, 11, 12]. Different from

skeleton-based HAR (SHAR), LHAR, using no knowledge of skeletal structure, is

flexible to extend to any landmark data streams with no explicit physical structures,

e.g. traffic or people flow.

Although many solutions have been proposed to address the challenge of LHAR,

the problem remains unsolved due to two main challenges. First, there is the problem

of designing reliable discriminative features for spatial structural representation,

and second of modelling the temporal dynamics of motion. In this paper, the path

signature feature (PSF) is used and refined as an expressive, robust, non-linear, and

interpretable feature set for spatial and temporal representation of LHAR.

The path signature, which was initially introduced in rough paths theory as a

branch of stochastic analysis, has been successfully applied to many machine learning

tasks. Most existing work can be devided into two categories: sliding-window-based

and global-based. In the sliding temporal window approach [13, 14, 15, 16, 17,

18, 19], signatures of small paths are extracted and embedded into multi-channel

feature maps as input of a CNN. The signatures herein are merely local descriptors

from which the deep models are then trained to learn hierarchical representation.

The global-based approaches combine all the cues into a high-dimensional path to

compute high-level signatures over the whole time interval [20, 21] or low-level

signatures over hierarchical intervals [22, 23]. They are straightforward but not

efficient for high dimensional or spatio-temporal data.

To represent spatial pose, most methods [12, 24, 25, 26, 27, 28, 29, 30] used

predefined skeletal structures. The connections distributed on a physical body are

intuitive spatial constraints but not necessarily the crucial ones to distinguish actions.

The connections discarded by imposing a skeletal structure could contain valuable

non-local information. To solve this, hand-designed features [31, 32, 33, 34] were

employed, but they are limited to encode non-linear dependencies. In this paper,

we propose to localize a pose by disintegration into a collection of m-node sub-
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paths. The signatures of these paths encode non-local and non-linear geometrical

dependencies.

To model temporal dynamics, hand-designed local descriptors [31, 34] were pop-

ular, but it is difficult to encode complex spatio-temporal dependences in these.

Recently, recurrent neural networks (RNN) [35], especially long short-term mem-

ory (LSTM) [36], have gained increasing popularity in handling sequential data,

including human actions [37, 24, 38, 39]. In particular, a variation of LSTM [40, 25]

succeeded in simultaneously exploring both spatial and temporal information. These

deep models play a vital role in feature representation and achieve state-of-the-art

performance, but the features learned by them are not as interpretable as hand-

designed features. In this paper our temporal disintegration turns the original paths

into hierarchical paths, from which the signatures encode multi-scale dynamical de-

pendencies. Moreover, our path transformations decorates the paths with additional

coordinates to allow signatures to expose additional valuable features.

To build the spatial and temporal representation, in each frame the spatial PSFs

are extracted from the localized paths obtained by pose disintegration. In the clip,

the evolution of each spatial feature along the time axis constitutes a spatio-temporal

path. After path transformations and temporal disintegration, the temporal PSFs

are then extracted from the spatio-temporal paths. Finally, the concatenation of all

the features forms the input vector of a linear single-hidden-layer fully-connected

network for classification. To extensively evaluate the effectiveness and flexibility

of our method, several datasets (i.e., JHMDB [31], SBU [41], Berkeley MHAD

[42], and NTURGB+D [39]) collected by different acquisition devices were used

for experiments. Using our feature set and only a linear shallow net, we achieve

comparable results to the advanced deep learning methods. Moreover, we took a

further step toward understanding human actions by analyzing the PSFs and the

linear classifier.

Our major contributions lie in four aspects:

1. PSFs are adopted and refined for LHAR with interpretations, proofs, experi-

ments, and discussions of their properties and advantages.

2. Pose disintegration is proposed for non-local spatial dependencies, and tempo-

ral disintegration is proposed for multiscale temporal dependencies.

3. Path transformations, decorating the original paths with additional coordinates,

are proposed to allow signatures to expose additional features.

4. Using signature-based spatio-temporal representation and only a linear shal-

low net, we achieve comparable state-of-the-art results to those with deep models.

Meanwhile, this interpretable pipeline facilitates the understanding of HAR.

The authors are delighted to dedicate this paper to Mark H. A. Davis for many

personal and professional reasons. Mark was wonderfully supportive friend. He was

also an adventurous innovator who took mathematical ideas deep into commercial

finance. In some sense this paper represents a similar pioneering spirit. It has a long

history, and is the first effort to introduce path signature to the central area of action

analysis and understanding in computer vision. This stream of research, as we report

here, has developed these ideas into a viable methodology for analyzing evolving

landmark style data in contexts where the datasets are too small to build effective
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deep learning approaches. We hope that by consolidating it here, we will recognize

Mark with a paper he would have supported and approved of.

2 Related work

2.1 Path signature feature (PSF)

Rough path theory is concerned with capturing and making precise the interactions

between highly oscillatory and non-linear systems [43]. The essential object in rough

path theory, called the path signature, was first studied by Chen [44] whose work

concentrates on piecewise regular paths. More recently, the path signature has been

used by Lyons [45] to make sense of the solution to differential equations driven

by very rough signals. It was extended by Lyons’ theory from paths of bounded

variation [45] to rough paths of finite p-variation for any 𝑝 ≥ 1 [46].

Some successful applications of the PSF have been made in the fields of machine

learning, pattern recognition and data analysis. First of all, the most notable applica-

tions of using PSFs is handwriting understanding. Diehl [21] used iterated integrals

of a handwritten curve for recognition and found that some linear functions of the

PSF satisfy rotation invariance. Graham [19] used the sliding-window-based PSF

as feature maps of a CNN for large-scale online handwritten character recognition,

based on which he won the ICDAR2013 competition [47]. Inspired by this, Xie et

al. [15, 16] extended the method to handwritten text recognition. Yang et al. [17, 18]

explored the higher-level terms of the PSF for text-independent writer identification

which requires subtle geometric features. For financial data, useful predictions can

be made with only a small number of truncated PSFs [20, 48]. The truncated signa-

ture kernel for hand movement classification was presented in [49], and was further

extended to an untruncated version [50]. Moreover, PSFs were used on self-reported

mood data to distinguish psychiatric disorders [23]. In [51], path signature trans-

form was applied to describe the behaviour of controlled differential equations for

modelling temporal dynamics of irregular time series. To model topological data, a

novel path signature feature based on the barcodes arising from persistent homology

theory was proposed for classification tasks [52]. These applications demonstrate

the value of the PSF as an effective and informative feature representation.

The paper has been a long time in development, and the preprints [53] on the

ArXiv have already influenced other developments. To name a few, in [54, 55, 56], the

extraction of the path signature feature was treated as a flexible intermediate layer

in various end-to-end network architectures like CNNs, LSTMs, or Transformer

Networks. Also, variants of our proposed feature set were successfully applied to

tasks like Arabic handwriting recognition [57], writer identification [58], personal

signature verification [59], sketch recognition [60], action/gesture recognition [61,

62], speech emotion recognition [63], etc., showing its generalization ability. The

proposed invisibility-reset transformation was further analyzed in [64].
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2.2 Landmark-based human action recognition

A human body can be regarded as an articulated system composed of joints that

evolve in time [65]. For recent surveys of LHAR, we refer the reader to [8, 66, 67,

68].

