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Preface

Mark H A Davis was an eminent mathematician and so much more He founded
new theories and produced trailblazing results in stochastic analysis and stochastic
optimization, and in mathematical finance This volume is dedicated to his contri
butions in the first two areas

Mark was born on April 25, 1945 and studied at Cambridge He then left for
Berkeley and obtained his Ph D under Pravin Varaiya in Electrical Engineering
His thesis was on dynamic programming in non Markovian models, for which he
developed a novel approach now known as optional Doob Meyer decomposition
theorem This result opened up new ways to treat non Markovian settings and cre
ated many new research lines It initiated the martingale theory for stochastic op
timization which became the main approach to study these problems Much later,
these results also influenced considerably the development of the field of mathemat
ical finance

Mark produced pioneering results in many areas in stochastic analysis and
stochastic optimization, beyond the aforementioned martingale theory It is diffi
cult to list all of them, given the significant breadth and depth of his works We note
his ground breaking contributions to the general theory of jump processes and the
development of the novel pathwise non linear filtering theory Mark also developed
the theory of piecewise deterministic processes which, besides their core contribu
tion to stochastics, contributed considerably to the analysis of problems in actuarial
science L.ater on, Mark developed a deterministic approach to stochastic optimiza
tion using appropriate Lagrange multipliers This method later became one of the
main approaches to analyze optimization problems in financial mathematics

Mark authored five books and co authored six more on stochastic analysis, op
timization and finance, and wrote close to two hundred other academic papers He
was Editor in Chief of Stochastics and Stochastics Reports (1978 1995), a found
ing Co Editor of Mathematical Finance (1990 1993), an Associate Editor of the
Annals of Applied Probability (1995 1998), an Associate Editor of Quantitative
Finance (2000 2020), and an Associate Editor of the SIAM Journal of Financial
Mathematics (2009 2020) He was also a highly influential editorial board member
of the book series Springer Finance for 15 years, from 2001 to 2016
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Mark received the Naylor Prize in Applied Mathematics by the .ondon Mathe
matical Society in 2002 He was also elected a Fellow of the Royal Statistical Soci
ety, a Fellow of the Institute of Mathematical Statistics, and an Honorary Fellow of
the Institute of Actuaries

Besides his towering academic stature, Mark was very much adored by our aca
demic community For those of us lucky enough to have known Mark, we will re
member him most for his sharp and witty mind, provoking discussions, kindness
and generosity, contagious laughter, and above all, old fashioned academic nobility

Mark passed away on March 18, 2020, at the age of 74 He had many interests
beside academia He enjoyed playing music and travelling, always accompanied by
his beloved wife Jessica

Tt is very difficult to capture the magnitude of Marks legacy This volume honors
him with eighteen papers by collaborators of his as well as by other academics
whose research was very much influenced by his results The papers cover a wide
array of topics, offering new and survey results in stochastic analysis and stochastic
control We feel very honored to have been given the opportunity to edit this volume
and we are so much grateful to all the authors who contributed their work We
are deeply indebted to Jan Obloj for providing us with the bibliography of Mark
Davis, and to Jessica Smith Davis for providing us with Mark’s photo and the title
page of Mark’s dissertation Finally, we thank Donna Chernyk and the Springer
professionals for helping us to finalize the book

George Yin  Thaleia Zariphopoulou
October 2021

The original version of this book was revised: “The original version of the book was inadvertently
published with incorrect abstracts in the chapters. This has now been amended”. The correction to this
chapter is available at https://doi.org/10.1007/978-3-030-98519-6_19.
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Abstract We extend the work [9] by two of the coauthors, which dealt with a
deterministic control problem for which the Hilbert space could be generic and
investigated a novel form of the ‘lifting’ technique proposed by P. L. Lions. In [9],
we only showed the local existence and uniqueness of solutions to the FBODEs in
the Hilbert space which were associated to the control problems with drift function
consisting of the control only. In this article, we establish the global existence
and uniqueness of the solutions to the FBODEs in Hilbert space corresponding to
control problems with separable drift function which is nonlinear in state and linear
in control. We shall also prove the sufficiency of the Pontryagin Maximum Principle
and derive the corresponding Bellman equation. Finally, by using the ‘lifting’ idea
as in [6, 7], we shall apply the result to solve the linear quadratic mean field type
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1 Introduction

In recent years, Mean Field Game (MFG) and Mean Field Type Control Theory
(MFTCT) are burgeoning. Carmona and Delarue [14] proved the existence of the
general forward-backward systems of equations of McKean-Vlasov type using the
probabilistic approach, and therefore obtained the classical solution to the master
equation arisen from MFG. Their assumptions restricted their application to LQ
models only. Cardaliaguet et al. [12] proved the existence of the classical solution to
the master equation arisen from MFG by PDE techniques and the method of charac-
teristics. To do so, they required the state space to be compact, and the Hamiltonian
to be smooth, globally Lipschitz continuous and to satisfy a certain coercivity condi-
tion. Buckdahn et al. [11] adopted a similar approach to study forward flows, proving
that the semigroup of a standard McKean-Vlasov stochastic differential equation with
smooth coefficients is the classical solution of a particular type of master equation.
A crucial assumption was made therein on the smoothness of the coefficients, which
restricted the scope of applications. Gangbo and Mészaros in [19] constructed global
solutions to the master equation in potential Mean Field Games, where displacement
convexity was used as a substitution for the monotonicity condition. Besides the
notion of classical solutions, Mou and Zhang in [26] gave a notion of weak solution
of the master equation arisen from mean field games, using their results of mollifiers
on the infinite dimensional space. More results can be found in the papers of Cosso
and Pham [16], Pham and Wei [29] and Djete et al. [18], which concern the Bellman
and Master equations of Mean Field Games and Mean Field Type Control Theory.

By Pontryagin Maximum Principle, MFG and MFTCT are deeply connected to mean
field forward backward stochastic differential equations. Pardoux and Tang [27], An-
tonelli [2] and Hu and Yong [21] showed the existence and uniqueness of FBSDEs
under small time intervals by a fixed point argument. For Markovian FBSDEs, to
get rid of the small time issue, Ma et al. [24] employed the Four Step Scheme. They
constructed decoupling functions by the use of the classical solutions of quasi-linear
PDEs, hence non-degeneracy of the diffusion coefficient and the strong regularity
condition on the coefficients were required. Another way to remove time constraints
in Markovian FBSDEs was by Delarue [17]. Local solutions were patched together
by the use of decoupling functions. PDE methods were used to bound the coeffi-
cients of the terminal function relative to the initial data in order for the problem
to be well-posed. It was later extended to the case of non-Markovian FBSDEs by
Zhang in [32]. Moreover, to deal with non-Markovian FBSDEs with arbitrary time
length, there was the pure probabilistic method — method of continuation. It required
monotonicity conditions on the coefficients. For seminal works one may consult
[20, 28, 30, 31]. With the help of decoupling functions as in [17], but using a BSDE
to control the terminal coefficient instead of PDEs, Ma et al. [25] covered most of
the above cases, but in the case of codomain being R. For mean field type FBSDE. A
rather general existence result but with a restrictive assumption (boundedness of the
coeflicients with respect to the state variable) was first done in [13] by Carmona and
Delarue. Taking advantage of the convexity of the underlying Hamiltonian and ap-
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plying the continuation method, Carmona and Delarue extended their results in [14].
Bensoussan et al. [10] exploited the condition in [14] and gave weaker conditions
for which the results in [14] still hold. By the method of continuation, Ahuja et al.
[1] extended the above result to the FBSDEs which allow coefficients to be function-
als of the processes. More details can be found in the monographs [15, 3] and [4, 5, 8].

We establish the global existence and uniqueness of the solutions to the FBODE:s in
Hilbert space corresponding to control problems with separable drift function which
is nonlinear in state and linear in control. The result can be applied to solve linear
quadratic mean field type control problems. We exploit the ‘lifting to Hilbert space’
approach suggested by P. L. Lions in [22, 23], but lift to another Hilbert space instead
of the space of random variables. After lifting, the problems are akin to standard
control problems, but the drawback is that they are in the infinite dimensional space.
By the Pontryagin Maximum Principle, the control problems are reduced to FBODEs
in the Hilbert space. In order to accommodate nonlinear settings, we make use of
the idea of decoupling. By a Banach fixed point argument, we are able to locally
find a decoupling function for the FBODEs. We then derive a priori estimates of the
decoupling function and extend the solution from local to global as in Delarue [17]
by the a priori estimates. Finally we apply our result to solve linear quadratic mean
field type control problems and obtain their corresponding Bellman equations.

The rest of this article is organized as follows. In Section 2, we introduce the
model in the Hilbert space. In Section 3, we express the related FBODE and define
the decoupling function. A priori estimates of the decoupling function are derived in
Section 4. In Section 5, we prove the local existence and uniqueness of the FBODE
by using a Banach fixed point argument on the function space containing the de-
coupling function. In Section 6.1, we construct the global solution by our a priori
estimates. We show the sufficiency of the Maximum Principle in Section 6.2 and
write the corresponding Bellman function in Section 6.3. In Section 7, we apply our
result in the Hilbert space as in [7], to solve the optimal control problem, and show
the global existence to the corresponding Bellman equation.

2 The Model
2.1 Assumptions

Let H be a Hilbert space, with scalar product denoted by (-,-). We consider a
non-linear operator A, x € H +— A(x) € H, such that

A(0) =0. ey

We assume that x — A(x) is C! and that DA(x)(= DyA(x)) € L(H;H), that means
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DyA(x)(:):y € H > Dy A(x)(y) = lirr(1) M

€
and it satisfies:
The operator norm ||[DA(x)|| <. )
By definition, we have the result:
(DA(x)y,2) = (Dx(A(x),2),); 3)

indeed, we can see this by noting that
(1
(DA(x)y,z) = hn(l) (Z(A(x +ey)—Ax)), z)
1
= lim —[(A(x +€y),2) = (A(x),2)]
e—0€

= (Dx(A(x),2),y),

where the last step follows by differentiating the functional (A(:),z) : H — R.
We also assume that DA(x) is differentiable with a second derivative D2A(x) €
L(H; L(H;H)), similar to (3), such that

{(Dx<Dx(A<x), 2.0 w) = (D3 AR (y)w.2), @
D (Dx(A(x),2),y) = (D3 A (1), 2).
We assume the Lipschitz property:
blx1 — x|
[IDA(x1) = DA(x)]| < 1T max(x il 1xa])’ (%)
which implies
2
[ID"A(X)]| < Tl (6)

In the sequel, we shall make restrictions on the size of b.
We next consider x — F(x) and x — Fr(x), functionals on 7, which are C2,
with the properties:

{F(O) =0,D,F(0) =0, o
VIEI? < (D2 F(X)E,€) < MIE;
Fr(0) =0, DyFr(0) =0,
2 2 2 ®)
vrlé? < (D2, Fr(x)&,€) < Mrlé)%,

and v,vy > 0. H is the state space. In addition, there is a control space V, also a
Hilbert space and a linear bounded operator B € L(V;H), an invertible-self adjoint
operator on V, denoted by N. We assume that
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(BN'B'£,6) = mlé, m > 0. )

Remark 1 The assumption (1) and the first line assumptions (7), (8) are of course not
necessary. It is just to simplify the calculations.

2.2 The Problem

We consider the following control problem. The state evolution is governed by the
differential equation in H:

dx
{ I A(x) + Bv(s), (10)

x(t) = x,

in which v(-) is in L>(#,T;V). It is easy to check that the state x(-) is uniquely
defined and belongs to H'(t,T;H). We define the payoff functional:

T 1 T
Je(v(+)) :=f F(x(s))ds+FT(x(T))+§f w(s),Nv(s))ds. (11
t t

This functional is continuous and coercive. If H were R”, it would be classical that
it has a minimum and thus we could write the necessary conditions of optimality.
But the proof does not carry over to general Hilbert spaces. Moreover, since A is not
linear, we do not have the convexity property, which would guarantee the existence
and uniqueness of a minimum, and thus a solution of the necessary conditions of
optimality. We shall then write the necessary conditions of optimality and prove
directly the existence and uniqueness of a solution.

3 Necessary Conditions of Optimality
3.1 The System

It is standard to check the following system of forward-backward equations in H:

d
d—y = A(y)-BN"'B*z(s),t <s <T,
S

d
_d_i = (DA(y(s5)))"z(s) + DF (y(s)), (12)

y(@) =x, 2(T) = DFy (y(T)).

The optimal state is y(-), and z(-) is the adjoint state. The optimal control is then:
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u(s) =-N""B*z(s). (13)

The system (12) expresses the Pontryagin Maximum Principle. The objective is to
study the system of Equations (12).

3.2 Decoupling

We set
z(t) =T(x,1). (14)

It is standard to check that z(s) = T'(y(s),s). So y(s) is the solution of the differential
equation in H:

dy _ -l
{ = = AG) = BN BT(3(5),9), )
() =x,

and I'(x, s) is the solution of the nonlinear partial differential equation:

ﬁs:

{ _6_F D, T(x)A(x)+ (DxA(x))'T(x) - Dxl"()c)BN’1 B*T(x,5) + D F(x),
I'(x,T) = Dy Fr(x).

(16)
If A(x) = Ax, F(x) = %(x, Mx) and Fr(x) = %(x, Mrx), then I'(x,s) = P(s)x, and

P(s) is solution of the Riccati equation:

dP_ * _ —1 p*
{_E = P(s)A+ A"P(s) — P(s)BN"' B*P(s) + M, )

P(T) = Mr.

4 A Priori Estimates
4.1 First Estimate

We state the first result:
Proposition 1 We assume (1), (2), (5), (7), (8), (9) and
b2
T3 <(m-k)(v=k),0 < k <min(m,v), (18)

then we have the a priori estimate:
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M2 2 2
|F(x,t)|£|x|<V—TT+7 *I;M (T—t)). (19)

Proof From the system (12), we obtain:

d
75 0(9),2(8)) = (A(y(s)) —BN~'B"2(5),2(5)) = (DA(y(5)))*2(s) + DF (y(5)), y(5)) -

Integration yields:

T T
(DxFT(y(T)),y(T))+f (BN_IB*Z(S),Z(S))dHf (DxF(y(s)),y(s))ds
t

t

T
= (x,z(1)) +f (A(y(s)) —DA(y(8)y(s),z(s)) ds.
’ (20)
We note that b
|A(x) — DA(x)x| < EIXI; (21)
indeed, A(x) — DA(x)x = fol (DA(6x)— DA(x))xd6, and from the assumption (5),
we get:
Uplx|2(1-0)
1+|x]|

|A(x) - DA(x)x| < f
0

which implies (21). Therefore, from (20), we obtain, using assumptions:

T T b T
(x.2(1)) 2 vrly(T)P +m f l2(s)Pds+v f yPds -3 f () 112(5)Ids.
t t t

Using (18), we can state:

T
(x,2(1) 2 vrly(D)* +k f (y()* +2()1*)ds. (22)

On the other hand, from the second equation (12), we write z(¢t) = z(T) +
[T (DAY()))*2(s) + DF(3(s))) ds. hence

T T
(X-Z(t))=(x,DFT(y(T))+f (DA(y(S))x,z(S))dHf (x, DF (y(s))ds,
t t
T T
(x.z() < Ixllz(D)] < IXI(MTIy(T)I+f VIZ(S)IdS+f ly(n)ldr)
t t

1 T
Sz(vrly(T)|2+k f (Iy(S)|2+z(S)I2)dS)

2 (M2 2 M2
+&(—T+y (T-1)|.

2 vr k
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From this relation and (22), we get:

T M2 2 2
vT|y<T>|2+kf (|y(s)|2+z(s>|2>dss|x|2(V—T+7 +kM (T—r)).
t T

Therefore,
ME: 42+ M2
xllz(0)] < |x|2<—T e )
vr k

and the result follows. We write

M% 2+ M?
ay = — +

(T —-1). (23)
vr

Note that in the system (12), we can write

12()] < asly(s)]. (24)

4.2 Second Estimate

The second estimate concerns the gradient D,I'(x,#). We have the following result:

Proposition 2 We make the assumptions of Proposition 1 and
v—bag > 0, (25)

then we have the a priori estimate:

1D, (el < Aj—f+§<r-t)+ f“‘if—’;‘;z)zd& (26)
Proof We differentiate the system (12) with respect to x. We denote
Y (s) = Dxy(s), Z(s) = Dxz(s). 27
Differentiating (12), we can write, by recalling notation (4):
LY (&= DAY (e~ BN B Z(5)E (8)

d
—$Z(S)§ = (DL A )Y (5)(£),2(s)) + (DA(Y(5))* Z()é + DI F (y(s)Y (5)é,

Y(1)E =& Z(TE =Dy Fr(y(TNY (THE. (29)

d
We compute o (Y (5)¢&,Z(s)¢) and then integrate. We obtain that
s
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(Z0)&,6) = (D2 Fr(Y(TNY (DIEY (TIE) + f L BNBZ(96.Z(5)6)ds
+ f T(DixF(y<s)>y<s)f,y(s)f)ds
+ f L (DAY (EY($)E.(5))

T T
Zvrly(T)§|2+mf |Z(s)§|2ds+f (v —bay)|Y (s)E|2ds.

(30)
Also, from the second line of (28),

T T
[Z ()¢l < Mr|Y(T)H€] +f (M+bas)|y(8).f|d5+7f 1Z(s)élds.  (31)
t t
Combining (30) and (31) as in Proposition 1, we conclude that

M2 2 T 32
1Z(0él < |§|(V—TT + -0+ Mds).

‘ v —bay

Since Z(t)¢ =D, I'(x,1), the result (26) follows immediately. The proof is complete.0n

2
B = +—(T 0+ f WM +bes)” 32)

y— ba5

‘We shall call

Since |
l"(x,t):f D, T'(0x,1)xd0,
0

we also have:
IT(x,0)| < Brlxl, (33)

so in fact,

{|r(x,t)| < min(ay, B)|xl, a4)

[|1DxI (x, )| < B;.
5 Local Time Solution
5.1 Fixed Point Approach

We want to solve (12) by a fixed point approach. Suppose we have a function A(x,?)
with values in H such that:
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{I/l(x,t)l < wlxl,

(35)
[IDxA(x, D[ < prs

where u, and p; are bounded functions on [T — A, T], for some convenient /. These
functions will be chosen conveniently in the sequel, with y; < p,. We then solve

i _ _ —1 p*
{dsy(s)—A(y(S)) BN™ B A(y(s),s), (36)

y() = x.

This differential equation defines uniquely y(s), thanks to the assumptions (35). We
then define

T T
A(x,1) = DxFT(y(T))+f (DA(y(S)))*/l(y(S),S)dHf Dy F(y(s))ds. (37)
t t

We want to show that u; and p; can be chosen such that
A < pelxl, IDxACLDI| < pr, (38)

and that the map A — A has a fixed point. This will be only possible when ¢ remains
close to T, namely 7 — h <t < T, with h small.

5.2 Choice of Functions y; and p,
From (36), we obtain:

< (y+IBNT'B*|lu)ly(s)l,

d
a)’(s)

d
— <
AR
which implies
N
ly(s)] < [x|exp (f (v +1IBN"'B*||ur)d ), (39)
t

and thus from (37) it follows that

T
IACeD)| < Mr|y(T)] +f (M +yps)|y(s)lds.

Using (39), we obtain:
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T
IACeD)| < |x] (MTCXP (f (7+||BN_IB*||/~tT)dT)
t

T s
+f <M+m>exp(f <y+||BN‘1B*||uT>dr)ds).

To obtain the first inequality (38), we must choose the function g, such that

T
M = MTeXP(f (7+||BN]B*||/JT)dT)
t

T s
+f <M+ws>exp(f <y+||BNlB*||uT>dr)ds.
t t

So u; must be solution of the differential equation of Riccati type:

{ %ﬂt =—|IBN"'B*||uj = 2yp; — M,
ur = Mr.
To proceed, we need to assume that

Y’ <M|IBN"'B"|l;

and we define y, bt the formula:

wllBN7'B*||+y
VM||BN-1B*|| -2

arctan

Mr||BN”'B|l+y
VMIIBNTTB[| -y

= arctan

For h > 0, define 0, with

0nI|BN"'B*|| +y
VM[|BN-1B*|[ -2

arctan

(\/M||BN1B*|| -yZ) (T-1).

Mr|IBN~'B*|| +y .
VM|IBN=IB*|| -2

The number & must be small enough to guarantee that

(\/M||BN‘B*||—y2)h.

Mr|IBN"'B'll+y
VMI[BN-TB[| - y?

arctan

(\/MHBN‘IB*H—)/Z)h < g

(40)

(41)

(42)

(43)

(44)

(45)

Formula (43) defines uniquely y; for T—h <t < T. It is decreasing in ¢, with

MT < U <6h.

Therefore, for T —h < ¢t < T, we have defined by (37) a function A(x,¢) which
satisfies the first condition (38), with u, defined by equation (43). We turn now to
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the definition of p;. Define Y (s) = D, y(s), see (36). We have:

d _ _ —1 p*
{gws) = (DA((5)) = BNT'B* D, A(y(5).5)) Y (s), )
Yo =1
We obtain, by techniques already used:
1Y ()] SeXp(fA (7+I|BN_IB*IIPT)dT). (47)

We then differentiate A (x,) in x, see (37). We get:
DyA(x,t) = D Fr(y(T)Y (T) + ftT(chxA(y(S))y(S),/l(y(S), s))ds,
+ IT(DxA(y(S)))*Dxﬂ(y(S),S)J/(S)ds+ ftT D3 F(y(s)Y (s)ds,
and we obtain:
IDxA(x, )] < Mr||Y (T)| +ftT(M+b,us +yps)IY (s)llds.

Since T — h < t < T, we can majorize, using also (47), to obtain:

T
[1DxA(x,0)]] < Mrexp(f (7+|IBN_IB*||ps)dS)
t

T K] (48)
+f (M +bBj, +yps) exp (f (y+ ||BN_IB*||pT)dT) ds.
t t
We are thus led to looking for p; solution of
T
pr = My exp (f (r+ IIBN‘IB*IIps)dS)
! (49)

T K]
+f (M+b0h+7ps)exp(f (y+||BN_]B*|IpT)dT)ds.
t t

This equation is similar to the one defining y,, see (40), with the change of M into
M + bBj,. Hence, by analogy with (43), we can assert that:

pe||BN7IB*|| +y B Mr||BN7'B*||+y
arctan = arctan
V(M +b6,)||BN-1B*|| — 2 V(M +b6,)[|BN-1B*|| -2

+ (\/(M+b9h)||BN—lB*|| -y | (T -1).
(50)
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In order to get a bounded solution for p,, we need that the right hand side of (50) be
smaller than g We need to restrict 2 more than with (45), namely:

Mr|IBN"'B'll+y
VMIBNTB -7

arctan

(\/(M+b9h)||BN‘lB*||—y2)h < g (51)

Then the function p, is well defined on (7 — h,T], by formula (50) and the function
A(x,t) defined by (37), for t € (T — h,T] satisfies (38) if A(x,t) satisfies (35). We
also claim that

P> pir. (52)

Indeed, p; satisfies the Riccati equation:

d
or = My,

d -1 2
—op,=—||BN~'B* -2 — (M + b6y,),
{tm [ 1102 =2y py — (M + b)) -

and comparing (41) and (53), it is standard to show the property (52).

5.3 Contraction Mapping

We define the space of functions (x,t) € H X (T —h,T) — A(x,t) e H X (T -hT),
equipped with the norm:

[A(x,1)]
Al = sup ( ~

(54)
xeH,reT-nT) |

This space is a Banach space, denoted by B;,.. We next consider the convex closed
subset of By,. of functions such that:

[, O] < pel x|, |1 Dx A, 0| < pg, ¥t € (T = h, T, (55)

where p; and p; are defined by (43) and (50), respectively. The subset (55) is denoted
by Cj,. The map A — A, defined by (36) and (37), is defined from Cj, to Cj,. We want
to show that it leads to a contraction.

Let A'(x,1), A>(x,1) in C), and the corresponding functions A!(x,7), A2(x,1),
which also belong to Cy,. Let yl (s), yz(s) be the solutions of (36) corresponding to
AL, 2% We call y(s) = y'(s) — y*(s). We have:

d _
{aw®)=A@Ww%ﬁMﬁ@D—BN‘BWAWf@D—ﬂ%fGDL
y(6) =0,

hence
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d _ —
QIO IBN'B*[]|A" (3" (5)) = 22 (y*(s))I.

Next,
11 (9) = (¥ ()]
<[ GH)) = 'GP+ () = (P ()]
< ps|’y'(s)||+|ul—42||h|x|exp(fts(y+||BN‘IB*||yT>dr).
Therefore,

d _ 1 pe ~
— ¥ <y +IIBN 'B*|1ps)[3(s)]
S
+||BN‘B*|||x||ul—zz||hexp(f (y+||BN‘B*||uT>dr).
t
‘We obtain that
S
|’y‘<s>|exp(— f (y+||BN‘lB*||pT)dT)
t

S T
s||BN—IB*|||x|||Al—AZ||hf exp(—nBN—lB*nf (pe—ue)de)dn
t

t

which implies:
()] < AlIBN~' B[] x| [|12" = ||y exp (fts(w ||BN‘IB*||pT>dr) . (56)
We next have from the definition of the map A(x,?) that:
A'(x,1) = A*(x,1) = DFr (y'(T)) = DFr (y*(T))
+ f ' (DA*(y' ()2 (3" () = DA* (> () A* (Y2 (5))) ds
+ f T(DF(y%s))—DF(y2<s)>)ds.

(57
‘We have:

IDA*(y' ()" (y' (5)) = DA* (5 () A2 (32 (5))]

N
< (beh+7ps>|‘y*<s>|+y|x||u‘—aznhexp(f (y+|IBN"'B*||uz)dr |.
t

So, from (57), we obtain:
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T
IA'(x,1) = A*(x,0)] < M7 |3(T)] +f (M + b0y, +y ps)|y(s)lds
t

T s
+y|x||ml—az||hf exp(f <y+||BN-lB*||uT)dr)ds,
t t

(58)
and from (56):

A (x,) = A2 (x,0)]

T
< |x[1A" = 22|k x [HBN—IB*H(MTexp(f (y+||BN—lB*||pT)dr)
t
T s
+f (M+b9h+yps)(f (y+||BN‘lB*||pT>dr)ds)]
t t

T K]
+ylxl1at = 2l f exp (f (r+ ||BN—IB*||uT)dr) ds,
t t
then from the definition of p; (see (49)), we obtain:
IA'(x,1) = A% (1)

1_ 32 —1 p* T —1 p* (59)
< x[|A° =A% nh { pe[IBN™ B7|| +yexp h(7+||BN B||ur)dt]|.
T—

Similarly to the definition of 6}, (see (44)), we define the quantity o, by the formula:

BN~'B*|| + Mr||BN~'B*|| +
aretan onll [l +y _ arctan all [+

V(M +b6,)|| BN~ B*|| — 2 V(M +b6,)|| BN~ B*[| — 2

+ (\/(M+b0h)||BN—lB*|| —yz) h.

(60)

From (50), we see that My < p; < o,. Therefore from (59),
IA" = A2|ly < 12" = A1l h (o || BN B* || +yexp (h(y + [IBN ' B"|l64))) . (61)

Using the fact that 6, — M7 as h — 0, equation (60) shows that oj, - My as h — 0.
We deduce that:

h(onlBN7'B|| +yexp (h(y +1IBN"'B*||64))) > 0, as h > 0. (62)
We can restrict & such that
h(onllBN7'B*[|+yexp (h(y +1BN"'B*[l64))) < 1, (63)

and thus for % sufficiently small, the map A — A is paradoxical and leads to a
contradiction. We can summarize the results in the following theorem:
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Theorem 1 We assume (42). We choose h small enough to satisfy conditions (45),
(51), (63). For T—h <t <T, there exists one and only one solution of the system
of forward-backward equations (12). We have also one and only one solution of
equation (16) on the same interval.

6 Global Solution

6.1 Statement of Results

We have proven in Theorem 1 the existence and uniqueness of a local solution of the
system (12). We want to state that this solution is global, under the assumptions of
Proposition 2.

Theorem 2 We make the assumptions of Proposition 2 and (42). The local solution
defined in Theorem 1 can be extended. Thus there exists one and only one solution
of the system (12) on any finite interval [0,T], and there exists one and only one
solution of equation (16) on any finite interval [0,T].

Proof Defining by I'(x,7) the fixed point obtained in Theorem 1, it is the unique
solution of the parabolic equation:

or
=5, = DT (DA +(Dx A(x))*T(x) = DyI(x)BN~'B*T'(x, )
+DF(x), T—-h<t<T, (64)
F(X,T) = DXFT(-X)’
with A restricted as stated in Theorem 1. We also have the estimates:
I'(x,1)| < min(ay, x|,
[T (x,1)] (a, B x| 65)
[|1DxT'(x, )| < Br,
with ) ) ,
M M
@=L T2 oy,
VT b2 (66)
ﬁ=_+ (T s f (M +bay)?
y— baY

These estimates follow from the a priori estimates stated in Proposition 1 and 2. They
do not depend on ~. Now we want to extend (64) for t < T — h. To avoid confusion,
we define

Ur_p(x) :=T'(x,T - h). (67)

We set Mr_j, = Bo. We can then state:
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Ur—n(x)| £ My_p|x|,
|Ur—n ()| < Mr—p|x| 68)
[1DxUr—n (0| < Mr—p,
and we consider the parabolic equation:
or * —1 p*
e D, T'(x)A(x) + (DxA(x)) T'(x) = DyI'(x)BN~" B*T'(x, 5)
+D,F(x), t1<T—h, (69)
I'(x,T—-h)=Ur_p(x).
We associate to this equation the system:
dy —1 p=*
o A(y)-BN ' B*z(s),t<s<T—h,
s
dz . 7
~ 25 = (DAG()'2(5) + DF ((s)), .

y(@) =x,z2(T=h) =Ur_p(y(T = h)).

Proceeding like in Theorem 1, we can solve this system on an interval [T —h—1,T — h],
for a sufficiently small / # h. The difference is due to the fact that Mr_j, # Mr. So
in (64), we can replace T — h by T — h —[. This time the estimates on I'(x,7T —h—1)
and D, I'(x,T — h—1) are identical to those of I'(x,T — h) and D, I'(x,T — h), thanks
to the a priori estimates. So the intervals we can extend further will have the same
length. Clearly, this implies that we can extend (64) up to ¢ = 0. So, we obtain the
global existence and uniqueness of equation (16) on [0,7]. The proof is complete.OO

6.2 Optimal Control

In Theorem 2, we have obtained the existence and uniqueness of the solution of the
pair (y(s),z(s)) of the system (12), for any ¢ € [0,7]. We want now to check that the
control u(s) defined by (13) is solution of the control problem (10), (11), and that
the optimal control is unique.

Theorem 3 Under the assumptions of Theorem 2, the control u(-) defined by (13) is
the unique optimal control for the problem (10), (11).

Proof Let v(-) be another control. We shall prove that

J()+v() = J(u(-)), (71)

which will prove the optimality of u(-). We define by y, (-) the state corresponding
to the control u(-) + v(-). It is the solution of

d
%))v(s) = Ay () + B(u(s) +v(s)),

w() =x,

(72)
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and we have:
T 1 T
J(M(')+v('))=f F(yv(S))dS+FT(yv(T))+§f (u(s)+v(s), N(u(s)+v(s)))ds,
t t
and
J@)+v()) = J ()
T
= [ FOus) = FO s+ Fr (T = Friy(r)
t

1 T T
+§f (v(s),Nv(s))ds+f (Nu(s),v(s))ds.

We denote §,,(s) := y,(s) — y(s). It satisfies:

d v = —
{ 25 () = A0 (5)) — Ay (5)) + Bv(s), (73)

Fv(#) =0.
Then,
Jw()+v()—J ()
_ f, (D F (5050 (5))ds

T 1 1
+ f f f 0 (D2 F(y(s)+ 205, ()3 (5). 5 (5)) dsdAde
t 0 0
1 1
+ (D Fr (y(T)), 5 (T)) + fo fo 0 (D2 Fr(y(T) + 205, (T))3, (), 3, (T)) dAd6
1 T T
+§f (v(s),Nv(s))ds—f (z(s), Bv(s))ds.

From the assumptions (7), we can write:
T d
J(u(-)+V(-))—J(u(~))2f (—%Z(S)—DA*(y(S))Z(S),iv(S))dS

t

4 T ~ 2 ~
+§f |Fv()I7ds + (z(T), $,(T))

vr . . 2 1 T
NG f (v(5). Nv(s))ds

t
r d

—f (Z(S),giv(S)—(A(yv(S))—A(y(S))))ds,

which reduces to:
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14 T . 2 VT . 2 1 T
J(M(')+V('))—J(M('))2§f I$v () ds + =153 (T +§f (v(s),Nv(s))ds
T
+f (2(5), A(yv(5)) = A(y(s)) = DA(y(5))Fv(s)) ds.
t

(74)
Note that

blz(s)I[3v ()1  bas

< a2
20+ = 2 e

1(2(5), A(yv(5)) = A(y(s)) = DA(y(5))Jv(s)] <

Finally, we can state that

1T 1T
J(u(')+v(~))—J(u(-))2§f (v—bas)liv(s)lzdﬁVTTI&V(T)IZEf (v(5), Nv(s))ds.

(75)
Thanks to the assumption (25), the right hand side of (75) is positive, which proves
(71) and completes the proof of the result. O

6.3 Bellman Equation

We have proven, under the assumptions of Theorem 2, that the control problem (10),
(11) has a unique solution u(-). Defining the value function

V(x1):= Lr(lf) et V() = Tt (u(-)), (76)

we can state that:

T 1 T
V(x,t)=f F(y(S))dS+FT(y(T))+§f (BN'B'T(y(s),5), T (y(s),5))ds,

(77
with 4
—y(s)=A —~BN'B'T(y(s),5),
{ﬁyu> (3(5)) (¥(s).5) 8
y(®) = x.
We first have:
Proposition 3 We have the following property:
I'(x,t) = D,V (x,t). (79)

Proof Since the minimum of J,,(v(+)) is attained in the unique value u(-), we can
rely on the envelope theorem to claim that:

T
(DxV(x,1),8) = f (DxF(y(8)), X()&)ds + (D Fr(y(T),X(T)&),  (80)
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in which X (s) is the solution of

{dixw = DAAG(DX().
N
X(t)=1.

Recalling the equation (12) for z(s) and performing integration by parts in (80), the
result (D, V(x,1),&) = (I'(x,1),&) is easily obtained. This proves the result (79). O

We can then obtain the Bellman equation for the value function V (x,1).

Theorem 4 We make the assumptions of Theorem 2. The function V(x,t) is the
unique solution of

(9V 1 —1 px* _
{_E_wxv,A(xmi(va,BN B*D,V) = F(x), @)
V(x,T) = Fr(x).

Proof We know that V (x, 1) is Gateaux differentiable in x, with the derivative I'(x, ).
From (12), I'(x,?) is continuous in ¢. From equation (77), we can write:

V(x,t)—V(x,t+E)=f EF(y(s))ds+%f E(BN_lB*l"(y(s),s),I“(y(s),s))ds
t t

+V(y(e),t+€)-V(x,t+e).

(82)
We then have:
V(y(e),t+e)-V(x,t+€)
t+e t+e
:V(x+f A(y(s))ds—f BN_IB*F(y(s),s)ds,t+E)—V(x,t+6)
t t
t+e t+e
= (F(x,t+e),f A(y(s))ds—f BN’IB*F(y(S), s)ds)
t t (83)

1 t+e
+f (l"(x+0f (A(y(s))—BN_IB*F(y(S)))ds,t+E)—F(x,t+e),
0 t
t+e
f (A(y(s))—BN-IB*r(y(s)))ds)de.
t

Using the fact that I'(x,¢) is uniformly Lipschitz in x and continuous in ¢, we obtain
easily from (83) that:

V(y(e),t+€)—-V(x,t+€)
€

— (I'(x,1),A(x) = BN"'B*T'(x,1)).

Then, dividing (82) by € and letting € tend to 0, we obtain the PDE (81), recalling
(79). The initial condition in (81) is trivial. If we take the gradient in x of (81), we
recognize equation (16). Since this equation has a unique solution, the solution of
(81) is also unique (easy checking). This completes the proof. O
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7 Application to Mean Field Type Control Theory
7.1 Wasserstein Space

Denote by P> (R") the Wasserstein space of Borel probability measures m on R”
such that fRn |x|2dm(x) < co, with the metric

Wo (i, v) = \/inf{f |x—yl2dn(x,y) :m € I (y, v)}, (84)

where I1(y, v) is the space of all Borel probability measures on R X R" whose first
and second marginals are u and v respectively.

7.2 Functional Derivatives

Let F be a functional on #,(R"). We recall the idea of the functional derivative here.

Deﬁnitiorclﬂ‘; F is said to have a functional derivative if there exists a continuous

function o P (R™") xR™ — R, such that for some ¢ : P> (R") — [0,00) which is
m

bounded on bounded subsets, we have

‘d—Fon,x) < c(m)(1+1xP) (85)
dm

and

1
F(m')—F(m) =J(; fn 3—Z(m+9(m'—m))(x)d(m’—m)(x)d@. (86)

We require also fRn 3—5’ (m,x)dm(x) =0 as it is unique up to a constant by definition.

Definition 2 F is said2t0 have a second order functional derivative if there exists a
d°F
continuous function ) 1 Pr xR XR"™ — R such that, for some ¢ : P, (R") — [0, o)
m
which is bounded on bounded subsets, we have
2

- <c(m)(1+|x* +]%%) (87)

(m,x, %)

and
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F(m')—F(m)

dF ,
_ fR 2y’ =m)(x) (88)

1 1 2
d*F
+f f O—— (m+ A0(m’ —m))(x, ¥)d(m’ —m)(x)d(m’ —m)(¥)dAde.
o Jo dm?
Again, we require that fR,, ﬁ—j(m, x,X)dm(X) =0, forall x € R", and fRn ‘5—£(m, X, X)
dm(x) =0, for all ¥ € R", as it is unique up to a constant. Note also that

d*F . d*F .
ﬁ(m)(x,x) = W(m)(x,x). (89)

2
We write D % (m)(x) to mean differentiating with respect to x, and D % (m)(x1,x2)

2
and Dzﬁ(m) (x1,x72) to denote partial differentiation with respect to x; and x3,
respectively.

7.3 Mean Field Type Control Problems

We introduce the setting of a mean-field type control problem. Consider real-valued
functions f(x,m) and h(x,m) defined on R" X P, (R"). We define

F(m) := f S (x,m)ydm(x),
Rn
Fr(m) = f h(x,m)dm(x).
Rn
Fixam e Pp(R").Let A, B: R" — R" be matrices, and N : R” — R" be a self-adjoint

invertible matrix. We make the following assumptions on f, i, B, N, A. We assume
that

(Al) Vx eR",
BN~ 'B*x-x > m|x|*>,m > 0. (90)

(A2) f isregular enough such that the following is justifiable. Vy € R",
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9% f
v]yl* <5 (um)y-y < Myl

0
VP < D} gL om)@y -y < My,

2

f _
axam(nmX§)—Q

82
D Déza—nj;(x,m)(fl,fz) =0.

D¢

(A3) his regular enough such that the following is justifiable. Yy € R",

2 _0h 2
vrlyl S@(x,m)y'y < Mrlyl%,
2 2 Oh 2
vyl < Dg o (. m)(©)y -y < Mrlyl,
8%h
Dfm(x,m)(f) =0,
dh
Dy, szw(x,m)(fl,fz) =0.

(A4) For the matrices, we have

|A| < M|BN~'B*|, with | - | the matrix 2-norm.
The set of our feasible control is L2(z, T Lfn(R”;R”)), ie.,
Vo () € L2(6,T; Ly, (R™R™)

if and only if

T
f |Vx,m,z(5)|2dm(x)ds < 00,
t JRrn

To each v. ., (-) € L?(¢,T; L%, (R";R™)) and x € R we associate the state

xx,m,,(s;v):=x+f [Axx,m,,(‘r;v)+Bvx,m,,(‘r)]d‘r.
t

23

oD

92)

93)

(94)

(95)
(96)
o7)

(98)

99)

(100)

Note that x.,,,(-) € L*(t,T; L%, (R";R")). We define the objective functional on

L*(1,T;L3,(R™;R™)) by
T
e (V) :=f F(x. e (55v)em)ds + Fr (X7 (55 v)em)
t

1 T .
"2 f, fR Vit (D NV (T)dm(x)d 7.

(101)
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Thus the value function is

V(m,t) = inf It (V). (102)
veL2(t,T;L2, (R";R"))

7.4 The Hilbert Space H,,, and the Push-Forward Map

We proceed as our previous works [6, 7].

7.4.1 Settings

Fix m € P, (R"), we define H,, := L,zn (R™;R™), the set of all measurable vector field
® such that fR" |®(x)|>dm(x) < co. We equip H,,, with the inner product

(X, V), ::f X(x)-Y(x)dm(x). (103)

Write the corresponding norm as || X |lgy,, = /(X, XDy, -

Definition 3 For m € P,, X € ‘H,,, define X @ m € P, as follow: for all ¢ : R” - R
|¢(x)]

such that x — is bounded, define
1+ |x|?

f(ﬁ(X)d(X@m)(X) :=f¢(X(x))dm(x)- (104)

Remark 2 This actually is the push-forward map as we are working on the determin-
istic case. We write as X ® m to align with our treatment of the stochastic case in

[7].
We recall several useful properties from [7].
Proposition 4 We have the following properties:

1. Let X, Y € H,,, and suppose X oY € H,,. Then (XoY)@m =X ® (Y @ m).

2. If X (x) = x is the identity map, then X ® m = m.

3. Let X € H,,, denote the space Lg((t,T;‘Hm) to be the set of all processes in
L2(t,T;H,y,) that is adapted to o (X). There exists a natural linear isometry
between L%(t,T;?‘(m) and L2(t,T; Hx am)-

Proof Please refer to [7] Section 2 and Section 3. O

7.4.2 Extending the Domain of Functions to #,,

The proofs in this section is standard, we therefore omit unless specified. Readers
may refer to [7] Section 2. Let F : P>(R") — R, we extend F to be a function on H,,
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by X - F(X ®@m), ¥X € H,,,. When the domain is H,,, we can talk about Gateaux
derivative. We actually have the following relation between the Gateaux derivative
on ‘H,, and its functional derivative:

Proposition 5 Let F : Pr(R") > R have a functional derivative %, and x —

g—i(m,x) is continuously differentiable in R". Assume that DZ—Z(m,x) is contin-
uous in both m and x, and

'Dd—F(m)(X) <c(m)(1+|x]) (105)
dm

for some constant c(m) depending only on m. Denote the Gdteaux derivative as
Dx F(X ® m), we have

DxF(X ® m) :Dj—i(X®m)(X(~)). (106)

‘We now look at the second order Gateaux derivative, denoted as D%F (X ® m), note
that D§F (X ® m) is a bounded linear operator from H,,, to H,;,.

Proposition 6 In addition to the assumptions in Proposition 5, let F has a
2

second order functional derivative M(m)()cl,)cz), assume also DZ%(m)(x),

D4 dmz (m)(xl,xz) D4k dmz L (m)(x1,x2) and

D1D2 (m)(xl,xz) exist and are continuous, such that

D2Z—F(m)(x) < d(m), (107)
m

d’F ,
DIDZﬁ(m)(x]JQ) <d'(m), (108)

where d, d’ are constants depending on m only, and |- | is the matrix 2-norm. Then
we have:

DY F(X®m)Y (x) = Dzj—Z(X ®m) (X (x))Y(x)
PLF (109)
+f D1D2 (X®m)(X(x) X(x")Y (x")dm(x").

Besides, we can view F (X @ m) as m — F(X ® m), in this case, we can talk about

differentiation with respect to m, denote it as m The following relation between

OF  dF "
m and o holds.

Proposition 7 Let F : P,(R™) — R" have a functional derivative and fix X € H,,.
We have

a—F(X®m)(x)=d—F(X®m)(X(x)). (110)
om dm
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Now let A : R" — R", we extend it as VX € H,,, X = A(X) € H,y,
AX)(x) = A(X(x)). (111)

It is trivial to see that if A~! exists in R”, then A~'(X)(x) = A~1 (X (x)) is the inverse
of A in H,,. So is the transpose of A, if A is a matrix. Again, we can talk about its
Gateaux derivative.

Proposition 8 Let A to be continuously differentiable. Denote its derivative to be
dA. Assume that there exists k such that |dA(x)| < k for all x € R", where |- | is the
matrix 2-norm. Then for all X,Y € H,,, we have

Dx A(X)Y (x) = dA(X (x))Y (x). (112)

Proof Let X,Y,H € H,,, then

é(A(X +eY) - A(X), H>7{m

1
e fR [AX (&) + €Y (£) - AX(€))] - H(&)dm (&)
1
= f ) fo dA(X (€) +0€Y (£))Y (£) - H(£)dOdm(€)

HLH dA(X(£)Y (&) -H(&)dm(¢) = <dA(X('))Y(-),H>Wm-

Proposition 9 Let A be twice continuously differentiable. Denote its second deriva-
tive to be d*A. Note that d*A(x)(a,b) € R", and d*A(x)(a,b) = d*A(x)(b,a). As-
sume that there exists k(x) such that Ya,b € R, |d*A(x)(a,b)| < k(x), then we
have

d>AX)(Y,W)(x) = d>A(X () (Y (x), W(x)). (113)

Proof Let X,Y,W,H € ‘H,,, then

! (DxA(X +W)Y - DxA(X)Y,H)

€

1
:Efn [dA(X(§)+eW(§))Y(§)—dA(X(g))y(g)] CH(&)dm(€)

Ho,

1
= f ) fo d*A(X (&) +0eW (£))(Y (£), W (£)) - H(£)dOdm(€)

- fR AKX @)W (&) HE)dm(©).
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7.5 Control Problem in the Hilbert Space 7,

Recall the definitions of A, B, N, F, Fr in Section 7.3. Extend the functions as in
Section 7.4.2. We assume (A1), (A2), (A3) and (A4). It is not hard to derive (9), (7)
and (42) from the assumptions. Note that in our case, b = 0.

Now fix X € H,, as our initial data. For given vy, € Lg( (t,T;H,,) (subscript X and
t to address the measurability and starting time), consider the dynamics:

X(s) =x+fs [AX(2) + Bvx: (1) dr. (114)

Denote the process as Xx;(s) = Xx;(s;vx;). Define the cost functional:

T 1 T
Ixt(vxr) i=f F(XXI(S)®m)dS+FT(XXt(T)®m)+Ef Wx: (1), Nvx: (7)), dT,
t t

(115)
and the value function is

V(X,t):= inf Ix:(vxe). (116)

Vit €L (1.7 Hom)

This is in the form of our concerned model in Section 2, with the Hilbert space being
H,,.

While (114) is infinite dimensional, there is a finite dimensional view point of it. For
vx: € L2(t,T;H,y), by Proposition 4, let # € L*(1,T; Hxem) be the representative
of vx;. Consider

x(s) = x+f [Ax(7) + B (7, x) ] dr. (117)
t
Denote the solution to be x(s;x,V(-,x)). Then we have

Xx: (5;vx) (x) = x(8; X (%), (-, X (x))).

We introduce the notation X, (-) with a lowercase letter for x to mean x(-; x, ¥(+, x)),
and v, (s) to mean ¥ (s, -). From above we can conclude that the law of Xx;(s;vx:(-))
is x(s;-,7(+,+)) ® (X ® m). Hence the cost functional (115) can be written as
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Ixe(vxe)

T 1 T

- f F (X (5) @ m)ds + Fr (X () @m) + 5 f (e (), Nvxe (D)0, d
t t
T

=f F(x(s;,v(,)®@(X®m))ds+ Fr(x(T;-,v(-,-)) @ (X ®m))

1 T
+ 5 f (vx(T), NVXZ(T)>‘Hde
t

=:JX®m,t,
(118)
that means J depends on X only through X ® m. Respectively,
V(X,1) = inf Ix:(vxe) = inf Ixem:(vxr) = V(X @m,t).
vxt €LY (t,T:Hm) vx 1 €L (,T:Hpm)
(119)

7.6 Necessary and Sufficient Condition for Optimality

Assume (Al), (A2), (A3) and (A4), we conclude from Theorem 2 that there exists
unique optimal control Px;(s) = —N~'B*Zx,(s), where Zx;(s) together with Yy, (s)
are the unique solution of the system

Yxi(s) =X + f S [A¥x (1) - BNT'B* Zy, (7)]dx., (120)
t
T
Zx:(s) = f [(AYx:(7))" Zx: (7) + Dx F (Y, (1) @ m) | + Dx Fr (Y (T) @ m).
(121)

Again, because Lg((t,T;Wm) is isometric to L?(f,T;Hxem), there exists Yei (),
th(s) such that Yx; = YflLf:X and Zx; = Z‘gtlgzx, (Ygt, Z‘\::t) solving

Ye(s) = £+ f ' [AYei(7) - BN7' B Zg, ()] d, (122)
t

r dF
Zgi(s) = f [(AYgz(T))*Zgz (m)+ D%(Y»z(‘l’) ® (X ®@m)) (Y (7)) (123)

dF
nj(Y.t(T) ® (X ®@m))(Ye,(T)).

D_
P

As (Yg1, Zg) depends on m through X ® m, we write (Yz, x em,1> Z¢, X om,)- We can
write the value function as
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T
V(X,1) = f F(Yx:(s) @ m)ds + Fr (Yx,(T) ® m)
t

1 T
+3 f (N B* Zxo (), B Zxe (1)), dT
t

T (124)
=f F(Y. xom:(s)®(X®m))ds+ Fr(Y. xem:(T)® (X ®m))
t

1 T — * *
w5 [ [ N Zexona (0B Zexons (DX 8y )dn
t JRrn
=V(X®m,t).
In particular, if we choose X to be the identity function, i.e., X (x) = x, recall that
X ® m = m, there exists (Y m,r» Zx,m,+) solving

Yemi(s) = x + f [AYymi (1) = BNT' B Zy s (1) ] d1, (125)
t

T dF
Zymi(s) = f [(AYx,m,t(T))*Zx,m,t(T)+Dd_m(Y~,m,t(T)®m)(Yx,m,t(T)) (126)

Dy (1)@ (X @ m)) (Yoms (T),
dm

which is the system of optimality condition for our mean field type control problem
in Section 7.3. For the value function, we have

T
V(m,t) = f F (Yot () @m)ds + Fr (Y (T)®m) (127)
t

1

T
+§f N’]B*Zx,m,,(‘r)-B*Zx,m,,(‘r)dm(x)d‘r.
t Jre

7.7 Properties of the Value Function

We give the functional derivative of the value function V, and the relation between
the solution of the FBSDE and V. As the proofs are standard, we omit here and
readers may refer to Section 4 of [7].

Proposition 10 Assume (Al), (A2), (A3), (A4). We have the following properties for
the value function:

1. By Proposition 3, we have
DxV(X®@m,t) = Zx(t). (128)

2. We have
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dv T ar
%(m,t)(xh ft %(Y,m(s)®m)(Yx,m,s(s))ds

DB s (1) ® ) (Ve (T) (129)
dm

+
1 T
+ Ef N7'B* Zy i (1) - B* Zy i (T)dT.
t
3. We have
d
Dd—V(m,t)(X) = Zy,m,: (1), (130)
m
d
DXV(X®m,t):Dd—V(X®m,t)(X) (131)
m
4. Also, the feedback nature of Z in'Y, i.e., for any x € R", ¥s € [t,T], we have

d
Zx,m,t(s) = D%V(Y-,m,t®m; s)(Yx,m,t(s)), (132)

and for any X € H,,, Vs € [1,T],

Zx:(s) = DxV(Yx:(s) ®m,s). (133)

7.8 Bellman Equation

Assume (Al), (A2), (A3), (A4). By Theorem 4, we deduce that for any 7 > O,
V(X ® m,t) is the unique solution to the following Bellman equation:

v
_E(}l( @m.1)—(DxV (X @m.1), AX>wm
+§<DXV(X ®@m,1), BN"'B*DxV(X ®@m,1))

VIX@m)=Fr(X®m).

_ (134)
. =F(X@m),

As before, let X be the identity function, together with Proposition 10, we conclude
that for any T > 0, V(m,t) solves the following PDE on the space of probability
measures:

_6_V(m,t)—f Dd—v(m,t)(x).Axdm(x)
ot R dm
+1f Dd_v(m,t)(x).BN—IB*Dd_V(mJ)(X)dm(x):F(m), (135)
2 Jgn dm dm
V(m,T) = FT(m)
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Risk-Sensitive Markov Decision Problems under
Model Uncertainty: Finite Time Horizon Case

Tomasz R. Bielecki, Tao Chen, and Igor Cialenco

Abstract In this paper we study a class of risk-sensitive Markovian control prob-
lems in discrete time subject to model uncertainty. We consider a risk-sensitive dis-
counted cost criterion with finite time horizon. The used methodology is the one of
adaptive robust control combined with machine learning.

1 Introduction

The main goal of this work is to study finite time horizon risk-sensitive Marko-
vian control problems subject to model uncertainty in a discrete time setup, and to
develop a methodology to solve such problems efficiently. The proposed approach
hinges on the following main building concepts: incorporating model uncertainty
through the adaptive robust paradigm introduced in [BCC"19] and developing ef-
ficient numerical solutions for the obtained Bellman equations by adopting the ma-
chine learning techniques proposed in [CL19].

There exists a significant body of work on incorporating model uncertainty (or
model misspecification) in stochastic control problems, and among some of the
well-known and prominent methods we would mention the robust control approach
[GS89, HSTWO06, HS08], adaptive control [KV15, CG91], and Bayesian adaptive
control [KV15]. A comprehensive literature review on this subject is beyond the
scope of this paper, and we refer the reader to [BCC"19] and references therein.
In [BCC™19] the authors proposed a novel adaptive robust methodology that solves
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time-consistent Markovian control problems in discrete time subject to model un-
certainty - the approach that we take in this study too. The core of this methodology
was to combine a recursive learning mechanism about the unknown model with
the underlying Markovian dynamics, and to demonstrate that the so called adaptive
robust Bellman equations produce an optimal adaptive robust control strategy.

In contrast to [BCC™19], where the considered optimization criterion was of the
terminal reward type, in the present work, we also allow intermediate rewards and
we use the discounted risk sensitive criterion. Accordingly, we derive a new set of
adaptive robust Bellman equations, similar to those used in [BCC'19].

Risk sensitive criterion has been broadly used both in the control oriented lit-
erature, as well as in the game oriented literature. We refer to, e.g., [BP03, DL14,
BR17], and the references therein for insight into risk sensitive control and risk
sensitive games both in discrete time and in continuous time.

The paper is organized as follows. In Section 2 we formulate the finite time hori-
zon risk-sensitive Markovian control problem subject to model uncertainty that is
studied here. Section 3 is devoted to the formulation and to study of the robust adap-
tive control problem that is relevant for the problem formulated in Section 2. This
section presents the main theoretical developments of the present work. In Section 4
we formulate an illustrative example of our theoretical results that is rooted in the
classical linear-quadratic-exponential control problem (see e.g. [HS95]). Next, us-
ing machine learning methods, in Section 5 we provide numerical solutions of the
example presented in Section 4.

Finally, we want to mention that the important case of an infinite time horizon
risk-sensitive Markovian control problem in discrete time subject to model uncer-
tainty will be studies in a follow-up work.

2 Risk-sensitive Markovian discounted control problems with
model uncertainty

In this section we state the underlying discounted risk-sensitive stochastic control
problems. Let (£2,.%) be a measurable space, T € N be a finite time horizon, and
let us denote by 7 :={0,1,2,...,T} and ' :={0,1,2,....,T —1}. We let ©® C
R? be a non-empty compact set, which will play the role of the parameter space
throughout. We consider a random process Z = {Z;, t = 1,2...} on (Q,.%) taking
values in R™, and we denote by F = (.%;, t =0,2...) its natural filtration, with .7 =
{0,Q}. We postulate that this process is observed by the controller, but the true law
of Z is unknown to the controller and assumed to be generated by a probability
measure belonging to a (known) parameterized family of probability distributions
on (2,.7), say P(©) = {Py,0 € O}. As usually, Ep will denote the expectation
under a probability measure P on (2,.%), and, for simplicity, we will write Eg
instead of Ep,. We denote by Py« the measure generating the true law of Z, and
thus 6* € O is the unknown true parameter. The sets ® and P(®) are known to
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the observer. Clearly, the model uncertainty may occur if ® # {6*}, which we will
assume to hold throughout.

We let A C R* be a finite set,! and S : R” x A x R" — RY be a measurable
mapping. An admissible control process ¢ is an F-adapted process, taking values in
A, and we will denote by .7 the set of all admissible control processes.

We consider an underlying discrete time controlled dynamical system with the
state process X taking values in R” and control process ¢ taking values in A. Specif-
ically, we let

X1 =SX, 01,Zi11), t€ T, Xo=x9€R" (1)

At each time r = 0,...,T — 1, the running reward r,(X;, ¢,) is delivered, where,
for every a € A, the function r/(-,a) : R" — R is bounded and continuous. Sim-
ilarly, at the terminal time ¢t = T the terminal reward ry(Xr) is delivered, where
rr : R" — R, is a bounded and continuous function.

Let 8 € (0,1) be a discount factor, and let v # 0 be the risk sensitivity factor. The
underlying discounted, risk-sensitive control problem is:

sup lln (Ee*eY(Z,T;ol ﬁtrt(Xt7(Pt)+BTrT<XT))) )
oca ¥

subject to (1). Clearly, since 6* is not known to the controller, the above problem
can not be solved as it is stated. The main goal of this paper is formulate and solve
the adaptive robust control problem corresponding to (2).

Remark 1 (i) The risk-sensitive criterion in (2) is in fact an example of application
of the entropic risk measure, say pg« y, which is defined as

1
po-y(§) = ;lnEe*eﬁ,

where & is a random variable on (£2,.%, Py+) that admits finite moments of all or-
ders.
(i) It can be verified that

Por /(&) =Eo:(§) + TVAR: (£) + O(1),

Thus, in case when ¥ < 0 the term YVARg-(&) can be interpreted as the risk-
penalizing term. On the contrary, when 7y > 0, the term %VARQ* (&) can be viewed
as the risk-favoring term.

(iii) In the rest of the paper we focus on the case ¥ > 0. The case ¥ < 0 can be treated
in an analogous way.

" A will represent the set of control values, and we assume it is finite for simplicity, in order to
avoid technical issues regarding the existence of measurable selectors.
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3 The adaptive robust risk sensitive discounted control problem

We follow here the developments presented in [BCC™19]. The key difference is that
in this work we deal with running and terminal costs.

In what follows, we will be making use of a recursive construction of confidence
regions for the unknown parameter 6* in our model. We refer to [BCC17] for a
general study of recursive constructions of (approximate) confidence regions for
time homogeneous Markov chains. Section 4 provides details of a specific such
recursive construction corresponding to the example presented in that section. Here,
we just postulate that the recursive algorithm for building confidence regions uses
a O-valued and observed process, say C = (G, t € Np), satisfying the following
abstract dynamics

Cir1 =R(t,C,Zi11), teNy, Co=co€0, (3)

where R : Ny x RY x R™ — @ is a deterministic measurable function. Note that,
given our assumptions about process Z, the process C is F-adapted. This is one of
the key features of our model. Usually C; is taken to be a consistent estimator of 8*.

Now, we fix a confidence level o € (0,1), and for each time 7 € Ny, we assume
that an (1 — or)-confidence region, say @; C R4, for 6*, can be represented as

0, =1(1,G;), “)

where, for each ¢ € Ny, 7(¢,-) : RY — 29 is a deterministic set valued function,
where, as usual, 2€ denotes the set of all subsets of @. Note that in view of 3)
the construction of confidence regions given in (4) is indeed recursive. In our con-
struction of confidence regions, the mapping 7(z,-) will be a measurable set valued
function, with compact values. It needs to be noted that we will only need to com-
pute O, until time T — 1. In addition, we assume that for any ¢ € .7, the mapping
7(t,-) is upper hemi-continuous (u.h.c.). That is, for any ¢ € ©, and any open set
E such that 7(¢,¢) C E C 0, there exists a neighbourhood D of ¢ such that for all
c €D, 1(t,c') CE (cf. [Bor85, Definition 11.3]).

Remark 2 The important property of the recursive confidence regions constructed as
indicated above is that, in many models, lim,_,.. ®; = {6*}, where the convergence
is understood Py« almost surely, and the limit is in the Hausdorff metric. This is not
always the case though in general. In [BCC17] is shown that the convergence holds
in probability, for the model setup studied there.

The sequence O, 1 € ' represents learning about 6* based on the observation
of the history (Yo,Y;...,Y;), t € 7', where ¥, = (X;,C;), t € 7, is the augmented
state process taking values in the augmented state space

EY:RnX@.

We denote by &y the collection of Borel measurable sets in Ey.
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In view of the above, if the control process ¢ is employed then the process Y has
the following dynamics

)/tJrl:G(taYla(pl‘aZtJrl)a tey/a
where the mapping G : Ny x Ey x A x R™ — Ey is defined as
G(1,y,a,2) = (S(x,a,2),R(t,c,2)), Q)

with y = (x,c) € Ey.
We define the corresponding histories

H = Yy,....Y,), t€J’, 6)
so that
H eH,=Ey xEy x...xEy. 7)
t+1 times

Clearly, for any admissible control process ¢, the random variable H; is %;-
measurable. We denote by

ht = (yanla"'7yl‘) = ()C(),C(),X],C],...,X[,Ct) (8)

a realization of H,. Note that hy = yo = (x0,¢0)-
A control process @ = (¢, t € F") is called history dependent control process if
(with a slight abuse of notation)

o = ¢ (Hy),

where (on the right hand side) ¢, : H; — A, is a measurable mapping. Given our
above setup, any history dependent control process is F—adapted, and thus, it is
admissible. For any admissible control process ¢ and for any ¢ € .7/, we denote
by @' = (@, k=t,...,T — 1) the ‘t-tail’ of ¢. Accordingly, we denote by &' the
collection of ‘¢-tails’ of ¢. In particular, ° = ¢ and 7 = .o7. The superscript
notation applied to processes should not be confused with power function applied
such as f'.

Let y; : H; — O be a Borel measurable mapping such that y; (4;) € 7(¢,¢;), and
let us denote by W = (y;, t € J') the sequence of such mappings, and by y' the ¢-
tails of the sequence W, in analogy to @’. The set of all sequences V, and respectively
v’ , will be denoted by ¥ and ¥, respectively.

Strategies ¢ and y are called Markovian strategies or policies if (with some
abuse of notation)

o =0), vi=w),

where (on the right hand side) ¢, : Ey — A, and is a (Borel) measurable mapping,
and y; : Ey — O is a (Borel) measurable mapping satisfying y;(x,¢) € 1(¢,¢).

In order to simplify all the following argument we limit ourselves to Markovian
policies. In case of Markovian dynamics settings, such as ours, this comes without
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loss of generality, as there typically exist optimal Markovian strategies, if optimal
strategies exist at all. Accordingly, .« and ¥ are now sets of Markov strategies.

Next, for each (¢,y,a,0) € ' x Ey x A x ©, we define a probability measure on
&y, given by

O(B|t,y,a,0) =Pg(Z 1 € {z: G(t,y,a,2) € B}) =Pq (G(t,y,a,Z11) €B), (9)

for any B € &y We assume that for every t € .7 and every a € A, we have that
O(dy' | t,y,a,0) is a Borel measurable stochastic kernel with respect to (y, 8). This
assumption will be strengthened later on.

Using Ionescu-Tulcea theorem (cf. [BR11, Appendix B]), forevery¢t =0,...,7T —
! t
1, every r-tail @' € /' and every state y, € Ey, we define the family ,@;f ’;IP =
pr v € ¥} of probability measures on the concatenated canonical space
Vet p y P

X, |Ey, with
! '
Qf;¥ By x -+ x Br)

T
= / / H Q(d}’u|M*17)’:471,%71(}’:471),llfufl()’ufl))- (10)

By By u=t+1

The discounted, risk-sensitive, adaptive robust control problem corresponding2
to (2) is:
sup inf EQEYZ,T:oﬁ’rz(Xz,(Px(K))’ (1)
pOear® ge gl "

where, for simplicity of writing, here and everywhere below, with slight abuse of
notations, we set rr (x,a) = rr(x). In next section we will show that a solution to this
problem can be given in terms of the discounted adaptive robust Bellman equations
associated to it.

3.1 Adaptive robust Bellman equation

Towards this end we aim our attention at the following adaptive robust Bellman
equations

Wr(y) =e™® 0 ye Ry,
Wi(y) =max_inf [ Wi (y)e® ™ 90(dy |1,y,a,0), (12)
acA fet(t,c) JEy

yeEy, t=T-1,...,0,

where we recall that y = (x,c).

2 Since 7y > 0, we omit the factor 1/7.
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Remark 3 Clearly, in (12), the exponent e¥P'r1(x.a) can be factored out, and W, can be
written as

w,<y>max(eyﬁ”f<*-r“>~ inf vv,+1<y’>Q<dy'|r,y,a,e>>.
acA oct(t,c) JEy

Nevertheless, in what follows, we will keep similar factors inside of the integrals,
mostly for the convenience of writing as well as to match the visual appearance of
classical Bellman equations.

We will study the solvability of this system. We start with Lemma 1 below, where,
under some additional technical assumptions, we show that the optimal selectors in
(12) exist; namely, for any r € 7', and any y = (x,c) € Ey, there exists a measurable
mapping ¢; : Ey — A, such that

Wi(y)= inf [ Wi ()P 0D 0(dy [ 1,y, 97 (), 0).
oct(r,c) JEy

In order to proceed, for the sake of simplicity, we will assume that under measure
Py, for eacht € .7, the random variable Z; has a density with respect to the Lebesgue
measure, say fz(z;0), z € R™. In this case we have

[ W 09000y [1.3.0.0) = [ We (Glo.pa.) fr(z:0) s

where G(¢,y,a,z) is given in (5).
Additionally, we take the standing assumptions:

(i) for any a and z, the function S(-,a,z) is continuous;
(ii) for each z, the function fz(z;-) is continuous;
(iii) for eacht € .7, the function R(z,-,-) is continuous.

Then, the following result holds true.

Lemma 1 The functions W;, t = T T — .,0, are lower semi-continuous (Ls.c.),
and the optimal selectors ¢, t =T — 1, .. ,0, realizing maxima in (12) exist.

Proof Since ry is continuous and bounded, so is the function Wr. Since G(T —
1,-,a,z) is continuous, then, Wy (G(T — 1,-,a,z)) is continuous. Consequently, re-
calling again that y = (x,c), for each a, the function

wr_1(y,a,0) /WT —l,y,a,z))eYﬁﬁl’T—l(x,a)fz(z;g)dz

_ BT (xa) / 1B rr(Sa2) £ (7 0 dz
R

is continuous in (y, 6).
Next, we will apply [BS78, Proposition 7.33] by taking (in the notations of
[BS78])
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X=EyxA=R'"XOxA, x=(ya),

Y=0, y=0,
D= |J {(pa}xt(T-1.0),
(y,a)EEy XA

f(xvy) = WT—l(y7aa 9)

Note that in view of the prior assumptions, Y is metrizable and compact. Clearly
X is metrizable. From the above, f is continuous, and thus lower semi-continuous.
Since (T — 1, -) is compact-valued and u.h.c. on Ey X A, then according to [Bor85,
Proposition 11.9], the set-valued function (7 — 1,-) is closed, which implies that
its graph D is closed [Bor85, Definition 11.5]. Also note that the cross section Dy =
D(yq) ={0 €0 : (y,a,0) € D} is given by D(, (T — 1) = 7(T — 1,¢). Hence, by
[BS78, Proposition 7.33], the function

WTfl(yaa): inf (WT*](yaaae))a (yva) € Ey XA,
0ct(T—1,c)
is 1.s.c. Consequently, the function wy_; (y,a) = —wr_1(y,a) is u.s.c. (upper semi-

continuous). Thus, by [BS78, Proposition 7.34], the function
—Wr_i(y) = —maxwr_;(y,a) = minwr_; (y,a)
acA acA

is u.s.c., so that Wy_;(y) is 1.s.c. Moreover, since A is finite, there exists an optimal
selector @7, thatis Wr_i(y) =wr—i1(y,@7_,;(¥)).

Proceeding to the next step, note that Wy_1 (G(T —2,y,a, z))eYﬁH’Tz () s 1.s.c.
and positive, hence bounded from below. Therefore, according to [BS78, Proposi-
tion 7.31], the function

WT—Z(y7a7 6) = _/RWT—I (G(T - 27yaa7Z))eyBTier_Z(La)fZ(Z; 6) dZ

is Ls.c.. The rest of the proof follows in the analogous way. |

Next, we will prove an auxiliary result needed to justify the mathematical oper-
ations conducted in the proof of the main result — Theorem 1. Define the functions
Uy and U} as follows: for @' € &' and y € Ey,

Ui(¢',y) — MBe()  nf EQe?’ZL,Hﬁkrk(X/mQDk(Yk))7 te 7, (13)

Qe
U(y)= sup U(¢',y), teT, (14)
o et
Up(y) = et ), (15)

We now have the following result.
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Lemma 2 Foranyt € &', and for any @' € o', the function U, (@', -) is lower semi-
ananlytic (Ls.a.) on Ey. Moreover, there exists a sequence of universally measurable
Sfunctions y, k=t,...,T — 1 such that

U(g',y) ="' (x’(P’(y))EQ(pa.,,n* oV Tt B (X o (V) (16)

Vit

Proof According to (9), and using the definition of ,@;” ;"lpr, we have that

Ui(p = lnf/ / oVEiB ke G, 0 k)
vieV' JEy Ey

O(dyr|T — Lyr—1,0r—1(yr—1), wr—1(yr—1)) (A7)
Q(dyl+l |t7y7 (pl(y)7llll(y))

For a given policy ¢ € o7, define the following functions on Ey
Vi (y) = e,

Viy)= inf [ PBreOy 60y |y, @i(y),0), 1€ T
oct(t,c) JEy

We will prove recursively that the functions V; are l.s.a. in y, and that
Vi(y)=U(9',y), t=0,....,T—1. (18)

Clearly, Vr is L.s.a. in y.

Next, we will prove that Vr_;(y) is l.s.a.. By our assumptions, the stochastic
kernel Q(-|T —1,-,-,-) is Borel measurable on Ey given Ey X A x 0, in the sense of
[BS78, Definition 7.2]. Then, the integral [z, V7 (y')Q(dy'|T —1,y,a,0) is Ls.a. on
Ey X A x O according to [BS78, Proposition 7.48]. Now, we set (in the notations of
[BS78])

X=Ey xA, x=(ya)

Y=0, y=0,

D= U {y,a} x (T —1,c),
(y,a)€Ey XA

f(x,y) /VT Q(d|T —1,y,a,0).

Note that in view of our assumptions, X and Y are Borel spaces. The set D is closed
(see the proof of Lemma 1) and thus analytic. Moreover, Dy = 7(T — 1,¢). Hence,
by [BS78, Proposition 7.47], for each a € A the function

inf Ve (y)O(dy'|T —1,v,a,0
st [ Vi) eIT ~1v.a.6)
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is Ls.a. in y. Thus, it is L.s.a. in (y,a). Moreover, in view of [BS78, Proposition 7.50],
for any € > 0, there exists an analytically measurable function £ _, (y,a) such that

inf Vr(y)O(dy'|T —1,y,a,6) :/Vr(y’)Q(dy’lT— Ly,a,yi_(y,a))
0et(T—1,c) JEy F
Y

+E.

Therefore, for any fixed (y,a), we obtain a sequence {1//;/_" ,(»,a),n € N} such that

lim [ Vr(y) QYT —1,y,a,v,"" (v,a))

n—e g,

= inf Vr(y)) Q(dy'|T — 1,y,a,8).
oeel o) J, 70N QST = 1,3,0,6)

Due to the assumption that 7(7 — 1,¢) is compact, there exists a convergent subse-
quence {l//l/f { (v,a),k € N} such that its limit y;._, (y,a) is universally measurable

and satisfies

/ VT(y/)Q(dy/\T—l,y,a,lll;i_l(y,a)): inf VT(y/)Q(dy/|T_1’y7aa9)
JEy QET(Tfl,C) Ey

Clearly, the function VB Irr-1va) g 1 5., in (y,a). Thus, since @r_;(y) is a Borel
measurable function, using part (3) in [BS78, Lemma 7.30] we conclude that both
e 11 60r10)) and infoee(r_1 o) [, Vr (V) QYT = 1,3, @71(v), 0) are Ls.a.
in y. Since both these functions are non-negative then, by part (4) in [BS78, Lemma
7.30], we conclude that V7 _ is Ls.a. in y. The proof that V; is 1.s.a. in y and y;* exists
fort=0,...,T —2, follows analogously. We also obtain that

/E Vt(y/)Q(dy/|t_lay7avllft*—l(yva)):eeri(?fl e V() Q(dy'|t —1,y,a,6),
Y —1,c Y
(19)

foranyt=1,...,T —1.
It remains to verify (18). Fort =T — 1, by (17), we have

Ur_1(e" 1y) = 9€T%¥f1c)/E BT o1 0Dy (3
1y Y

Q(dy,|T7 17y7 (prl(y)ae)
=Vra(y).
Therefore, Ur_1 (@7 ~1,-) is Ls.a.. Assume that for t = 1,....T — 1, U,(¢',y) =

V;(y), and it is Ls.a.. Then, for any y, | € Ey, with the notation y'~! = (y,_1,y'),
we get
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Ur—1(9" " yi-1)
= inf / / oV Zhoty BR (o @i (300)) +vB T rr ()
(Wi_1,w)e¥ 1 JEy Ey
HQ(dYka_laykfla(Pkfl(ykfl)akal(kal))

k=t

> inf / eYB[_l"r—l(Xt—l~¢t—l(Yt—l>)%(yt)
(Wi—1,y")ew' 1 JEy
Ody |t — 1,yi—1, 01 (Vi—1)s Wim1(yi—1))

~ inf /eyﬁHrH<xH,<oH(yH»Vt(yt)
0ct(t—1,c) JEy

O(dy|t =1,y 1,01 (yi—1), Wi 1(yi-1))
=Vic1(Vi—1)-

Next, fix € > 0, and let y"* denote an e-optimal selectors sequence starting at time

t, namely

/ / T B 1 0) H O(dyelk — 1,ye1, @1 k—1), W5, 0k-1))
Ey Ey k=t+1

SUI((Ptvyt)+8'

Consequently, for any y;_ € Ey,

Ut—l(‘PtilJ’t—l) inf / / oV Eier1 B o k)
(Wi_1,w!)e¥' 1 JEy Ey

T
[Tolk =1,y 1,0 1(ve—1), Wa1 (1))
k=t

inf / / e}'):k o1 BEr (e, 0 (k)
1//, i€t(t—1,0)JEy  JEy

H Q(dyklk — 1,61, @1 (k—1) W5 k1))

k=t+1
O(dylt — 1,y 1,01 (V1) Wim1(yi—1))
< inf U (@', ) Q(dye|t — L,yr—1, @—1 (yr—1), Vi1 (yr—1)) + €
(ptflef(t_lﬂc) Ey
= inf Vi(y)O(dye|t = L,y 1, @1 (vi—1)s Vi1 (vi—1)) + €

¢1€7(1—1,¢) JEy

=Vi_1(yi—1)+e.

Since € is arbitrary, (18) is justified. In particular, U;(¢',-) is Ls.a. for any t € 7.

Finally, in view of (19), the equality (16) follows immediately. This concludes the

proof. |
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Now we are in the position to prove the main result in this paper.

Theorem 1 Fort =0,...,T, we have that
U'=w,. (20)
Moreover, the policy ¢* derived in Lemma 1 is adaptive robust-optimal, that is
U(y) =U(¢"")y), t=0,....,T—1. (21)

Proof We proceed similarly as in the proof of [Iye05, Theorem 2.1], and via back-
ward inductionint =T7,T —1,...,1,0.

Fort =T, clearly, Uy (y) = Wr(y) = ") for all y € Ey. Fort =T — 1 we
have, for y € Ey,

U,;f7] (y) = sup inf / eyﬁTier—l(xv‘PT—l@))WT (y/)
oT - l=pp_jca/T-1 0ct(T—1,c) JEy

Q(dy/ | T— 1:)’T—17(PT—1()’), 9)

—max inf [y (/) 0(ay | T - 1ya,0
" 0celf o o TR e )

=Wr_1(y).

From the above, using Lemma 1, we obtain that Uy _ is Ls.c. and bounded.
Fort =T -2,...,1,0, assume that U, is Ls.c. and bounded. Recalling the no-
tation @' = (¢, ¢'*1), we thus have, y € Ey,

U,*(y)z( SER ) eeig(f) i B a 0Ny, (9 Y) 0(dy | 1,3, ¢1(y), 6)
0@t )ea ) JEy

<  sup inf BNy (V) O(dy | 1,3, @1 (), 6)
(W(pwl)e%teer(c,,t) Ey

. t "
:I}Ei(eel?(zf ) JE e’ rt(x"a)Utﬂ(y/)Q(dy |t,y:,a,0)
) JEy

- r;lea/i(eei?(zfc) E emtr’@’a)wnrl(y’) Q(d}/ ‘ t,y,a,0)
} Y

=W (y).