Approaches based on hand-designed features for LHAR can be categorized into

two classes: joint-based and part-based. The joint-based ones regard the human

body as a set of points and attempt to capture the correlation among body joints

by using the motion of 3D points [69], measuring the pairwise distances [31, 70,

26, 33, 34], or using the joint orientations [71]. On the other hand, the part-based

approaches focus on connected segments of the human skeleton. They group the

body into several parts and encode these parts separately [27, 28, 72, 73, 74, 29, 75].

Some methods in this category represent a pose by means of the geometric relations

among body parts, for examples, [27, 28] employed quadruples of joints to form a

new coordinate system for representation, and [12] considered measurements of the

geometric transformation from one body part to another. Some methods assume that

certain actions are usually associated with a subset of body parts, so they aim to

identify and use the subsets of the most discriminative parts of the joints.

Given the recent success of deep learning frameworks, some works aim to capture

correlation among joint positions using CNNs [76, 77, 78, 79]. In [76], the input

feature maps of a CNN were joints colored according to their sequential orders, body

parts, or velocity, while in [77] and [78], the CNN’s inputs were the concatenation

of hand-designed local features. Since human actions are usually recorded as video

sequences, it is natural to apply RNNs or LSTMs. HBRNN [24] and Part-aware

LSTM [39] contained multiple networks for different groups of joints. Zhu et al.

[37] proposed a deep LSTM to learn the co-occurrence of discriminative joints

using a mixed-norm regularization term in the cost function. By additional new

gating to the LSTM, the Differential LSTM [38] is able to discover the salient

motion patterns, and [40, 25] achieved robustness to noise. It is noteworthy that the

spatio-temporal RNNs in [40, 25] concurrently encoded both spatial and temporal

context of actions within a LSTM. Liu et al. [80] used an attention-based LSTM

to iteratively select informative keypoints for recognition. Zhang et al. [81] used a

multilayer LSTM to fuse several simple geometric features for recognition. By taking

advantage of the graph structure of human skeleton, Graph Convolutional Networks

(GCNs) were introduced into the action recognition task. Yan et al. [30] used spatial

graph convolutions along with interleaving temporal convolutions. Concurrently,

Li et al. [82] proposed a similar approach but introduced a multi-scale module for

spatio-temporal modelling. DGNN [83] represented the skeleton as a directed acyclic

graph to encode both joint and bone information. MV-IGNET [84] extracted multi-

level spatial features and leveraged different skeleton topologies as multi-views to

generate complementary action features. MMDGCN [85] proposed a dense graph

convolution for local dependencies and used spatial-temporal attention module to

reduce the redundancy. These deep learning methods achieved high accuracy on

most large-scale action datasets, but they often require a lot of training data and

suffer from a lack of interpretability.
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3 Path Signature

3.1 Definition and geometric interpretation

The rigorous introduction of the path signature as a faithful description or feature

set for unparameterized paths can be found in [43, 86, 87, 88], so in this paper we

present it in a practical manner.

A d-dimensional path or stream of timestamped events P over the time interval

[0, 𝑇] ⊂ R can be represented as a continuous map 𝑃 : [0, 𝑇] → R𝑑 . The coordinates

of P at time 𝜏 are 𝑃𝜏 =
(
𝑃1
𝜏 , 𝑃

2
𝜏 , . . . , 𝑃

𝑑
𝜏

)
. To illustrate the idea, we consider the

simplest case when d = 1. The path is a real-valued path for which the path integral

is defined as

𝑆(𝑃)1
0,𝑇 =

∫
0<𝑡≤𝑇

𝑑𝑃1
𝜏 = 𝑃1

𝑇 − 𝑃1
0, (1)

which is the increment of this 1-dimensional path over the whole time interval and

is called the 1-fold iterated integral. We emphasize that 𝑆(𝑃)1
0,𝜏 , 0 < 𝜏 ≤ 𝑇 is also a

real valued path w.r.t 𝜏. The 2-fold iterated integral is

𝑆(𝑃)11
0,𝑇 =

∫
0<𝜏2≤𝑇

𝑆(𝑃)1
0,𝜏2

𝑑𝑃1
𝜏2

=
1

2

(
𝑃1
𝑇 − 𝑃1

0

)2

, (2)

which is proportional to the square of the increment. Again, 𝑆(𝑃)11
0,𝜏 is a real-valued

path, so if we continue recursively, the k-fold iterated integral of P is

𝑆(𝑃)11...1
0,𝑇 =

∫
0<𝜏𝑘 ≤𝑇

. . .

∫
0<𝜏2≤𝜏3

∫
0<𝜏1≤𝑡2

𝑑𝑃1
𝜏1
𝑑𝑃1

𝜏2
. . . 𝑑𝑃1

𝜏𝑘

=
1

𝑘!

(
𝑃1
𝑇 − 𝑃1

0

) 𝑘
,

(3)

which is proportional to the increment to the power of k.

Now, when d = 2 , the 1-fold iterated integral of the path
{
𝑃1
𝜏 , 𝑃

2
𝜏

}
has 2 elements

𝑆(𝑃)1
0,𝑇 =

∫
0<𝑡≤𝑇

𝑑𝑃1
𝜏 = 𝑃1

𝑇 − 𝑃1
0, (4)

𝑆(𝑃)2
0,𝑇 =

∫
0<𝑡≤𝑇

𝑑𝑃2
𝜏 = 𝑃2

𝑇 − 𝑃2
0 . (5)

Each element is the increment of the path on the corresponding axis over the time

interval [0, 𝑇]. They denote the displacement of the given path. The 2-fold iterated

integral of this 2D path contains 𝑑2 = 22 elements
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𝑆(𝑃)11
0,𝑇 =

∫
0<𝜏2≤𝑇

∫
0<𝜏1≤𝑡2

𝑑𝑃1
𝜏1
𝑑𝑃1

𝑡2
= 1

2!

(
𝑃1
𝑇 − 𝑃1

0

)2
, (6)

𝑆(𝑃)22
0,𝑇 =

∫
0<𝜏2≤𝑇

∫
0<𝜏1≤𝜏2

𝑑𝑃2
𝜏1
𝑑𝑃2

𝜏2
= 1

2!

(
𝑃2
𝑇 − 𝑃2

0

)2
, (7)

𝑆(𝑃)12
0,𝑇 =

∫
0<𝜏2≤𝑇

∫
0<𝜏1≤𝜏2

𝑑𝑃1
𝜏1
𝑑𝑃2

𝜏2
, (8)

𝑆(𝑃)21
0,𝑇 =

∫
0<𝜏2≤𝑇

∫
0<𝑡1≤𝑡2

𝑑𝑃2
𝜏1
𝑑𝑃1

𝜏2
. (9)

We note that the first two elements are the same as (2) in the 1-dimensional case.

For the other two elements, the geometric intuitions are the areas shown in Fig. 1(a)

and Fig. 1(b). Together they represent the Lévy area [86] depicted in Fig. 1(c). The

Lévy area, which is a signed area enclosed by the path and the chord connecting the

endpoints, can be expressed by

𝐴0,𝑇 = 𝑆(𝑃)12
0,𝑇 − 𝑆(𝑃)21

0,𝑇 . (10)

The sign of the area depends on the sign of the winding number of the path moving

around it [89]. The interpretation of the k-fold iterated integral (k > 2) of a 2D path

is not trivial, so it is not included here. By analogy, for a 3D path, the 1-fold, 2-fold,

and 3-fold iterated integrals are units of displacement, area, and volume respectively.

In general, for a path in R𝑑 , the superscript of the k-fold iterated integral, which

describes the order of integration, is a multi-index (𝑖1, 𝑖2, . . . , 𝑖𝑘 ) ∈ {1, . . . , 𝑑}𝑘 .

Therefore, the 𝑑𝑘 elements of the k-fold iterated integral of a d-dimensional path

can be generally expressed as

Fig. 1 The geometric intuition of the PSF of a 2D path. The path in red moves from A to D over

the time interval [0, T]. The dashed line is the chord connecting the endpoints. Panels (a) and (b)

depict two terms of the 2-fold iterated integrals of the path, (c) is the Lévy area enclosed by the

path and its chord, and (d) is a demonstration of the shuffle product identity.
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𝑆(𝑃)𝑖1 ,𝑖2 ,...,𝑖𝑘
0,𝑇 =

∫
0<𝜏𝑘 ≤𝑇

. . .

∫
0<𝑡2≤𝜏3

∫
0<𝜏1≤𝜏2

𝑑𝑃𝑖1
𝜏1
𝑑𝑃𝑖2

𝜏2
. . . 𝑑𝑃𝑖𝑘

𝜏𝑘 . (11)

Then the signature of a path P over the time interval [0, 𝑇] is the collection of all the

iterated integrals of P:

𝑆(𝑃)0,𝑇 =
(
1, 𝑆(𝑃)1

0,𝑇 , . . . , 𝑆(𝑃)
𝑑
0,𝑇 ,

𝑆(𝑃)1,1
0,𝑇 , . . . , 𝑆(𝑃)

1,𝑑
0,𝑇 , 𝑆(𝑃)

2,1
0,𝑇 , . . . , 𝑆(𝑃)

𝑑,1
0,𝑇 , . . . , 𝑆(𝑃)

𝑑,𝑑
0,𝑇

. . . , 𝑆(𝑃)1,1,...,1
0,𝑇 , . . . , 𝑆(𝑃)𝑖1 ,𝑖2 ,...,𝑖𝑘

0,𝑇 , . . . , 𝑆(𝑃)𝑑,𝑑,...,𝑑
0,𝑇 , . . .

)
,

(12)

where the 0-th term is conventionally set to 1. Since the signature is defined on top

of all the possible indices of finite length, the number of elements in the signature

is infinite. In practical use we usually consider the signature truncated at a certain

level n written as

𝑆𝑛 (𝑃)0,𝑇 =
(
1, 𝑆(𝑃)1

0,𝑇 , . . . , 𝑆(𝑃)
𝑖1 ,𝑖2 ,...,𝑖𝑛
0,𝑇 , . . . , 𝑆(𝑃)𝑑,𝑑,...,𝑑

0,𝑇

)
(13)

of which the dimensionality is 𝜑(𝑑, 𝑛) =
(
𝑑𝑛+1 − 1

)
(𝑑 − 1)−1. The elements of

the truncated signature are taken as features (i.e., PSF) encoding the informative

geometric properties of sequential data in applications in machine learning. For the

feature set, the 0-th term (i.e., a constant value set to 1) is optional, so the dimension

can be reduced to

𝜑′(𝑑, 𝑛) =
(
𝑑𝑛+1 − 𝑑

)
(𝑑 − 1)−1. (14)

For the 1-dimensional case (d = 1), the feature dimension is exactly equal to n
(excluded the 0-th term) according to (1), (2), and (3).

3.2 Calculation of the signature for a discrete path

Although the path signature is initially defined for continuous paths with bounded

variation, it is easily extended to discrete paths by linear interpolation [90]. The

signature is canonical and does not depend on the choice of timescale used for the

interpolation.

Computing the signature of a piecewise linear path does not require integrals. For

each line segment of the path, the elements of its signature are given by

𝑆(𝑃)𝑖1 ,𝑖2 ,...,𝑖𝑘𝜏,𝑡+1
=

1

𝑘!

𝑘∏
𝑗=1

(
𝑃
𝑖 𝑗
𝜏+1

− 𝑃
𝑖 𝑗
𝜏

)
, (15)

where 𝑃
𝑖 𝑗
𝜏 is the 𝑖 𝑗 -th coordinate value of path P at time 𝜏. For the entire path, Chen’s

identity [44] states that for any time stamps (𝑠, 𝑡, 𝑢) satisfying that 𝑠 < 𝑡 < 𝑢, we

have
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𝑆(𝑃)𝑖,𝑖2 ,...,𝑖𝑘 ,...,𝑖𝑛𝑠,𝑢 =
𝑛∑

𝑘=0

𝑆(𝑃)𝑖1 ,𝑖2 ,...,𝑖𝑘𝑠,𝑡 𝑆(𝑃)𝑖𝑘+1 ,𝑖𝑘+2 ,...,𝑖𝑛
𝑡 ,𝑢 . (16)

This implies that the signature of the entire path can be calculated from the signatures

of its pieces.

We recommend the three open-source python software libraries, esig (on PyPi),

derived from the CoRoPa C++ library libalgebra [91], iisignature [92], and Signatory
[93] which has a dependency on PyTorch and works well on the CPU as well as the

GPU. They all allow fast computation of the path signature.

3.3 Properties of the path signature

3.3.1 Uniqueness

It is proved that the path signature determines a path if and only if the path is not

tree-like (this notion is introduced in [45]). A tree-like path is a trajectory containing

a section where the path exactly retraces itself. Tree-like paths are common in real-

world data streams, for instance, in some human actions, especially periodic ones,

like clapping or jumping in place. An effective way to avoid the tree-like situation is

adding an extra monotone dimension, such as time, to the original path.

3.3.2 Invariance under translation

The signature computed by (11) or (15) is invariant under translation of the paths,

which is a practical advantage and avoids complex recentering normalization.

3.3.3 Invariance under time reparameterization

A time reparameterization of a path is a continuous, nondecreasing substitution for

the time variable of a path. It changes the speed of recording of the path. Human

actions are largely invariant under changing the speed of the action or viewing

speed of the video. The ease with which the signature can completely filter out these

changes in the representation is a major advantage for machine learning, substantially

reducing the dimensionality of the feature set needed for action classification. The

use of the path signature, with its fixed-dimensional feature set, can help the classifer

to recognize the same action performed or sampled at different speeds. We refer the

reader to [43, 88] for a detailed proof of the invariance of the path signature under

time reparameterization.
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3.3.4 Nonlinearity of the signature

The shuffle product identity [86] states that the product of two signatures of lower

level can be expressed as a linear combination of some higher-level terms. For

instance, for the two-dimensional case in section 3.1, we can easily derive the

following equation from Fig. 1(d),

𝑆(𝑃)1
0,𝑇 · 𝑆(𝑃)2

0,𝑇 = 𝑆(𝑃)12
0,𝑇 + 𝑆(𝑃)21

0,𝑇 . (17)

In other words, the nonlinear behavior in terms of lower level terms can be expressed

by linear combination of higher-level terms. Therefore, when we incorporate the

higher-level terms into the feature representation, we automatically include more

nonlinear prior knowledge in our feature set. If the introduced nonlinearity is suffi-

cient, we need only linear classifiers to distinguish the targets.