Now, fix € > 0, and let ¢'*!¢ denote an e-optimal control strategy starting at time
t+1, that is
Ut+1<(pt+l’8ay) zUtﬁ-l(y)_gv yEEy.

Then, for y € Ey, we have
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Gro)=sup a6 ) 0@ 1, 010),6)
o0t e ©)JEy

> sup inf P oDy, (91 ) O(dY | 1,y, ¢1(),6)
(@1, 1) ort O€T(t,) JEy

: re (x, *
Z g U 000 v )
) Y

=max inf va+1(yl)Q(dy, |t7y7a76)78
acA fer(t,c) JEy

=Wi(y) -

Since € was arbitrary, the proof of (20) is done. In particular, we have that for any
t € 7, the function U;(+) is L.s.c. as well as bounded.

It remains to justify the validity of equality (21). We will proceed again by (back-
ward) induction in ¢. For t = T — 1, using (20), we have that

Uf1(0) = Wr 1 (y) = e rmateoia )

. Trp (¥ *
inf eBrrl )Q(dy’ |T—1,9,07_(),0)

oct(t,c) JEy
— VBT (0 () inf (EQeYﬁTVT(XT))
Qeg? !
=Ur (" ",y).

Moreover, by Lemma 2, we get that

Ui (3) = Ur 1 (@71 5) = B_yr1. g e 1oy 0187,
v,T—1 :

For t =T —2, using again (20), Lemma 1, and Lemma 2, we have
Ui ,(y) =Wr_a(y) = eYBT_ZVsz(x«,(P?,z(Y))

X A Wr_1(Y) Q(dY' | T —2,y,07 »,(»), W5 (3,07 2(¥)))
Y

— BT P x5 0)

X s Ur—1(@" ) 0(dY | T =25, 07 _,(3), Wi (v, 952 (»)))
Y

— BT a7 5 (9)

« / B ror gy e 007 0+ 1B rr ()
B \ QY Y

¥ T—1

O(dy' | T—2,5,07 »(y), W72 (307 2(y)))
—E s BT 2 o (e o)+ VBT o ()05 )BT (X))

v, T—2

<‘I/T72’*
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Hence, we have that U;_,(y) is attained at @T~2* and therefore Ui _,@y) =

Ur_2(@T=2*,y). The rest of the proof of (21) proceeds in an analogous way. The
proof is complete. g

4 Exponential Discounted Tamed Quadratic Criterion Example

In this section, we consider a linear quadratic control problem under model uncer-
tainty as a numerical demonstration of the adaptive robust method. To this end, we
consider the 2-dimensional controlled process

Xir1 =B X, + By + 2444,

where B; and B; are two 2 X 2 matrices and Z; 1 is a 2-dimensional normal random
variable with mean O and convariance matrix

2 2 2 . . ,

where 6,7, 6", and 6, "~ are unknown. Given observations Zj, ..., Z,;, we consider
=~ =2
. . - 62 o

an unbiased estimator, say X, = <A217’ 124

), of the covariance matrix X*, given
Oi2s O3

as

2[ == m ZZZZI 5

which can be updated recursively as

o t(t+ DI +12.7]
T (t41)2

With slight abuse of notations, we denote by X, X*, and f, the column vectors

ET = (61276122a622)
T — (G;«,276;ﬁ2,2762*,2)
v T ~2 =2 ~2
X = (Gl,thIZ,thZ,t)'

The corresponding parameter set is defined as
0= {57 =(Z,5p.5) €R*: 0< 5, 5 <T, h <55},

where X is some fixed positive constant. Note that the set @ is a compact subset of
R3.
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Putting the above together and considering the augmented state process ¥; =
(X1,%),t € 7, and some finite control set A C R?, we get that the function S defined
in (1) is given by

S(x,a,z) =Bix+Bya+z, x,z€ R?, a € A,

and the function R(z,¢,z) showing in (3) satisfies that

t+1)(t+2) <C; 2) +(t+1)zz
(r+2)? ’

_ c1 C
R(I,C,Z):(C‘I,C27C3)T7 <_1 _3> N

€3 2

where z € R, 1 € 7', ¢ = (c1,¢2,¢3). Then, function G defined in (5) is specified
accordingly. R

It is well-known that /7 + 1 (X, — £*) converges weakly to 0-mean normal dsitri-
bution with covariance matrix

*, *,4
201 2(71 0'12 2622 )
* *
My = |20/} o} 622 +0j3 20750y
20} 20505 20,

We replace every entry in My with the corresponding estimator at time 7 €_ T’ "and
denote by M;(Z,) the resulting matrix. With probability one, the matrlx M, (2,) is
positive-definite. Therefore, we get the confidence region for o, 2, 612 , and 62

t(t,c) = {2 €O (1+1)(E—0) M ()(Z—0) < K‘},

where « is the 1 — o quantile of y? distribution with 3 degrees of freedom for some
confidence level 0 < o < 1.
We further take functions r7(x) = min{b;, max{b,,x" Kix}} and

r:(x,a) = min{b;,max{bs,x Kjx+a' Kra}},

t€ 7', wherex,ac R2, b, >0, by < 0, and K| and K> are two fixed 2-by-2 matrices
with negative trace.

For this example, all conditions of the adaptive robust framework of Section 2
are easy to verify, except for the u.h.c. property of set-valued function (z,-), which
we establish in the following lemma.

Lemma 3 For any t € J', the set valued function t(t,-) is upper hemi-continuous.

Proof Fix any 1t € ' and ¢y € ©. According to our earlier discussion, the matrix
M;(co) is positive-definite. Hence, its inverse admits the Cholesky decomposition
M; " (co) = Li(co)L/ (co). Consider the change of coordinate system via the linear
transformation .Zc = L, (cp)c, and we name it system-.Z. Let E C © be open and
such that 7(f,¢p) C E. Note that £ 7(z,¢0) is a closed ball centered at .Z ¢y in the
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system-.Z. Also, the mapping . is continuous and one-to-one, hence .Z’E is an
open setand £ 1(t,co) C -ZE. Then, we have that there exists an open ball B, (% co)
in the system-.Z centered at .Zco with radius r such that £ 1(t,co) C B,(ZLco) C
ZE.

Any ellipsoid centered at ¢’ in the original coordinate system has representation
(c—c)TF(c—¢') =1 which can be written as (L'c¢— L/ ¢)L-'F(LT)"" (LT ¢ —
LTc") = 1. Hence, it is still an ellipsoid in the .#-system after transformation. To
this end, we define on © a function h(c) := ||.Lc — Lco|| + max{ri(c),i = 1,2,3},
where || - || is the Euclidean norm in the system-.#, and r;(c), i = 1,2,3, are the
lengths of the three semi axes of the ellipsoid £ (¢, c). Itis clear that r;(¢), i = 1,2,3
are continuous functions.

Next, it is straightforward to check that f is a non-constant continuous function.
Therefore, we consider the set D := {c € © : h(c) < r} and see that it is an open set
in ® and non-empty as ¢y € D. Moreover, for any ¢ € D, we get that the ellipsoid
ZL1(t,c) C B,(Zcp). Hence, t(t,¢) C E, and we conclude that 7(¢,-) iswh.c.. O

Thus, according to Theorem 1, the dynamic risk sensitive optimization problem
under model uncertainty can be reduced to the Bellman equations given in (12):

Wi (y) = "), (22)

W,(y) =sup inf [ Wii1(G(t,y,a,2))eP D) £, (2:0)dz,  (23)
acA 0€1(t,c) JR?

y=(x,c1,02,c3) EEy, t=T—1,...,0,

where f7(-;0) is the density function for two dimensional normal random variable
with mean 0 and covariance parameter 6. In the next section, using (22)-(23), we
will compute numerically W; by a machine learning based method. Note that the
dimension of the state space Ey is five in the present case, for which the traditional
grid-based numerical method becomes extremely inefficient. Hence, we employ the
new approach introduced in [CL19] to overcome the challenges met in our high
dimensional robust stochastic control problem.

5 Machine Learning Algorithm and Numerical Results

In this section, we describe our machine learning based method and present the nu-
merical results for our example. Similarly to [CL19], we discretize the state space
the relevant state space in the spirit of the regression Monte Carlo method and adap-
tive design by creating a random (non-gridded) mesh for the process ¥ = (X,C).
Note that the component X depends on the control process, hence at each time ¢ we
randomly select from the set A a value of ¢, and we randomly generate a value of
Z;+ 1, so to simulate the value of X; ;. Next, for each ¢, we construct the convex hull
of simulated ¥; and uniformly generate in-sample points from the convex hull to
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obtain a random mesh of ¥;. Then, we solve the equations (22)—(23), and compute
the optimal trading strategies at all mesh points.

The key idea of our machine learning based method is to utilize a non-parametric
value function approximation strategy called Gaussian process surrogate. For the
purpose of solving the Bellman equations (22)—(23), we build GP regression model
for the value function W, (+) so that we can evaluate

[ Wt (G030, 5 (2 0)d.

We also construct GP regression model for the optimal control ¢*. It permits us
to apply the optimal strategy to out-of-sample paths without actual optimization,
which allows for a significant reduction of the computational cost.

__ As the GP surrogate for the value function W; we consider a regression model
W;(y) such that for any y', ..., yV € Ey, with y' # y/ for i # j, the random vari-
ables W;(y'), ..., W, () are jointly normally distributed. Then,  given training data
(O, W;(Y")),i=1, ..., N, for any y € Ey, the predicted value W;(y), providing an
estimate (approximation) of W;(y) is given by

W) = (k") k™) K+ €07 (W61, . Wi6M)

where € is a tuning parameter, I is the N x N identity matrix and the matrix K is
defined as K; j = k(y',y/), i, j=1, ..., N. The function k is the kernel function for
the GP model, and in this work we choose the kernel as the Matern-5/2. Fitting the
GP surrogate W, means to estimate the hyperparameters inside k through the training
data (y*,W,(y%)),i=1, ..., N for which we take € = 107>. The GP surrogates for
¢ is obtained in an analogous way.

Given the mesh points {y!, i=1, ..., N;, t € 7'}, the overall algorithm proceeds
as follows:
Part A: Time backward recursion fort =7 —1,...,0.

, , e 2e _
1. Assume that Wiy1 (v7,1), and @' (v71.1) = (9.5 0741): 0151 041))s i= 1, Ny,
are  numerically  approximated as W 1(0,,), @Tl (».,) and

Effl (i 41)»i=1,...,N;, respectively. Also suppose that the corresponding GP

surrogates W, 1, 5:‘] ,and @2:1 are fitted through training data (y!, |, W41 (y')),
o e ST o i
(y;H,(th'rl(ny)), and (yjH,(ptH(y;H)), = 1,...,N;, respectively.
2. Fortimet, any a € A, 6 € 7(¢,c) and each y!, i =1, ..., N,, use one-step Monte
Carlo simulation to estimate the integral

Wi (yvav 6) = /]RZ VVf+1(G(tvyvavZ))eyat(rz<X)a)>fZ(Z; G)dZ

For that, if Z' |, ..., ZM, is a sample of Z| drawn from the normal distri-
bution corresponding to parameter 6, where M > 0 is a positive integer, then

estimate the above integral as
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i ya! (re(x,a))
y7a 6 Zvvt+1 t y7a7Zt+l))e .

3. For eachyf, i=1, ..., NV, and any a € A, compute

wi(y;,a) = eéﬁfc)w’(y““ ,8).
4. Compute o '
Wi(y) = max; Or,a),

and obtain a maximizer @; (y!) = @ (), 8 (v)), i=1,...,N,

5. Fit a GP regression model for V;(-) using the results from Step 4 above. Fit GP
models for (p,l’*( -) and 0’ () as well; these are needed for obtaining values of
the optimal strategies for out-of-sample paths in Part B of the algorithm.

6. Goto 1: Start the next recursion for r — 1.

Part B: Forward simulation to evaluate the performance of the GP surrogates (p,l ()
and (ptz*( ), t=0,...,T — 1, over the out-of-sample paths.

1. Draw K > 0 samples of i.i.d. Zf’i, ... ,Z;’i, i=1,...,K, from the normal distri-
bution corresponding to the assumed true parameter 6*.

2. All paths will start from the 1n1t1a1 state yo. The state along each path i is updated
according to G(t,y;, ¢ (), Z,"! l) where ¢ = (¢, @7"") is the GP surrogate
fitted in Part A. Also, compute the running reward r, (x!, @ ().

3. Obtain the terminal reward rr (xiT), generated by @* along the path correspond-

ing to the sample of Z;"', ..., Z7",i=1, ..., K, and compute
1 T-1p1 T
W& = _1n Zey Yo B rt(xr o 0y ))JFB rr (%] )) (24)
Y

as an estimate of the performance of the optimal adaptive robust risk sensitive
strategy ¢@*.

For comparison, we also analyze the optimial risk sensitive strategies of the adap-
tive and strong robust control methods. In (23), if we take 7(¢,¢) = {c} for any ¢,
then we obtain the adaptive risk sensitive strategy. On the other hand, by taking
7(t,c) = O for any ¢ and ¢, we get the strong robust strategy. We will compute
Wad and W*' the risk sensitive criteria of adaptive and strong robust, respectively, in
analogy to (24).

Next, we apply the machine learning algorithm described above by solving (22)—
(23) for a specific set of parameters. In particular, we take: 7 = 10 with one period
of time corresponding to one-tenth of a year; the discount factor being equal to 0.3
or equivalently 8 = 0.3; the initial state XOT = (2,2); the confidence level oc = 0.1; in
Part A of our algorithm the number of one-step Monte Carlo simulations is M = 100;
the number of forward simluations in Part B is taken K = 2000; the control set A is
approximated by the compact set [—1, 1]2; the relevant matrices are
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0.5 —0.1 0.7 —0.2 —200 100
Bi=58; = (0.1 0.5 ) k= (0.2 0.7 ) K= ( 100 200)'

The assumed true covariance matrix for Z;, t € .7, as well as initital guess are

o 0.009 0.006 Fo_ 0.00625 0.004
~10.0060.016)" 07 { 0.004 0.02025)°

respectively. The parameter set is chosen as © = t(0,c9), where
cg = (0.00625,0.004,0.02025). For all three control approaches, we compute W',
W2 and W, respectively, for the risk sensitive parameters y = 0.2 and y = 1.5.

Finally, we report on the computed values of the optimality criterion correspond-
ing to three different methods: adaptive robust (AR), adaptive (AD) and strong ro-
bust (SR).

war Wad WSt
y=0.2]-319.81 -323.19 -329.53
Y= 1.5|-427.76 -427.97 -442.97

Table 1 Risk sensitive criteria for AR, AD, and SR.
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Optimal Control of Piecewise Deterministic
Markov Processes

O.L.V. Costa and F. Dufour

Abstract This chapter studies the infinite-horizon continuous-time optimal control
problem of piecewise deterministic Markov processes (PDMPs) with the control
acting continuously on the jump intensity A and on the transition measure Q of the
process. Two optimality criteria are considered, the discounted cost case and the
long run average cost case. We provide conditions for the existence of a solution to
an integro-differential optimality equality, the so called Hamilton-Jacobi-Bellman
(HJIB) equation, for the discounted cost case, and a solution to an HJB inequality for
the long run average cost case, as well as conditions for the existence of a deterministic
stationary optimal policy. From the results for the discounted cost case and under
some continuity and compactness hypothesis on the parameters and non-explosive
assumptions for the process, we derive the conditions for the long run average cost
case by employing the so-called vanishing discount approach.

1 Introduction

Piecewise Deterministic Markov Processes (PDMPs) were introduced by M.H.A.
Davis in the seminal paper [9] as a general family of nondiffusion stochastic models,
suitable to formulate an enormous variety of applications in operations research,
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engineering systems and management science. The general theory of the PDMPs,
including a full characterization of the extended generator as well as its applications
in several stochastic control problems, were elegantly and comprehensively presented
in the book [11]. PDMPs are characterized by three local parameters: the flow ¢, the
jump rate A, and the transition measure Q. Roughly speaking, the motion of a PDMP
starting at the initial state xo follows a deterministic flow ¢(xo,#) until the first jump
time 77, which occurs either spontaneously in a Poisson-like fashion with rate A or
when the flow ¢(xo,¢) hits the boundary of the state space. In either case the post-
jump location of the process is selected by the transition measure Q(.|¢(x, 7)) and
the motion restarts from this new point afresh. As presented in [11], a suitable choice
of the state space and the local characteristics ¢, 4, and Q can cover a great deal of
problems in operations research, engineering systems and management science. It is
worth pointing out that the presence of the boundary is crucial for the modeling of
some optimization problems as, for instance, in queueing and inventory systems or
maintenance-replacement models (see, for instance, the capacity expansion problem
in [9], item (21.13), in which the boundary represents that a project is completed,
and the jump in this case represents that investment is channelled immediately into
the next project).

Broadly speaking there are two types of control for PDMPs, as pointed out by
Davis in [11, page 134]: continuous control, in which the control variable acts at all
times on the process through the characteristics (¢, A, Q), and impulse control, used
to describe control actions that intervene in the process by moving it to a new point of
the state space at some specific times. The focus of this chapter will be on the former
case, but considering that the control acts only on (4, Q). Two performance criteria
will be considered along this chapter: the so-called infinite horizon discounted cost
case and the long run average cost case. Other criteria that can be found in the
literature for the PDMPs include, for instance, the risk-sensitive control problem, as
analyzed in [20] and [22].

It is worth pointing out that the main difficulty in considering the control acting
also on the flow ¢ relies on the fact that in this situation the time which the flow takes
to hit the boundary as well as the first order differential operator associated to the
flow ¢ would depend on the control. For the discounted cost criterion this problem
was nicely studied in [10] by rewriting the integral cost as a sum of integrals between
two consecutive jump times of the PDMP, which yields to the one step cost function
for a discrete-time Markov decision model. However this decomposition for the long
run average cost is not possible. When compared with the so-called continuous-time
Markov decision processes (see, for instance, [18, 16, 17, 19, 26, 33, 34]), it should
be highlighted that the PDMPs are characterized by a drift motion between jumps,
and forced jumps whenever the process hits the boundary, so that the available results
for the continuous-time Markov decision processes cannot be applied to the PDMPs
case.

Two kinds of approach can be pointed out for dealing with the discounted and
long run average control problems of PDMPs. The first one would be to characterize
the value function as a solution to the so called Hamilton-Jacobi-Bellman (HJB)
equation associated with an imbedded discrete-stage Markov decision model, with
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the stages defined by the jump times 7, of the process. As a sample of works along
this direction we can refer to [2, 3, 5, 8, 10, 11, 15, 30, 31] and the references
therein. The key idea behind this approach is to find, at each stage, a control function
that solves an imbedded deterministic optimal control problem. Usually the control
strategy is chosen among the set of piecewise open loop policies, that is, stochastic
kernels or measurable functions that depend only on the last jump time and post
jump location. The second approach for these problems, which we will call the
infinitesimal approach, is to characterize the optimal value function as the viscosity
solution of the corresponding integro-differential HIB equation. As a sample of
works using this kind of approach we can mention [7, 11, 12, 13, 14, 32] and the
references therein.

This chapter adopts the infinitesimal approach to study the discounted and long
run average control problems of PDMPs. The results presented in this chapter were
mainly drawn from [7] and [6]. The goal is to provide conditions for the existence of
a solution to integro-differential HIB equality and inequality, and for the existence
of a deterministic stationary optimal policy, associated to the discounted and long
run average control problems. These conditions are essentially related to continuity
and compactness assumptions on the parameters of the problem, as well as some
non-explosive conditions for the controlled process. In order to derive the results for
the long run average control problem we apply the so-called vanishing discounted
approach by adapting and combining arguments used in the context of continuous-
time Markov decision processes (see [33]), and the results obtained for the infinite-
horizon discounted optimal control problem.

The chapter is organized as follows. In sections 2 and 3 we present the nota-
tion, some definitions, the parameters defining the model, the construction of the
controlled process, the definition of the admissible strategies, and the problem for-
mulation. In section 4 we give the main assumptions and some auxiliary results. In
sections 5 and 6 we present the main results related to the discounted and long run
average control problems (see Theorems 2, 3 and 4) that provide sufficient condi-
tions for the existence of a solution to a HIB equality (for the discounted case) and
inequality (for the long run average case) and for the existence of a deterministic
stationary optimal policy. Some proofs of the auxiliary results are presented in the
Appendix.

2 Notation and definition

In this section we present the notation and some definitions that will be used through-
out the chapter as well as the definition of the generalized inferior limit and its
properties. The generalized limit will be used for the results related to the vanishing
discounted approach to be considered in section 6.

We will denote by N the set of natural numbers including 0, N* = N — {0}, R
the set of real numbers, R, the set of non-negative real numbers, R} = R, — {0},
R= RU{+o0}. By measure we will always refer to a countably additive, R,-valued
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set function. For X a Borel space (i.e. a Borel-measurable subset of a complete and
separable metric space) we denote by B(X) its associated Borel o-algebra, and by
M(X) (P(X) respectively) the set of measures (probability measures) defined on
(X,B(X)), endowed with the weak topology. We represent by #(X|Y) the set of
stochastic kernels on X given Y where Y denotes a Borel space. For any set A4, /4
denotes the indicator function of the set 4, and for any point x € X, §, denotes the
Dirac measure defined by 6,(I') = Ir(x) for any I' € B(X).

The space of Borel-measurable (bounded, lower semicontinuous respectively)
real-valued functions defined on the Borel space X will be denoted by M(X) (B(X),
L(X) respectively) and we set Ly (X) =L(X) NB(X). Moreover, the space of Borel-
measurable, lower semicontinuous, R-valued functions defined on the Borel space
X will be denoted by E(X ). For all the previous space of functions the subscript .
will indicate the case of non-negative functions. The infimum over an empty set is
understood to be equal to +o0, and ™ = 0.

As in [29], the definition of the generalized inferior limit is as follows:

Definition 1 Let X be a Borel space and let {w,, }, be a family of functions in M(X).
The generalized inferior limit of the sequence {w, }, denoted by lim%__ w,, is defined
as
lim® . _w, (x) =supsup|( inf inf  w 1
limf,_,wn(x) = supsup(inf = inf _win(»)) (M
where d(.,.) is the metric in X. For notational convenience, li_mﬁ_mwn will be
denoted by w...

The following properties from the generalized inferior limit will be used in section
6 for the vanishing discounted approach.

Proposition 1 Let {w, } be a sequence of nonnegative functions in M(X) and con-
sider an arbitrary x € X. In this case, w.(x) as defined in (1) satisfies the following
properties:

(i) For any sequence {x,} such that x,, — x, it follows that lim wy,(x,) > w.(x), and
n—oo
there exists a sequence {x,} such that x, — x and lim w, (x,) = w.(x).

(ii) wy € Ly (X).
(iii) [Generalized Fatou’s Lemma] Suppose that {u,} is a sequence of probability
measures in P(X) and that {1, } converges weakly to a u € P(X). Then

n—oo

im [ ()i (d) > f W (X)p(d). @
S

n—ooJS§

Proof: For the proof of (i) see Lemma 4.1 in [4]. For (ii) see Lemma 3.1 in [25] and
for (iii) see Lemma 3.2 in [25]. ]
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3 Problem formulation for the controlled PDMP

The goal of this section is to introduce the parameters defining the model, the
construction of the controlled process, the definition of the admissible strategies,
and the problem formulation. Since it follows closely sections 2 and 3 in [7] some
details will be skipped.

3.1 Parameters of the model

We will consider the control model depending on the following elements:

The state space X, which we assume to be an open subset of R? (d € N*) with

boundary represented by 0X.
The flow ¢(x,7) : R xR — R, associated with a given Lipschitz continuous

vector field in R, that is, ¢(x,0) = x and ¢(x, 7+ 5) = ¢(¢(x, 5),¢) for all x € R?
and (1,5) € R%.
The so called active boundary defined as E = {x € X : x = ¢(y,t) for some y €
X and 7 € R} }. With some abuse of notation, we set X as X U ZE, and for x € X,
we define

t*(x) =inf{t eR; : ¢(x,1) € E}.

The flow ¢ outside the space X can be defined arbitrarily since it plays no role for
the problem.

The action space A, assumed to be a Borel space, and the set of feasible actions in
state x € X, given by A(x), which is a nonempty measurable subset of A. Define
the set K = K' UKS$ with

K ={(x.a) e XXA:ae€A(x)} € B(XXA),

K ={(x,a) € ExA:aecA(x)} € B(ExA).

It is assumed that K& (respectively, K') contains the graph of a measurable

function from X (respectively, Z) to A.
The controlled jumps intensity 4 which is a R;-valued measurable function

defined on K.
The stochastic kernel Q on X given K satisfying Q(X\ {x}|x,a) = 1 for any

(x,a) € K. It describes the state of the process after any jump. In other words,
if a jump governed by the intensity A occurs in the current state x € X and with
action a € A(x), then O(-|x, a) describes the distribution of the state immediately
after the jump. If z € &, that is, the current state is at the boundary then an action
b € A(z) is applied and the state of the process changes instantly according to the
stochastic kernel Q.

It should be noticed that in the framework of continuous-time MDPs, the signed
kernel on X given K, defined by



58 O.L.V. Costa and F. Dufour

q(dylx,a) = A(x,a)[Q(dylx,a) - 6.(dy)] 3)

is the (controlled) infinitesimal generator of the jump process. For V' € M(X) we set,

0V (r.a)= [ YMO@Ixa). (ra) €K )
X
A0V (x,a) = A(x,a)QV(x,a), (x,a) e K,
provided that the integral in (4) exists. From (3) we have that

qV(x,a) = A(x,a)[QV (x,a) - V(x)], (x,a) eK'. 5)

We conclude this sub-section with the following definition that will be used in
the sequel.

Definition 2 The set of functions g € M(X) which are absolutely continuous with
respect to the flow ¢ on [0,7°(x)[ (that is, the function g(¢(x,-)) is absolutely
continuous on [0,#*(x)]NR;) and such that lim;_;+(x) g(¢(x,?)) exists whenever
t*(x) < oo will be denoted by A(X). In this case the domain of definition of the
mapping g can be extended to X by setting g(z) = lim;—;+(x) g(¢(x,t)) where z =
o(x,t*(x))) € E. Lemma 2.2 in [8] shows that, for g € A(X), there exists a real-valued
measurable function X'g defined on X satisfying

§(d(x1)) = g(x) + fm X(0x.)ds ©)

for any ¢ € [0,2"(x)[. Notice that for g € A(X) the function Xg satisfying (6) is
not necessarily unique. The case of bounded functions in A(X) will be denoted, as
before, by Ay (X).

3.2 Construction of the controlled process &;

The canonical space Q is defined by Q = |, 2, U (X x (R} x X)) where Q,, =
X X (RE X X)" X ({foo} x {x*})® and x* is an isolated artificial point corresponding
to the case when no jumps occur in the future, endowed with its Borel o-algebra
denoted by 7. In that case, the process stays forever in x*°, and so ¢*(x*) = +c0. Set
X = XU {x*} and X = XU {x*}. We also extend the definition of ¢ on X, ><I§+
as ¢(x,t) =x* for any ¢ € R, and also é(x,t*(x)) = x* whenever ¢*(x) = co for
xeX.
We set w € Q as
w = (JC(), 91,3&?1,92,)&?2, .. .),

where x( € X represents the initial state of the controlled point process &, and for
n € N*, the components 6,, > 0 and x,, correspond to the time interval between two
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consecutive jumps and the value of the process ¢ immediately after the jump. For
the case 6, < oo and 6,1 = oo, the trajectory of the controlled point process has
only n jumps, and we put 8,, = co and x,, = x* (artificial point) for all m > n+ 1.
Between jumps, the state of the process & moves according to the flow ¢. The path
up to n € N is denoted by 4,, = (x¢,61,x1,62,x2,...0,,x,), and the collection of all
such paths is denoted by H,,. We denote by H,, = (X0, 01, X1,...,0,,X,) the n-term
random history process taking values in H,, for n € N.

For n € N, set the mappings X, : Q — X, by X, (w) = x,, and, for n > 1, the
mappings 0, : Q — Ri by O, (w) = 0,; Opg(w) = 0. The sequence (7y,)nen+ of
R:-valued mappings is defined on Q by 7, (w) = 2.1, ©;(w) = 2.7, 6; and Too (w) =
lim;, o T, (w). The random measure u associated with (0, X, ),en is a measure
defined on R} x X by

w(w;dt,dx) = Z {1,y (@) <00} (T, (). X () (1, dX).

nx1

The dependence on w will be suppressed for notational convenience and it will be
written u(dt, dx) instead of u(w;dt,dx).Fort e R, define 7; = o{Hp} Vv o {u(]0, s] X
B): s <t,B € B(X)}. The controlled process {{;}, g, is defined as:

(Xt =T,) if T, <t <Tpyr forn eN;
&rw)= {x“’, if Tow < 1,

and it is easy to see that (&;);cgr, could be equivalently described by the sequence
(O, Xy))nen. As in [11], we set

p*(dt) = ]{ftf EE}lu(dts X)

which counts the number of jumps from the boundary of the controlled process &;
(see [11], sub-section 26).

3.3 Admissible strategies

Associated to the state x* we consider a special action a*™ and we set Ao, = AU{a*};
A (x®) ={a*} and A (x) = A(x) for x € X. We also extend the definition of A
and Q at the point (x*°,a*) by defining 1(x*,a*) = 0 and Q({x*}|x*,a*) = 1. An
admissible control strategy is a sequence # = (7, ¥, )nen such that, for any n € N,

* 7, € P(Ac|H, X RY) and satisfies 7, (A(¢(xp, 1)) | hn,t) = 1
for hy, = (x0,...,00,xn) € Hy,, and ¢ €]0, % (x,)][.

* ¥n € P(Ax|H,) and satisfies v, (A(P(xp, *(xn))) ) = 1
for h, = (x0,...,0n,x,) € H,, and t*(x,,) < oco.

We will denote by U the set of admissible control strategies, and for u =
(70, Yn)nen € U we denote by 7 and y the random processes with values in P (As)
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correspondingly as

n(dalt)= )" Iig, <<, mn(dalHyt = T,)
neN

and
y(dalty= )" Iig,<i<t,.. Yn(dalHy),
neN

for ¢t € R%. The processes 7 and y are {¥;};cr, -predictable random processes with
values in £ (A). The following class of admissible strategies will be considered
along this chapter. A control strategy u € U is called deterministic stationary, if
T (1 hns 1) = 05 (p(x,)) (1) AN Vi (1) = G5 (¢ (x 1% (0 ))) (1), Where @ 2 Xoo = Ao
is a measurable mapping satisfying ¢*(y) € A(y) for any y € X. By a slight abuse
of notation, such a strategy will be just denoted by u = ¢°.

From Theorem 3.6 in [23] (or Remark 3.43, page 87 in [24]) we have that, for any
admissible strategy u € U and an initial state xo € X, there exists a probability Py,

on (€, ) such that the restriction of Py to (€,%0) is given by (see [7] for further
details) P% ({Xo = x0}) =1, and (see Lemma 3.1 in [7]) the predictable projection
of the random measure u with respect to PY is given by v = vy +v;, where, for

I' e B(R} xX),
yo(I) = fr fA O A& (el

= [ 3 he [ Oier oy alr, o )

nenN* &n-)

3.4 Problems formulation

We introduce in this section the infinite-horizon expected discounted and long run
average continuous-time optimal control problems we will consider in this chapter,
with the control acting continuously on the jump intensity A and on the transition
measure Q of the process (but not on the deterministic flow ¢).

In what follows the running cost rate C4 is a real-valued measurable mapping
defined on K and the boundary cost C" is a real-valued measurable mapping defined
on K. We set C#(x*,a™) = C'(x®,a™) = 0. The associated infinite-horizon dis-
counted criterion corresponding to an admissible control strategy u = (4, )nen € U,
up = (mn,yn), is defined by



Optimal Control of Piecewise Deterministic Markov Processes 61

Ve (u, x0) = B, [f e_‘”f Cg(.fs,a)ﬂ(dals)ds]
10,+00[ A(&s)

f e f Ci(fsf,a)v(dGIS)p*(dS)], ™
10, +00[ A(&s-)

where o > 0 is the discount factor. Similarly, the associated long run average criterion
corresponding to an admissible control strategy u € U is defined by

— 1
A(u,xp) =lim {E¥ f f C8(&5,a)m(dals)ds
=0t U o Jace)

B [ fJo,r[ fA(,fs_> C(Gapdalp (ds)] } ©

Definition 3 The optimization problems consist in minimizing the performance cri-
terion Vo (4, x0) and A(u, xo) within the class of admissible strategies u € U, where
Xo is the initial state. The optimal value functions will be denoted respectively by
V;(x0) and A*(xp), that is,

+E*

X0

Vy(x0) = inf Vo (u,x0), A*(x0) = inf A(u,x0)
uel uel

and u € U will be an optimal strategy for the discounted (respectively, long run
average) problem if Vy (1, x0) =V, (x0) (respectively, A(u, x9) = A*(x0)).

4 Main assumptions and auxiliary results

The objective of this section is to introduce the assumptions and present some
technical results that will be used along this chapter.

4.1 Main assumptions

Our approach requires that the process must be non-explosive and that the expected
value of the number of jumps at the boundary up to a time ¢ € R, must be bounded
from above by an affine function in the variable ¢. One of the main goals of Assump-
tion A is to ensure these properties.

Assumption A. There are constants K > 0 and €1 > 0 such that

(Al) Forany (x,a) € K8, A(x,a) < K.
(A2) Forany (z,b) €K', Q(A4g, |z,b) = 1 where

Ag ={x eX: ' (x) > e}
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(A3) Forany (x,a) € K8, Q(A(x)|x,a) = 1 where
A(x) ={y €X:£(y) 2 min{¢*(x),&1}}.

Assumptions B and C are classical hypotheses. They mainly ensure the existence
of an optimal selector.

Assumption B.

(B1) Foreveryy € X the set A(y) is compact.

(B2) The kernel Q is weakly continuous (also called weak-Feller Markov kernel)
on K8,

(B3) The function A is continuous on K8.

(B4) The flow ¢ is continuous on Ry XRP.

(B5) The function t* is continuous on X.

Assumption C.

(C1) The multifunction Y8 from X to A defined by W8(x) = A(x) is upper semi-
continous. The multifunction W from = to A defined by Wi (z) = A(z) is upper
semicontinous.

(C2) The cost function C8 (respectively, C') is bounded and lower semicontinuous
on K& (respectively, Ki).

Without loss of generality, we assume, from Assumption (C2), that the inequalities
|C8| < K and |C| < K are valid, where K is the same constant as in Assumption
(AD).

4.2 Auxiliary results

We present in this subsection some auxiliary results that will be useful to study
both the infinite-horizon discounted control problem as well as the long-run average
cost control problem. The first result of this subsection, Lemma 1, shows that the
controlled process is non-explosive and provides an upper bound for the sum of the
expected values of e~*T» as well as an affine upperbound on ¢ for the expected value
on the number of jumps from the frontier up to a time ¢. This result requires only
Assumption A.

Lemma 1 If Assumption A is satisfied then there exist positive numbers M < oo,
co < oo such that, for any control strategy u € U and initial state xo € X,

EZO[ Z e—aTn] <M, Pﬁo(T00 < +00) =0. ©

neN*

Furthermore for any t € R,

DY I{Tng’gmeﬁ}] < Mt +cp. (10)

nenN*
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Proof: For the proof of (9), see Lemma 4.1 in [7] and, for the proof of (10), see
Lemma 3.1 in [6]. ]

Recalling the definitions of V,, and A (see equations (7) and (8) respectively), it
is easy to get that for any control strategy u € U

1 1
[Va(wxo)l < K( +BL[ Y. e ™) <K( +M)
@ neN* @

and
A, x0)| < K (1 +lim 1]]5&0[ > Ligcre, EE}]) <K(1+M),

nenN*

by using Lemma 1 and the fact that |C8| < K and |C| < K (see Assumption (C2)).
Therefore, the mappings V, (1, -) and A(u,-) are well defined.

The next lemma will be useful to obtain the characterization of the value functions
in terms of integro differential equations.

Lemma 2 Consider a bounded from below real-valued measurable function F de-
fined on X such that, for a real number 3 > 0, it satisfies

f e PSF(P(x,5))ds < +c0
[0,2*()[

forany x € X, and a bounded from below real-valued measurable function G defined
on Z. Then the real-valued mapping V defined on X by

V(x)= f e PSF(¢(x,5))ds + e PO G(p(x,17(x)))
[0,%()[

belongs to A(X). Moreover there exists a bounded from below measurable function
XV satisfying
—BV(x) + XV (x) = —F(x),

for any x € X and, furthermore, V(z) = G(z) for any z € E.

Proof: See the Appendix.

For any function V' in M(X) bounded from below let us introduce the R-valued
mappings RV and TV defined on X and = respectively by

RV (x) = aeigl(fx) {C8(x.a)+qV (x.) + KV (%)}, (11
W)=, eigl(fz) {Cizb)+0V(z b)}, (12)

where the constant K has been defined in Assumption (A1) and the transition kernel
q in equation (3). Observe that gV and QV are well defined since by hypothesis V' is
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bounded from below. Note also gV and OV may take the value +oo. Finally, for any
a € [0, 1], let us introduce the R-valued function B,V defined on X by

B,V (y) = e KRy (p(y,0))dt + e KXY (9(y,17 (). (13)
[0, (¥)[

Again, remark the integral term in (13) is well defined but may take the value +oo.
Moreover, since |C¢| < K and |C!| < K, we have clearly that RV (x) > —K ¢ and
TV (z) = —cp for some constant ¢y > 0. By using the definition of B,V

Ba V() = —co(1 - K"0)) = cpe ¥ = —¢,
for any @ € [0, 1].
The next lemma provides important properties of the operators R, T and B,,.

Lemma 3 Suppose that Assumptions A, B and C are satisfied. If V € L(X) is bounded
Jfrom below then for any « € [0, 1] we have that

RV e L(X), TV e L(E), BV € L(X)
and all these functions are bounded from below.

Proof: See the Appendix.

For any 0 < @ < 1, let us introduce

_ K(1+K)(1 _e—(K+(r)81)+ (K+Q,)Ke—(K+(z)£1

Ka a(l _e—(K+a)51)

s

_2K(1+K)
Ke = l—e ke’
where K and €; have been defined in Assumption A. Clearly, for any 0 < a < 1

0<aK, <Kc. (14)

The next lemma provides upper bounds and absolutely continuity properties of
the operator B, .

Lemma 4 Suppose that Assumptions A, B and C hold. Consider V € Ly (X) satisfy-
ing, for any y € X,

VI < Kala,, (y)+ (Ko + K)Iag (¥).
Then B,V € Ap(X) and for any y € X,

1BaV(¥) < Kala,, () + (Ko +K)lag ()
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Proof: See Lemma 5.4 in [7]. O

We conclude this section with the following result, which is a consequence of the
so-called Dynkin formula associated with the controlled process (&;);er. -

Tl_leorem 1 Suppose that Assumption A is satisfied and that the cost functions C8 and
C' are bounded (below or above). Then we have, for any strategy u = (7, vn) € U
and (W, XW) € Ap(X) xB(X), that

Vo) = W) + 2| [

10, +00f

+E§¢0[f e-f”f (CB (&5, a)
10,+o0[ A8

4 fx W)€, ) A(Ex@) ~ W (E) Ay ) (dals) 1]

+Ez0|: Z [(an_EE}e_‘Y'Tn I:fi{ci(grﬂ_’a)

I [XW(E) —alW(£y)] ds]

neN* A
+ [ wor0sien-ydat,) - wier, ]| (15)
Proof: See Corollary 4.3 in [7]. ]

5 The discounted control problem

Theorem 2 below presents sufficient conditions based on the three local character-
istics of the process ¢, A4, O, and the semi-continuity properties of the set valued
action space, for the existence of a solution for an integro-differential HIB optimal-
ity equation associated with the discounted control problem as well as conditions
for the existence of an optimal selector. Moreover it shows that the solution of the
integro-differential HIB optimality equation is in fact unique and coincides with
the optimal value for the a-discounted problem, and the optimal selector derived
in Theorem 2 yields an optimal deterministic stationary strategy for the discounted
control problem.

Theorem 2 Suppose Assumptions A, B and C are satisfied. Then there exist W €
Ap(X) and XW € B(X) satisfying, for any x € X,

—aW(x)+ XW(x)+ inf {C8(x.a)+qW(x.a)} =0, (16)
acAs (x)
and, for any z € &,

W(z)= hEi:\qff(ﬂ {Ci(z.b)+ QW (2 D). (17
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Moreover there is a measurable mapping o, : X — A such that 9o (y) € A(y) for
any y € X and satisfying, for any x € X,

C4xGa(X) +gW (v, Zo(0) = inf {Cira)+qW (@)}, (8)
and, for any z € g,
Cl2Ga(@)+OW (a2 = inf {C'aH+OW D] (19)

Furthermore we have that

a) the deterministic stationary strategy P, is optimal for the a-discounted problem,
b) the function W € Ay (X), solution of (16)-(17), is unique and coincides with
V5 (x) =infueuVo(u,x), and
c) V;(x) satisfies
Vi ()] < Ko + Klag, (x). (20)

Proof: By Lemma 3, one can define recursively the sequence of functions {¥;}, 4 in
Ly (X) as follows: Wi1(y) = B Wi(y), fori € N and Wy(y) = —Kaola,, (y)— (Ko +
K)Ixc ] (y) for any y € X. By using Lemma 4 and the definition of ¥, we obtain that
Wi(y) = Wy(y) for any y € X. Now, note that the operator B, is monotone, that is,
V1 <V, implies B, 7y < B, V>. Consequently, it can be shown by induction on i that
the sequence {W;}, oy is increasing and, from Lemma 4 and the definition of ¥y, that
foreveryi e N,

Wir1 (O] = BaWi(x)| < Ko la,, (x)+ (Ko + K)ag (x). ey

Therefore from (21) the sequence of functions {I¥;}, . is uniformly bounded, that
is, forany i € N, SUPy,ex [Wi(y)| < Ko + K. As aresult, {W;};,y converges to a map-
ping W € B(X). Since {W;}, .y is an increasing sequence of lower semicontinuous
functions, W € L, (X), KW; +qW; € L,(K8), and so, C8 + KW; + gW; € L,(K¢®)
by Assumption (C2). Therefore, combining Assumptions (B1) and (C1) and
Lemma 2.1 in [28], it follows that lim;_,. RW;(x) = RW(x) for any x € X and
lim;_,0o TW;(z) = TW(z) for any z € E. By using the bounded convergence Theo-
rem, it implies that the mapping W satisfies the following equations

W(y)=B.W(y)
) f e ERW (p(y.0))dt+ & EEOTOTW By (). (22)
[0,
where y € X. Applying Lemma 2 to the mapping W where the function F (respec-

tively G) is given by RIW (respectively, TW), it yields that the function W € A, (X)
and satisfies

~(@+ KW () +XW(x) =~ inf {C8(x.a)+ g (x.a) + KW (x)},
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for any x € X and

W(z)= bei/gllf(z) {Ci(z.b)+ 0 (z.b)},

for any z € E. This shows the existence of W € A, (X) and XW € B(X) satisfying
equations (16) and (17).
Now, under Assumptions B and C, for any x € X the mapping defined on A(x) by

a— C8(x,a)+ A(x,a) [OW (x,a) - W(x)] + KW(x)

is lower semicontinuous and since W8 is upper semicontinuous, it follows from
Proposition D.5 in [21] that there exists a measurable mapping ¢5 : X — A# such
that Vx € X ¢f (x) € A(x) and equation (18) holds. Similar arguments can be used to
show the existence of a measurable mapping ¢!, : £ — A’ satisfying ¢',(z) € A(z)
for any z € E and equation (19) holds. Therefore, the measurable mapping {, defined
by @u (x) = ¢, (x) for any x € X and @, (z) = ¢, (z) for any z € E satisfies the claim.

To show a) and b), notice that for an arbitrary control strategy u € U we have, by
using Theorem 1, that V,, (1, x) > W(x) for any x € X and also that V, (@, x) = W(x)
for any x € X. Indeed from (16) and (17) we have that

XIW(&)—al (&) + fA (C e
N fx W ()0l @) A (Exna) — W (£ A(Enra)e(dals)] = 0

and, for any z € E,

f (Cier,a)+ f W ()O(dylér, -.a)y(dalTy-) - W(ér,-) > 0
At X

with equality whenever the strategy ¢ is used. From (15) the terms inside the
expected value are positive, being zero whenever the strategy ¢ is used, which shows
that V,, (4, x) > W(x) and V,, (@, x) = W(x) as desired. Finally from (21) we have c)
since V,;(x) = W(x) = sup; g Wi (x). O

6 The average control problem

The objective of this section is to provide sufficient conditions to show the existence
of a solution to an integro-differential HIB inequality as well as the existence on
optimal selector. This results is proved by using the so-called vanishing discount
approach. The second main result of this section (see Theorem 4) gives the existence
of a deterministic stationary optimal policy for the infinite-horizon long run average
continuous-time control problem according to Definition 3.
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Let us introduce

mo = inf V;(x), pe = amg, (23)
xeX
ha(x) =Vi(x)—mg >0, 24

where x € X. In what follows we refer to section 2 for the definition of the generalized
inferior limit lim®. The following final assumption will be required.

Assumption D. lim%  /,(x) < co forall x € X.

It is easy to show that there exist a sequence {a,} satisfying lim,_c @, =0
and such that lim,,_,. pa, = p for some |p| < K¢ + K. To see this, observe that by
combining equations (14), (20) and (23) we obtain that for any 0 < @ < 1

|pal = lamqg| < a] inf Vy(x)| < asup|V,(x)| <aKs+K < Kc+K. (25)
xeX

xeX

Let us introduce the function 4. given by

ho(x) = imé__hq, (x). (26)

——n—oo

It is easy to see that 4.(x) > 0 since A, (x) > 0. Clearly,.(x) < co by Assumption
D and 4. € L4(X) by using Proposition 1.

Before showing the main results of this section, we need the following technical
result.

Lemma 5 The function h, defined in (26) satisfies the following inequality:
ha(x) > f e Rh(P(x,5)) = p)ds +e K DT (p(x 1 (x)).  27)
[0, ()L

Proof: See the Appendix. O

The following theorem provides sufficient conditions for the existence of a solution
and optimal selector to an integro-differential HIB inequality, associated to the long
run average control problem.

Theorem 3 Suppose that Assumptions A, B, C and D are satisfied. Then the following
holds:

a) There exist H € A(X) NL(X) bounded from below satisfying
p2 XH(x)+ inf {Cf(x,a)+qH(x.a)}, (28)
acAs8 (x)
forany x € X, and

H(z)> , inf ) {C" (z,b)+ QH(z, b)}, (29)

€Ai(z
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forany z € E.
b) There is a measurable mapping o : X — A such that (y) € A(y) forany y € X
and satisfying

CHn @) +gH (5, 8(0)) = inf {Cira)+gHx )l (0)
forany x € X, and
CEF@)+OHEER) = inf {C'(2b)+OHEb)} ()

forany z € E.

Proof: Let us introduce H(x) as

H(x) = eI Rhu(p(x,5)) = p)ds + e K" OTh (P(x,1°(x))),  (32)
[0,2*(x)[
for all x € X.

We will prove first item a). Observe that H(x) = Bph.(x) — p f e K5 ds.
[0,2*(x)[
Now by Lemma 3 it follows that H is bounded below and that H € ]I:(X) since
h. € L(X) and ¢* is continuous by Assumption (B5). Observe that equation (27)
implies that H(x) < h.(x) showing that H € L(X).
A straightforward application of Lemma 2 shows that H(x) € A(X) and it also
follows that there exists a bounded from below measurable function X H satisfying

—KH(x)+XH(x)+ iR{){Cg(x,a)+qh*(x,a)+Kh*(x)}:p (33)

for any x € X and
HE) = inf {Ci(z.b)+ Oh.(z D)}, (34)

for any z € E. Recalling that £.(x) > H(x), we obtainfrom (33) and (34) that for any
xeX,

i g
XH(x) +aégg) {C (x,a) +qH(x,a)}

< —-KH(x)+XH(x)+ igf ){Cg(x,a)+qh*(x,a)+Kh*(x)} =p (35)

and forany z € E,

i {C(z.)+ QH(z.b)} < . eig{z) {Ci(z.b)+ Qh.(z.b)} = H(2). (36)

Combining equations (35), (36), we finally get that H € A(X) NL(X) and satisfies
equations (28) and (29) giving item a).
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Item b) is an easy consequence of the fact that H is lower semicontinuous on X,
Assumptions A, B, C and Proposition D.5 in [21]. ]

The goal now is to establish a deterministic stationary optimal policy for the
long run average control problem as defined in Definition 3, based on a solution for
the integro-differential HIB inequality (28), (29) and its associated optimal selector
(30), (31). In order to do that we introduce the following notation for a measurable
selector ¢, a function W € M(X) bounded from below, and any x € X,

29(x) = Ax. (), AP (x1) = fo 29 (9. 5))ds,

QW (x) = OW (x,¢(x)), ¢*W(x) = qW (x, p(x)).
AP O (x) = A(x, ¢(x))OW (x, ¢(x)),
Co¥(x) = C¥(x,(x)), C¥(2) = C*(x,¢(2)), z€E

and for p, ¢ as in Theorem 3,
G¥W(x) = f N NE 0PI (p(x, 5)))ds + N 0D 0P (g, 1" (x))),
10,2 (x)[
L¥W(x) = f N (p(x, 5))ds,
10,2 (x)[

L%(x) = f e N9 g
10,24 (0)[
PP (x) = e N TN (g, 17 (x)),
T(p,W)(x) = —pL?(x) + LECE% (x) + PPC? (x) + GF W (x).
We have the following auxiliary result.

Lemma 6 For H and p,  as in Theorem 3 we have that

H(x) 2 T%(p, H)(x) 37
JE(t,x) < H(x) (38)

where

o= [ (et - plas]
10, AT, [
[ @ @)+ T ) ) |
Lt AT

Proof: See the Appendix. O

Theorem 4 Suppose that Assumptions A, B, C and D are satisfied and consider @ as
in (30), (31). Then the deterministic stationary strategy ¢ is optimal for the average
cost problem and for any x € X,
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p=A(p,x) = A"(x). (39)
Proof: Applying Proposition 4.6 in [8] it follows that lim, oV, (x) < A*(x).
Therefore,

p=lim a, inf V' (x) < lim @,V (x) < A*(x).
n—oo xeX n n—oo n

To get the reverse inequality, first observe that, since Ta(p, H) is bounded from
below by, say, —cp, we obtain from Lemma 6 that

vl [ [erean]as [
10,¢ AT, [ 10,z

< H(x)+ pEL(t AT).

(@) o)

ANl

Taking the limit as m goes to infinity, this yields

e+ £ f]o ere@p]as f]o O P )] < HE)

and so,
Alx, p)(x) < p.
However, A*(x) < A(x, p)(x) giving the results. O
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Appendix

In this appendix we present the proof of some auxiliary results needed along this
chapter.

Proof of Lemma 2: Write V,,(x) = | e P F,(¢(x,5))ds +e P DG, (d(x,t*(x)))
(0,25 ()L

for x € X with F},(x) = min{F (x),n} and G,,(x) = min{G(x),n} on X (respectively,

Z). Now, observe that for any x € X, t*(¢(x,1)) = t*(x) —t, ¢p(d(x,1),t*(d(x,1))) =

#(x,1*(x)) and ¢(¢(x,1),5) = ¢(x,1 +5), for any (¢,5) € R2 with £ + 5 < #*(x).Then,

it can be easily shown by a change of variable that for any x € X and ¢ € [0,7"(x)[,

F@(xt)) = & f[ oy & O + PTG (Bt (D))

and so,
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V(g(x,0) = f P F($(x,5))ds + e PO G(p(x ' (x)))  (40)
[e.r7 (0l

by the monotone convergence theorem. Consequently, the function V(¢(x,-)) is

absolutely continuous on [0,#*(x)]NR4 and so, V' € A(X). Equation (40) implies

that for any x € X XV (¢(x,1)) = BV (¢(x,1)) — F(¢p(x,t)), almost everywhere w.r.t.

the Lebesgue measure on [0, ¢*(x)[. This implies that — 8V (x) + XV (x) = —F(x) for

any x € X. Moreover, we have V' (z) = G(z) for any z € E, showing the result. O

Proof of the Lemma 3: Define V},(x) = min{V (x),n} so that ¥}, € L;,(X). By using
hypotheses (B2)-(B3) and the fact that A is bounded by K on K#, we obtain that gV, +
KV, € L(K8), and so, by Assumption (C2) Cg +qV, + KV, € L(K8). Therefore,
combining Lemma 17.30 in [1] with Assumptions (B1) and (C1), it yields that
RV, € L(X). By using the same arguments, it can be shown that TV;, € L(E).

Now consider y € X and a sequence {y,},en in X converging to y. By a slight
abuse of notation, for any y € X, Ijos+(y)((¢) e K+l Ry (4(y,1)) denotes the
function defined on R, which is equal to e &R}, (¢(3,1)) on [0,7*(y)[ and zero
elsewhere. It can be shown easily by using the lower semicontinuity of the function
RV, and the continuity of the flow ¢ that lim Zjo,/+(y, ) () € K V'RV, (¢ (1)) =

n—oo

Iro,r+ ()1 (t) e’(Km)".}iVn((p(y,t)), for any ¢ € [0,#*(y)[. An application of Fatou’s
Lemma gives that

lim e KRy (b(yp,1))dt > f e KRy ($(y,1))dt.

n—co J[0,t%(yn)l (0.5

The case t*(y) = oo is trivial. Now, if £*(y) < oo then combining the lower semicon-
tinuity of the function TV with the continuity of the flow ¢ and #* (see Assumptions
(B4)-(B5)), it gives easily that

lim e”®* DO, (3t () 2 e KFTOTV (b0 1" (),
showing the results hold for V},, that is, RV, € L, (X), TV, € Lp(E), and B,V €
Ly (X). From Proposition 10.1 in [27], it follows that RV = lim,,—,.c RV}, € E(X) and
similarly, TV =lim, . TV, € IE(E). Now, from the monotone convergence theorem,
we have B,V = limy,_0 Be Vs, and so B,V € E(X). Clearly, these functions are
bounded from below, giving the result. O

Proof of the Lemma 5: From Theorem 2 we have that W (x) =V, (x) satisfies (16)
and (17), and thus from (23), (24) and after some algebraic manipulations we obtain
that

—(@+K)ho(x) + Xho(x) + 1An£f( : {C8(x.0) + qha(x,a) + Kha(x)} = pa =0,
41)

for any x € X,
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ha(z) = inf {C(z2.b) + Oha(z. b)), (42)

for any z € E. Moreover, according to Theorem 2 there exists a measurable selector
o : X — A satisfying ¢, (y) € A(y) for any y € X reaching the infimum in (41) and
(42). Thus,

_(a""K)ha(x) +Xha(x) + Cg(x’ Slo\a(x)) +qha(x’ Slo\a(x)) +Kha(x) ~Pa = 0,
(43)

for any x € X,
hao(z) = C'(2,0) + Qha(2,8a(2)) (44)

for any z € 2. Taking the integral of (43) along the flow ¢(x,?), we get from (43) and
(44) (see [8]) that for any x € X,

he(x) = f e KD (Rpg ($(x,1)) = pa)di + e KT OTh, (¢(x, (%)),
[0,2*(x)[

(45)

where we recall that
Rha(y) = C8(, @a(Y) + qha(y, 0a(¥)) +Kho(y), yeX (46)
Tha(2) = C'(2.8a(2)) + Oha(2,a(z)), z€E. (47)

According to Proposition 1 (i), we can find a sequence {x, } € X such that x,, — x and
lim A, (x,) = h.(x). In what follows set, for notational simplicity, x,,(¢) = ¢(xp, 1),
x(t) = ¢(x,1), an(t) = Pa, (xn(2)), £}, = t*(x,). From continuity of #* and ¢ (see
Assumption (B4)) we have that, as n — oo, x,,(t) — x(¢), and, whenever ¢*(x) < oo,
xn(t)) = ¢(x,¢*(x)). From the fact that Rh, is bounded from below and p,, is
bounded, we can apply the Fatou’s lemma in (45) to obtain that

ho(x) = lim hg, (xp) > f lim (7o) (O)e” K [Rh, (x4 (1)) = pay, ] )t
n—oo 10,

+oo[ n—o0

+ lim e—(Km,,)t;iIhan (xn(t)). (48)

n—oo

The convergence of p,, to p together with Assumption (B5) implies that, a.s. on
[0, 00),

lim I[O’t;)(t)e—(l(ﬂm)t {mha" (xn(2))— Pay, }

= fjo.r° (o (e 5| lim Rhg, (xu(D)) = p},  (49)
n—oo

and lim,,_ e~ K5 Thy, (x,(13)) = e KO lim, | The, (xa(r})). The goal
now is to show that
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lim Rhg, (xn(1))) = RA(x(2)), (50
and that
lim The, (x,(2),)) = Tha(x(t*(x))). 51

Let us first show (50). For a fixed ¢ € (0,¢*(x)), there is no loss of generality in
assuming that ¢ < ¢, for any n € N and thus x,(¢) € X. Consider a subsequence {n;}
of {n} such that
lim Rhq,, (xa(1)) = jli_)n;mhanj (2n; (1))-

From Assumptions (B1) and (C1) the multifunction ¥$ is compact valued and upper
semi-continuous so that, from the fact that x,, ; () — x(¢), we can find a subsequence
of {an, (t)} € A(xn, (1)), still denoted by {ay,, (¢)} such that a,; (1) — a € A(x(?)) (see
Theorem 17.16 in [1]) as j — oco. From (46) we have that

lim Rhg, (xn(2)) = lim (Cg(xn,»(t)’ An; () + qha, (xn, (t)vxnj (t)))
Jj—ooo N J

n—oo

+1im (Kha,, (¥, (1)
and therefore

lim Rhq,, (xn(2)) 2 lim C (xp, (1), an, (1))

n—oo J—oo

+ lim (gha,, Con; (1 xn, (D) + Koy, (en (). (52)

Jj—oo
Lower semicontinuity of C8 on K# yields to

lim C#(xy, (1), an, (1)) = CE(x(1). ). (53)

J—ooo

From Proposition 1 (i) and (iii), the fact that Q is weakly continuous on K& (As-
sumption (B2)), and the continuity of 1 (Assumption (B3)), we get that

Lim A(xp, (1), an; (1)) Qha,, (xn; (1), an; (1)) 2 A(x(), @) Qh.(x(2),a)  (54)
Jj—oo

and, recalling that K — A(xy; (1), an, (t)) > 0 from Assumption (A1), we get that

1im (K = A, (1), an, ()|, oy (0.0, (1) = [K = Ax(0).0) | (x(0). ).

Jj—oo
(55)
Combining (46), (52), (53), (54), (55), we conclude that

lim Rhg, (xn(2))) = CE(x(2),a) + ghu(x(2),a)+ Kh.(x(2)) = Rh.(x(2)),

n—oo

showing (50).
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Let us now show (51) for #*(x) < co. From the fact that V¥ is compact valued and
upper semi-continuous and x, (¢,,) = x(¢*(x)), and using similar arguments as before

(in particular equation (47)), we can find a subsequence {ay, (t;‘,l,)} € A(xy, (t;‘,,,))
such that @y, (t;, ) = b € A(x(¢*(x))) (see again Theorem 17.16 in [1]), and that

im Thq, (xn (7)) = C'(x(1°(x)),5) + Qhu(x(t* (x)), b) = Tha (x (¢ (x)))

n—oo

showing (51).
Combining (48), (49), (50) and (51) we get that (27) holds, showing Lemma 5. O

Proof of the Lemma 6: From Theorem 3 we get that for any x € X

p = XH((x,5))+C5%($(x,5)) + P H((¢(x,5))), (56)

and for the case t*(x) < oo,
H(p(x, 1"(x))) = C*2((x,1°(x))) + QP H(p(x,1"(x))). (57)
Multiplying (56) by e A9 and taking the integral from O to # we obtain that
p [N Idys [N XH0550) - 4P @ H () s
10,7 10,¢[
+ f M) 088 (g (x, 5))ds + f e N CDNCOP H(p(x,5))ds. (58)
10,2 10,2
Replacing
f N (X H((x,5)) - 27 ($(x,9) H((x.5)))ds
10,¢(
= e N O H(g(x,0) - H(x)
into (58) yields to
H(x)>- pf e M) g +f e‘AQ(X’”)A‘;Q"?H(ﬂx, s))ds
10,2 10,¢[

+e_A$(x’t)H(¢(X,t))+f e—A@(x,s)C(g‘,@((p(x, s))ds.

10.2[

Taking the limit as ¢ — ¢*(x) and using (57) for the case ¢*(x) < co we obtain (37).
From (37) and Proposition 3.4 in [8] we obtain (38).
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Pathwise Approximations for the Solution of the
Non-Linear Filtering Problem

Dan Crisan, Alexander Lobbe, and Salvador Ortiz-Latorre

Abstract We consider high order approximations of the solution of the stochastic
filtering problem, derive their pathwise representation in the spirit of the earlier work
of Clark [2] and Davis [10, 11] and prove their robustness property. In particular,
we show that the high order discretised filtering functionals can be represented by
Lipschitz continuous functions defined on the observation path space. This property
is important from the practical point of view as it is in fact the pathwise version
of the filtering functional that is sought in numerical applications. Moreover, the
pathwise viewpoint will be a stepping stone into the rigorous development of machine
learning methods for the filtering problem. This work is a cotinuation of [5] where
a discretisation of the solution of the filtering problem of arbitrary order has been
established. We expand the work in [5] by showing that robust approximations can
be derived from the discretisations therein.

1 Introduction

With the present article on non-linear filtering we wish to honor the work of Mark
H. A. Davis in particular to commemorate our great colleague. The topic of filtering
is an area that has seen many excellent contributions by Mark. It is remarkable that
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he was able to advance the understanding of non-linear filtering from a variety of
angles. He considered many aspects of the field in his work, spanning the full range
from the theory of the filtering equations to the numerical solution of the filtering
problem via Monte-Carlo methods.

Mark Davis” work on filtering can be traced back to his doctoral thesis where he
treats stochastic control of partially observable processes. The first article specifically
on the topic of filtering that was co-authored by Mark appeared back in 1975
and considered a filtering problem with discontinuous observation process [12].
There, they used the so-called innovations method to compute the evolution of the
conditional density of a process that is used to modulate the rate of a counting
process. This method is nowadays well-known and is a standard way also to compute
the linear (Kalman) filter explicitly. Early on in his career, Mark also contributed to
the dissemination of filtering in the mathematics community with his monograph
Linear Estimation and Stochastic Control [T], published in 1977, which deals with
filtering to a significant degree. Moreover, his paper An Introduction to Nonlinear
Filtering [9], written together with S. I. Marcus in 1981, has gained the status of a
standard reference in the field.

Importantly, and in connection to the theme of the present paper, Mark has worked
on computation and the robust filter already in 1980 [8]. Directly after the conception
of the robust filter by Clark in 1978 [2], Mark took up the role of a driving figure in the
subsequent development of robust, also known as pathwise, filtering theory [10, 11].
Here, he was instrumental in the development of the pathwise solution to the filtering
equations with one-dimensional observation processes. Additionally, also correlated
noise was already analysed in this work.

Robust filtering remains a highly relevant and challenging problem today. Some
more recent work on this topic includes the article [6] which can be seen as an
extension of the work by Mark, where correlated noise and a multidimensional
observation process are considered. The work [4] is also worth mentioning in this
context, as it establishes the validity of the robust filter rigorously.

Non-linear filtering is an important area within stochastic analysis and has nu-
merous applications in a variety of different fields. For example, numerical weather
prediction requires the solution of a high dimensional, non-linear filtering problem.
Therefore, accurate and fast numerical algorithms for the approximate solution of
the filtering problem are essential. In this contribution we analyse a recently devel-
oped high order time discretisation of the solution of the filtering problem from the
literature [5] and prove that the so discretised solution possesses a property known
as robustness. Thus, the present paper is a continuation of the previous work [5] by
two of the authors which gives a new high-order time discretisation for the filtering
functional. We extend this result to produce the robust version, of any order, of
the discretisation from [5]. The implementation of the resulting numerical method
remains open and is subject of future research. In subsequent work, the authors plan
to deal with suitable extensions, notably a machine learning approach to pathwise
filtering.

Robustness is a property that is especially important for the numerical approxi-
mation of the filtering problem in continuous time, since numerical observations can
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only be made in a discrete way. Here, the robustness property ensures that despite
the discrete approximation, the solution obtained from it will still be a reasonable
approximation of the true, continuous filter.

The present paper is organised as follows: In Section 2 we discuss the established
theory leading up to the contribution of this paper. We introduce the stochastic
filtering problem in sufficient generality in Subsection 2.1 whereafter the high order
discretisation from the recent paper [5] is presented in Subsection 2.2 together with
all the necessary notations. The Subsection 2.2 is concluded with the Theorem 1,
taken from [5], which shows the validity of the high order discretisation and is the
starting point for our contribution. Then, Section 3 serves to concisely present the
main result of this work, which is Theorem 2 below. Our Theorem is a general result
applying to corresponding discretisations of arbitrary order and shows that all of
these discretisations do indeed assume a robust version. In Section 4 we present the
proof of the main result in detail. The argument proceeds along the following lines.
First, we establish the robust version of the discretisations for any order by means of
a formal application of the integration by parts formula. In Lemma 1 we then show
that the new robust approximation is locally bounded over the set of observation
paths. Thereafter, Lemma 2 shows that the robustly discretised filtering functionals
are locally Lipschitz continuous over the set of observation paths. Based on the
elementary but important auxilliary Lemma 3 we use the path properties of the
typical observation in Lemma 4 to get a version of the stochastic integral appearing
in the robust approximation which is product measurable on the Borel sigma-algebra
of the path space and the chosen filtration. Finally, after simplifying the arguments
by lifting some of the random variables to an auxilliary copy of the probability
space, we can show in Lemma 5 that, up to a null-set, the lifted stochastic integral
appearing in the robust approximation is a random variable on the correct space. And
subsequently, in Lemma 6 that the pathwise integral almost surely coincides with the
standard stochastic integral of the observation process. The argument is concluded
with Theorem 3 where we show that the robustly discretised filtering functional is a
version of the high-order discretisation of the filtering functional as derived in the
recent paper [5].

Our result in Theorem 2 can be interpreted as a remedy for some of the shortcom-
ings of the earlier work [5] where the discretisation of the filter is viewed as a random
variable and the dependence on the observation path is not made explicit. Here, we
are correcting this in the sense that we give an interpretation of said random variable
as a continuous function on path space. Our approach has two main advantages.
Firstly, from a practitioner’s point of view, it is exactly the path dependent version
of the discretised solution that we are computing in numerical applications. Thus it
is natural to consider it explicitly. The second advantage lies in the fact that here we
are building a foundation for the theoretical development of machine learning ap-
proaches to the filtering problem which rely on the simulation of observation paths.
With Theorem 2 we offer a first theoretical justification for this approach.
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2 Preliminaries

Here, we begin by introducing the theory leading up to the main part of the paper
which is presented in Sections 3 and 4.

2.1 The filtering problem

Let (Q, %, P) be a probability space with a complete and right-continuous filtra-
tion (%7),>0. We consider a dx X dy-dimensional partially observed system (X,Y)
satisfying the system of stochastic integral equations

t t
X,:Xo+f f(Xs)ds+f o (Xs)dVs,
0 0
t (D
Y,:f h(Xs)ds+W;,

0

where V' and W are independent (7;);>0-adapted dy - and dy-dimensional standard
Brownian motions, respectively. Further, Xy is a random variable, independent of V'
and W, with distribution denoted by my. We assume that the coefficients

_ 3 . pdx dx _ . . pdx dx xdy
f=f)imt.ay R SR andcr_(a,,_,)i:1 ..... dxtay R OR

of the signal process X are globally Lipschitz continuous and that the sensor function
h=(hi)izi....ay : R - RY

is Borel-measurable and has linear growth. These conditions ensure that strong solu-
tions to the system (1) exist and are almost surely unique. A central object in filtering
theory is the observation filtration {Y, }; > that is defined as the augmentation of the
filtration generated by the observation process Y, so that Y, = o (Y5, s € [0,¢]) VN,
where N are all P-null sets of F.

In this context, non-linear filtering means that we are interested in determining,
for all # > 0, the conditional law, called filter and denoted by 7;, of the signal X at
time ¢ given the information accumulated from observing Y on the interval [0,¢].
Furthermore, this is equivalent to knowing for every bounded and Borel measurable
function ¢ and every ¢ > 0, the value of

(@) =E[o(X) | Y]

A common approach to the non-linear filtering problem introduced above is
via a change of probability measure. This approach is explained in detail in the
monograph [1]. In summary, a probability measure P is constructed that is abso-
lutely continuous with respect to P and such that ¥ becomes a P-Brownian motion
independent of X. Additionally, the law of X remains unchanged under P. The
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Radon-Nikodym derivative of P with respect to P is further given by the process Z
that is given, for all # > 0, by

dy t | dy t
7, =exp Zfo h,-(XS)dy;—zz;fo h? (Xy)ds .
i= i=

Note that Z is an (7 ), »0-adapted martingale under P. This process is used in the
definition of another, measure-valued process p that is given, for all bounded and
Borel measurable functions ¢ and all # > 0, by

pi(p) = E[SD(Xt)Zr | Y], )

where we denote by E the expectation with respect to P. We call p the unnormalised
filter, because it is related to the probability measure-valued process n through
the Kallianpur-Striebel formula establishing that for all bounded Borel measurable
functions ¢ and all # > 0 we have P-almost surely that

pi(¢) _ Ele(X)Z| Y]
p:(1) E [Zt|~yt]

m(p) = 3

where 1 is the constant function. Hence, the denominator p, (1) can be viewed as the
normalising factor for 7;.

2.2 High order time discretisation of the filter

As shown by the Kallianpur-Striebel formula (3), m,(¢) is a ratio of two condi-
tional expectations. In the recent paper [5] a high order time discretisation of these
conditional expectations was introduced which leads further to a high order time
discretisation of 71;(¢). The idea behind this discretisation is summarised as follows.

Flrst for the sake of compactness, we augment the observation process as ¥; =
IHd = @y YY) forall £ > 0 and write

Then, consider the log-likelihood process

dy ¢
g,:log(z,)=2fo hi(Xs)dfj,  t>o0. )
i=0

Now, given a positive integer m, the order m time discretisation is achleved by a
stochastic Taylor expansion up to order m of the processes (/;(X;))s0, i = dy
in (4). Finally, we substitute the discretised log-likelihood back into the orlglnal
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relationships (2) and the Kallianpur-Striebel formula (3) to obtain a discretisation of
the filtering functionals. However, it is important to note that for the orders m > 2 an
additional truncation procedure is needed, which we will make precise shortly, after
introducing the necessary notation for the stochastic Taylor expansion.

2.2.1 Stochastic Taylor expansions

Let M ={a <€ {0,...,dy} :1=0,1,...} be the set of all multi-indices with range
{0,...,dv}, where 0 denotes the multi-index of length zero. For @ = («}, ...,ax) € M
we adopt the notation |a| = k for its length, |a|o = #{j : @; = 0} for the number
of zeros in @, and a— = (a1, ...,a@k-1) and —a = (a»,...,ax), for the right and left
truncations, respectively. By convention |0| = 0 and —0 = 0— = (. Given two multi-
indices @, 8 € M we denote their concatenation by « * 8. For positive and non-zero
integers n and m, we will also consider the subsets of multi-indices

Mpm={ae M:n<|a| <m}, and
Mm:Mm,m:{a'eM:la'|:m}-

For brevity, and by slight abuse of notation, we augment the Brownian motion
¥V and now write V' = (Vi) fl:vo =@V, thv) for all ¢ > 0. We will consider the
filtration { ?;O’V }+>0 defined to be the usual augmentation of the filtration generated
by the process V' and initially enlarged with the random variable X,,. Moreover, for
fixed ¢ > 0, we will also consider the filtration {H! = ﬁo,v VY }s<. Forall « e M
and all suitably integrable H/!-adapted processes y = {y,}s<; denote by I, (y.) s.r
the ItAf iterated integral given for all s < ¢ by

Yo ifla| =0
t
f I (¥)sudV", iflal > 1.

N

Io(y)st =

Based on the coefficient functions of the signal X, we introduce the differential
operators LY and L", r = 1,...,dy, defined for all twice continuously differentiable
functions g : R — R by

L% = § fe— + OkrOLr 7 and
. k > i k l
— dx 2k,l=1r:1 OxkO0x

dx dg
L'g= E Orr— r=1,..,dy.
’ k=1 0k '

Lastly, for @ = (ay,...,ax) € M, the differential operator L* is defined to be the
composition L* = L% o---o L% where, by convention, L@g =g.
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2.2.2 Discretisation of the log-likelihood process

With the stochastic Taylor expansion at hand, we can now describe the discretisation
of the log-likelihood in (4). To this end, let for all > 0,

() = {{tor. . o ta} C[0,4]" i 0=t <t; <---<ty=t,n=12...}

be the set of all partitions of the interval [0,¢]. For a given partition we call the
quantity 6 = max{¢;41 —t;:j =0,...,n— 1} the meshsize of v. Then we discretise
the log-likelihood as follows. For all # > 0, 7 € I1(¢) and all positive integers m we
consider

n—1 dy

n-1 Tj+1 .
=3 EM D=2 N 1) [ et
= v

Jj=0i=0 ae Mo, m-1
S 0,m it 0,m
=S [ )
Jj=0 i

where we define for all integers / < m—1and j =0,...,n— 1 the quantities

n—1 n-1 t:
m 1 a e
DN DN ED YR A OV IONE S f Io(1)y;s ds}
Jj=0 Jj=0 @EMy, - l
= (Y LR W)
aeMy 1 =l dy

and (-,-) denotes the euclidean inner product. Note that by setting, in the case of
m>2,

dy tj+l .
=Y S ) [ .8
J

i=0 e My m-1
2,m bl 2,m
= [ snan),
tj X

we may write the above as
n—1
, ,2 (o
EM = €074 Y ().
Jj=0

As outlined before, the discretisations £7'" are obtained by replacing the pro-
cesses (fzf(Xt)),Zo, i=0,...,dy in (4) with the truncation of degree m — 1 of the
corresponding stochastic Taylor expansion of hi (X:). These discretisations are sub-
sequently used to obtain discretisation schemes of first and second order for the filter
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7, (). However, they cannot be used directly to produce discretisation schemes of
any order m > 2 because they do not have finite exponential moments (required to
define the discretisation schemes). More precisely, the quantities ™™ (j) do not
have finite exponential moments because of the high order iterated integral involved.
For this, we need to introduce a truncation of ™" (j) resulting in a (partial) tam-
ing procedure to the stochastic Taylor expansion of (%;(X;));s0. To achieve this,
we introduce for every positive integer ¢ and all § > 0 the truncation functions

I'y,s: R — R such that
z

T, zZ)= —— 5)
@0 ) = T oy (
and set, forall j =0,...,n—1,
ey = {607 ) o fm=l2
ET) +Tonyy—p) (W™ (), if m>2

Utilising the above, the truncated discretisations of the log-likelihood finally read
n—1
EM =28 0). ©)
j=0
We end this section with a remark about the properties of the truncation function

before we go on to discretising the filter.

Remark 1 The following two properties of the truncation function I', defined in (5),
are readily checked. For all positive integers g and all § > 0 we have that

i) the truncation function is bounded, specifically, for all z € R,

0
ITq.s(2) < N

ii) and that its derivative is bounded for all z € R as

g(l1-g)-1

d
< T <1.
2q T dz q’(j(z) -

In particular, the truncation function is Lipschitz continuous.

2.2.3 Discretisation of the filter

Since '»":sz in (6) is a discretisation of the log-likelihood we will now consider, for
all¢ > 0, 7 e I1(¢) and all positive integers m, the discretised likelihood

Z"™ = exp (fl”") )
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The filter is now discretised, under the condition that the Borel measurable function
o satisfies E[|¢(X;)Z["™|] < o, to the m-th order by

pi" (@) =E[e(X)Z]™ | Y]
and m
P (e)
P (1)
It remains to show that the achieved discretisation is indeed of order m.

" (g) = @)

2.2.4 Order of approximation for the filtering functionals

In the framework developed thus far, we can state the main result of [S] which justifies
the construction and proves the high order approximation. To this end, we consider
the LP-norms ||-||.» = E[|-|P1Y/P, p > 1.

Theorem 1 (Theorem 2.3 in [5])

Let m be a positive integer, let t > 0, let ¢ be an (m + 1)-times continuously dif-
ferentiable function with at most polynomial growth and assume further that the
coefficients of the partially observed system (X,Y) in (1) satisfy that

o f'is bounded and max{2,2m — 1}-times continuously differentiable with bounded
derivatives,

o o is bounded and 2m-times continuously differentiable with bounded derivatives,

o h is bounded and (2m + 1)-times continuously differentiable with bounded
derivatives, and that

o Xo has moments of all orders.