3.3.5 Fixed dimension under length variations

Another practical property of the path signature is that the dimension of the PSF

extracted from the entire path depends on the truncation level of the signature and

the intrinsic dimension of the path but is independent of the (sampled) length of

the path, as described in 14. For human action recognition, the durations of actions

are variable. The use of the path signature allows us to extract a fixed dimension of

features and use them with classification methods which require a fixed-length input.

4 Path disintegrations and transformations

The principled and robust representation of unparameterized paths, along with the

convenience of reducing polynomial functions on the space of paths to linear ones

(which establishes their universality) provide the core motivations for using signa-

tures as features. One can always take the signature of a raw path to remove any

dependence on parameterization or translation, but sometimes it is prudent to apply

path disintegrations or path transformations as preprocessing to improve the effi-

ciency and effectiveness of PSFs. The disintegrations turn a path into a composition

of subpaths while the transformations turn a path into a higher-dimensional path.
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4.1 Path disintegrations

4.1.1 Pose Disintegration

In many cases, non-local clues are informative and straightforward, for instance,

the non-local displacement between two hand points is a key feature for the action

of clapping. To exploit both local and non-local clues in pose, we propose pose

disintegration. Landmarks that are labelled with corresponding body parts have

no inherent order, so a predefined priority order is randomly chosen and fixed –

different random choices of initial order yield comparable results in preliminary

experiments. The pose is then regarded as an ordered collection of points in R𝑑 .

Our pose disintegration localizes the pose into all possible subposes containing m
points. Connecting the m points in each subpose in the inherited order forms a unique

m-node sub-path that visits each point once. We end up with a collection of sub-paths

which do not need to be parts of physical body and are available for further path

transformations or signature extractions.

We consider that functions on a pose can be approximated by functions on the

piecewise linear localized paths of its subposes. For convenience, one can view these

functions as linear functions on the signature of its localized paths. The terms of

the first two levels of signatures cover the displacement and the area information

similar to the traditional hand-designed features [31, 34], while the higher-level

terms capture more non-linear features. For a pose with N joints, the dimension of

the signatures of its localized paths is 𝐶𝑚
𝑁 · 𝜑′(𝑑, 𝑛), where m is the number of points

in a subpose, d is the dimension of the path, and n is the truncated signature level.

The selections of these parameter values are highly correlated and associated with

the uniqueness of the paths. According to [94], any piecewise linear paths in R𝑑 ,

consisting of at most 𝑚 = 𝑑 + 1 points, can be uniquely recovered from the signature

at the third level. A larger m brings semantically high-level components but requires

a larger n for the path uniqueness [95], which exponentially increases the feature

dimension according to 14, and means less shareability and more sub-paths. The

number of m-node subpaths is in line with Pascal’s triangle and increases along with

𝑚(𝑚 ≥ 𝑁/2). To avoid feature set of very large dimension, 𝑚 ≤ 3, 𝑛 = 3 for 𝑑 = 2

and 𝑚 ≤ 4, 𝑛 = 3 for 𝑑 = 3 are suggested. Beyond the signature level n required for

the unique recovery of a path, the non-linearity (as described in 3.3.4) of the extra

high-level terms may still contribute to facilitate the training of the model until the

dimensionality of the feature set becomes impractical.

4.1.2 Temporal Disintegration

Temporal disintegration is based on the basic theory of the path signature which

suggests that low-level terms of signatures on all intermediate length time intervals

can be far more efficient than signatures of high levels over the whole time interval

[86]. Therefore, instead of extracting the PSF over the whole time interval, the dyadic

path signature features (DPSF) [22] split the entire interval into small intervals with
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a dyadic hierarchical structure and then extracts PSF over each small interval. Given

a path over the whole time interval [0, 𝑇] ⊂ R the j-th dyadic level of the hierarchical

structure is the collection of subintervals
[
𝑖𝑇/2 𝑗 , (𝑖 + 1)𝑇/2 𝑗

]
, 𝑖 ∈

[
0, 2 𝑗 − 1

]
, 𝑗 ∈

N. Note that the 0-th dyadic level contains exactly the whole path. The DPSF over

long, medium, and short time intervals describes multi-scale dynamical dependences

more efficiently than the PSF over the entire interval, which requires higher-level

terms to capture local dependencies.

Slightly different from the hierarchical structure in [22] which may break the

events that occur near the conjunctive time stamps
{
𝑖𝑇/2 𝑗 | 𝑖 ∈

[
1, 2 𝑗 − 1

]
, 𝑗 ∈ N+

}
,

we consider an overlapping version over the time intervals
[
𝑖𝑇/2 𝑗+1, (𝑖 + 2)𝑇/2 𝑗+1

]
,

𝑖 ∈
[
0, 2 ·

(
2 𝑗 − 1

) ]
. The overlapping DPSF is expected to supplement the original

DPSF with additional local details. Its dimension is

𝜑̂(ℎ, 𝑑, 𝑛) =
(
2ℎ+1 − ℎ − 2

)
· 𝜑′(𝑑, 𝑛), (18)

where ℎ ∈ N+ is the number of the hierarchical level. The selection of h is a tradeoff

between improving efficiency and introducing local noises over finer intervals.

4.2 Path transformations

4.2.1 Time-incorporated transformation

The signature is invariant under parameterization, but in many situations, one would

like to keep the dependence on time. Adding a monotone increasing time dimension is

adopted to encode motion speed. The signature of a time-incorporated path contains

two parts: time-independent (TI) and time-dependent (TD). The TI part is exactly

the signature of the original path, so its integration order is

𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ {1, . . . , 𝑑}. (19)

The TD part is related with time. Its integration order is

𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ {1, . . . , 𝑑 + 1}, ∃𝑚 ∈ [1, 𝑘], 𝑖𝑚 = 𝑑 + 1, (20)

which means each term of the signature in TD is an integral along the time dimension

at least once. Given the truncated signature level n, the dimensionality of the TD

part is 𝜑′(𝑑 + 1, 𝑛) − 𝜑′(𝑑, 𝑛). The signature of the original path filters out the

information about the speed of motion and the sampling rate but the signature of the

time-incorporated path allows us to select one and suppress the other according to

significance to the classification.
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4.2.2 Invisibility-reset transformation

The signature capturing relative position information is invariant under translation.

Given that the absolute position may be essential for some scenarios (e.g., HAR

under static CCTVs), we propose the invisibility-reset transformation of a path to

retain the absolute position information in signatures. For a path P in R𝑑 within the

interval [0, 𝑇], we add two time steps T+1 and T+2 with value 𝑃𝑇 and 0 respectively

at the end of P and add a visibility dimension v with values 1 in [0, 𝑇] and 0 in

(𝑇,𝑇 + 2]. In other words, the invisibility-reset path 𝑃𝐼 𝑅 in R𝑑+1 first becomes

invisible at time T+1 and then is reset to the origin at T+2. According to (15) and

(16), we have

𝑆 (𝑃𝐼 𝑅)
𝑖1 ,𝑖, · · · ,𝑣,𝑣
0,𝑇 +2

= −𝑆(𝑃)𝑖,𝑖2 · · ·𝑖𝑘
0,𝑇 , 𝑖1, 𝑖2, . . . , 𝑖𝑘 ∈ {1, . . . , 𝑑} (21)

which means certain terms in 𝑆 (𝑃𝐼 𝑅) encode the relative positions as in 𝑆 (𝑃).
Moreover, the terms of the first level of 𝑆 (𝑃𝐼 𝑅), given by

𝑆 (𝑃𝐼 𝑅)
𝑖1
0,𝑇 +2

= −𝑃𝑖1
0
, 𝑖1 ∈ {1, . . . , 𝑑}, (22)

are the absolute position of the initial point. This simple transformation retains

different position information in signatures and thus allows the network to select one

and suppress the other according to significance to the task.

4.2.3 Multi-delayed lead-lag transformation

The lead-lag transformation proposed in [20, 87, 90] is designed to exploit the

quadratic cross-variation between the original path and its delayed path. To extend

its capability to describe long-term dependencies of sequential events, our modified

lead-lag transformation, as shown in Fig. 2, is constructed by the original path and

its multiple delayed paths (instead of one delayed path in [20]). We denote the

dimension of a lead-lag transformed path as 𝑑𝐿𝐿𝑇 . The signatures of lead-lag paths

with smaller 𝑑𝐿𝐿𝑇 encode short-term dependencies, while those with larger 𝑑𝐿𝐿𝑇
explore more long-term dependencies.

Fig. 2 The illustration of

multi-delayed lead-lag trans-

formation. The dimen-sion of

lead-lag paths is 𝑑𝐿𝐿𝑇 . The

delayed paths are padded with

zeros to ensure a fix length for

each dimension.
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Table 1 Proposed features for LHAR

# of joints
Spatial structural features

(for each frame)

Temporal dynamical features

(along the time axis)

1 (a single joint) S-J: The d-dimensional coordinates of

each of the predefined N joints are used.

T-J-PSF: The temporal PSF over the

evolution of each joint up to signature

level 𝑛𝑇 𝐽 is extracted.

2 (joint pair) S-P-PSF: The PSF over each pair of

joint up to signature level 𝑛𝑆𝑃 is ex-

tracted.

T-S-PSF: The evolution of each

dimension of spatial PSF is treated as

a path, over which the temporal PSF

up to signature level 𝑛𝑇𝑆 is extracted.3 (joint triple) S-T-PSF: The PSF over each triple of

joint up to signature level 𝑛𝑆𝑇 is ex-

tracted.

5 Feature extraction for human action recognition

Our proposed feature set for LHAR, which we describe in this section, is outlined

in Table 1. We note that an unofficial Python implementation of the feature set is

available on GitHub [96].

5.1 Spatial structural features

First of all, the basic information describing the spatial structure is the d-dimensional

coordinates of each of the N joints of the body. The keyword S-J denotes the spatial

coordinate values of the joints. The dimension of this part is 𝐷𝑆𝐽 = 𝑁 · 𝑑 for each

sampled frame.

Fig. 3 The illustration of spatial feature (S-P-PSF and S-T-PSF) extraction. Note that we predefine

the priority order of all the N joints (N = 15 in this figure). The red quadrangles denote the feature

extraction of joint pairs, while the blue ellipses denote that of joint triples. All possible pairs and

triples of joints are considered.
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To encode the spatial context we use pose disintegration with 𝑚 = 2 and 𝑚 = 3

, which means joint pairs and joint triples are used as illustrated in Fig. 3. The

signatures of each of these subpaths are computed to model the spatial constraints

in each frame. The spatial PSF of joint pairs and joint triples are denoted by S-
P-PSF and ST-PSF respectively. If the truncation level of the signature of pairs

and triples are 𝑛𝑆𝑃 and 𝑛𝑆𝑇 respectively, then the feature dimensions per frame are

𝐷𝑆𝑃 = 𝐶2
𝑁 ·𝜑′ (𝑑, 𝑛𝑆𝑃) and 𝐷𝑆𝑇 = 𝐶3

𝑁 ·𝜑′ (𝑑, 𝑛𝑆𝑇 ) respectively. Finally, the spatial

features from all sampled frames are extracted and concatenated. The dimension of

S-P-PSF and S-T-PSF per frame is denoted by 𝐷𝑆 = 𝐷𝑆𝑃 + 𝐷𝑆𝑇 .

5.2 Temporal dynamical features

Inspired by the works in [40, 25] which jointly learned the spatial and temporal

contexts in a variant of LSTM, we suggest that the dynamics of landmark-based

human action can be described by the evolution of spatial context. The spatial

context herein are the features we extracted in section 5.1, although other spatial

features can be used alternatively. From these, we are going to extract two kinds of

temporal features T-J-PSF and T-S-PSF.

The T-J-PSF, illustrated in Fig. 4, is the temporal PSF of the evolution of each

joint along the time. The evolution of each joint is naturally a time-sequence, so

we consider its time-incorporated transformation. For N-joint bodies in R𝑑 , the

dimension of T-J-PSF is 𝐷𝑇 𝐽 = 𝑁 · 𝜑′ (𝑑 + 1, 𝑛𝑇 𝐽 ), where 𝑛𝑇 𝐽 is the truncation

level of the signature.

Since each dimension of the spatial contextual features (S-P-PSF and S-T-PSF)

characterizes one particular spatial constraint of a pose, the evolution of this spatial

constraint along the time forms a spatio-temporal path which delivers temporal

constraints of a motion. The temporal PSF of these spatio-temporal paths is denoted

by T-S-PSF and illustrated in Fig. 5. Since the signature of a spatiotemporal path

(i.e., a 1D path) is just the increments to a certain power, the multi-delayed lead-lag

transformation is applied to each path to enrich the PSF with cross variations among

Fig. 4 Illustration of temporal features extracted from the evolution of each corresponding joint

(T-J-PSF).
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Fig. 5 Illustration of temporal features extracted from the evolution of spatial context (T-S-PSF).

Each dimension of the spatial features is treated equally and individually.

events of the path. If the truncation level of the signature is 𝑛𝑇 𝑆 and the dimension of

the lead-lag paths is 𝑑𝐿𝐿𝑇 , the dimension of T-S-PSF from all spatio-temporal paths

is 𝐷𝑇 𝑆 = 𝐷𝑆 · 𝜑′ (𝑑𝐿𝐿𝑇 , 𝑛𝑇 𝑆). Considering there might exist complicated or long-

range actions, the temporal disintegration in section 4.1.2 can be applied. If so, the

dimensions are 𝐷𝑇 𝐽 = 𝑁 · 𝜑̂ (ℎ𝑇 𝐽 , 𝑑 + 1, 𝑛𝑇 𝐽 ) and 𝐷𝑇 𝑆 = 𝐷𝑆 · 𝜑̂ (ℎ𝑇 𝑆 , 𝑑𝐿𝐿𝑇 , 𝑛𝑇 𝑆)

where ℎ𝑇 𝐽 and ℎ𝑇 𝑆 are the corresponding hierarchical levels.