Then there exist positive constants &y and C, such that for all partitions T € I1(¢)
with meshsize 6 < 69 we have that

lo: (@) = p™ ()| 2 < C6™.

Moreover, there exist positive constants 6o and C, such that for all partitions T € TI(t)
with meshsize 6 < 0y,

E|lm (@) - 7" (¢)] < Co™.
Remark 2 Under the above assumption that / is bounded and ¢ has at most polyno-
mial growth, the required condition from Theorem 2.4 in [5] that there exists € > 0
such that sup  cr(ry.5<50) 177" (@)l 26 < 00 holds.

3 Robustness of the approximation

The classical robustness of the filter as in Theorem 5.12 in [1] states that for every
¢t > 0 and bounded Borel measurable function ¢ the filter 7, (¢) can be represented
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as a function of the observation path
Yo,n(w) ={¥s(w): s €[0,2]}, weQ.

In particular, ¥, is here a path-valued random variable. The precise meaning of
robustness is then that there exists a unique bounded Borel measurable function F*-¥
on the path space C([0, t];R¥ ), that is the space of continuous R4 -valued functions
on [0,¢], with the properties that

i) P-almost surely,
(@) = F* (Yo.1)

and
ii) F"¥ is continuous with respect to the supremum norm!.

The volume [1] contains further details on the robust representation. In the present
paper, we establish the analogous result for the discretised filter ;" (¢) from (7). It
is formulated as follows.

Theorem 2 Let t > 0, T = {¢t¢,...,tn} € II(¢), let m be a positive integer and
let ¢ be a bounded Borel measurable function. Then there exists a function
Fy™: C([0,¢];R%) — R with the properties that

i) P-almost surely,
7" () = Fy™ (Yo.n)

and
ii) for every two bounded paths y1, y» € C([0,11;RY) there exists a positive constant
C such that
[Fg™ (y1) = Fg ™" (32)] < Cllglllly1 = y2lloo-

Note that Theorem 2 implies the following statement in the total variation norm.

Corollary 1 Lett > 0, T = {to,...,tn} € I1(¢), and let m be a positive integer. Then,
for every two bounded paths y1,y> € C([0,¢];R%Y) there exists a positive constant C
such that

ey =l ™y = sup |FRM () = Fp " (v2)] < Cllyi = y2lleos
@EBp, Il <1

where By, is the set of bounded and Borel measurable functions.

Remark 3 A natural question that arises in this context is to seek the rate of pathwise
convergence of F;"™" to F,, (defined as the limit of F;""™ when the meshsize goes to
zero) as functions on the path space. The rate of pathwise convergence is expected to
be dependent on the Holder constant of the observation path. Therefore, it is expected
to be not better than ; — € for a semimartingale observation. The absence of high
order iterated integrals of the observation process in the construction of F;’m means

! For a subset D C R! and a function : D — R¢ we set |||l = max;=1,.. qllYille =
max;=1,..,d SUPxep ¥ (x)]
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that one cannot obtain pathwise high order approximations based on the work in
[5]. Such approximations will no longer be continuous in the supremum norm. Thus
we need to consider rough path norms in this context. In a different setting, Clark
showed in the earlier paper [3] that one cannot construct pathwise approximations
of solutions of SDEs by using only increments of the driving Brownian motion.

In the following and final part of the paper, we exhibit the proof of Theorem 2.

4 Proof of the robustness of the approximation

We begin by constructing what will be the robust representation. Consider, for all
y € C([0,¢];RM),

-1

N

ti+1
EP ) = ) AR ) () e ) = (1) ()3 ) f (vsdn ™ (5)))
Jj=0 tj
S 0 0 e 0
= 3RO 0 1)y ) = (X)) f (e (5)))
j=0 Zj

<h(Xt,,) yt"> <h(Xlo) yln>
n—1

Lj+1
+ {K?"”+<n§?”"(tj+1)—h(Xt,»H)’yr_,-H)—f (s> dn ™ ()
tj ’

Jj=0

and further, for m > 2,
T,m 2,m 2,m s 2,m
M) = 0 ) [ i 6)
.

so that we can define

—TWL(y) lf m=l,2
—-T m(y) n—1
EFP0)+ ) tiyerip (M), if m>2
=0

Furthermore, set

ZP"(y) =exp(EP" ().

Example 1 The robust approximation for m = 1 and m = 2 are given as follows.
First, if m = 1, then
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n— 1

[I]
I |

+<n Ntjan) Ve ) = Ch(Xa).ye,) — f ys,dn HON

; &.

O
-1

1
{ - 2<ha h>(th)(tj+l _tj) + <h(ij)!y!j+1 _ytj>}

(=}

Jj=

and also 27! (y) = Z7' (y) so that Z7"' (y) = exp(E" ' (y)). If m = 2, then

n-1 i+l
EF7 (00 =E0 )+ DK+ (0 (), ) - f (yedn} ()}
Jj=0 i

n—1

B 1 tj+1
aeM; j=0 g
n—1
>y f (L h(Xy ) y1y, = ys) AV
aeM; j=0
Therefore, also ”Tz(y) "Tz(y) so that Z" 2(y) = CXP(HTZ()’)) =

First, we show that the newly constructed Z;™ is locally bounded.

Lemma 1 Let ¢t > 0, let T = {¢¢,...,t,} € II(¢) be a partition with mesh size § and
let m be a positive integer. Then, for all R > 0, p > 1 there exists a positive constant
Bp, R such that

sup | Z/"(Ml» < Bp.r-
lly o <R

Proof Notice that, by Remark 1, in the case m > 2, we have for all y € C([0,];R?")

that
no

2 < B () + @m— D)

This implies that for all y € C([0,];R?),

M(y) = exp('—T "(y)) < exp(—'T Z(Y))GXP(ﬁ)'

For m = 1, we clearly have .ZtT’l(y) = exp(E,T’l(y)). Hence, it suffices to show the

result for m = 1,2 only. We have

n-l1 i+
—_T,2 —T,1 1,2 1,2 ) 1,2
E2(0) = 57 00+ DK+ (), v ) - f (3 d 2 ()}
j=0 2]

Now, by the triangle inequality, boundedness of y, and boundedness of 4, we get

n—1

SO 0 (1) iy = B i) f (o dn® (5)))

j=0

= (y) =
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n—

{K?,] + <h(le)’ytj+l _ytj>}

S -
- O

1
Dl R ot = 1) + (XK )y = 31,))
j=0
_ tdyllhlE
- 2

+2R| Al = Co,

where we denote the final constant by Cy. Furthermore, by the triangle inequality,
boundedness of y, and boundedness of / and its derivatives,

n—1

Dk 2 ) v ) = f " (ys,dn}’z(s»}‘
£ )

Jj=

n-l 1 1j+1
= > {’ZZL"(h,h)(X,j)L VT Vs
J

aEMl j=0

n-l1 i+l ]
{’Zf 2La<h’h>(th)(lj+l =5) + (L h(Xs;), vy, = ys) AV
aeM\{(0} ¥ j=0 VT

n-1 Ljt1
3 [, - yoan
J=01

<

}

+

n-1 i+l 1
> S )5+ RO i 300
j=0"1j

|
|

n-l1 i+l ]
< Z {|Zf 2La<h’h>(X’f)(tf+1_S)"'(Lah(Xt_/-),yt_,H—ys)st"
j=0"1

aeM;\{0}

1
- 26r||L"<h, P)lloo + 2dy ReI|LO Rl

t
1

—a+ Y {\ [ S B TST =)+ LB Xy =) F
aeMi\{0) V0

Here, C| is a constant introduced for conciseness. Then,
7,2

”-Zt (y)”Lp

<exp(Co+Cy)

t
1
exp( Z{m{'fo o LHB (X 1) (T51 = 8) + (LY A (X s ), yrs1 = ys) AV

aeMi\

n-1 tj+1
ZP' e (Y 2= e - [ Geane],
=0 tj g

b

Lr
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< 00,

The lemma is thus proved. O

In analogy to the filter, we define the functions

G5"™(y) = Elp(X)Z7" ()]

and m -
Gg" () Ele(X)Z " (0]

G B0

Lemma 2 Let 7 € I1(¢) be a partition, let m be a positive integer and let ¢ be a
bounded Borel measurable function. Then the functions G;’m: C([0,¢];R¥) - R
and F;’m : C([0,£];R%) = R are locally Lipschitz continuous and locally bounded.
Specifically, for every two paths yi,y> € C([0,£];R%) such that there exists a real

number R > 0 with ||y1|l < R and ||y2ll < R, there exist constants Lg, Mg, L,
and My such that

Fy™(y) =

IG5 (1) =Gy ()] < Lgllgllollyr = y2lle  and — |GZ™(y1)| < Mg ll@lle

and

FZ" () = FE™ ()| < Lellellsliyi = yalle— and — [FZ™ ()| < Mrllgll.

Proof We first show the results for G;;". Note that

1Z7" () = Z7" ) < (Z0" )+ Z7" ) IEF™ () —E7 " ()

Then, by the Cauchy-Schwarz inequality, for all p > 1 we have

le(X)Z™" (y1) = (XD ZS" ()l e < 2Bop rll@llllZr™ (v1) = Z7" (2l 20 -
3)
Thus, for m > 2, we can exploit the effect of the truncation function and, similarly to
the proof of Lemma 1, it suffices to show the result for m = 1, 2. To this end, consider
forallg > 1,

= (1)— 20)llza < IEF 0D —Z0 02l e

Z (7711-'2(l,'+1),yl(tj+1)—yz(lj+1)>—fj+ (y1(s) = y2(s),dn % (5)}
=0 1

L4

First, we obtain for all ¢ > 1,
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n-1
IZF G0 -E7 52l = Z(h(xzj), (1) =y2(2j+1) = 1(Z;) = y2(27)))

=0

La
< 2dyllhlloolly1 = y2lloo.
And second we have for all ¢ > 1 that

n-1

Z { ft " (O1(tj1) = 1(5)) = (y2(tj+1) = y2(5)), dn},z(s»]

=0 Yy
n—1
<2,
Jj=0

I_ LR, )1 () — ya(s))ds

La

(LB .31 1) = 32070001 =)

+

£ ) ) =y 02, -V
aeMi\{0}

f, LR o (5) = o)) AV

+
j L4
n-1
<Gy D W, -l | - yalls
J=0 @eM;\{0}
< Cllyt =y2lle

This and Lemma 1 imply that GZ™ is locally Lipschitz and locally bounded. To
show the result for F;"" we need to establish that 1/G"™ is locally bounded. We
have, using Jensen’s inequality, that for m > 2

T,m ® T,m o r=7,m or=T 5
Gly :E[Zt’ ] > eXp(E[dt’ ]) > eXp(E[:‘tyz])eXp(—(Z’n_nw)

and for m = 1 clearly
67! =EIZ]"] > exp(E[=]"1).
Since the quantities E [Efl] and E[E:z] are finite, the lemma is proved. O

In the following, given ¢ > 0, we set for every y € (0,1/2),

H, = yecomryy: sup Yol U oo ran)
susael0] 151 —82Y

and recall that Yo ,: Q — C([0, t];R?) denotes the random variable in path space
corresponding to the observation process Y.
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Lemma 3 For all t > 0 and y € (0,1/2), we have P-almost surely that Yo,r1 € H,.

Proof Recall that, under P, the observation process Y is a Brownian motion and, by
the Brownian scaling property, it suffices to show the result for # = 1. Therefore, let
v € (0,1/2) and note that for all § € (0, 1] we have

”YS1 _Ysz”oo ”Ysl _Yszllw ”XS] _YS2||00
sup —————— =max{ sup ————— _—
sLse01] 151 =827 snsae01] 151 =827 g peo1y 15182l
|si—s21<6 |s1—82|>6

The second element of the maximum above is easily bounded, P-almost surely, by
the sample path continuity. For the first element, note that there exists d¢p € (0,1)

such that for all ¢ € (0, do],
67 > 4/261log(1/9).

Therefore, it follows that P-almost surely,

”Y\1 _Y\‘z”m < ”YS] _Y\‘z”OO

soselo ] 1S1=521" 7 5 g eq0.11 2051 — s2llog(1/]s1 —s2)
|s1—s2]<d0 [s1—s2]<80

The Lévy modulus of continuity of Brownian motion further ensures that P-almost

surely,
. ” YS[ - YSQ ”00
limsup sup ———=

510 si,52€[0,1] 4/201og(1/8)

|s1—s2|<6

The Lemma 3 thus follows. ]

Lemmad4 Let 1={0=1¢ <...<t, =t} € ll(¢) be a partition, let j € {0,...,n—1}
and let ¢ be a positive integer. Then, there exists a version of the stochastic integral

Zj+1
CU0NRY)x23 () o [ Gt s €R
I

such that it is equal on H, x Q to a B(C([0,t];RY)) X F -measurable mapping.

Proof For k a positive integer, define for y € C([0,7];R?),

k-1
,k C 1 C 1
VANOE Z(yszxj’ (’7,C T sivy) -5 - (Si,j))>,
i=0
where s;; = M +tj, i =0,...,k. Furthermore, we set |s] = s;; for s €
[l(t”,'(_tf) +1j, (D t;) +1;). Then, for y € H,, we have

Ellgo- [ " eans< o)
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[(j;%](}’LsJ —ys,dnj’c“(s»)z]
(5, 5"

1l
esl]

. . 2
Ol —y;)L“hi(X;,)dla(l),,.,s) ]

aeM. i=0
dy _ el ) 2
<tvendyyy Y E[( [0l -ahLm ) d ) |
i=0 aeM. 1
dy B tjs1 ) ) )
= (ay+ay Yy, [ [ Oy DL, ) a1,
i=0 ae M, tj
ﬂqa‘io
dy . el ) s 2
ravandy Y STE|([ ol abenee)al [ L-y,an) |
i=0 ae M, 2 L
@|q)=0
K(tjv1-t))% o dv 1 [l
<y + Dy =20 max 128G D Y B[ [ a1y 0200
aeMe i=0 ae M, I
ﬂ/|a‘¢0

+Z > f 107(1>;,~,sds)2]}

i=0 aeM, L
Qo |= =0
_ dv+DdyCK (1 —t;)%
- 22ly ’

Where the constant C is independent of /. Thus, by Chebyshev’s inequality, we get
for all € > O that

1 (dv + 1)dyCK(tj1—;)*
>€) <
)< o

P(| 7 - f " < ()

However, the bound on the right-hand side is summable over / so that we conclude
using the first Borel-Cantelli Lemma that, for all € > 0,
)=

Thus, for all y € H,, the integral jjc’k(y) converges P-almost surely to the integral
ft’_"“ (Vss dnj‘f’c+1 (s)). Hence, we can define the limit on H, X Q to be
J

T () - f (s ()

(hm sup|J.

[—00

I (9)(w) = lirlnsupj,-“’(y><w>; (3 w) € Hy x Q.

Since the mapping
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C0,TI;R™)x Q3 (y,w) = limsup T '(y)(w) eR
[—o0
O

is jointly B(C([0,T];R%)) ® ¥ measurable the lemma is proved
It turns out that proving the robustness result is simplified by first decoupling the
processes X and Y in the following manner. Let (€, 7, P) be an indentical copy of

the probability space (€, 7, P). Then
Gy"(v) = Ele(X)Z7" ()]

is the corresponding representation of Gg;""(y) in the new space, where Z;*" ()

exp(E7" (y)) with
P = 3R (O ()3 ) — (K ) - f (o 2 (5))

n—1

j=0
and, for m > 2,
T 2,m 2m tj+1 -
M () = R = G2 (1), i) f o d27(5))
tj
so that, finally,
.éf,m()’), it m=12
itﬁm(y): ,_-,—2 el om
(y)""zrm (tj+1 t,)(M (y)) if m>2.
Jj=0

Moreover, with € (y) corresponding to Lemma 4 we can write for y € H,,

n—1
_Tm()’) Zo?m+<°0m(tj+l)’y;f+l> (h(X1;)s 1)

m—-1n-1

ZZ Ji ).

c=0 j=0
In the same way we get, mutatis mutandis, the expression for = ol . (y) on H,. Now,

we denote by
(QF,P)=(QxXQLF F,P®P)
the product probability space. In the following we lift the processes 7j and Y from the
5C,CF 1 o
(@) =

component spaces to the product space by writing ¥ (w,®) =Y (w) and 7j;

(@) for all (w,d) € O
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Lemma 5 Let c be a positive integer and let j € {0,...,n}. Then there exists a nullset
No € F such that the mapping (w, @) jj" (Yo.11(w))(®) coincides on (\ No) X €2

with an ¥ -measurable map.

Proof Notice first that the set
No = {w € Q: Yor(w) € H,}

is clearly a member of ¥ and we have that P(Ny) = 0. With Ny so defined, the lemma
follows from the definition and measurability of (w,®) jj’.“ Yo,r1(w))(@). O

Lemma 6 Let ¢ be a positive integer and j € {0, . .., n). Then we have P-almost surely
that

Lj+1 R
[ izt on = G .
L
Proof Note that we can assume without loss of generality that dy = 1 because the
result follows componentwise. Then, let K > 0 and 7 = inf{s € [0,7]: |¥;| < K} to
define

YR =Yler + %leor s s €01,

Then Fubini’s theorem and Lemma 5 imply that

2
[(Z b (15 (i) =15 50)) = .C(Y[éﬂ(w)))]
) fﬂw BUT (06 @) = T (i @)] dP@)

Now, since the function s - ¥X (w) is continuous and j c(Yk 0.1] (w)) is a version of
the integral ftj’” YK(w) dij “*1(s) we have for every w € Q\ N that
lim B[(F (5 (@) = T (O (@)))*] = 0
Moreover, clearly,
EL(T (@) = T (O (@))°] < 4KPE[7] < o0
So that we can conclude by the dominated convergence theorem that

k-1 . >
. E[(Z (5 (i) =g si)) = T O @) ]

k
—00 20

- fg lim E[(F (4K (@) = T 5K, (00)*] dP(w) =0

\No k—oo0

As K is arbitrary, the lemma is proved. O



98 Dan Crisan, Alexander Lobbe, and Salvador Ortiz-Latorre

Finally, we are ready to show the main result, Theorem 2. We restate it here again,
in a slightly different manner which reflects the current line of argument.

Theorem 3 The random variable Fg;"™ (Yo,0) is a version of n;"™ (¢).

Proof By the Kallianpur-Striebel formula it suffices to show that for all bounded
and Borel measurable functions ¢ we have P-almost surely

o (9) = GZ™ (Yor)-

Furthermore, this is equivalent to showing that for all continuous and bounded
functions b: C([0,¢];R%") — R the equality

E[p;™ (©)b(Yo.)] = ELGT™ (Yo.) b(Yio.)]-
holds. As for the left-hand side we can write

Elp;" (©)b(Yo.1)]
= E[‘P(Xt)ZzT’mb(Y[O,t])]

= Bl(X,) exp(€7™)b(Yo,1)]
= Blo(X:) exp(E™)b(¥o,)]
= Blo(X;) exp(IBP(E7™))b(¥io,))]

where IBP(?,”") is given by the application of the integration by parts formula for
semimartingales as

n—1
IBP(£]™) = ) IBP(E™)())
7=0

n—1 ti+l
= DR T ) Y ) = (B T - f (%, dif}" (5)))
j=0 I

Zj+1
IBP(A™™) () = &5+ (™" (141), Yy ) = f (%, dif " (5))
7

IBP(£"™)()), if m=1,2

TBPG )U):{IBP@:”")(/')+rm,<t,ﬂ_tj>(IBP(ﬁ”")(f)), it m>2

And, on the other hand, the right-hand side is



Pathwise Approximations for the Solution of the Non-Linear Filtering Problem 99

E[GL™ (Yo,)b(¥o,n)]

= Elo(X) Z7™ (Yo0.1)b(Yo.)]

= Elo(X,) exp(EF™ (Yo.1)b(Yo.1)]

= E[E[o(X,) exp(Z]" (Ho.1) 15 (o))
= Elo(%:) exp(Z]" (Yo.1)b (o),

where the last equality follows from Fubini’s theorem. As the representations coin-
cide, the theorem is thus proved. O
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Discrete-Time Portfolio Optimization under
Maximum Drawdown Constraint with Partial
Information and Deep Learning Resolution

Carmine de Franco, Johann Nicolle, and Huyén Pham

In Memory of Mark H Davis

Abstract We study a discrete-time portfolio selection problem with partial informa-
tion and maximum drawdown constraint. Drift uncertainty in the multidimensional
framework is modeled by a prior probability distribution. In this Bayesian frame-
work, we derive the dynamic programming equation using an appropriate change
of measure, and obtain semi-explicit results in the Gaussian case. The latter case,
with a CRRA utility function is completely solved numerically using recent deep
learning techniques for stochastic optimal control problems. We emphasize the in-
formative value of the learning strategy versus the non-learning one by providing
empirical performance and sensitivity analysis with respect to the uncertainty of the
drift. Furthermore, we show numerical evidence of the close relationship between
the non-learning strategy and a no short-sale constrained Merton problem, by illus-
trating the convergence of the former towards the latter as the maximum drawdown
constraint vanishes.

1 Introduction

This paper is devoted to the study of a constrained allocation problem in discrete
time with partial information. We consider an investor who is willing to maximize
the expected utility of her terminal wealth over a given investment horizon. The
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risk-averse investor is looking for the optimal portfolio in financial assets under
a maximum drawdown constraint. The maximum drawdown is a common metric
in finance and represents the largest drop in the portfolio value. Our framework
incorporates this constraint by setting a threshold representing the proportion of the
current maximum of the wealth process that the investor is willing to keep.

The expected rate of assets’ return (drift) is unknown, but information can be
learnt by progressive observation of the financial asset prices. The uncertainty about
the rate of return is modeled by a probability distribution, i.e., a prior belief on the
drift. To take into account the information conveyed by the prices, this prior will be
updated using a Bayesian learning approach.

An extensive literature exists on parameters uncertainty and especially on filtering
and learning techniques in a partial information framework. To cite just a few,
see [18], [20], [5], [16], [2], and [6]. Somme articles deal with risk constraints
in a portfolio allocation framework. For instance, paper [19] tackles dynamic risk
constraints and compares the continuous and discrete time trading while some papers
especially focus on drawdown constraints, see in particular seminal paper [11] or
[4]. More recently, the authors of [8] study infinite-horizon optimal consumption-
investment problem in continuous-time, and in paper [3], authors use forecasts of the
mean and covariance of financial returns from a multivariate hidden Markov model
with time-varying parameters to build the optimal controls.

As it is not possible to solve analytically our constrained optimal allocation
problem, we have applied a machine learning algorithm developed in [13] and
[1]. This algorithm, called Hybrid-Now, is particularly suited for solving stochastic
control problems in high dimension using deep neural networks.

Our main contributions to the literature is twofold: a detailed theoretical study
of a discrete-time portfolio selection problem including both drift uncertainty and
maximum drawdown constraint, and a numerical resolution using a deep learning
approach for an application to a model of three risky assets, leading to a five-
dimensional problem. We derive the dynamic programming equation (DPE), which is
in general of infinite-dimensional nature, following the change of measure suggested
in [9]. In the Gaussian case, the DPE is reduced to a finite-dimensional equation by
exploiting the Kalman filter. In the particular case of constant relative risk aversion
(CRRA) utility function, we reduce furthermore the dimensionality of the problem.
Then, we solve numerically the problem in the Gaussian case with CRRA utility
functions using the deep learning Hybrid-Now algorithm. Such numerical results
allow us to provide a detailed analysis of the performance and allocations of both
the learning and non-learning strategies benchmarked with a comparable equally-
weighted strategy. Finally, we assess the performance of the learning compared
to the non-learning strategy with respect to the sensitivity of the uncertainty of
the drift. Additionally, we provide empirical evidence of convergence of the non-
learning strategy to the solution of the classical Merton problem when the parameter
controlling the maximum drawdown vanishes.

The paper is organized as follows: Section 2 sets up the financial market model
and the associated optimization problem. Section 3 describes, in the general case,
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the change of measure and the Bayesian filtering, the derivation of the dynamic
programming equation and details some properties of the value function. Section
4 focuses on the Gaussian case. Finally, Section 5 presents the neural network
techniques used, and shows the numerical results.

2 Problem setup

On a probability space (2, 7, P) equipped with a discrete filtration (¥ )k=0, ... N
satisfying the usual conditions, we consider a financial market model with one
riskless asset assumed normalized to one, and d risky assets. The price process
(S;; Jk=0,...~v of asseti € [1, d] is governed by the dynamics

Si, = SieRen, k=0,...,N-1, (1)

where Ry = (Rllc R R}{\i]) is the vector of the assets log-return between time k

and k + 1, and modeled as:
Rii1 = B+ €. 2)

The drift vector B is a d-dimensional random variable with probability distribution
(prior) uo of known mean by = E[B] and finite second order moment. Note that the
case of known drift B means that y is a Dirac distribution. The noise € = (ex)x
is a sequence of centered i.i.d. random vector variables with covariance matrix I'
= Elex e,’(], and assumed to be independent of B. We also assume the fundamental
assumption that the probability distribution v of €; admits a strictly positive density
function g on R? with respect to the Lebesgue measure.

The price process S is observable, and notice by relation (1) that R can be deduced
from S, and vice-versa. We will then denote by F° = {ﬂ" } 0. N the observation
filtration generated by the process S (hence equivalently by ’R“).’augmented by the
null sets of ¥, with the convention that for k = 0, 7—:)0 is the trivial algebra.

Aninvestment strategy is an F°-progressively measurable process @ = (ax)k=o, ... N—1,
valued in R¢, and representing the proportion of the current wealth invested in each
of the d risky assets at each time k =0, ..., N — 1. Given an investment strategy «
and an initial wealth xq > 0, the (self-financed) wealth process X evolves according
to

X, =X¢ (1+ap (R -14)),  k=0...,N-1 5
X(()l = X0.
where eRx+1 is the d-dimensional random variable with components [eRk“]i = eRin

fori € [[1,d]), and 1 is the vector in R? with all components equal to 1.
Let us introduce the process Z, as the maximum up to time k of the wealth
process X%, i.e.,
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Z} = max X/, k=0, ..., N.

The maximum drawdown constraints the wealth Xg to remain above a fraction
q € (0, 1) of the current historical maximum Z]? . We then define the set of admissible
investment strategies ﬂg as the set of investment strategies a such that

Xy >qZ!, as, k=0,...,N.
In this framework, the portfolio selection problem is formulated as

Vo = sup B U (x3)]. 4)

a€A;

where U is a utility function on (0, co) satisfying the standard Inada conditions:
continuously differentiable, strictly increasing, concave on (0, c0) with U’(0) = oo
and U’ (o0) = 0.

3 Dynamic programming system

In this section, we show how Problem (4) can be characterized from dynamic pro-
gramming in terms of a backward system of equations amenable for algorithms. In a
first step, we will update the prior on the drift uncertainty, and take advantage of the
newest available information by adopting a Bayesian filtering approach. This relies
on a suitable change of probability measure.

3.1 Change of measure and Bayesian filtering

We start by introducing a change of measure under which Ry,..., Ry are mutually
independent, identically distributed random variables and independent from the drift
B, hence behaving like a noise. Following the methodology detailed in [9] we define
the o -algebras

G):=0(B,Ry,....,R), k=0,...,N,

and G = (G ) _the corresponding complete filtration. We then define a new proba-
bility measure P on (€2, \/ ,’(V: 1 Gk) by

dP
—| :=Ax k=0,...,N,
dng

with
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, k=1,...,N, Ag = 1.

The existence of P comes from the Kolmogorov’s theorem since Ay is a strictly
positive martingale with expectation equal to one. Indeed, forall k = 1, ..., N,

* Ay > O since the probability density function g is strictly positive
* A is Gi-adapted,
* As €r AL Gr—1, we have

(B + Gk)
E[Ak|Gk-1] = Ag-1 [g |G- 1]
(B +e)
- [ g—g(e)de = Aot [ g(dz = A
rd  g(e) Rd
Proposition Under P, (Ri)k=1,...N> is a sequence of i.i.d. random variables, inde-
pendent from B, having the same probability distribution v as €. O
Proof. See Appendix 6.1. O

Conversely, we recover the initial measure P under which (ex)x=1,.. .~ is a se-
quence of independent and identically distributed random variables having proba-
bility density function g where €; = Ry — B. Denoting by Ay the Radon-Nikodym
derivative dP/dP restricted to the o-algebra Gy :

dpP
dP G

we have
ng(R B)
L1 e Ry

It is clear that, under P, the return and wealth processes have the form stated in
equations (2) and (3). Moreover, from Bayes formula, the posterior distribution of
the drift, i.e. the conditional law of B given the asset price observation, is

p(db) := P[B € db|F°] = %, k=0,... N, (5)

where 7y is the so-called unnormalized conditional law
ﬂk(db) = E[Kk]l{gedbﬂﬁo], k=0,...,N.

We then have the key recurrence linear relation on the unnormalized conditional
law.

Proposition We have the recursive linear relation
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me=8Re—)mem1, €=1,...,N, (6)

with initial condition g = o, where

- g(R¢ — b) d
g(R;—b) ==>=——=—, beR"
g(Re)
and we recall that g is the probability density function of the identically distributed
€ under P. O
Proof. See Appendix 6.2 . o

3.2 The static set of admissible controls

In this subsection, we derive some useful characteristics of the space of controls
which will turn out to be crucial in the derivation of the dynamic programming
system.

Given time k € [0, N, a current wealth x = X,‘(" > (0, and current maximum wealth
z=Z; > x that satisfies the drawdown constraint gz < x at time k for an admissible
investment strategy @ € A7, we denote by AZ (x,z) € R¥ the set of static controls a
= ay such that the drawdown constraint is satisfied at next time k + 1, i.e. X;’ 2
qZ;

el From the relation (3), and noting that Z/(:+1 = max[Z?, X/(<1+1]’ this yields

A% (x,2) =

(M

{a eRY:1+a' (R —1,) > gmax [E, 1+ a’ (R — ]1d)] a.s.} .
x

Recalling from Proposition 1, that the random variables Ry, ..., Ry arei.i.d. under P,
we notice that the set AZ (x, z) does not depend on the current time k, and we will
drop the subscript k in the sequel, and simply denote by A?(x, z).

Remembering that the support of v, the probability distribution of e, is R?, the
following lemma characterizes more precisely the set A9 (x, 7).

Lemma 1 For any (x,z) € 87 := {(x,z) € (0,0)% : gz < x < z}, we have
z
Al(x,2) = {aeR}:|al, < 1- q;},

where |al, = ;1:1 la;| fora = (ay,...,aq) € Rf.

Proof. See Appendix 6.3. a
Let us prove some properties on the admissible set A?(x, z).

Lemma 2 For any (x, z) € 84, the set A1(x, z) satisfies the following properties:

1. It is decreasing in q: Vq1 < ¢, A% (x,7) C A1 (x, 2),
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2. It is continuous in q,

3. It is increasing in x: Vx1 < x3, A1(x1,2) C A9(xy, 2),

4. It is a convex set,

5. It is homogeneous: a € A1(x,7) © a € A9(Ax, A7), for any A > 0.

Proof. See Appendix 6.4. |

3.3 Derivation of the dynamic programming equation

The change of probability detailed in Subsection 3.1 allows us to turn the initial
partial information Problem (4) into a full observation problem as

Vo = sup E[UX)] sup E[ANU(X )]

areﬂq aeﬂq

= sup E[B[ANUXIFY]]

ae&’(q

sup E[U(Xﬁ)ﬂN(Rd)], (8)

q
€A,

from Bayes formula, the law of conditional expectations, and the definition of the
unnormalized filter ; valued in M., the set of nonnegative measures on R%. In view
of Equation (3), Proposition 1, and Proposition 2, we then introduce the dynamic
value function associated to Problem (8) as

vk(x,z, ) = sup  Jr(x,z ), ke[ON], (x,2) €S9, ue M.,
ae Al (x,2)

with
Iz pma) = E[UXRG)mg D),

k,x,a

where X5 is the solution to Equation (3) on [k, N, starting at X, = x at
time k, controlled by a € ﬂq(x z), and (7r Mok, is the solution to (6) on

M, starting from 7rk = u, so that Vo = vo(xo, xo, ,uo) Here, ﬂq(x z) is the set

of admissible investment strategies embedding the drawdown constraint: X’ kxa s

qu ©B¥ p = k,...,N, where the maximum wealth process ZX*%@ follows the
: k, k,x, k, . k,x.z,

dynamics: Z{)flZ ¥ = = max[Z, »oLa X[Jj“] t=k,...,N -1, starting from Z; XL

= z at time k. The dependence of the value function upon the unnormalized filter u
means that the probability distribution on the drift is updated at each time step from
Bayesian learning by observing assets price.

The dynamic programming equation associated to (8) is then written in backward
induction as
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vy (X2 p) = U)p®Y),
vi(x,z,u) =  sup E[vk+1 (Xk’x’“ zhxva g ] k=0,...,N—1.

A% (x.2) k+1 > Tk+1 > Tk+1
ae X,z
x (%

Recalling Proposition 2 and Lemma 1, this dynamic programming system is written
more explicitly as

VN(.X, <5 ,Lt) = U(x)ﬂ(Ri)’ (x’ Z) € qu HE M+7
ez = sup Elve (x(1+a’ (e - 1a)), ©)

acA4(x,z)

max [z, x(1+a' (Rt = 14))], @(Risr = ) ],

for k =0,..., N — 1. Notice from Proposition 1 that the expectation in the abOV_e
formula is only taken with respect to the noise Ry, which is distributed under P
according to the probability distribution v with density g on R<.

3.4 Special case: CRRA utility function

In the case where the utility function is of CRRA (Constant Relative Risk Aversion)
type, i.e.,

P
U(x) ==, x>0, forsome0<p<l, (10)
p

one can reduce the dimensionality of the problem. For this purpose, we introduce the
process p = (px ) defined as the ratio of the wealth over its maximum up to current
as:

a
Xk

a _
= =5
Zk

o k=0,...,N.

This ratio process lies in the interval [g, 1] due to the maximum drawdown constraint.
Moreover, recalling (3), and observing that Z,?H =max[Z& X ,‘:” ], together with the
fact that m = min[g, )—IC], we notice that the ratio process p can be written in
inductive form as

Piy1 = min [I’Pg(l +ay (R - 14))], k=0,....,N-1.

The following result states that the value function inherits the homogeneity prop-
erty of the utility function.

Lemma 3 For a utility function U as in (10), we have for all (x,z) € 89, u € M,,
k € [0, NT|,

Vi (Ax, Az, p) = APvi(x, 2, 1), A > 0.
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Proof. See Appendix 6.5. a
In view of the above Lemma, we consider the sequence of functions wg, k €
[0, N, defined by

wi(r, ) =v(r,Lu), relgll ue M,

so that vi (x, z, ) = 2P wy (’Z—‘, 1), and we call wy the reduced value function. From the
dynamic programming system satisfied by v;, we immediately obtain the backward
system for (wy)x as

{WN(V, H) = %#(Rd)’ re [C], 1], ﬂ € M+’

wi(r, ) = sup E[wk+1(min [L,r(1+ a'((sz+l —14))],8(Rk+1 — '),u)],
acAd (r)
(1D

fork=0,...,N — 1, where
q _ d. v _g
A(r)—{a€R+.a]ldS1 r}‘

We end this section by stating some properties on the reduced value function.

Lemma 4 For any k € [0, N]\, the reduced value function wy, is nondecreasing and
concave inr € [g, 1].

Proof. See proof in Appendix 6.6. a

4 The Gaussian case

We consider in this section the Gaussian framework where the noise and the prior
belief on the drift are modeled according to a Gaussian distribution. In this special
case, the Bayesian filtering is simplified into the Kalman filtering, and the dynamic
programming system is reduced to a finite-dimensional problem that will be solved
numerically. It is convenient to deal directly with the posterior distribution of the
drift, i.e. the conditional law of the drift B given the assets price observation, also
called normalized filter. From (5) and Proposition 2, it is given by the inductive
relation

i (dpy = SLZDa(dd) (12)

Jra 8(Ri = b) -1 (ab)

4.1 Bayesian Kalman filtering

We assume that the probability law v of the noise €, is Gaussian: N (0,T’), and so
with density function
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_d _1 _lr’r—lr d
g(r) = 2n) 2| 2¢72 , reR%. (13)

Assuming also that the prior distribution po on the drift B is Gaussian with mean
by, and invertible covariance matrix Xy, we deduce by induction from (12) that the
posterior distribution gy is also Gaussian: py ~ N(ék, 2x), where Bk = E[B|7‘7€0]
and X satisfy the well-known inductive relations:

Bii1 = Bk + Kyt (R = Br), k=0,...,N-1 (14)
Tpo1 = Tk — S (T + D)7y, (15)

where Ki. is the so-called Kalman gain given by
Kii1 =% +D)7Y k=0,...,N-1. (16)

We have the initialization By = by, and the notation for I is coherent at time k = 0
as it corresponds to the covariance matrice of B. While the Bayesian estimation By
of B is updated from the current observation of the log-return Ry, notice that Z; (as
well as Kj) is deterministic, and is then equal to the covariance matrix of the error
between B and its Bayesian estimation, i.e. X = E[(B — 1§k)(B - 1§’k)’]. Actually,
we can explicitly compute Z; by noting from Equation (12) with g as in (13) and
to ~ N (b, Zp) that

e—%(b—(z(;ur*'k)’l(r*l oy Ry+E5 bo) ) (5511 1K) (b=(5 1) (T 2, Ry o)

i ~
CmE ISy + T3

By identification, we then get
= (gt + 7)™ = (T + Zok) ' (17)
Moreover, the innovation process (€ )k, defined as
€rs1 = Rt — B[R |7l = Resi — B, k=0,...,N-1, (18)

is a F?-adapted Gaussian process. Each €. is independent of ﬁo (hence €&,
k = 1,...,N are mutually independent), and is a centered Gaussian vector with
covariance matrix:

€1 ~ N (O, fk+1), with fk+1 = X+ 1.

We refer to [15] and [14] for these classical properties about the Kalman filtering
and the innovation process.

Remark I From (14), and (18), we see that the Bayesian estimator By, follows the
dynamics

Bii1 = By + Kpi16xe1, k=0,...,N—1
By = by,
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which implies in particular that B; has a Gaussian distribution with mean by, and
covariance matrix satisfying

Var(By+1) = Var(By) + K1 (S + DK, = Var(B) + S (S + D)7 'Sy

Recalling the inductive relation (15) on Z, this shows that Var(I?k) =Xy — Zr. Note
that, from Equation (15), (Xx )« is a decreasing sequence which ensures that Var(By)
is positive semi-definite and is nondecreasing with time k. O

4.2 Finite-dimensional dynamic programming equation

From (18), we see that our initial portfolio selection Problem (4) can be reformulated
as a full observation problem with state dynamics given by

k+1

_ 1 (  Br+éi _
X = X (1 ag (e - 1)), (19)
Bii1 = B + Kyy1€k1, k=0,...,N-1.

We then define the value function on [0, N]| X S x R4 by

Bnzb) = sup E[UXEY")], ke [ON] (x.2) € S%, beRY,

aeA! (x.2)

where the pair (X%*2@, B&-b) is the process solution to (19) on [k, N, starting from
(x, b) at time k, so that Vjy = ¥(x0, x0, bg). The associated dynamic programming
system satisfied by the sequence (¥ )i is

n(x,zb) = Ux), (x,2)€89 beR,
Pr(x,z,b) =  sup E[\"}kH (x(l +a' (PP — 1)),
a€Ad(x,z)
max [z, x(1 + a'(ebJ'g"*' —14)]. 0+ Kk+1€k+1)],
fork=0,..., N — 1. Notice that in the above formula, the expectation is taken with

respect to the innovation vector .|, which is distributed according to N (0, Teip).
Moreover, in the case of CRRA utility functions U (x) = x”/p, and similarly as
in Section 3.4, we have the dimension reduction with

Wi (r,b) = % (r,1,b), relg1], beR

so that Vx (x, z, b) = zP Wk()z—‘, b), and this reduced value function satisfies the back-
ward system on [g, 1] x R¥:

Wn(rb) =55 relgll beR?,

Wi (r,b) = sup E[Wk+1(min [Lr(1+ a/(elﬁgk+I —14)]. 0+ Kk+16~k+1)],
acAd(r)
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fork=0,...,N—1.

Remark 2 (No short-sale constrained Merton problem) In the limiting case when
q = 0, the drawdown constraint is reduced to a non-negativity constraint on the
wealth process, and by Lemma 1, this means a no-short selling and no borrowing
constraint on the portfolio strategies. When the drift B is also known, equal to b,
and for a CRRA utility function, let us then consider the corresponding constrained
Merton problem with value function denoted by v}{” ,k=0,..., N, which satisfies
the standard backward recursion from dynamic programming:

P
v%(x):x? x>0,

vl (x) = sup E[v%l(x(l +a’ (eborerr - ]ld))], k=0,...,N-1. (20)
a'lyg<l
ael0,11¢

Searching for a solution of the form vf("’ (x) =K xP/p,with K; > Oforall k € [0, N]],
we see that the sequence (K )y satisfies the recursive relation:

Ky = SKiy1, k=0,...,N-1,
starting from Ky = 1, where

. 7 (  boter _ p
5= s (14~ 1))
aef0,1]4

by recalling that €, ..., ey are i.i.d. random variables. It follows that the value
function of the constrained Merton problem, unique solution to the dynamic pro-
gramming system (20), is equal to

p
M (x) =SN‘k%, k=0,...,N,

and the constant optimal control is given by

a,i"[ = argmax E [(1 +a’ (eR‘ - ]ld>)p] k=0,...,N—1.

a’'l1<1

ael0,114

S Deep learning numerical resolution

In this section, we exhibit numerical results to promote the benefits of learning
from new information. To this end, we compare the learning strategy (Learning) to
the non-learning one (Non-Learning) in the case of the CRRA utility function and



Portfolio Optimization with Partial Information and Maximum Drawdown Constraint 113

the Gaussian distribution for the noise. The prior probability distribution of B is
the Gaussian distribution N (bg, Xo) for Learning while it is the Dirac distribution
concentrated at by for Non-Learning.

We use deep neural network techniques to compute numerically the optimal
solutions for both Learning and Non-Learning. To broaden the analysis, in addition to
the learning and non-learning strategies, we have computed an ”admissible” equally
weighted (EW) strategy. More precisely, this EW strategy will share the quantity
X — qZy equally among the d assets. Eventually, we show numerical evidence
that the Non-Learning converges to the optimal strategy of the constrained Merton
problem, when the loss aversion parameter g vanishes.

5.1 Architectures of the deep neural networks

Neural networks (NN) are able to approximate nonlinear continuous functions, typ-
ically the value function and controls of our problem. The principle is to use a large
amount of data to train the NN so that it progressively comes close to the target
function. It is an iterative process in which the NN is tuned on a training set, then
tested on a validation set to avoid over-fitting. For more details, see for instance [12]
and [10].

The algorithm we use, relies on two dense neural networks: the first one is
dedicated to the controls (An ) and the second one to the value function (V Fypn).
Each NN is composed of four layers: an input layer, two hidden layers and an output
layer:

(i) The input layer is d + 1-dimensional since it embeds the conditional expectations
of each of the d assets and the ratio of the current wealth to the current historical
maximum p.

(i) The two hidden layers give the NN the flexibility to adjust its weights and biases
to approximate the solution. From numerical experiments, we see that, given
the complexity of our problem, a first hidden layer with d + 20 neurons and a
second one with d + 10 are a good compromise between speed and accuracy.

(iii) The outputlayer is d-dimensional for the controls, one for each asset representing
the weight of the instrument, and is one-dimensional for the value function. See
Figures 1 and 2 for an overview of the NN architectures in the case of d = 3
assets.



114 Carmine de Franco, Johann Nicolle, and Huyén Pham

Parameter ANN VFnN
Initializer uniform(0, 1) He_uniform
Regularizers L2 norm L2 norm
Activation functions Elu and Sigmoid for output layer Elu and Sigmoid for output layer
Optimizer Adam Adam
Learning rates: step N-1 Se-3 le-3
steps k = 0,...,N-2 6.25¢e-4 5e-4
Scale le-3 le-3
Number of elements in a training batch 3e2 3e2
Number of training batches le2 le2
Size of the validation batches le3 le3
Penalty constant 3e-1 NA
Number of epochs: step N-1 2e3 2e3
steps k =0,...,.N-2 5e2 5e2
Size of the training set: step N-1 6e7 6e7
steps k =0,...,.N-2 1.5e7 1.5e7
Size of the validation set: step N-1 2e6 2e6
steps k = 0,..., N-2 5e5 5e5

Table 1 Parameters for the neural networks of the controls ANy and the value function VFnN.

+f

Fig. 1 A n architecture with d = 3 assets Fig. 2 V Fy n architecture with d = 3 assets

We follow the indications in [10] to setup and define the values of the various
inputs of the neural networks which are listed in Table 1.

To train the NN, we simulate the input data. For the conditional expectation E‘k, we
use its time-dependent Gaussian distribution (see Remark 1): B ~ N (bo, 2o — =),
with X as in Equation (17). On the other hand, the training of p is drawn from
the uniform distribution between ¢ and 1, the interval where it lies according to the
maximum drawdown constraint.

5.2 Hybrid-Now algorithm

We use the Hybrid-Now algorithm developped in [1] in order to solve numerically
our problem. This algorithm combines optimal policy estimation by neural networks
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and dynamic programming principle which suits the approach we have developped
in Section 4.

With the same notations as in Algorithm 1 detailed in the next insert, at time &,
the algorithm computes the proxy of the optimal control &; with Ay, using the
known function V| calculated the step before, and uses Vy to obtain a proxy of
the value function V. Starting from the known function Vn := U at terminal time N,
the algorithm computes sequentially & and V; with backward iteration until time 0.
This way, the algorithm loops to build the optimal controls and the value function
pointwise and gives as output the optimal strategy, namely the optimal controls from
0 to N — 1 and the value function at each of the N time steps.

The maximum drawdown constraint is a time-dependent constraint on the max-
imal proportion of wealth to invest (recall Lemma 1). In practice, it is a constraint
on the sum of weights of each asset or equivalently on the output of Aypy. For
that reason, we have implemented an appropriate penalty function that will reject
undesirable values:

G penatty (A.r) = Kmax(|A|l <1- %o) Ac[011 relgll.
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This penalty function ensures that the strategy respects the maximum drawdown

constraint at each time step, when the parameter K is chosen sufficiently large.
Algorithm 1: Hybrid-Now

Input: the training distributions ;¢ and p"Gauss;

> punir = U(g, 1)
> ﬂé}uu,\',\' = N(bo, 20 _21\)
Output:
N

- estimate of the optimal strategy (dx) k:_()l ;
. \N-1

- estimate of the value function <Vk)k: 0>

Set Vy = U;

for k=N-1,...,0do

Compute:

Pre argmin  E[Gpenatry (AN (pr Bis B, p1) = Vit (H,1 B ) |

B eR2d?+56d+283

where px ~ punir, Bx ~ 15 o0
Byv1 = Hi(By, &) and P€+1 =F (Pk, Bi, Ann (pk, ék;ﬁ) , €k+1);
> F(p, b, a, €) = min (l,p (l + Zf[:| at ((%I’i“i - l)))
> Hi (b, €) = b+ 2ol +Zok) e
Set dr = Ann (Bk) ;
> dp is the estimate of the optimal control at time k.
Compute:

N N 5 R R 2

fre argmin B [(m (A1 Bet) = VEun (o1 Bi:6) | ]
9 cR2d2+54d+261

Set ‘A/k =VFnNN (., ék) )

> V. is the estimate of the value function at time k.

A major argument behind the choice of this algorithm is that, it is particularly
relevant for problems in which the neural network approximation of the controls and
value function at time k, are close to the ones at time k + 1. This is what we expect
in our case. We can then take a small learning rate for the Adam optimizer which
enforces the stability of the parameters’ update during the gradient-descent based
learning procedure.

5.3 Numerical results

In this section, we explain the setup of the simulation and exhibit the main results.
We have used Tensorflow 2 and deep learning techniques for Python developped in
[10]. We consider d = 3 risky assets and a riskless asset whose return is assumed
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Parameter Value
Number of risky assets d 3
Investment horizon in years T’ 1
Number of steps/rebalancing N 24
Number of simulations/trajectories N 1000
Degree of the CRRA utility function p 0.8
Parameter of risk aversion g 0.7
Annualized expectation of the drift B [0.05 0.025 0.12]
022 0 0
Annualized covariance matrix of the drift B [ 0 0152 0 ]
0 0 0.12
Annualized volatility of € [0.08 0.04 0.22]
1 -0.1 0.2
Correlation matrix of € -0.1 1 -0.25
0.2 -0.25 1

0.0064 —0.00032 0.00352
0.00352 -0.0022 0.0484

Annualized covariance matrix of the noise € [—0.00032 0.0016 -0.0022

Table 2 Values of the parameters used in the simulation.

to be 0, on a 1-year investment horizon for the sake of simplicity. We consider 24
portfolio rebalancing during the 1-year period, i.e., one every two weeks. This means
that we have N = 24 steps in the training of our neural networks. The parameters
used in the simulation are detailed in Table 2.

First, we show the numerical results for the learning and the non-learning strate-
gies by presenting a performance and an allocation analysis in Subsection 5.3.1.
Then, we add the admissible constrained EW to the two previous ones and use
this neutral strategy as a benchmark in Subsection 5.3.2. Ultimately, in Subsection
5.3.3, we illustrate numerically the convergence of the non-learning strategy to the
constrained Merton problem when the loss aversion parameter ¢ vanishes.

5.3.1 Learning and non-learning strategies

We simulate N = 1000 trajectories for each strategy and exhibit the performance
results with an initial wealth xo = 1. Figures 3 illustrates the average historical
level of the learning and non-learning strategies with a 95% confidence interval.
Learning outperforms significantly Non-Learning with a narrower confidence inter-
val revealing that less uncertainty surrounds Learning performance, thus yielding
less risk.

An interesting phenomenon, visible in Fig. 3, is the nearly flat curve for Learning
between time O and time 1. Indeed, whereas Non-Learning starts investing immedi-
ately, Learning adopts a safer approach and needs a first time step before allocating a
significant proportion of wealth. Given the level of uncertainty surrounding by, this
first step allows Learning to fine-tune its allocation by updating the prior belief with
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the first return available at time 1. On the contrary, Non-Learning, which cannot
update its prior, starts investing at time 0.

Fig. 4 shows the ratio of Learning over Non-Learning. A ratio greater than one
means that Learning outperforms Non-Learning and underperforms when less than
one. It shows the significant outperformance of Learning over Non-Learning except
during the first period where Learning was not significantly invested and Non-
Learning had a positive return. Moreover, this graph reveals the typical increasing
concave curve of the value of information described in [17], in the context of
investment decisions and costs of data analytics, and in [6] in the resolution of
the Markowitz portfolio selection problem using a Bayesian learning approach.

Fig. 3 Historical Learning and Non-Learning
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Table 3 gathers relevant statistics for both Learning and Non-Learning such as:
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Fig. 4 Historical ratio of Learning over Non-
Learning levels.

2

average total performance, standard deviation of the terminal wealth X7, Sharpe ratio
computed as average total performance over standard deviation of terminal wealth.
The maximum drawdown (MD) is examined through two statistics: noting M Df,' the
maximum drawdown of the £-th trajectory of a strategy §, the average MD is defined

as,

N

. 1 .

Avg MD* = — 3" MD;,
N =1

for N trajectories of the strategy 5, and the worst MD is defined as,

Worst MD® = min (MDf, e MDfV) .

Finally, the Calmar ratio, computed as the ratio of the average total performance over
the average maximum drawdown, is the last statistic exhibited.

With the simulated dataset, Learning delivered, on average, a total performance
of 9.34% while Non-Learning only 6.40%. Integrating the most recent information
yielded a 2.94% excess return. Moreover, risk metrics are significantly better for
Learning than for Non-Learning. Learning exhibits a lower standard deviation of
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Statistic Learning Non-Learning Difference

Avg total performance 9.34% 6.40% 2.94%

Std dev. of X7 11.88% 16.67% -4.79%
Sharpe ratio 0.79 0.38 104.95%
Avg MD -1.53% -6.54% 5.01%
Worst MD -11.74%  -27.18% 15.44%
Calmar ratio 6.12 0.98 525.26%

Table 3 Performance metrics: Learning and Non-Learning. The difference for ratios are computed
as relative improvement.

terminal wealth than Non-Learning (11.88% versus 16.67%), with a difference of
4.79%. More interestingly, the maximum drawdown is notably better controlled by
Learning than by Non-Learning, on average (—1.53% versus —6.54%) and in the
worst case (—11.74% versus —27.18%). This result suggests that learning from new
observations, helps the strategy to better handle the dual objective of maximizing
total wealth while controlling the maximum drawdown. We also note that learning
improves the Sharpe ratio by 104.95% and the Calmar ratio by 525.26%.

Fig. 5 and 6 focus more precisely on the portfolio allocation. The graphs of Fig.
5 show the historical average allocation for each of the three risky assets. First, none
of the strategies invests in Asset 2 since it has the lowest expected return according
to the prior, see Table 2. Whereas Non-Learning focuses on Asset 3, the one with the
highest expected return, Learning performs an optimal allocation between Asset 1
and Asset 3 since this strategy is not stuck with the initial estimate given by the prior.
Therefore, Learning invests little at time O, then balances nearly equally both Assets
1 and 3, and then invests only in Asset 3 after time step 12. Instead, Non-Learning
is investing only in Asset 3, from time O until the end of the investment horizon.

Asset 1 Asset 2 Asset 3
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Fig. 5 Historical Learning and Non-Learning asset allocations.

The curves in Fig. 6 recall each asset’s optimal weight, but the main features
are the colored areas that represent the average historical total percentage of wealth
invested by each strategy. The dotted line represents the total allocation constraint
they should satisfy to be admissible. To satisfy the maximum drawdown constraint,
admissible strategies can only invest in risky assets the proportion of wealth that,
in theory, could be totally lost. This explains why the non-learning strategy invests
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at full capacity on the asset that has the maximum expected return according to the
prior distribution.

We clearly see that both strategies satisfy their respective constraints. Indeed,
looking at the left panel, Learning is far from saturating the constraint. It has invested,
on average, roughly 10% of its wealth while its constraint was set around 30%. Non-
learning invests at full capacity saturating its allocation constraint. Remark that this
constraint is not a straight line since it depends on the value of the ratio: current
wealth over current historical maximum, and evolves according to time.

Learning Non-Learning

b ”°M

Total % of wealth invested

oos{ j 005 S Leaming
nnnnnnnnn

z 4 6 a 0 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22
Time steps Time steps.

Fig. 6 Historical Learning and Non-Learning total allocations.

5.3.2 Learning, non-learning and constrained equally-weighted strategies

In this section, we add a simple constrained equally-weighted (EW) strategy to
serve as a benchmark for both Learning and Non-Learning. At each time step, the
constrained EW strategy invests, equally across the three assets, the proportion of
wealth above the threshold g.

Fig. 7 shows the average historical levels of the three strategies: Learning, Non-
Learning and constrained EW. We notice Non-Learning outperforms constrained
EW and both have similar confidence intervals. It is not surprising to see that Non-
Learning outperforms constrained EW since Non-Learning always bets on Asset 3,
the most performing, while constrained EW diversifies the risks equally among the
three assets.
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7 = Learning
—— Non-Learning
== Const. EW
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Fig. 7 Historical Learning, Non-Learning and constrained EW (Const. EW) levels with a 95%
confidence interval.

Fig. 8 shows the ratio of Learning over constrained EW: it depicts the same concave
shape as Fig. 4. The outperformance of Non-Learning with respect to constrained
EW is plot in Fig. 9 and confirms, on average, the similarity of the two strategies.

105 —— Leaming/Const. EW —— Non-Learning/Const. EW
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Fig. 8 Ratio Learning over constrained EW Fig.9 Ratio Non-Learning over constrained EW
(Const. EW) according to time. (Const. EW) according to time.

Table 4 collects relevant statistics for the three strategies. Learning clearly sur-
passes constrained EW: it outperforms by 5.49% while reducing uncertainty on
terminal wealth by 1.92% resulting in an improvement of 182.08% of the Sharpe
ratio. Moreover, it better handles maximum drawdown regarding both the average
and the worst case, exhibiting an improvement of 3.17% and 10.09% respectively,
enhancing the Calmar ratio by 647.56%.

The Non-Learning and the constrained EW have similar profiles. Even if Non-
Learning outperforms constrained EW by 2.5%, it has a higher uncertainty in ter-
minal wealth (+2.87%). This results in similar Sharpe ratios. Maximum drawdown,
both on average and considering the worst case are better handled by constrained EW
(—4.70% and —21.83% respectively) than by Non-Learning (—6.54% and —27.18%
respectively) thanks to the diversification capacity of constrained EW. The better per-
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Statistic Const. EW L NL L - Const. EW NL - Const. EW
Avg total performance  3.85%  9.34%  6.40% 5.49% 2.55%

Std dev. of X1 13.80% 11.88% 16.67% -1.92% 2.87%
Sharpe ratio 0.28 0.79 0.38 182.08% 37.63%
Avg MD -470%  -1.53% -6.54% 3.17% -1.84%
Worst MD -21.83% -11.74% -27.18% 10.09% -5.34%
Calmar ratio 0.82 6.12 0.98 647.56% -19.56%

Table 4 Performance metrics: Constrained EW (Const. EW) vs Learning (L) and Non-Learning
(NL). The difference for ratios are computed as relative improvement.

formance of Non-Learning compensates the better maximum drawdown handling of
constrained EW, entailing a better Calmar ratio for Non-Learning 0.98 versus 0.82
for constrained EW.

5.3.3 Non-learning and Merton strategies

We numerically analyze the impact of the drawdown parameter ¢, and compare the
non-learning strategies (assuming that the drift is equal to by), with the constrained
Merton strategy as described in Remark 2. Fig. 10 confirms that when the loss
aversion parameter g goes to zero, the non-learning strategy approaches the Merton
strategy.

1.35 4 —— Non-Learning: q = 0.7
=== Non-Learning: q = 0.4
—— Non-Learning: q = 0.1 3
—— Merton /—"‘

0 2 P} 6 8 10 12 14 16 18 20 22 24
Time steps

Fig. 10 Wealth curves resulting from the Merton strategy and the non-learning strategy for different
values of g.

In terms of assets’ allocation, the Merton strategy saturates the constraint only
by investing in the asset with the highest expected return, Asset 3, while the non-
learning strategy adopts a similar approach and invests at full capacity in the same
asset. To illustrate this point, we easily see that the areas at the top and bottom-left
corner converge to the area at the bottom-right corner of Fig. 11.
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Non-Learning: g = 0.4
01 01 Non-Learning; = 0.1
Merton

2 H 6 ] o 12 18 18 18 20 2 2 1 H [ 0 12 1 18 18 30 22
Time steps Time steps

Fig. 11 Asset 3 average weights of the non-learning strategies with g € {0.7,0.4,0.1} and the
Merton strategy.

As g vanishes, we observe evidence of the convergence of the Merton and the
non-learning strategies, materialized by a converging allocation pattern and resulting
wealth trajectories. It should not be surprising since both have in common not to
learn from incoming information conveyed by the prices.

5.4 Sensitivities analysis

In this subsection, we study the effect of changes in the uncertainty about the beliefs
of B. These beliefs take the form of an estimate by of B, and a degree of uncertainty
about this estimate, the covariance of g of B. For the sake of simplicity, we design X
as adiagonal matrix whose diagonal entries are variances representing the confidence
the investor has in her beliefs about the drift. To easily model a change in X, we
define the modified covariance matrix £ as

Lune 1= UNC * X,

where unc > 0. From now on, the prior of B is N (b, Sunc).

A higher value of unc means a higher uncertainty materialized by a lower con-
fidence in the prior estimate of the expected return of B, by. We consider learning
strategies with values of unc € {1/6, 1, 3, 6, 12}. The value unc = 1 was used for
Learning in Subsection 5.3.
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Equation (2) implies that the returns’ probability distribution depends upon unc.
It implies that for each value of unc, we need to compute both Learning and Non-
Learning on the returns sample drawn from the same probability law to make relevant
comparisons.
Therefore, from a sample of a thousand returns paths’ draws, we plot in Fig. 12 the
average curves of the excess return of Learning over its associated Non-Learning,
for different values of the uncertainty parameter unc.

= unc = 1/6

= unc=1

Excess return

0 2 4 6 8 10 12! 14 16 18 20 22 24
Time steps

Fig. 12 Excess return of Learning over Non-Learning with a 95% confidence interval for different
levels of uncertainty.

Looking at Fig. 12, we notice that when uncertainty about by is low, i.e. unc = 1/6,
Learning is close to Non-Learning and unsurprisingly the associated excess return is
small. Then, as we increase the value of unc the curves steepen increasingly showing
the effect of learning in generating excess return.

Table 5 summarises key statistics for the ten strategies computed in this sec-
tion. When unc = 1/6, Learning underperforms Non-Learning. This is explained
by the fact that Non-Learning has no doubt about by and knows Asset 3 is the best
performing asset acoording to its prior, whereas Learning, even with low uncer-
tainty, needs to learn it generating a lag which explains the underperformance on
average. For values of unc > 1 Learning outperforms Non-learning increasingly, as
can be seen on Fig. 13, at the cost of a growing standard deviation of terminal wealth.

The Sharpe ratio of terminal wealth is higher for Learning than for Non-Learning
for any value of unc. Nevertheless, an interesting fact is that the ratio rises from
unc = 1/6 to unc = 1, then reaches a level close to 0.8 for values of unc = 1,3,6
then decreases when unc = 12.

This phenomenon is more visible on Fig. 14 that displays the Sharpe ratio of termi-
nal wealth of Learning and Non-Learning according to the values of unc, and the
associated relative improvement. Clearly, looking at Figures 13 and 14, we remark
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unc = 1/6 unc =1 unc =3 unc =6 unc = 12

Statistic L NL L NL L NL L NL L NL
Avg total performance 3.87% 4.35% 9.45% 6.00% 19.96% 10.25% 90.03% 16.22% 130.07% 30.44%
Std dev. of X1 5.81% 9.22% 12.10% 17.28% 25.01% 28.18 % 113.69% 41.24% 222.77% 70.84%
Sharpe ratio 0.67 0.47 0.78 0.35 0.80 0.36 0.79 0.39 0.58 0.43
Avg MD -2.51% -521% -1.40% -6.78% -1.90% -8.40% -2.68% -10.14% -3.58% -11.35%
Worst MD -7.64% -17.88% -5.46% -24.01% -7.99% -26.68% -15.62% -29.22% -16.98% -29.47%
Calmar ratio 1.54 083 6.77 089 1049 122 33.65 1.60  36.32 2.68

Table 5 Performance and risk metrics: Learning (L) vs Non-Learning (NL) for different values of
uncertainty unc.

that while increasing unc gives more excess return, too high values of unc in the
model turn out to be a drag as far as Sharpe ratio improvement is concerned.

L NL Excessreturn [r.hs) L NL mprovement(r.h.g

Fig. 13 Average total performance of Learning Fig.14 Sharpe ratio of terminal wealth of Learn-
(L) and Non-Learning (NL), and excess return, ing (L) and Non-Learning (NL), and relative im-
for unc € {1/6, 1, 3,6, 12}. provement, for unc € {1/6, 1, 3,6, 12}.

For any value of unc, Learning handles maximum drawdown significantly better
than Non-Learning whatever it is the average or the worst. This results in a better
performance per unit of average maximum drawdown (Calmar ratio), for Learning.
We also see that the maximum drawdown constraint is satisfied for every strategies
of the sample and for any value of unc since the worst maximum drawdown is always
above —30%, the lowest admissible value with a loss aversion parameter g set at 0.7.
Fig. 15 reveals how the average maximum drawdown behaves regarding the level of
uncertainty. Non-Learning maximum drawdown behaves linearly with uncertainty:
the wider the range of possible values of B the higher the maximum drawdown is on
average. It emphasizes its inability to adapt to an environment in which the returns
have different behaviors compared to their expectations. Learning instead, manages
to keep a low maximum drawdown for any value of unc. Given the previous remarks,
it is obvious that the gain in maximum drawdown from learning grows with the level
of uncertainty.
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Fig. 15 Average maximum e .
drawdown of Learning (L) 0% : B%
and Non-Learning (NL) and
the gain from learning for unc
€ {1/6,1,3,6,12}.

w
=
-

L ML Gain from L{r.h.s) Trend NL

Figures 16-20 represent portfolio allocations averaged over the simulations. They
depict, for each value of the uncertainty parameter unc, the average proportion of
wealth invested, in each of the three assets, by Learning and Non-Learning. The pur-
pose is not to compare the graphs with different values of unc since the allocation
is not performed on the same sample of returns. Rather, we can identify trends that
are typically differentiating Learning from Non-Learning allocations.

Since the maximum drawdown constraint is satisfied by the capped sum of total

weights that can be invested, the allocations of both Learning and Non-Learning are
mainly based on the expected returns of the assets.
Non-Learning, by definition, does not depend on the value of the uncertainty pa-
rameter. Hence, no matter the value of unc, its allocation is easy to characterize
since it saturates its constraint investing in the asset that has the best expected return
according to the prior. In our setup, Asset 3 has the highest expected return, so
Non-Learning invests only in it and saturates its constraint of roughly 30% during
all the investment period. The slight change of the average weight in Asset 3 comes
from p, the ratio wealth over maximum wealth, changing over time.

Asset 1 Asset 2 Asset 3

B Learning: une = 16
__ B Non-Leaming

Average weight
s e = s @
s s s 8 &
5 & &8 ¥ 08

8

s
H
o
3

o0 -
2 4 6 8 10 12 14 16 18 20 22 2 4 6 8 10 12 14 16 18 20 22 o 2 4 6 3 10 12 14 16 18 20 22
Time steps Time steps Time steps

Fig. 16 Learning and Non-Learning historical assets’ allocations with unc = 1/6.
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Unlike Non-Learning, depending of the value of unc, Learning can perform more

sophisticated allocations because it can adjust the weights according to the incoming
information. Nonetheless, in Fig. 16, when unc is low, Learning and Non-Learning
look similar regarding their weights allocation since both strategies invest, as of time
0, a significant proportion of their wealth only in Asset 3.
On the right panel of Fig. 16, the progressive increase in the weight of Asset 3
illustrates the learning process. As time goes by, Learning progressively increases
the weight in Asset 3 since it has the highest expected return. It also explains why
Learning underperforms Non-Learning for low values of unc; contrary to Non-
Learning which invests at full capacity in Asset 3, Learning needs to learn that Asset
3 is the optimal choice.

Asset 1 Asset 2 Asset 3

030 030 o0 B Lesrning: une = 1
— = Non-Learning

Average weight
s <
=

2 4 6 8 10 12 14 16 18 20 22 2 a 6 8 10 12 14 16 18 20 22 i a L] 3 10 12 14 16 18 20 22
Time steps Time steps Time steps

Fig. 17 Learning and Non-Learning historical assets’ allocations with unc = 1.

Asset 1 Asset 2 Asset 3
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2 4 6 8 10 12 14 16 18 20 22 2 4 6 & 10 12 M 16 18 20 22 2 4 6 8 10 12 14 15 18 20 2
Time steps Time steps Time steps

Fig. 18 Learning and Non-Learning historical assets’ allocations with unc = 3.

However, as uncertainty increases, Learning and Non-Learning strategies start
differentiating. When unc > 1, Learning invests little, if any, at time 0. In addition,
an increase in unc allows the inital drift to lie in a wider range and generates
investment opportunities for Learning. This explains why Learning invests in Asset
1 when unc = 1, 3, 6, 12 although the estimate by for this asset is lower than for
Asset 3. In Fig. 19, we see that Learning even invests in Asset 2 which has the lowest
expected drift.
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Asset 1 Asset 2 Asset 3
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[ Non-Learning

Average weight
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Fig. 19 Learning and Non-Learning historical assets’ allocations with unc = 6.
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Fig. 20 Learning and Non-Learning historical assets’ allocations with unc = 12.

Figures 21-25 illustrate the historical total percentage of wealth allocated for
Learning and Non-Learning with different levels of uncertainty. As seen previously,
Non-Learning has fully invested in Asset 3 for any value of unc.

Learning: unc = 1/6 Non-Learning

g

e
o
o

020

Total % of wealth invested
e e
5 o

°
8
g

H
g
g

2 4 6 8 10 12 1 6 18 20 22 6 8 0 12z 1
Time steps Time steps

Fig. 21 Historical total allocations of Learning and Non-Learning with unc = 1/6.

Moreover, Learning has always less investment that Non-Learning for any level
of uncertainty. It suggests that Learning yields a more cautious strategy than Non-
Learning. This fact, in addition to its wait-and-see approach at time 0 and its ability
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to better handle maximum drawdown, makes Learning a safer and more conservative
strategy than Non-Learning. This can be seen in Fig. 21, where both Learning and
Non-Learning have invested in Asset 3, but not at the same pace. Non-Learning
goes fully in Asset 3 at time 0, whereas Learning increments slowly its weight in
Asset 3 reaching 25% at the final step. When unc is low, there is no value added to
choose Learning over Non-Learning from a performance perspective. Nevertheless,
Learning allows for a better management of risk as Table 5 exhibits.

As unc increases, in addition to being cautious, Learning mixes allocation in
different assets, see Figures 22-25, while Non-Learning is stuck with the highest
expected return asset.

Learning: unc = 1 Non-Learning

Total % of wealth invested

=== Allocation constraint

6 8 10 ] 6 18 20 22 6 8 0 12
Time steps Time steps

Fig. 22 Historical total allocations of Learning and Non-Learning with unc = 1.

Learning: unc = 3 Non-Learning

Total % of wealth invested

-~ Allocation constraint

6 8 10 12 1 16 18 20 22 6 ] 10 12
Time steps Time steps

Fig. 23 Historical total allocations of Learning and Non-Learning with unc = 3.

Learning is able to be opportunistic and changes its allocation given the prices
observed. For example in Fig. 22, Learning starts investing in Asset 1 and 3 at time
1 and stops at time 12 to weigh Asset 1 while keeping Asset 3. Similar remarks can
be made for Fig. 23, where Learning puts non negligeable weights in all three risky
assets for unc = 6 in Fig. 24.
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Learning: unc = 6 Neon-Learning
0:: I 0.30

Total % of wealth invested
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Fig. 24 Historical total allocations of Learning and Non-Learning with unc = 6.

Learning: unc = 12 Non-Learning

Total % of wealth invested

=== Allocation constraint
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Fig. 25 Historical total allocations of Learning and Non-Learning with unc = 12.

6 Conclusion

We have studied a discrete-time portfolio selection problem by taking into account
both drift uncertainty and maximum drawdown constraint. The dynamic program-
ming equation has been derived in the general case thanks to a specific change of
measure. More explicit results have been provided in the Gaussian case using the
Kalman filter. Moreover, a change of variable has reduced the dimensionality of the
problem in the case of CRRA utility functions. Next, we have provided extensive
numerical results in the Gaussian case with CRRA utility functions using recent deep
neural network techniques. Our numerical analysis has clearly shown and quantified
the better risk-return profile of the learning strategy versus the non-learning one.
Indeed, besides outperforming the non-learning strategy, the learning one provides
a significantly lower standard deviation of terminal wealth and a better controlled
maximum drawdown. Confirming the results established in [7], this study exhibits
the benefits of learning in providing optimal portfolio allocations.
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Appendix
6.1 Proof of Proposition 1

For all k = 1,..., N, the law under P, of Ry given the filtration Gy yields the
unconditional law under P of €. Indeed, since (Ag)x is a (P, G)-martingale, we have
from Bayes formula, for all Borelian ' C R4,

E[Ar 1R, ery1Gk-1]

P[Ry € F|Gi-1] = E[1(r er)|Gr-1] =

E[Ak|Gr-1]
Ak g(B+€k)
= Bl 1 g er 1G] = B0 p cr |G
[Ak—l (R eF}|Gr-1] [ S LR F}1Gk 1]
B
=f Ml{meemg(e)de = f 8(D) 1 zerydz
rd  g(e) R
=Plex € F].

This means that, under P, Ry is independent from B and from Ry, .., R;_; and that
Rj has the same probability distribution as €. O

6.2 Proof of Proposition 2

For any borelian function f : R? — R we have, on one hand, by definition of my1:

E[Ak1 f(BIFS,] = f fB)mis (db),
R
and, on the other hand, by definition of Xk:
g(Res1 — B)|__, ]
7_'
g(Risr) | *H
=B [Acf (B)g(Res1 — BTG, | (@(Rer )™

g(Ris1 —b)
db),
ff() 8(Rr+1) 7 (db)

ElAwn fBIFS,] = [Akf(B)

where we use in the last equality the fact that Ry, is independent of B under P
(recall Proposition 1). By identification, we obtain the expected relation. a
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6.3 Proof of Lemma 1

Since the support of the probability distribution v of €; is R4, we notice that the law
of the random vector ¥; := e®x — 1, has support equal to (=1, c0)?. Recall from (7)
that a € AZ (x, z) iff

1+ a'Yy = gmax [E,l + a’Yk+1], a.s. 21
X

(i) Take some a € A} (x, z), and assume that a' < 0 for some i € [1,d]. Let us then

define the event Q) = (Y, > M, ij‘f] € [0,1], # i}, for M > 0, and observe that

]P’[Qﬁw] > (. It follows from (21) that
1 +a;M + max|a;| > qi, on Q}'VI,
J#i X

which leads to a contradiction for M large enough. This shows that a’ > 0 for all
i €[1.d].ie. Al(x.z) CRY{.

(ii) For € € (0, 1), let us define the event Q. = {Yki+1 <-l+e¢gi=1,...,d}, which

satisfies P[Q.] > 0. For a € A9(x, z), we get from (21), and since a € R‘f_ by Step (i):
1-(1-¢e)a’'ly > q%, on Q.
By taking € small enough, this shows by a contradiction argument that
Al claerd1-a'1,> qi}. = A9(x, 7). 22)

(iii) Let us finally check the equality in (22). Fix some a € A?(x, z). Since the random
vector Y41 is valued in (=1, 00)9, it is clear that

l+a'Yy >21-a'ly > qE >0 a.s.,
X
and thus
1+a'Ye 2 q[l+a'Y], a.s.,

which proves (21), hence the equality A9 (x, z) = A(x, 7). O

6.4 Proof of Lemma 2

1. Fix g¢; < ¢» and (x, z) € 8% c S?'. We then have
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a€A?(x,z) = aeRlanda’ly < 1-> < 1—q~ = aeAD(x2),
X X

which means that A?2(x, z) C A9'(x, 7).

2. Fix g € (0, 1), and consider the decreasing sequence g,, = g + %, n € N*. For any
(x,z) € 89, we then have A9"(x,z) C A9+ (x,z) C A%(x, z), which implies that
the sequence of increasing sets A" (x, z) admits a limit equal to

lim A9 (x,z) = LilA""' (x,2) = Al(x,2),
n—oo nz

since lim,,_,o g5, = g. This shows the right continuity of g — A4(x, z). Similarly, by
considering the increasing sequence g, = g — %, n € N*, we see that for any (x, z) €
A4 (x, z), the sequence of decreasing sets A9" (x, z) admits a limit equal to

lim A% (x,z) = QlAq"(x,Z) = A(x, z),

n—oo

since lim,,_, g, = ¢. This proves the continuity in g of the set A9(x, z).
3.Fix g € (0, 1), and (x1, z), (x2,2) € 87 s.t. x; < x3. Then,

a€Al(x;,z) = acRlandd’ly<l-g—<l-g— = aeAl(x2),
X1 X2

which shows that A9(xy,z) € A9(xy, 7).

4.Fix g € (0,1), (x,z) € A%(x, z). Then, for any ay, a, of the set A4(x, z), and g €
(0,1)], and denoting by az = Ba; + (1 — B)a; € R%, we have

aila = Bajly+ (1= Plasla < f1-g3) +(1=p)(1-43) = 1-q-.

This proves the convexity of the set AZ(x, z).
4. The homogeneity property of A9(x, z) is obvious from its very definition. O

6.5 Proof of Lemma 3

We prove the result by backward induction on time k from the dynamic programming
equation for the value function.

e At time N, we have for all 4 > 0,

(Ax)P

VN(/].)C, /12’ ,U) = = /1va (-x’ 2, ﬂ)»

which shows the required homogeneity property.

o Now, assume that the homogeneity property holds at time k + 1, i.€ vi41(Adx, Az, )
= APvy1(x, z, w) for any A > 0. Then, from the backward relation (9), and the
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homogeneity property of A4(x, z) in Lemma 2, it is clear that v inherits from vy
the homogeneity property. a

6.6 Proof of Lemma 4

1. We first show by backward induction that » +— wg(r,-) is nondecreasing in on
[g, 1] for all k € [0, N
e For any r1,r; € [g, 1], with r; < rp, and pu € M, we have at time N

wn(r, ) = Ur)u®RY) < Ur)pu@®RY) = wy(ra, p).