The dimension of all temporal PSFs is 𝐷𝑇 = 𝐷𝑇 𝐽 + 𝐷𝑇 𝑆 . Finally, the total

dimension of spatial and temporal features per clip is 𝐷 = 𝑀 · (𝐷𝑆𝐽 + 𝐷𝑆) + 𝐷𝑇 ,

where M is the number of sampled frames. Moreover, the spatial components can be

covered by the temporal PSFs extracted from invisibility-reset paths which require

no sampling step.

6 Experimental results and analysis

6.1 Datasets

Monocular videos recorded by 2D cameras are capable of collecting spontaneous

actions, but their sensitivity to viewpoint variations and occlusions makes recognition

a difficult task [1]. Intuitively, human body is general in 3D space, so marker-based

motion capture systems [97] were designed to collect highly accurate locations

of human joints. However, they are often expensive and impractical for recording

realistic action videos. Fortunately, costeffective depth cameras (e.g. Kinect sensor

[98]) were designed to provide reliable joint locations via real-time pose estimation

algorithms (e.g., [99]). Our method is general enough to be applied to various kinds

of data. To extensively evaluate the proposed methods, we conducted experiments

on four datasets containing examples of all three types of data: JHMDB [31], SBU

[41], Berkeley MHAD [42], and NTURGB+D [39]. The information we used herein

for action recognition is the locations of landmarks in all the frames. However, it is

worth noting that our method is flexible and additional information such as visibility

state or confidence score can be included.
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The JHMDB dataset [31] is a 2D human action dataset. There are 928 clips,

each clip containing between 15 and 40 frames. A clip captures only one person

doing one of 21 actions. The 2D joint positions are manually annotated. There are 3

splits separating the whole dataset into training and testing set. The final result is the

average of them. The sub-JHMDB is a subset of JHMDB with the full body inside

the frame. The challenges are the spontaneity of the actions captured by the clips

from YouTube and the loss of information due to 2D projection.

The SBU Interaction [41] is a 3D Kinect-based dataset. It has 282 clips categorized

into 8 classes of two-actor interactions, and has 30 joints per frame. Its depth

information suffers from self-occlusion, causing measurement errors in the estimated

joint locations.

The third dataset is Berkeley MHAD dataset [42] captured by a marker-based

motion capture system. It consists of 659 clips, of which 384 clips, performed by 7

actors, are used for training and 275 clips by 5 different actors are used for testing.

The 3D locations of 43 joints captured by LED markers are very accurate.

The Kinect-based NTURGB+D [39] is one of the largest 3D action recognition

datasets and contains 56 thousand clips of 60 classes. The large viewpoint variations

and unconstrained number of actors pose considerable challenges for analysis of this

dataset.

Note that the quantitative analysis was conducted on JHMDB, and all the pa-

rameters were determined by 5- fold cross validation on the training set of the first

split.

6.2 Network configurations

Since PSFs are rich non-linear features, we adopted a single-hidden-layer linear neu-

ral network as our classifier (1- layer net also works well in preliminary experiments).

The network is fully-connected and the activation of the hidden neurons is the iden-

tity function. The input dimension is decided by the PSF (i.e., S-P-PSF, S-T-PSF,

T-J-PSF, T-S-PSF, or some combinations of them) and the output is a probability

distribution given by a softmax layer over all the class labels in a dataset. The single

hidden layer has 64 neurons. The networks are trained by stochastic gradient descent

on the cross-entropy with momentum 0.7 and mini-batch size 30. The learning rate

updates in accordance to 𝛼(𝑡) = 𝛼(0) · exp(−𝜆𝑡) where 𝛼(0) = 0.005, 𝜆 = 0.005.

The maximum epoch is 300 for all experiments.

Dropconnect [100], a generalization of Dropout [101], randomly omits a propor-

tion of connections at each training iteration. It is applied to the connections between

the input and the single hidden layer for regularization. A high ratio of Dropconnect

is essential to mitigate overfitting because the features herein are of very high dimen-

sion. Additionally, since the actions of some joints are highly correlated with each

other, a small proportion of joints or features may already be sufficient to distinguish

some actions. Based on our preliminary experiments, the Dropconnect rate is set to

0.95.
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6.3 Data preprocessing and benchmark

We used two kinds of data augmentation. One is horizontal flipping, and the other

one is adding Gaussian noise (inspired by [31]) over joint coordinates to simulate

the noisy positions caused by estimation or annotation.

To cope with translation variation, we normalized the joints from world coordinate

system to person-centric coordinate system by placing the center point of the body at

the origin. To compensate for the biometric differences, we normalized the coordinate

values to the range of [-1,1] over the entire clip. For feature normalization, each

feature was divided by the maximum absolute value of the corresponding dimension

and normalized to [-1, 1].

The spatial components (S-J, S-P-PSF, and S-T-PSF) are calculated for each

frame. To obtain a fixed-length input to the network, we uniformly sampled M (in

this paper, M = 10) frames from each clip. As the signature has a fixed dimension

under length variation, the temporal features (T-J-PSF and T-S-PSF) are extracted

from all the frames without subsampling. Our baseline method is using S-J, the

d-dimensional coordinate values of all N joints. This leads to MNd-dimensional

feature set, for which we obtained a validation error rate of 57.54 ± 3.26%.

6.4 Investigation of the spatial features

As described in section 4.1.1 and 5.1, by pose disintegration with 𝑚 = 2 and 𝑚 = 3

, we constructed all the joint pairs and triples as localized paths for S-P-PSF and

S-TPSF respectively. The error rates on the validation set obtained by these feature

sets are shown in Table 2 and Table 3. The performance improves when higher terms

of the signature are considered, but the improvements tend to be negligible and the

variance increases when the dimension of the feature grows exponentially with the

signature level n. For the joint pairs, a suitable truncation level 𝑛𝑆𝑃 is 2 or 3, while

for the joint triples, the level 𝑛𝑆𝑇 needs to be as high as 3 or 4, which suggests the

choice of n should depend on m. We refer the reader to [95] which discusses the

relationship among m, n, and the path dimension d from the view of path recovery.

For the following experiments, we chose to fix 𝑛𝑆𝑃 = 2, 𝑛𝑆𝑇 = 3.

Table 2 Effect of different signature levels on the performance of S-P-PSF

Type of subpaths Signature level 𝑛𝑆𝑃 Feature dim. Error rate (%)

Joint Pairs

1 2100 32.79 ± 4.49

2 6300 25.41 ± 4.55

3 14700 24.10 ± 5.65
4 31500 24.10 ± 5.72
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Table 3 Effect of different signature levels on the performance of S-T-PSF

Type of subpaths Signature level 𝑛𝑆𝑇 Feature dim. Error rate (%)

Joint Triples

1 9100 43.93 ± 2.87

2 27300 32.46 ± 3.26

3 63700 26.39 ± 3.99

4 136500 24.75 ± 4.79
5 282100 23.77 ± 6.41

6 573300 25.24 ± 6.44

6.5 Investigation of the temporal features

6.5.1 Investigation of T-J-PSF

First, we investigated the effect of the time-incorporated transformation and the

truncation level 𝑛𝑇 𝐽 of the T-J-PSF. As shown in Fig. 6, if the truncation level 𝑛𝑇 𝐽

(the horizontal axis) is 1, adding a time dimension (the green plot) only improves the

performance a little. This is because the first level term related to the time dimension is

only the duration of the action. When 𝑛𝑇 𝐽 increases, the performance improvements

of using time-incorporated PSF are more significant, showing the effectiveness of

the time-incorporated path transformation. As to the truncation level, when 𝑛𝑇 𝐽

increases, the results have lower bias together with gradually higher variance, so a

trade-off is required. Here, 𝑛𝑇 𝐽 = 5 is a good choice.

In addition, we investigated the effect of the signature of the time-incorporated

path at different frame rates. We artificially increased the frame rate by interpolating

additional frames at random time stamps of the original clips. Bodies of the additional

frames were copied from those of their adjacent frames. On the other hand, we

decreased the frame rate by random subsampling. The networks were trained using

the training clips at original frame rate (30fps) and tested 10 times using artificial

validation clips at each of the frame rates ranging from 6fps to 90fps in 6fps steps.

As shown in Fig. 7, when the frame rate increases from 30fps to 90fps, the error

rates of using the time-independent part (TI) stay the same, while those of using

Fig. 6 Comparison of T-
J-PSF w/ and w/o using

time-incorporated paths. The

colored areas are the error

bands.
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the time-dependent part (TD) raise rapidly. It demonstrates the TI (i.e. the signature

of original path) is invariant under time reparameterization while the TD is very

sensitive to speed variation. The larger the signature level n, the more sensitive

the TD is to speed variation. Similarly, in the other direction, when the frame rate

decreases from 30fps to 6fps, the influence to TD is far more significant than that to

TI, showing the tolerance of TI under missing frames.

If we replace the PSF with the overlapping DPSF, then an appropriate hierarchical

level ℎ𝑇 𝐽 needs to be chosen. As shown in 8, in terms of performance, the low-level

(e.g., 𝑛𝑇 𝐽 = 2) overlapping DPSFs over the hierarchical intervals (e.g., ℎ𝑇 𝐽 = 3)

often outperform the high-level (e.g., 𝑛𝑇 𝐽 = 5) PSFs over the whole interval (ℎ𝑇 𝐽 =
1), which shows the efficiency of using temporal disintegration. However, when the

disintegrated paths are too fragmented to avoid being dominated by local noises

(e.g., when ℎ𝑇 𝐽 > 3), the additional features are harmful. We thus fixed ℎ𝑇 𝐽 = 3.

Another observation is that the improvements from ℎ𝑇 𝐽 = 1 to ℎ𝑇 𝐽 = 3 become less

significant along with the increasing 𝑛𝑇 𝐽 , demonstrating a trend that the high-level

PSF and lowlevel DPSF yield similar information eventually.

Fig. 7 Sensitivity of the

time-dependent and time-

independent part of the time-

incorporated PSF to different

frame rates.

Fig. 8 Comparison of T-J-
PSF with different dyadic

hierarchical level ℎ𝑇 𝐽 and

different truncation level 𝑛𝑇 𝐽

of signature.
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Fig. 9 Comparison of the

error rates (solid) and the

feature dimensions (dashed) of

using T-S-PSF with different

dimensions 𝑑𝐿𝐿𝑇 of lead-lag

paths and different truncation

level 𝑛𝑇𝑆 of signature.

6.5.2 Investigation of T-S-PSF

Regarding the PSF derived from the evolution of the spatial context (T-S-PSF), two

factors were evaluated: the dimension 𝑑𝐿𝐿𝑇 of the lead-lag path and the truncation

level 𝑛𝑇 𝑆 of the signature. As shown in Fig. 9, the results improve when a higher

dimension 𝑑𝐿𝐿𝑇 of the lead-lag path is adopted, but the marginal improvement

is less obvious when 𝑑𝐿𝐿𝑇 ≥ 3. For the truncation level 𝑛𝑇 𝑆 , the improvements

are significant from 𝑛𝑇 𝑆 = 1 to 𝑛𝑇 𝑆 = 2, but they are negligible when 𝑛𝑇 𝑆 > 2.

The dashed lines in Fig.9 show the trends of feature dimension under different

parameters. By making a trade-off between model complexity and performance, we

fixed 𝑑𝐿𝐿𝑇 = 3, 𝑛𝑇 𝑆 = 2.

By using the overlapping DPSF instead of PSF, the validation error rates are

30.82 ± 7.00%, 26.07 ± 6.12%, 26.39 ± 5.51%, and 26.07 ± 5.23%, when the

hierarchical level ℎ𝑇 𝑆 is 1, 2, 3, and 4 respectively. Thus, we fixed ℎ𝑇 𝑆 to 3.

6.6 Ablation study

For the ablation study of our features on the JHMDB [31], we used the parameter

setting for each feature based on the foregoing analysis. We retrained the network

using the whole training set (including the validation set) and took the final result

as the average of the three splits. The results are shown in Table 4. We can see

that adding the spatial PSF (Ex. 4) to the baseline (Ex. 1) gives an improvement of

about 20%, and further adding the temporal PSF (Ex. 9) contributes an additional

10%. The spatial context may be alternative between joint pairs and joint triples, for

example Ex. 2 vs. Ex. 3, or Ex. 7 vs. Ex. 8, but they are complementary as shown in

Ex. 4 and Ex. 9.

Applying the invisibility-reset transformation to all the paths before taking the

temporal signatures allow us to remove all the spatial components S-J, S-P-PSF,

and S-TPSF, while obtain the same accuracy as that of Ex. 9.
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Also, we evaluated the method which directly takes all the evolving N landmarks

inR𝑑 as a Nd-dimensional path for signature extraction. Together with S-J, it achieves

55.0% in accuracy. The dimension of this PSF is 𝜑′(𝑁𝑑, 𝑛) = 838, 230 when 𝑛 = 4

and will be impractical when 𝑛 > 4. This shows the cost-effectiveness of using pose

and temporal disintegration.

Table 4 Effect of different signature levels on the performance of S-T-PSF

Ex.# S-J S-P-PSF S-T-PSF T-J-PSF T-S-PSF

(S-P)*

T-S-PSF

(S-T)*

Accuracy

(%)

1 o 48.9

2 o o 68.4

3 o o 68.7

4 o o o 69.2

5 o o 62.0

6 o o o o 73.5

7 o o o o 79.1

8 o o o o 78.3

9 o o o o o o 80.4

∗ S-P (S-T) means the temporal features are only on the base of spatial joint

pairs (joint triples).

6.7 Comparison with the state-of-the-art methods

To achieve our best results, we adopted the best settings of parameters from the

foregoing analysis. For the JHMDB dataset [31], the results were given in the previous

subsections. For the other three datasets, we followed the evaluation criteria in [40].

6.7.1 Comparison over small datasets

For the JHMDB dataset, previous state-of-the-art methods are high-level pose feature

(HLPF) [31] and its modified version (i.e. Novel HLPF [34]), dense trajectory features

[102] encoded by Fisher vectors [103], and the pose-based CNN features (P-CNN)

[79]. As shown in Table 5, our method, which uses only the joint locations, achieve

better performance than the P-CNN which requires additional RGB information.

Further, our method manages the high degree of nonlinearity, and outperforms other

methods using hand-designed features like HLPF. Also, the computation of our

feature extraction is very fast. The average speed using esig [91] on a single thread

of an Intel 2.4GHz Xeon Gold 6240R CPU is 85 fps on the JHMDB dataset.