This shows that wy (r, -) is nondecreasing on [g, 1].

e Now, suppose by induction hypothesis that r — wy,1 (7, -) is nondecreasing. De-
noting by ¥; := ¢R* — 1, the random vector valued in (=1, )%, we see that for all
ae€ Al(ry)

min [1,r1(1 +a'Yk+1)] < min [1,r2(1 +a’Yk+1)], a.s.

since l+a’Yy =2 1-a’ly > q% > 0. Therefore, from backward dynamic program-
ming Equation (11), and noting that A9 (r;) c A9(r;), we have

wi(ry, p) = sup E[Wkﬂ(min [Lri(1+a'Yis1)], §(Ris1 — '),u)]

aeA? r)

< sup E[Wkn(min[l,rz(l+a/Yk+1)],§(Rk+1—')/J)] = wi(r2, ),

acA4(ry)

which shows the required nondecreasing property at time k.

2. We prove the concavity of r € [g, 1] — wi(r,-) by backward induction for all
k € [0, N]. For r1,r; € [¢,1],and A € (0, 1), we set r = Ar; + (1 — A)ry, and for
ay € A4(ry), ap € A4(rp), we set a = (Arya; + (1 — A)rpay) /r which belongs to
A4(r). Indeed, since aj, a; € R‘f, we have a € Rf, and

’ A
o< ta-2y4

(/lrlal + (1 - /l)f'de)
r r r

1-2
A=V 4y _y_4
r r r

e At time N, for fixed u € M., we have

UAri + (1 = D))
> AU(r) + (1 =DU((rz) = Awn(r, w) + (1 = Dwy (2, ),

wn (Ary + (1 = D)ry, 1)

%

since U is concave. This shows that wy (r, -) is concave on [g, 1].
o Suppose now the induction hypothesis holds true at time k+ 1: w1 (7, -) is concave
on [g, 1]. From the backward dynamic programming relation (11), we then have
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Awi(ry, 1) + (1 = Dywi (rz, )
< /lE[WkH(min[Lrl(l +a Y1), (Res1 — ')ll)]

+(1 = DE[wirr (min[1, ra(1+ a3%1)) E(Riesr — ) |
< ]E[W/«rl(/l min[1, 71 (1 + a] Y )]+ (1 = ) min[1, r2(1 + a3 Yi41)], (Rv1 — '),U)]
= B[wier (min[1, r(1 + @'Y )], 8(Reer = )| < wi(r, o),

where we used for the second inequality, the induction hypothesis joint with the
concavity of x — min(l, x), and the nondecreasing monotonicity of r = wy(r, -).
This shows the required inductive concavity property of r — wy(r,-) on [¢g,1]. O
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Estimating the Matthew Effects: Switching
Pareto Dynamics

Robert J. Elliott

Abstract Pareto distributions can describe the clustering of observations and give
rise to sayings such as ‘The rich gets richer and the poor gets poorer’. They are
sometimes generated by counting processes whose rate depends on external factors.
In turn, these factors are modelled by a finite state Markov chain Z. New filters are
derived which estimate Z together with other parameters of the model.

1 Introduction

The Matthew effect is paraphrased by saying ‘The rich get richer and the poor get
poorer’. A probability describing such a distribution can be given by a power law of
which an example is the Pareto distribution.

If X is a real random variable with a Pareto distribution then there is a (positive)
value x,, and a parameter @ > 0 such that

if x>x,

if x<x,.

(X", )l]/
P(X>x)= {1 *
It is immediate that if X is Pareto with parameter « then
X
Y =log(—)
Xm

is exponentially distributed with parameter . In fact
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P(Y <y)= P(log(xﬁ) <)

=P(X <xpe)
_ _ Xm \a _1_ -y
=(1 (x—mey) )=1-e.

Conversely, if Y is exponentially distributed then x,,e” is Pareto distributed with
minimum Xx,, and index «.

2 Generating Pareto Random Variables

Our processes are defined on (€, 7, P). Consider a (counting) point process
Y={Y%,1>0}

with jump times 71,7, 73, ... .
Write 1p = 0.
Suppose the compensator of Y is A¢, that is A is the rate of jumping. Write

Y, =o{Yy:s<t} and
Y ={Y}

for the right continuous, complete filtration generated by Y. Then with

Y= ) s,
n
Q,:=Y,-A isa(Y,P) martingale.

The times between the jumps of Y are independent and identically exponentially
distributed with parameter A.

That is, for each n, A,41 := Th41 — 7 ~ exp AA,+1 . This generates a family of
i.i.d. exponential random variables Aj, Ao, ... .

Consequently, x,, exp Ay, X, exp Ao, ... is a family of Pareto random variables
with minimum x,, and parameter A.

3 Switching Parameter Values

Suppose the parameter A is not constant but can switch between values o, @z, ...,an .
In a simple case perhaps N = 2 so there are just two values @1, a2 . The value «; is
determined by some ’state’ of the market, or the property of some Reddit post.
Suppose there is a finite, N, state Markov chain Z = {Z;, t > 0} which represents
the (hidden) state loss of generality the state space of Z can be identified with unit
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vectors
S={ey,e...,en}, wheree; = (0,0,...,1,0,...,0) € RN.

That is for each ¢ > 0, Z; € S. Suppose the rate matrix of Z is given by the matrix
A= (aji,1<1i,j<N). Here aj;, j #1, is the rate of jumping from e; to e;. Then,
(see [2]), Z has the semimartingale representation

t
Z,=Zo+f AZds+ M, € RN
0

where M is a (vector) martingale. That is, if F; = 0{Z,, s <t} and ¥ = {F;} is the
right continuous complete filtration generated by Z, then for s < ¢

E[M;|F5]= M € RN
For our counting process we now suppose that at time ¢ the rate is
ay ={a,Z;).

Then, with G = {G;} has filtration generated by Y and Z, the process

0 =Y —f (a,Zg)ds
0

is a martingale.

4 Estimation

The problem now is: suppose the counting process Y, or equivalently the jump times
T1,T2,..., are observed. We wish to estimate the state of Z and the parameters in
a=(ay,a,...,an)’.

A Filter

We shall use a ‘reference probability’ P. Suppose that under P

1) Z is a Markov chain with rate matrix 4
2) Y is a counting process with compensation Az.

Then as in Section 1, O, =Y, — At is a P martingale.

Definition 1 Write

t
At=1+f As_(@—l)(dys—ms) 1)
0
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SO:

" Zs- to{e 2y
A,:exp(—]; (%—1)/ldS+j; log< 7 >dYs).

Note that A is a (P, G) martingale. Define a probability measure P by

Theorem 1 Write

t
o, =Y,—f (. Z)ds.
0

Then Q = {Q;} is a (P, G) martingale.

Proof From [1], Lemma 15.2.1 this is so if and only if A;Q; is a (P, G) martingale.

Now

t t
AQr = f As—dQs + f Os-dAs+ Y AAAQ,
0 0

0<s<t

t t
7,
= f OudA, + f A DD (v, ).
0 0 A

‘We wish to obtain a recursive estimate for
E[Z;|Y1€RV.
By Bayes’ Theorem, (see [2], Theorem 3.2),

E[A:Z| Y]

E[Z;|Y;] =
E[4:1¥]

Write
g = EIAZ/|Y;] € RN

This is an unnormalized conditional expected value of Z; given Y;.
If 1 =(1,1,...,1)’ € RN is a vector of Is then

(Z:, 1) =1.

Consequently
(g1, 1) = E[A(Z, 1) | Y]
= E[A Y]

which gives the normalizing.

Notation Write diag(} ) for the N x N diagonal matrix with (%, %Z,..., "Y' ) down

the diagonal.

Theorem 2 g satisfies the recursion

O
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t t a;
qr = 9o +f Aqst+f (diag( 1 )—I)qs_(dYs - Ads).
0 0
Proof Recall dZ, = AZ;dt+dM, € RN . Then
t t
A Z; =Aozo+f As_a'Zs+f (dAs)Zs— .
0 0

(Note there are no common jump terms.)
From (1) this is:

t
=AOZO+f AS_(AZSds+dMS)+f Zo_As_ ( —1)(d¥s - Ads)
0

t t
:A020+f AASZSds+f AS_dMS+f Ay_Zs_ (< =) )(dY; - Ads).
0 0
We now take a conditional expectation under P given Y, and obtain

t t
L
q,:q0+f Aqsds+f (dlag( )—I)qs(dYs—/lds).
0 0 7

5 Parameter Estimation

We have seen that to change the rate from A to (e, Z;) the Girsanov density given by
(1) is used.

Write this density as A and the related probability P¢.

Suppose there is a second possible set of parameter values

a’ = (ai,ag,...,a}\,)' e RN

giving a related probability P

Then the Girsanov density ;Y, will change the probability P* to P* and the
compensator of Y from (@', Z;) to {a, Z;).

Suppose the model has been implemented with a parameter set
{Ad=(aj).a’ =(a},...,an)'}.

Given the observations of ¥ we wish to re-estimate the parameters in @’. The
conditional expectation of the log-likelihood to change parameters o’ to « is

Ei) == [ (S22 1)aass [0 2L iy ]+

[log

A(l

where R represents terms which do not depend on «.
In turn, this is
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t t
=E[—f <a,Zs>+f log(a, Zs-), dY; | |
0 0
+ terms which do not depend on a.

Write J! = fot (ei, Zs)ds for the amount of time Z has spent in state e; upto time ¢.
Also,note

t N t
f log(a, Zs_)dY; = Z log @ f (ei, Zs_)dY,
0 — 0
O
A(I N . N t
E[log /l—;, |y,] =E[- Z a;Jy +Z log «; f (ei, Zs—)dY; |y,]
' i=1 i=1 0

+ terms which do not depend on a.

To find the @; which maximizes this conditional expected log-likelihood the first
order condition gives

_ 1 d
E[-J} 1Y ]+ E[f (ei Zs-)dY, %] =0
@i 0

so the maximizing «; is given as
t .
ai=E[ [ e zeraxiv] (£
0

Our final task is to find expressions for these quantities. Write A; for A;" . Recall

E[AJ} Y]

E[J Y] = .
A = A

Also from Section 4
(g1, 1) = E[A: | Y],

Notation For any process H = {H;, t > 0} write
O'(H)t = E[AH Y]

Then '
EU\Y1 = o (I)[(gn1).

6 Recursive Estimates

Rather than o (J); we shall initially obtain a recursive estimate for
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o(JZ) = E[AJ Z) Y] € RN

As (Z;,1) = 1 we then would have
(0(JZ), 1) = E[NJi (Zs, 1)1 Y]

= E[AJ; | Y]

Theorem 3 A recursive estimate for o(J' Z); is given by

t

o(JZ), = fo t Ao (Ji Z)yds + fo (diag(j)—I)U(JiZ)s_(dK—ﬂds)

t
+f (gs.eiydse;.
0
Proof Recall
dZ, = AZ;dt +dM, € RN (2)
. t
dJi = f (ei Zs)ds (3)
0
and
7y
dA; = A, (% ~1)(dY, - Ad1). 4)
Then ) o
: Zs_
= Aiei Z)dt + TN, (<“’A’ ) 1)(dY; - Adt)
and

d(N I Zy) = (N=J))dZ +d (M) Zy
= N J (AZ,dt +dM,) + Nlei, Z,) Z, dt
(. Z;-)
il

+ AT —1)Z,(dY; - Adr)

= A(NJ} Zy)dt + (N =T} YdM, + i, A Zy ) dt e
N
. Qi
+; TN (en Zi) A’ —1)(dY; - Adt)e;.

That is:
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. t . 4 .
NI Z = Af ASJ;Z_yds+f As_Ji_dMj
0 0
t
+f <ei,AsZS>dS€i
0
+ Zl fo JiRg (e Zso) ﬂ’ - 1)(d¥; - Ads)e;.
Taking the conditional expectation under P given Y; gives
O'(J'Z):f AO'(JLZ)S+f (ei,qs)dse;
0 0

+ J; t (diag (‘;) ~ 1) (J Z)s-(dY; ~ Ads).

Write ,
H] :=f (eir Z_)dY; .
0

Theorem 4 A recursive estimate for o (H'Z), is given by
o(H'Z), = f Ao (H'Z)sds
0

t t
+ f (diag(j)—f)a(H"zs,)(m,ﬁdsn f (ei,qs-)dYse; .
0 0

Proof _
dH; ={e;, Z;-)dY; )

so from (2) and (4)

. . v/

d(NHD) = A _(ei, Z,)dY; + HI A, (% —1)(dY, - Adt)
a,Z;-)
+(e[~,Z,_)A,_(< A’ - 1)dy;.
Then
d(AH!Z)) = N H!_(AZ,dt + dM,)
: Z_
+ Al Zi_) Zy_dY, + H;_A,_Zt_(<a’/l’ )_ 1)(dY, - Adt)

(@, Z;-)
+{ei, Zt—>At—Zt—( /lt

—1)dY,.

That is:
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t

t
ANH' Z; = f ANGH! Zods + f As_H'_dM;
0 0
t t a;
+f <ei,Asfzsf>dYse,~+f (- Zo) () —1)dYie
0 0
t a ‘
+ f (diag(")) 1) Ay H._Z (dY; - Ads).
0 1 ’
Taking the conditional expectation under P given Y; gives
o2y = [ oD [ (eardre,
0 0

+ fo t (diag(j)—I)U(HfZ)s_(dYs—Ads).

Remark 1 Again o-(H"); = (c(H'Z);,1) and

ELH{|\Y] = o (H') [(g D).

7 Implemention

Suppose we receive a sequence of data values di,ds,... which we believe to be
Pareto distributed with parameter @ and minimum x,,. Then

d d
Ay =log —1, A; =log —2,...
Xm Xm
are exponentially distributed with parameter «.
The A; can be considered as inter-arrival times of a point process Y as above, that
is
Ai =T —Ti-1-
Between arrivals dY; = AY; = 0.
Atanarrival time d¥; = AY; = 1. The above theory can be used to estimate possible

values of a@.
Note for example
Ti
f ys-d¥s = Yri-
Ti-1

and in between jumps d¥; = 0.
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Optimal Couplings on Wiener Space and An
Extension of Talagrand’s Transport Inequality

Hans Follmer

Abstract For a probability measure Q on Wiener space, Talagrand’s transport in-
equality takes the form W, (Q, P)? < 2H(Q|P), where the Wasserstein distance IV,
is defined in terms of the Cameron-Martin norm, and where H(Q|P) denotes the rel-
ative entropy with respect to Wiener measure P. Talagrand’s original proof takes a
bottom-up approach, using finite-dimensional approximations. As shown by Feyel
and Ustiinel in [3] and Lehec in [10], the inequality can also be proved directly on
Wiener space, using a suitable coupling of Q and P. We show how this top-down
approach can be extended beyond the absolutely continuous case Q < P. Here the
Wasserstein distance is defined in terms of quadratic variation, and H(Q|P) is re-
placed by the specific relative entropy #(Q|P) on Wiener space that was introduced
by N. Gantert in [7].

1 Introduction

There are many ways of quantifying the extent to which a probability measure O on
the path space C[0, 1] deviates from Wiener measure P. In this paper we discuss the
following two approaches and the relation between them. One involves the notion
of entropy, the other uses a Wasserstein distance, that is, the solution of an optimal
transport problem on Wiener space. We will do this in two stages.

In the first stage, the measure Q will be absolutely continuous with respect to
Wiener measure P, and we consider the relative entropy H(Q|P) of Q with respect
to P. On the other hand, we use the Wasserstein distance

Wor(Q.P) = in( [ l|o—n)lrP(d)R(w.dm)) . M)
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where the infimum is taken over all transition kernels R on Wiener space which
transport P into Q, and where the transportation cost is defined by the Cameron-
Martin norm. Talagrand’s transport inequality

W (Q,P) < \/2H(Q|P) )

on Wiener space shows that these two measures of deviation are closely related.
In fact, inequality (2) becomes an identity as soon as we introduce the additional
constraint that the transport should be adapted to the natural filtration on Wiener
space; this was first shown by R. Lassalle in [9].

On Wiener space, inequality (2) was first studied by Feyel and Ustiinel [3]. In
Talagrand’s original version [13], the inequality is formulated on Euclidean space
R”, including the case n = oo; the Wasserstein distance is defined in terms of the
Euclidean norm, and the reference measure P is the product of standard normal
distributions. But the Lévy-Ciesielski construction of Brownian motion in terms of
the Schauder functions shows that inequality (2) on Wiener space can be viewed as
a direct translation of the Euclidean case for n = oo, as explained in Section 3.

Talagrand’s original proof in [13] takes a bottom-up approach, using finite-
dimensional approximations. Instead, as shown by D. Feyel and A. S. Ustiinel in
[3] and by J. Lehec in [10], Talagrand’s inequality can be proved directly on Wiener
space, using a suitable coupling of QO and P. This top-down approach involves the
computation of relative entropy in terms of the intrinsic drift of Q that was used in
[4] and [5] for the analysis of time reversal and large deviations on Wiener space.
The intrinsic drift 5€ is such that O can be viewed as a weak solution of the stochas-
tic differential equation dW = dW€ + b2 (W)dt, that is, W€ is a Wiener process
under Q. Coupling W€ with the coordinate process W under Q immediately yields
inequality (2), and it solves the optimal transport problem for the Cameron-Martin
norm if the coupling is required to be adapted.

Clearly, inequality (2) is of interest only if the relative entropy is finite, and so
QO should be absolutely continuous with respect to Wiener measure. In the second
stage, we go beyond this restriction. Here we replace H(Q|P) by the specific relative
entropy

H(OIP) :=limint2 "Hy(0IP)

where Hy(Q|P) denotes the relative entropy of Q with respect to P on the o-field
generated by observing the path along the N-th dyadic partition of the unit inter-
val. The notion of specific relative entropy on Wiener space was introduced by N.
Gantert in her thesis [7], where it serves as a rate function for large deviations of
the quadratic variation from its ergodic behaviour; cf. also [8]. In our context, the
specific relative entropy appears if we rewrite the finite-dimensional Talagrand in-
equality for n = 2V in the form

We(0,P) <2-27VHy(Q|P), 3)
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where the Wasserstein metric Wy is defined in terms of the discrete quadratic varia-
tion along the N-th dyadic partition. This suggests that a passage to the limit should
yield an extension of Talagrand’s inequality, where H(Q|P) is replaced by #(Q|P),
and where Wy is replaced by a Wasserstein metric W that is defined in terms of
quadratic variation. Here again, we take a top-down approach. Instead of analyzing
the convergence on the left-hand side of (3), we argue directly on Wiener space,
assuming that the coordinate process ¥ is a special semimartingale under Q. We
show that 2(Q|P) < e implies that Q admits the construction of an intrinsic Wiener
process W2 such that the pair (W, <) defines a coupling of P and Q. This coupling
solves the optimal transport problem defined by W, and for a martingale measure
Q it yields the inequality

W (0,P) < \/2h(Q|P). @)

If, more generally, Q is a semimartingale measure that admits a unique equivalent
martingale measure O*, then we obtain the following extension of Talagrand’s in-
equality on Wiener space:

Wy (OIP)* < 2(h(QIP)+H(0|0")). Q)

In this form, inequality (5) includes both (4) and Talagrand’s inequality (2) as special
cases.

The paper is organized as follows. In Section 2 we introduce the basic concepts
of relative entropy and of a Wasserstein distance. Section 3 describes the top-down
approach to inequality (2) in the absolutely continuous case; the exposition will
be reasonably self-contained because we repeatedly refer to it in the sequel. In the
second stage, we consider measures Q on C[0, 1] such that the coordinate process W
is a semimartingale under Q. Section 4 shows how the semimartingale structure of
Q is reflected in the specific relative entropy #(Q|P); this extends Theorem 1.2 in [7]
for martingale measures to the general case. In section 5 we show that the condition
h(Q|P) < e implies that Q admits the construction of an intrinsic Wiener process
W€, Coupling W€ with the coordinate process W under Q, we obtain the solution
of an optimal transport problem on Wiener space that yields inequalities (4) and (5).

2 Preliminaries

In this section we recall some basic notions, in particular the definitions of relative
entropy and of the Wasserstein distances that we are going to use.

For two probability measures (t and v on some measurable space (S,.%), the
relative entropy of v with respect to u is defined as

Hv|u) = flogg;dv ifv < i,
Hi= +o0 otherwise.
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For v < U we can write
dv
H =[h d
(Vi) = [ (),

denoting by / the strictly convex function 4(x) = xlogx on [0,ec), and Jensen’s
inequality implies H(v|u) > 0, with equality if and only if 4 = v. Sometimes we
will deal with different o-fields . on the same space S, and then we will also use
the notation H (v|i). We are going to use repeatedly the fact that

lim H.z, (vIp) = Hy (v|n) (6)

if (#)n=1,... is a sequence of o-fields increasing to ..

Consider a measurable cost function c(+,-) on S x § with values in [0,°]; typi-
cally, ¢(+,-) will be a metric on S. We define the corresponding Wasserstein distance
between v and u as

W(v,u)= inf (/cz(x,y)'y(dx,dy))l/z,
ver(u,v)

where I' (i, v) denotes the class of all probability measures y on the product space
S x § with marginals ¢ and v. Equivalently, we can write

W(v,u) = inf £[*(X,7)]'/?,

where the infimum is taken over all couples (X,¥) of S-valued random variables
on some probability space (.(~2,g¢~ ,P) such that X and ¥ have distributions u and
v, respectively. Such a couple, and also any measure y € I'(u, V), will be called
a coupling of |t and v. We refer to [15] for a thorough discussion of Wasserstein
distances in various contexts.

In the sequel, the space S will be either a Euclidean space R”, including the
infinite-dimensional case n = o, or the space

Q :CO[Ov 1]

of all continuous functions  on [0, 1] with initial value w(0) = 0.

For S =R" with n € {1,...,0} we are going to use the cost function c(x,y) =
||x = ¥||» defined by the Euclidean norm ||x||,, = (3, x?)!/2. Thus, the correspond-
ing Wasserstein distance is given by

Wava) = _inf ([ Ile=yiR)riaxan)'>
ver (u,v)

Taking as reference measure the Gaussian measure

Un = HN(Oa 1)7
i=1
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Talagrand’s inequality on Euclidean space can now be stated as follows:

Theorem 1 For any n € {0,...,} and for any probability measure v on R",

WV, tn) < V/2H(V ). @)

Talagrand’s proof in [13] takes a bottom-up approach. First the inequality is
proved in the one-dimensional case, using Vallender’s expression

Wi(v,u) = ( /0 ' (gv(@) — qu(@))de) ®)

in [14] of the Wasserstein distance on R! in terms of the quantile functions ¢, and
qu, followed by an integration by parts that involves the special form of the normal
distribution. The finite-dimensional case is shown by induction, applying the one-
dimensional inequality to the conditional distributions v(dx,1|x1,...,x,) of v. The
infinite-dimensional case n = e follows by applying (7) to the finite-dimensional
marginals and taking the limit 1 e, using a standard martingale argument to obtain
convergence of the relative entropies on the right-hand side.

Let us now turn to the case S = Q = ([0, 1]. We denote by (% )o<;<1 the right-
continuous filtration on €2 generated by the coordinate process

W= W)o<i<

defined by W;(w) = w(t). We set # = .%; and denote by P the Wiener measure
on (2,.%). Let 5 denote the Cameron-Martin space of all absolutely continuous
functions @ € Q such that the derivative @ is square integrable on [0, 1]. First we
will consider the cost function ¢(®,n) = ||@ — 1| ,», where

lolLy (Je @?()dt)'? ifwe
- oo otherwise.

The corresponding Wasserstein distance will be denoted by W, that is,

WP = int [llo-n|vido.dn)"

for any probability measure Q on (,.%#). In this setting, Talagrand’s inequality
takes the following form, first stated by D. Feyel and A. S. Ustunel in [3].

Theorem 2 For any probability measure Q on (Q2,.%),

W (Q,P) < \/2H(Q|P. ©)

In fact, inequality (9) can be viewed as a direct translation of Talagrand’s inequal-
ity on R™. To see this, recall the Lévy-Ciesielski representation
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W(@) = 3 X(w)ei(r
iel

of Brownian motion in terms of the Schauder basis (e;);c; of Cy[0, 1]. Under Wiener
measure P, the coordinates X; are independent with distribution N(0, 1). Thus, the
random vector (X;(®));es, viewed as a measurable map 7 from Q to R*, has distri-
bution U, under P. Relative entropy is invariant under T, and so we get

H(v|us) = H(Q|P),

where v denotes the image of Q under 7. On the other hand we have ||o||» =
||(Xi(®))ies]|-, and this implies

Wii”(va) = Wm(v’um)-
Thus, Talagrand’s inequality (7) for n = oo translates into inequality (9) on Wiener
space.

Having scetched the bottom-up approach to Talagrand’s inequality on Wiener
space, we are now going to focus on the top-down approach. It consists in proving
Talagrand’s inequality (9) directly on Wiener space, using a suitable coupling of O
and P.

3 Intrinsic drift and optimal coupling in the absolutely
continuous case

Take any probability measure Q on (£2,.%) that is absolutely continuous with re-
spect to Wiener measure P. Let us first recall the following computation of the rela-
tive entroopy H(Q|P) in terms of the intrinsic drift of Q; cf. [4], [5] or, for the first
two parts, Th. 7.11 in [11].

Proposition 1 There exists a predictable process b€ = (b,Q(a)))OS,Sl with the fol-
lowing properties:

1)
/01 (b2())%dt <= Q-as., (10)

that is, the process B defined by BS(®) = I b€ (w)ds satisfies
Bo(w) e A Q-as.

2) WQ := W — BC is a Wiener process under Q, that is, W is a special semimartin-
gale under Q with canonical decomposition

w=w?+B2.
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3) The relative entropy of Q with respect to P is given by

1 1 1
H(OIP) = ol [ (6P Pdr) = ) Eo|1BIR, ). (an

The process b2 will be called the intrinsic drift of Q.

Proof For the convenience of the reader we scetch the argument; cf., e.g., [5] for
details.

1) By Itd’s representation theorem, the density ¢ = ‘Zig can be represented as a
stochastic integral of the Brownian motion W, that is, there exists a predictable
process (& )o</<1 such that jol & (w)dt <o P—a.s.and

1
o= 1+/ Edw, P-as.
0

Moreover, the process
t
o ::Ep[¢|%]=1+/)5sdm, 0<r<1,

is a continuous martingale with quadratic variation

(9),= (/Ot EXds  P-as.

and
inf 0 P-as. 0
ogzlg1¢’> a.s.on{¢ > 0},

hence QO-a.s.. Thus, the predictable process b€ defined by

thZ: f)i[{¢'>0}7 0<r<,

satisfies the integrability condition (10).
2) Applying Itd’s formula to log ¢, we get

. W L0 B
oo = [ doi—, [[(, 7alo),
_ (o 1 0y2
= [[seam.— ) [[00yas

t
0
‘o 1 st 5
- /0 b2awe + 2/0 (b9)2ds
The second part now follows from Girsanov’s theorem.

3) Equation (11) for H(Q|P) = Eg[log ¢1] follows from the preceding equation for
t = 1. Indeed, if Eg [ [ (b2)2ds] < oo then we get
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1
Eo| /0 b2aw?] =0,

neral case, the same argument applies up to each

and this implies (11). In the ée
)2ds > n} A1, and for n 1 = we obtain (11). a

stopping time 7, = inf{z| [ (b5

Remark 1 Apart from our present purpose, the intrinsic drift of Q is also an effi-
cient tool in proving a number of inequalities, including logarithmic Sobolev and
Shannon-Stam inequalities; see [10] and [2].

As observed by J. Lehec in [10], proposition 1 can be rephrased as follows in
terms of coupling, and in this form it yields an immediate proof of Talagrand’s
inequality on Wiener space.

Proposition 2 The processes W2 =W — B and W, defined on the probability space
(Q,.F,0), form a coupling of P and Q such that
Eo[|W —We|[5] = 2H(QIP). (12)

Corollary 1 Any probability measure Q on (Q,.F) satisfies Talagrand’s inequality

W (O,P) < \/2H(Q|P). (13)

Proof If Q is not absolutely continuous with respect to Wiener measure P then
we have H(Q|P) = oo, and (13) holds trivially. In the absolutely continuous case,
inequality (13) follows immediately from equation (12) and the definition of the
Wasserstein distance . O

Note that the coupling (W2,W) of P and Q, which is defined on the filtered
probability space (Q,.%, (% )o<i<1,0), is adaptive in the following sense.

Definition 1 A coupling (X,¥) of P and Q will be called an adaptive coupling, if it
is defined on a filtered probability space (Q,.%, (% )o<i<1,P) such that
1. ¥ = (¥)) is adapted with respect to P and (32})02@1,
2. X is a Wiener process with respect to P and (%t )o<i<1. that is, each increment
X, — X, is independent of .% with law N(0, —s).
Theorem 3 The optimal adaptive coupling of P and Q is given by (W, W), that is,
Eo[||[w —we|5] <E[IY - XI5, (14)

for any adaptive coupling (X,Y) of P and Q, and equality holds iff

Y =we{¥)+B2Y¥), P-as. (15)

Proof Take any adapted coupling (X,Y) of Pand Q, defined on a filtered probability
space (Q,.%, (% )o<i<1,P), such that

BT -1 <
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Since ¥ is adapted with continuous paths, B := ¥ — X is an adapted continuous
process such that £ [||B||2,] < . This implies B, = [j byds for some predictable
process b = (by)o<y<1 such that £[ f; b3ds] < eo. Since X is a Brownian motion
with respect to the filtration (%), the process ¥ is a special semimartingale with
canonical decomposition

1 ~
=%+ [ hds (16)
0
under P with respect to (.%;). On the other hand, since ¥ has law O under P and
W2 is a Brownian motion under Q, the process W< (¥) is a Brownian motion under

P with respect to the smaller filtration (.£) generated by the adapted process V.
Thus, ¥ has the canonical decomposition

t
L= o)+ [ b0(T)ds (17)
under P with respect to (.£). This implies
b,Q(f/):E[l;t\gﬂ Podt—as.; (18)

cf., for example, Th. 8.1 in [11] or the proof of equation 68 in the general context of
Proposition 4 below. Applying Jensen’s inequality, we obtain

B(I7—X11] = B[ [ Ba]

> B[ [ 080 ) =gl [ (1082
= 2H(Q|P).
Equality holds iff
by =b2(¥) Pedt—as.,
and in this case (16) and (17) imply X = WO(Y) P-ass.. O

Let us define Wy 44(Q, P) as the infimum of the right hand side in (14), taken
only over the adaptive couplings of P and Q. Clearly we have

WW(va) < Wjﬁ”ﬁad(Q7p)7 (19)

and Theorem 3 shows that the following identity holds, first proved by R. Lassalle
in [9].

Corollary 2 For any probability measure Q on (2, %) we have

W aa(Q,P) = \/2H(Q|P). (20)
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Remark 2 For a thorough discussion of optimal transport problems on Wiener space
under various constraints, with special emphasis on the effects of an enlargement of
filtration, we refer to [1].

The following example illustrates the difference between W and W ,4. It also
shows how the finite-dimensional inequalities in (7) can be derived from Talagrand’s
inequality on Wiener space, thus completing the top-down approach.

For a probability measure v on R! we introduce the probability measure
0¥ = / Pv(dy)
on (Q,.%), where P* denotes the law of the Brownian bridge from 0 to x € R!. If
v < u:=N(0,1), then QV is absolutely continuous with respect to P with density

dov  dv

and the relative entropy is given by
1(0"1P) = [1og j; 01)d0" = [ 1og j:dv:H(wm. @)
Corollary 3 We have
Wor(Q,P)=Wi(v,p) and Wopa(Q'.P)=\2H(v|n).  (22)
Thus, inequality (19) implies
Wi(v,u) <V2H(v|w). (23)
Inequality (23) is strict except for the case where v = N(m, 1) for some m € R'.

Proof 1) The second identity in (22) follows from Corollary 2 and equation (21).

2) To prove the first identity, take any coupling (X,Y) of P and Q, defined on some
probability space (Q,.%, P), such that Z := ¥ — X € J#. Then the endpoints X; and
Y1 form a coupling of ¢t and v. Since

1 1
(=307 =Z = ([ ZasP < [ Zds= |17~ XIF.
0 0
we obtain

Wi (v, < E[(1 =%)°] <E[IIY - X115,

hence
WE(v, 1) < W3 (O,P). (24)

We now show that the lower bound le (v, 1) is attained by the following coupling
(W,Y) of P and QY, defined on the Wiener space (£2,.%, P). The process Y is given
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by
Y, =W +t(f(W)-W), 0<t<1,

where f, (x) = gy(®@(x)) and @ denotes the distribution function of u = N(0,1).
The endpoint ¥} = f,, (W) has distribution v under P, and the conditional distri-
bution of ¥ given the endpoint ¥; = y coincides with the Brownian bridge P”.
Thus Y has distribution Q¥ under P, and (W,Y) is a coupling of P and QV, de-
fined on (£2,.%,P). Note that this coupling is not adaptive with respect to the
filtration (.%,;), since Y anticipates the endpoint #; of the Brownian path. Since
1Y =112 = (v (W) = M)?, we get

ER[IlY = W1E] = [ (o) —x) m(an

= [ (@)@ (@) da = (w10,

using equation (8) in the last step. This completes the proof of the first identity in
(22)

3) Let us write Q = QY. Theorem 3 shows that the optimal adapted coupling of Q
and P is given by (W, W€) under Q. Since

-1 1
= wPP = ([ bPan? < [ (b2)dr = 1189
0 0
and

equality in (23) implies, 0-a.s., that b,Q() is almost everywhere constant in z, hence
equal to m(-) := W) — WIQ . Since the process 5 is adapted to the filtration (%),
m(-) is measurable with respect to %y = (\,»-%:. But P is 0-1 on %y, and the
same is true for Q < P. This implies m(-) =m Q-a.s. for some m € R, that is,
W) =WE+mand v =N(m,1). 0

Talagrand’s inequality in any finite dimension # > 1 follows in the same manner.

For our purpose it is convenient to use the following equivalent version, where the
reference measure is taken to be

n
- 1
Hn = HN((), n)
i=1
instead of u, = [T}_; N(0,1) as in (7).
Corollary 4 For any probability measure v on R”,

AWV, i) < 2H(V|ity). (25)
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Proof We may assume v < [i,. Let T, : Q — R" denote the map that associates
to each path @ the vector of its increments w(i/n) — w((i—1)/n) (i=1,...,n).
Under Wiener measure P, the distribution of 7, is given by fi,,. Define Q" on (Q,.%)
by

do¥ dv

= T,).

aP " du (Tn)
f/) of P and Q" such that Z := ¥ — X € s, the vectors X, :=
) form a coupling of v and fi,,. Since

For any coupling (X,
Th(X)and Y, :=T,(Y

n i/n
||Xn—Yn||2 = Z(/

. 1, o
Zds)? <2 / Zxds= ||V —X||%,
n

i—1 J@=1)/n 1)/n
we obtain
W) < EI1%~IP) < L E[F - X1R),
hence
WAV ) < WA(0.P) < 2 H(Q'IP).
due to Corollary 1. Since H(Q"|P) = H(Vv|fi,), we have proved (25). d

4 Specific Relative Entropy

The following concept of specific relative entropy on Wiener space was introduced
by N. Gantert in her thesis [7], where it plays the role of a rate function for large
deviations of the quadratic variation from its ergodic behaviour; cf. also [8]. In our
context, it will allow us to extend Talagrand’s inequality on Wiener space beyond
the absolutely continuous case Q < P.

From now on, the index N will refer to the N-th dyadic partition of the unit inter-
val, that is, Dy = {k27V|k = 1,...,2"}. In particular we introduce the discretized
filtration

Iny=0({Wsls € Dy,s <t}), 0<t<1

on Q = (y[0,1], and we set Fy = Fy,1 = c({Ws|s € Dy}).

Definition 2 For any probability measure Q on (£2,.%), the specific relative entropy
of O with respect to Wiener measure P is defined as

h(Q|P) = li]r%infTNHN(Q\P), (26)

where Hy(Q|P) denotes the relative entropy of Q with respect to P on the o-field
FN.
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Since H(Q|P) = limy Hy(Q|P), we get h(Q|P) = 0 for any Q such that H(Q|P) <
oo, Thus, the notion of specific relative entropy is of interest only if we look beyond
the cases that we have considered so far.

Remark 3 Note that Fy = o(T,,) for n =2V, where T, : Q — R” maps a path  to
the vector of its increments along the N-th dyadic partition; cf. the proof of Corollary
4. Identifying the restrictions of Q and P to .%y with their images v and i, under
T, Talagrand’s finite-dimensional inequality (25) can be written in the form

2YW2(Q,P) < 2Hy(Q|P), 27)

with
Wy(Q,P) :=inf (Ep[(¥ — X)) 12

where the infimum is taken over all couplings of Q and P and < . > y denotes the dis-
crete quadratic variation along the N-th dyadic partition, that is, (@), = ||7,(®)]|
for any continuous function @ € Q = Cy[0, 1]. For N 7 oo, the right hand side of (27)
increases to 2H(Q|P). Thus, an alternative version of the bottom-up approach to
Talagrand’s inequality on Wiener space consists in showing that, in the limit N 1 eo,
the left hand side of (27) can be replaced by W »(Q, P) if H(Q|P < eo.

In order to go beyond the absolutely continuous case Q < P, let us rewrite the
finite-dimensional inequality (27) as

W3(0.P) <2-27VHy(0|P). (28)

Taking the limit N 1 oo, the specific relative entropy A(Q|P) appears on the right
hand side of (28), while the left hand side suggests to define a new Wasserstein
distance on Wiener space in terms of quadratic variation. The resulting extension of
Talagrand’s inequality is contained in Theorems 6 and 7 below. Instead of analyzing
the limit behaviour of the left hand side of (28), we are going to use again a top-
down approach, arguing directly in terms of couplings on Wiener space. As a first
step in that direction, we now show how the specific relative entropy 4(Q|P) reflects
the special structure of a semimartingale measure Q on Cy[0, 1].

Definition 3 Let 2 denote the class of all probability measures Q on 2 = Cy[0, 1]
such that the coordinate process W is a special semimartingale of the form

W= M2 + 42 (29)

under Q with respect to the filtration (%), where

1. M9 = (M9)y<,<1 is a square-integrable martingale under Q
2. 49 = (AQ)OS,Q is an adapted process with continuous paths of bounded varia-
tion such that its total variation |4|€ satisfies |4 \IQ € L*(Q).

A probability measure Q € 2. will be called a martingale measure if 49 = 0, that
is, if W is a square-integrable martingale under Q. The class of all such martingale
measures will be denoted by 2 .
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Remark 4 Proposition 1 shows that any probability measure Q on (€2,.%) with finite
relative entropy H(Q|P) < o belongs to the class 2., with M = W€ and A¢ = BC.

Let us now fix a measure Q € 2 . We denote by

<W> = (<W>t)0§t§1

the continuous quadratic variation process defined, Q-a.s., by the decomposition
w2 = [waw -+ ()

of the continuous semimartingale 2 under Q. Our assumptions for O € 2. imply
that

Wy, =1im Y (W, -W,_,x)?  inL'(Q) (30)
NT‘”teDN
and that
lim Y (4 —4,,v)’=0 inL'(Q) 3D
Nt Dy

cf., e.g., Ch. VIin [12].

Let us introduce the finite measure g(w,dt) on [0, 1] with distribution function
(W)(w), defined Q-a.s., and denote by

q(o,dt) = g5(,dt) + *(w,t)dt (32)

its Lebesgue decomposition into a singular and an absolutely continuous part with
respect to Lebesgue measure A on [0, 1]; an explicit construction will be given in the
second part of the following proof.

Our next aim is to derive, for a large class of probability measures Q € 2, a
lower bound for the specific relative entropy £(Q|P) in terms of the quadratic varia-
tion of W under Q, that is, in terms of the random measure ¢(-,-). In a first step we
focus on the case Q € 2 4 . The following theorem for martingale measures is es-
sentially due to N. Gantert in [7]; here we extend it to the case where the quadration
variation may have a singular component.

Theorem 4 For any martingale measure Q € 2.4, the specific relative entropy of
Q with respect to Wiener measure P satisfies

1
h(QIP) > Eolq(®,[0,1]) =1+ H(Alg(e,))]
1
= ;EQ [gs(®,[0,1])] +EQ[/O f(o*(w,1))dt], 33)
where f is the convex function on [0,) defined by f(x) = ;(x —1—1logx) >0.1In

particular,
WQ|P) <o = 0%(,-)>0 O®A—a.s. (34)
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Proof 1) First we look at the general case Q € 2 . Thus we can write W = M +
A, where M is a square-integrable Q-martingale and 4 is an adapted process with
continuous paths of bounded variation such that Eg[|4[7] < ee.

ForN>1landi=1,...,2" we write ; = 2" and denote by vy i(,-) the con-
ditional distribution of the increment W, — W, | under Q given the o-field Zy,, |,

by
my; = Eg [th Wi, ‘yNJifl] =Ep [Af[ — Ay, |yN~ti—l]

its conditional mean, by
6/%“ = EQ[(WIf Wi )2|<?N-fi71] - mlz\f.i
its conditional variance, and by
on; = Eo[(My =M, )| Fns ] = Eo[(W), — (W), | Fni] (39

the conditional variance of the martingale increment M;, — M, . We can write

Hy(Q|P) = zEQ[ vwi(@,-)|N(0,27V)].
Since
H(N(m,a)IN(0,B)) = /(
for o, B >0 and m € R', we get
H (v, IN(0,27Y))
= H(vw,iIN(my.i,63,)) +H (N(my, 63,1)[N(0,27))

N - 1
= H(vi|N(mn,,85,)) + f(2V63.) + ) 2Vmy

hence .
2
N . 1
Hy(QIP) = Hy(QI0N) + Eo X /(2" &3] + , 2" Iv, (36)
i=1
where we define
2N
Iv:=Eg[ Y. my,], (37)

i=1
and where Q}, denotes the probability measure on (€2, .%#y) such that the increments
W, —W,,_, have conditional distribution N (my, 6]%,7 ;) giventhe o-field #y,, . Note
that Jensen’s inequality yields



162 H. Follmer

N

Iv< Bl Y (Ay —44,)*],
=

hence
limly =0 38
\im [y =0, (38)
due to (31). Note also that Hy (Q|P) < o= implies 6',%,’1.((0) >0 Q-as.,since f(0) =

2) Let Q ® g denote the finite measure on Q=0x [0,1] defined by Q®¢q(dw,dt) =
O(dw)q(w,dt). On the o-field

Py =0({4, x (t,1]|t € Dy, 4 € Fn,}),

the measure Q ® ¢ is absolutely continuous with respect to the product measure
O® A, where A denotes the Lebesgue measure on (0, 1], and the density is given by

N
0-/\2/(0)7t) = Z 2N0-1\2/,i(a))l(l‘l‘_1,ti] (t)'
i=1

The o-fields &y increase to the predictable o-field &7 on Q, generated by the
sets 4; x (¢,1] with ¢ € [0,1] and 4, € .%;. Applying the first part of Lemma 1 with
U=0®A and v=0®gq, we see that the limit

2 )
o (w,t) =limoy(w,t
(o,1) N v(®,1)

exists both Q® ¢ -a.s. and Q® A -a.s., with
o’ (w,t) €[0,0) QDA —a.s.

and
o (w,t) € (0, O®q—a.s..

Moreover, the Lebesgue decomposition of Q ® ¢ with respect to Q® A on the pre-
dictable o-field & takes the form

0®q 4] = 0®q[AN{0” = eo}] + Egap [07:4],
for A € 2. This implies, 0-a.s., the Lebesgue decomposition
q(®,dt) = qy(®,dt) + 6*(o,)A(dt),

of g(w, ) with respect to Lebesgue measure A, where the singular part gs(,-) is
given by the restriction of ¢(®, ) to the A-null set

N(w) :={t| 6*(w,t) = o}. (39)
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3) Let us now focus on the case where Q is a martingale measure. For Q € 2_,, we
have 3, = oy, and 4 = 0, hence Iy = 0. Thus, equation (36) can be written as

1
2 VHy(QP) =2 H(QI0) + Eol [ foR(-0)dr]. (40
Since Hy(Q|0Ox) > 0, we obtain
WOIP) = limEo[ [ f(GR(-.0))ar]
1 I
~ ,Eola(@.0.0)] +Eo[ [ Sl (o). @)
where we apply the second part of Lemma 1 below, with 4 = Q® A and v =0®gq.

Since f(0) = oo, we see that #(Q|P) < e implies that 62(-,-) is strictly positive
O®A-as.. O

Remark 5 The proof of Theorem 4 shows that we obtain existence of the limit

WOIP) = lim2 (0[P *2)
together with the equality
1 1
MOIP) = , Eolas(w,0.1)] +Eo [ f(c*(@n)dr], @)

if and only if O is “almost locally Gaussian” in the sense that the measures Oy
appearing in (36) satisfy
lim2™"Hy(0I0) = 0. (44)

This was already observed by N. Gantert in [7].
In the proof of Theorem 4 we have used the following general lemma.

Lemma 1 Consider two probability measures L and vV on a measurable space
(S,) and a sequence of (y)n=1,.... of sub-o-fields increasing to .. Suppose
that v is equivalent to L on ., with density §,.
1) The limit ¢ = lim,, ¢, exists both [-a.s. and v-a,s,, with

@ € [0,00) t —a.s. and ¢ € (0,00] V—a.s.,

and the Lebesgue decomposition Vv = Vs + Vv, of vV with respect to L on Y% is given
by

Vo(d) = V(AN {$ = }) and va(A):/Aq)mdu.

2) If'sup,, [ f(dn)du < oo for f(x) = %(x— 1 — logx) then we have
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. 1
tim [ £(0)du = yvi($)+ [ f(g-)an. 43)

Proof The first part is well-known; the proof uses standard martingale arguments.
To prove the second part, we write

[21@du = [6uan—1+ [1og(6,")an
= vs(S)+/(/deu— l+Hg,(v|1).

Due to (6), we get
. i 1
tim [ £(0)dp = 5 (w($)+ [ ot =1+ Ho (vIp))

If the left hand side is finite, the relative entropy is finite and reduces to [ log(¢2')du,
and this yields equation (45). g

Let us now go beyond the case of a martingale measure. Take Q € 25 and
let W = M + A4 be the canonical decomposition of the semimartingale /7 under Q.
As soon as the process 4 is non-deterministic, the conditional variances G]%, ;of M

defined in (35) do no longer coincide with the conditional variances 61%,11» of W along
the N-th dyadic partition. Instead we have

) )
Oy ;= On,;+ 6N,

where
SN,i = a]%/,i +2EQ[(M1‘ — M )(Atf 7Afi—1)‘ﬂNJ171 ]’

and where we denote by
a]%/,i = EQ [(Ati 7Ati—1 )Z‘EN,QA] - mlzv,i

the conditional variances of 4 along the N-th dyadic partition.

Lemma 2 The differences Oy ; and the conditional variances Oc,%,ﬁi satisfy

N N

imEp[ Y, |6y =limEg[ Y o] =0.
e i e i

Proof Since
N N

Iv:=Ep| 2 o] < Eo (A, — 4],

i=1 i=1

we obtain
limJy =0 (46)
nfoo

due to (31). On the other hand, since
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|8v.i| < oy +20w.i0,i, (47)
we get
2 Z /2p /2
1 1
2|5N1 <EQ[2°‘N: +22EQ Eglo,]
< s 25 )
hence
2N
limEp[ 3, |8l =0, (48)
« i=1
due to (46). g

To prove our extended version of Theorem 4, we use an additional assumption.

Definition 4 We denote by Qg, the class of all probability measures Q € 2.~ such

that
2N

hmEQ[z NZaN,oN,} 0. (49)
=1

Remark 6 Condition (49) is satisfied if 62(-,-) is bounded away from 0. Indeed, if
6%(,-)>c¢ Q® A-as. for some ¢ > 0 then

2
> 2Nog (@), () = on(@,1) > Egey [07|PN] > ¢ Q@A —as.;
=1

cf. the second part of the proof of Theorem 4. Thus, (49) follows from Lemma 2.

Theorem 5 Forany Q € 2%,

h(Q|P) > ;EQ [g5(@,[0,1])] +EQ[/01f(0-2(a),t))dt]. (50)

Proof 1) Let us return to the first part of the proof of Theorem 4. Since
Hy(0|0x) > 0, equation (36) yields
2N 1
2"VHy(Q|P) > EQ[Zf (2Vex )27V + S

Since f is convex with f'(x) = (1 —x~1), we obtain

V) > f2N o) + ;u—z RCTHEALY

Due to (38), this implies
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1 1
h(o|P) > 1i]r\}1TinfEQ[/ f(o@,0)de+ ) An],
had 0

where
2N

Ay = 2 (5]\/7,' - 27NG];’12- 6]\1’,').
i=1

Applying the second part of Lemma 1 as in the proof of Theorem 4, we see that
inequality (50) holds as soon as we show that

jlvigAN:O in L'(Q). (51)

2) In view of Lemma 2 it is enough to show convergence to 0 for

N

Eo[ Y2 Yoy |6v.l]
i=1
l oN 2N

<Eo[ Y2 Voy oy, +2E0[27N Y awioy )]
i=1 i=1
12N 12N

<Ep[Y 2 Vo203 ] +2Eo27V Y oy 2ad ).
i=1 i=1

But the last two terms converge to 0 due to our assumption (49), and this completes
the proof of (51). 0

Corollary 5 Let Q € 2.4 be such that ||A2|| » € L*(Q). Then we have
h(QIP)=0 <= H(QIP) <ee,

and in this case the canonical decomposition (29) of W under Q takes the form
MO =w? and AC = B .

Proof Let us assume h(Q|P) = 0. Inequality (33) implies g;(®,-) = 0 O-a.s and
f(o*(w,t)) =0 Q® A-as, hence 6%(w,t) = 1 Q® A-a.s. Thus, W has quadratic

variation
(W), =(M?), =1

under Q, and so M€ is a Wiener process under Q. Uniqueness of the canonical
decomposition of W under Q yields M2 = W€ and 49 = BZ, hence

1
H(QIP) = , E[|14%I1%] <

due to Proposition 1. Conversely, H(Q|P) < oo implies #(Q|P) = 0, as we have
already observed above, following the definition of #(Q|P). O
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5 Intrinsic Wiener Process and Optimal Coupling for
Semimartingale Measures

We fix a probability measure Q € 2 &~ and denote by
W=M+A4 (52)

the canonical decomposition of the coordinate process W under Q. Recall the
Lebesgue decomposition

q(w,dt) = q(w,dt) + o*(o,t)dt
of the random measure ¢(®, -) on [0, 1] with distribution function (W )(®), and put
A(w) :={te[0,1]] 6*(w,t) < oo}.

The following construction of an intrinsic Wiener process W€ for O extends the
definition in Proposition 1 beyond the absolutely continuous case Q < P.

Lemma 3 [f h(Q|P) < o then the process W€ = (W,Q)ogtgl, defined Q-a.s. by

t
W2 = [ o5) i (s)dM, (53)
is a Wiener process under Q.

Proof By Theorem 4, our assumption 4(Q|P) < e implies

1
E 2 d
o | f(e*(@.n)ar] <
where f(x) = (x— 1 —logx), and in particular
0<0?(-) <o QRA—as.

smce](O) = Smce (M)=(W)and A (A(-)) =1 Q-a.s., the predictable integrand
o(-s)7! (- (s) in (53) satisfies

!
/¢52d<M>s‘:/ SZIA()( Oy dsf/IA dsft
0 | 0

Thus, the stochastic integrals in (53) are well defined, and they define a continuous
martingale W€ under O with quadratic variation <WQ> , = t. This implies that we
is a Wiener process under Q. g

For the rest of this section we assume that Q € 2 satisfies the condition

h(Q|P) < e, (54)
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and so W€ will be a Wiener process under Q.
Definition 5 W< will be called the intrinsic Wiener process of Q.

Remark 7 If H(Q|P) < oo then the intrinsic Wiener process coincides with the
Wiener process W< := W — BY defined in Proposition 1; cf. the proof of corollary
5.

Definition 6 An adaptive coupling (X,¥) of P and Q on a filtered probability space
(Q,F,(F1)o<i<1,P) will be called a semimartingale coupling if ¥ is a special semi-
martingale with respect to P and (%)Oﬁtﬁls and if the canonical decomposition
¥ = M + 4 is such that

1. M is a square-integrable martingale,
2. A is an adapted process with continuous paths of bounded variation such that its
total variation || satisfies |4|; € L?(P).

Clearly, the pair (W2, W) is a semimartingale coupling of P and Q, defined on
the filtered probability space (Q2,.7, (% )o<i<1,0). In fact, we are going to show
that (W€, W) is the optimal semimartingale coupling for the Wasserstein distance
W (Q,P) defined below.

Proposition 3 For any semimartingale coupling (X,Y) of P and Q on some filtered
probability space (Q,.F ,(F1)o<i<1,P) we have

E[(Y=%),] = Bo[(W = w?),], (55)
and equality holds if and only if X = W2(Y) P-a.s.. Moreover,

Eo[(W —w?),] :EQ[/O1 (6(-5) = 1)%ds+q5(-,(0,1])]. (56)

Proof 1) First we show that the last equality holds. Recall from the proof of Theo-
rem 4 that g;(®, -) is given, Q-a.s., by the restriction of ¢(®, -) to the A-nullset N(o)
defined in (39). Since A(-) UN(-) = [0, 1], we have

t 1
Wy :/IA()(S)de—F/ 1N(< (S)qu

—/ dWQ+/ Iy (s)dWs,

w—we), = /0 (0(,5) = 1)awe+ /0 11N<~>(s)dWs

hence

and
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t
w—wo), :/( (.5)—1) ds+/ Iy (s)ad(W),
+2/ s) = 1)y ()d(We, W) .

The last term vanishes since, O-a.s., N(®) is a nullset with respect to
d(We,w)(®) < d(W?)(w) = dt. This implies

1
2
Eo[(W =), ] = Eol [ (o¢,s)=1)%ds+4.(-(0.1]);
2) Consider any semimartingale coupling (X, ¥ ) of P and Q, defined on some fil-

rtingale ¢ (
tered probability space (2,.%, (% )o<i<1,P). Both X and the process W := W9 (Y),
defined by

ot
W,;:/ o(7,5) Ly (s)dT,
JO

are Wiener processes under P with respect to the filtration (.7, ). Projecting the first
on the second, we can write

t
= [ paii+ 1.
where I = (L+)o<i<1 is a martingale orthogonal to W . Since
~ t ~
= <X>t :/0 pSZdS+ <L>t’

we get p? < 1andd(L), = (1—p?)dt. This implies

d(X,7) = pd(W.7)
t

hence

Thus,
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B((F )] 2 B [ (o(7.0)~1)%dr-+4,7,0.1])]

= EQ[/O1 (o(-1)— l)zdt+qs(~, (0,1])]
= Bol(W-12),].

and equality holds iff p;(-) = 1 P®dt -a.s., thatis, iff X = W = W2(¥) P-as.. O

Now consider the following Wasserstein distance W (Q, P), where the cost func-
tion is defined in terms of quadratic variation.

Definition 7 The Wasserstein distance W (Q, P) between Q and Wiener measure P
is defined as

W (0.P) = inf (E[(V— %), + 1413 ])?, (57)

where the infimum is taken over all semimartingale couplings (¥, X) of Q and P on
some filtered probability space, where M + 4 is the canonical decomposition of ¥,

and where we set .
Wil = ([ ata(),)"?

if 4 is absolutely continuous with respect to <)~’> with density process @, and
|4]|.7 = oo otherwise.

Remark 8 In the absolutely continuous case Q < P we have
d<1~/>:d<}~(>:dl O—as.,
and so the norm ||4|| »» reduces to the Cameron-Martin norm ||4|| .

As an immediate corollary to the preceding proposition we obtain the follow-
ing inequality for martingale measures. It provides a first extension of Talagrand’s
inequality (13) on Wiener space beyond the absolutely continuous case.

Theorem 6 For a martingale measure Q € 2.4,

W5 (Q.P) = Eg[(W —W?),] <2h(Q|P), (58)
and equality holds iff Q = P.
Proof 1) For Q € 2.4, the pair (W,W9) is a semimartingale coupling of Q and
P, defined on (Q,.%, (% )o<i<1,0), such that W — W2 = M — W¥ is a martingale

under Q. Thus, the expected cost in (57) only involves the quadratic variation com-
ponent, and Proposition 3 implies

W (Q,P)=Eg[(W—W?) | =Eg [/0.1 (0(,5) = 1)%ds+44((0,1)]. (59

Note that
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(6—1)?<0*—1-logo? =2f(c?),
with equality iff % = 1. Thus,

Eol(W =), ] < Eol2 [ (0%(o)dr+4,(-(0.1])
< 2h(Q|P), (60)

where the second inequality follows from Theorem 4.

2) Equality in (58) implies equality in (60). It follows from part 1) that 6% (-,-) =
1 O® A-a.s.. This implies W = M = W€ under O, hence O = P. The converse is
obvious. |

Definition 8 We write Q € 2%, if the canonical decomposition W = M +- 4 of the
coordinate process W under Q € 2. is such that

Ep[[14]1%] < e, (61)

that is, dA;, = a,d{W), with [j a?d(W), € L'(0), and if

G*:=exp(— /a,dM / 7d(M),)

satisfies
G*€1*(Q) and Ep[G*]=1. (62)

Remark 9 For Q € 2%,, the probability measure Q* defined by
dQ* = G*dQ (63)

is an equivalent martingale measure for Q; cf., for example, [6]. Note that 2 , C
2%,,andthat 0* = QforQe 2 4.

Proposition 4 For O € 27, the coupling (W, W) of Q and P is optimal for Wy,
that is,
W5(0.P) = Eo[(W =w?), +|l4]I%]. (64)

Proof For Q € 2%, the right-hand side in (64) is finite, and so we have W (0, P) <
co. Now take any semimartingale coupling (Y X) of Q and P, defined on some fil-
tered probability space (Q,.7, (% )o<i<1,P), such that

E[(Y-X), +|14]5] <

Since
E[(Y=%),] = Eo[(W —w?),] (65)

by Proposition 3, it only remains to show that

E[I1]15] = Eolll4I1%],



172 H. Follmer

that is, 1 1
B[ [ @d(7),) = Bl [ aa(w)). (66)

We denote by 2 the predictable o-field on Qx (0,1] corresponding to the filtration
(1), and by P C 2 the predictable o-field corresponding to the smaller filtration
(Z) generated by (;). Since E[||4||2,] < e, we have

dlat = &td<)~]>t = &tdq(?,t),

where d@ = (d;) is &-measurable and square-integrable with respect to the finite
measure P® ¢(¥,-) on Z. Let a° = (a?) denote the process defined by the condi-

tional expectation
S0 ._ 1. . ~ 0
a = EP®q(Y,~) [a | 32 :I,

and note that Jensen’s inequality implies
Epog(y ) [(@°)] < Epoyy @] (67)
For any 4 € .7 we can write
ElTn = Y540] = E[Mypn — Mo A7) + E Ay — A 47

_ qtth .
E[/t asd(V) 3 A)| = Epgyy .y (@47 x (t,0+ b))

~0. 40 i rh ~0 7/ 0
= Epgyy. @47 x (t,0+ 1] :E[/t ayd(Y) :4;].

This implies that the canonical decomposition of the semimartingale ¥ in the smaller
filtration (.%) is of the form

B=n+ [ (),
0

where M° is a martingale with respect to (#). On the other hand, since the law of
Y under P is given by O, we have

!
Vi=M({)+ /0 as(V)d(Y)..
Uniqueness of the canonical decomposition implies
d=al) Pxq{,)-as. (68)

Thus, inequality (67) yields
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and so we have shown inequality (66). g

The following inequality extends Theorem 6 beyond the case of a martingale
measure. As explained in Remark 10 below, it contains inequality (58) for O € 2 4,
Talagrand’s inequality (9) for O < P, and Corollary 2 for W, ,4 as special cases.

Theorem 7 For Q € 2%,

W (0,P) <2(h(QIP)+H(Q|0")), (69)

where Q is the equivalent martingale measure for Q defined by (63). Equality holds
i H(QIP) < o.

Proof 1) Proposition 4 combined with inequality (60) shows that
W5 (Q.P) = Eo[(W = W), +|l4][%]
< 2K(QIP) + o[ /0 L2aiw) ). (70)
Since O is equivalent to O, we have
H(Q|Q") = Eg[log (dQ"/dQ)™"]
:EQ[/ adM, + 2/ 24(M),].

But M is a square-integrable martingale under O and Ep| [0 a’d <M > ] <eoforQe
2%,. This implies EQ[fO adM;] = 0, hence

* 1 ! 2
H(QI0") = ol [ atd(a),]
Thus,
WZ(0,P) < Eg[(W —W2) +||4|%] < 2h(0|P)+2H(0|0").

and so we have shown inequality (69).
2) Equality in (69) implies equality in (70), hence

Eo[(W —Ww?)] =2h(QP).

Recall that the left-hand side satisfies equation (56). As in the proof of Theorem 6,
it follows that M = W2, This implies W = W2 + 4 and ||4||.» = ||4]|.» € L*(Q),
hence

H(OIP) = ) Eo[Il41P]) <

due to Proposition 1.
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Conversely, H(Q|P) < oo implies 2(Q|P) = 0 and Q € 2%, with 2* = P, hence
H(Q|Q*) = H(Q|P). Thus, the right-hand side of (69) reduces to 2H(Q|P) =
Eg[||B?|%,]. Moreover, since W = W9 + B and (W), =t under Q, we get A = BY,
and the left-hand side becomes W72, (Q,P) = W3, ,,(0,P) = Eg[||B9||%,]. Thus,
equality holds in (69). g

Remark 10 Inequality (69) includes inequality (58) for martingale measures as a
special case. Indeed, for 0 € 2, C 2%, we have Q = 0, hence H(Q|0*) = 0 and

W (0,P) < 2h(Q|P).

Part 2) of the preceding proof shows how Talagrand’s inequality (9) and the identity
(20) for Wy 44 follow from Theorem 7.
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Who Are I: Time Inconsistency and
Intrapersonal Conflict and Reconciliation”

Xue Dong He and Xun Yu Zhou

Abstract Time inconsistency is prevalent in dynamic choice problems: a plan of ac-
tions to be taken in the future that is optimal for an agent today may not be optimal
for the same agent in the future. If the agent is aware of this intra-personal con-
flict but unable to commit herself in the future to following the optimal plan today,
the rational strategy for her today is to reconcile with her future selves, namely to
correctly anticipate her actions in the future and then act today accordingly. Such a
strategy is named intra-personal equilibrium and has been studied since as early as in
the 1950s. A rigorous treatment in continuous-time settings, however, had not been
available until a decade ago. Since then, the study on intra-personal equilibrium for
time-inconsistent problems in continuous time has grown rapidly. In this chapter,
we review the classical results and some recent development in this literature.

1 Introduction

When making dynamic decisions, the decision criteria of an agent at different times
may not align with each other, leading to time-inconsistent behavior: an action that
is optimal under the decision criterion today may no longer be optimal under the
decision criterion at certain future time. A variety of preference models can lead
to time inconsistent behaviors, such as those involving present-bias, mean-variance
criterion, and probability weighting.
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In his seminal paper, Strotz (1955-1956) describes three types of agents when
facing time inconsistency. Type 1, a “spendthrift” (or a naiveté as in the more re-
cent literature), does not recognize the time-inconsistency and at any given time
seeks an optimal solution from the vantage point of that moment only. As a result,
his strategies are always myopic and change all the times. The next two types are
aware of the time inconsistency but act differently. Type 2 is a “precommitter” who
solves the optimization problem only once at time 0 and then commits to the result-
ing strategy throughout, even though she knows that the original solution may no
longer be optimal at later times. Type 3 is a “thrift” (or a sophisticated agent) who is
unable to precommit and realizes that her future selves may disobey whatever plans
she makes now. Her resolution is to compromise and choose consistent planning in
the sense that she optimizes taking the future disobedience as a constraint. In this
resolution, the agent’s selves at different times are considered to be the players of
a game, and a consistent plan chosen by the agent becomes an equilibrium of the
game from which no selves are willing to deviate. Such a plan or strategy is referred
to as an intra-personal equilibrium.

To illustrate the above three types of behavior under time inconsistency, consider
an agent who has a planning horizon with a finite end date 7 and makes decisions at
discrete times 7 € {0,1,...,T — 1}. The agent’s decision drives a Markov state pro-
cess and the agent’s decision criterion at time ¢ iS to maximize an objective function
J(t,x;u), where x stands for the Markovian state at that time and u represents the
agent’s strategy. The agent considers Markovian strategies, so u is a function of time
s€{0,1,...,T — 1} and the Markovian state at that time. If the agent, at certain time
t with state x, is a “pre-committer”, she is committed to implementing throughout
the remaining horizon the strategy u?zx) = {u?ﬁx) (s, )]s =t,t+1,....,T — 1} that
maximizes J(¢,x;u), and this strategy is referred to as the pre-committed strategy of
the agent at time ¢ with state x. If the agent is a “spendthrift”, at every time ¢ with
state x, she is able to implement the pre-committed strategy at that moment only
and will change at the next moment; so the strategy that is actually implemented by

the agent throughout the horizon is u" = {u?scxun ) (5, X" (s))|[s=0,1,...,T — 1},

where X" denotes the state process under u". This strategy is referred to as the
naive strategy. If the agent is a “thrift”, she chooses an intra-personal equilibrium
strategy @: At any time ¢ € {0,1,...,7 — 1} with any state x at that time, @(¢,x) is
the optimal action of the agent given that her future selves follow @; i.e.,

0(r,x) € argmaxJ(r, x50 ,), €))

where w; ,(7,x) :=u and w, , (s, -) :=0(s,-) fors=r+1,...,T — 1.

All the three types of behavior are important from an economic perspective. First,
field and experimental studies reveal the popularity of commitment devices to help
individuals to fulfill plans that would otherwise be difficult to implement due to lack
of self control; see for instance Bryan et al. (2010). The demand for commitment
devices implies that some individuals seek for pre-committed strategies in the pres-
ence of time inconsistency. Second, empirically observed decision-making behavior
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implies that some individuals are naivetés. For example, Barberis (2012) shows that
a naive agent would take on a series independent, unfavorable bets and take a gain-
exit strategy, and this gambling behavior is commonly observed in casinos. Finally,
when an agent foresees the time-inconsistency and a commitment device is either
unhelpful or unavailable, the intra-personal equilibrium strategy becomes a rational
choice of the agent.

It is important to note that it is hard or perhaps not meaningful to determine
which type is superior than the others, simply because there is no uniform criteria
to evaluate and compare them. So a naive strategy, despite its name, is not necessar-
ily inferior to an intra-personal equilibrium in terms of an agent’s long-run utility.
Indeed, O’Donoghue and Rabin (1999) show that in an optimal stopping problem
with an immediate reward and present-biased preferences, a sophisticate agent has
a larger tendency to preproperate than a naiveté and thus leads to a lower long-
run utility. In this sense, studying the different behaviors under time inconsistency
sometimes falls into the realm of being “descriptive” as in behavioral science, rather
than being “normative” as in classical decision-making theory.

In this survey article, we focus on reviewing the studies on intra-personal equi-
librium of a sophisticated agent in continuous time. Intra-personal equilibrium for
time-inconsistent problems in discrete time, which is defined through the equilib-
rium condition (1), has been extensively studied in the literature and generated var-
ious economic implications. The extension to the continuous-time setting, however,
is nontrivial because in this setting, taking a different action from a given strategy at
only one time instant does not change the state process and thus has no impact on the
objective function value. As a result, it becomes meaningless to examine whether
the agent is willing to deviate from a given strategy at a particular moment by just
comparing the objective function values before and after the deviation. To address
this issue and to formalize the idea of Strotz (1955-1956), Ekeland and Pirvu (2008),
Ekeland and Lazrak (2006), and Bjork and Murgoci (2010) assume that the agent’s
self at each time can implement her strategy in an infinitesimally small, but positive,
time period; consequently, her action has an impact on the state process and thus
on the objective function. In Section 2 below, we follow the framework of Bjork
and Murgoci (2014) to define intra-personal equilibria, show a sufficient and neces-
sary condition for an equilibrium, and present the so-called extended HJB equation
that characterizes the intra-personal equilibrium strategy and the value under this
strategy. In Section 3, we further discuss various issues related to intra-personal
equilibria.

A close-loop strategy for a control system is a mapping from the historical path
of the system state and control to the space of controls. So at each time, the control
taken by the agent is obtained by plugging the historical path into this mapping.
For example, a Markovian strategy for a Markovian control system is a closed-
loop strategy. An open-loop strategy is a collection of controls across time (and
across scenarios in case of stochastic control), and at each time the control in this
collection is taken, regardless of the historical path of the system state and control.
For a classical, time-consistent controlled Markov decision problem, the optimal
close-loop strategy and the optimal open-loop strategy yield the same state-control
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path. For time-inconsistent problems, however, closed-loop and open-loop intra-
personal equilibria can be vastly different. In Section 4, we review the study of
open-loop intra-personal equilibrium and discuss its connection with closed-loop
intra-personal equilibrium.

Optimal stopping problems can be viewed as a special case of control problems,
so intra-personal equilibria can be defined similarly for time-inconsistent stopping
problems. These problems, however, have very special structures, and by exploiting
these structures new notions of intra-personal equilibria have been proposed in the
literature. We discuss these in Section 5.

If we discretize a continuous horizon of time and assume that the agent has
full self control in each subperiod under the discretization, we can define and de-
rive intra-personal equilibria as in the discrete-time setting. The limits of the intra-
personal equilibria as discretization becomes infinitely finer are used by some au-
thors to define intra-personal equilibria for continuous-time problems. In Section 6,
we review this thread of research.

Time-inconsistency arises in various economic problems, and for many of them,
intra-personal equilibria have been studied and their implications discussed in the
literature. In Section 7, we review this literature.

Finally, in Section 8, we review the studies on dynamic consistency preferences.
In these studies, starting from a preference model for an agent at certain initial time,
the authors attempt to find certain preference models for the agent’s future selves
such that the pre-committed strategy for the agent at the initial time is also optimal
for the agent at any future time and thus can be implemented consistently over time.

2 Extended HJB Equation

Strotz (1955-1956) is the first to study the behavior of a sophisticated agent in the
presence of time-inconsistency in a continuous-time model. Without formally defin-
ing the notion of intra-personal equilibrium, the author derives a consistent plan of
the sophisticated agent. Barro (1999) and Luttmer and Mariotti (2003) also inves-
tigate, for certain continuous-time models, consistent plans of sophisticated agents,
again without their formal definitions. In a series of papers, Ekeland and Lazrak
(2006), Ekeland and Lazrak (2008), and Ekeland and Lazrak (2010) study the classi-
cal Ramsey model with a nonexponential discount function and propose for the first
time a formal notion of intra-personal equilibrium for deterministic control prob-
lems in continuous time. Such a notion is proposed in a stochastic context by Bjork
and Murgoci (2010), which is later split into two papers, Bjork and Murgoci (2014)
and Bjork et al. (2017), discussing the discrete-time and continuous-time settings,
respectively. In this section, we follow the framework of Bjork et al. (2017) to de-
fine an intra-personal equilibrium strategy and present a sufficient and necessary
condition for such a strategy.
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2.1 Notations

We first introduce some notations. By convention, x € R” is always a column vector.
When a vector x is a row vector, we write it as x € R'*”. Denote by AT the transpose
of a matrix A, and by tr(A) the trace of a square matrix A. For a differentiable
function & that maps x € R™ to &(x) € R”, its derivative, denoted as &(x), is an
n X m matrix with the entry in the i-th row and j-th column denoting the derivative
of the i-th component of & with respect to the j-th component of x. In particular, for
a mapping & from R™ to R, &,(x) is an m-dimensional row vector, and we further
denote by &,, the Hessian matrix.

Consider & that maps (z,x) € Z x X to &(z,x) € R/, where Z is a certain set and
X, which represents the state space throughout, is either R” or (0, +o0). £ is locally
Lipschitz in x € X, uniformly in z € Z if there exists a sequence of compact sets
{X He>1 with Ug> 1 X = X and a sequence of positive numbers {Ly }¢> such that for
any k > 1, ||&(z,x) — & (z,X) || < Li|lx —X||,Vz € Z,x,x’ € X;. € is global Lipschitz
in x € X, uniformly in z € Z if there exists constant L > 0 such that ||&(z,x) —
E(z,X)|| < L||x—X||,Vz € Z,x,x' € X. In the case X =R", £ is of linear growth in
x € X, uniformly in z € 7 if there exists L > 0 such that ||€ (z,x)|| < L(1+||x||),Vz €
Z,x € X. In the case X = (0,+), & has a bounded norm in x € X, uniformly in
z € Z, if there exists L > 0 such that ||& (z,x)|| < Lx,Vz € Z,x € X. & is of polynomial
growth in x € X, uniformly in z € Z if there exists L > 0 and integer ¥ > 1 such that
€ (z,x)]| < L(1+ @ay(x)),Vz € Z,x € X, where @,(x) = ||x[|*Y when X = R" and
@2y(x) = x*Y +x72Y when X = (0, +o0).

Fix integers r > 0, g > 2r, and real numbers a < b. Consider & that maps (z,x) €
[a,b] x X to &(t,x) € Rl We say & € €"4([a,b] x X) if for any derivative index o
8-/+°‘§(t,x) L 81‘*“1*'“*0‘"5(@,\:)

9iox® T 9rigait..axn
exists for any (¢,x) € (a,b) x X and can be extended to and continuous on [a, b] x X.

We say.é € @r’q([a., b] x X). if & € €4([a,b] x X) and % is. of polynomial
growth in x € X, uniformly in ¢ € [a, b], for any derivative index o with || < g—2j

and j=0,...,r.

with |a| <g—2jand j=0,...,r, the partial derivative

2.2 Time-Inconsistent Stochastic Control Problems

Let be given a probability space (2,.%#,P) with a standard d-dimensional Brown-
ian motion W (1) := (W) (1), ...7Wd(t))T, t > 0, on the space, along with the filtration
(Z1)>0 generated by the Brownian motion and augmented by the P-null sets. Con-
sider an agent who makes dynamic decisions in a given period [0, 7], and for any
(t,x) € [0,T) x X, the agent faces the following stochastic control problem:
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max J(¢,x;u)

subject to dX"(s) = (s, X*(s),u(s, X"(s)))ds ®
LSRRG, v T
() =x.

The agent’s dynamic decisions are represented by a Markov strategy u, which maps
(5,y) €10,T) x X tou(s,y) € UC R™. The controlled diffusion process X" under u
takes values in X, which as aforementioned is set to be either (0, 4e0) or R”. u and
o are measurable mappings from [0,7] x X x U to R" and to R"*?, respectively,
where n stands for the dimension of X.

The agent’s goal at (7,x) € [0,T] x X is to maximize the following objective
function:

T
J(t,xu) = E, [/t C(t,x,5,.X"(s),u(s,X"(s)))ds + F (1., X*(T))
+G(t,x,E ,[X"(T)]), 3)

where C is a measurable mapping from [0,7) x X x [0,7] x X x U to R, and F and
G are measurable mappings from [0,7) x X x X to R. Here and hereafter, E, ,[Z]
denotes the expectation of Z conditional on X"(¢) = x. If C, F, and G are indepen-
dent of (7,x) and G(r,x, B, «[X"(T)]) is linear in E, ,[X"(7)], then J (¢, x;u) becomes
a standard objective function in classical stochastic control where time consistency
holds. Thus, with objective function (3), time inconsistency arises from the depen-
dence of C, F, and G on (t,x) as well as from the nonlinearity of G (¢,x, E »[X"(T)])
in E, . [X"(T)].
For any feedback strategy u, denote

uh(t,x) == p(t,x,u(t,x)), o"(,x) :=o(t,xut,x)),
TU(t,x) := o(t,x,u(t,x)o(t,x,u(t,x) ", CV(,x) = C(t,y1,xu(t,x)).

With a slight abuse of notation, # € U also denotes the feedback strategy u such that
u(t,x) = u,V(t,x) € [0,T] x X; so U also stands for the set of all constant strategies
when no ambiguity arises.

We need to impose conditions on a strategy u to ensure the existence and unique-
ness of the SDE in (2) and the well-posedness of the objective function J(¢,x;u).
This consideration leads to the following definition of feasibility:

Definition 1 A feedback strategy u is feasible if the following hold:

(i) u*, o™ are locally Lipschitz in x € X, uniformly in 7 € [0,T].

(i) u" and o are of linear growth in x € X, uniformly in ¢ € [0,7], when X = R”
and have bounded norm in x € X, uniformly in ¢ € [0, 7], when X = (0, 4-0).

(iii) For each fixed (7,y) € [0,T) x X, C*""(¢,x) and F(7,y,x) are of polynomial
growth in x € X, uniformly in ¢ € [0, T].

(iv) For each fixed (t,y) € [0,T) x X and x € X, u"(¢,x) and o"(z,x) are right-
continuous in ¢ € [0,7) and limys, (i ) () C¥"(',x") = C™"(t,x) for any
t€[0,T).
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Denote the set of feasible strategies as U.
We impose the following assumption:

Assumption 1 Any u € U is feasible.

2.3 Intra-Personal Equilibrium

Here and hereafter, @t € U denotes a given strategy and we examine whether it is an
equilibrium strategy. For givent € [0,7), € € (0,7 —1t) and a € U, define

i(s.y), s¢lnite)yeX. @

Wrea(s,y) i {a(s,y)7 seft,t+e),yeX
Imagine that the agent at time ¢ chooses strategy a and is able to commit herself
to this strategy in the period [z,7 + €). The agent, however, is unable to control her
future selves beyond this small time period, namely in the period [t + €,T) and
believes that her future selves will take strategy @. Then, u; ¢ 5 is the strategy that
the agent at time ¢ expects herself to implement throughout the entire horizon. Note
that u; ¢ , is feasible because both @i and a are feasible.

Definition 2 (Intra-Personal Equilibrium)

@ € U is an intra-personal equilibrium if for any x € X, 7 € [0,T), and a € U, we
have

J(t,x; —J(t,x;1
limsup (1550 e) —J(258) _ (5)

€10 €

For each positive €, u; ¢ 5 leads to a possibly different state process and thus to a
different objective function value from those of i, so it is meaningful to compare the
objective function values of u; ¢ 5 and @ to examine whether the agent is willing to
deviate from 1 to a in the period of time [¢,7+ €). Due to the continuous-time nature,
the length of the period, €, during which the agent at ¢ exerts full self control, must
be set to be infinitesimally small. Then, J(f,x;u; ¢ o) and J(¢,x; i) become arbitrarily
close to each other; so instead of evaluating their difference, we consider the rate
of increment in the objective function value, i.e., the limit on the left-hand side of
(5). Thus, under Definition 2, a strategy @ is an intra-personal equilibrium if at any
given time and state, the rate of increment in the objective value when the agent
deviates from 1 to any alternative strategy is nonpositive. As a result, the agent has
little incentive to deviate from .
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2.4 Sufficient and Necessary Condition

We first introduce the generator of the controlled state process. Given u € U and
interval [a,b] C [0,T], consider & that maps (¢,x) € [a,b] x X to &(¢,x) € R. Suppose
& € €2([a,b] x X), and denote by &, &,, and &,, respectively its first-order partial
derivative in ¢, first-order partial derivative in x, and second-order partial derivative
in x. Define the following generator:

() = &) + e On®(10) + 1 (Elr) T0))

t € la,b],xeX. 6)

For each fixed (7,y) € [0,T) x X, denote
FR1,2) = B [F(7,,XY(T))], ™
g(t,x) :=E, [XYT)], r€[0,T],x € X. 3)

In addition, for fixed (7,y) € [0,7) x X and s € [0,T], denote
TS (1,x) 1= B, [CT¥0 (5, X(s))], £ € [0, 5], x € X. )

In the following, &/" f*¥ denotes the function that is obtained by applying the op-
erator &/™ to f%(z,x) as a function of (z,x) while fixing (7,y). Then, & f'*(¢,x)
denotes the value of @™ ¥ at (¢,x) while (7,y) is also set at (¢,x).The above nota-
tions also apply to C*»" and ¢**.

To illustrate how to evaluate J(z,x;0 ¢ 5) —J(¢,x;0@) and thus the rate of incre-
ment, let us consider the second term in the objective function (3). An informal
calculation yields

By [F (1,5, X5 ()] = By [ F (1,2, X%(T)) |
= Evx [Brpexmenre) [F(, 5 X8 (7)) = Box [F(1,x.X3(T))

=Ep £+ X1 +€))| - 10 1,2)
~ ® 1 (t,x)E,

where the second equality holds because w, ¢ a(s,) = a(s,-) for s € [r,r +¢€) and
W eals,-) =10(s,-) for s € [t+¢€,T) in addition to the definition of ™ in (7). The
change of the other terms in the objective function when the agent deviates from @
to a in the period [¢, 4 €) can be evaluated similarly. As a result, we can derive the
rate of increment in the objective value, namely the limit on the left-hand side of
(5), which in turn enables us to derive a sufficient and necessary condition for @ to
be an intra-personal equilibrium.

To formalize the above heuristic argument, we need to impose the following
assumption:
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Assumption 2 For any fixed (7,y) € [0,T) x X and ¢ € [0,T), there exists 7 € (¢, T
such that (i) f*,g € ¢" 2([t,i] x X); (i) ¢ € €V2([t,7 As] x X) for each fixed
€ (¢,T] and W is of polynomial growth in x’ € X, uniformly in ¢ €
[t,fAs] and s € (z,T], for any @ with || <2 —2jand j =0, 1; and (iii) G(7,y,z) is
continuously differentiable in z, with the partial derivative denoted as G,(7,,z).

Theorem 1 Suppose Assumptions 1 and 2 hold. Then, for any (t,x) € [0,T) x X and
ac U, we have

lim J(I7X; ut,&‘,a) - J(I,X; ﬁ)
el0 £

=" x;a), (10)
where for any (t,y) € [0,T) x X,

I8t xa) = C™2(r,x) — C™(z,x) +/T (8, x)ds
+ [ (t,x) + Go(7,y,8(t,x)) g1, x). (11)

Moreover, T™%(t, x;a) = ['™Y(t, x;a) for any a,a € U with a(t,x) = a(t,x) and
™8t x;a) = 0 if a(t, ) u(t,x). Consequently, @ is an intra-personal equilib-
rium if and only if

' xu) <0, Yue UxeX,r€[0,T). (12)

Theorem 1 presents a sufficient and necessary condition (12) for an intra-personal
equilibrium @. Because I'*¥*¥(7, y; (¢, x)) = 0, we have

™%, x;a) = 1™ (t,x;a) — ™ (t,x;1),
where
IT*(t,x;a) : = C™*(t,x) +/T A (t,x)ds + A [ (1, x)
+G.(7,y,8(t,%)) 7 g(1,%). (13)

As a result, condition (12) is equivalent to

max '8 (¢, x;u) = 0,x € X, € [0,T) (14)
uel
or
a(z,x) €argmaH)J(H”‘(t,x;u),xeXJe [0,7). (15)
uc

This can be regarded as a time-inconsistent version of the verification theorem in
(classical) stochastic control.

The proof of Theorem 1 can be found in Bjork et al. (2017) and He and Jiang
(2019). Assumption 1 is easy to verify because it involves only the model parame-
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ters, i.e., U, 0, C, F, and G. Assumption 2 imposes some regularity conditions on 1,
which usually requires @ to be smooth to a certain degree; see He and Jiang (2019)
for a sufficient condition for this assumption. As a result, the sufficient and neces-
sary condition (12) cannot tell us whether there exists any intra-personal equilibrium
among the strategies that do not satisfy Assumption 2. This condition, however, is
still very useful for us to find intra-personal equilibria for specific problems. Indeed,
in most time-inconsistent problems in the literature, intra-personal equilibrium can
be found and verified using (12); see Section 7.

2.5 Extended HJB

Define the continuation value of a strategy @, denoted as V¥ (¢, x), (¢,x) € [0, T] x X,
to be the objective value over time and state under this strategy, i.e.,

VO(t,x) = J(t,x0) = H™(t,x) + G(t,x,8(t,x)), (16)

where
T N N A
H™ (%) : = B, V P35, X% (s))ds + F(7,.X%(T))
t
— /Tcf*y's(t,x)derfr’y(t,x). a7
t

Assuming certain regularity conditions and applying the operator /" to V(z,x),
we derive

. . T
AV (1,x) = —CE (1 x) + / " (8, x)ds + o/ F (1, %)
t
+ G (t,x,8(1,%)) /g (1,x) + A H (1,x) + 277, G (1, x,8(1,%))

+tr ((ch;‘(t,x) + Gzy(t,x,g(t,x))Tgx(t,x)> ! T”(t,x))
+ %Gzz (t,x,g(t,x))tr (gx(t,x)gx(t,x)TT”(t,x)>

where Hyy’ (¢, x) denotes the cross partial derivative of H* (¢,x) in x and y, G, (7,y,z)
the cross partial derivative of G(7,y,z) in z and y, and G;(7,y,z) the second-order
derivative of G(7,y,z) in z. For each fixed (t,x), o/, H*”(t,x) denotes the generator
of o7" applied to H*”(¢,x) as a function of (7,y), i.e., &, H™(t,x) := &/"{(1,y),
where £(7,y) :=H™(t,x),(7,y) € [0,T) x X, and {,G(7,y,g(t,x)) is defined sim-
ilarly.

Now, suppose 1 is an intra-personal equilibrium. Recalling (11) and the suffi-
cient and necessary condition (14), we derive the following equation satisfied by the
continuation value of an intra-personal equilibrium 1:
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max [/ V(1,2)+ (1) — (o H (1,3) + 72, Gt (4,x))

uel

—r ((H;;(tx) + Gzy(t7x,g(t7x))Tgx(t7x)> ! Y“(t,x))

3G (t0.2(0,0) (2200, 02:l0) 10,0 | =0,60) € 0,7) % X,
VY(T,x) = F(T,x,x) + G(T,x,x), x € X. (18)

By (17), the definitions of ¢**(¢,x) and f%(¢,x), and the Feymann-Kac formula,
we derive the following equation for H*Y (¢, x):

FYH (1,x) +C™(1,x) =0, (1,x) € [0,T) x X, (1,y) € [0,T) x X,
H™(T,x)=F(1,y,x), xe€X,(1,y)€[0,T)xX. (19)

Similarly, we derive the following equation for g:

(t,x) =0, (1,x) €[0,T) xX,
g(T,x)=x, xeX. (20)

Some remarks are in order. First, instead of a single equation for the value func-
tion of a time-consistent problem, the intra-personal equilibrium and its continuation
value satisfy a system of equations (18)—(20), which is referred to as the extended
HJB equation by Bjork et al. (2017).

Second, compared to the HJB equation for a time-consistent problem, which
takes the form max,cy [«7"V%(t,x) + C"(t,x)] = 0, equation (18) has three addi-
tional terms in the first, second, and third lines of the equation, respectively. Here
and hereafter, when C™*(t,x) does not depend on (7,y), we simply drop the super-
script (7,y). Similar notations apply to H*Y(¢,x) and to the case when there is no
dependence on y. Now, recall that for the objective function (3), time inconsistency
arises from (i) the dependence of C, F, and G on (¢,x) and (ii) the nonlinear depen-
dence of G(t,x,E,[X"(T)]) on E,[X"(T)]. If source (i) of time inconsistency is
absent, the first and second additional terms in (18) will vanish. If source (ii) of time
inconsistency is absent, the third additional term in (18) will disappear. In particular,
without time inconsistency, the extended HJB equation (18) reduces to the classical
HJB equation.

Third, consider the case in which G(z,x,E, .[X"(T)]) is linear in E, [X"(T")] and
C, F, and G do not depend on x. In this case, the second and third lines of (18) vanish
and we can assume G = 0 without loss of generality because G can be combined
with F. As a result, the extended HIB equation (18) specializes to

max |V (1,x) —|—C"'“(t7x)} = I (1,x), (t,x) € [0,T) x X,
ue

VY(T,x)=F(T,x), xe X (21)
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where h*(t,x) := HY(t,x) (with the subscript T denoting the partial derivative with
respect to 7) and thus satisfies

AR (1, x) +CE (1,x) =0, (1,x) €[0,T) xX,7€[0,T),
h*(T,x) = F(t,x), xeX,7€[0,T). (22)

3 Discussions
3.1 Intra-Personal Equilibria with Fixed Initial Data

Consider an agent at time 0 with a fixed state xo who correctly anticipates that her
self at each future time ¢ faces the problem (2) and who has no control of future
selves at any time. A strategy @i can be consistently implemented by the agent
throughout the entire horizon [0, 7] if the agent has no incentive to deviate from
it at any time along the state path. Actions that the agent might be taking were she
not on the state path are irrelevant. To be more precise, for any fixed initial data
(0,x0), we define i to be an intra-personal equilibrium starting from (0,xg) if (5)
holds for any a € U,z € [0,T), and x € X?’Xo’ﬁ, where X?’xo’ﬁ denotes the set of all
possible states at time ¢ along the state path starting from x at the initial time and
under the strategy 1.

It is evident that the intra-personal equilibrium defined in Definition 2 is universal
in that it is an equilibrium starting from any initial data (0,xp). On the other hand,
starting from a fixed state xo at time O, the state process in the future might not
be able to visit the whole state space; so an equilibrium starting from (0,xp) is
not necessarily universal, i.e., it is not necessarily an equilibrium when the agent
starts from other initial data. For example, He et al. (2020) consider a continuous-
time portfolio selection problem in which an agent maximizes the median of her
terminal wealth. With a fixed initial wealth of the agent, the authors derive a set of
intra-personal equilibrium strategies starting from this particular initial wealth level.
They show that these strategies are no longer equilibria if the agent starts from some
other initial wealth levels, and in particular not universal equilibria in the sense of
Definition 2.

The first study of intra-personal equilibria starting from a fixed initial data dates
back to Peleg and Yaari (1973). In a discrete-time setting, the authors propose that
a strategy (sg,s7,...), where s; stands for the agent’s closed-loop strategy at time
t, is an equilibrium strategy if for any ¢, (sg,...,s;_,8:,8/,;,...) is dominated by
(80s+-+>8/_1,87,8/,1,...) for any 5. They argue that the above definition is more
desirable than the following one, which is based on a model in Pollak (1968):
(53,57, ---) is an equilibrium strategy if for any time 7, (so,...,8 1,5,/ ,...) is
dominated by (so,...,8—1,5/,5/,,...) for any (so,...,s;). It is clear that the equi-
librium strategies considered by Peleg and Yaari (1973) are the ones starting from
a fixed initial data while those studied by Pollak (1968) are universal. Recently, He
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and Jiang (2019), Han and Wong (2020), and Herndndez and Possamai (2020) also
consider intra-personal equilibria with fixed initial data. Moreover, He and Jiang
(2019) propose a formal definition of X,O’xo'", calling it the set of reachable states.
Finally, let us comment that the sufficient and necessary condition in Theorem
1 is still valid for intra-personal equilibria starting from fixed initial data (0,xp),

provided that we replace X in this condition with the set of reachable states X,O’xo’u;

see He and Jiang (2019) for details. The extended HIB equation in Section 2.5 can
be revised and applied similarly.

3.2 Set of Alternative Strategies

In Definition 2, the set of strategies that the agent can choose at time ¢ to implement
for the period [¢,7 4 €), denoted as D, is set to be the entire set of feasible strategies
U. This definition is used in Bjork et al. (2017), Ekeland and Pirvu (2008), and
Ekeland et al. (2012). In some other works, however, D is set to be the set of constant
strategies U; see for instance Ekeland and Lazrak (2006, 2008, 2010), Bjork and
Murgoci (2010), and Basak and Chabakauri (2010). He and Jiang (2019) show that
the choice of D is irrelevant as long as it at least contains U. Indeed, this can be
seen from the observation in Theorem 1 that I'*8(¢, x;a) = I'™ (¢, x;a(t,x)) for
any a € U. He and Jiang (2019) also show that for strong intra-personal equilibrium,
which will be introduced momentarily, the choice of D is relevant.

3.3 Regular and Strong Intra-Personal Equilibrium

As noted in Remark 3.5 of Bjork et al. (2017), condition (5) does not necessar-
ily imply that J(z,x;u,¢q) is less than or equal to J(z,x;d) however small € > 0
might be and thus disincentivizes the agent from deviating from @. For example,
ifJ(t, 0 e0) —J(t,x50) = €2, then (5) holds, but the agent can achieve a strictly
larger objective value if she deviates from @ to a and thus is willing to do so.

To address the above issue, Huang and Zhou (2019) and He and Jiang (2019)
propose the notion of strong intra-personal equilibrium:

Definition 3 (Strong Intra-personal Equilibrium)

a € U is a strong intra-personal equilibrium strategy if for any x € X, 1 € [0,7T),
and a € D, there exists & € (0,7 —¢) such that

J(t, x50 6q) —J(t,x;0) <0, Ve € (0,g). (23)

It is straightforward to see that a strong intra-personal equilibrium implies the one
in Definition 2, which we refer to as a weak intra-personal equilibrium in this sub-
section.
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Huang and Zhou (2019) consider a stochastic control problem in which an
agent can control the generator of a time-homogeneous, continuous-time, finite-state
Markov chain at each time to maximize expected running reward in an infinite time
horizon. Assuming that at each time the agent can implement a time-homogeneous
strategy only, the authors provide a characterization of a strong intra-personal equi-
librium and prove its existence under certain conditions.

He and Jiang (2019) follow the framework in (2) and derive two necessary con-
ditions for a strategy to be strong intra-personal equilibrium. Using these condi-
tions, the authors show that strong intra-personal equilibrium does not exist for
the portfolio selection and consumption problems studied in Ekeland and Pirvu
(2008), Basak and Chabakauri (2010), and Bjork et al. (2014). Motivated by this
non-existence result, the authors propose the so-called regular intra-personal equi-
librium and show that it exists for the above three problems and is stronger than the
weak intra-personal equilibrium and weaker than the strong intra-personal equilib-
rium in general.

3.4 Existence and Uniqueness

In most studies on time-inconsistent problems in the literature, a closed-form strat-
egy is constructed and verified to satisfy the sufficient and necessary condition (12)
or the extended HIB equation (18)—(20). The existence of intra-personal equilibrium
in general is difficult to prove because it essentially relies on a fixed point argument:
For each guess of intra-personal equilibrium @, we first calculate I'***% in (12) and
H™(t,x) and g in (19) and (20), respectively, and then derive an updated intra-
personal equilibrium, denoted as T, from the condition (12) or from the equation
(18). The existence of an intra-personal equilibrium then boils down to the existence
of the fixed point of T. The mapping T is highly nonlinear; so the existence of its
fixed point is hard to establish. Additional difficulty is caused by the regularity con-
ditions that we need to pose on 1 to validate the sufficient and necessary condition
(12) or the extended HIB equation (18)—(20).

We are only aware of very few works on the existence of intra-personal equilibria
in continuous time. Yong (2012) proposes an alternative approach to defining the
strategy of a sophisticated agent, which will be discussed in detail in Section 6.
Assuming G =0, C and F to be independent of x in the objective function (3),
and o (z,x,u) in the controlled diffusion process (2) to be independent of control u
and nondegenerate, Yong (2012) proves the existence of the sophisticated agent’s
strategy, which is used to imply the existence of an intra-personal equilibrium under
Definition 2. Wei et al. (2017) and Wang and Yong (2019) extend the result of Yong
(2012) by generalizing the objective function; however for the existence of intra-
personal equilibria, they need to assume the volatility o to be independent of control
and nondegenerate. Hernandez and Possamai (2020) study intra-personal equilibria
in a non-Markovian setting, where they consider a non-Markovian version of the
objective function in Yong (2012) and assume the drift tt of the controlled process to



Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation 191

be in the range of the volatility matrix at each time. The authors prove the existence
of intra-personal equilibria when the volatility o is independent of control.

Intra-personal equilibria can be non-unique; see Ekeland and Lazrak (2010), Cao
and Werning (2016), and He et al. (2020). For some problems, however, uniqueness
has been established in the literature. Indeed, Yong (2012), Wei et al. (2017), Wang
and Yong (2019), and Hernandez and Possamai (2020) prove the uniqueness in var-
ious settings with the common assumption that the volatility o is independent of
control.

3.5 Non-Markovian Strategies

In most studies on time-inconsistent problems, where the controlled state processes
are Markovian, the search for intra-personal equilibrium is restricted to the set of
Markovian strategies, i.e., strategies that are functions of time ¢ and the current
state value x. Motivated by some practical problems such as rough volatility models
and principle-agent problems, Han and Wong (2020) and Herndndez and Possamai
(2020) define and search intra-personal equilibria in the class of non-Markovian or
path-dependent strategies, i.e., ones that depend on time # and the whole path of the
controlled state up to ¢.

4 Closed-Loop versus Open-Loop Intra-Personal Equilibria

A closed-loop or feedback control strategy is a function u that maps time ¢ and the
controlled state path (x;)s<; up to ¢ to the space of actions. As a result, the action
taken by an agent under such a strategy is u(z, (xs)s<;). An open-loop control is a
collection of actions over time and state of the nature, (u(¢, ®)),;>0, where u(t, ®)
is the action to be taken at time ¢ and in scenario @, regardless of the state path
(xs)s<:- For classical time-consistent control problems and under some technical
assumptions, the state-control paths under the optimal open-loop control and under
the optimal closed-loop control strategy are the same if the controlled system starts
from the same initial time and state; see for instance Yong and Zhou (1999).

In Section 2, intra-personal equilibrium is defined for closed-loop control strate-
gies, which is also the approach taken by most studies on time-inconsistent problems
in the literature. In some other works, intra-personal equilibrium is defined for open-
loop controls; see for instance Hu et al. (2012), Hu et al. (2017), Li et al. (2019),
and Hu et al. (2021).

Formally, under the same probabilistic framework in Section 2.2, we represent
an open-loop strategy by a progressively measurable process (u(t));>o that takes
values in U. The controlled state process X“ takes the form

dX"(s) = pu(s,X“(s),u(s))ds+ o (s, X"(s),u(s))dW(s), s € [¢,T]; X"(t) = x.
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Denote by % the set of feasible open-loop controls, i.e., the set of progressively
measurable processes on [0, 7] satisfying certain integrability conditions. At time ¢
with state x, suppose the agent’s objective is to maximize J(z,x;u(-)) by choosing
u(-) € %.Given ti(-) € %, forany r € [0,T),x€ X, € € (0,T —1), and a(-) € %,
define

_Jals), seftt+e)
I/tt,e,a(s) T {ﬁ(s), s ¢ [l,t+€)' -

Suppose that at time 7 with state x, the agent chooses an open-loop control a(-),
but is only able to implement it in the period [¢, 4 €). Anticipating that her future
selves will take the given control i(-), the agent expects herself to follow u; ¢ , in
the period [¢,T].

Definition 4 (Open-Loop Intra-Personal Equilibrium)
i(-) € % is an open-loop intra-personal equilibrium if for any x € X, 1 € [0,T),
and a € 7/ that is constant in a small period after 7, we have

J(t,x; ) —=J(t,x; d(-
limsup ( X Mt,gva( )) ( X I/l( )) S 0. (25)
£l0 €

The above is analogous to the definition of an intra-personal equilibrium for
closed-loop strategies. However, there is a subtle yet crucial difference between the
two definitions. For the one for open-loop controls, the perturbed control u; ¢ 4(s)
defined by (24) and the original one i are identical on [t + €,T| as two stochastic
processes. In other words, the perturbation in the small time period [¢,# + €) will not
affect the control process beyond this period. This is not the case for the closed-loop
counterpart, because the perturbation (4) on [t,7 + €) changes the control in the pe-
riod, which will alter the state process in [f,7 + €) and in particular the state at time
t + €. This in turn will change the control process on [t + €, T| upon substituting the
state process into the feedback strategy.

To characterize open-loop intra-personal equilibria, we only need to compute the
limit on the left-hand side of (25). This limit can be evaluated by applying the spike
variation technique that is used to derive Pontryagin’s maximum principle for time-
consistent control problems in continuous time (Yong and Zhou, 1999). As a result,
open-loop intra-personal equilibrium can be characterized by a flow of forward-
backward stochastic differential equations (SDEs); see Hu et al. (2012) for more
details. In contrast, the spike variation technique no longer works for closed-loop
equilibria because the perturbed control process is different from the original one
beyond the small time period for perturbation, as discussed above.

This discussion suggests that closed-loop and open-loop equilibria are likely dif-
ferent. This is confirmed by Hu et al. (2012). The authors consider a mean-variance
portfolio selection problem, where an agent decides the dollar amount invested in a
stock at each time, and derive an open-loop equilibrium; see Section 5.4.1 therein.
They then compare this equilibrium with the closed-loop equilibrium derived by
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Bjork et al. (2014) for the same portfolio selection problem, and find that the state-
control path under these two equilibria are different.

It can be argued that closed-loop strategies are preferred to the open-loop ones
for three reasons. First, in many problems, agents’ actions naturally depend on some
state variables. For example, in a consumption problem, an agent’s consumption at
any time is more likely to depend directly on her wealth at that time. If her wealth
suddenly increases, she would probably consume more.

Second, closed-loop intra-personal equilibrium is invariant to the choice of con-
trol variables while open-loop intra-personal equilibrium might not. For example,
in a portfolio selection problem where an agent decides the allocation of her wealth
between a risk-free asset and a risky stock, the decision variable can be set to be the
dollar amount invested in the stock or the percentage of wealth invested in the stock.
Suppose 1 is a closed-loop intra-personal equilibrium representing the percentage
of wealth invested in the stock. Then, we have

J(t, x50 ¢9) —J(2,x;10)

lim sup <0. (26)

el0 €

forallz € [0,T), x € X, and a € U, where the state variable x represents the agent’s
wealth. Now, suppose we represent the agent’s decision by the dollar amount in-
vested in the risky stock, and denote a control strategy as 7. Then, the agent’s
objective function is J(t,x; ) = J(t,x;u) with u(s,y) = 7(s,y)/y. Condition (26)
implies that

f(t7.x; ﬂ[,ﬁ,ﬁ) — J(t7x; TE)

limsup <0

el0 €

9

for any 7 € [0,7), x € X, and strategy & that represents the dollar amount invested
in the stock, where Z(s,y) := yi(s,y) and ;¢ 5 is defined similarly to u, ¢ 5. Thus,
7, which is the dollar amount investment strategy corresponding to the percent-
age investment strategy , is also an intra-personal equilibrium. By contrast, for
the mean-variance portfolio selection problem studied by Hu et al. (2012), where
the agent’s decision is the dollar amount invested in the stock, the open-loop intra-
personal equilibrium yields a different control-state path from the one yielded by
its closed-loop counterpart derived by Bjork et al. (2014). If we change the agent’s
decision variable to the percentage of wealth invested in the stock, the open-loop
intra-personal equilibrium and the closed-loop intra-personal equilibrium in Bjork
et al. (2014) yield the same control-state path. This implies that open-loop equilibria
depend on the choice of control variables.

Third, open-loop intra-personal equilibrium may not be well-posed for some
problems. Consider the discrete-time version of the consumption problem studied
in Strotz (1955-1956): An agent decides the amount of consumption C; at each
time t = 0,1,...,T with the total budget xo, i.e., Z;T=o C; = xg. For this problem,
any consumption plan (ét)tz() is an open-loop intra-personal equilibrium. Indeed,
at each time ¢, anticipating her future selves will consume Cy,s =¢+1,...,T, the
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only amount of consumption C; that the agent can choose at time ¢ is C; due to the
budget constraint (Y'_} Cs) +C; + (XL, . | C;) = xo. This leads to a trivial definition
of intra-personal equilibrium. The above issue can be rectified if we use closed-loop
strategies. To see this, we set x; to be the agent’s remaining budget at time ¢ before
the consumption at that time. For closed-loop intra-personal equilibrium, we con-
sider a mapping from time ¢ and the remaining budget x; to the consumption amount.
As a result, if the agent consumes more at time ¢, her future selves will consume
less because the remaining budget in the future becomes smaller; consequently, the
budget constraint is still satisfied. To elaborate, suppose the agent’s future selves’
strategies are to consume ks fractional of wealth at time s, s = 7 + 1,...,T with
ks €[0,1],s =r+1,...,T —1 and kr = 1. Then, given that the agent at time 7 con-
sumes any amount C; € [0,x;], the agent’s consumption in the future is Cs; = IAchS,
s=t+1,...,T,where x; =x;_1 —Cs_1, s =t+1,...,T. As aresult, the aggregate
consumption from time ¢ to the end is Y., C; = x;. Recall that the aggregate con-
sumption strictly prior to time ¢ is xo — x;; so the aggregate consumption throughout
the entire horizon is x( satisfying the budget constraint. Thus, at each time ¢, the
agent can consume any amount up to his wealth level at that time and her future
selves will adjust their consumption according to a given strategy so that the budget
constraint is still satisfied.

Finally, we establish a connection between closed-loop and open-loop intra-
personal equilibria. If a closed-loop equilibrium # is independent of the state vari-
able x, then it follows from the definition that it is also an open-loop equilibrium.
For a general closed-loop equilibrium @i, we can consider the following controlled
state process:

dR*(5) = (.87 (5),v(s))ds + & (5.8 (5),v(s))aW (s), 5 € [1,T); X"(1) = x,

where fi(s,y,v) := U(s,y,8(s,y) +v), 6(5,5,v) := 0(s,y,8(s,y) +v), and v(-) is a
progressively measurable control process. We further consider the following objec-
tive function:

N T % X
J(t,xv()) = Epx [/, C(t,x,5,X"(s),v(s)))ds + F (1,x,X"(T))
—|—G(I,X7Et,x[)?v(T)])’

where C(t,x,s,y,v) := C(t,x,5,y,0(s,y) +v). Then, by definition, @ is a closed-loop
equilibrium if and only if ¥#(-) = 0 is an open-loop equilibrium for the problem of
maximizing J(¢,x;v(-)) in v(-) with the controlled state process X". In particular,
we can characterize @ by a flow of forward-backward SDEs by applying the spike
variation technique. In order to apply this technique, however, we need to assume
that f1(s,y,v) and &(s,y,v) to be twice differentiable in y, which in turn requires @
to be twice differentiable; see Yong and Zhou (1999) for the detailed regularity con-
ditions needed for the spike variation technique. Thus, the spike variation technique
does not seem to be advantageous over the approached reviewed in Section 2.



Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation 195

5 Optimal Stopping

An optimal stopping problem is one to search an optimal random time 7 to stop a
given, uncontrollable process (X;);>o (taking values in a state space X) in the set
of stopping times with respect to the filtration generated by the process. It is well
known that if the objective function of the optimal stopping problem depends on
the path of (X;),>0 up to the stopping time only, this problem can be “embedded”
into a general control problem with (i) a closed-loop control strategy u taking bi-
nary values 0 and 1 representing the action of stopping and not stopping (X;);>0
respectively; and (ii) a controlled state process (X"),>o that is set to be (X;),>0 until
the first time the control path under u takes value 0 and is set to be an absorbing
state afterwards; see for instance Section 3.4 of Bertsekas (2017). We call the con-
trol strategy u associated with a stopping time 7 in the above embedding a stopping
rule, which maps each pair of time ¢ and a path of the process X up to time ¢ to
{0,1}. A stopping time T is Markovian if the associated stopping rule is Markovian,
i.e., it is a mapping from the time—state space to {0, 1}. With a Markovian stopping
time, at each time ¢, given that the process has not yet been stopped, whether to stop
at ¢ depends on the value of the process at ¢ only.

In view of the above embedding, intra-personal equilibrium stopping rules can
be defined naturally for time-inconsistent stopping problems; see for instance Tan
et al. (2018), Christensen and Lindensjo (2018), Ebert et al. (2020), and Christensen
and Lindensjo (2020). In particular, Tan et al. (2018) show that the smooth pasting
principle, which is the main approach used to construct explicit solutions for clas-
sical time-consistent optimal stopping, may fail to find an equilibrium when one
changes merely the exponential discounting to non-exponential one while keeping
everything else the same. The authors also construct an explicit example in which
no equilibrium exists. These results caution blindly extending the classical approach
for time-consistent stopping to their time-inconsistent counterpart.

By exploiting special structures of stopping problems in continuous time, Huang
and Nguyen-Huu (2018) propose an alternative approach to defining the optimal
stopping rule for a sophisticated agen; see also applications of this approach in
Huang et al. (2020), Ebert and Strack (2017), and Huang and Yu (2021). Precisely,
consider a Markov state process

dX, = u(t,X,)dt + o (t,X,)dw,

in R", where (W;);>¢ is an d-dimensional standard Brownian motion and p and
o are functions of time ¢ and state x taking values in R” and R"*¢, respectively.
Following the settings in the above papers, we consider Markovian stopping times
only in the following presentation, but the case of non-Markovian stopping times
can be investigated similarly. At each time ¢ with state x, give that the state process
has not been stopped, the agent’s goal is to choose a Markovian stopping time 7T €
[t,T] to maximize an objective value J(¢,x; 7). Here, J(,x;7) can be of the form
Eix [ ) 8(t,x,5,X)ds + h(t,x,7,X)] for some functions g and h, or be a functional
of the distribution of X; conditional on X; = x.
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Recall the embedding of optimal stopping problems into a general control frame-
work and the stopping rule associated with each stopping time as discussed at the
beginning of the present subsection. With a slight abuse of notation, we use 7 to de-
note both a stopping time and a stopping rule. Let us now consider a given stopping
rule 7 and the current time-state pair (¢,x). If the agent decides to stop, then she has
the immediate reward J(z,x;7). If the agent decides not to stop at ¢ but expects her
future selves will still follow the original rule 7, then she will stop at time .£*, the
first time s > ¢ at which 7 would stop the process. In this case the objective value
is J(t,x;.£*1). Then, the optimal action of the agent at time 7 with state x is to stop
if J(t,x;5¢) > J(t,x;.£*7), to continue if J(¢,x;¢) < J(¢,x;.£*7), and to follow the
originally assigned stopping rule 7 in the break-even case J(z,x;t) = J(t,x;£* 7).
The above plan across all time 7 and state x constitutes a new stopping rule, denoted
as O, which can be proved to be feasible in the sense that it can generate stopping
times; see Huang and Nguyen-Huu (2018) and Huang et al. (2020).

The above game-theoretic thinking shows that for any arbitrarily given stopping
rule 7, at any time ¢ with any state x, the agent finds @7 to be always no worse than
T, assuming that her future selves will follow 7. Hence, an equilibrium stopping
rule 7 can be defined as one that can not be strictly improved by taking ® 7 instead.
Following Bayraktar et al. (2021), we name it as a mild intra-personal equilibrium
stopping rule:

Definition 5 A stopping rule 7 is a mild intra-personal equilibrium if @7 = 7.

So a mild intra-personal equilibrium is a fix-point of the operator ®. If 7 is to
stop the process at any time and with any state, then it is straightforward to see that
£*1 = 1. Consequently, by definition ®t = 7 and thus 7 is a mild intra-personal
equilibrium. In other words, following Definition 5, immediate stop is automatically
a (trivial) mild intra-personal equilibrium.

For a general stopping rule 7, consider any time ¢ and state x in the interior of the
stopping region of 7, where the stoping region refers to the set of time-state pairs at
which the stopping rule T would stop the process. Then, it is also easy to see that
Z*1 =t at time ¢ and state x, so one should immediately stop under @1 as well. As
a result, the stopping region of @7 is at least as large as that of 7, if we ignore the
time-state pairs that are on the boundary of the stopping region of 7. Therefore, we
expect the iterative sequence ®"7 to converge as n — oo, and the convergent point
T* satisfies 7% = @ 1* and thus is a mild intra-personal equilibrium. It is, however
mathematically challenging to formalize the above heuristic derivation. Rigorous
proofs have been established in various settings by Huang and Nguyen-Huu (2018),
Huang et al. (2020), and Huang and Yu (2021). The above iterative algorithm, which
generates a sequence ®"7, n =0, 1,..., not only yields a mild intra-personal equi-
librium as the limit of the sequence, but also has a clear economic interpretation:
each application of ® corresponds to an additional level of strategic reasoning; see
Huang and Nguyen-Huu (2018) and Huang et al. (2020) for elaborations.

As discussed in the above, immediate stop is always a mild equilibrium; so it
is expected that there exist multiple mild intra-personal equilibrium stopping rules;
see Huang and Nguyen-Huu (2018) and Huang et al. (2020). To address the issue
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of multiplicity, Huang and Zhou (2020) and Huang and Wang (2020) consider, in
the setting of an infinite-horizon, continuous-time optimal stopping under nonexpo-
nential discounting, the “optimal” mild intra-personal equilibrium stopping rule 7*
which achieves the maximum of J(z,x;T) over 7 € & forallt € [0,T), x € X, where
& is the set of all mild intra-personal equilibrium stopping rules.

Bayraktar et al. (2021) compare mild intra-personal equilibrium stopping rules
with weak (respectively strong) intra-personal equilibrium stopping rules obtained
by embedding optimal stopping into stochastic control and then applying Definition
2 (respectively Definition 3). Assuming the objective function to be a multiplication
of a discount function and a Markov process taking values in a finite or countably in-
finite state space, the authors prove that the optimal mild intra-personal equilibrium
is a strong intra-personal equilibrium.

6 Discretization Approach

In the discrete-time setting, an intra-personal equilibrium strategy of a sophisticated
agent can be easily defined and derived in a backward manner starting from the last
period. Thus, for a continuous-time problem, it is natural to discretize and then pass
to the limit. Specifically, one partitions the continuous-time period [0, 7] into a finite
number of subperiods, assumes the agent is able to commit in each subperiod but
not beyond it, and computes the strategy chosen by the agent. Sending the length of
the longest subperiod in the partition to zero, the limit of the above strategy, if it ex-
ists, can be regarded as the strategy of a sophisticated agent for the continuous-time
problem. This ideas was first employed by Pollak (1968) to study the consumption
problem of Strotz (1955-1956) and has recently been revisited and extensively stud-
ied by a series of papers; see for instance Yong (2012), Wei et al. (2017), Mei and
Yong (2019), and Wang and Yong (2019).

Specifically, consider the control problem in Section 2 and assume that in the
objective function in (3), C and F do not depend on x and G = 0. For a partition I'T
of [0,T):0=1y<t; <---<ty—1 <ty =T, wedenote | IT|| :=maxg—1,n |tx —tx—1]-
A control strategy @'l is an intra-personal equilibrium with respect to the partition
ITif

J(tk,xk;ﬁn) ZJ(lk,xk;llga) (27)

for any k = 0,1,...,N — 1, reachable state x; at time k under !l and strategy a,
where uf® (s,-) := a(s,-) for s € [y, k1) and wfl (s,-) = @' (s,-) for s € 141, T).
In other words, 0(s,),s € [tx,fx11), is optimal for an agent who can commit in the
period [fx,#41) and anticipates that her future selves will take strategy @ beyond
time #;, 1. In the aforementioned literature, the authors define a strategy @ to be a
limiting intra-personal equilibrium if there exists a sequence of partition (IT,)nen
with limy,_. || IT,|| = O such that the state process, control process, and continuation
value process under certain intra-personal equilibrium with respect to II,, converge
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to those under 1, respectively, as m — co. Assuming that the diffusion coefficient of
the controlled state process is independent of control and non-degenerate and that
some other conditions hold, Wei et al. (2017) prove the above convergence for any
sequence of partitions with mesh size going to zero, and the limit of the continuation
value function satisfies a flow of PDEs. Moreover, this flow of PDEs admits a unique
solution, so the limiting intra-personal equilibrium uniquely exists. Furthermore, the
limiting equilibrium is also an equilibrium under Definition 2.

Whether the equilibrium with respect to IT converges when ||IT|| — O for a gen-
eral time-inconsistent problem, however, is still unknown. Moreover, the definition
of this equilibrium relies on the assumptions that C and F do not depend on x and
G = 0. Otherwise, for a given partition I, the optimal strategy the agent at time
f; implements in the subperiod [t,#;11) is semi-Markovian: the agent’s action at
time s € [f,f11) is a function of s, the state at s, and the state at #. As a result,
the intra-personal equilibrium with respect to IT is non-Markovian; so we cannot
restrict limiting equilibria to be Markov strategies.

7 Applications
7.1 Present-bias Preferences

Present-biased preferences, also known as hyperbolic discounting, refer to the fol-
lowing observation in intertemporal choice: when considering time preferences be-
tween two moments, individuals become more impatient when the two moments are
closer to the present time. Thaler (1981) provides an illustrative example of present-
biased preferences: some people may prefer an apple today to two apples tomorrow,
but very few people would prefer an apple in a year to two apples in a year plus
one day. Noted as early as in Strotz (1955-1956), present-biased preferences lead
to time inconsistency. For example, consider an agent whose time preferences for
having apples are as described in the above illustrative example by Thaler (1981).
At time 0, faced with Option A of having one apple at time t = 365 (days) and Op-
tion B of having two apples at time s = 366 (days), the agent chooses Option B.
When time ¢ = 365 arrives, however, if the agent gets to choose again, she would
choose Option A. This shows that the agent in the future will change her actions
planned today; hence time-inconsistency is present. For a review of the literature on
present-biased preferences, see Frederick et al. (2002).

In a time-separable discounted utility model, present-biased preferences can be
modeled by a non-exponential discount function. For example, consider an intertem-
poral consumption model in continuous time for an agent. The agent’s preference
value of a random consumption stream (Cy) scl,r] can be represented as

E, [ / Th(s—t)u(CS)ds} : (28)
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where u is the agent’s utility function, / is the agent’s discount function, and E,
denotes the expectation conditional on all the information available at time ¢. To
model present-biased preferences, we assume A(s+A)/h(s) to be strictly increasing
in s > 0 for any fixed A > 0; hence it excludes the standard exponential discount
function. An example is the generalized hyperbolic discount function proposed by
Loewenstein and Prelec (1992): A(s) = (1 + as) B/% s >0, where o > 0 and B >
0 are two parameters. Ebert et al. (2020) introduce a class of weighted discount
functions that is broad enough to include most commonly used non-exponential
discount functions in finance and economics.

In various continuous-time settings, Barro (1999), Ekeland and Lazrak (2006),
Ekeland and Lazrak (2008), Ekeland and Lazrak (2010), Ekeland and Pirvu (2008),
Marin-Solano and Navas (2010), and Ekeland et al. (2012) study intra-personal
equilibria for portfolio selection and consumption problems with present-biased
preferences. Ebert et al. (2020) and Tan et al. (2018) study real option problems
for agents with general weighted discount functions and derive equilibrium invest-
ment strategies. Harris and Laibson (2013) and Grenadier and Wang (2007) apply
a stochastic, piece-wise step discount function to a consumption problem and a real
option problem, respectively, and derive intra-personal equilibrium strategies. Asset
pricing for sophisticated agents with present-biased preferences and without com-
mitment has been studied by Luttmer and Mariotti (2003) and Bjork et al. (2017).

7.2 Mean-Variance

A popular decision criterion in finance is mean—variance, with which an agent min-
imizes the variance and maximizes the mean of certain random quantity, e.g., the
wealth of a portfolio at the end of a period. Any mean—variance model is inherently
time inconsistent due to the variance part. To see this, consider a two-period deci-
sion problem with dates 0, 1, and 2 for an agent. The agent is offered various options
at time 1 that will yield certain payoffs at time 2. The set of options offered to the
agent at time 1 depends on the outcome of a fair coin that is tossed between time 0
and 1. If the toss yields a head, the agent is offered two options at time 1: Option H1
that yields $0 and $200 with equal probabilities and Option H2 that yields $50 and
$150 with equal probabilities. If the toss yields a tail, the agent is offered another
two options at time 1: Option T1 that yields $0 and $200 with equal probabilities
and Option T2 that yields $1050 and $1150 with equal probabilities. Suppose that
at both time 0 and 1, the agent’s decision criterion is to minimize the variance of
the terminal payoff at time 2. At time O, the agent has not yet observed the outcome
of the toss; so she will need to make choices contingent on this outcome, i.e., she
chooses between the following four plans: (H1,T1), (H1,T2), (H2,T1), and (H2,T2),
where the first and second components of each of the above four plans stand for the
agent’s planned choice when the toss yields a head and a tail, respectively. Straight-
forward calculation shows that the plan (H2,T1) yields the smallest variance of the
terminal payoff; so at time O the agent plans to choose H2 when the toss yields a
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head and choose T1 when the toss yields a tail. At time 1, after having observed the
outcome of the toss, if the agent can choose again with the objective of minimizing
the variance of the terminal payoff, she would choose H2 if the outcome is a head
and T2 is the outcome is a tail. Consequently, what the agent plans at time 0 is dif-
ferent from what is optimal for the agent at time 1, resulting in time inconsistency.

The reason of having time inconsistency above can be seen from the following
conditional variance formula: var(X) = E[var(X|Y)] + var(E[X|Y]), where X stands
for the terminal payoff and Y denotes the outcome of the coin toss. At time 0, the
agent’s objective is to maximize var(X) and at time 1, her objective is to maxi-
mize var(X|Y). Although the plan (H2,T2) yields small variance of X given the
outcome of the toss ¥ and thus a small value of the average conditional variance
E[var(X|Y)], it yields very different expected payoffs conditional on having a head
and on having a tail, leading to a large value of var(E[X|Y]). Consequently, var(X)
under plan (H2,T2) is larger than under plan (H2,T1), which yields a larger value
of E[var(X|Y)] than the former but a much smaller value of var(E[X|Y]). Conse-
quently, (H2,T1) is preferred to (H2,T2) for the agent at time 0.

A lot of recent works study intra-personal equilibrium investment strategies for
agents with mean-variance preferences. For continuous-time models, see for in-
stance Basak and Chabakauri (2010), Bjork et al. (2014), Pun (2018), Bensoussan
et al. (2014), Cui et al. (2016), Sun et al. (2016), Landriault et al. (2018), Bensous-
san et al. (2019), Kryger et al. (2020), and Han et al. (2021). In all these works,
the mean-variance criterion is formulated as a weighted average of the mean and
variance of wealth at a terminal time, i.e., at each time ¢, the agent’s objective is to
maximize E,[X] — %var,(X), where E, and var, stand for the conditional mean and
variance of the terminal wealth X, respectively, and 7 is a risk aversion parameter.
Alternatively, He and Jiang (2020b) and He and Jiang (2020a) study intra-personal
equilibria for mean-variance investors in a constrained formulation: at each time, an
investor minimizes the variance of terminal wealth with a target constraint of the
expected terminal wealth. Dai et al. (2021) consider a mean-variance model for log
returns. Hu et al. (2012), Hu et al. (2017), Czichowsky (2013), and Yan and Wong
(2020) investigate open-loop intra-personal equilibria for mean-variance portfolio
selection problems. For equilibrium mean-variance insurance strategies, see for in-
stance Zeng and Li (2011), Li et al. (2012), Zeng et al. (2013), Liang and Song
(2015), and Bi and Cai (2019).

7.3 Non-EUT Preferences

There is abundant empirical and experimental evidence showing that when mak-
ing choices under uncertainty, individuals do not maximize expected utility (EU);
see for instance a survey by Starmer (2000). Various alternatives to the EU model,
which are generally referred to as non-EU models, have been proposed in the lit-
erature. Some of these models employ probability weighting functions to describe
the tendency of overweighing extreme outcomes that occur with small probabilities,
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examples being prospect theory (PT) (Kahneman and Tversky, 1979, Tversky and
Kahneman, 1992) and rank-dependent utility (RDU) theory (Quiggin, 1982).

It has been noted that when applied to dynamic choice problems, non-EU models
can lead to time inconsistency; see Machina (1989) for a review of early works dis-
cussing this issue. For illustration, consider a casino gambling problem studied by
Barberis (2012): a gambler is offered 10 independent bets with equal probabilities
of winning and losing $1, plays these bets sequentially, and decides when to stop
playing. Suppose at each time, the gambler’s objective is to maximize the preference
value of the payoff at end of the game and the preferences are represented by a non-
EU model involving a probability weighting function. We represent the cumulative
payoff of playing the bets by a binomial tree with up and down movements stand-
ing for winning and losing, respectively. At time 0, the top most state (TMS) of the
tree at # = 10 represents the largest possible payoff achievable and the probability of
reaching this state is extremely small (2710). The gambler overweighs this state due
to probability weighting and aspires to reach it. Hence, at time 0, her plan is to play
the 10-th bet if and when she has won all the previous 9 bets. Now, suppose she has
played and indeed won the first 9 bets. If she has a chance to re-consider her deci-
sion of whether to play the 10-th bet at that time, she may find it no longer favorable
to play because the probability of reaching the TMS at time 10 is 1/2 and thus this
state is not overweighed. Consequently, when deciding whether to play the 10-th
bet conditioning on she has won the first 9 bets, the gambler may choose differently
when she is at time 0 and when she is at time 9, showing time inconsistency.

In a continuous-time, complete market, Hu et al. (2021) study a portfolio selec-
tion problem in which an agent maximizes the following RDU of her wealth X at a
terminal time:

[ w1 - Fy @), 9
R

where u is a utility function, w is a probability weighting function, and Fy is the cu-
mulative distribution function of X. The authors derive an open-loop intra-personal
equilibrium and show that it is in the same form as in the classical Merton model
but with a properly scaled market price of risk. He et al. (2020) consider median and
quantile maximization for portfolio selection, where the objective function, namely
the quantile of the terminal wealth, can be regarded as a special case of RDU with
a particular probability weighting function w. The authors study closed-loop intra-
personal equilibrium and find that an affine trading strategy is an equilibrium if
and only if it is a portfolio insurance strategy. Ebert and Strack (2017) consider the
optimal time to stop a diffusion process with the objective to maximize the value
of the process at the stopping time under a PT model. Using the notion of mild
intra-personal equilibrium as previously discussed in Section 5, the authors show
that under reasonable assumptions on the probability weighting functions, the only
equilibrium among all two-threshold stopping rules is to immediately stop. Huang
et al. (2020) study mild intra-personal equilibrium stopping rules for an agent who
wants to stop a geometric Brownian motion with the objective of maximizing the
RDU value at the stopping time.
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Risk measures, such as value-at-risk (VaR) and conditional value-at-risk (VaR),
can also be considered to be non-EU models leading to time consistency. There are,
however, few studies on intra-personal equilibria for mean-risk models in continu-
ous time. For relevant studies in discrete-time settings, see for instance Cui et al.
(2019).

Models with Knightian uncertainty or ambiguity can also result in time incon-
sistency. For example, the o.-maxmin model proposed by Ghirardato et al. (2004) is
dynamically inconsistent in general; see for instance Beissner et al. (2020). Li et al.
(2019) find an open-loop intra-personal equilibrium investment strategy for an agent
with o--maximin preferences. Huang and Yu (2021) consider a problem of stopping
a one-dimensional diffusion process with preferences represented by the @-maxmin
model and study the mild intra-personal equilibrium stopping rule for the problem.

8 Dynamically Consistent Preferences

Machina (1989) notes that, in many discussions of time inconsistency in the lit-
erature, a hidden assumption is consequentialism: at any intermediate time ¢ of a
dynamic decision process, the agent employs the same preference model as used at
the initial time to evaluate the choices in the continuation of the dynamic decision
process from time ¢, conditional on the circumstances at time 7. For example, con-
sider a dynamic consumption problem for an agent with present-bias preferences
and suppose that at the initial time 0, the agent’s preference value for a consumption
stream (Cy)y> is represented by E[ ;" h(s)u(Cs)ds], where the discount function A
models the agent’s time preferences at the initial time O and u is the agent’s utility
function. The consequentialism assumption implies that at any intermediate time ¢,
the agent’s preferences for the continuation of the consumption stream, i.e., (Cs)s>1,
are represented by the same preference model as at the initial time 0, conditional
on the situations at time 7, i.e., by E;[[;” h(s — 1)u(Cy)ds], where the discount func-
tion & and u are the same as the ones in the preference model at the initial time
0. Similarly, for a dynamic choice problem with RDU preferences for the payoff
at a terminal time, the consequentialism assumption stipulates that the agent uses
the same utility function u and probability weighting function w at all intermediate
times r when evaluating the terminal payoff at those times.

The consequentialism assumption, however, has not been broadly validated be-
cause there are few experimental or empirical studies on how individuals dynami-
cally update their preferences. Machina (1989) consider a class of non-EU maximiz-
ers, referred to as y-people, who adjust their preferences dynamically over time so
as to remain time consistent. The idea in Machina (1989) was further developed by
Karnam et al. (2017) who propose the notion of time-consistent dynamic preference
models. The idea of considering time-consistent dynamic preferences is also central
in the theory of forward performance criteria proposed and developed by Musiela
and Zariphopoulou (2006, 2008, 2009, 2010a,b, 2011); see also He et al. (2021) for
a related discussion.
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Formally, consider a dynamic choice problem in a period [0,7T). A preference
model at time 0 is specified for an agent, denoted as Jo(u(-)), where (u(s))se(o,r)
denotes the agent’s dynamic choice. A family of dynamic preference models J;, t €
(0,T), are called time-consistent for the initial model J if the optimal strategy under
Jo, namely, the pre-committed strategy for the agent at time 0, is also optimal under
J; for the agent at any future time ¢ € (0,7). Note that given the pre-committed
strategy at time O, we can always find preference models at ¢ > 0 such that this
strategy remains optimal. Thus, a more interesting question is whether we can find
a family of time-consistent dynamic preference models that are of the same type as
the initial preference model.

He et al. (2021) study portfolio selection in the Black-Scholes market for an agent
whose initial preference model for wealth at a terminal time is represented by RDU.
The authors show that there exists a family of time-consistent dynamic RDU models
if and only if (i) the probability weighting function in the initial model belongs to
a parametric class of functions proposed by Wang (1996); and (ii) the parameter
of the probability weighting function, the absolute risk aversion index of the utility
function, and the market price of risk must be coordinated with each other over time
in a specific way. Cui et al. (2012), Karnam et al. (2017), and He and Jiang (2020a)
find that mean-variance models become time consistent if the dynamic trade-off
between the mean and variance over time is set properly. For mean-CVaR models,
where an agent maximizes the mean and minimize the CVaR at certain confidence
level, Pflug and Pichler (2016) and Strub et al. (2019) note, in discrete-time settings,
that time consistency is retained as long as the tradeoff between the mean and CVaR
and the confidence level evolve dynamically in a certain way.

The problem of intra-personal equilibria and that of dynamically consistent pref-
erences can be considered primal—dual to each other: the former finds equilibrium
strategies given the time-inconsistent preferences, whereas the latter identifies pref-
erences given the problem is time-consistent. Diving deeper into this relationship
may call for innovative mathematical analysis and result in profound economic in-
sights.
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N -Player and Mean-Field Games in
Ito-Diffusion Markets with Competitive or
Homophilous Interaction

Ruimeng Hu and Thaleia Zariphopoulou

Abstract In It6-diffusion environments, we introduce and analyze N-player and
common-noise mean-field games in the context of optimal portfolio choice in a
common market. The players invest in a finite horizon and also interact, driven either
by competition or homophily. We study an incomplete market model in which the
players have constant individual risk tolerance coefficients (CARA utilities). We
also consider the general case of random individual risk tolerances and analyze the
related games in a complete market setting. This randomness makes the problem
substantially more complex as it leads to (N or a continuum of) auxiliary “individual”
[t6-diffusion markets. For all cases, we derive explicit or closed-form solutions for
the equilibrium stochastic processes, the optimal state processes, and the values of
the games.

1 Introduction

In It6-diffusion environments, we introduce N-player and common-noise mean-field
games (MFGs) in the context of optimal portfolio choice in a common market.
We build on the framework and notions of [12] (see, also, [11]) but allow for a
more general market model (beyond the log-normal case) and, also, consider more
complex risk preferences.

The paper consists of two parts. In the first part, we consider a common incomplete
market and players with individual exponential utilities (CARA) who invest while
interacting with each other, driven either by competition or homophily. We derive
the equilibrium policies, which turn out to be state (wealth)-independent stochastic
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processes. Their forms depend on the market dynamics, the risk tolerance coeffi-
cients, and the underlying minimal martingale measure. We also derive the optimal
wealth and the values of both the N-player and the mean-field games, and discuss
the competitive and homophilous cases.

In the second part, we assume that the common It6-diffusion market is complete,
but we generalize the model in the direction of risk preferences, allowing the risk
tolerance coefficients to be random variables. For such preferences, we first analyze
the single-player problem, which is interesting in its own right. Among others, we
show that the randomness of the utility “distorts” the original market by inducing
a “personalized” risk premium process. This effect is more pronounced in the N-
player game where the common market is now replaced by “personalized” markets
whose stochastic risk premia depend on the individual risk tolerances. As a result, the
tractability coming from the common market assumption is lost. In the MFG setting,
these auxiliary individual markets are randomly selected (depending on the type
vector) and aggregate to a common market with a modified risk premium process.
We characterize the optimal policies, optimal wealth processes, and game values,
building on the aforementioned single-player problem.

To our knowledge, N-player games and MFGs in It6-diffusion market settings
have not been considered before except in preprint [6]. Therein, the authors used
the same asset specialization framework and same CARA preferences as in [12]
but allowed for It6-diffusion price dynamics. They studied the problem using a
forward-backward stochastic differential equation (FBSDE) approach. In our work,
we have different model settings regarding both the measurability of the coefficients
of the It6-diffusion price processes and the individual risk tolerance inputs. We also
solve the problems using a different approach, based on the analysis of portfolio
optimization problems of exponential utilities in semi-martingale markets.

The theory of mean-field games was introduced by Lasry and Lions [13], who
developed the fundamental elements of the mathematical theory and, independently,
by Huang, Malhamé and Caines who considered a particular class [8]. Since then,
the area has grown rapidly both in terms of theory and applications. Listing precise
references is beyond the scope of this paper.

Our work contributes to N-player games and MFG in Itd-diffusion settings for
models with controlled processes whose dynamics depend linearly on the controls
and are state-independent, and, furthermore, the controls appear in both the drift
and the diffusion parts. Such models are predominant in asset pricing and in optimal
portfolio and consumption choice. In the context of the general MFG theory, the
models considered herein are restrictive. On the other hand, their structure allows us
to produce explicit/closed-form solutions for It6-diffusion environments.

The paper is organized as follows. In Section 2, we study the incomplete market
case for both the N-player game and the MFG, and for CARA utilities. In Section 3,
we focus on the complete market case but allow for random risk tolerance coefficients.
In analogy to Section 2, we analyze both the N-player game and the MFG. We
conclude in Section 4.
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2 Incomplete Ito-diffusion common market and CARA utilities

We consider an incomplete It6-diffusion market, in which we introduce an N-player
and a mean-field game for players who invest in a finite horizon while interacting
among them, driven either by competition or homophily. We assume that the players
(either at the finite or the continuum setting) have individual constant risk tolerance
coeflicients. For both the N-player and the MFG, we derive in closed form the
optimal policies, optimal controlled processes, and the game values. The analysis
uses the underlying minimal martingale measure, related martingales, and their
decomposition.

2.1 The N-player game

Consider a probability space (€2, #,P) supporting two Brownian motions denoted
as (W, W,Y diefo,r), T < oo, imperfectly correlated with the correlation coefficient
p € (—=1,1). We denote by (#;);¢[0,] the natural filtration generated by both W and
WY, and by (G:):er0,7 the one generated only by WY . We then let (M1 )refo,r] and
(01)refo,] be Gy-adapted processes, with 0 < ¢ <oy < C and || < C,t € [0,T], for
some (possibly deterministic) constants ¢ and C.

The financial market consists of a riskless bond (taken to be the numeraire and
with zero interest rate) and a stock whose price process (S;);¢[o,7] satisfies

dS[:/,ltStdt+0-tStth, S():SOERJr. (])

In this market, N players, indexed by i € 7, 7 = {1,2,...,N}, have a common
investment horizon [0,7] and trade between the two accounts. Each player, say
player i, uses a self-financing strategy (ﬂ;),E[O’T], representing (discounted by the
numeraire) the amount invested in the stock. Then, her wealth (Xf )refo, 1] satisfies

dth:ﬂ';(/Jtdt‘i‘O'tth)’ Xé:xiGR (2)

with 7/ being an admissible policy, belonging to

A= {n : self-financing, # -progressively measurable

T
and Ep [f a’fir? ds
0

Asin[12] (see also [1, 4, 9, 10, 11, 20]), players optimize their expected terminal
utility but are, also, concerned with the performance of their peers. For an arbitrary
but fixed policy (my,...,mi—1,Ti+1,...,TN), player i, i € I, seeks to optimize

<oo}. 3)
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Vt (xl,...,xi,...,xN)

| —

1 i N
Xo=xt,... Xy =xi.... X5 =xn|, (4

= sup Ep[—exp(— (X}—CiCT))

nieA

g

where

1 N )
- J
Cri= ;:1 el (5)

averages all players’ terminal wealth, with X%, j=1,...,N, given by (2).

The parameter §; > 0 is the individual (absolute) risk tolerance while the constant
¢; € (—oo, 1] models the individual interaction weight towards the average wealth of
all players. If ¢; > 0, the above criterion models competition while when ¢; < 0 it
models homophilous interactions (see, for example, [14]). The optimization criterion
(4) can be, then, viewed as a stochastic game among the N players, where the notion
of optimality is being considered in the context of a Nash equilibrium, stated below
(see, for example, [2]).

Definition 1 A strategy (77);cjo.r) = (7. .1 )seqor) € A®N s called a Nash
equilibrium if, for each i € I and 7’ € A,

i

1, .. . )
EP[—exp(—(s— (X} —c[CT))‘Xé =x1,...,X(’)=xi,...,XéV=xN]

1 . . .
ZEP[—exp(—d—(X’T—ciC;*>) Xy =Xt X = X100 XY =xN] (6)

with

N N
* 1 o i, 1 % i
Cr ZNZX; and Cp"i= Z X3+ X7,
Jj=1 Jj=Lj#i
where X%’*, j € I, solve (2) with proAs being used.

In this incomplete market, we recall the associated minimal martingale measure
QMM | defined on F7, with

dQMM

1 T ) T
P =exp(—§j(; /lsds—f(; ﬂdeS)s (7)

where A; ;= Z—’r, t € [0,T], is the Sharpe ratio process (see, among others, [5]). By
the assumptions on the model coefficients, we have that, for ¢ € [0,T], 4; € G; and

|| <K, (®)

for some (possibly deterministic) constant K. We also consider the processes
~ = o t ~ t

(Wiieory and (W) )eqo.ry with W, = W + [ Agds and WY = W) +p [ A ds,

which are standard Brownian motions under Q¥ with W, € 7; and W) € G,.
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Next, we introduce the QY™ -martingale (M;)se[o,7],

M; = Equm [e_%(l_‘oz)f()T/LZv ds

G| ©

From (8) and the martingale representation theorem, there exists a G;-adapted process
& € L2 (P) such that

where W;- is a standard Brownian motion independent of W, appearing in the
decomposition WY = pW, ++/1 — p2W}.

In the absence of interaction among the players (¢; =0, i € 1), the optimization
problem (4) has been analyzed by various authors (see, among others, [17, 18]). We
recall its solution which will be frequently used herein.

Lemma 1 (no interaction)

Consider the optimization problem

v(x) = sup Ez [—e—%xr X0 = x], (11)
aceA
with & > 0 and (x;)re0,1] solving
dx; =a; (U dt+o:dWy), xo=x€R, aeA. (12)

Then, the optimal policy (af), o 7y and the value function are given by

1
a ot LS (13)
(o 1_P20't

and 1

1 L
v(x) = _e%xﬁ/[ol_p2 =3 (EQMM [3_%(1_Pz)foT Rk ds]) o (14)
with (&), as in (10).

Proof We only present the key steps, showing that the process (i), ¢[0.71

o))

with up = v(x), x € R, is a supermartingale for x; solving (12) for arbitrary @ € A
and becomes a martingale for @* as in (13). To this end, we write

1 1 T
U, = —e 8% (EQMM [e‘?“‘/’z)ft A3 ds

1 t
x 1
U = —e T Mt]"’2 eM with N, = Ef /li du,
0
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and observe that

u 1 u
dl/it = —gt dx, + 26214[ d<x>[ + Uy dN[ 2 Altt dM[
1 p2 Uz 1
e d M)y — ———— d M
1 11 1 2, _P p 2
= Uy (_gatﬂt 262 E/l l_pzft/lt*'z(l_pz)zft

1 1
_ﬁatUtft)dt+u, (—gaIO't th + l—ngtthY)
1 1
= Eut —go-tat'i'/lt

2
1
+ ngt) dt+ut (——atO't th +
Yo, 0

1 Y
- l_ng,dw,).

Because u; < 0, the drift remains non-positive and vanishes for ¢ € [0,77] if and only

if the policy
A p &
=6 E18
(0’[ 1 - p2 Oy

is being used. Furthermore, a* € A, as it follows from the boundedness assumption
on o, inequality (8) and that & € £ (P). The rest of the proof follows easily. O

Next, we present the first main result herein that yields the existence of a (wealth-
independent) stochastic Nash equilibrium.

Proposition 1 For 6; > 0 and c¢; € (—oo, 1], introduce the quantities

N

N
1 1
ON = 21 0 and Yy =4 E Ci, 15)

i=1

and

5i:=6i+ 1% ci. (16)

The following assertions hold:

1. If yn < 1, there exists a wealth- mdependent Nash equilibrium, (n}),. 0.7 =

1% i,% N,
(JT, e T LT )IE[OT]

process
(2
n;*zcs,-(—’+ pQQ), (17)
o 1-p* oy

, where 7T , 1 €1, is given by the G;-adapted

with (&;):efo,1] as in (10). The associated optimal wealth process (X,i’*)te[ 011 is

x;’*zxi+5if (a T fu)u du+dWw,) (18)
0

and the game value for player i, i € I, is given by
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4

) 1 i
Vi (x1,%2,...,XN) = —€xp (_6_ (x; —ci)_c)) M()]"’2

1 , .
= TCXp (_5_ (xi _ci)_c)) (EQMM [e_%(l_p2)f() R dS]) 1-p? )

l 19)

with X = # Zf.\il X
2. If yn =1, then it must be that c; = 1, for all i € I, and there is no such wealth-
independent Nash equilibrium.

Proof We first solve the individual optimization problem (4) for player i € 7, taking
the (arbitrary) strategies (!, .7t Ny of all other players as given. This
problem can be alternatively written as

. 1\ .
vi(X;) = sup Ep [—exp (—6—)2;) X = )?l-], (20)

rleA i

where ¥ 1= X] - % 5,\;1 X/, t€[0,T], solves

d¥ =7 (udt+o,dW,)  and %) =X = x; — ¢ X.

From Lemma 1, we deduce that its optimal policy is given by

i % A
m = i(_t"' P é)

(o l—pza't

and thus the optimal policy of (4) can be written as

- de P &) G i
[ i J [
T, _6l(0-t+1_p20—t tN E A o B (21)

J#

Symmetrically, all players j € 7 follow an analogous to (21) strategy. Averaging over
j €7 yields

N N
1 i 1 i Ay p &
— T =Yy — g —+ 21,
NZ”’ YNy 2 "ON((T -2 o

i=1 i=1 t

with ¢/ and pn as in (15). If Y < 1, the above equation gives

N
1 ; A
N A (_f+ Pzﬁ),
Ni=1 1_(//1\] gy l—p Oy

and we obtain (17). The rest of the proof follows easily. O
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We have stated the above result assuming that we start at = 0. This is without loss
of generality, as all arguments may be modified accordingly. For completeness, we
present in the sequel the time-dependent case, in the context of a Markovian market.

Remark 1 As discussed in [12, Remark 2.5], problem (4) may be alternatively and
equivalently represented as

Vi(xX1,. ., XN)
1 )
= sup EP[—exp(——,(X’ ~¢/Cr )) X3 =x1,.0 X XN =xy
nieA 61
with C‘ >N X/, and §; = % and ¢; = &
= N1 j=1,j#i AT L T g

Remark 2 Instead of working with the minimal martingale measure in the incomplete
Itd-diffusion market herein, one may employ the minimal entropy measure, QM™%
given by

dQME B 1 T ) ) T T N -
1P = exp ~5 ; (/lx+)(s) ds — . Asg dWg — . XsdWs |, (22)

where y; = -Z; and (y1,Z1, Z}"), cfo.r) solves the backward stochastic differential
equation (BSDE)

1, 1
—dy,=(—E/ltz+E(Zf)z—/l,Z,)dt—(Z,th+Zdef) and yr=0. (23)

The measures QM E and QMM are related through the relative entropy # in that

—~HQMEp) = L5 > In Mo (cf. [17]). We choose to work with QMM for ease of the
presentation.

From Lemma 1, we see that the Nash equilibrium process,

b, o )

Ot 1—p20', ’

L% _ T
T, —(5,’(

resembles the optimal policy of an individual player of the classical optimal invest-
ment problem with exponential utility and modified risk tolerance, §;. The latter

deviates from ¢; by
= N
6i - 6i = fmcl'

In the competitive case, ¢; > 0, 6; > §; and their dlﬁerence increases with c¢;,
on and Y. At times ¢ such that /1’ + lppzfr’ >0 (resp &t lppzj—’ < 0), the
competition concerns make the player invest more (resp. less) 1n the risky asset than
without such concerns.

In the homophilous case, ¢; < 0, we have that §; < §;. Furthermore, direct com-

putations show that their difference decreases with ¢; and each cj, j # i, while it
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increases with ¢;. In other words,

ds, (81— 6:) <0.Vj e I, 8, (6:—06;) <0, Vj e I\{i}, and o, (6:—0;) > 0.

At times ¢ such that ’l’ + pp £ 50, the player would invest less in the risky asset,

compared to Wlthout homophﬂous interaction. This investment decreases if other
players become more risk tolerant (their §’, s increase) or less homophilous (their ¢’,
s increase) or if the specific player i becomes more homophilous (¢; decreases). The
case ’1’ + 1‘0p2 f;’ < 0 follows similarly. The comparison between the competitive
and the homophilous case is described in Figure 1.

Fig. 1: The plot of §; — &; versus ¢; and ¢/, with N =25 and ¢ = 6.

2.1.1 The Markovian case

We consider a single stochastic factor model in which the stock price process
(81)¢eqo,17 solves

dS; = p(t,%,)S; dt + o (1Y) S; dW,, (24)
dY; = b(t,Y,) dt +a(t,Y;) dW/, (25)

with S = § > 0 and ¥y = y € R. The market coefficients u,o,a and b satisfy ap-
propriate conditions for these equations to have a unique strong solution. Further
conditions, added next, are needed for the validity of the Feynman-Kac formula in
Proposition 2.

Assumption 1 The coefficients u,o,a and b are bounded functions, and a,b have
bounded, uniformly in t, y-derivatives. It is further assumed that the Sharpe ratio

function A(t,y) := % is bounded and with bounded, uniformly in t, y-derivatives

of any order.

For t € [0,T], we consider the optimization problem
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) 1., .
Vi, X1s e oy Xiy . s XN,Y) = SUP Ep[—exp (—— (X’T —ciCT))‘
nieA bi
X! =xn Xl = x XN =T, =y], (26)
with (XD)sep.7) solving dXi = u(s,Y)rl ds + o (s,Ys)nl dW and 7' € A, and Cr

as in (5). We also consider the process ({;)refo,r; With &y 1= {(t,Y;), where { :
[0,7]1xR — R" is defined as

T
{(t,y) = Eqgum e 2P [ B(sYoyds

Y, = y] .
Under QMM | the stochastic factor process (Y;) refo,] satisfies
dy, = (b(t.Y;) - pA(L.Y,)a(t,Y,)) di + a(t,Y;) dWY .
Thus, using the conditions on the market coefficients and the Feynman-Kac formula,

we deduce that { (¢, y) solves

1 1
&+ 5a2<z,y)4yy +(b(t,y) = pAt,V)a(t, )y = 5(1= R VRl (3) VA 1!

with £(T,y) = 1. In turn, the function f(z,y) := ﬁ In{(¢,y) satisfies
fo+ 2@ fyy + (bl 3) = pA V() fy + 3 (1= P2 1) 2 = 2 42(y)
t 2 > Y)Jyy >y Y »yJall,y fy 2 paLy fy _2 >Y)s
f(T,y)=0. (28)
In the absence of competitive/homophilous interaction, this problem has been ex-
amined by various authors (see, for example, [18]).
Proposition 2 Under Assumption 1, the following assertions hold for t € [0,T].
1. If yn < 1, there exists a wealth-independent Nash equilibrium (7)) =

s€(t,T]

L 2 N. "y .
(ﬂs T NN AL , where 13", i € 1, is given by the process

)SE[t.T]

nht =t (s, Y, (29)

N
with (Y;):efo0,17 solving (25) and a"* [0, T]xR - R defined as

i,% 5. /l(t’y) a(f»)’)
=0 (a(m) Py

fy(t,y)), (30)

with 8; as in (16) and f(t,y) solving (28). The game value of player i, i € I, is
given by
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6;

=—exp(—6li(x,~—jc\; e 1x)+f(t y))

2. If Yy = 1, there exists no such Nash equilibrium.

; 1 ; 1
Vit X1,. . XN, Y) = —€XP (—— (xi - %Zf\f]xi)) L(t,y)1-*

Proof To ease the notation, we establish the results when ¢ = 0 in (26). To this end,
we first identify the process & in (10). For this, we rewrite the martingale in (9) as

M, = é«(,,me—%u—p%ﬁfﬂ(s,mds,
and observe that
dM; = ({z(t,Yz) + (1) — pa(t, Y) ALYy (8 Y)

1 M,
# 3@y 1)) 2 di =3 (1= g1 P Y My di

L@ Y)
i o

gy(t’Yt)
{(61)

+a(t,Y;)

=a(tY;)

M, (pdvT/,+ l—pde,J'),

Ly (,Yr)
J(t.Yr)

where we used that £ (¢, y) satisfies (27). Therefore, &, = a(t,Y;)
that £(,y) /(17" = /() we obtain that

1 é’y(l,)’)
1_p2 {(I»)’)

. In turn, using

ftY) = and & = (1-pHatY) fy (1Y),

and we easily conclude by replacing &; by (1 —p?)a(t,Y;) fy(@Y)in (17).

It remains to show that the candidate investment process in (29) is admissible.
Under Assumption 1 we deduce that f,(z,y) is a bounded function, since £ (z,y) is
bounded away from zero and {,(#,y) is bounded. We easily conclude. O

Remark 3 In the Markovian model (24)—(25), the density of the minimal entropy
measure QM £ is fully specified. Indeed, the BSDE (23) admits the solution

yt :f(t’Yt)7 Zt =pa(taYt)fy(t7Yt) and Ztl = \/l_pZG(t’Yt)fy(t,Yt),

and, thus, the density of Q¥ is given by (22) with

Xt E/\/(t’Yt) =_\/1_p2a(t’Yt)fy(t7Yl‘)
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2.1.2 A fully solvable example

Consider the family of models with autonomous dynamics
1,1

1 €1
u(t,y) = py2 ™2, o(t,y) =y, b(t,y)=m—y, a(t,y) =By,

with >0, 8>0,¢#0and m > %32. Notable cases are £ = 1, which corresponds
to the Heston stochastic volatility model, and ¢ = —1 that is studied in [3].

Equation (28) depends only on b(t,y), a(t,y) and the Sharpe ratio A(¢,y) = p+/y,
and thus its solution f(¢#,y) is independent of the parameter £. Using the ansatz
f(ty)=pt)y+q(t) with p(T) = qg(T) = 0, we deduce from (28) that p(¢) and g(¢)
satisfy

1 1
PO =5+ pp(1) = p() + 5 67p* (1) =0,
q(t) +mp(t) = 0. (3D
In turn,

_ L+pup-vVA 1— = VAT-1)

(1=p)B> | _ LouB=VA , VKT-1)
l+p,uﬁ+\/g

p() A=1+p%12+2puB >0,

and g(1) =m [ p(s)ds.

From (30), we obtain that the Nash equilibrium strategy (né*) t€[0,T],

selt,T1’
for player i is given by the process

- - La-4
mgt = 0i(u+ pBp(s)¥s
If £ = 1, the policy becomes deterministic, ni* =6;(u+ pBp(s)), and the equilibrium
wealth process solves

X2 = 5;(p+ pPp()) (s ds + Y dWy).

2.2 The common-noise MFG

We analyze the limit as N T oo of the N-player game studied in Section 2.1. We first
give an intuitive and informal argument that leads to a candidate optimal strategy in
the mean-field setting, and then propose a rigorous formulation for the MFG. The
analysis follows closely the arguments developed in [12].

For the N-player game, we denote by n; = (x;,d;,¢;) the type vector for player
i, where x; is her initial wealth, and n; and c¢; are her risk tolerance coefficient and
interaction parameter, respectively. Such type vectors induce an empirical measure
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my, called the type distribution,

N
1
mpy(A) = I Z 1, (A), for Borel sets A C Z,
i=1

which is a probability measure on the space Z := R X (0,00) X (—o0,1].

We recall (cf. (17)) that the equilibrium strategies (n; “relo, T], i € I, are given as
the product of the common (type- mdependent) process -t "’ +1 £ o £t and the modified
risk tolerance parameter &; = ; + 7 zﬂN —2—c;. Therefore, 1t is only the coefficient ¢;
that depends on the empirical distribution mp through ¥ and ¢, as both these
quantities can be obtained by averaging appropriate functions over mp . Therefore,
if we assume that mpy converges weakly to some limiting probability measure as
N 7T oo, we should intuitively expect that the corresponding equilibrium strategies
also converge. This is possible, for instance, by letting the type vector n = (x,d,c) be
a random variable in the space Z with limiting distribution m, and take n; as i.i.d.
samples of 7. The sample 7; is drawn and assigned to player i at initial time # = 0.
We would then expect (ﬂi’*),e[o,r] to converge to the process

lim 7rt (6i+1i_ci) (ﬁ+ L é), (32)
y

NToo o 1-p%oy

where ¢ and § represent the average interaction and risk tolerance coefficients.