Moreover, we used the off-the-shelf pose estimation called Alphapose (with Pose-

flow) [104] to get a set of 17 estimated joints from the RGB videos of the sub-JHMDB

dataset, and then trained and tested the network using the estimated poses. By us-

ing only location information, our test accuracy is 68.2%, which outperforms that
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of PCNN [79] (66.8%), PA-AP [105] (61.5%), JointAP [106] (61.2%), or HLPF

[31] (54.1%). As an example of the flexibility of our method on additional clues,

taking the confidence scores from the pose estimation as an additional dimension of

landmarks raises the accuracy rate to 75.7%. However, a gap of accuracy still exists

between using estimated poses and ground truth poses (84.23% by ours).

Table 5 Comparison of methods on JHMDB using ground-truth landmarks

Methods Accuracy (%)

DT-FV [102] 65.9

P-CNN [79] 74.6

HLPF [31] 76.0

Novel HLPF [34] 79.6

Path Signature (Ours) 80.4

For the SBU Interaction dataset, the two human bodies are regarded as one

united articulated system with a total of 30 joints in 3D. As shown in Table 6,

the proposed method using PSF significantly outperforms the other skeleton-based

methods including many RNN-based or LSTM-based ones. Aside from the accuracy,

the interpretable PSF could facilitate further understanding of interactions.

Table 6 Comparison of methods on SBU dataset

Method Accuracy (%)

Yun et al. [41] 80.3
Ji et al. [107] 86.9
CHARM [108] 83.9
HBRNN [24] (reported by [37]) 80.4
Deep LSTM (reported by [37]) 86.0
Co-occurrence LSTM [37] 90.4
STA-LSTM [109] 91.5
ST-LSTM-Trust Gate [40, 25] 93.3
SkeletonNet [110] 93.5
GC-Attention-LSTM [80] 94.1
Path Signature (Ours) 96.8

Table 7 Comparison of methods on MHAD dataset

Method Accuracy (%)

Vantigodi et al. [111] 96.1
Ofli et al. [73] 95.4
Vantigodi et al. [112] 97.6
Kapsouras et al. [113] 98.2
HBRNN [24] 100

ST-LSTM-Trust Gate [40, 25] 100

Path Signature (Ours) 100
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For the Berkeley MHAD dataset, we achieve the same accuracy (100%) as the

state-of-the-art methods shown in Table 7, showing the effectiveness of PSF for

recognizing actions with accurate joint locations.

These results show that the proposed hand-designed feature set with single-layer

linear network can outperform most deep learning methods on small datasets.

6.7.2 Comparison over large-scale datasets

We also conducted experiments on the large-scale NTURGB+D data.

For normalization, we applied the same 3D rotation and scaling as those in [39],

so the body in the first frame faces the camera directly and those in the following

frames are compensated accordingly. Since in this dataset different actions contain

different number of detected actors, we applied a two-stage classification. The first

stage is a binary classifier separating the actions into two types: 1-body or 2-body

actions, then the second stage is the corresponding classifier (1-body or 2-body

classifier) for each type. The supervised label of the binary classification at the first

stage can be found by going through all the training samples and calculating the

average number of actors in each action class. The range of the numbers is [1.02,

1.06] for the first 49 classes which are annotated as 1-body actions, while the range

is [1.87, 2.04] for the remaining 11 classes which are annotated as 2-body actions.

Before feature extraction, we ranked all the detected actors in each clip based on

the magnitudes of their movements. Then, for the 1-body classifier, features were

extracted from the most active actor. For the first-stage binary classifier and the

2-body classifier, the two most active actors were regarded as one evolving object;

this means we ended up having twice the number of joints per frame (i.e., 50 joints

per frame). If a body is missing in the entire clip, the coordinates of this body are set

to 0; if a body is missing in some medial frames, its coordinates are filled in using

cubic spline interpolation [114].

The final results were given by two-stage classification as shown in Table 8. Table

9 shows that our method outperforms many deep learning based methods. The GCN

[30] and its variants [83, 84, 85] achieve the current state-of-the-art accuracy on

NTURGB+D dataset by taking advantage of the human skeleton structure. To utilize

this skeleton structure as a prior knowledge to reduce complexity in our feature set

is worth further studying.

Table 8 Accuracy (%) of the two-stage classification on NTURGB+D dataset

Task The 1st stage
The 2nd stage

Final
1-body 2-body

Cross-subject 99.2 75.7 91.9 78.3
Cross-view 99.3 82.5 94.4 86.1
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Table 9 Comparison of methods on NTURGB+D dataset

Method Deep networks? Cross-subject Cross-view

Dynamic Skeletons [115] X(SVM) 60.2 65.2
HBRNN [24] �(RNN) 59.1 64.0
Part-aware LSTM [39] �(LSTM) 62.9 70.3
ST-LSTM-Trust Gate [40, 25] �(LSTM) 69.2 77.7
STA-LSTM [109] �(LSTM) 73.4 81.2
SkeletonNet [110] �(CNN) 75.9 81.2
Joint Distance Maps [116] �(CNN) 76.2 82.3
GC-Attention-LSTM [80] �(LSTM) 74.4 82.8
Deep STGC [82] �(GCN) 74.8 86.3
ST-GCN [30] �(GCN) 81.5 88.3
Path Signature (Ours) X(Single-layer NN) 78.3 86.1

6.8 Toward understanding of human actions

The interpretable geometric properties of PSF facilitate the understanding of human

actions. By using a linear classifier the importance of each feature to each action

class can be evaluated by the product of the two-layer weight matrices. For each class

of sub-JHMDB, we ranked the joint pairs/triples according to the average over the

weights connecting the features of joint groups and the corresponding class label.

The top-3 joint pairs/triples for spatial and temporal features are shown in Fig. 10.

The spatial ones often emphasize static constraints while the temporal ones highlight

dynamic variations. Notice that many top pairs/triples are physically non-local, which

demonstrates the effectiveness of the pose disintegration method.

Moreover, by using temporal disintegration (h = 3), we can evaluate the impor-

tance of different timescales and time intervals. As shown in Fig. 11, discriminative

motions often appear in various intervals of finer timescales, e.g., the start of “catch”

or “pick”, the middle of “kick ball” or “swing ball”, and the end of “golf” or “jump”.

7 Conclusions

In this paper, we refined the path signature as a robust, nonlinear, and interpretable

feature for landmark-based data. Path disintegrations and transformations are pro-

posed to improve the effectiveness and efficiency of signature features. Based on

these, we designed and built the signature-based spatio-temporal representation of

action sequences. Experimental results show that using our feature set, a linear

shallow fully-connected neural network achieves comparable results to advanced

methods including CNN-based and RNN-based ones, especially on small datasets.

For future work, one could reduce the size of the representation of the body or

feature set based on our analysis and understanding of human actions. It would also

be interesting to integrate our landmark-based representation with other informative

cues (e.g., appearance) to improve the performance of HAR. Moreover, our method
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Fig. 10 Top-3 most important joint pairs/triples for (a) spatial features and (b) temporal features

based on our linear network.

is general enough for other landmark-based objects where the given information in

each landmark can be diverse.
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Fig. 11 Visualization of the

important timescales and time

periods for the actions in sub-

JHMDB dataset. The darker

in color, the more important it

is.
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