Next, we introduce the mean-field game in the incomplete 1t6-diffusion market
herein, and we show that (32) indeed arises as its equilibrium strategy. We model a
single representative player, whose type vector is a random variable with distribution
m, and all players in the continuum act in this common incomplete market.

2.2.1 The Ito-diffusion common-noise MFG

To describe the heterogeneous population of players, we introduce the type vector
n=(x6,c) €, (33)

where § > 0 and ¢ € (—oo, 1] represent the risk tolerance coefficient and interaction
parameter, and x is the initial wealth. This type vector is assumed to be independent
of both W and WY, which drive the stock price process (1), and is assumed to have
finite second moments.

To formulate the mean-field portfolio game, we now let the filtered probability
space (Q, F,P) support W, WY as well as 1. We assume that 7 has second moments
under P. We denote by (fM F )iefo,r] the smallest filtration satisfying the usual
assumptions for which 7 is #;¥*-measurable and both W,W" are adapted. As
before, we denote by (F7):c0,r] the natural filtration generated by W and WY, and
by (G:)reqo,] the one generated only by wY.
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We also consider the wealth process (X;), o) of the representative player solv-
ing
dX; = m; (uy dt + o dWy), 34)

with Xo = x e R and 7 € AMF where

AME - {n : self-financing, 7—;M F_progressively measurable

T
and Ep [f o-?n? a’s] < 00}.
0

Similarly to the framework in [12], there exist two independent sources of random-
ness in the model: the first is due to the evolution of the stock price process, described
by the Brownian motions W and WY. The second is given by 1, which models the
type of the player, i.e., the triplet of initial wealth, risk tolerance, and interaction
parameter in the population continuum. The first source of noise is stochastic and
common to each player in the continuum while the second is static, being assigned
at time zero and with the dynamic competition starting right afterwards.

In analogy to the N-player setting, the representative player optimizes the expected
terminal utility, taking into account the performance of the average terminal wealth
of the population, denoted by X. As in [12], we introduce the following definition
for the MFG considered herein.

Definition 2 For each 7 € AMF  let X := Ep[X7|F7] with (X,),cjo.r) Solving (34),

and consider the optimization problem

V(x)= sup Ep [—exp (—é (XT —cf))

nEAME

FME, Xo = x] : (35)

A strategy n* € AMF _15 a mean-field equilibrium if 7 is the optimal strategy of the
above problem when X := Ep[X7|7] is used for X, where (X;), €[0.7] solves (34)
with 7* being used.

Next, we state the main result.

Proposition 3 If Ep[c] < 1, there exists a unique wealth-independent MFG equilib-
rium (77 cpo.r) &iven by the FMEV G, process

(o EeS] N[ p &
ﬂt_(6+1—EP[C]C)(0'1+1—p20'z)’ (36)

with & as in (10). The corresponding optimal wealth is given by

. Ezl9] ’ P
X; _x+(5+—1_EP[C]c)f0 (/ls+ l_ngs)(asdﬁ awy), (37

and
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1

1
V(x) = —exp (—— (x— cm)) M
1 ~La-p? [T A2 ds 7
= —exp —g(x—cm) (EQMM [e PR RN ]) ,
where m = Ep[x]. If Ep[c] = 1, there is no such Nash equilibrium.

Proof We first observe that 7* in (36) is 7, -measurable since (’l‘ + _ppz (‘i’t ) €
G, and thus

A p & . Ep[d]
(—’ + ——‘) € ¥, while the factor (6+ —Eolc]

c) € ?Z)M F (independent of 7).
Furthermore, n* is also square-integrable under standing assumptions, and thus
admissible. To show that it is also indeed an equilibrium policy, we shall first define
X using 7, and then verify that the optimal strategy to the representative player’s
problem (35) coincides with r; when this specific X is used in (35). To this end, we
introduce the process X, = Ep[X[|7¢] with (X );e[o,77 as in (37). Then,

< _ Ep[d] !
X;—EPI:X+(6+¢P[C] )f (/l +l fs)

_ pld] !
—m+(E]p[5]+TP[C]E]p[C])f(; (/ls+m§s) (/lSdS-i- dWS)

Ep[9] ! I%
+(ﬁp[€])£ (/ls+1_—p2fs) (/lst'FdWs),

where we have used that fo (/l + zfs) (Agds + dWy) is G,-measurable and thus

F;-measurable, and that (6 + 11—5%&»[]c] ) is independent of 7.

Next, we introduce the auxiliary process (¥:);ef0r), Xr = X: - cX,, with
(Xt)te[O,T] as in (34) Then,

or  1-p? oy

di; =m(u; dt+0:;dW;) and Xop=X:=x-cm,

and 7, =7, —c ( lfgi]c] ) (i—’r + 1—Lp2 :’%) In turn, we consider the optimization prob-

lem

1
v(%):= sup Ep [—exp (—527) FME, % = x~:| .

TEAMFE
From Lemma 1, we deduce that the optimal strategy is given by

|

(o 1_p20-t

and, thus,

. E
ﬂ;=5(ﬂ+ ng—’)+c(—P[6] )(ﬁ+ pzé)'
o 1-p*o; 1-Eplc])\oy 1-p? 0y
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The rest of the proof follows easily. O

If we view = (x, 8, ¢) in the N-player game in Section 2.1 as i.i.d. samples on the
space Z with distribution m, then limp 1. ¥y = Ep[c] and limy1e o = Ep[6] ass..
We then obtain the convergence of the corresponding optimal processes, namely, for
te[0,T],

lim 7" =x;, and lim X" = X;.
NTeo N1eo

2.2.2 The Markovian case

In analogy to the N-player case, we have the following result.

Proposition 4 Assume that the stock price process follows the single factor model
(24)—(25). Then, if Ep[c] < 1, there exists a unique wealth-independent Markovian
mean-field game equilibrium, given by the process (m}), 0]

.. BB\ (AR aw)
= (’“’Y’)‘(‘”1—Ep[c]c)(<r(r,Y,>+ Py

o)

with the 7‘51"1 F _measurable random function n*(n,t,y) : ZX[0,T]XR,

ﬂ'*(nat,y) = (6+ EIP[(S] ) (/l(t,y) + a(z‘,y)

1_EP[C]C O-(t’y) po-(t’y)fy(t,y)).

If Ep[c] = 1, there is no such mean-field game stochastic equilibrium.

3 Complete Ito-diffusion common market and CARA utilities
with random risk tolerance coefficients

In this section, we focus on the complete common market case, but we extend the
model by allowing random individual risk tolerance coefficients. We start with a
background result for the single-player problem, which is new and interesting in
its own right. Building on it, we analyze both the N-player and the MFG. The
analysis shows that the randomness of the individual risk tolerance gives rise to
virtual “personalized” markets, in that the original common risk premium process
now differs across players, depending on their risk tolerance. This brings substantial
complexity as the tractability coming from the original common market is now lost.
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3.1 The Ito-diffusion market and random risk tolerance coefficients

We consider the complete analog of the It6-diffusion market studied in Section 2.
Specifically, we consider a market with a riskless bond (taken to be the numeraire
and offering zero interest rate) and a stock whose price process (S;),¢[o,r] solves

dS; = 8 (p dt + o dWy),

with S > 0, and (W} ), ¢[o,7] being a Brownian motion in a probability space (€2, 7, P).
The market coeflicients (u;),¢jo.7) and (07¢);cpo,) are F-adapted processes, where
(F1)rero,r is the natural filtration generated by W, and with 0 < ¢ < o, < C and
|us] < C, t €[0,T], for some (possibly deterministic) constants ¢ and C.

In this market, N players, indexed by i € 7, 7 ={1,2,..., N}, trade between the

two accounts in [0, 7], with individual wealths (X; ) - solving

t€l0,
dX! =7t (u; dt + o dWy), (38)

and Xé =x; €R.
Each of the players, say player i, has random risk tolerance, &.., defined on
(Q, F,P) with the following properties:

Assumption 2 For each i € 1, the risk tolerance 59 is an Fr-measurable random
. N2
variable with 0. > 6 > 0 and Ep (6’T) < oo,

The objective of each player is to optimize

N
- 1 . e )

Vi(x1,. s Xis o, XN) = SUp Ep| — -— X -= E X!
(X150, % XN) S;p p[ exp( 6}( i P T))

Xy = X150, Xp = X4y, XY = xN], (39)

with ¢; € (=00, 1], X7, Jj € I, solving (38), and A defined similarly to (3).

As in Section 2.1, we are interested in a Nash equilibrium solution, which is
defined as in Definition 1. Before we solve the underlying stochastic N-player game,
we focus on the single-player case. This is a problem interesting in its own right and,
to our knowledge, has not been studied before in such markets. A similar problem
was considered in a single-period binomial model in [15] and in a special diffusion
case in [16] in the context of indifference pricing of bonds. For generality, we present
below the time-dependent case.

3.2 The single-player problem

We consider the optimization problem
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1
ve(x) = sup Es [—eTr” Froxe = x|, (40)

neA

with 67 € Fr satisfying Assumption 2 and (x)e, 7 solving (38) with x; = x € R.
We define (Z;),¢0,] by

1 t t
z,=exp(—§f Aids—f /ldeS),
0 0

and recall the associated (unique) risk neutral measure Q, defined on #r and given

by
dQ
—= =Zr. 41
P T (41)
We introduce the process (6;);¢(o,7]-
6: == Eglor|F:], (42)

which may be thought as the arbitrage-free price of the risk tolerance “claim” o7.
We also introduce the measure Q, defined on 7, with

Q0 _ or
dP  Eglor]

Direct calculations yield that under measure Q, the process (g—:) is an F4-

1€[0,T]
martingale.
By the model assumptions and the martingale representation theorem, there exists

an F;-adapted process (&;),¢o,7) With £ € L2 (P) such that
do; = &6, dW}, (43)

with WtQ =W, + fot As ds. Next, we introduce the process

T
H, :=E@[%f (A5 —&5)* ds 7‘?], (44)
t

where @ is defined on 7 by

dQ ( 1 fT 5 T
— =&Xp|—3 (As =€) ds— (As = &) dWs |. (45)
dpP 2 Jo 0
Under @ the process (W,@) with
t€[0,T]

w2 .= W,+f (A5 —&,) ds (46)
0
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is a standard Brownian motion, and (%St) is a martingale with dynamics

+€[0,T]

d(ﬁ) (o fz)—dWQ
t

Direct calculations yield _
dQ
dQ

Alternatively, H; may be also represented as

=0r.

T
Eglér [, 3(As—&0)*ds|F7] [5T f
- =FEp|— = (A )2 ds|F; ] (47)
’ Eql6717] 5 Jo 2WbTE
which is obtained by using that
d 1T
% :exp( 2£ ffds+f .f;‘YdWQ)
Finally, we introduce the processes (M;);¢[o,r1 and (77;), 0,7y With
1 T _
M; =Eg [Ef (A —&5)? ds‘ﬁ] and dM, = r],dW,Q. (48)
0
We are now ready to present the main result.
Proposition 5 The following assertions hold:
1. The value function of (40) is given by
vi(x) = —exp (—i _H,),
O
with 6 and H as in (42) and (44).
2. The optimal strategy (75) s, 1) i given by
wym o, s e L S e (49)
s T

with &1 as in (43) and (48), and x* solving (38) with n* being used.
3. The optimal wealth (x5) s, ) Solves

dxz = Ay (65(/15 —ns—&s) +§sx:~) ds + (63-(/15 —Ns _fs)‘*'fsx:) dWws,

with xj = x, and is given by
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K
x: = x(D,,s +f 614(/114 _fu)(/lu —Nu _é:u)q)u,s du
t
K
+f 61,4(/114 —Nu _fu)q)u,s qua (50)
t

where, for 0 <u < s <T,

D, s :=exp (f‘ (/lv—%fv).fvdv+fs§v dW‘,).

Using (50), (49) gives the explicit representation of the optimal policy,

/l _ _ A
R +é(xd>t,s+ f Su (= &) (A = — £4) Py s dt
t

=0
Os s

s
+f 6'4(}'14 —MNu _‘fu)q)u,s qu) .
t

3.2.1 The Markovian case

We assume that the stock price process (S;);¢[o,r] solves
dS; = u(t,Sy)S; dt + o (1, 8;)S; dWy,

with the initial price So > 0, and the functions u(z, S;) and o (¢, S;) satisfying appro-
priate conditions, similar to the ones in Subsection 2.1.1 and Assumption 1. The risk
tolerance is assumed to have the functional representation

or =6(S7),

for some function ¢ : R* — R* bounded from below and such that Ep [62(ST)] < 0o,
(cf- Assumption 2).
The value function in (40) takes the form

S
V(t,x,8) = sup Ep [—e A :S],
neA

and, in turn, Proposition 5 yields

X
=- ——-H
Vi, x,S) eXp(cS(t,S) (t,S)),
with 6(¢,5) and H (7, S) solving
1
S + 502@, $)S%6ss =0, (T,S) =5(S),

and
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o> (t,8)8%6(1,S)Hg

H+1 2(1,8)S?Hgs + !
~o,
) 557 51, 9)

2
+ % (/l(t, S) - ;U(t, S)S(SS(t,S)) =0, H(T,S)=0.

5(1,5)
Clearly,
6(1,8) = Eg[6(Sr)| S = S],
and
T 55,8\
H(,S) = E~ (A, S,) -0, S,)S, ————2| dulS, =S|,
t95) thz((ﬂ (u)ué(u’su)) y ]

and, furthermore,

_ 65 (t’ St)
& = 5(1,S;)

S;o(t,8;) and 17, = Hs(1,5;)S:0(t,S;).

Using the above relations and (49), we derive the optimal investment process,

A(s,S)

=0 s
s = 08 5) o (s,S)

1
- s‘H s s 6 s s s _1 =, o~ * .
SsHs (s, S, ))+ 5(8,85)S ( +(5(s,Ss)x“)

For completeness, we note that if 67 = ¢ > 0, the above expression simplify to
(see [18])
Vit,x,S) = —e s¥HES),

with H(z,S) solving
l 2 2 l 2 _ —
H,+20- @SS H55+2/l (t,$)=0, H(T,S)=0.

The optimal strategy reduces to

* 6(A(S5SY)

s = o (5.8,

—SSHS(s,SS)).

3.3 N-player game

We now study the N-player game. The concepts and various quantities are in direct
analogy to those in Section 2.1 and, thus, we omit various intermediate steps and
only focus on the new elements coming from the randomness of the risk tolerance
coeflicients.

Proposition 6 Foric I, let _ .
0; = Eg[ 67| 7],
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with Q as in (41) and (ffi)te[OT] be such that

dst = £51 dw 2.

Define the measure Q' on Fr as

dQ’ _ Lt i\2 ! i
ﬁ—exp(—zjo‘ (/ls—fs) ds_ﬁ (ﬂs_fs) dWS)’ (5])

and the processes (Mti),EIQ,T] and (n¢)tefo,1] With

; I i\2
M] =B, [Efo (As-¢l)"ds

7—;] and dMi =piaw®.  (52)

Let also,

and assume that Y < 1. Then

1. The player i’s game value (39) is given by

VX1, .oy Xiye oy XN)

— —expl - 1 (-—EZN ) E- [lfT(/l —c‘?i)2d]
B WA e IV L )

2. The equilibrium strategies (™", ..., ), cpo.1] are given by

i,%

0

:Ciﬁ;k"';
t

N
1 i i i i«  Ci RN
(6t(/lf_§t_nt)+(xt _N;X{ )ft)’ (53)

where 7t} = NZJ.:JZ’* is defined as

* 1 1 vk
R (e () =3 (1) + o) (D - N (DX]), (54)

with

1 ~ 1 S
on() = <N 6, on (D) = <IN 61(E] +m)),

N =171 N =17t
1 o :
en(0) = FILXE on 0 =2 ¢

3. The associated optimal wealth processes (th*) are given by

t€[0,T]
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) t
* % ~ [
X;’ =X, + (xi(I)f)’t +£ (A5 — )(5’ (A5 — f )(D

t
+ f 6§<ﬂs—n§—§£>®i,,dwx), (55)
0

. 1 o ro . S
X/ = 1 (NEZI (xi<l)6’t+f 05 (As =€) (g =y =€) D, ds
—¥N 0
where %; = x; — LN xj, and

t
v f 5;us—n;—§;>a>g,,dws)),
0
N ~j=1

. t 1.\ . r
O, = exp(f (/lu—zfil)f;dbﬁf f;qu). (56)
Proof Using the dynamics of X 1...,XN in (38), problem (39) reduces to
1 i
—exp ——X
O

where X! = X/ — ICV—’ZJALIX{ satisfies dX! = 7t (y; dt + oy dW,) with )?é = %;. Taking
nl € A, j #i, as fixed and using Proposition 5, we deduce that 7>* satisfies

v(X) = sup Ep
e A

~i % [, % ] j i A = [~ *
nt=np —%(Zjii”{ +1y )=5;+i§t gt Xl 57

where 5(:’* is the wealth process )?,‘ associated with the strategy 7?;*
At equilibrium, 7/ in (57) coincides with /*. Therefore, averaging over i € I
gives

— % —% l S
7=y = — (Loy D=6} (0 +¢y (0= ¢n (OX]).
Dividing both sides by 1 —y yields (54) and then (53) follows.

To obtain explicit expressions of X;* and X;, we solve for X using the optimal
strategy deduced in Section 3.2 (cf. (49)) We then obtain

XH - Zx _xq>0,+f SL(As = ED(As =1} = EDDL , ds

t
« [ o ni-ehal,aw,
0

with @ , as in (56). We conclude by averaging over all i € I m]
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3.4 The Ito-diffusion common-noise MFG

Let (Q, ¥, P) be a probability space that supports the Brownian motion W as well as
the random type vector
6 = (x,67,0),

which is independent of W. As before, we denote by (F7);¢[0,7] the natural filtration
generated by W, and (F,MF),¢jo.r) with FMF = F; v (). In the mean-field setting,
we model the representative player. One may also think of a continuum of players
whose initial wealth x and the interaction parameter ¢ are random, chosen at initial
time 0, similar to the MFG in Section 2.2 herein. However, now, their risk tolerance
coefficients have two sources of randomness, related to their form and their terminal
(at T) measurability, respectively. Specifically, at initial time 0, it is determined how
these coefficients will depend on the final information, provided at T. For example,
in the Markovian case, this amounts to (randomly) selecting at time O the functional
form of 6(-) and, in turn, the risk tolerance used for utility maximization is given by
the random variable §(St), which depends on the information ¥z through S7.
Similarly to (39), we are concerned with the optimization problem

V(x)= sup Ep [—exp (—% (X}r —CY)) FME, Xo = X] ) (58)

neAMF

and the definition of the mean-field game is analogous to Definition 2.
Let the processes (0;);efo,77 and (&;),¢0,7 be given by

;= Eglor|FME] and ds, = &6, dW2, (59)

with Q defined on 7—}M F by (41). The process (;);e[0,7] may be interpreted as the
arbitrage-free price of the risk tolerance “claim” o7 for this representative player.
Let also Q be defined on ;M F by

dQ

—— =6r,

dQ

. . T
and consider the martingale M, = E5 [% J;] (A5 —&5)7ds
be such that

fMF] and (17:),¢j0,) tO

th =N dW;Q, (60)

with W2 =W, + fot (A5 — &) ds. The processes 6, & and 7 are all 7, F -adapted.

‘We now state the main result of this section.

Proposition 7 If Ep[c] < 1, there exists a MFG equilibrium (ri}) , o1 &iven by
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_ C
1= Eplc]

1
—Eplc& | FERX/ |F:]) + p (6 (A =& =)+ (X; - cE[ X/ 1F1DEr),  (61)

1
n; — (A Eqlor|Fi] - Eqlor (& +no)1F: ] + Epl X[ & |F1]
0

with 6,¢ and 1 as in (59) and (60), and (X}), (0.1 being the associated optimal
wealth process, solving
dX:zﬂ';k(/ltdt‘{'O—tth) (62)

The value of the MFG is given by

T
V<x>=—exp(— (x—cm)—E@B fo (As—fs)zdsmw]),

Eglér|FMF]
with m = Ep[x].
For the proof, we will need the following lemma.

Lemma2 I[f X isa va F_measurable integrable random variable, then Ep[X|F;] =
Ep[X|¥F5], for s € [0,1].

Proof LetP :={A=CND:CeFy, Dec{W,-Wy,s<u<t}}and L={AeF :
Ep[X14] = Ep[Ep[X|F5]114]}. Then, the following assertions hold:

(1) P is a m-system since both Fy and o {W,, — Wy, s < u <t} are o-algebras and
closed under intersection. Also 3 € P and o{W,, — W, s <u <t} C P by taking
D=Qand C=Q.

Q)P CcL.ForanyAeP,A=CNDwithCeFy, Dec{W,—Wgs<u<t},it
holds that

Ep|Ep[X|Fs11a] = EpEp[ X|Fs11clp] = Ep[Ep[X1c|F5]1p] = Ep[X1c]ER[1p],

where we have consecutively used that C L D, the metastability of 1¢, and the
independence between 1p and F.
Furthermore, by the independence between 1, and ﬁM F =7 vo(6), we deduce

Ep[X14] = Ep[X1clp] = Ep[X1c]ER[1p],

and conclude that A € L. Therefore P C L.

(3) L is a A-system. It is obvious that Q € £ and A € £ imply that A° € L. For a
sequence of disjoint sets Ay, Ay, ... in L, one has }XIU?:IA,,) < |X| and, thus, by the
dominated convergence theorem, we deduce that

Es[X1uz a,]= > Epl[X1a,]. (63)
i=1

Similarly, by the inequalities || Ez[X|F]1us a, Il < IEp[X|F]II1 < [1X]l1, we have
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Ep[Ep[X|Fs 11Uz ] =ZEP[EP[X|7'§]1A,-]- (64)
i=1
Since A; € L, Vi, the right-hand-sides of (63) and (64) are equal, which implies
U;.)o:] Ai (S L
Therefore, by the 7-1 theorem, we obtain that 7; = o (F;, U o {W,, — W, s <u <
t}) C o(P) € L. Noticing that Ep[X|F,] is F;-measurable by definition, we have
that Ep[X|F;] = Ep[X|F5]. O

Proof (Proposition 7) Let (X;), cfo.ry be givenby X = x+ Ot Us@sds+ fot osas dWy
for an admissible policy a; (7—“,M F -adapted) and define X, := Ep[X;*|F:]. Then,

t t
f ,usa'sds 7’:-:|+E]P |:f O-sa'deS
0 0

Using Lemma 2, the adaptivity of y;, oy with respect to ¥, and the definition of 1t6
integral, we rewrite the above as

Yl :m+E]P

t t
xt=m+f s Ep [ |7, ds+f oy Es [ |F5] AW
0 0

Direct arguments yield that the optimization problem (58) reduces to
~ 1 - MF < ~
V(X¥)= sup Ep|—exp|—-——Xr ‘TO ,Xo =X,
TeAME or
where (X‘t)te[(]’]‘] solves
dX; = d(X, - cX;) = T (pe di + o dWy), (65)
with io =X =x—cm and 7y := 7, — cEp[a|F;]. Then, (49) yields

A =1, — ~
=N —& + éxt*, (66)
(o gy

T =0
with 6, &, 1, given in (59) and (60), and (f,* ):eo,7] solving (65) with 7* being used.
On the other hand, using that 7} = 7} — cEp[a;|¥7], we obtain
S,
Tt

A =1, —
t— 1t fz+

t

ﬂ'; —cEpla;|F] =6,
In turn, using that, at equilibrium, @ = 7%, we get
1 T
(1= Ee[e) Bl 1] = — (A4 E2l0,1F71 - Exl6 (& +10)| i) + Ex [X; &1 1)
t

Further calculations give
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1 1

= ch[c]o-_, (A Ep[6:|F7] = Epl6: (& + )| Fi ] + Ep[ X[ &/1F7]

01(Ai =mi) = 6:&1 + X[ &1 — c&i Ep[ X[ F1]

—Ep[X;|F1Eplcé& | F]) + = 67)
t
Finally, we obtain
- MF _ OTZT | _MmF
Epl0:1F:]1 = EplEglor|F,™ " 1] = Ep | Ep T|7_-t ‘7}
t
orZ
=EP[ : TI??] = Eqlor| 1.
Z;

and a similar derivation for Ep[d,(&; +1,)| F7]. We conclude by checking the ad-
missibility of 7* which follows from model assumptions, the form of 7*, and equa-
tion (62). |

4 Conclusions and future research directions

In It6-diffusion environments, we introduced and studied a family of N-player and
common-noise mean-field games in the context of optimal portfolio choice in a
common market. The players aim to maximize their expected terminal utility, which
depends on their own wealth and the wealth of their peers.

We focused on two cases of exponential utilities, specifically, the classical CARA
case and the extended CARA case with random risk tolerance. The former was
considered for the incomplete market model while the latter for the complete one.
We provided the equilibrium processes and the values of the games in explicit
(incomplete market case) and in closed form (complete market case). We note that in
the case of random risk tolerances, for which even the single-player case is interesting
in its own right, the optimal strategy process depends on the state process, even if
the preferences are of exponential type.

A natural extension is to consider power utilities (CRRA), which are also com-
monly used in models of portfolio choice. This extension, however, is by no means
straightforward. Firstly, in the incomplete market case, the underlying measure de-
pends on the individual risk tolerance, which is not the case for the CARA utilities
considered herein (see (7) for the minimal martingale measure and (22)-(23) for the
minimal entropy measure, respectively). Secondly, while it is formally clear how to
formulate the random risk tolerance case for power utilities, its solution is far from
obvious. The authors are working in both these directions.

Our results may be used to study such models when the dynamics of the common
market and/or the individual preferences are not entirely known. This could extend
the analysis to various problems in reinforcement learning (see, for example, the
recent work [14] in a static setting). It is expected that results similar to the ones in
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[19] could be derived and, in turn, used to build suitable algorithms (see, also, [7]
for a Markovian case).

Acknowledgements RH was partially supported by the NSF grant DMS-1953035, and the Faculty
Career Development Award and the Research Assistant Program Award at UCSB.

This work was presented at the SIAM Conference on Financial Mathematics and Engineering
in 2021. The authors would like to thank the participants for fruitful comments and suggestions.

References

1. Suleyman Basak and Dmitry Makarov. Competition among portfolio managers and asset
specialization. Available at SSRN 1563567, 2015.

2. René Carmona. Lectures on BSDEs, stochastic control, and stochastic differential games with
financial applications. SIAM, 2016.

3. George Chacko and Luis M Viceira. Dynamic consumption and portfolio choice with stochastic
volatility in incomplete markets. Review of Financial Studies, 18(4):1369-1402, 2005.

4. Gilles-Edouard Espinosa and Nizar Touzi. Optimal investment under relative performance
concerns. Mathematical Finance, 25(2):221-257, 2015.

5. Hans Follmer and Martin Schweizer. Hedging of contingent claims under incomplete infor-
mation. Applied stochastic analysis, 5(389-414):19-31, 1991.

6. Guanxing Fu, Xizhi Su, and Chao Zhou. Mean field exponential utility game: A probabilistic
approach. arXiv preprint arXiv:2006.07684, 2020.

7. Xin Guo, Renyuan Xu, and Thaleia Zariphopoulou. Entropy regularization for mean field
games with learning. arXiv preprint arXiv:2010.00145, 2020.

8. Minyi Huang, Roland P Malhamé, and Peter E Caines. Large population stochastic dynamic
games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle.
Communications in Information and Systems, 6(3):221-252, 2006.

9. Minyi Huang and Son Luu Nguyen. Mean field games for stochastic growth with relative
utility. Applied Mathematics & Optimization, 74(3):643-668, 2016.

10. Holger Kraft, André Meyer-Wehmann, and Frank Thomas Seifried. Dynamic asset allocation
with relative wealth concerns in incomplete markets. Journal of Economic Dynamics and
Control, 113:103857, 2020.

11. Daniel Lacker and Agathe Soret. Many-player games of optimal consumption and investment
under relative performance criteria. Mathematics and Financial Economics, 14(2):263-281,
2020.

12. Daniel Lacker and Thaleia Zariphopoulou. Mean field and n-agent games for optimal invest-
ment under relative performance criteria. Mathematical Finance, 29(4):1003-1038, 2019.

13. Jean-Michel Lasry and Pierre-Louis Lions. Mean field games. Japanese Journal of Mathe-
matics, 2(1):229-260, 2007.

14. Yan Leng, Xiaowen Dong, Junfeng Wu, and Alex Pentland. Learning quadratic games on
networks. In International Conference on Machine Learning, pages 5820-5830. PMLR, 2020.

15. Marek Musiela and Thaleia Zariphopoulou. A note on the term structure of risk aversion in
utility-based pricing systems. Technical report, 2002.

16. Nathanael David Ringer. Three essays on valuation and investment in incomplete markets.
PhD thesis, The University of Texas at Austin, 2011.

17. Richard Rouge and Nicole El Karoui. Pricing via utility maximization and entropy. Mathe-
matical Finance, 10(2):259-276, 2000.

18. Ronnie Sircar and Thaleia Zariphopoulou. Bounds and asymptotic approximations for utility
prices when volatility is random. SIAM journal on control and optimization, 43(4):1328-1353,
2005.



N -player and Mean-Field Games in It6-Diffusion Markets 237

19. Haoran Wang, Thaleia Zariphopoulou, and Xun Yu Zhou. Reinforcement learning in contin-
uous time and space: A stochastic control approach. Journal of Machine Learning Research,
21(198):1-34, 2020.

20. Mark Whitmeyer. Relative performance concerns among investment managers. Annals of
Finance, 15(2):205-231, 2019.



®

Check for
updates
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Langevin—Smoluchowski Diffusions
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Abstract We show that Langevin—Smoluchowski measure on path space is invari-
ant under time-reversal, followed by stochastic control of the drift with a novel
entropic-type criterion. Repeated application of these forward-backward steps leads
to a sequence of stochastic control problems, whose initial/terminal distributions
converge to the Gibbs probability measure of the diffusion, and whose values de-
crease to zero along the relative entropy of the Langevin—Smoluchowski flow with
respect to this Gibbs measure.
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1 Introduction

Diffusions of Langevin—Smoluchowski type have some important properties. They
possess invariant (Gibbs) probability measures described very directly in terms
of their potentials and towards which, under appropriate conditions, their time-
marginals converge as time increases to infinity and in a manner that conforms to
the second law of thermodynamics: the relative entropy of the current distribution,
with respect to the invariant one, decreases to zero. The seminal paper [24] revealed
another remarkable, local aspect of this decrease towards equilibrium: the family
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of time-marginals is, at (almost) every point in time, a curve of steepest descent
among all probability density functions with finite second moment, when distances
are measured according to the Wasserstein metric in configuration space.

We establish in this paper yet another variational property of such diffusions, this
time a global one: their law is invariant under the combined effects of time-reversal,
and of stochastic control of the drift under a novel, entropic-type criterion. Here, one
minimizes over admissible controls the relative entropy of the “terminal” state with
respect to the invariant measure, plus an additional term thought of as “entropic cost
of time-reversal”: the difference in relative entropy with respect to the Langevin—
Smoluchowski measure on path space, computed based on the “terminal” state as
opposed to on the entire path. Quite similar, but different, cost criteria have been
considered in [12, 13, 16, 38, 39].

The setting under consideration bears similarities to the celebrated Schrodinger
bridge problem, but also considerable differences. Both problems are posed on
a fixed time horizon of finite length, and both involve the relative entropy with
respect to the invariant measure. But here this entropy is modified by the addition
of the above-mentioned entropic cost of time-reversal, and there is no fixed, target
distribution on the terminal state. Yet the trajectory that emerges as the solution of
the stochastic control problem has time-marginals that replicate exactly those of the
original Langevin—Smoluchowski flow, whence the “invariance” property mentioned
in the abstract.

Wereferto [7, 8, 9, 30] for overviews on the classical Schrodinger bridge problem,
to [44] for the related semimartingale transport problem, and to the recent paper [3]
for a detailed study of the mean-field Schrodinger problem. A related controllability
problem for a Fokker—Planck equation and its connection to Schrédinger systems
and stochastic optimal control, is considered in [6]. More information about the
Schrodinger equation, diffusion theory, and time reversal, can be found in the book
[34].

1.1 Preview

In Section 2 we introduce the Langevin—Smoluchowski measure IP on path space, un-
der which the canonical process (X (#));>0 has dynamics (3) with initial distribution
P(0). Then, in Section 3, this process is studied under time-reversal. That is, we fix
a terminal time 7" € (0, o) and consider the time-reversed process X (s) = X(T —s),
0 < s <T. Standard time-reversal theory shows that X is again a diffusion, and gives
an explicit description of its dynamics.

Section 4 develops our main result, Theorem 1. An equivalent change of proba-
bility measure P? ~ P adds to the drift of X a measurable, adapted process y (T —s),
0 < s < T. In broad brushes, this allows us to define, in terms of relative entropies,
the quantities

HY := HP? | Q)| D” .= H(P” |P)|

o (X(T) o)~ HEIP)p k7)) (D)
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Here, Q is the probability measure on path space, inherited from the Langevin—
Smoluchowski dynamics (3) with initial distribution given by the invariant Gibbs
probability measure Q. Theorem 1 establishes then the variational characterization

inf (H” + D) = H(P(T)| Q). @)

where P(T) denotes the distribution of the random variable X(7') under IP. The
process 7y, that realizes the infimum in (2) gives rise to a probability measure 7+,
under which the time-reversed diffusion X is of Langevin—Smoluchowski type in its
own right, but now with initial distribution P(7’). In other words, with the constraint
of minimizing the sum of the entropic quantities ¥ and D? of (1), Langevin—
Smoluchowski measure on path space is invariant under time-reversal.

Sections 5 — 7 develop ramifications of the main result, including the fol-
lowing consistency property: starting with the time-reversal X of the Langevin—
Smoluchowski diffusion, the solution of a related optimization problem, whose
value is now H(P(27T)|Q), leads to the original forward Langevin—Smoluchowski
dynamics, but now with initial distribution P(27). Iterating these procedures we
obtain an alternating sequence of forward-backward Langevin—Smoluchowski dy-
namics with initial distributions (P(kT"))kxen, converging to Q in total variation,
along which the values of the corresponding optimization problems as in (2) are
given by (H(P(kT)|Q))ken and decrease to zero.

2 The setting

Let us consider a Langevin—Smoluchowski diffusion process (X(¢));s0 of the form
dX (1) = -V¥Y(X(@)) dt +dW (1), 3)

with values in R". Here (W (¢));»0 is standard n-dimensional Brownian motion, and
the “potential” ¥: R — [0, o) is a C*-function growing, along with its derivatives
of all orders, at most exponentially as |x| — co; we stress that no convexity assump-
tions are imposed on this potential. We posit also an “initial condition” X(0) = E,
a random variable independent of the driving Brownian motion and with given dis-
tribution P(0). For concreteness, we shall assume that this initial distribution has a
continuous probability density function po(-).

Under these conditions, the Langevin—Smoluchowski equation (3) admits a path-
wise unique, strong solution, up until an “explosion time” ¢; such explosion never
happens, i.e., P(e = o0) = 1, if in addition the second-moment condition (12) and
the coercivity condition (11) below hold. The condition (11) propagates the finite-
ness of the second moment to the entire collection of time-marginal distributions
P(t) = Law(X(#)), t > 0, which are then determined uniquely. In fact, adapting
the arguments in [42] to the present situation, we check that each time-marginal
distribution P(¢) has probability density p(z,-) such that the resulting function
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(¢,x) — p(t,x) is continuous and strictly positive on (0, c0) X R"; differentiable with
respect to the temporal variable ¢ for each x € R"; smooth in the spatial variable x for
each ¢ > 0; and such that the logarithmic derivative (¢, x) — Vlog p(#,x) is continuous
on (0,00) X R™. These arguments also lead to the Fokker—Planck [20, 21, 41, 43], or
forward Kolmogorov [28], equation

ap(t,x) = ;Ap(t,x) +div (VP (x) p(t,x)), (t,x) € (0,00) x R" 4

with initial condition p(0,x) = po(x), for x € R".
Here and throughout this paper, 9 denotes differentiation with respect to the

temporal argument; whereas V, A and div stand, respectively, for gradient, Laplacian
and divergence with respect to the spatial argument.

2.1 Invariant measure, likelihood ratio, and relative entropy

We introduce now the function
g(x) =2, xeR"? 5)
and note that it satisfies the stationary version
3Aq(x) +div (VP(x) g(x)) =0, xeR" (6)

of the forward Kolmogorov equation (4). We introduce also the o-finite measure Q
on the Borel subsets Z(R") of R”, which has density ¢ as in (5) with respect to
n-dimensional Lebesgue measure. This measure Q is invariant for the diffusion of
(3); see Exercise 5.6.18 in [27]. When finite, Q can be normalized to an invariant
probability measure for (3), to which the time-marginals P(¢) “converge” as ¢ — oo;
more about this convergence can be found in Section 7. We shall always assume
tacitly that such a normalization has taken place when Q is finite, i.e., when

Q(R") = f g(x)dx = f e 2™ dx < o0. (7
Rn n

One way to think of the above-mentioned convergence, is by considering the

likelihood ratio

() =25 (1) e (0,00)xR" 8)
g(x)

It follows from (4), (6) that this function satisfies the backward Kolmogorov equation

aL(t,x) = LAL(t,x) —(VE(t,x),V¥(x)),  (£x) € (0,00) xR )

In terms of the likelihood ratio function (8), let us consider now for each ¢ > 0 the
relative entropy
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HPO1Q) =Eellogcx0)] = [ 10g (2 ) punyax  a10)
R" q(x)

of the probability distribution P(¢) with respect to the invariant measure Q. The
expectation in (10) is well-defined in [0, oo], if Q is a probability measure. As we are
not imposing this as a blanket assumption, we shall rely on [26, Appendix C], where
it is shown that the relative entropy H(P(¢)| Q) is well-defined and takes values in
(—o00, c0], whenever P(¢) belongs to the space Z%,(IR™) of probability measures with
finite second moment (see also [31] for a more general discussion). This, in turn, is
the case whenever P(0) has finite second moment, and the coercivity condition

VxeR" |x| > R: (x,V¥(x)) > —c|x|? (11)

is satisfied by the potential ¥ in (3), for some real constants ¢ > 0 and R > 0; see
the first problem on page 125 of [20], or Appendix B in [26]. The prototypical such
potential is W(x) = é |x|?, leading to Ornstein—Uhlenbeck dynamics in (3); but ¥ = 0
and the “double well” ¥ (x) = (x> — a?)? for a > 0, are also allowed. In particular,
the coercivity condition (11) does not imply that the potential ¥ is convex.

We shall impose throughout Sections 2 — 6 the coercivity condition (11), as well
as the finite second-moment condition

f 1x]? po(x) dx < oo. (12)
Rn

This amounts to P(0) € %, (R"), as has been already alluded to. In Section 7 we will
see that these two conditions (11) and (12) are not needed when Q is a probability
measure.

However, we shall impose throughout the entire paper the crucial assumption
that the initial relative entropy is finite, i.e.,

Ppo(x)
q(x)

H(P(0)Q) =fR log( )po(x)dx< 0. (13)
Under either the conditions “(11) + (12)”, or the condition (7), the decrease of the
relative entropy! function [0, c0) 3 ¢ > H(P(t)|Q) € (—o0, 0] implies then that the
quantity H(P(¢)|Q) in (10) is finite for all # > 0 whenever (13) holds.

In fact, under the conditions (11) — (13), the rate of decrease for the relative
entropy, measured with respect to distances traveled in &% (R") in terms of the
quadratic Wasserstein metric

) 12
Wo(u,v) = (Y~Ln£~VIE|Y—Z|2) , wv e Py(RM

I A classical aspect of thermodynamics; for a proof of this fact under the conditions “(11) + (12)”
and without assuming finiteness of Q, see Theorem 3.1 in [25]; when Q is a probability measure,
we refer to Appendix 1.
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(cf. [1,2,45]) is, at Lebesgue-almost all times ¢¢ € [0, o), the steepest possible along
the Langevin—Smoluchowski curve (P(¢)),s0 of probability measures. Here, we are
comparing the curve (P(t));>0 against all such curves (PP(t));>s, of probability
measures generated as in (3) — but with an additional drift VB for suitable (smooth
and compactly supported) perturbations B of the potential ¥ in (3). This local
optimality property of Langevin—Smoluchowski diffusions is due to [24]; it was
established by [25] in the form just described. We develop in this paper yet another,
global this time, optimality property for such diffusions.

2.2 The probabilistic setting

In (10) and throughout this paper, we are denoting by IP the unique probability
measure on the space Q = C([0, o0);R™) of continuous, R"-valued functions, under
which the canonical coordinate process X (¢,w) = w(?), ¢ > 0 has the property that

t

W(t) := X (1) - X(0) + L VY (X(0))dg, >0 (14)

is standard R"-valued Brownian motion, and independent of the random variable
X (0) with distribution

P[X(0) € A] :pro(x)dx, Ae BIRM).

The P-Brownian motion (W (¢));»0 of (14) is adapted to, in fact generates, the
canonical filtration I = (7 (¢))r»0 With

F@)=0(X(s): 0<s<1). (15)

By analogy to the terminology “Wiener measure”, we call P the “Langevin—
Smoluchowski measure” associated with the potential V.

3 Reversal of time

The densities p(¢, -) and g(-) satisfy the forward Kolmogorov equations (4) and
(6), respectively. Whereas, their likelihood ratio £(¢, -) in (8) satisfies the backward
Kolmogorov equation (9). This suggests that, in the study of relative entropy and of
its temporal dissipation, it might make sense to look at the underlying Langevin—
Smoluchowski diffusion under time-reversal. Such an approach proved very fruitful
in [12], [38], [19] and [25]; it will be important in our context here as well.

Thus, we fix an arbitrary terminal time 7 € (0, c0) and consider for 0 < s < T the
time-reversed process
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X(s) = X(T-ys), G(s)=0(Xw): 0<u<s); (16)

along with the filtration G = (G(s))o<s<r this process generates. Then standard
theory on time-reversal shows that the process W = (W (s))o<s<r, With

W(s) = X(s)—X(0)+ fo (VW (X(u)) = VL(T - u, X (u)) ) du, (17)

is a (G, P)-standard Brownian motion with values in R" and independent of the
random variable X (0) = X(T') (see, for instance, [17, 18, 22, 33, 35, 37] for the
classical results; an extensive presentation of the relevant facts regarding the time
reversal of diffusion processes can be found in Appendix G of [26]). Here

L(t,x) :=logl(t,x),  (x) € (0,00)xR"

is the logarithm of the likelihood ratio function in (8); and on the strength of (9), this
function solves the semilinear Schrodinger-type equation

OL(t,x) = JAL(t,x) — (VL(t,x), V¥(x))+ 3 [VL(t,x)|*. (18)

Another way to express this, is by saying that the so-called Hopf—Cole transform
¢ = el turns the semilinear equation (18), into the linear backward Kolmogorov
equation (9). This observation is not new; it has been used in stochastic control to
good effect by Fleming [14, 15], Holland [23], and in a context closer in spirit to this
paper by Dai Pra and Pavon [13], Dai Pra [11].

4 A stochastic control problem

Yet another way to cast the equation (18), is in the Hamilton—Jacobi—Bellman form

AL(t,x) = YAL(t,x) —(VL(t,x),V¥(x)) - min ((VL(t.x).g)+31gl?).  (19)
geR”

where the minimization is attained by the gradient g, = —VL(¢,x). This, in turn,
suggests a stochastic control problem related to the backwards diffusive dynamics

dX(s) = (VL(T -5 X(s)) - V¥ (X(5)) ) ds +dW (s) (20)

of (17), which we formulate now as follows.

For any measurable process [0,T] X Q > (t,w) — y(t,w) € R" such that the time-
reversed process y (T —s), 0 < s < T is adapted to the backward filtration G of (16),
and which satisfies the condition

T
IP[f y(T—s)PPds < 0| = 1, @1
0
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we consider the exponential (G, IP)-local martingale

2/(s)=exp fo (T —u). dW ()~} fo p(T-wPd) @)

for 0 < s < T. We denote by T the collection of all processes y as above, for which
Z7 is a true (G,IP)-martingale. This collection is not empty: it contains all such
uniformly bounded processes y, and quite a few more (e.g., conditions of Novikov
[27, Corollary 3.5.13] and Kazamaki [40, Proposition VIII.1.14]).

Now, for every y € I, we introduce an equivalent probability measure IP” ~ IP on
path space, via

dp”
— | =27(s), 0<s<T. (23)
dP lgs)

Then, by the Girsanov theorem [27, Theorem 3.5.1], the process
W (s) = W(s) —f y(T-u)duy, 0<s<T (24)
0

is standard R”-valued IP” -Brownian motion of the filtration G, thus independent of
the random variable X (0) = X (7). Under the probability measure IP?, the backwards
dynamics of (20) take the form

dX(s) = (VL(T - 5,.X(5)) +¥(T = 5) - VE(X(5)) ) ds + A (5):  (29)

and it follows readily from these dynamics and the semilinear parabolic equation
(18), that the process

N

M (s) :=L(T—s,X(s))+;fS ly(T-w)Pdu, 0<s<T (26)
0

is a local G-submartingale under IP”, with decomposition

dM? (s) = J|VL(T = 5,X(5)) +7(T = s)[*ds + (VL(T - 5, X(5)), A (s)). (27)
In fact, introducing for n € INj the sequence

S
o= inf{s >0: f (|VL(T—u,X(u))|2 + |‘)/(T—u)|2) du > n} AT (28)
0

of G-stopping times with o, T T, we see that the stopped process M? (- Aop,) is a
G-submartingale under P?, for every n € INy. In particular, we observe

H(P(T)|Q) = Ep[L(T.X(T))] = Epr [L(T,X(0))]

o 29)
<Ber[LT-anXon) 4} [ TP
0
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since we have P” = P on the o-algebra G(0) = 07(X(0)) = o (X(T)). Now (29)
holds for every n € INg, thus

H(P(T)|Q) <liminf Epy | L(T =0, X(07)) + | f ” Iy (T-uw)du|. (30)
n—o0o 0

But as we remarked already, the minimum in (19) is attained by g. = —=VL(, x);
likewise, the drift term in (27) vanishes, if we select the process y, € I via

v.(t,w) = =VL(t,w(t)), thus v.(T—5)==-VL(T-5,X(s)) (€2))
for 0 < s,¢ < T. With this choice, the backwards dynamics of (25) take the form
dX(s) = =V (X(s))ds+dW” " (s); (32)

that is, precisely of the Langevin—Smoluchowski type (3), but now with the “initial
condition” X(0) = X(7T) and independent driving G-Brownian motion w”*, under
P”~. Since P”+ = P holds on the o-algebra G(0) = 0(X(0)) = o (X(T)), the initial
distribution of X(0) under IP”+ is equal to P(T’). Furthermore, with y =y, the
process of (26), (27) becomes a IP?~-local martingale, namely

MY+ (s) = L(T,X(T)) + f (VL(T-u,X(w)), dW”" () (33)
0
for 0 < s < T'; and we have equality in (29), thus also
H(P(T)|Q) = lim Epy. [L(T— T X(Tn)) + fﬁn |'y*(T—u)|2du]. (34)
n—o0o0 0

We conclude that the infimum over y € I of the right-hand side in (30) is attained
by the process y, of (31), which gives rise to the Langevin—Smoluchowski dynamics
(32) for the time-reversed process X(s) = X(T —s), 0 < s < T, under P”+. We
formalize this discussion as follows.

Theorem 1 Consider the stochastic control problem of minimizing over the class
I' of measurable, adapted processes y satisfying (21) and inducing an exponential
martingale Z7 in (22), with the notation of (28) and with the backwards dynamics
of (25), the expected cost

I(y) :=liminf Epy L(T—an,X(o—n))+§f ly(T—w)|*dul.  (35)
n—0o0o 0

Under the assumptions of Section 2, the infimum inf, cr I (y) is equal to the
relative entropy H(P(T) | Q) and is attained by the “score process” vy, of (31). This
choice leads to the backwards Langevin—Smoluchowski dynamics (32), and with
v =7, the limit in (35) exists as in (34).
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Proof It only remains to check that the minimizing process of (31) belongs indeed
to the collection I' of admissible processes. By its definition, this process 7y, is
measurable, and its time-reversal is adapted to the backward filtration G of (16).
Theorem 4.1 in [25] gives

]Ep[fOT|VL(T—u,X(u))|2du] =IE]p[fOT|VL(0,X(9))|2d9 <o, (36)

which implies a fortiori that the condition in (21) is satisfied fory = y,.

We must also show that the process Z7+ defined in the manner of (22), is a true
martingale. A very mild dose of stochastic calculus leads to

dL(T = 5,X(s)) = (VL(T = 5, X(5)), dW (s)) + }|VL(T -5, X(5)) " ds

on account of (18), (20). Therefore, we have

f‘ <y*(T—u>,dW(u>>—§f by (T — )l du
0 0

=—fS(VL(T—u,X(u)),dW(u))—;fSWL(T—u,X(u))qu
0 0

_ [ _ o(T, X(T))

= L(T,X(T)) = L(T -5, X(s)) log(—g(T_s,X(S))),

which expresses the exponential process of (22) with y =y, as

¢(T1,X(T))

2V () = ———
) €(T-5,X(s)

0<s<T.

Now, let us argue that the process Z7+ is a true (G, IP)-martingale. It is a positive
local martingale, thus a supermartingale. It will be a martingale, if it has constant
expectation. But Z7+(0) = 1, so it is enough to show that Ep[Z?~(T)] = 1. Let us
denote by P(s, y;t, &) the transition kernel of the Langevin—Smoluchowski dynamics,
so that P[X(s) € dy, X(¢) € d¢] = p(s,y) P(s,y;t,€)dydé for 0 < s <t < T and
(»,¢) € R"xR". Then the invariance of Q gives

| awPoyrow=go. cer G7)

consequently
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p(T,X(T)) q(X(0)) ]
q(X(T)) p(0,X(0))

=f"f"p(T,§) 90) 0 PO T ) dyde (39)

Ep[27+(T)] = EP[ (38)

q(¢) p0,y)
_ [ I8 _
_fm 4(&) (fan(y)P(O’va’f)dy)df “0)
Zf p(T.€)dé =1, )
Rn

implying that Z7+ is a true martingale and completing the proof of Theorem 1. O
Results related to Theorem 1 have been established in [12, 13, 16, 38, 39].

Remark 1 (Reincarnation of time-marginals) Let us denote by P..(s) the distribution
of the random variable X(s) = X (T —s) under the probability measure P?+, for
0 < s <T.Since (X(s5))o<s<r is under P?+ a Langevin—Smoluchowski diffusion in
its own right, we deduce

P.(s)=P(T+s), 0<s<T 42)

on the strength of uniqueness in distribution for the Langevin—Smoluchowski flow,
and of its time-homogeneity. In other words, the branch (P(T + 5))o<s<r of the
original Langevin—Smoluchowski curve of time-marginals, gets “reincarnated” as
(P+(5))o<s<T, the curve of time-marginals arising from the solution of the stochastic
control problem in Theorem 1. But now, under the probability measure IP?+, the states
of the Langevin—Smoluchowski diffusion (X(s))o<s<r corresponding to the curve
(P+(5))o<s<t traverse the time interval [0, 7] in the opposite temporal direction.

4.1 Entropic interpretation of the expected cost when Q(R") < oo

Let us observe from (22) — (24) that

g — In _ Y lfo-n _ >
IOg(dIP g(an))‘ L @0 @)y |y T-wPde (43)

holds for every y € I' and n € INy. Thus, as the P” -expectation of the stochastic
integral in (43) vanishes, the expected quadratic cost, or “energy”, term in (35) is
itself a relative entropy:

g(an))]'

Y

on dP
Em[;f Iy(T—u)Izdu] =1E]py[1og(d—]P
0
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By contrast, when Q is a probability measure on Z(RR"), and denoting by @ the
probability measure induced on Q = C([0, c0);IR"*) by the canonical process driven
by the dynamics (3) with Q as the distribution of X(0), the first term in (35) can be
cast as

dpP
Epy [L(T -0, X(00))] = Epr [log(w x )))] (44)
o On
dpP” dP”
-E [10 (— )—10 (— )]
|8 dQ lox(o0)) f\ap o (X(on))

(45)

It follows that, in this case, the expected cost of (35) is equal to the sum H” + D? of
two non-negative quantities:

dpr
-F [10 (5o
pr | 108 aQ
the relative entropy of the probability measure P? with respect to the probability
measure @, when both measures are restricted to the o-algebra generated by the
random variable X (o,); and

O'(X(o'n)))]

dp”
dPp

dPY
-E [lo (
g(m.))] e ap

the difference between the relative entropies of the probability measure IP? with
respect to the probability measure IP, when restricted to the o -algebra generated by
the collection of random variables (X(u A 07,))o<u<r and by the random variable
X (o), respectively. The difference in (46) is non-negative, because conditioning
on a smaller o-algebra can only decrease the relative entropy; this difference can be
thought of as an “entropic cost of time-reversal”.

— Epy [mg( (46)

zr(X(an)))]’

It develops from this discussion that the expected cost on the right-hand side of
(35) is non-negative, when Q is a probability measure.
5 From local to square-integrable martingales

Whenever the process M? of (26), (27) happens to be a true submartingale under
P” (as, for instance, with ¥ = 0 on account of Theorem 4.1 in [25]), the expected
cost (35) takes the form

T
Epy L(O,X(O))+§f0 Iy (T —u)|?du|.

Likewise, we derive from Theorem 1 the identity
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T
H(P(T)|Q) = Ep». [L(O,X(O))+; fo |VL(T—u,X(u))|2du],

whenever the process M?+ of (33) is a true P”~-martingale. This is the case, for
instance, whenever

T
Epy. [(M7, M )(T)] =1E]py*[ fo |VL(T—u,X(u))|2du] <oco (47

holds; and then the stochastic integral in (33) is an L?(IP?+)-bounded martingale
(see, for instance, [27, Proposition 3.2.10] or [40, Corollary IV.1.25]). Using (42),
we can express the expectation of (47) more explicitly as

T
f f IVlog £(t,x)|2 p(2T —t,x) dt dx. (48)
nJ0

The shift in the temporal variable makes it difficult to check whether the quantity in
(48) is finite. At least, we have not been able to apply directly arguments similar to
those in Theorem 4.1 of [25], where the expectation (47) is taken with respect to the
probability measure IP, in the manner of (36) (and thus, the argument 27" —¢ in (48)
is replaced by ¢). This problem is consonant with the fact that the expression in (44),
(45) is not quite a relative entropy, but a linear combination of relative entropies.

The goal of this section is to find a square-integrable IP”<-martingale M”*, which
is closely related to the local martingale M”+ of (33). The idea is to correct the shift
in the temporal variable appearing in (48), by reversing time once again.

First, we need to introduce some notation. We denote by p, (s, -) the probability
density function of the random variable X(s) = X(7 —s) under the probability
measure IP?+, for 0 < s < T. From (42), we deduce the relation

Pp.(s,x) = p(T +5,x), (s,x) € [0,T]xR".

For (s,x) € [0,T] x R", the associated likelihood ratio function and its logarithm are
defined respectively by

Ay = 225D A6 ) = log A(sx) = L(T+5,1). (49)

g(x) ’

From the definition (49), and the equations (18), (19), we see that the function
(s,x) — A(s, x) satisfies again the semilinear Schrodinger-type equation

—N(s5, %) + SAN (5, x) = (VA(s,x), VH(x)) = min ((VA(s,x), b)Y+ 3 1BI%). (50)

In the setting introduced above, for each 0 < s < 7, the relative entropy with
respect to Q of the distribution P, (s) of X(s) under P?+ is
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P(s,X)
q(x)

H(P.(5)1Q) = Epr. [A(s.X(s))] = fR Jtog (2 (s vyax. 1)

Again, the assumption that H(P(0)|Q) is finite, and the decrease of the relative
entropy function [0, c0) 3¢+ H(P(t)|Q) € (—o0, 0], imply that the relative entropy
in (51)is finite forall 0 < s < 7.

Finally, the relative Fisher information of P.(s) with respect to Q is defined as

[(P.(5)]Q) = Ep». |

VA(s. X(s)[*] = fR ) [VA(s, x) p.(s,x)dx.  (52)

5.1 Reversing time once again

Let us consider on the filtered probability space (€,IF,IPY+) the canonical pro-
cess (X(2))o<r<r, Whose time-reversal (16) satisfies the backwards Langevin—
Smoluchowski dynamics (32). Reversing time once again, we find that the process
X(t) = X(T—-1t),0 <t < T satisfies the stochastic differential equation

dX(¢) = (VA(T— t,X(t)) - V‘{’(X(t))) dt +dW7+(¢), (53)
where the process
t
WY-(t) =W " (T-t)- W”(T)—f Viogp,(T—6,X(0))do, 0<t<T
0
is Brownian motion on (Q,IF,IP¥+). We recall here Proposition 4.1 from [26].

Comparing the equation (53) with (3), we see that the IP”+-Brownian motion
(W7+(t))o<t<T and the IP-Brownian motion (W (¢))o<: < are related via

W) = W”*(t)+fOtVA(T—0,X(9))d0, 0<t<T.

5.2 The dynamics of the relative entropy process

We look now at the relative entropy process

p*(T_t?X(t)))
q(x@) /

on (Q I, IP”+). Applying It6’s formula and using the equation (50), together with
the forward dynamics (53), we obtain the following result.

AT =1, X(t)) =log( 0<t<T (54)

Proposition 1 On the filtered probability space (Q,I,IP7+), the relative entropy
process (54) is a submartingale with stochastic differential
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dA(T -1,X (1)) = VAT =, X (1)) de + (VA(T £, X(1)), AW (1)) (55)

for 0 <t <T. In particular, for 0 <t < T, the process
t
My*(t) =AT-1,X(t)) - AT, X(0)) - ; f |[VA(T - 9,X(9))|2d9
0
is an L*>(P?+)-bounded martingale, with stochastic integral representation

M () = f t(VA(T—G,X(O)),dW”*(H)>, 0<t<T. (56)
0

Proof The last thing we need to verify for the proof of Proposition 1, is that

T
Epr. [(M"", M )(T)] =Eﬂm[ fo |VA(T—t,X(t))|2dt] <co. (57

We observe that the expectation in (57) is equal to

Epr. [ fo T|VA(s,X(s))|2ds] =E1p[ fT o |VL(t,X(t))|2dt]. (58)

This is because (16) and (49) give the relation VA (s, X(s)) = VL(¢, X (2T —t)) with
t =T +s €[T,2T7]; and because the IP? +-distribution of X (27 —¢) = X (s) is the same
as the P-distribution of X (7 +s) = X(¢), on account of (42). But, as (36) holds for
any finite time horizon 7 > 0, the quantity in (58) is finite as well. O

5.3 Relative entropy dissipation

Exploiting the trajectorial evolution of the relative entropy process (54), provided
by Proposition 1, allows us to derive some immediate consequences on the decrease
of the relative entropy function [0,7] 3 s +— H(P.(s)|Q) € (—c0,0) and its rate of
dissipation. The submartingale-property of the relative entropy process (54) shows
once more, that this function is non-decreasing. More precisely, we have the following
rate of change for the relative entropy.

Corollary 1 For all s,s0 > 0, we have

H(P.(s)1Q) = H(P(50)|Q) = =} f 1(P.(u)| Q) du. (59

S0

Proof Let s,59 > 0 and choose T > max{s, so}. Taking expectations under IP”+ in
(55), and noting that the stochastic integral process in (56) is a martingale, leads to
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Epr. [A(s, X ()] = Epr. [A(s0, X (50))] = —éfs E]Pn[

50

VA (u, X (w))[?] du.

Recalling the entropy (51) and the Fisher information (52), we obtain (59). m]

Corollary 2 For Lebesgue-almost every s > 0, the rate of relative entropy dissipation
equals

S HE6)1Q =1 1(P.6)1Q).

6 From backwards dynamics “back” to forward dynamics

Starting with the forward Langevin—Smoluchowski dynamics (3), we have seen in
Section 4 that the combined effects of time-reversal, and of stochastic control of the
drift under an entropic-type criterion, lead to the backwards dynamics

dX(s) = -V (X(s))ds+dW” " (s), 0<s<T, (60)

which are again of the Langevin—Smoluchowski type, but now viewed on the fil-
tered probability space (2, G,IP”+). We will see now that this universal property of
Langevin—Smoluchowski measure is consistent in the following sense: starting with
the backwards Langevin—Smoluchowski dynamics of (60), after another reversal of
time, the solution of a related stochastic control problem leads to the original forward
Langevin—Smoluchowski dynamics (3) we started with. This consistency property
should come as no surprise, but its formal proof requires the results of Section 5,
which perhaps appeared artificial at first sight.

Let us recall from Subsection 5.1 that reversing time in (60) leads to the forward
dynamics

dx(1) = (VA(T -, X (1) - V¥ (X(0)))dt+dW?(t),  0<t<T  (6])

on the filtered probability space (€2, I, P?~). By analogy with Section 4, we define
an equivalent probability measure IT8 ~ P?+ as follows.

For any measurable process [0,7] X Q 3 (t,w) — B(t,w) € R", adapted to the
forward filtration IF' of (15) and satisfying the condition

PY*[fOT |,3(t)|2dt<oo] -1, (62)

we consider the exponential (IF, P?+)-local martingale

281 := exp fo (B(6). AW (9)) | fo B do) 63)
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for 0 < ¢ < T. We denote by B the collection of all processes 8 as above, for which
7B is a true (IF,P”+)-martingale.
Now, for every B € B, we introduce an equivalent probability measure IT8 ~ P~
on path space, via
drA
dp7.

=7B@), 0<¢<T. (64)
F (1)

Then we deduce from the Girsanov theorem that, under the probability measure I15,
the process

t
wh (1) = W”*(t)—f BH)dY,  0<t<T (65)
0
is R"*-valued F-Brownian motion, and the dynamics (61) become
dX(1) = (VAT -, X (1)) + B(t) - VL (X(1)) ) dt + dWP (1), (66)

We couple these dynamics with the stochastic differential (55) and deduce that
the process

NB(t) := A(T—t,X(t))Jr;f IB(O)>do,  0<t<T (67)
0

is a local T18-submartingale with decomposition
dNA (1) = ; [VA(T -1, X(t)) +ﬂ(t)|2 dr + <VA(T— LX(1)), aw’® (t)>. (68)

In fact, introducing for n € INj the sequence
t
T, = inf{t >0: f (IVA(T -0, X))+ 1B@)F) do > n} AT (69)
0

of IF-stopping times with 7,, T T, we see that the stopped process NB(- A 1,) is an
F-submartingale under IT#, for every n € INy. In particular, we observe

H(P(2T)|Q) = H(P.(T)|Q) = Ep. [A(T,X(T))] = Epp [A(T. X(0))]

Tn (70)
<Bup[AT=n X))+ [ ipo)Pas)

since we have TT# = IP?+ on the o-algebra F (0) = o (X(0)) = o(X(T)). Now (70)
holds for every n € INg, thus

H(PQT)|Q) < liminf Fyyo [A(T—Tn,X(Tn)) .l fofn | ﬂ(g)|2d0]. 1)

But the minimum in (50) is attained by b, = —VA(s, x); likewise, the drift term
in (68) vanishes, if we select the process B, € B via
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B.(t,w) :=-VA(T - t,w(t)), thus B.()=-VAT-t,X() (72)

for 0 < ¢ < T. With this choice, the forward dynamics of (66) take the form
dX (1) = V¥ (X(¢)) dt +dWP«(¢); (73)

that is, precisely the forward Langevin—Smoluchowski dynamics (3) we started with,
but now with the “initial condition” X(0) = X(7) and independent driving IF-
Brownian motion WA+, under the probability measure IT#+. Since IT#+ = P+ holds
on the o-algebra ¥ (0) = o (X (0)) = o-(X(T)), the initial distribution of X(0) under
18- is equal to P(27T). Furthermore, with 8 = 8, the process of (67), (68) becomes
a IT8+-local martingale, namely

NB-(1) :A(T,X(O))+f (VA(T—G,X(G)),dWﬁ*(9)>
0
for 0 < ¢ < T'; and we have equality in (70), thus also
H(PRT)IQ) = Jim Enp. [A(T =1 X(7)) + | f BP0 a4
n—00 0

We conclude that the infimum over 8 € 8 of the right-hand side in (71) is attained
by the process S, of (72), which gives rise to the Langevin—Smoluchowski dynamics
(73) for the process (X (7))o</<7, under IT#+. We formalize this result as follows.

Theorem 2 Consider the stochastic control problem of minimizing over the class
B of measurable, adapted processes B satisfying (62) and inducing an exponential
martingale ZB in (63), with the notation of (69) and with the forward dynamics of
(66), the expected cost

T(B) = timint B [AT -0, X + 4 [ i@ ae].  as)

Under the assumptions of Section 2, the infimum infgcg J (B) is equal to the
relative entropy H(P(2T)|Q) and is attained by the “score process” B, of (72).
This choice leads to the forward Langevin—Smoluchowski dynamics (73), and with
B = B. the limit in (75) exists as in (74).

Proof We have to show that the minimizing process S, belongs to the collection 8
of admissible processes. By its definition in (72), the process §, is measurable, and
adapted to the forward filtration I of (15). Thanks to (57) in Proposition 1, we have

Epy*[\f(;Tlﬂ*(t)lzdt] =IE1pm[fOT|VA(T—t,X(t))|2dt <o,

which implies a fortiori that the condition in (62) is satisfied for 8 = 8,.

It remains to check that the process ZB- defined in the manner of (63), is a true
martingale. From Proposition 1 we have the stochastic differential
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dA(T =1, X(8)) = JIVA(T =, X()) dt + (VA(T £, X (1)), AW~ (1)),

and therefore

f(ﬂ*(9),dWy*(9)>—éf 1B.(60)*d6
0 0

:_ft(VA(T—a,X(a)),dWh(g))—;ft IVA(T - 6,X(6))[*do
0 0

AT, X(0)) )

= A(T.X(0)) - A(T-1,X(1)) ZIOg(/l(T—t X(1))

which expresses the exponential process of (63) with 8 = B, as

AT, X(0))

B.(p) —
z (t)_/l(T—t,X(t))’

O0<t<T.

The process ZB- is a positive local martingale, thus a supermartingale. To see that
itisatrue (IF, IP”-)-martingale, it suffices to argue that it has constant expectation. But
ZB-(0) = 1, so we have to show Epy.[ZB+(T)] = 1. We denote again by P(s, y;t,&)
the transition kernel of the Langevin—Smoluchowski dynamics, note that

P7-[X(s) € dy, X(2) € d] = p.(s.y) P(s,y:1,§)dydé

for0 < s <t<Tand(y§&) € R"xR", and recall the invariance property (37) of Q,
to deduce Epy.[ZB+(T)] = 1 in the manner of (38) — (41). This implies that Z8~ is
a true martingale and completes the proof of Theorem 2. O

6.1 Entropic interpretation of the expected cost when Q(R"”) < oo

By analogy with Subsection 4.1, we interpret now the expected cost on the right-hand
side of (75) in terms of relative entropies. From (63) — (65), we deduce that

drs
o8 (d]Pn

)= [ w@rarren+l [Tipore  ao
0 0

F(Tn)

holds for every 8 € B and n € IN(. Therefore, as the IT#-expectation of the stochastic
integral in (76) vanishes, the expected quadratic cost, or “energy”, term in (75) is
equal to the relative entropy

T (tn) )]

Tn dnﬁ
Enp[é fo |ﬂ(9>|2d9] =Enﬁ[10g( 52
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In order to interpret the first term in (75), let us assume that Q, and thus also the
induced measure @) on path space, are probability measures. Then we have

Eps [A(T =10, X(0))] = Epe [log (%L(xw)))]

( drs

g
=Eps [log (— —log D7

dQ L(X(rn»)

:r(xan)))}

We conclude that, in this case, the expected cost of (75) is equal to the sum Hf + Dﬁ
of two non-negative quantities:

0 e )}

B._F [1 (
121 8\4Q lo xeny

the relative entropy of the probability measure IT# with respect to the probability
measure Q when both are restricted to the o-algebra generated by the random
variable X (7;,); and

drp
Dﬁ =Eps [log (d]PV*

dr8
s e G-
?(Tn))] ne | 108 dP7-

the difference between the relative entropies of the probability measure IT# with
respect to the probability measure IPY+, when restricted to the o -algebra generated
by the collection of random variables (X (6 A 7;,))o<o<r and by the random variable
X(ty,), respectively.

U'(X(Tn)))]

7 The case of finite invariant measure, and an iterative procedure

Let us suppose now that the diffusion process (X(#));>0 as in (3) is well-defined,
along with the curve P(¢) = Law(X(?)), t > O of its time-marginals; and that the
invariant measure Q of Subsection 2.1 is finite, i.e., (7) holds, and is thus normalized
to a probability measure.

Then, neither the coercivity condition (11), nor the finite second-moment condi-
tion (12), are needed for the results of Sections 4 — 6. The reason is that the relative
entropy H(P(t)|Q) is now well-defined and non-negative, as both P(¢) and Q are
probability measures. Since the function ¢ — H(P(t) | Q) is decreasing and the initial
relative entropy H (P(0)| Q) is finite on account of (13), it follows that this function
takes values in [0, o). It can also be shown in this case that

lim | H(P(1)]Q) =0, (77)

i.e., the relative entropy decreases down to zero; see [19, Proposition 1.9] for a
quite general version of this result. This, in turn, implies that the time-marginals
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(P(2))s>0 converge to Q in total variation as ¢ — oo, on account of the Pinsker—
Csiszdr inequality
211P(1) - Qlizy < H(P(1) Q).

The entropic decrease to zero is actually exponentially fast, whenever the Hessian
of the potential ¥ dominates a positive multiple of the identity matrix; see, e.g., [4],
[32, Section 5], [36, Proposition 1’], [45, Formal Corollary 9.3], or [26, Remark
3.23]. As another consequence of (77), the initial relative entropy H(P(0)|Q) can
be expressed as

HPO)1Q) = e[ [ 7L X0 o 78)

We prove the claims (77) and (78) in Appendix 1.

In this context, i.e., with (7) replacing (11) and (12), and always under the standing
assumption (13), Theorem 4.1 in [25] continues to hold, as do the results in Sections 4
— 6. By combining time-reversal with stochastic control of the drift, these results
lead to an alternating sequence of forward and backward Langevin—Smoluchowski
dynamics, with time-marginals starting at P(0) and converging along (P(kT))ken,
in total variation to the invariant probability measure Q. Along the way, the values of
the corresponding stochastic control problems decrease along (H(P(kT)|Q))kenN
to zero.

Appendix 1: The decrease of the relative entropy without convexity assumption

We present a probabilistic proof of the claims (77) and (78), which complements
the proof of the more general Proposition 1.9 in [19]. We stress that no convexity
assumptions are imposed on the potential V.

Proof of (77)and (78): Since Q is assumed to be a probability measure in Section 7,
the relative entropy H(P(¢)| Q) is non-negative for every ¢ > 0. Thus, [25, Corollary
4.3] gives the inequality

T
HPO)1Q) = HED)IQ)+ L Be [ FLEx0)Par
(79)

> ;EP[fOT|VL(t,X(t))|2dz]

forevery T € (0, 00). Letting 7' T oo in (79), we deduce from the monotone convergence
theorem that

;E]P[ fo |VL(t,X(t))|2dt] < H(P(0)] Q). (80)

By analogy with Subsection 2.2, we denote by @Q the Langevin—Smoluchowski
measure associated with the potential ¥, but now with distribution



260 Toannis Karatzas and Bertram Tschiderer

QLX(0) € 4] = Q(4) = fA g)dv.  Ae BRM

for the random variable X(0). Since Q is a probability measure, the Langevin—
Smoluchowski measure @ is a well-defined probability measure on the path space
Q= C([0,00); R™).

Let us recall now the likelihood ratio of (8). We denote the corresponding like-
lihood ratio process by #(¢) := £(¢,X(t)), t > 0. The following remarkable insight
comes from Pavon [38] and Fontbona—Jourdain [19]: For any given T € (0, c0), the
time-reversed likelihood ratio process

9(s) = 0T —s5,x(s)) = PLZSXT=9) o oo 81)

q(X(s))

is a Q-martingale of the backwards filtration G = (G(s))o<s<r in (16). For a simple
proof of this result in the setting of this paper we refer to [26, Appendix E].

Let us pick arbitrary times 0 < #; < #2 < co. For any given T € (#3, c0), the martin-
gale property of the process (81) amounts, with s; =7 —¢; and s, =T — 3, to

Eq[8(sD)|G(s2)] =9(s2) = Eq[d(t)|o(X(6): 12<6<T)|=(12).
Because T € (2, 00) is arbitrary, this gives
Eq[d(t) |H (t2)] = 9(22), H(t):=0(X(0):t<0<). (82)

In other words, the likelihood ratio process (¢(¢));>0 is a backwards Q-martingale of
the filtration H = (H (¢));50. We denote by H (o) := (,;»0H (¢) the tail o-algebra
of the Langevin—Smoluchowski diffusion (X(¢)):>0. The ergodicity of this process
under the probability measure Q implies that the tail o--algebra H (o0) is Q-trivial,
i.e., H(o0) = {@,Q} modulo Q; see Appendix 2 for a proof of this claim.

We recall now the martingale version of Theorem 9.4.7 (backwards submartingale
convergence) in [10]. This says that (¥(¢))s>0 is a Q-uniformly integrable family,
that the limit

P(0) := tli_)rgﬂ(t) (83)

exists Q-a.e., that the convergence in (83) holds also in L!'(Q), and that for every
t > 0 we have
Eq[#(1)|H ()] =d(0),  Q-ae. (84)

But since the tail o--algebra H (o) is Q-trivial, the random variable (o) is Q-a.e.
constant, and (84) identifies this constant as #(co) = 1.

In terms of the function f(x) := xlogx for x > 0 (and with f(0) := 0), we can
express the relative entropy H(P(¢)| Q) as

H(P(1)]Q) = Ep[log#(1)] =Eq[/(#(1)] 20,  1>0. (85)
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The convexity of f, in conjunction with (82), shows that the process (f(9(¢))):s0
is a backwards Q-submartingale of the filtration H, with decreasing expectation as
in (85). By appealing to the backwards submartingale convergence theorem [10,
Theorem 9.4.7] once again, we deduce that (f((¢)));»0 is a Q-uniformly integrable
family, which converges, a.e. and in L' under Q, to

tli_)rgof(ﬂ(t)) = f(9#(e0)) = f(1) = 0.
In particular,
lim | H(P(1)|Q) = lim Eq[/(9(0)] = Eql lim /(9()] =0, (86)

proving (77). From (86) and (79) it follows now that (80) holds as equality, proving
(78). O

Appendix 2: The triviality of the tail o--algebra H (co)

We recall the filtered probability space (Q,F (o), F, Q). Here, Q = C([0,00); R")
is the path space of continuous functions, ¥ () = o (| ;50 F (¢)), the canonical
filtration IF = (F (¢));>0 is as in (15), and the Langevin—Smoluchowski measure Q
is represented by

B - [ PBw,  Besw) (87

where IP* denotes the Langevin—Smoluchowski measure with initial distribution ¢,
for every x € R", and #(Q) is the Borel o -field? on Q.

For every s > 0, we define a measurable map 6,: Q — Q, called shift transfor-
mation, by requiring that 65(w)(?) = w(s+¢) hold for all w € Q and ¢ > 0. A Borel
set B € B(Q) is called shift-invariant if 67'(B) = B holds for any s > 0. Since
the Gibbs probability measure Q is the unique invariant measure for the Langevin—
Smoluchowski diffusion (X(¢)):>0, [5, Theorem 3.8] implies that the probability
measure Q of (87) is ergodic, meaning that Q(B) € {0,1} holds for every shift-
invariant set B. As a consequence of the ergodicity of Q, the Birkhoff Ergodic
Theorem [5, Theorem 3.4] implies that, for every 4 € Z(RR™), the limit

t
tlim 1 f 14(X(s))ds =Q(A) (88)
—00 0
exists Q-a.e.

Lemma 1 The tail o-algebra H (o) is Q-trivial, i.e., H(o0) = {@,Q} modulo Q.

2 There are several equivalent ways to define the Borel o -field on Q. Two possible constructions
appear in Problems 2.4.1 and 2.4.2 in [27].
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Proof We follow a reasoning similar to that in [19, Remark 1.10]. According to
[29, Theorem 1.3.9], it suffices to show that the Langevin—Smoluchowski diffusion
(X ()0 is recurrent in the sense of Harris, i.e.,

Px[fow 1a(X(s))ds = oo] -1 (89)

is satisfied for every x € R" and all 4 € Z(R™) with Q(4) > 0.
For the proof of (89), we fix x € R" and 4 € Z(R") with Q(4) > 0. By its

definition, the event
B:= {f 14(X(s))ds = oo}
0

is shift-invariant. Thus, by the ergodicity of @, the probability Q(B) is equal to either
zero or one. Outside the set B, we have

1 t
lim f 14(X(s))ds = 0.
t—oo f 0

Butsince Q(A4) > 0, the Q-a.e. limit (88) implies that Q(B¢) = 0 and hence Q(B) = 1.
From the definition (87) of the probability measure Q it follows that IP* (B) = 1 for Q-
a.e. x € R". Since Q is equivalent to Lebesgue measure, we also have that P*(B) = 1
for Lebesgue-a.e. x € R".

Furthermore, the shift-invariance of B and the Markov property of the Langevin—
Smoluchowski diffusion give

P*(B) = P*(6;'(B)) = Ep~ [PX")(B)] = T; (P*(B)) = fR P(0,x31,dy) PY(B)

(90)
for every ¢ > 0. Here, P(0,x;¢,y) denotes the transition kernel of the Langevin—
Smoluchowski dynamics, so that P*[X(¢) € dy] = P(0,x;¢,y)dy; and 7; denotes the
operator

T/ (x) = fR POXLAN (), (63) €[0,00) xR

acting on bounded measurable functions f: R — R. Since (7} )50 is a strong Feller
semigroup under the assumptions of this paper, the function R" 3 x +— T; f(x) is
continuous. Now (90) implies the continuity of the function R" 3 x — P*(B). On
the other hand, we have already seen that the function R" > x — P*(B) € [0, 1]
is Lebesgue-a.e. equal to one. But such a function is constant everywhere, i.e.,
P*(B) =1 for every x € R", proving (89). O
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Incomplete Stochastic Equilibria with
Exponential Utilities Close to Pareto Optimality

Constantinos Kardaras, Hao Xing, and Gordan Zitkovié

Abstract We study existence and uniqueness of continuous-time stochastic Radner
equilibria in an incomplete markets model. An assumption of “smallness” type—
imposed through the new notion of “closeness to Pareto optimality”—is shown to
be sufficient for existence and uniqueness. Central role in our analysis is played by a
fully-coupled nonlinear system of quadratic BSDEs.

Introduction
The equilibrium problem

The focus of the present paper is the problem of existence and uniqueness of a
competitive (Radner) equilibrium in an incomplete continuous-time stochastic model
of a financial market. A discrete version of our model was introduced by Radner
in [26] as an extension of the classical Arrow-Debreu framework, with the goal
of understanding how asset prices in financial (or any other) markets are formed,
under minimal assumption on the ingredients or the underlying market structure.
One of those assumptions is often market completeness; more precisely, it is usually
postulated that the range of various types of transactions the markets allow is such
that the wealth distribution among agents, after all the trading is done, is Pareto
optimal, i.e., that no further redistribution of wealth can make one agent better off
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without hurting somebody else. Real markets are not complete; in fact, as it turns out,
the precise way in which completeness fails matters greatly for the output and should
be understood as an a-priori constraint. Indeed, it is instructive to ask the following
questions: Why are markets incomplete in the first place? Would rational economic
agents not continue introducing new assets into the market, as long as it is still
useful? The answer is that they, indeed, would, were it not for exogenously-imposed
constraints out there, no markets exist for most contingencies; those markets that do
exist are heavily regulated, transactions costs are imposed, short selling is sometimes
prohibited, liquidity effects render replication impossible, etc. Instead of delving into
the modeling issues regarding various types of completeness constraints, we point
the reader to [31] where a longer discussion of such issues can be found.

The ““fast-and-slow’’ model

The particular setting we subscribe to here is one of the simplest from the financial
point of view. It, nevertheless, exhibits many of the interesting features found in
more general incomplete structures and admits a straightforward continuous-time
formulation. It corresponds essentially to the so-called “fast-and-slow” completeness
constraint, introduced in [31].

One of the ways in which the “fast-and-slow” completeness constraint can be
envisioned is by allowing for different speeds at which information of two different
kinds is incorporated and processed. The discrete-time version of the model is
described in detail in [25, p. 213], where it goes under the heading of “short-lived”
asset models. Therein, at each node in the event tree, the agents have access to a
number of short-lived assets, i.e., assets whose life-span ends in one unit of time, at
which time all the dividends are distributed. The prices of such assets are determined
in the equilibrium, but their number is typically not sufficient to guarantee local (and
therefore global) completeness of the market. In our, continuous time model, the
underlying filtration is generated by two independent Brownian motions (B and W).
Positioned the “node” (w, ), we think of dB; and dW, as two independent symmetric
random variables, realized at time ¢ + dt, with values +v/dt. Allowing the agents to
insure each other only with respect to the risks contained in dB, we denote the
(equilibrium) price of such an "asset" by —A; dt. As already hinted to above, one
possible economic rationale behind this type of constraint is obtained by thinking of
dB as the readily-available (fast) information, while dW models slower information
which will be incorporated into the process A, indirectly, and only at later dates. For
simplicity, we also fix the spot interest rate to 0, allowing agents to transfer wealth
from 7 to t + dt costlessly and profitlessly. While, strictly speaking, this feature puts
us in the partial-equilibrium framework, this fact will not play a role in our analysis,
chiefly because our agents draw their utility only from the terminal wealth (which is
converted to the consumption good at that point).

For mathematical convenience, and to be able to access the available continuous-
time results, we concatenate all short-lived assets with payoffs dB; and prices — A, dt
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into a single asset B! = B, + fot Ay du. It should not be thought of as an asset that
carries a dividend at time 7, but only as a single-object representation of the family
of all infinitesimal, short-lived assets.

As a context for the “fast-and-slow” constraint, we consider a finite number I of
agents; we assume that all of their utility functions are of exponential type, but allow
for idiosyncratic risk-aversion parameters and non-traded random endowments. The
exponential nature of the agents’ utilities is absolutely crucial for all of our results
as it induces a “backward” structure to our problem, which, while still very difficult
to analyze, allows us to make a significant step forward.

The representative-agent approach, and its failure in incomplete
markets

The classical and nearly ubiquitous approach to existence of equilibria in complete
markets is using the so-called representative-agent approach. Here, the agents’ en-
dowments are first aggregated and then split in a Pareto-optimal way. Along the
way, a pricing measure is produced, and then, a-posteriori, a market is constructed
whose unique martingale measure is precisely that particular pricing measure. As
long as no completeness constraints are imposed, this approach works extremely
well, pretty much independently of the shape of the agents’ utility functions (see,
e.g., [14, 13,18, 19, 20, 9, 1, 30] for a sample of continuous-time literature). A con-
venient exposition of some of these and many other results, together with a thorough
classical literature overview can be found in the Notes section of Chapter 4. of [21]).

The incomplete case requires a completely different approach and what were
once minute details, now become salient features. The failure of representative-
agent methods under incompleteness are directly related to the inability of the
market to achieve Pareto optimality by wealth redistribution. Indeed, when not every
transaction can be implemented through the market, one cannot reduce the search
for the equilibrium to a finite-dimensional “manifold” of Pareto-optimal allocations.
Even more dramatically, the whole nature of what is considered a solution to the
equilibrium problem changes. In the complete case, one simply needs to identify a
market-clearing valuation measure. In the present “fast-and-slow” formulation, the
very family of all replicable claims (in addition to the valuation measure) has to be
determined. This significantly impacts the “dimensionality” of the problem and calls
for a different toolbox.

Our probabilistic-analytic approach

The direction of the present paper is partially similar to that of [31], where a much
simpler model of the “fast-and-slow” type is introduced and considered. Here, how-
ever, the setting is different and somewhat closer to [29] and [8]. The fast component
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is modeled by an independent Brownian motion, instead of the one-jump process.
Also, unlike in any of the above papers, pure PDE techniques are largely replaced or
supplemented by probabilistic ones, and much stronger results are obtained.

Doing away with the Markovian assumption, we allow for a collection of un-
bounded random variables, satisfying suitable integrability assumptions, to act as
random endowments and characterize the equilibrium as a (functional of a) solu-
tion to a nonlinear system of quadratic Backward Stochastic Differential Equations
(BSDE). Unlike single quadratic BSDE, whose theory is by now quite complete (see
e.g., [23, 5, 6, 12, 15, 3] for a sample), the systems of quadratic BSDEs are much
less understood. The main difficulty is that the comparison theorem may fail to hold
for BSDE systems (see [17]). Moreover, Frei and dos Reis (see [16]) constructed a
quadratic BSDE system which has bounded terminal condition but admits no so-
lution. The strongest general-purpose result seems to be the one of Tevzadze (see
[28]), which guarantees existence under an “L*-smallness” condition placed on the
terminal conditions.

Like in [28], but unlike in [31] or [8], our general result imposes no regularity
conditions on the agents’ random endowments. Unlike [28], however, our smallness
conditions come in several different forms. First, we show existence and uniqueness
when the random-endowment allocation among agents is close to a Pareto optimal
one. In contrast to [28], we allow here for unbounded terminal conditions (random
endowments), and measure their size using an “entropic” BMO-type norm strictly
weaker than the L*-norm. In addition, the equilibrium established is unique in a
global sense (as in [24], where a different quadratic BSDE system is studied).

Another interesting feature of our general result is that it is largely independent of
the number of agents. This leads to the following observation: the equilibrium exists
as soon as “sufficiently many sufficiently homogeneous” (under an appropriate notion
of homogeneity) agents share a given total endowment, which is not assumed to be
small. This is precisely the natural context of a number of competitive equilibrium
models with a large number of small agents, none of whom has a dominating sway
over the price.

Another parameter our general result is independent of is the time horizon T.
Indirectly, this leads to our second existence and uniqueness result which holds
when the time horizon is sufficiently small, but the random endowments are not
limited in size. Under the additional assumption of Malliavin differentiabilty, a lower
bound on how small the horizon has to be to guarantee existence and uniqueness
turns out to be inversely proportional to the size of the (Malliavin) derivatives
of random endowments. This extends [8, Theorem 3.1] to a non-Markovian setting.
Interestingly, both the L*-smallness of the random endowments and the smallness of
the time-horizon are implied by the small-entropic-BMO-norm condition mentioned
above, and the existence theorems under these conditions can be seen as special cases
of our general result.
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Some notational conventions

As we will be dealing with various classes of vector-valued random variables and
stochastic processes, we try to introduce sufficiently compact notation to make
reading more palatable.

A time horizon T > 0 is fixed throughout. An equality sign between random
variables signals almost-sure equality, while one between two processes signifies
Lebesgue-almost everywhere, almost sure equality; any two processes that are equal
in this sense will be identified; this, in particular, applied to indistinguishable cadlag
processes. Given a filtered probability space (€, Fr,F = {F}ief0,7),P) satisfying
the usual conditions, 7 denotes the set of all [0,7]-valued F-stopping times, and
P2 denotes the set of all predictable processes {1 }ref0,r) such that fOT ,u% dt < oo,
a.s. The integral fOA w, dB, of y € P? with respect to an F-Brownian motion B
is alternatively denoted by p - B, while the stochastic (Doléans-Dade) exponential
retains the standard notation &(-). The L”-spaces, p € [1,00] are all defined with
respect to (Q, Fr,P) and LY denotes the set of (P-equivalence classes) of finite-
valued random variables on this space. For a continuous adapted process {Y; };<[o,7],
we set

Y 1lse = [Isupepo,ry Y21l
and denote the space of all such Y with ||Y|| g= < co by 8. For p > 1, the space of

all u € P? with IIpIIZI, =E [fOT |t |P du] < oo is denoted by HP, an alias for the

Lebesgue space L” on the product [0,7] X Q.
Given a probability measure P and a P-martingale M, we define its BMO-norm
by
2 _ P _
1M1z, = 9P |[E7 (ayr = M1

where ]EE [-] denotes the conditional expectation E@[‘|ﬁ] with respect to -, com-
puted under P. The set of all ]@’—martingales M with finite ||M llemoc®) s denoted
by BMO(I@’), or, simply, BMO, when P =P. When applied to random variables,
X e BMO(]@)) means that X = My, for some M € BMO(P). In the same vein, we
define (for some, and then any, (?, F)-Brownian motion B)

bmo(P) = {u e P? : u- B e BMO(P)},

with the norm || /,z||bm0(@) =||u- B“BMO(P)' The same convention as above is used:

the dependence on P is suppressed when P = P.

Many of our objects will take values in R, for some fixed I € N. Those are
typically denoted by bold letters such as E, G, u, v, @, etc. If specific components are
needed, they will be given a superscript - e.g., G = (G');. Unquantified variables
i, j always range over {1,2,...,1}. The topology of R¥ is induced by the Euclidean

norm | - |, defined by |x|» = /> | ck |2 for x € R*. All standard operations and
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relations (including the absolute value |-| and order <) between R¥-valued variables
are considered componentwise.

1 The Equilibrium Problem and its BSDE Reformulation

We work on a filtered probability space (2, F7,F = {F;}sc0,7],P), where F is the
standard augmentation of the filtration generated by a two-dimensional standard
Brownian motion {(B;, W;)};¢[0,r]- The augmented natural filtrations FB and FV of
the two Brownian motions B and W will also be considered below.

1.1 The financial market, its agents, and equilibria

Our model of a financial market features one liquidly traded risky asset, whose
value, denoted in terms of a prespecified numéraire which we normalize to 1, is
given by

dB}!=A,dt+dB,, tel[0,T], 1))

for some A € P2. Given that it will play a role of a “free parameter” in our analysis,
the volatility in (1) is normalized to 1; this way, A can simultaneously be interpreted
as the market price of risk. The reader should consult the section ‘The “fast-and-
slow” model’ in the introduction for the proper economic interpretation of this asset
as a concatenation of a continuum of infinitesimally-short-lived securities.

We assume there is a finite number / € N of economic agents, all of whom trade
the risky asset as well as the aforementioned riskless, numéraire, asset of constant
value 1. The preference structure of each agent is modeled in the von Neumann-
Morgenstern framework via the following two elements:

i) an exponential utility function with risk tolerance coefficient 5 > 0:
U'(x) = —exp(-x/6"), x€R, and

ii) a random endowment E’ € L(%7).

The pair (E,6), where E = (E);, § = (6");, of endowments and risk-tolerance co-
efficients fully characterizes the behavior of the agents in the model; we call it the
population characteristics—E is the initial allocation and ¢ the risk profile. In
general, any R-valued random vector will be refereed to as an allocation.

Each agent maximizes the expected utility of trading and random endowment:

E[Ui(n~B}l+Ei)] — max. )

Here {1 };¢[0,7] is a one-dimensional process which represents the number of shares
of the asset kept by the agent at time ¢. As usual, this strategy is financed by investing
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in or borrowing from the interestless numéraire asset, as needed. To describe the
admissible strategies of the agent, we follow the convention in [11]:

For 1 € P2, we denote by M the set of absolutely continuous local martingale
measures for B, i.e., all probability measures Q < P such that E€[h(B2 — BL)] =0
for all pairs of stopping times o~ < 7 < T and for all bounded ¥, -measurable random
variables h. For a probability measure Q <« P, let H(Q|P) be the relative entropy of
Q with respectto P, i.e., HQ|P) =E [% log %] > 0. For A € P2 such that M # 0,
where

Mt ={Qe My H(QIP) < o),

a strategy 7 is said to be A-admissible if 7 € A*, where
At = {7r eP?|n-Blisa Q-martingale for all Q € M’l} .

We note that the set A+ corresponds - up to finiteness of the utility - exactly to the set
®; in [11]. This admissible class contains, in particular, all 7 € P2 such that 7 - B4
is bounded (uniformly in ¢ and w).

Definition 1 (Equilibrium)

Given a population with characteristics (E,d), a process A € P2 with M £ 0 is
called an equilibrium (market price of risk) if there exists an I-tuple (x'); such
that

i) each «' is an optimal strategy for the agent i under A, i.e.
nie argmax . 42 E [Ui(n . B;l + Ei)] ,

ii) the market clears, i.e., Y ; i =0.

The set of all equilibria is denoted by Ags(E,P), or simply, As(E), when the the
probability P is clear from the context.

Remark I The assumptions on the agents’ random endowments that we introduce
below and the proof techniques we employ make it clear that bmo is a natural space
to search for equilibria in. There is, however, no compelling economic argument
to include bmo into the definition of an equilibrium, so we do not. It turns out,
nevertheless, that whenever an equilibrium A is mentioned in the rest of the paper it
will be in the bmo context, and we will assume automatically that any equilibrium
market price of risk belongs to bmo. In particular, all uniqueness statements we make
will be with respect to bmo as the ambient space.

1.2 A simple risk-aware reparametrization

It turns out that a simple reparametrization in our “ingredient space” leads to sub-
stantial notational simplification. It also sheds some light on the economic meaning
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of various objects. The main idea is to think of the risk- tolerance coefficients
as numéraires, as they naturally carry the same currency units as wealth. When
expressed in risk-tolerance units, the random endowments and strategies become
unitless and we introduce the following notation

G = %E, ie,G = %E", and p= 6171', ie., pi = #n". 3)

Since A! is invariant under this reparametrization, the equilibrium conditions be-
come

o eargmaxpeﬂiaE[U(p~B;+Gi)] and Y, ap =0, @)

where U(x) = —exp(—x), and o' = 6'/(};67) € (0,1) - with 3,0’ =1 - are the
(relative) weights of the agents. The set of all equilibria with risk-denominated
random endowments G = (G'); and relative weights a = (a'); is denoted by A, (G, P)
(this notation overload should not cause any confusion in the sequel).
Since the market-clearing condition in (4) now involves the relative weights o’
as “conversion rates”, it is useful to introduce the aggregation operator A : R/ — R
by
Alx] =3 a'xl, forx eRI, (@)

so that the market-clearing condition now simply reads A[p] = 0, pointwise.

1.3 A solution of the single-agent utility-maximization problem

Before we focus on the questions of existence and uniqueness of an equilibrium, we
start with the single agent’s optimization problem. Here we suppress the index i and
first introduce an assumptions on the risk-denominated random endowment:

G is bounded from above and G € EBMO, (6)

where EBMO denotes the set of all G € L for which there exists (necessarily unique)
processes mS and n in bmo, as well a constant X§’, such that G = X7, where

t t t
XtG:X()c;+f mfdeu+f ndeu+%f (mS?+ ) du. ()
0 0 0

The supermartingale X admits the following representation
XG = —logE,[exp(~G)], so that U(XZ) = E,[U(G)] fort € [0,T], 8)

and can be interpreted as the certainty-equivalent process (without access to the
market) of G, expressed in the units of risk tolerance.

Remark 2
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1. When G is bounded from above, as we require it to be in (6), a sufficient condition
for G € EBMO is e~¢ € BMO. This follows directly from the boundedness of
the (exponential) martingale e X0 away from zero.

2. The condition (6) amounts to the membership M G € BMO, where M = mC .
B+n%-W. Then —-M% € BMO and, by Theorem 3.1, p. 54 in [22], E(-M%)
satisfies the reverse Holder inequality (R,) with some p > 1. Therefore, for
g < p-1, we have

E[o-(146)G | = o~ (1+o)(XT+ME+3MO)r)
= I+aXT R [(8(—MG)T)1+8] < 0.
On the other hand, by (1) above, we clearly have L™ € EBMO, so
G € L® = G € EBMO = E[¢~ ") < oo for some & > 0.

In particular our condition (6), while implied by the boundedness of G, itself
implies the conditions G* = max{G,0} € L*, ¢™¢ € U, L, imposed in [11].

We recall in Proposition 1 some results about the nature of the optimal solution to the
utility-maximization problem (2) from [11]; the proof if given in Section 3 below.

Proposition 1 (Single agent’s optimization problem: existence and duality)

Suppose that A € bmo and that G satisfies (6). Then both primal and dual problems
have finite values and the following statements hold:

1. There exists a unique p*© € A such that

p’LG € argmaxE [U(p~ B; + G)] .
peA

2. There exists a unique Q*C € M such that

QY € argmin(H(Q[P) + EYG)).
QeMA

3. There exists a constant ¢*C such that

O+ p/"G . B; +G = —log(Z;’G), where Z;’G = d(%;c . 9

The process p*© and the probability measure Q¢ are called the primal and

the dual optimizers, respectively. While they were first obtained by convex-duality

methods, they also admit a BSDE representation (see, e.g., [27]), where a major role

is played by (the risk-denominated version) of the so-called certainty-equivalent
process:

v =uT (B [U(ptC B - p*C B+ G)]). rel0T]. (10)
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The optimality of p>C implies that

UY*C) = esssupE, [U(p B —p-Bl+ G)] , te[0,T]. (11)
pPEAL

Hence YI’LG can be interpreted as the risk-denominated certainty equivalent of the
agent i, when he/she trades optimally from ¢ onwards, starting from no wealth.
Finally, with

7} =, [d%pa] =&(-1-B—v*C W), 1 € [0.T] for some v*C € %, (12)

we have the following BSDE characterization for single agent’s optimization prob-
lem.

Lemma 1 (Single agent’s optimization problem: a BSDE characterization)

For A € bmo and G satisfying (6), let Y*C be as in (10), let u*© = A1 — p*© and
let vtG be defined by (12). Then the triplet (Y4C, utG v4C) is the unique solution
to the BSDE

dY; = py B, + v, dW, + (3v; = 347 + A ) dt, Yr =G, (13)

in the class where (i, v) € bmo. Such a unique solution also satisfies Y*¢ — XY € 8%,

Given the results of Propositions 1 and 1 above, we fix the notation Y4+C, 46 46,

QY. Z+G and p*C for A and G. We also introduce the vectorized versions yA G,
putG yAG QLG and ZAG o that, e.g., uC = (u*C"); and G = (G');.

1.4 A BSDE characterization of equilibria

The BSDE-based description in Lemma 1 of the solution of a single agent’s optimiza-
tion problem is the main ingredient in the following characterization, whose proof
is given in Subsection 3.3 below. We use the risk-aware parametrization introduced
in Subsection 1.2, and remind the reader that A, (G) denotes the set of all equilibria
in bmo when G = (G'); are the agents’ risk-denominated random endowments and
a = (a'); are the relative weights.

Theorem 1 (BSDE characterization of equilibria)

For a process A € bmo, and an allocation G which satisfies (6) componentwise,
the following are equivalent:

1. 1 € Aq(G), i.e., A is an equilibrium for the population (G, @).
2. A = Alu] for some solution (Y, u,v) of the BSDE system:

dY, = pedBy +vidW, + (3v7 ~ S Al + Aludue ) di. Yr=G,  (14)

with (u,v) € bmo'.
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Remark 3

1. Spelled out “in coordinates”, the system (14) becomes

{dY,’ = i dB, +vi AW, + (SO0 = 3(Z; 0 i) + (07 )y p) dt,
=G ie{l,2,....1}
(14)
and the market-clearing condition A = A[u,] reads 1 = }; o .

2. While quite meaningless from the competitive point of view, in the case I = 1 of
the above characterization still admits a meaningful interpretation. The notion
of an equilibrium here corresponds to the choice of A under which an agent, with
risk-denominated random endowment G € EBMO would choose not to invest in
the market at all. The system (14) reduces to a single equation

dY, = p dB; +v, AW, + (3pf + 3v]) dt, ¥r = G,

which admits a unique solution, namely ¥ = X%, so that 1 = m© is the unique
equilibrium. This case also singles out the space EBMO as the natural environ-
ment for the random endowments G' in this context.

2 Main Results

We first present our main result, then discuss its implications on models with short
time horizons or a large population of agents. All proofs are postponed until Section
3.

2.1 Equilibria close to Pareto optimality

Whenever equilibrium is discussed, Pareto optimality is a key concept. Passing to the
more-convenient risk-aware notation, we remind the reader the following definition,
where, as usual, A[x] = ) ; o' x":

Definition 2 For ¢ € LO(F7), an allocation £ is called ¢-feasible if A[£] < €. A~n
allocation £ is said to be Pareto optimal if there is no A[£]-feasible allocation &,
such that E[U (£))] > E[U (¢")] for all i, and E[U (")] > E[U (¢)] for some i.

In our setting, Pareto optimal allocations admit a very simple characterization; this
is a direct consequence of the classical result [4] of Borch so we omit the proof.

Lemma 2 A (sufficiently integrable) allocation € is Pareto optimal if and only if its
components agree up to a constant, i.e., if there exist £€ € LO(F7) and constants
(c'); such that & = &€ + ¢* for all i.
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Next, we introduce a concept which plays a central role in our main result. Given
a population with the (risk-denominated) initial allocation G whose components
satisfy (6), let (m!,n") € bmo be an alias for the pair (m©',n®") defined in (7). We
define distance to Pareto optimality H(G) of G by

H(G) = inf max||(m' = m*,n" =n)llpmoze),
¢ (& l

where the infimum is taken over the set of &€ € EBMO, with (m€,n¢) = (m¢,n¢")
as in (7), and the probability measure P¢ is given by

dP¢/dP = &E(-m* - B—n-W)r =exp(=¢°)/Elexp(-£)]. 15)

Remark 4

1. Suppose that H(G) = 0 and that the infimum is attained. Then (m‘, n’) = (m€, n¢),
for all i, implying that all components of G coincide with £€ up to some additive
constants, making G Pareto optimal. On the other hand, since each agent has
exponential utility, shifting all components of G by the same amount &€ is
equivalent to a measure change from P to P¢. Therefore, A € Ay (G,P) if and
only if 1 —m€ € Ao (G —£€,P°), i.e., translation in endowments does not affect
the wellposedness of the equilibrium. As a consequence, to show A (G,P) # 0,
it suffices to prove Ay (G — £€,P¢) # 0 for some £¢, which is the strategy we
follow below.

2. Our “distance to Pareto optimality” is conceptually similar to the “coefficient
of resource utilization” of Debreu (see [10]), well known in economics. There,
however, seems to be no simple and direct mathematical connection between
the two.

In our first main result below, we assume that G is sufficiently close to some
Pareto optimal allocation, i.e., that H(G) < €*, for some sufficiently small €*:

Theorem 2 (Existence and uniqueness close to Pareto optimality)

Let (6) hold for all components in G. There exists a sufficiently small constant €”,
independent of the number of agents I, such that if

H(G) < €, (16)

Then there exists a unique equilibrium A € bmo. Moreover, the triplet (YO, y*C,
ytG)y, defined in Lemma 1, is the unique solution to (14) with (ﬂ’l’G, ytGy e bmo’.

Remark 5 A similar global uniqueness has been obtained in [24, Theorem 4.1] for
a different quadratic BSDE system arising from a price impact model.

The proof of Theorem 2 will be presented in Section 2.1. For the time being, let
us discuss two important cases in which (16) holds:

- First, given £ e EBMO and 1 <i < I, let X¢" and X¢° be defined by (7) with
terminal conditions G’ and &€, respectively. A simple calculation shows that
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d(XC' = X") = (m) = m) dBf + (n} = n§) dWS + % ((mi—m§)? + (n) = nf)?) dt,

with the terminal condition G' — &€, for a two-dimensional P€-Brownian motion
(B¢, W¢), where P¢ is given by (15). If, furthermore, G' — £¢ € L*, it follows that

i c i T < i c i c
1(m' = m€,n" =) omoee) = 25up B [XF = £1= (X7 =£0)]l,o
<G =€ |s
Therefore, assumption (16) holds, if

. i c (E*)z
infmax ||G" — &°||p» < . a7
£ 4

- The second case in which (16) can be verified is in the case of a "large" number of
agents. Indeed, an interesting feature of (17) is its lack of dependence on 1, leading to
the existence of equilibria in an economically meaningful asymptotic regime. Given
a total endowment Es € L™ to be shared among [ agents, i.e., >; E' = Es, one can
ask the following question: how many and what kind of agents need to share this total
endowment so that they can form a financial market in which an equilibrium exists?
The answer turns out to be “sufficiently many sufficiently homogeneous agents”. In
order show that, we first make precise what we mean by sufficiently homogeneous.
For the population characteristics E = (E ); and 6 = (6%);, with E € (L™°)!, we define
the endowment heterogeneity index y (E) € [0,1] by

E' —E||;»
)(E(E)zma_x |.| ”H‘f .
ij |E le + [1E/{lLs

We think of a population of agents as “sufficiently homogeneous” if y* (E) < )((')E for
some, given, critical index )(65 . With this in mind, we have the following corollary
of Theorem 2:

Corollary 1 (Existence of equilibria for sufficiently many sufficiently homoge-
neous agents)

Given a critical endowment homogeneity index )(65 € [O,%), a critical risk
tolerance 6y > 0, as well as the total endowment Es € L., there exists Iy =
Io(||E2||Lw,)(0E,50) € N, so that any population (E,§) = (E',0"); satisfying

1>, YE'=Es, x®(E')<xf, and min;6" > 6,
admits an equilibrium.

Condition (17) can be thought of as a smallness-in-size assumption placed on the
random endowments, possibly after translation. It turns out that it can be “traded” for
a smallness-in-time condition which we now describe. We start by briefly recalling
the notion of Malliavin differentiation on the Wiener space. Let ® be the set of random
variables £ of the form ¢ = @(Z (h"),...,I (")), where ¢ € C;>(R¥,R) (smooth
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functions with bounded derivatives of all orders) for some k, b/ = (W, k") €
L2([0,T];R?) and 7 (h/) = WP - By + WY -Wr, foreach j = 1,...,k. If { € D, we
define its Malliavin derivative as the 2-dimensional process

k
Dyl = Z a_"”(J(hl),...,I(hk))hf, 6 €[0,T1].
= axj

We denote by DS ¢ and Dy’ the two components of Dg{ and for { € @, p > 1, define

the norm
T p211Y/P
|§|P+(f |D9§|2d9) H :
0

For p € [1,0), the Banach space DL? is the closure of ® under || - [l1,- For p = oo,
we define D> as the set of all those G € D! with DG, D" G € S*.

11l = |E

Corollary 2 (Existence of equilibria on sufficiently small time horizons)

Suppose that (6) holds for all components of G and that there exists ¢€ € EBMO
such that G' — &€ € DY for all i. Then a unique equilibrium exists as soon as

(e")?

T<T= - > - -
max; (11D (GF = £)|I5e +11D* (G =) 5 )

(18)

Remark 6 In a Markovian setting where G = g (Br, Wr), for some functions g = (g);,
we only need to assume there exists some g€ € L™ such that d;, (g' —g€), d,, (8" —g°) €
L, for any i, where 9, (g — g€) and 0,, (g° — g°) are weak derivatives of g' —g€. A
similar “smallness in time" result has been proven in [8, Theorem 3.1] (and in [30]
in a simpler model) in a Markovian setting. Corollary 2 extends the result of [8] to a
non-Markovian setting.

3 Proofs
3.1 Proof of Proposition 1

For A € bmo, we record that M* # (. Indeed, thanks to the bmo property of A, the
process Z* = E(—A- B) is a martingale and satisfies the reverse Holder inequality
R, for some p > 1 (see [22, Theorem 3.1]). That, in turn, implies the reverse Holder
inequality RlogR, and, so, the probability Q! defined via dQ*/dP = Z; satisfies
H(Q'P) < o0, and, consequently Q* € M.

The statements of Proposition 1 will follow from [11, Theorem 2.2], once we
verify that Z* satisfies the reverse Holder inequality Rlog R under P as well, where
dP/dP = e~C JE[e~C]. For that, we note that e"C /E[e C] = E(=m%-B—n%-W)r,
where (m©,n®) is as in (7). Given 1 € bmo, the bmo property of (m®,n%) and [22,
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Theorem 3.6] imply that 1 —m© € bmo(P), and, so, Z* = E(—(1—m) - B)r, where
B= fo mydu + B is a P-martingale. It remains to use the same argument as in the

previous paragraph to show that Z" indeed satisfies the reverse Holder inequality
Rlog R under P.

3.2 Proof of Lemma 1

Let (m,n) = (m%,n%) from (7); more generally, we suppress the superscripts A and
G throughout to increase legibility. A combination of (9) and (10) yields that

Y=—c-p-B'-logZ,

and a simple calculation confirms that (Y, , v) satisfies (13) Next, we show Y — X €
S%. We start by defining the probability measure Pvia dP/dP=&(-m-B—n-W)r
so that under P, D =Y — X is the certainty-equivalent process corresponding to the
zero endowment. By (11), we have D > 0 as well as

dD; = (uy =m;) dB+ (v —n;) dW
+ (300 =17 = (4 =m)? + (A = my) (= my)) dt, with Dy =0, (19)

where B = B+ f()' mydu and W = W + fo. n,, du are P-Brownian motions. Using the
notation Q%, as well as the argument of Proof of Proposition 1 above, we can deduce
that Q1 € M~ (where P in the definition of M*~" is replaced by P). We claim
that

D. < H,(Q'[P), foranyteT . (20)

Proposition 1, applied under P and with zero random endowment produces the dual
optimizer Q*€, with P-density Z*~"™C_ If we project both sides of the equality
O 4 ptG. B} = —log(Z;l_m’G) under Q%€ onto ¥, we obtain

D, = H,(Q*C|P).

No integrability issues arise here since H(Q*C|P) < co and ptY - B4 is a QG-
martingale (by part (iii) of Proposition 1). The required inequality (20) follows from
the optimality of Q%€ in part (ii) of Proposition 1.

The right-hand side of (20) can be written as

_ R T T
Ho(Q'[P) =EY [% f (A —my)2dr - f (A =m)dB} | < FlA=mll o
T T

Given that both A and m belong to bmo we have A —m € bmo(Q*) by [22, Theorem
3.6]. Therefore, we can combine (20) and the fact that D > 0 to conclude that D € S*.
Consequently, it suffices to apply the standard bmo-estimate for quadratic BSDEs
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(see Lemma 9) to (19), to obtain (u—m, v —n) € bmo(P). Since (m, n) € bmo, another
application of [22, Theorem 3.6] confirms that (g, v) € bmo.

Lastly, we show that there can be at most one solution to (13) with (y, v) € bmo.
Let (Y, u,v) and (¥, [, 7) be two solutions with (y, v), (@I, 7) € bmo. For ¢Y = Y-v,
we have

d(6Y), = Su,dB} + 6v,dWY, Y =0.

Here 6= fi—u, 6v=9v-v,v= %(v+ 7),and WY =W + f()'V,dt is a Q*Y-Brownian
motion, where QY is defined via dQ*” /dP = E(-A- B—v-W)r. By [22, Theorem
3.6], both 5y - BY and 6v - W” are BMO(Q*)-martingales. Hence 6¥ = 0 implies
that 6Y = 0 and, consequently, 6u = dv = 0.

3.3 Proof of Theorem 1

(1) = (2). Given an equilibrium A € Ao (G) and i € {1,2,...,1}, let p*F" be the
primal optimizer of agent i, and let (Y’, i/, v') be defined as in Lemma 1 where (13)
has the terminal condition ¥} = G'. Since A is an equilibrium, 3, @’ p*¢" =0, and so
A=1=-Y,a'p*C" =3, o' i, for ' = A1—p+Y" implying that (Y, ur,v) = (Y7, i, v');
solves the system (14). The property (u,v) € bmo’ follows from Lemma 1.

(2) = (1). Given a solution (Y, u,v) of (14), we set A = Ziaipi. This way,
individual equations in (14) turn into BSDEs of the form (13). If we set p*! =
A — ' the market clearing condition ; ;o' = 0 holds. Since (u/,v’) € bmo the
uniqueness part of Lemma 1 implies that A, p° maximizes single-agents’ utilities.

3.4 Proof of Theorem 2

In order to prove Theorem 2, we start with a refinement of the classical result on
uniform equivalence of bmo spaces (see Theorem 3.6, p. 62 in [22]), based on a
result of Chinkvinidze and Mania (see [7]).

Lemma 3 Let o € bmo be such that ||| | pme =: V2R for some R < 1. If B ~ P is such
that dP = E(o - B)r dP, for some F-Brownian motion B, then, for all ¢ € bmo, we
have

1+ R) M1 oo < 1l lpmoy < A =R 1L 1o 1)
Proof Since M = o - Bisa BMO-martingale, Theorem 3.6. in [22] states that the
spaces bmo and bmo(]@’) coincide and that the norms || ||pme and || - IIbmo(@) are

uniformly equivalent. This norm equivalence is refined in [7]; Theorem 2 there
implies that
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Clearly, only the second inequality in (21) needs to be discussed; it is obtained by
substituting { = o into the second inequality in (22):

V2R = |0 lymogey = (1 + R llbmo < V2(1+ R)R, so that (1+R) < (1-R)™".

Coming back to Theorem 2, suppose that (16) is satisfied. Then there exists
&¢ € EBMO such that

max || (m' —m®,n" = n)|lpmo(pe) < € (23)
L

To simplify notation, we introduce m = (m'); and n = (n');. A calculation shows
that (component-by-component)

d(Y; = &) =(u; —my)dBf + (v; —n; ) dWf
+ (30 =02 = LA =mE)? + (A = m) (e = mf)) dt,
YT - ¢ =G-¢°,

where A = A[u], & = —log(E;[exp(=£€)]), and B¢, W€ are P°-Brownian motions.
This is exactly the type of system covered in (14). Therefore, to ease notation, we
treat, throughout this section, P as P¢, B as B¢, W as W€, and G, A, u,v as their
shifted versions, i.e., eg. G as G — &€, A as 1 —m°€, etc. As aresult, (23) translates to

max || (", ) lpmo < €. (24)

We proceed by setting up a framework for the Banach fixed-point theorem. First
observe that since (m’,n') € bmo for all i, then bmo is a natural space in which
the fixed-point theorem can be applied. Given A € bmo and G = (G);, let Y* =
(Y*+6Y"); and X = (X©");, denote the agents’ certainty-equivalent processes with and

without assess the market, respectively; we also set (,u’LG,v’l’G) = (,u/l’Gi, V’I’Gi),-,
where (u’LGl,v’l’Gl ); is defined in Lemma 1. This allows us to define (a simple

transformation of)) the excess-demand map
F: A AlptC],

where the aggregation operator A[-] is defined in (5). The significance of this map
lies in the simple fact that A is an equilibrium if and only if F(1) = 4,i.e.,if 1isa
fixed point of F.

Before proceeding to studying properties of F, we first record the following
a-priori estimate on A in equilibrium.

Lemma 4 If A € bmo is an equilibrium, then

A lpmo < max || (m', 1) o

Proof Aggregating all single equations in (14) and (7), we obtain
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dALY — X )=, — Alm, ) dB+ AV —ndW, + (A7 + AlivH*Ddt—1 Alm} +n}dt.

Let (0,), be a reducing sequence for local martingale part above. For any 7 € 7,
integrating the previous dynamics from 7 A o, to o, and projecting onto 7 yields

Er [AIY], - X0, 1] = AV o, = Xenor, ] =

= 3E. [f (A7 + ALV ])dt] [fa A[m?+n,2]dt]. (25)
TAO TAO

Sending n — oo, since Y — X > 0 (component-by-component) and is also bounded
(see Lemma 1) and A[X7] = A[G] = A[Y;l], we obtain

Um0 < 1147+ AL™Dlmo < [1ALm + 1T/ lbmo
< ALl m, 1) o] < max [1Gn', 7 oo
For the third inequality, note that B[ [ A{m? + n2]dr] < A[||(m,n)|2,,,] holds for
all stopping times 7. O

For arbitrary A € bmo, the following estimate gives an explicit upper bound on
the (nonnegative) difference D = Y4/ — X/,

Lemma 5 Suppose that || | pme < V2. Then,

Al pmo + (", ) |pmo

V2= 1lpmo

Proof Let Q' be the probability such that dQ* = Z;}'dP, where Z* = &(-1- B).
Since Q' € M4, then the argument that leads to (20) also implies that

0<VDAi <

foralli.

YA < HAQYP)+EZ[G'], foranyTeT. (26)

On the right-hand side of (26),

2 T T
He(Q'P) = E7 [;f ﬂidu—f AudBﬁ]sémnﬁmo(Q,{).
T T

since [|llbmorat) < V2l lbmo/ (V2= 11 Allbmo ) as follows from Lemma 3, we ob-
tain 5
[l
H-(Q'[P) < ———=0—,
(\/5_ ||/l||bm0)
Furthermore, recalling that X; =G’ and de = midB, + nde, + %((m;')2 + (nﬁ)z)dt,

we note that . , _
EY [G'] = . [(Z}/Z1)G'] = B, [(Z}/ ZH) X1,
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Given that Z* is a BMO-martingale and ||(m’,n")||pmo < o0 , the integration-by-parts
formula implies that

E-[(Z7/Z])X}] =
T T
=X —E, [f (Z})ZHAml du| + 3B, [f (Zj/Zf)((mL)2+(nL)2)du]
. A ' T . A T T. .
=Xx! -2 [f At du| + 1EZ [f ((m;)2+(n;)2)du].

A use of Holder’s inequality then gives

P . . . .9
EY [G']-X! < 2 lomota 1M ooy + 3 11(m", 1) lomogany
. . . . 2
< 2l bmoll Gr2', n) [ lomo + 111", 1) Tomo
2
(V2= 11 omo )

where, again, the last inequality follows from Lemma 3. A Combination of the above
estimates shows that

>

T T

.. 2
|u||bmo+||(m‘,n’>||bmo)

DA = yAi_xi <
‘ ( V2= {1 lbmo

which completes the proof. O

Lemma 6 Suppose that A € bmo satisfies

V2= 1m0 Lo

||/l||bm0 < 2

Then, it holds that

v D e <
< (\/§+ ||(mi, ni)”bmo)”(miani)”bmo + ||/l||bm0(||/l||bmv + ||(mi’ ni)”bmo)
V2 =201 A lpmo = 111, 79 || o

In particular, the previous is also a bound for both ||,u’1’i [ pmo and ||v’l’i||bm0.

Proof SetY =Y, u=pu'and v = v! to increase legibility, and define

i 14 lbmo + ||(mi,ni)||bmo

V2 = 1| lbmeo

and D =Y — X. Note that Di. =0 and 0 < D' < (f7)? from Lemma 5. Since

dD} = (i = m)dB; + (v = n))dW; + % ((v))? = A7 + 24 A, = (m)* = (n})?) dit,
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an application of It6’s lemma gives
d(Dj)? =2D; (st —my)dB, +2D; (v; —n)dW,
+ D} (V) = A7 +24 Ay = (m})* = (n})?) dt
+((uh =m)? + (vi =n))?) dt.

Next, we take a reducing sequence (o,,), for the local martingales on the right-hand
side above, as well as and an arbitrary 7 € 7. If we integrate the above dynamics
between o, A T and o, and use the facts that (v/)> >0, 12 =24 A < (4’ — 1)?, and
D! > 0, we obtain

On X . X On . X )
(DL )* > (DL ) - (DL, ) zzf Di(u,—mb)dB, +2 D.(vi—n)dW,
TAO, TAO
O—H - - . .
—f D} (= 400>+ (mi)* + (n)?) dt
T/\O'n
b (i 02 an
TAO R

Given that D' < (f7)?, a projection of both sides above on 7, yields
[ (i =mi)* + o =ni)?) dt]
T/\O'n

f " ((ui—ﬂ)2+(mf)2+(n§)2)dt].

Yo s

E.[D} 1+ (f)E,

Sending n — oo first on the right-hand side then the left, helped by the facts that D’
is bounded and D; =0, implies that

. . . . 2 . . 2 . . 2
vy — ()P < ()2 (||u’ M+ ||(m’,n’>||bmo).

Taking square roots on both sides, and using the elementary inequality /x2 + y2 <
|x| + |yl for any x,y, and the fact that [|¢' — Alyme < G V) lbmo + 114 lbmes We
obtain

(') = 0mFn) o < F* (11U lomo + G Y lomo + 11672 o) -
Finally, since || (¢, v")llbm0 < |, v) = (m",ni)llbm0 +1|(mt, 7)) lpmo it follows that
(= O lomo < 1107 7 oo + 7 (11 A lomo + 11,1 oo )

from which the result follows after simple algebra. O

Define B(r) = {1 € bmo : ||A]|pmo < 7}. The following result shows that the
excess-demand map F maps B(r) into itself for an appropriate choice of r.
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Lemma 7 There exists a sufficiently small €* independent of the number of the agents
1, such that whenever max; ||(m',n)||pm, < V2€ for € < €, F maps B(2¢€) into itself.

Proof Suppose that max; ||(m’,n")||ymo < V2é€ for some € € (0, 1) determined later.

Let us consider A € B(\/_ 2ea), where a € [1,1/€) will also be determined later.

Our goal is to choose a sufficiently small e such that A[ut] € B(V2ea)for some

a € [1,1/€), whenever A is chosen from the same ball. If this task is successful,

given a > 1, Lemma 4 implies that all possible equilibria are already in the same

ball. Hence the local uniqueness immediately implies global uniqueness in bmo.
For A € B8(V2ea), Lemma 5 gives

0< D“<w— o(€,a).
—dae

Note that ¢ is an increasing function of both arguments. For Lemma 6 we need
¢ < 1. Therefore, only € € (0, 1) such that ¢(¢€,1) < 1 can be used, i.e., € € (0,1/3).
Taking € € (0,1/3) and a € [1,1/€), in order to have ¢(€,a) < 1, it is necessary and
sufficient that

1-
a< 2—; = a(e).
Note that @ is decreasing in € with a(0+) = co and a(1/3) =1, and that a(e) < 1/e

holds for all € € (0,1/3).
Now, in order to have ||u*||pn0 < V2ea, by Lemma 6 we need to ensure that

2(1+€)e+2ae*(l +a) < Ve
V2(1-2ae—-¢) B

or, equivalently, that
q(a,e) := 3ea® - (1-2¢e)a+(1+¢€) <0.

Fixa>1,saya= \/5, there exists a sufficiently small €* such that q(\/z €) <0 for
any € < €*. Note that the choice of €* is independent of the number of the agent /. For
such choice of €, we have || ,u"*’ [lpmo < 2€ for all i. As a weighted sum of individual
component, ||F[A]|lpmo < A[||;1’l||bm0] hence F[A] € B(2¢) as well. m|

Finally we check that F is a contraction on 8B(2¢) for sufficiently small e.

Lemma 8 There exists a sufficiently small €* independent of the number of the agents
1, such that whenever max; ||(m',n")||pmo < V2e for € < €%, F is a contraction on
B(2e).

Proof We drop the superscript i to increase legibility. Set §Y = Y4 — Y4, and note that
[|6Y|| g < oo from Lemma 5 and ¥ = 0. Set (1, v) = (u*, v*) and (jz, ) = (u, v?Y).
Denote A = (1+1)/2, i = (u+ f1)/2, and ¥ = (v +¥) /2. Calculation using (13) gives

doY; = (py = fir)dB; + (v = v)dWy + 5 (v =77 + X7 = A7 +2p1, 4, = 2, A, ) dt
= (i — ﬂt)dB, + (v — Vt)dW;V - (A= /lt)(/lt — fi;)dt,
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where B! = B + f()' Aedt, W9 =W + fo- #,dt are Brownian motions under Q*”, and
Q" is defined via dQ*” /dP = E(—A- B—v-W)r. For an arbitrary T € 7, integrating

the previous dynamics on [7,T7], taking conditional expectation ng on both sides,
(both local martingales are BMO(Q’W)-martingales, due to y, fi,v,v € bmo from
Lemma 6 and [22, Theorem 3.6]), and finally using 6¥r = 0, we obtain

- T
A7 ~ = _ - ~
16, | < EZ U | = el s = frldt | < 113 = llymogon 14 = Ulymogain

T

This implies that
||6Y| |S°° < ||/i - /1| |bm0(Q;ls‘7) | |/1 - j| |bm0(Q;‘s‘7)' (27)
To establish the Lipschitz continuity of F, we use Itd’s formula to get

d(8Y,)? =26Y, (s — fir)dB; +26Y, (v — 7)) dW = 26%,(A; = A1) (A, — fiy)dr
+ (e = i) + (v = 9)?) dit.

For an arbitrary T € 77, an integration of the above dynamics between 7 and 7', and
using (27) and 0¥ = 0, yields that

wl T
Eg [f <(,Ut_,at)2+(Vz_‘7t)2)df] <
T
Q/i,fz T ~ -
<2||0Y || s~E7 [f (A = A) (A — 3y )dt
T
= —12 =~ 2
< 2| |/l - /Jl |bm0(Q’i~‘7) ||/l - /1| |bmo(Q’L‘7)’
which, in turn, implies that

||(ﬂa V) - (,u’ V)“bmo(Qi") < \/5 | |/i - ﬁ| |bm0(Q’i«") 14— /il |bmo(Q7L‘7)'

Note that Lemma 6 and the estimates in Le_:mma 7 also imply that ||V||pme < 2€e, where
2e is taken from Lemma 7. Therefore, |[(A, ¥)|lpmo < 4€ and, similarly, ||A — fillpmo <
4e€. Therefore, it follows from Lemma 3 that

o~ 1+2V2e - -
(V) = (1) lpmo < ﬁmﬂﬂ = Allpmo 14 = Alomo
1+2V2e ~
< ————=— 8¢l = Albmo-
(1-2V2¢)?
Choosing sufficiently small € so that L2V2e g 1, the proof is complete after

(1-2V2e)?
aggregating all components. O
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Proof (of Theorem 2) We have shown in the sequence of lemmas above that, when
(24) holds, the excess-demand map F is a contraction on B(2¢) and that (u*,v*) €
bmo’. The Banach fixed point theorem implies that F has a unique fixed point A
with [|]|pmo < 2€. Therefore the system (14) admits a solution (Y, i, v) with (u,v) €
bmo!. Hence A is an equilibrium by Theorem 1. For the uniqueness of equilibrium,
Lemma 4 implies that any equilibrium A satisfies ||1||pmo < max; N, n) | lomo <
V2e. However, we have already shown that there can be only one equilibrium A in
B(2¢€). Therefore we immediately have global uniqueness of equilibrium. Given the
unique 4, by Lemma 1, (Y, &, v) is the unique solution to (14) with (u,v) € bmo’.O

3.5 Proof of Corollary 1
Summing both sides of [|Ef = E/ || < X0 ENE | + || E?||p) over J, we obtain

HE | = ||Egllys < ME' = 5 E/|l.e < 3 11EF = EY||po
< X()I||El||]L,°°+X() Z] |EJ||L°°

which implies
(L= XONE |le < HEsllo + XE L 5 E |-

Summing both sides of the previous inequality over i yields
ZillE e < e 1Bzl

The previous two inequalities combined then imply

||E || < - 2)(,: ]“EZ”LOO for all i.
Therefore
IIE [lLe |
i 6l < - 2/\/0 160||EZ|IIL°°

where the right-hand side is strictly less than (e*)?/4 for sufficiently large 7. Hence
(17) is satisfied when I > I, for some Iy, and the existence of equilibrium follows
from Theorem 2.

3.6 Proof of Corollary 2

Throughout the proof, we treat G as G — &€ and suppress the superscript i when we
work with each component.
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Recalling (6) and Remark 2, we have E[G?] < oo, which combined with the
assumption D?G, D" G € 8* implies G € D"2. Let G = E[G] + My, where My =m -
Br +n- Wy for some (m,n). Clark-Ocone formula implies that Eg[ Do G| = (mg, ng),
for any @ < T, hence (m,n) € 8 as well. As a result, there exists a constant C
such that (M)r < CT, implying that G has at most Gaussian tail by Bernstein
inequality (see Equation (4.i) in [2]), hence E[exp(—2G)] < co. Now combining the
previous inequality with D?G, D" G € 8%, we obtain exp(~G) € D"2, consequently,
V; = E,[exp(-G)] € D2 and

D{;V, = —E,[e‘GDSG] forall@ <t <Tand k =borw.

Applying Clark-Ocone formula to V; yields
t t
Vi =E[V/] +f Eq[ Dy V;1dBy +f Eo[ Dy Vi1dWy.
0 0

On the other hand, dVy = —VymgdBg — VgngdWy. Therefore ]Eg[DS Vi] = —Vymg and
Eg[ Dy Vi] = —Vgma, for 6 < 1. Hence,

Ey[D?V,] Eyle ®D:G
S olDy t]: ole Dy ]sllDbGIISw,
Vo Egle=©]

which implies ||m|| g~ < ||D" G|| g, and similarly, ||n|| g~ < ||D" G|| g
The statement now follows from Theorem 2 since, for T < T*, where T* is given
in Corollary 2, we have

.0 . ) )
max [ (m', ') [fpmo < T max(|lm’|[ s~ + 117l g)

< T* max(||DPG' || 3o + || D" G| 3) < (€97
L

3.7 An a-priori bmo-estimate

Lemma 9 (An a-priori bmo-estimate for a single BSDE)
Given 1 € P2, let (Y, 1, v) be a solution of the BSDE

dY; = pr dBy + v dW, + (3vZ =107+ Ay dt, Y = €.
IfY € 8%, then (u,v) € bmo.

Proof For 8> 1 and two stopping times 7 < o € 7, 1t6’s formula yields
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o
e_BY(r ZE_BY(T _e_BYT = —ﬁf e_’BYu (/ludBu +Vuqu)

T

o [on
—ﬁf e_ﬁY“(%v,%—%/li+/lu,uu>du+%ﬁ2f e_BY“(,ui+v,3)du
T T

ag ag
>-B f e PV (1, dBy, + v, dW,) + (B> - B) f e PV (it +v7) du,
T T

where we used the elementary fact that a? = b2 +2bc < a?+c2, forall a,b,c. We pick
a reducing sequence {0, },en for the stochastic integral above, project onto ¥, and
then let n — oo to get

PHIWls= > 182~ BYE [ [T e (12 +v2) dul

T
> %(ﬁz—ﬁ)e*ﬁ”y”swET[f (15 +v) dr].

This implies
’ 2
E, [f (yﬁwﬁ)du] < TP lls,
T :8 —
Since the above inequality holds for arbitrary 7 € 7, the statement follows. O
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Finite Markov Chains Coupled to General
Markov Processes and An Application to
Metastability I

Thomas G. Kurtz and Jason Swanson

Abstract We consider a diffusion given by a small noise perturbation of a dynamical
system driven by a potential function with a finite number of local minima. The
classical results of Freidlin and Wentzell show that the time this diffusion spends in
the domain of attraction of one of these local minima is approximately exponentially
distributed and hence the diffusion should behave approximately like a Markov chain
on the local minima. By the work of Bovier and collaborators, the local minima can be
associated with the small eigenvalues of the diffusion generator. Applying a Markov
mapping theorem, we use the eigenfunctions of the generator to couple this diffusion
to a Markov chain whose generator has eigenvalues equal to the eigenvalues of the
diffusion generator that are associated with the local minima and establish explicit
formulas for conditional probabilities associated with this coupling. The fundamental
question then becomes to relate the coupled Markov chain to the approximate Markov
chain suggested by the results of Freidlin and Wentzel.

1 Introduction
Fix £ > 0 and consider the stochastic process,
t
Xo(t) = Xs(0) - f VF(Xs(s))ds+V2e W (¢), 1)
0

where F € C3(R4) and W is a standard d-dimensional Brownian motion. For the
precise assumptions on F, see Section 3.1. Let ¢ be the solution to the differential
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equation ¢’ = —VF (¢). We will use ¢, to denote the solution with ¢,(0) = x. The
process X, is a small-noise perturbation of the deterministic process ¢.

Suppose that M = {x, ..., X, } is the set of local minima of the potential function
F. The points x; are stable points for the process ¢. For X, however, they are not
stable. The process X, will initially gravitate toward one of the x; and move about
randomly in a small neighborhood of this point. But after an exponential amount of
time, a large fluctuation of the noise term will move the process X out of the domain
of attraction of x; and into the domain of attraction of one of the other minima. We
say that each point x; is a point of metastability for the process X,.

If X is a cadlag process in a complete, separable metric space S adapted to a right
continuous filtration (assumptions that are immediately satisfied for all processes
considered here) and H is either open or closed, then ‘rg =inf{t>0: X(t) or X(t-) €
H} is a stopping time (see, for example, [8, Proposition 1.5]). If x € S, let 7¥ = T[)f”.
We may sometimes also write 7% (H), and if the process is understood, we may omit
the superscript.

Let

Dj={x€Rd:t1Lngc¢x(t)=xj} 2)

be the domains of attraction of the local minima. It is well-known (see, for example,
[9], [4, Theorem 3.2], [5, Theorems 1.2 and 1.4], and [7]) that as & — 0, 7% (DC )
is asymptotically exponentially distributed under P*i. It is therefore common to
approximate the process Xz by a continuous time Markov chain on the set M
(or equivalently on {0,...,m}). In fact, metastability can be defined in terms of
convergence, in an appropriate sense, to a continuous time Markov chain. (See the
survey article [15] for details.) Beltran and Landim [2, 3] introduced a general method
for proving the metastability of a Markov chain. Along similar lines, Rezakhanlou
and Seo [19] developed such a method for diffusions. For an alternative approach
using intertwining relations, see [1].

In this project, for each & > 0, we wish to capture this approximate Markov chain
behavior by coupling X, to a continuous time Markov chain, Y, on {0,...,m}. We
will refer to the indexed collection of coupled processes, {(Xg, Yz) : € > 0}, as a
coupling sequence. Our objective is to investigate the possibility of constructing a
coupling sequence which satisfies

P(Xe(1) € Dj | Yo(t) = j) = 1 3

as € — 0, for all j. We also want the transition rate for ¥z to go from i to j to
be asymptotically equivalent as £ — 0 to the transition rate for X to go from a
neighborhood of x; to a neighborhood of x;. That is, we would like

i Xi
E'lf ]~ E¥rye ] )
as € — 0, for all 7 and j, where B, (x) is the ball of radius p centered at x.

In this paper (Part I), we develop our general coupling construction. The construc-
tion goes beyond the specific case of interest here. It is a construction that builds
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a coupling between a Markov process on a complete and separable metric space
and a continuous-time Markov chain where the generators of the two processes have
common eigenvalues. The coupling is done in such a way that observations of the
chain yield quantifiable conditional probabilities about the process. This coupling
construction is built in Section 2 and uses the Markov mapping theorem (Theorem
19). In Section 3, we apply this construction method to reversible diffusions in R¢
driven by a potential function with a finite number of local minima.

With this coupling construction in hand, we can build the coupling sequences
described above. In our follow-up work (Part II), we take up the question of the
existence and uniqueness of a coupling sequence that satisfies requirements (3) and

.

2 The general coupling
2.1 Assumptions and definitions

Given a Markov process X with generator A satisfying Assumption 1, we will use
the Markov mapping theorem to construct a coupled pair, (.X,Y), in such a way that
for a specified class of initial distributions, ¥ is a continuous-time Markov chain
on a finite state space. The construction then allows us to explicitly compute the
conditional distribution of X given observations of Y.

For explicit definitions of the notation used here and throughout, see the Appendix.

Assumption Let E be a complete and separable metric space.

(i) AcC(E)xC(E).
(ii) A has a stationary distribution @ € P (E), which implies f g4 fdw =0 forall

feD(A).
(iii) For some m, there exist signed measures @y, ..., @, on E and positive real
numbers Ai,..., 4,, such that, foreach k € {1,...,m} and f € D(A),
[ arazi=-a [ ram. )
E E
@i (dx) = ni(x)w(dx), where nx € C(E), (6)
wir(E)=0. 7
We define wg = @ and 9 = 1. ]
Remark 1f (1,0) € 4, then (5) implies (7). O

Remark In what follows, we will make use of the assumption that the functions 7
are continuous. However, this assumption can be relaxed by appealing to the methods
in Kurtz and Stockbridge [14]. O
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Assumption Let E be a complete and separable metric space. Let 4 ¢ C(E) X C(E),
meN, Q e RUHDXm+D) ‘and gD £0m) ¢ g+l

(i) 4 and m satisfy Assumption 1.
(i) Q is the generator of a continuous-time Markov chain with state space Eop =
{0,1,...,m} and eigenvalues {0,—A1,...,—4;,}.
(iii) The vectors &V, ..., £ are right eigenvectors of Q, corresponding to the
eigenvalues —A1,...,—4;,.
(iv) Foreachi € {0,1,...,m}, the function

ai(x) =1+ ) &) ®)
k=1

satisfies a;(x) > 0 forall x € E.

We define £ = (1,...,1)7, so that the function @ : E — R™*! is given by a =
Zzn:of(k)nk- ]

Remark Given (A4, m,Q) satisfying (i) and (ii) of Assumption 4, it is always possible
to choose vectors &1, ..., £ satisfying (iii) and (iv). This follows from the fact
that each 7y is a bounded function. O

Definition Suppose (A4, m,0,&0, ... £0M) satisfies Assumption 4. For 0 < j #i <
m, define

a0 = 0y 5. ©)
Note that g;; € C(E). Let S = E X Ey. Define B C C(S) x C(S) by
Bf(x,i) = Af(x.0) + Z‘Iij(x)(f(x’j) - f(x.0)), 10)

j#i
where we take
D(B) ={f(x,i) = f1(x) f2()) : f1 € D(A), f2 € B(Ep)} (11)

In particular, 4 f(x,i) = f2(i)Af1(x).
For each i € E, define the measure (i, -) on E by

a(i,F):frai(x)m(dx), (12)

for all T € B(E). Note that by (8), (7), and (6), these are probability measures. O
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2.2 Construction of the coupling

We are now ready to construct our coupled pair, (X, Y), which will have generator B,
to prove, for appropriate initial conditions, that the marginal process Y is a Markov
chain with generator Q, and to establish our conditional probability formulas. We
first require two lemmas.

Lemma 1 In the setting of Definition 6, let X be a cadlag solution of the martingale
problem for A. Then there exists a cadlag process Y such that (X,Y) solves the (local)
martingale problem for B. If X is Markov, then (X,Y) is Markov. If the martingale
problem for A is well-posed, then the martingale problem for B is well-posed.

Remark We are not requiring the ¢;; to be bounded, so for the process we construct,

JX(@),Y(®) - f(X(0),Y(0)) —fo Bf(X(s),Y(s))ds

may only be a local martingale. O

Proof (Proof of Lemma 1) Let X(t) be a cadlag solution to the martingale problem
for A.Let {N;; :i,j € Eo,i # j} be a family of independent unit rate Poisson processes,
which is independent of X. Then the equation

Y(0)=k+ G -i)Ny ( | 1m(Y<s)>ql-,-(X<s>>ds) (3)

i#j

has a unique solution, and as in [12], the process Z = (X,Y) is a solution of the
(local) martingale problem for B. If X is Markov, the uniqueness of the solution of
(13) ensures that (X, Y is Markov. Similarly, 4 well-posed implies B is well posed.O0

Lemma 2 Let A satisfy Assumption 1. Taking ¥(x,i) = 1+ 3. qij(x) 2 1, if 4
satisfies Condition 17, then B satisfies Condition 17 with E replaced by S = E X Ey.

Proof Since D(A) is closed under multiplication, D (B) defined in (11) is closed
under multiplication.

Since we are assuming that R(4) ¢ C(E), for each f € D(B), there exists cr>0
such that |B f(x,i)| < cry(x).

Condition 17(iii) for 4 and the separability of B(Ep) implies Condition 17(iii)
for By.

Since 4 is a pre-generator and B is a perturbation of 4 by a jump operator, By is
a pre-generator. [}

Theorem Suppose A satisfies Condition 17 and (4, m, 0,&0), ..., £0) satisfies As-
sumption 4. Let B be given by (10) and for p; > 0, 372 p; = 1, define

v(Cx{i}) = pia(i,T), T e B(E).ie E.



298 Thomas G. Kurtz and Jason Swanson

IfYisa cadlag Ep-valued Markov chain with generator O and initial distribution
{pi}, then there exists a solution (X, Y) of the martingale problem for (B, v) such that
Y and Y have the same distribution on Dg,[0, o), and

P(X(1) €T | F¥) = a(Y(1).), (14)
forall# > 0 andall T € B(E). O

Proof We apply Theorem 19 to the operator B ¢ C(S)x C(S).

Lety : § — Ej be the coordinate projection. Let @ be the transition function from
Ej into S given by the product measure a(i,-) = a(i,-) ® 6{50, where (i, -) is given
by (12). Then @(;,y~'(i)) = 1 and

0= [ vt = [ wtinomdn =1+ Y05 <o
J#i

for each i € Ey. Define

= {(ff(z)a(-,dz),fo(z)a(-,dz)) :feD(B)} c R™ xR
N S

The result follow by Theorem 19, if we can show that Cv = Qv for every vector
v € D(C). Given f € D(B), let

1) = fs F)alidz) = fE Fi)ai,dx) = fE Fri)as (¥ @ (d).

Note that
Cr) = fE B (x.i)as (x) @ (dv).

Since Ap = 0, by (5) and the definition of ¢;;(x),

Cfi =~ Zf“‘uk [ reima@n+ Y05 [ a0 - s,

J#I

By assumption Q£ = ~ 1,60, so (" 14 = £ 0y and

(k) — AN (k) ;
Zf A [ feximan -2 200 | reuimecan)

m

05 [ feximan

k=0

J

I}
(=)

Qij | S(xDaj(x)w(dx).

J

I
)
o
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This gives

Cri=0u [ fixiatmdn)+ Y0y [ e i)
j#i
m
= >.041() = 01 ().
j=0
It follows that Y is a solution to the martingale problem for (C, p).
By Theorem 19(a), there exists a solution Z = (X, Y) of the martingale problem for

(B,v) such that Y =y(Z) and Y have the same distribution on DE,[0, c0). Theorem
19(b) implies (14). O

Remark In what follows, we may still write expectations with the notation £~ or
E', even when we have a coupled process, (X,Y). The meaning will be determined
by context, depending on whether the integrand of the expectation involves only X
oronly Y. O

3 Reversible diffusions
3.1 Assumptions on the potential function

We now consider the special case of our coupling when X is a reversible diffusion on
R4 driven by a potential function F and a small white noise perturbation. We will need
to use several results from the literature about the eigenvalues and eigenfunctions of
the generator of X. We assume the following on F.

Assumption (i) F € C}*(R?) and lim |00 F(x) = 00.
(ii) F has m+1 > 2 local minima M = {xq,..., X }.
(iii) There exist constants a; > 0 and ¢; > 0 such that a; < 2a; —2, and
cilx|4 = < |[VF (X)) < e31x]% +ca, (15)
c1lx|® = ¢y < (IVF(x)| = 2AF (x))? < ¢3]x]% + ¢a. (16)
Remark Note that 2 < a; < a,. To see this, observe that (15) implies a; < a,. Thus,
ay < ay < 2a; —2, which implies a; > 2. ]
Lemma 3 Under Assumption 10, there exist constants ¢; > 0 such that
Gilx| =G < |F(x)| < &x|™ +C, (17
where a; = a; /2 + 1.

Proof Since
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1
F(x):F(O)+f VF(sx)-xds,
0
it follows from (15) that
|F(x)] < [F(0)]+Ix](e3lx|® +c) ',

and the upper bound in (17) follows immediately.

Since F — oo, there exists C > 0 such that F(x) > —C for all x € R¢, and since
|[VF| — oo, there exists R > 0 such that |[VF(x)| > 1 whenever |x| > R.

Recall that ¢, satisfies ¢} = —=VF(¢y) and ¢, (0) = x, and define

T =inf{r > 0: [p.(1)] < R}.

Suppose there exists x such that 7, = co. Then, for all ¢ > 0,
t
~C<F(ea) = F+ [ TF(u(s)- () ds
0

= F(x)- fo IVF (g ()P ds
<F(x)-t.

Therefore, F'(x) > ¢t — C for all ¢, a contradiction, and we must have 7y < oo for all
x € R4,

Let L = sup,<g F'(x). By (15) and the fact that F* — oo, we may choose R" > R
and C’ > 0 such that F(x) > L and |[VF(x)| > C’|x|*/> whenever |x| > R’.

Fix x € R? with |x| > 2R’, so that F(x) > L. Since |¢y(Tx)| = R, it follows
that F(¢x(Ty)) < L. By the continuity of ¢, we may choose 7" € (0, 7] such that
F(¢x(T")) = L. We then have

.
L=F(x)+ fo VE(¢x(0)) - @ () dt

-
=P = [ I9F )l 0l dr
Let 7”7 =inf{t > 0 : |y (?)] < |x|/2}. Note that F(¢x(T")) = L implies |y (T")| <

R’ <|x|/2, and therefore T”” < T’. Moreover, for all t < T”’, we have |, (¢)| > |x|/2 >
R’, which implies

ap/2
TRz Clecor?z ()
Thus,

|x| ap/2 T”
LSF(x)_C'( 2) f \oL()] dt.
0
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But fOT” l%(2)| dt is the length of ¢, from ¢ =0 to ¢ = T, which is bounded below
by

(T = 0] 2 I O)] = e (T =[xl = 1 = ]

Therefore, for all |x| > 2R’, we have F(x) > C”|x|%/>*! —|L|, where C” =
271/2=1C "and this proves the lower bound in (17).

3.2 Spectral properties of the generator

Having established our assumptions on F', we now turn our attention to the diffusion
process, X, given by (1). To simplify notation, we may sometimes omit the . The
process X has generator 4 = eA—VF - V. To show that 4 meets the requirements
of our coupling from Section 2, we must prove certain results about its eigenvalues
and eigenfunctions. For this, we begin with some notation, a lemma, and two results
from the literature.

Define 7(x) = 7z (x) = e F)/228 et

A1 o]
V=Ve=—=SIVFP-  AF. (18)

Lemma 4 Let V. be given by (18), where F satisfies Assumption 10. Recall the
constants a; from (15)-(16). For all € € (0, 1), there exist constants c; ¢ > 0 such that

CLelx|® —coe < Ve(x) < c361X|* +che.
In particular, Ve — oo for all € € (0,1).
Proof Fix € € (0,1). By (15) and (16), for x sufficiently large,
c|x|™ < ([VF(x)| - 2AF)? < C|x|®,

and
clx|* < |VF(x)* < Clx|*,

for some 0 < ¢ < C < oo. Note that
4V = |VF|* =2AF = (|VF|-2AF) + (|[VF|* - |VF)).
Hence, for x sufficiently large, V;(x) < C;|x|2. Also,
1
Vi) 2, (el = Golx| ™).

Since a; > ay/2, it follows that for x sufficiently large, V;(x) > ¢|x|*'. Therefore,
there exist constants ¢; > 0 such that
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alx| =2 < Vi(x) < c3lx| + s,

and
Cilx|“ =& < |VF(x)|* < &)x|“ + 2,

for all x € R?. Note that

so that

1
N<Ves< Vit L IVFP
& & &

From here, the lemma follows easily. m|

The following two theorems are from [6]. Theorem 12 is a consequence of [6,
Theorem 4.5.4] and [6, Lemma 4.2.2]. Theorem 13 is part of [6, Theorem 2.1.4].

Theorem Let H = —A+ W, where W is continuous with /' — oo. Let A denote the
smallest eigenvalue of /, and i the corresponding eigenfunction, normalized so that
Wl 2@ay = 1. Define Uf =y f and H =U~'(H- )U. If

Glx|M =& < |W(x)| < &x|% +

where a; > 0, ¢ > 0, and @, < 2a; — 2, then e ! is an ultracontractive symmetric
Markov semigroup on L*(R4,y(x)? dx). That is, for each ¢ > 0, the operator e " is

a bounded operator mapping L2(R?,y(x)? dx) to L* (R, (x)? dx). o

Theorem Lete " be an ultracontractive symmetric Markov semigroup on L2(Q, p),
where Q is a locally compact, second countable Hausdorff space and u is a Borel
measure on Q. If u(Q) < co, then each eigenfunction of H belongs to L= (Q, ). O

This next proposition establishes the spectral properties of 4 that are needed to
carry out the construction of our coupling.

Proposition Fix € > 0. The operator H = —A + V. is a self-adjoint operator on
L?(R%) with discrete, nonnegative spectrum 2, k T oo and corresponding orthonormal
eigenfunctions Y. Each y is locally Holder continuous. Moreover, 1p = 0 is simple
and v is proportional to . We define u by u(dx) = 7(x)>dx and @ = Z~ 'y, where
Z = u(R¥). The operator H given by H f = n~'H(x f) is a self-adjoint operator on
L*(w) with eigenvalues Zk and orthogonal eigenfunctions 77x =y /7. The functions
% have norm one in L?(u), whereas the functions 77, = Z!/?7j; have norm one in
L*(w).
For f € C2(RY), we have —gHf = eAf-VF-Vf.Hence, if we define 4 by

A={(fi—eHf): f € CORY),

then 4 is the generator for the diffusion process given by (1). For each x € R9, (1)
has a unique, global solution for all time, so that the process X with X(0) = x is a



Finite Markov Chains Coupled to General Markov Processes 303

solution to the martingale problem for (4, ). The operator 4 is graph separable, and
D(A) is separating and closed under multiplication. The measure @ is a stationary
distribution for 4. Moreover,

[ardon = [ yaa

where @i (dx) = ni(x)w(dx) and A = s;fk. The signed measures @y satisfy
@ (RY) =0, and each 7, belongs to C(R?), the space of bounded, continuous
functions on R<. O

Proof Note that ' — co by Lemma 4. Therefore, by [18, Theorem XIII.67], we
have that H is a self-adjoint operator on L>(R¢) with compact resolvent. It follows
(see [6, pp. 108-109, 119-120, and Proposition 1.4.3]) that A has a purely discrete
spectrum and there exists a complete, orthonormal set of eigenfunctions {¥};
with corresponding eigenvalues ;l\k T c0. Moreover, /To is simple and y is strictly
positive.

Since V is locally bounded, and (-A+V — ;ik)lllk =0, [10, Theorem 8.22] implies
that, for each compact K ¢ R, y;, is Holder continuous on K with exponent y(K).

Define U : L*(u) — L*(R?) by Uf = nf, so that H = U™ HU. Since U is an
isometry, H is self-adjoint on L?(u) and has the same eigenvalues as H. Note that,
forany f € D(ﬁ ), it follows from Green’s identity that

B g = o f H ) oy = f V)P + f V(nf)

= [wanes [@nns= [ wane- [ vnvis.

Using the product rule, V(gh) = gVh + hVg, this simplifies to

(f,l?f)Lz(ﬂ):f(an|2.f2+2fn(Vf~V7r)+|Vf|27r2—|V7r|2f2—7r(V(f2).V7r))
=f(2f7r(Vf~Vﬂ)+IVflzﬂz—n(V(fz)Vﬂ))=f|Vf|2ﬂ2,

showing that H cannot have a negative eigenvalue. Hence, Ao > 0. _
By (17), we have 7 € L*(R¢), so that 7 € D(H) with Hr = 0. Hence, since Ao is
nonnegative and has multiplicity one, it follows that 19 = 0 and ¢ is proportional
torm.
Observe that, if f € C2°, then, using the product rule for the Laplacian and the
identity V' = An/m, we have

—f]f: _71rH(7Tf) = i(A(ﬂ'f)—Vﬂ'f) = 71r(fAn+2V7T-Vf+7rAf—fA7T).

Since 2eVr/n = —~VF, we have —eHf = sAf —VF -V f.
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Since VF is locally Lipschitz, (1) has a unique solution up to an explosion time (see
[17, Theorem V.38]). Since lim |y |0 £ = 00 by assumption and lim x| ,c0 AF(x) = 00
by Lemma 4.2, it follows that /' is a Liapunov function for X, proving that X, does
not explode.

By [13, Remark 2.5], A4 is graph separable. Clearly D(4) is closed under multi-
plication. Since D(A) separates points and R¥ is complete and separable, D(4) is
separating (see [8, Theorem 3.4.5]).

If f e C2, then

f Afdw =—e(LHf)2(0) = —&(HL [)12(c5) = O,

so that @ is a stationary distribution for A. For k > 1, since @y (dx) = ni(x)w(dx),
we have

fAfdwk = _3<77k»ﬁf>L2(w) = —€(ﬁl7ksf>L2(w) =-A ffdwk-

Also, @y (Rd) =Mk, 1) [2() = 0, since n and 7o = 1 are orthogonal.

Finally, since nx = Z'/?yy /m and ¢y is locally Holder continuous, it follows that
each 17; belongs to C(R9), and the fact that they are bounded follows from Theorems
12 and 13. O

3.3 The coupled process

By Proposition 14, the pair (4,m) satisfies Assumption 1 with E = R¥, so we have
the following.

Theorem Let A be the generator for (1) where F satisfies Assumption 10, and let
(-20,10), -, (—=Am,nm) be the first m + 1 eigenvalues and eigenvectors of 4. Let
Q e RO+ Dx(m+1) be the generator of a continuous-time Markov chain with state space
Ey=1{0,1,...,m} and eigenvalues {0,—211,...,—4,,} and eigenvectors §(1),...,§(’")
such that @; defined by (8) is strictly positive. Let B be defined as in Definition 6.

Let Y be a continuous time Markov chain with generator Q and initial distribution
p=(po,...,pm) € P(Ep). Then there exists a cadlag Markov process (X,Y) with
generator B and initial distribution v given by

v(I'x{i}) = pja(i,T’), Te B(Rd), (19)
such that Y and Y have the same distribution on DEg,[0,0), and
PUWET Y0 =)= [ oy @i, 0)
r

forall# > 0,all0 < j <m,and all T € B(E). O
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Remark That Q with these properties exists can be seen from [16, Theorem 1].
Remark 5 ensures the existence of the eigenvectors. O

Proof Note that under the assumptions of the theorem, (4, m, Q,f(l), .. .,.f(’”)) sat-
isfies Assumption 4. By Proposition 14, the rest of the hypotheses of Theorem 8
are also satisfied. Consequently, the process (X,Y) exists, and by uniqueness of the
martingale problem for B, (X,Y) is Markov. O

We can now construct the coupling sequences described in the introduction.
For each & > 0, choose a matrix Q. and eigenvectors fg), e ém) that satisfy the
assumptions of Theorem 15. If (X, ¥z ) is the Markov process described in Theorem
15, then the family, {(X,, Y:) : € > 0}, forms a coupling sequence.

The coupling sequence is determined by the collection, {Q,, g ... ,fém) 1e>0}.
By making different choices for the matrices and eigenvectors, we can obtain different
coupling sequences. In our follow-up paper, we will consider the question of existence
and uniqueness of a coupling sequence that satisfies conditions (3) and (4).

Acknowledgements This paper was completed while the first author was visiting the University
of California, San Diego with the support of the Charles Lee Powell Foundation. The hospitality of
that institution, particularly that of Professor Ruth Williams, was greatly appreciated.

Appendix

Let E be a complete and separable metric space, B(E) the o-algebra of Borel subsets
of E, and P (E) the family of Borel probability measures on E. Let M(E) be the
collection of all real-valued, Borel measurable functionson £, and B(E) ¢ M(E) the
Banach space of bounded functions with || flcc = sup, g | f(x)|. Let C(E) C B(E)
be the subspace of bounded continuous functions, while C(E’) denotes the collection
of continuous, real-valued functions on E. A collection of functions D c C(E) is
separating if u,v € P(FE) and ffdy = ffdv for all f € D implies y = v.

Condition (i) B c C(E)xC(E) and D(B) is closed under multiplication and
separating.
(i) There exists ¥ € C(E), ¢ > 1, such that for each f € D(B), there exists a
constant ¢ such that

|Bf(x)| <cpyp(x), x€E.

(We write B f even though we do not exclude the possibility that B is multival-
ued. In the multivalued case, each element of B f must satisfy the inequality.)
(iii) There exists a countable subset B. C B such that every solution of the (local)
martingale problem for B, is a solution of the (local) martingale problem for
B.
(iv) Bof =y~ 'Bf is a pre-generator, that is, By is dissipative and there are se-
quences of functions y, : E — P(F) and 4,, : E — [0,00) such that for each
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(f>8) € B,
g(X)=,}ggo/ln(X)L(f(y)—f(X))un(x,dy) (21

for each x € E. O

Remark Condition 17(iii) holds if By is graph-separable, that is, there is a countable
subset By, of By such that By is a subset of the bounded, pointwise closure of By,.

An operator is a pre-generator if for each x € E, there exists a solution of the
martingale problem for (B, 6). O

For a measurable Ey-valued process Y, where Ej is a complete and separable
metric space, let

7?,Y = completion of o (frg(Y(s))ds r<tge B(Eo)) Va(Y(0)).
0

Theorem Let (S,d) and (Eo,dp) be complete, separable metric spaces. Let B satisfy
Condition 17. Let y : S — Ey be measurable, and let @ be a transition function
from Ej into S (that is, @ : Eg X B(S) — R satisfies a(y,-) € P(S) for all y € Ey
and a(-,T') € B(E)y) for all T" € B(S)) satisfying fh oy(z)a(y,dz) = h(y), y € Ey,
h € B(Ey), that is, @(y,y~'(y)) = 1. Assume that /(y) = fs U(2)a(y,dz) < oo for
each y € Ey and define

C= {(fsf(z)a(-,dz),LBf(z)a(.,dz)) fe Z)(B)}.

Let 1 € P(Eo) and define v = [ @(y,-) u(dy).

a) If Y satisfies fot E[{p'(?(s))]ds < oo as. forall >0 and Y is a solution of the
martingale problem for (C, i), then there exists a solution Z of the martingale
problem for (B, v) such that Y has the same distribution on Mg, [0,c0)as Y =yo Z.
If Y and Y are cadlag, then ¥ and ¥ have the same distribution on D £, [0, 00).

b) LetTY ={¢:Y (¢)is 7%” measurable} (which holds for Lebesgue-almost every #).
Then fort € TY,

P(Z@t)eT | FY)=a(¥().T), TeB(S).

¢) If, in addition, uniqueness holds for the martingale problem for (B,v), then
uniqueness holds for the M, [0, o0)-martingale problem for (C, p). If Y has sample
paths in Dg, [0, c0), then uniqueness holds for the D, [0, oo)-martingale problem
for (C, ).

d) If uniqueness holds for the martingale problem for (B, v), then Y restricted to TY
is a Markov process. O

Remark 1f Y is cadlag with no fixed points of discontinuity (that is Y (¢) = Y(¢-)
a.s. for all 1), then F,¥ = F,Y for all 1. o
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Remark The main precursor of this Markov mapping theorem is [13, Corollary 3.5].

The result stated here is a special case of Corollary 3.3 of [11]. O
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Finite Markov Chains Coupled to General
Markov Processes and An Application to
Metastability 11

Thomas G. Kurtz and Jason Swanson

Abstract We consider a diffusion given by a small noise perturbation of a dynamical
system driven by a potential function with a finite number of local minima. The
classical results of Freidlin and Wentzell show that the time this diffusion spends in
the domain of attraction of one of these local minima is approximately exponentially
distributed and hence the diffusion should behave approximately like a Markov chain
on the local minima. By the work of Bovier and collaborators, the local minima can
be associated with the small eigenvalues of the diffusion generator. In Part I of this
work [10], by applying a Markov mapping theorem, we used the eigenfunctions
of the generator to couple this diffusion to a Markov chain whose generator has
eigenvalues equal to the eigenvalues of the diffusion generator that are associated
with the local minima and established explicit formulas for conditional probabilities
associated with this coupling. The fundamental question now becomes to relate the
coupled Markov chain to the approximate Markov chain suggested by the results of
Freidlin and Wentzel. In this paper, we take up this question and provide a complete
analysis of this relationship in the special case of a double-well potential in one
dimension.

1 Introduction

In the interest of self-containment, we will first recap the essential definitions from
Part I of this work [10]. Fix & > 0 and consider the stochastic process,

Xg(t)=X,S(0)—fOIVF(Xs(s))ds+\/23W(t), (1)
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where F € C3(R?) and W is a standard d-dimensional Brownian motion. Let ¢ be
the solution to the differential equation ¢’ = —-VF(¢). We will use ¢, to denote
the solution with ¢, (0) = x. The process X is a small-noise perturbation of the
deterministic process ¢.

Suppose F € C3(R) and lim|x|—e0 F(x) = 00, and that M = {xy, ..., x,,} is the set
of local minima of the F', with m > 1. The points x; are stable points for the process
¢. For X, however, they are not stable. The process X will initially gravitate toward
one of the x; and move about randomly in a small neighborhood of this point. But
after an exponential amount of time, a large fluctuation of the noise term will move
the process X out of the domain of attraction of x; and into the domain of attraction
of one of the other minima. We say that each point x; is a point of metastability for
the process X,.

If X is a cadlag process in a complete, separable metric space S adapted to a right
continuous filtration (assumptions that are immediately satisfied for all processes
considered here) and H is either open or closed, then Tg =inf{r>0: X(¢) or X(t-) €
H) is a stopping time (see, for example, [6, Proposition 1.5]). If x € S, let 7 = T[};}.
We may sometimes also write X (H), and if the process is understood, we may omit
the superscript.

Let

Ly:{xeRd%ggwﬂﬂzxﬂ )

be the domains of attraction of the local minima. It is well-known (see, for example,
[7], [1, Theorem 3.2], [2, Theorems 1.2 and 1.4], and [4]) that as € — 0, TXS(D;')
is asymptotically exponentially distributed under P*/. It is therefore common to
approximate the process X, by a continuous time Markov chain on the set M (or
equivalently on {0,...,m}).

In this project, for each &€ > 0, we wish to capture this approximate Markov chain
behavior by coupling X, to a continuous time Markov chain, Y, on {0,...,m}. We
refer to the indexed collection of coupled processes, {(Xg, Yz) : € > 0} as a coupling
sequence.

In [10], we developed a general coupling procedure that goes beyond the specific
case of interest here. It is a construction that builds a coupling between a Markov
process on a complete and separable metric space and a continuous-time Markov
chain where the generators of the two processes have common eigenvalues. The
coupling is done in such a way that observations of the chain yield quantifiable
conditional probabilities about the process.

We then applied this construction to the special case of a reversible diffusion on R?
driven by a potential function and a small white noise perturbation. We summarize
here the results in this special case. Assume there exist constants ¢; > 0 and ¢; > 0
such that a, < 2a; -2, and

c1lx|? = cr < |VF(x)[? < e31x]% + ¢4y 3)

c1lx| = ¢y < (IVF(x)| = 2AF (x))?* < ¢3]x|* +c4. 4)

Let
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A={(fi-eHf): f € CO(RY)}

be the generator for (1), and let (—A0,70), - - ., (— A, 71m ) be the first m + 1 eigenvalues
and eigenfunctions of 4. By [10, Proposition 3.7], the functions r; are continuous
and bounded. We may therefore choose a matrix, Q € R+Dx0n+D) “and vectors,
£ £ such that

(i) Q is the generator of a continuous-time Markov chain with state space Ep =
{0, 1,...,m},
(i) £® is a right eigenvector of Q with eigenvalue — Ay, and
(iii) for 0 <7 < m, the functions,

ai(x) =1+ ) (),
k=1

are strictly positive.

We then choose a probability measure, p = (po, . ..,Pm), on Ey, define the measure
v on R? x Eq by
v(Ix{i}) = pia(i,T), T eBRY), Q)

and let (X, Y;) be the cadlag Markov process on R4 x E, with initial distribution v
and generator,

() (f(x,)) = f(x,)). Q)

a;(x)
a;(x)

Bf(xi) = Af(xi)+ )0y

J#

Note that all of these objects (A, Ak, 1k, O, f(k), p, and so on) depend on &, though
this dependence is suppressed in the notation for readability.

By [10, Theorem 3.8], the process X solves (1), the process Y has generator Q,
and

P(X() €T V() = j) = fr o (x) @ (d), ™

forallf >0,all0 < j <m,and allT € B(E).

In this way, for each & > 0, we create a coupling, (X, Y:). We referred to the
indexed collection of coupled processes, {(Xg,Yz) : € > 0}, as a coupling sequence.
Our objective is to investigate the possibility of constructing a coupling sequence
which satisfies both

PX:(0)eDj | Ye()=)) — 1 (®)
and A
El [TjYS] ~ EXi [T;(j()(())] (9)

as € — 0, for all 7 and j, where B, (x) is the ball of radius p centered at x.

In the current paper, we consider this question in the case of a double-well potential
in one dimension. That is, suppose d = 1 and M = {xo,x;}, where xo <0 < x;. Let
F be decreasing on (—co,x¢) and (0,x1), and increasing on (xo,0) and (xi, o),
and satisfy F(xo) < F(x1). Then the domains of attraction are Dy = (—o0,0) and
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D = (0, 0). There are many possible coupling sequences, so for each such sequence,
we can ask if it satisfies any of the following:

P(X:(t)<0]|Y:()=0)—> 1, (10)
PX:()>0|Y:(t)=1) > 1, an
E'lt 1~ EMny )1 (12)
E°L)"] ~ Erye ) (13)

as & — 0, where 0 < p < x| A x1.
Let —A. be the second eigenvalue of the generator of X,. It is known (see, for
example, [12, 13] or [1, 2]), that in (18) and (19), we have

EpeXe e F Fo-Fee !
B, (X) ’” ” 1/2 >
O F7(0)F (x1)] Ae
2r
EX0 (F(0)-F(x0))/&
7, Bp(x1)] |F/I(0)F//(x0)|l/ze

Thus, (12) and (13) are equivalent to (36) and (37), respectively. Moreover, Theo-
rem 9 shows that, in our coupling construction, (10) is equivalent to the assertion
that, given Y (¢) = 0, the distribution of X (¢) is asymptotically equivalent to the sta-
tionary distribution, conditioned to be on (—co,0). Theorem 10 gives the analogous
equivalency for (11).

In Section 4, we will show that, in our coupling construction, (11) implies (12),
which implies (10), and (13) implies (12). We also show by example that there are no
other implications among these conditions. For example, we can couple X and Y, so
that (10), (12), and (13) are satisfied, but (11) is not. In other words, it is possible to
build the Markov chain with asymptotically the same transition rates as the process,
but the two do not remain synchronized, in the sense that (11) fails. Or, as another
example, we can couple the processes so that (10)-(12) are satisfied, but (13) is not.
In other words, we can have a coupling where the Markov chain accurately tracks
the diffusion, but the transition rates of the two processes are not the same.

In the case of the double-well potential, for fixed £ > 0, the dynamics of the
coupling (Xg,Y) are uniquely determined by two parameters, &1, and &> . (see
Lemma 11). If we identify coupling sequences whose parameters are asymptotically
equivalent as € — 0, then there is a unique coupling sequence satisfying (10)-(13).
Heuristically, we build this sequence by choosing the £’s so that @ ~ ¢;,= 1 p;. More
specifically, we choose them so that ag = —171/n71(c0) + 1 and @ = 771/|771( o0)| +
1. We then prove sharp enough bounds on the behavior of 77 to show that the
approximation @; ~ ¢;-1p; is sufficiently accurate.

The outline of the paper is as follows. In Section 2, we address the issue of
how the minima should be ordered so that they correspond to the eigenvalues of
the generator of the diffusion. This is a necessary prerequisite for attaining the
asymptotic behavior in (8) and (9). In Section 3, we specialize to the case of the
double-well potential in d = 1. We begin there with the study the structure of the
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second eigenfunction. In particular, we narrow down the location of the nodal point,
show that the eigenfunction is asymptotically flat near the minima, and establish key
estimates on the behavior of the eigenfunction near the saddle point. Then, in Section
4, we use these results to give a complete analysis of our coupling sequences for the
double-well potential.

2 Ordering the local minima

Heretofore, no mention has been made of the order in which the local minima,
M ={xp,...,xn}, are listed. No particular order is necessary in order to construct a
coupling sequence. But if that sequence is to exhibit the behavior in (8) and (9), then
the minima should be ordered so that they correspond with the eigenvalues of 4.

To describe this ordering, we first establish some notation and terminology. For
any two sets 4,8 C R4, define the set of paths from A4 to B as

P*(4,B) = {w € C([0,1];RY) : w(0) € 4, w(1) € B).

Given F : R4 - R, the height of the saddle, or communication height, between 4
and B is defined as _
F(A,B) = inf sup F(w(?)).
(4,B) wEP*(A,B);e[oﬂ] (w(@®))

The set of minimal paths from 4 to B is

P(A4,B)={w e P*(4B): sup F(w(t))=F(4,B)}.
t€[0,1]

A gate, G(4,B), is a minimal subset of {z € R? : F(z) = I?(A,B)} such that all
minimal paths intersect G(4, B). In general, G(4, B) is not unique. The set of saddle
points, S(4, B), is the union of all gates.

Assumption (i) For x,y € M, G(x,y) is unique and consists of a finite set of
isolated points {z7(x, y)}.
(i) The Hessian matrix of F is non-degenerate at each x € M and at each saddle
point z; (x, y).
(iii) The minima M = {xo,...,X,;} can be labeled in such a way that, with M =
{xo,...,xr}, each saddle point z*(xg, My—1) is unique, the Hessian matrix of
F at z*(xg, Mi—1) is non-degenerate, and

F(xj, M\ xi0) = F (xi0) < F(xiy M\ x0) = F(x7), (14)
forall0<i <k <m. [m}

We shall assume our potential function F satisfies Assumption 1, and that the
minima are ordered as in (iii).
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3 Structure of the second eigenfunction
3.1 Tools and preliminary results

From this point forward, we take d = 1. Note that en;/ — F'n; = —Axny for all
integers k£ > 0. We will make use of the fact that the eigenfunctions satisfy the
integral equations in the following lemma.

Lemma 1 For any k €N,

Mi(x) = ni(o0) — f f (F(V) F(”)) ne(u) dv du (15)

= n(—c0) — f f (F(V) F(”)) me@ydvdu.  (16)

Proof Fix k € N. Since ;. is bounded by Proposition [10, Proposition 3.7], we may
choose C; > 0 such that |5, (x)| < C) for all x € R. Now fix x € R. Since a; > 2, we
may choose @ € (1,a;1/2). By [10, Lemma 3.3], assumptions (3) and (4) imply that

Glx|% =3 < |F(x)] < Glx]% + 2, (17)

where @; = a;/2+ 1. It follows that lim,_c 1~ %e" ™/ = co. Also by (3), for u
sufficiently large, [u=@F’(u)| = Clu|*/>~® for some C > 0. Hence, by L'Hoptal’s

rule,
f"‘ F(v)/e dv 1

X

lim =— = 1i
u—oo (YeF(u)/s u—o0 —au*(aJrl) +u’aF’(u)

= Y

and so we may choose C, > 0 such that fxu eFWie gy < Cou e W/e for all u > x.
Therefore,

(F(V) Flu ))nk(u) dvduﬁClsz U™ *du < oo,
and so the right-hand side of (15) is well-defined.
Let
F F(u
=)= [ [Ter ( () - H )) i) dv du.
Then A . F F
x)—F(u
y'(x) = kf exp( () ())nk(u)du,
e Ji &

and

© F(x)-F
RVl B) ) PR TS
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Thus, ey” = F'y" = —Axnx = en}/ — F'n, so that y -y is an eigenfunction corre-
sponding to Ag. That is, y and n; differ by a constant. But y(co) = ng(c0), s0 y = nx
and this proves (15).

By replacing F with x — F(—x), equation (15) gives

Nk (=x) = ni(=00) — f f (F( il u))nk(—u)dvdu,

which gives

Nk (x) = ni(—o0) — f f (F(V/) F= u))nk(—u)dv'du

— i(=c0) - f f (F(v’) F(u’)) o) dv' dud

proving (16). O
We now assume that for some fixed Xy < 0 < X;:
(i) F is strictly decreasing on (—o0,xg) and (0,X1), and strictly increasing on
(X0,0) and (x1, o).
(i) F”(x0) >0, F”(0) <0, F"”(x1) > 0.
(iii) F(xp) # F(x1).
Then M = {Xo,x1} and m = 1. If F(Xo) < F(X1), then

F (%1, (o)) - F(F1) = F(0) - F(31) < F(0)~ F(%o) = F(%o,{%1}) - F(Zo),

which would imply x¢ = X¢, and x| = X7. On the other hand, if F(x}) < F(Xp), then
xo = x1 and x| = Xo. For now, we will not assume either ordering of the local minima,
so that our assumptions are symmetric under the reflection x — —x. Because of this,
results that are stated in terms of Xy can be applied to x| by replacing F(x) with
F(-x).

Let n =7 and A = 4;. By Courant’s nodal domain theorem [3, Section VI.6,
p-454], replacing n by —n if necessary, there exists » = . € R such that

<0 ifx<rg,
nx)s=0 ifx=rg
>0 ifx>rg.

It therefore follows from Lemma 1 that 7 is strictly increasing.
By [2, Theorem 1.2],

P (0)F" (x1)]?
B 2r

By [1, (3.3)], we have

e~ FO-F/e (1 L 02| logel)). (18)
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2
Xj X e N (FO-Fx))e
EV 7, )] O G ¢ iNle (19)

for 0 < p < |Xo| A|x1]. And the following special case of [2, Proposition 3.3] gives
us a way to estimate the shape of the eigenfunction.

Theorem Let h(y) = Py(T())(CO_EXO+E) <7X) and ¢(y) = [n(y)I/In(xo +&)|. Then
there exists C, a, &g > 0 such that

h(y) < ¢(y) < h(y)(1+Cs*?),
forall y < r. and all € € (0, &p). m|

To apply this result, we will use the following two lemmas, which formulate the
Freidlin and Wentzell results in our specific case.

Lemma2 Let a <a < Xg < b<b<0 and fix § > 0. Then there exists £y > 0 such
that

exp (?(F(a)/\F(b) —F(fo))) < EX[105 pye]
<ep( A F@A R0 - PR

foralla<x< bandall & € (0,&0). The analogous result also holds when 0 < a <
a<xy<b<b.

Proof By Theorem 18,~slogE"[T();’b)c] - L:=F(a)ANF(b)-F(Xp) as € = 0,
uniformly in x on [a,b]. Thus, there exists &y such that & € (0,gp) implies

elog EX[1(a,p)c] < (1 +6)L, which gives the upper bound. The lower bound is de-
duced similarly. O

Lemma 3 Let a <Xp <b<0or0<a<Xx; <b and define G = (a,b). Assume
F(a) # F(b) and choose y € {a,b} such that F(y) = F(a)V F(b). Then, for all
compact K C G and all y > 0, there exists £y > 0 such that

‘”‘P(‘W) < PR = ) Sexp(_IF(a)—i‘"(b)l—Y)’

forall x € K and all € € (0, &g).

Proof We prove only the case where a < Xy < b and F'(a) > F(b), so that y = a.
The proofs of the other cases are similar. We use Theorem 20, Proposition 21, and
Lemma 12. Note that, according to the discussion preceding Theorem 20, we have
Vo (x,y) =V(x,y) forall x,y € [a,b].

Fix x € K. In this case,

Mg =V ({xo}{a,b}) = Vg (Xo,a) A Vg (X0, b) = 2(F(b) - F(x0)),
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and

Mg (x,a) = min{Vg (X0, x) + Vi (x,a), Vo (X0, {a, b}) + Vg (x, a),
Ve (x,X0) + Vg (Xo,a)}
=min{2(F(x) - F(X0)) + Vi (x,a),2(F(b) - F(X0)) + Vi (x, ),
2(F(a)-F(x0))}

If a < x < Xp, then Vg (x,a) = 2(F(a)— F(x)), so that

Mg (x,a) = 2min{F(a) - F(xo), F (b) = F(x0) + F(a) = F(x0), F'(a) - F (X0)}
=2(F(a) - F(x0))-

If Xp < x < b, then Vg (x,a) = 2(F(a) - F(Xy)), so that

Mg (x,a) = 2min{F (x) + F(a) - 2F (%), F (b) + F (a) - 2F (X), F (a) - F (X0)}
= 2(F(a) = F(x0)).

Thus, Mg (x,a) — Mg = 2(F(a)— F (b)), and the result follows from Theorem 20.0

3.2 Location of the nodal point

Our first order of business is to identify an interval in which the nodal point (that is,
the zero of the second eigenfunction) is asymptotically located. The essential feature
of the interval is that it is bounded away from the minima as € — 0.

The statement of this result is Corollary 4. To prove this result, we need four
lemmas, all concerning stopping times of X.

Lemma 4 There exists R > 0 such that sup{Ex[T,)g] :x eR? g€ (0,1)} < co, where
K = Bg(0).

Proof 1In this proof, for » > 0, let o, = T(Iig()r] =inf{t>0: F(X(?)) <r}.
Choose Cj, C;, L > 0 such that

() V(x) = Cilx|*,
(i) Cilx|* < |VF(x)*> < Calx|*2, and
(iii) Cilx|“t < F(x) < Golx|2,

for all |x| > L, where a; are as in (17). Choose R > L such that

I:=(1V sup F(x),CiR"INN #0,

|x|<L

and choose b € 1.
Suppose w € {tx > t}. Then, f(_)r all s <t we have that | X(s)| > R > L, and so it
follows that F'(X(s)) > Ci|X(s)|*" > CiR* > b. Thus, w € {0 > t}, and we have
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shown that 7x < o, a.s. It therefore suffices to show that £*[o,] is bounded above
by a constant that does not depend on x or &.

Fix € € (0,1). Let r = a;/a; and C; = C1C;". We will first prove that if x € R4,
neN,and b<n< F(x) <n+1,then

E¥[o,] <2C5'n . (20)

Let x and n satisfy the assumptions. Using It0’s rule, we can write
t
F(X()=F(x)+ \/28M(t) - 28f Y(X(s))ds, P*-a.s.
0

where M(¢t) = fot VF(X(s))dW(s)andy =gV +|VF|*/(4¢). Let W(S) =M(T(s)),
where the stopping time 7'(s) is defined by T'(s) = inf{z > 0: [M], > s}. By [9,
Theorem 3.4.6], W is a standard Brownian motion, and M(¢t) = VT/([M 1¢). Moreover,
by [9, Problem 3.4.5], s < [M]; if and only if T'(s) < ¢, and [M]r(s) = s forall s > 0.
Let 1
W(t)=W() Ve t

and define o, = T(‘ﬁinW_F(x)J =inf{t > 0: W(r) < (n—F(x))/V2e}. We will prove

that [M],, < 7, a.s. Note that

(T < Ml b= ({s < [M]a,lm{ﬁ/(s) < ”:/—F(x)})

seQ 2e
= Lé ({T(s) <onln {W([M]T(s)) < _\ZS) }) :

On the event {T'(s) < 0}, we have, for all u < T'(s),

F(X(w)>n=>b> sup F(x), 21)

Ix|<L
where the first inequality comes from the definition of o,. It follows that | X (u)| > L.
Thus, by (i), we have V(X (u)) > 0, and so ¢ (X («)) > |VF(X(u))|?/(4¢). Hence,
1 T(S)
n < F(X(T(s))) < F(x)+V2eM(T(s)) - 5 f |VF(X(u))|? du
0

~ 1
= F(x) + V26 WB(IMlr(s) =, [Mlr (s
= F(x) + V2 W([M]z(s))-

Therefore, VT/([M]T(S)) > (n—-F(x))/V2ea.s.onthe event {T(s) < o, }, which shows
that P(o, < [M]s,) =0.
Note that for all |x| > L, we have
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IVF(x)? > Ci|x| = Ci(|x]2) /% > €y (C5 ' F(x) /% = GF (x)".

Thus, as in (21), we obtain

g,

oy > [Mlo, :f ’ IVF(X ()| du > C3f nF(X(u))rdu > Cn' oy
0 0

Hence, using [9, Exercise 3.5.10], which gives the Laplace transform of o, we have
EX[0,] < G\ EX[G,] = 2G5 'n 7 (F(x) —n) <2C5'n ™,

which proves (20). It now follows by induction and the Markov property that

n
E¥op] <265 )

Jj=b
whenever b < n < F(x) < n+ 1. Since
a _a2+1< 2a1—2+1_
az = ) 3 =a,

it follows that » > 1. Hence, Cy4 := Z‘;":bj" < 00, Since o =0, P*-a.s., whenever
F(x) < b, we have that E¥[0] < 2C5'Cy for all x € RY. o

Lemma 5 Let x < Xo. Then there exists g9 > 0 such that
sup{E”[tX]: y < x,& € (0,80)} < 0.

Proof Choose R > |x| as in Lemma 4, so that there exists C; > 0 such that EY [TE(R] <
Ciforally < —Randall € € (0,1).

Suppose —R < x <¥gand & € (0,1).LetJ = (-R—1,x). Since 7. < 7X P R.as.,
the strong Markov property gives

— — _ X _ —_R-
ER[f] = ERge )+ ETREX T )] = ETR 0] + poE R ),

where p, = P~R(X (Tj{. ) =—R—1). Also by the strong Markov property and Lemma
4,
ER ) = R+ ET R < O+ ETR AL
Thus,
ER[rX 14 p.C)
1=pe '
By Theorem 19, there exists C; > 0,7 > 0, and &g € (0, 1) such that for all € € (0, &9),

ERtX] <

0 0 2
) E

E—R[r}i]=f P(t} >t)dtsT+f e 'CZ("T)dtsT+C0 = .
0 T 2
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Choose 0 < r < |xp| such that F(xo+7) < F(~R—1), and choose y < F(-R—1)—
F(xp+r). By Lemma 3, making &y smaller, if necessary, we have

F(-R-1)-F(X -
pgSP?R(X(T({R—liwr)c):_R—l)ﬁexp(— ( )= Flxo+1) y)’

&

for all £ € (0,&p). By making &y even smaller, if necessary, we have p. < 1/2 for all
g € (0,&9). Thus,
ER[tX1<2C+C = Cy,

for all € € (0,&).
Now, if y < —R < x < x¢, then

E[tf1= B[+ E R < o+ G,
for all £ € (0,&p), and if —R <y < x < xg, then
Cy > ER[eX1= ER[zf1+ B [7] > B[],
for all € € (0,&). O

Lemma 6 For all xo < x <0 and all § > 0, there exists C > 0 and &g > 0 such that
forall 0 < & <ggandall y < x, we have

E’[t¥]1< Cexp (?(F(X) —F(fO))) :

Proof Suppose X < x <0 and fix § > 0. Choose R > |Xo| as in Lemma 4, so that
there exists C; > 0 such that Ey[Tf(R] < Cjforally <—Randall ¢ € (0,1). By making
R larger, if necessary, we may assume F'(x) < F(-R—-1). Let J:=(-R—1,x). As
in the proof of Lemma 5,

ER[TX]+p:C1

ER[X1 <
1_p£

X s

where p, = PR(X(75.) = =R —1). Using Lemma 3, we may choose & > 0 such
that p, < 1/2 for all € € (0, &p), giving

EReX1<2E Rz 1+ C).
As in the proof of Lemma 5, if y < —R, then
E[tX] = B [0+ ER[eX 1 < E RN+ €,
and if —R <y, then
E X1 < E R+ B[] = E R X1 < ER N1+ .

Thus,
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E [X]1 < 2E7R[rX1+2C,

forall y < x and all € € (0,&).
By Lemma 2, making & smaller if necessary, we have

EReX] < exp (%(F(x) —F(fo))),

for all € € (0, &), which proves the lemma with C =2 +2Cj. O

Lemma 7 Let @,,(dx) = [7(x)|1(—co,r.)(x)@(dx) and @ = wn((—m,rg))_lw,,. It
then follows that Pz%(‘rr}i >t)=e forallt > 0.

Proof Let I = (—co,r,). Let X! denote X killed upon leaving I. Note that X7
with X7 (0) = x solves the martingale problem for (47,6), where AT = {(f, Af) :
f € CZ(R), f(r) =0}. Choose ¢, € CZ°(R) such that 0 < ¢, < 1, ¢,(r) =0, and
¢n — 17 pointwise. Then

PP (1 > 1) = PP(X" (1) € 1) = EZ[1;(X" (1)] = lim ha (1),

where A, (t) = Eﬁ[tpn(XI(t))]. Let P! f(x) = EX[f(X"())]. Fix t > 0 and let ¢, =

P!p,. Then
1
hnt = IldA=_ n d 5
0= [ wnde w,,<1>f,“ -
so that
== [ deomdo=-_| [ @u-roma
" @y (1) Jr n @y (1) Ji " n )i

1 7 ’. ! —_ /1 _ —
=_7U77(1) ﬁwn(sn -F'n)ydo = @y (D) j;z//nndw— Ahy(1).

Thus, /,(t) = h,(0)e™¥. Note that 4, (0) = f,QDn do > @) =1asn— oo It
therefore follows that P? (7, > t) = e . o

Theorem Let x € (X0,0) satisfy F(x)—F(xo) < F(0)— F(x1). Then there exists
&0 > 0 such that for all 0 < & < g(p, we have x < rg. ]

Proof Choose 6 > 0 such that (1+6)(F(x)—F(xp)) < F(0)— F(x1). By Lemma 6,
there exists g9 > 0 and C; > 0 such that

E'[t¥1< exp(lz—é(F(x)—F(fo))),

forall € € (0,&0) and all y < x. By (18), there exists a constant C, > 0, not depending
on &, such that 1 < Ce~FO-Fx))/2 By making &g smaller if necessary, we may
assume

log(C1Cy) < F(0) = F(x1) = (1+6)(F(x) - F(X0)),
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for all € € (0,&p).
Fix & < &9. Suppose 7z < x. By Lemma 7,

&' ep( L) -Fe) <4t =710 [ i1z

00

< frs E’[tX1@(dy) < sup E*[tX] <sup EX[t¥] < Crexp (:ﬁ(F(x) -F(o)|,

= y<re y<x

which implies

(F(O)—F(X1)— (1+6)(F(x) = F(X0))
exp

) <G,
£

a contradiction. O

Corollary Suppose F(x() < F(X1), so that xo = X and x; = X]. Choose & € (x0,0)
such that F(¢) — F(xg) = F(0) — F(x1). Then for all 6 > 0, there exists &9 > 0 such
that v, € (£ —-0,0) forall 0 < € < gg. O

Proof Without loss of generality, we may assume & — ¢ > xo and § < x;. Taking
x =& -6 in Theorem 3, we may choose &; such that £ —§ < r. for all € < ;. For
the upper bound on 7., we apply Theorem 3 to x — F'(—x). In this case, the theorem
says that if x € (—x1,0) satisfies F'(—x) — F(x1) < F(0) — F(x0), then there exists
&7 > 0 such that x < 7 for all & < &, where 7; is the nodal point of x — —n(-x),
that is, 7 = —r. Taking x = —§ and &9 = &) A &; finishes the proof. O

3.3 Behavior near the minima

Corollary 4 divides the domain of the second eigenfunction, 7, into three intervals:
two infinite half-lines that each contain one of the two minima, and a bounded
interval separating the half-lines that contains the nodal point. Our next order of
business is to show that 7 is asymptotically flat on the infinite half-lines. Theorem 5
gives this result for the half-line containing xo. Applying Theorem 5 to x — F(—x)
gives the result for the half-line containing X .

We begin with alemma. Recall aj, a; and ¢;, ¢; from (3), (4), and (17). In applying
this lemma, note that

a~2_a2+2< 2ay ai
5] _a1+2 a1+2 2’

where the first inequality comes from a; < 2a; — 2 and the second from a; > 2.

Lemma 8 Let x € (X0,0). Suppose p satisfies
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Then there exists uy < —1 and C > 0 such that
X
o F)e f FOVE gy < Celul P12,
u

forallu < uy and all € > 0.

Proof Choose t < X such that F(¢) = F(x). Using (3), we may choose uy < —1 and
C’ > 0 such that

(i) —luolP <1,
(i) F(8) > 0and |f’(9)| > C’|9|“1/~2, for all 8 < —|ug|”, and

(iii) EluP® @ < 621 and Gy — & < 641 |, for all u < up.
Let G(u) = fux M7= gy and Hu)= eF/e Fix y <ugandlet v = —|u|P < —|ug|P.
Note that u < v.
By Cauchy’s generalized law of the mean,
Gw)-G(v) _ G'(0)
Hw)-H®W) H'(6)

for some u < 8 < v. From this, we get

Gw) _GO) G'(9) (1 B H(V))
H@w) H@u) H' () H(u)
_ G(v)+ £ (1_H(v))
H(u) |F(0)l H(u)
G(v) £
< + .
T H@u) |F(9)l

By (ii),
& & P &
< < = .
|F’(9)| Cr|9|a|/2 C’|V|“‘/2 Cl|u|pa1/2
It therefore suffices to show that
G(v) <
H(u)

C"elul P42, (22)

for some constant C”” that does not depend on u or €.
By (17),

F(v)=F(u) < Gv|®2 +e-cilul™ -

= @lul" ™~ Gl + 8- 8 < =l
where the last inequality comes from (iii). By (i), we have v < ¢, so that F'(v) > F(w)
for all w € (v, x). Hence,



324 Thomas G. Kurtz and Jason Swanson

GO _ fx S FON-F@)/e gy < |y FO)-Fu)/e
H@w) J,

< |ul? exp (— “ Iulal)
4e
1 _ T -
= (slul_p“‘/z) Iulpa‘exp(— €l Iul‘”).
& 4e

Since x — xPe~€1*/4 is bounded on [0, 00), this proves (22). O

Theorem Let x € (X0,0) satisfy F(x)—F(xg) < F(0)— F(x1). Then there exists
C > 0 and gg > 0 such that for all 0 < € < &,

| 1)
‘ 17(=00)

< gexp(—i(F(O)—F(xl)—F(x)+F()70))). (23)

Proof Again by (18), there exists a constant C; > 0, not depending on &, such that
1< CleFO-F@x))/e,

Let &g be as in Theorem 3, and let € € (0, gp). Choose ¢ < X¢ such that F (1) = F(x).
By Theorem 3, x < r.. Since 7 is increasing, n(u) < 0 for all # < x. Therefore, by

(16),
o B T
0<n(x)—n(-00)= . e ()| dv du

/l X X
< e |77(—°<’)|f f eFO=F@Ie gy .
—00 u

Thus,

‘1_ nx) | 4 fx fx SFO-F@)/e gy
'7(_00) € J-coJu

Ci _(FO)-F(x Y re-
<G /e FOIEWe gy gy, (24)
& —ooJu

Choose p as in Lemma 8. Then there exist ug < 0 and C; > 0 such that

uo X
f f FWFWN/e gy gy < Cye,
—00 u

where C3 = G lug|'"P%/2/(pa;/2 - 1). By the proof of Lemma 8, we have ug < 7,

and so ¢ t
f f eFW-Fw)/e g\, 1, < f (x—u)du< Iuo|2~
wo Ju up
Lastly,

f } f " S FOF@)/E gy, gy < f * f " A FO-F G gy du < o P FO-FGoe.
t u t

u
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Thus,

X X
f f SFO-F@IE gy iy < Cye+ ol + g PeF@-FGo/e
—00 u

< CuelFOI-FGo)/e,

where Cy = (Czgp + Iuolz)e’(F(x)’F(’a)))/s" + |uol?. Finally, combining this with (24),
we obtain (23), where C = C1Cy. m|

3.4 Behavior near the nodal point

From this point forward, for definiteness, we assume F(Xo) < F(X1), so that xo = X
and X1 = X 1.

Having shown that 7 is asymptotically flat near the minima, we would now like to
show that it behaves, weakly, like a simple function that is constant on the domains of
attraction defined in (2). That is, we want to show that f D, dw ~ n(xo)@ (Do) and

fDl ndw ~ n(x1)w@w (D). (Note that we cannot use Theorem 22 since 1 depends on

£.) Combined with f ndw =0, this would give us the relative magnitudes of 77(xo)
and 7(x1). By Theorem 5, this is equivalent to understanding the relative magnitudes
of n7(—o0) and (o), respectively.

Lemma 9 Choose 6 € (0,x1) such that £ =6 € (x0,0). Let k be a positive integer and
let g : R — R be bounded. If g is continuous at xo and x1, then

= 2rne
f g(xX)n(x) e FDE dx ~ g(x0)In(—00)[*y [ o e F0/E - (25)
—oo F”(x0)

and

s 2
f 2 Fe O dx ~ g(x1)n(00) 'y [mme— e P02 (26)
5 F(x1)

as € — 0.

Proof By writing g = g* —g~, ¢ and g~ nonnegative, we may assume without loss
of generality that g is nonnegative. By Corollary 4 and the fact that r is increasing,
we have that, for & sufficiently small, [57(x)| < |57(—c0)]| for all x € (—=o0,& —6). Thus,

£-6 £-6
f g(x)m(x)lke—F(X)/de < |77(_°°)|kf g(x)e—F(x)/sdx.

Similarly,
£-6 £
[ smite e g et [ gt e d.

o —00



326 Thomas G. Kurtz and Jason Swanson

Hence, by Theorem 5,

&6 £-5
f g(X)In(x)l"e‘F"‘)/sdmIn(—oo)lkf g(x)e P2 gy,

o —00

By Theorem 22, this proves (25). Replacing F' with x — F(—x), Theorem 5 shows
that 77(0) ~ 17(o0). Thus, the same argument can be used to obtain (26). O

Lemma 10 There exists 59 > 0 such that for all 6 € (0, 6p),

5 £-6 o0
f n(x)e F&/e gy = o(f In(x)|e”F¥/e dx+f In(x)|e F/e dx),
3 - S5

_6 [e]
as € — 0.

Proof Without loss of generality, we may assume F(xp) = 0. Let y = (F(0) —
F(x1))/4 > 0. By the continuity of F, we may choose &y > 0 such that F'(—dp) >
F(x1) and

F(=6/2)=F(xo—6)—=F(x1) > 2y, 27

for all 6 € (0,8p).
Let ¢ € (0,60) be arbitrary. By Theorem 2 applied to x — F(—x), there exists
¢’ > 0and 0 < gy < x| such that

()| < (1+8")n(x1 —&)|PX(rF_, < 7),

for all x € (£ -6,—-6)N (re,0) and all € € (0, &p). For any such x and &, since X is
continuous and
X0—0<rg<x<-0/2<x1-¢

it follows that on {tX__ < 7X

X
X|—& re <T

X
P P*-a.s. Hence,

X
}, we have s

NGOl < (148 (e = IP* (% < Ty,

By making g( smaller, if necessary, and using Theorem 5 applied to x — F(—x),
this gives

()] < (1+6")In(e0)|PX(x%5,, < T _s),
forall x € (£ —-0,-0)N(rg00) and all € € (0,&p). By (27), we may apply Lemma 3,
so that by making &p smaller, if necessary, we obtain

el < (0P nlexp (=L (F-12)-Fo=0)-20)) (9

forall x € (6 -0,-0)N(rg00) and all € € (0,&p). By (27), for fixed x € (£ —-9,-d) N
(rg,00) and € € (0,&0), we may write

[7(x)] < (1+6")*n(c0)|e”FxD/E,
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For fixed x € (—oo, 7], by the monotonicity of i, we have |[n(x)| < [(—o0)|. There-
fore, for all x € (£ —6,—6) and all € € (0,&¢), we have

In(x) < (1 +5,)2(|T](—oo)| + |7](oo)|e’F(x1)/8).

By Proposition 23, after making &¢ smaller, if necessary, we have

-5 -6
f In(x)le™F Ve dx < (1+6")(In(—00)| + I (c0)|e™F1)/%) f e F/e gy
&-6 &£-6

&

< (148 (In(=eo)| + I (eo)le™ V) s,

(29)
Let m = min{F’(¢ - 6), F'(-=6),|F’(6)|}. Choose ¢ € {—6,6} such that F(c) =

F(=6) A F(6). By Proposition 23, by making g9 smaller, if necessary, we also
have

9 0 o
| |n<x>|e-”x>/€dxs(|n<—oo>|+|n(oo)|)( [ erera [ e—F<x>/edx)
-0 -6 0
2
< (1+8)(In(=o0)| +In(eo))) "o /e
2
< (146 (I (=20) + In(o0) e~ /) ™ (30)

Combining (29) and (30) gives

o
f |n(x)|e‘”x>/8dxs(1+6’)3(|n<—oo)|+|n(oo)|e‘”x‘>/8)38. 31)
§-6 m

Using Lemma 9, again making g¢ smaller, if necessary, we have

5
[ meerreore ax
&

-5
F &-6
< (1+6’)4<w/—(x0)f In(x)le F O gy
2re e

F7 © 3
el f |n<x>|e‘“x>/8dx) ’
g

2re m
L 3821+ 8 VF (xo) VF (x1)
- m
£-6 00
x( f ()™ dx + f ()l dx),
—o0 K
which completes the proof. O

Remark Although we have narrowed down the location of the nodal point, 7, to the
interval (¢ — 6, 0), the work in [8] suggests that the nodal point actually converges to
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&. Moreover, the caption to [8, Fig. 3], states that a step function with discontinuity
at £ is a candidate limit for n as € — 0. However, (28) shows that n(x) = o(1(0))
for all x < 0. In fact, together with Theorem 5 applied to x — F'(—x), it follows that
n/n(00) = 1(0,c0), pointwise on R\ {0}. O

n()  JFX) re)-Fooye
[7(=00)] F"(x0) ’

ase — 0. ]

Proposition We have

Proof Choose ¢ such that Lemma 9 and Lemma 10 hold. Let

f_(s ;:_5
Kl,e =f n(x)e—F(x)/s dx = _f |n(x)|e—F(x)/g dv,

o —00

K& :f n(x)e F&I2 gy :f In(x)|e F&e gy,
5 5
5
K36 :f n(x)e F&/e gy
£-6

Since fRn(x)e’F(")/‘s dx =0, we have that |« ¢| = |k2,¢| + k3. By Lemma 10, we
also have that k3 = o(|k1,¢| + [K2,£]).
Since k3¢ = o(|k1,c| + |k2,£]), there exists €9 > 0 such that |k, ¢| + [k2,¢| > 0 and

|K3,£|
|K1,£|+|K2,s|

s

for all € € (0,&0). Hence, for any such &, we may write

(eRherr)

Kieltlkael) 2K3,6 _ K3e

1_(“—~5) kel +k2el — k36 K2 el
‘Kl.s|+|’<2.s|

which implies k2| > 0 for all such &, and also shows that «3./|k2¢| = O as
& — 0. Therefore, |k ¢c|/|k2,c] = 1+ k3.¢/|k2,6| = 1 as € = 0. Thatis, |k ¢| ~ |k2.¢l.
Applying Lemma 9 finishes the proof. O

In the following theorem, we improve the results of Lemma 9 in the case k£ =1,
to extend the intervals of integration to include the entire domains of attraction.

Theorem If g € L*°(R) is continuous at x( and x1, then

0
f ()T dx ~ g (x)n(—oo) | xE— o F0E (32)
oo F”(X())

and
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fo g (x)eFe gy ~ g(xl)n(oo)‘/m F(x)/e, 33)

as € — 0, provided the integrals exist for sufficiently small £. Consequently,

f gndw ~ (g(x0) - g(x1))(~o0), (34)

ase — 0. ]

Proof Without loss of generality, we may assume F(xg) = 0. Choose § so that
Lemma 10 applies. By (31) and Proposition 7,

0
[ ewmeererea
£-6

"4 Fr(x1) 6
< llglleo (1 +6%) (1 + F,,(x0)>lfl(—°°)| m’

for & sufficiently small, where m = min{F’ (& =), F’(=6),|F’(6)|}. Thus, to prove

(32), it suffices to show that

-6 >
f_ g(X)m(x)e e dx ~ g(xo)n(—0) %

But this follows from (25) with k£ = 1 and the fact that < 0 on (—o0,& - §).
Using Proposition 7, to prove (33), it suffices to show that

0 2
f g% dx ~ —g (x)(=00)y |
0 F"(x0)”
As above, by (31) and Proposition 7, it suffices to show that
* —F(x)/e 2re
g(x)n(x)e dx ~ =g(x1)n(=e0) :
5 Fll(xo)

But this follows from (26), Proposition 7, and the fact that > 0 on (8, o). Finally,
combining these results with Proposition 7 and Theorem 22, we obtain

n(—e0)! f gndw > g(x0) ~g(x1),

ase — 0. O
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4 Asymptotic behavior of the coupled process

Recall that we are assuming F is a double-well potential in one dimension, with
x0 <0 < x; and F(xo) < F(x1). Here, the x;’s are the local minima and O is the
local maximum.

Our construction of the coupling is dependent on our choice of Q € R?*? and
& = ¢W in the coupling construction outlined in the introduction (see [10, Theorem
3.8] for more details). We begin with a lemma that characterizes all the admissible
choices for Q and £.

Lemma 11 Let £y,&1 € R. Define a; = A& /(€5 —&1-j). Then
_[~a0 ao
o= (i %)
is the generator of a continuous-time Markov chain with state space Eg = {0,1},
eigenvalues {0,— 2}, and corresponding eigenvectors (1,1)T and & = (£1,&)T satis-
fying a; = 1+&n > 0if and only if the following conditions hold:
1 1
(i) ——) <& < | ,for j =0,1, and
n

V(e (—o0)|
(ii) €01 < 0.

Proof Note that the a; are defined precisely so that O has the given eigenvalues and
eigenvectors. Also, a; = 1 +&;n > 0 if and only if (i). And the a; are both positive
if and only if (ii). ]

For any such choice of ¢ as in Lemma 11, we obtain a coupled process (X,Y)
with generator B given by (6) and initial distribution v given by (5). This process is
cadlag, X satisfies the SDE given by (1), Y is a continuous-time Markov chain with
generator Q, and, by (7),

P(X(1)eT|Y(t)=J) = fr @ (x) w(dx) = w(T) +&; j; n(x)@(dx),  (35)

for j = 0,1 and all Borel sets I € R. Recall that @ = u(R) ™! prand p(dx) = e /2 gx.
For each fixed € > 0, we may choose a different £. Hence, all of these objects, in
fact, depend on €. We will, however, suppress that dependence in the notation.

Theorem The following are equivalent to (10):

(@) & =o(In(-e0)|")ase — 0.
(b) Elg(X(#)|Y(t)=0]-E%[g(X(0))| X(0) <0] > 0ase—0, foreacht >0
and each bounded, measurable g : R — R that is continuous at xo and x;. O

Proof Note that
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E[g(X(1)) | Y(1) = 0] - E¥[g(X(0)) | X(0) < 0]

0
=fg(X)(l+§o'7(X))W(dX)-W((—OO,O))_l[ g(x) @ (dx).

Since @ ((—0,0))"! = 1 and |f0mgdzU| < llgllo@((0,00)) — 0, in order to prove

that (a) and (b) are equivalent, it suffices to show that & = o(|r7(—c0)|~!) if and only
if & f gndw — 0 for all g satisfying the hypotheses. But this follows from (34).
That (b) implies (10) is trivial. Assume (10). Since

0

P(X(2) <01Y(1) = 0) = @w((=,0)) +§of n(x) @(dx),

—00

and @ ((—o0,0)) — 1, it follow that & fj)m n(x)w(dx)— 0.By (34) with g = 1(_,0),
we have f_ooo n(x) w(dx) ~ n(—0), and (a) follows. O

Theorem The following are equivalent to (11):

(@) & ~In(—o0)|7".
) E[lg(X@) | Y(t)=1]1-E®[g(X(0)) | X(0)>0] >0as e — 0, foreacht >0
and each bounded, measurable g : R — R that is continuous at x and x;.

Moreover, (11) implies (10). ]
Proof Note that

E[g(X(0) 1Y (1) =11-E®[g(X(0)) | X(0) > 0]

- f (1 +&m(x) @(dx) — w((0,00))"" fo ¢ () w(dx)

=fgclw—w((o,m))_l gdw+§1fg77dw

(0,00)

To prove that (a) and (b) are equivalent, by (39), it suffices to show that &} ~ [17(—c0) |-!
if and only if &; fgn dw — —(g(x0)—g(x1)) for all g satisfying the hypotheses. But
this follows from (34).

That (b) implies (11) is trivial. Assume (11). Since

PX(1)>01Y(1) =1) =@((0,00)) + £ fo n(x) @(dx),

and @ ((0,00)) — 0, it follows that &; fomn(x)w(dx) — 1. By (34) with g = 1(0,c0),
we have fooo n(x)@(dx) ~ |n(—o0)|, and (a) follows.

Finally, assume (11). Then (a) holds. By Lemma 11, we have —n(c0)~! < & <0
for sufficiently small . In particular, |&o] < (c0)~!, so Theorem 9(a) follows from
Proposition 7. O

Theorem Let 0 < p < |xo| Ax;y. Then & = o(&) if and only if
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2
11 Y7 pripX -1 (F(0)-F(x1))/&
E [TO 1~E [TBp(xo)] 4 |F""(0)F" (x1)|'/2 € ’ (36)

as € = 0. And &, /&p ~ n(o0)/n(—o0) if and only if

2n
0¥ _ pxor X - (F(0)-F(x0))/&
E =B, w0l Ty o ¢ -

as € — 0. Moreover, (37) implies (36), which implies (10). Also, (11) implies (36).00

Proof By (19) and (18), we need only determine the asymptotics of ag and a;. Recall
that a; = /lfj/(fj - flfj). Thus,

Ei[rly_j] = aJTl = 27! (1 _ fl—j) N (1 _ &1-j ) %e(ﬂm_ﬂxm/s’
&j & ) IF7(0)F (x1)l )

so the first biconditional follows immediately. The second biconditional then follows
from Proposition 7.

By Proposition 7, we have (37) implies (36). By Lemma 11, we have |&y/&1] >
|&omp(—00)], so that & = o(&;) implies & = o(|n(—0)|™!). Hence, (36) implies that
Theorem 9(a) holds, which is equivalent to (10).

Finally, suppose (11) holds. By Theorems 9 and 10, we have that &; ~ |(—c0)|™!
and & = o(|n(—o0)|™1), so that &y = o(&1), which is equivalent to (36). O

Theorem The Markov chain fully tracks the diffusion, in the sense that (10)-(13) all
hold, if and only if & ~ —1(c0)~! and & ~ |5 (—=c0)| L. O

Proof Suppose (10)-(13) hold. Then, by Theorem 10, we have &; ~ |57(—c0)| L. Since
(13) is equivalent to (37), we also have, by Theorem 11, that &1 /&y ~ (00)/n(—00).
Thus, & ~ —1(c0) L.

Conversely, suppose & ~ —17(c0)~! and &; ~ |57(—c0)|~!. Theorem 10 gives us
(11) and (10). Theorem 11 gives us (37) and (36), which are equivalent to (13) and
(12), respectively. O

In this section, we have established that (11) implies (12) implies (10), and (13)
implies (12). Example 13 shows that it is possible to have all four conditions holding.
The remaining examples illustrate that there are no implications besides those already
mentioned.

Example Let & = —f(e)n(co)™  and & = g()|n(—o0)|~!, where 0 < f,g < 1 with
f.g = 1l ase— 0. By Lemma 11 and Theorem 12, this is the most general family
of choices such that the resulting coupling sequence satisfies (10)-(13). O

In the remaining examples, let

F7(x1) _ F(x))-F
L(g) =4/ e~ (Fx1) (xo))/é?’
F//(xo)
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so that by Proposition 7, we have n(c0)/n(—c0) ~ —L(&)~!. Choose 0 < f < 1 and & >
L,andletg = L/h,sothat0 < g < 1.Let& =—f(&)n(c0) L and &1 = g(&)|n(—c0)| .
By Lemma 11, these are admissible choices for & and &.

Note that & ~ — f(£)L(g)|n(—o0)|~!, so that by Theorem 9, we have (10) in all
these examples. Also note that by Theorem 10, we have (11) if and only if 4 ~ L.
For applying Theorem 11, note that &, /&y ~ —g/(fL) = —1/(fh). Thus, (12) holds
if and only if 4 — 0 and (13) holds if and only f/ ~ L.

Example Let f = h = 1. Then none of (11), (12), or (13) hold, so we see that (10)
does not imply any of the other conditions. O

Example Let f=1and h = VL. In this case, we have (12), but neither (11) nor (13)
hold. Hence, (12) implies neither (11) nor (13). ]

Example Let f = h = L. In this case, (11) and (12) hold, but (13) does not, showing
that (11) does not imply (13). m]

Example Let [ =h = VL. Here we have (12) and (13), but not (11), showing that
(13) does not imply (11). ]
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Appendix 1

Let b : R? — R? be Lipschitz and let ¢, 5, be the unique solution to @' =blexp)
with ¢y 5(0) = x. For € > 0, let X, ;, be defined by

Xep(t) = Xep(0) + fot b(Xe,p(5)) ds +N2sW (1),

where W is a standard d-dimensional Brownian motion. As in Section 1, if F : R¢ —
R is given, then ¢x = ¢, _vr and Xz = X _yF. For the F we use later, =V F is not
Lipschitz. This will cause no difficulty, however, since it will be locally Lipschitz,
and we will only apply these theorems on compact sets.

This first theorem is [11, Theorem 2.40]. It describes the asymptotic mean time
to leave a domain of attraction.

Theorem Let F : R? — R have continuous and bounded derivatives up to second
order. Let D be a bounded open domain in R¢ with boundary 8D of class C? and
(=VF(x),n(x)) <0 for all x € D, where n(x) is the outward unit normal vector to
0D atx.

Let xo € D. Assume that if G is a neighborhood of xo, then there exists a neigh-
borhood G of x¢ such that G C G and, for all x € G, we have ¢x([0,0)) € G and
@x(t) = xo as t — oo, Further assume that, for each x € D, we have ¢ ((0,)) C D.
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Then for any x € D,
(i) lim2elog E*[t(D)] = inf 2(F(y) - F(xp)) =: ¥y, and
£—0 yedD
(ii) for all £ > 0, we have lin(l)Px(e(VO_O/(z‘E) <7(D¢) < Mty =
E
Moreover, both convergences hold uniformly in x on each compact subset of D. O

This next theorem is [11, Lemma 2.34(b)]. It asserts that the diffusion cannot
linger for long inside the domain of attraction without quickly coming into a small
neighborhood of the associated minimum.

Theorem Assume the hypotheses of Theorem 18. Fix § > 0. Then there exists C > 0,
T > 0, and gp > 0 such that

P¥(1(D UBs(xq)) > 1) < e”€U71/Ce),
forall x € D\ Bs(xg), all ¢t > T, and all € < g. O

The last result we need gives the probability of leaving the domain of attraction
through a given point. To state this result, we need some preliminary notation and
definitions. See [11, Section 5.3] for more details.

Letu:[0,7] >R Ifuis absolutely continuous, define

T
= [ W - bue)Pas

and define /7 (u) = oo otherwise.
Let G be a bounded domain in R4 with G of class C2 and define

Vix,y)=inf{Ir(u) | T >0,u:[0,T] - Rd,u(()) =x,u(T) =y}
Vo (x,y) =inf{lp () | T > 0,u:[0,T] » GUAIG,u(0) = x,u(T) = y}.

The functions ¥ and Vg are continuous on R¢ xR¢ and (GUAG)x (GUIG),
respectively. We have VG (x,y) > V(x,y) forall x,y € GUJG. Also, forall x,y € G,
if Vo (x,y) <mingepc V(x,z), then Vg (x,y) = V(x,y).

Note thatif ¢, 1, (#) =y forsome # > 0 and ¢, 5 ([0,2]) € GUIG, then Vg (x,y) =0.
An equivalence relation on GUJG is defined by x ~¢ y if and only if Vg (x,y) =
Vi (y,x) = 0. It can be shown that if the equivalence class of y is nontrivial, then
©y,5([0,00)) is contained in that equivalence class.

The w-limit set of a point y € R is denoted by w(y) and defined as the set of
accumulation points of ¢y ;([0,00)). Assume that G contains a finite number of
compact sets Kj,...,Kp such that each K; is an equivalence class of ~5. Assume
further that, for all y € R?, if w(y) € GUAG, then w(y) C K; for some i.

The function Vg is constant on K; X K, so we let V5 (K;,Kj), Vg (x,K;), and
VG (K, x) denote this common value. Also, Vg (K;,0G) = infyca6 Vg (Ki, y).

Given a finite set £ and a nonempty, proper subset Q C £, let G(Q) denote the
set of directed graphs on £ with arrows i — j, i € L\Q, j € L, j #1i, such that:
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(i) from each i € £\ Q exactly one arrow is issued; (ii) for each i € £\ Q there is a
chain of arrows starting at / and finishing at some point in Q. If ; is such a point we
say that the graph leads i to j. Fori € £\ Q and j € Q, the set of graphs in G(Q)
leading i to j is denoted by G; ; (Q).
With £ ={K},...,K¢, G}, let
Mg= min > Vg(aB).

9€G0G) A

If x € Gand y € G, then with £ ={K},...,K¢,x,y,0G}, let

Mo (x,y) = > V(e p).

min
8€Gx,y({y,0G}) (@5B)eg

The following theorem is [11, Theorem 5.19].

Theorem Under the above assumptions and notation, for any compact set K C G,
v >0, and § > 0, there exists €9 > 0 and dp € (0,0) so that for any x € K, y € 0G,
and € € (0,&p), we have

( Mg (x,y) — Mg +2y
exp|—

3 ) < P*(Xep (1) € Bsy(y))
E

- ( Mc(x,y)—MG—Zy)
<exp|- e ,
where 7 = X5 (RY\ G). O

The next two results are auxiliary results which are needed to apply Theorem 20.
The first is [11, Proposition 2.37].

Proposition Under the assumptions of Theorem 18, we have
V(x0.y) = 2(F(y) = F(x0)).
forall y € D. O

Lemma 12 Let b = —VF, where F is as in Theorem 18. If there exists Ty > O such
that ox(Tp) =y, then V(x,y) =0 and V(y,x) =2(F(x) - F(y)).

Proof Since ¢!, = b(¢x), we have I, (¢x) = 0, which implies V'(x,y) =0.Let7 >0
and let ¢ : [0,7] — R satisfy ¢(0) = y and ¢(T) = x. Then
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T
)=, [ 166 -besP ds
1 T T
=2j0‘ |90'(S)+b(90(s))|2ds—2f0 (@'(5),b(e(s))) ds
T T
:; fO 6’ (5) + b(o(s)) 2 ds +2 fo (&' (5), VF((5))) ds

1 T ’ 2
- fo 1/ (5) + b(g(s) Pds + 2(F(x)~ F(3)).

2
This shows that V' (y,x) > 2(F(x) = F(y)).Now let ¢ (¢) = ¢ (To—1t). Then ¥ (0) = y,
Y (To) = x,and ¥’ = —b(y¥). Hence, V(y,x) < It,(¥) =2(F(x) - F(y)). O
Appendix 2

Finally, we need two classical results of Laplace that allow us to estimate exponential
integrals. The following two results can be found in [5, pp. 36-37]. The notation
a ~bmeansthata/b— 1.

Theorem Let I C R be a (possibly infinite) open interval, F € C>(/), and xq € I.
Suppose g is continuous at x¢. If F'(xg) is the unique global minimum of F on /,
and F"(x¢) > 0, then

f ()& TV dx ~ g(x0)y | —XE_ o PV, (39)
I F(x0)

as € — 0, provided the left-hand side exists for sufficiently small €. O

Proposition Let —co < a < xo < b < co and F € C'(a,b). Suppose g is continuous
at xo. If F(xo) is the unique global minimum of F on [xg, ) and F’(xo) > 0, then

b
[ et e du~ gan) o e, (40)
X0 F (xo)
as € — 0, provided the left-hand side exists for sufficiently small . O
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Maximally Distributed Random Fields under
Sublinear Expectation

Xinpeng Li and Shige Peng

Abstract This paper focuses on the maximal distribution on sublinear expectation
space and introduces a new type of random fields with the maximally distributed
finite-dimensional distribution. The corresponding spatial maximally distributed
white noise is constructed, which includes the temporal-spatial situation as a spe-
cial case due to the symmetrical independence property of maximal distribution.
In addition, the stochastic integrals with respect to the spatial or temporal-spatial
maximally distributed white noises are established in a quite direct way without the
usual assumption of adaptability for integrand.

1 Introduction

In mathematics and physics, a random field is a type of parameterized family of
random variables. When the parameter is time ¢ € R*, we call it a stochastic process,
or a temporal random field. Quite often the parameter is space x € R?, or time-space
(t,x) € R* x R¥. In this case, we call it a spatial or temporal-spatial random field.
A typical example is the electromagnetic wave dynamically spread everywhere in
our R3-space or more exactly, in R* x R3-time-space. In principle, it is impossible
to know the exact state of the electromagnetic wave of our real world , namely, it is
a nontrivial random field parameterized by the time-space (¢, x) € R* x R3.

Classically, a random field is defined on a given probability space (2, 7, P). But
for the above problem, can we really get to know the probability P? This involves
the so called problem of uncertainty of probabilities.
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Over the past few decades, non-additive probabilities or nonlinear expectations
have become active domains for studying uncertainties, and received more and more
attention in many research fields, such as mathematical economics, mathematical
finance, statistics, quantum mechanics. A typical example of nonlinear expectation
is sublinear one, which is used to model the uncertainty phenomenon characterized
by a family of probability measures {Py}gce in which the true measure is unknown,
and such sublinear expectation is usually defined by

E[X] := sup Ep,[X].
250)

This notion is also known as the upper expectation in robust statistics (see Huber
[9]), or the upper prevision in the theory of imprecise probabilities (see Walley
[20]), and has the closed relation with coherent risk measures (see Artzner et al.
[1], Delbaen [4], Follmer and Schied [6]). A first dynamical nonlinear expectation,
called g-expectation was initiated by Peng [12].

The foundation of sublinear expectation theory with a new type of G-Brownian
motion and the corresponding Itd’s stochastic calculus was laid in Peng [13], which
keeps the rich and elegant properties of classical probability theory except linearity of
expectation. Peng [15] initially defined the notion of independence and identical dis-
tribution (i.i.d.) based on the notion of nonlinear expectation instead of the capacity.
Based on the notion of new notions, the most important distribution called G-normal
distribution introduced, which can be characterized by the so-called G-heat equation.
The notions of G-expectation and G-Brownian motion can be regarded as a nonlinear
generalization of Wiener measure and classical Brownian motion. The correspond-
ing limit theorems as well as stochastic calculus of Itd’s type under G-expectation are
systematically developed in Peng [18]. Besides that, there is also another important
distribution, called maximal distribution. The distribution of maximally distributed
random variable X can be calculated simply by

Elp(X)] = o), ¢ € Cp(R).

max
ve[-E[-X]E[X]]
The law of large numbers under sublinear expectation (see Peng [18]) shows that
if {X; }l?'il is a sequence of independent and identical distributed random variables
with lim,— E[(|X]| — ¢)*] = 0, then the sample average converges to maximal
distribution in law, i.e.,

-+ X,

lim Bl

max v), Yo € Cp(R).
n—oo n ve[-E[-XiLE[X1]] o). ¢ b (®)

We note that the finite-dimensional distribution for quadratic variation process of
G-Brownian motion is also maximal distributed.

Recently, Ji and Peng [10] introduced a new G-Gaussian random fields, which
contains a type of spatial white noise as a special case. Such white noise is a
natural generalization of the classical Gaussian white noise (for example, see Walsh
[21], Dalang [2] and Da Prato and Zabczyk [3]). As pointed in [10], the space-
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indexed increments do not satisfy the property of independence. Once the sublinear
G-expectation degenerates to linear case, the property of independence for the space-
indexed part turns out to be true as in the classical probability theory.

In this paper, we introduce a very special but also typical random field, called
maximally distributed random field, in which the finite-dimensional distribution is
maximally distributed. The corresponding space-indexed white noise is also con-
structed. It is worth mentioning that the space-indexed increments of maximal white
noise is independent, which is essentially different from the case of G-Gaussian
white noise. Thanks to the symmetrical independence of maximally distributed
white noise, it is natural to view the temporal-spatial maximally distributed white
noise as a special case of the space-indexed maximally distributed white noise.
The stochastic integrals with respect to spatial and temporal-spatial maximally dis-
tributed white noises can be constructed in a quite simple way, which generalize
the stochastic integral with respect to quadratic variation process of G-Brownian
motion introduced in Peng [18]. Furthermore, due to the boundedness of maximally
distributed random field, the usual assumption of adaptability for integrand can be
dropped. We emphasize that the structure of maximally distributed white noise is
quite simple, it can be determined by only two parameters y and g, and the calcula-
tion of the corresponding finite-dimensional distribution is taking the maximum of
continuous function on the domain determined by u and u. The use of maximally
distributed random fields for modelling purposes in applications can be explained
mainly by the simplicity of their construction and analytic tractability combined with
the maximal distributions of marginal which describe many real phenomena due to
the law of large numbers with uncertainty.

This paper is organized as follows. In Section 2, we review basic notions and
results of nonlinear expectation theory and the notion and properties of maximal
distribution. In Section 3, we first recall the general setting of random fields under
nonlinear expectations, and then introduce the maximally distributed random fields.
In Section 4, we construct the spatial maximally distributed white noise and study
the corresponding properties. The properties of spatial as well as temporal-spatial
maximally distributed white noise and the related stochastic integrals are established
in Section 5.

2 Preliminaries

In this section, we recall some basic notions and properties in the nonlinear expecta-
tion theory. More details can be found in Denis et al. [5], Hu and Peng [8] and Peng
[13, 14, 15, 16, 18, 19].

Let Q be a given nonempty set and H be a linear space of real-valued functions
on Q such that if X € H, then | X| € H. H can be regarded as the space of random
variables. In this paper, we consider a more convenient assumption: if random
variables X, - -, Xy € H, then o(X1, Xo, -+, Xq) € H for each ¢ € Cb_Lip(Rd).
Here Cp.Lip (R?) is the space of all bounded and Lipschitz functions on R¥.
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Wecall X = (X, --,X,), X; € H, 1 <i < n, an n-dimensional random vector,
denoted by X € H".

Definition 1 A nonlinear expectation £ on H is a functional £ : H — R satisfying
the following properties: for each X,Y € H,

(i) Monotonicity: A[X]> E[Y] if X > Y;
(ii) Constant preserving: E[c] =c forc e R;

The triplet (€, H, £) is called a nonlinear expectation space. If we further assume
that

(iii) Sub-additivity: E[X + Y] < E[X] + E[Y];
(iv) Positive homogeneity: E[A1X] = AE[X] for A > 0.

Then £ is called a sublinear expectation, and the corresponding triplet (Q, H, £) is
called a sublinear expectation space.

Let (Q, H, E) be a nonlinear (resp., sublinear) expectation space. For each given
n-dimensional random vector X, we define a functional on Cp 1, (R") by

Fx[¢] := E[¢(X)], for each ¢ € Cp r:p (R™).

Fx is called the distribution of X. It is easily seen that (R", Cp.ip (R"), Fx) forms
a nonlinear (resp., sublinear) expectation space. If Fx is not a linear functional on
Cp.Lip (R™), we say X has distributional uncertainty.

Definition 2 Two n-dimensional random vectors X; and X, defined on nonlinear
expectation spaces (Q1, Hj, E 1) and (Qo, Ho, Ez) respectively, are called identically

distributed, denoted by X 4 Xo, if Fx, = Fx,, ie.,
Eile(X1)] = Exle(X2)], Yo € Cprip(R™).

Definition 3 Let (Q, 7, £) be a nonlinear expectation space. An n-dimensional
random vector Y is said to be independent from another m-dimensional random
vector X under the expectation £ if, for each test function ¢ € Cp. LipR™7™), we
have

Ele(X, V)] = E[E[¢(x,Y)]x=x].

Remark 1 Peng [15] (see also Peng [18]) introduced the notions of the distribution
and the independence of random variables under a nonlinear expectation, which play
a crucially important role in the nonlinear expectation theory.

For simplicity, the sequence {X;}!" , is called independence if X;4; is independent

from (X1, ---,X;) fori = 1,2,--- ,n—1.Let X and X be two n-dimensional random
vectors on (, H, E). X is called an independent copy of X, if X 4 X and X is
independent from X.

Remark 2 1t is important to note that “Y is independent from X’ does not imply that
“X is independent from Y (see Peng [18]).
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In this paper, we focus on an important distribution on sublinear expectation space
(Q,H, E), called maximal distribution.

Definition 4 An n-dimensional random vector X = (Xp,---,.X,) on a sublinear
expectation space (Q, H, E) is said to be maximally distributed, if there exists a
bounded and closed convex subset A € R" such that, for every continuous function
¢ € C(R"),
E[p(X)] = max ¢(x).
X€EN

Remark 3 Here A characterizes the uncertainty of X. It is easy to check that this
maximally distributed random vector X satisfies

x+x4ox,

where X is an independent copy of X. Conversely, suppose a random variable X
satisfying X + X dox , if we further assume the uniform convergence condition
im0 £ [(|X]=c¢)*] = 0 holds, then we can deduce that X is maximally distributed
by the law of large numbers (see Peng [18]). An interesting problem is that is X still
maximally distributed without such uniform convergence condition? We emphasize
that the law of large numbers does not hold in this case, a counterexample can be
found in Li and Zong [11].

Proposition 1 Let g(p) = max,ea v - p be given. Then an n-dimensional random
variable is maximally distributed if and only if for each ¢ € C(R"), the following
function

u(t,x) = Elo(x + tX)] = ma/i( e(x +tv), (t,x) € [0,00) X R" Q)]
Ve
is the unique viscosity solution of the the following nonlinear partial differential

equation
O — g(Dxu) =0, ul=0 = ¢(x). 2)

This property implies that, each sublinear function g on R" determines uniquely
a maximal distribution. The following property is easy to check.

Proposition 2 Let X be an n-dimensional maximally distributed random vector
characterized by its generating function

g(p) = E[X-p), peR"

Then, for any function ¢ € C(R"™), Y = y(X) is also an R-valued maximally
distributed random variable:

Elp(Y)] = v?[f},’f,] o), p = max U(y), p= ’J‘JE ().
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Proposition 3 Let X = (X1, -+, Xyy) be an n-dimensional maximal distribution on
a sublinear expectation space (Q, H, E). If the corresponding generating function
satisfies, for all p = (p1,-- - ,pn) € R",

g(p) = E[lel + o+ Xppnl = E[X]pl] +e+ E[anrz],

then {X;}! | is a sequence of independent maximally distributed random variables.
Moreover, for any permutation mt of {1,2, - - - , n}, the sequence { Xz}, is also

independent.

Proof Fori=1,---,n, wedenote yu; = E[X;] and M= —E[-X;]. Since

g(p) =E[Xi -p1+-+ Xy pul = ELX1 - pil+ E[X2 - p2] + -+ + E[Xy, - pal

n

= max p;v; = max (plvl+.,_+p v ),
;vidﬂi,#i] iVi 1) €O [ gt nVn
it follows Proposition 1 that (X, - - - , X},) is an n-dimensional maximally distributed

random vector such that, Yo € C(R"),

Elp(X1, -+, Xu)] = max (V1,5 ).
(V],-'-,v,,)€®:’:1 [/Jl.,ll[]

It is easy to check that {X;}_, is independent, and so does the permuted sequence
(X}, u]

Remark 4 The independence of maximally distributed random variables is symmet-
rical. But, as discussed in Remark 2, under a sublinear expectation, X is independent
from Y does not automatically imply that Y is also independent from X. In fact, Hu
and Li [7] proved that, if X is independent from Y, and Y is also independent from X,
and both of X and Y have distributional uncertainty, then (X, Y) must be maximally
distributed.

3 Maximally distributed random fields

In this section, we first recall the general setting of random fields defined on a
nonlinear expectation space introduced by Ji and Peng [10].

Definition 5 Under a given nonlinear expectation space (€, H, E), a collection of
m-dimensional random vectors W = (W,),er is called an m-dimensional random
field indexed by T', if for eachy € I', W,, € H™.

In order to introduce the notion of finite-dimensional distribution of a random
field W, we denote the family of all sets of finite indices by

JF=y=0n ) VneN, yi,---,yqn €L, v £y ifi # j}.
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Definition 6 Let (/7,,), cr be an m-dimensional random field defined on a nonlinear
expectation space (Q, H, E).Foreachy = (y1,-- -, ¥n) € Jr and the corresponding
random vector W, = (W,,,,- -+, W,, ), we define a functional on Cp_r;p (R™) by

F) [¢] = Elp(Wy)]

The collection (]F;V [¢])ye g is called the family of finite-dimensional distributions
of ( Wy)yel‘«

It is clear that, for each y € Jr, the triple (R, Cp, i) (R™™), F}VV ) constitutes a

nonlinear expectation space.
Let (W,}l))yer and (W;Z))yer be two m-dimensional random fields defined on
nonlinear expectation spaces (1, Hj, E 1) and (Qo, Ho, Ez) respectively. They are

said to be identically distributed, denoted by (W;l))yer 4 (W;z) )yer, or simply

WO L O ifforeachy = (y1,- -, yn) € Jr
Eile(WiN] = Eale(Wi)], Vg € Cp 1ip(R™™).

For any given m-dimensional random field W = (W, ), er, the family of its finite-
dimensional distributions satisfies the following properties of consistency:

(1) Compatibility: ~ For each (y1,- -, ¥n, Yns1) € Jr and ¢ € Cp ip (R™™),
w %
Ey oyl =Fy oy 0] (3)

where the function @ is a function on RO**D*™ defined for any yy, -+ , Yn» Yns1 €
Rm
QY15 Yo Ynw1) = @(V15*++ 5 V)3

(2) Symmetry:  For each (y1,-+,¥n) € Jr> ¢ € Cp.Lip(R™™) and each permu-
tation 7w of {L,-- -, n},

w _wW
F?’n(l),“',)’n(n) [90] - F’)’I»“'a'}/n [‘p”] (4)

where we denote ¢ (¥1,-+*,Yn) = @(Vr(1)>*** s Ya(m))> for yi, -+, yn € R™.

The following theorem generalizes the classical Kolmogorov’s existence theorem to
the situation of sublinear expectation space, which is a variant of Theorem 3.8 in
Peng [17]. The proof can be founded in Ji and Peng [10].

Theorem 1 Let {F,,y € Jr} be afamily of finite-dimensional distributions satisfying
the compatibility condition (3) and the symmetry condition (4). Then there exists
an m-dimensional random field W = (W, ), er defined on a nonlinear expectation
space (Q,H, E) whose family of finite-dimensional distributions coincides with
(Ey,y € Jr}. Moreover, if we assume that each F,, in {F,,y € Jr} is sublinear, then

the corresponding expectation E on the space of random variables (Q, H) is also
sublinear.
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Now we consider a new random fields under a sublinear expectation space.

Definition 7 Let (W) ), cr be an m-dimensional random field, indexed by I', defined
on a sublinear expectation space (Q, H, E). (Wy)yer is called amaximally distributed
random field if for each y = (y1, -+, yn) € Jr, the following (n X m)-dimensional
random vector

Wy =Wy, . Wy,,)
=D, D )y, Wy({) eH,
is maximally distributed.

Foreach y = (y1,- -+ ,vn) € Jr, we define
8 () = EW, -pl, p e R™™,
Then (ng )yeg constitutes a family of sublinear functions:

g R R y=(yoyn) i€l 1<i<n nel,
which satisfies the properties of consistency in the following sense:

(1) Compatibility: ~ For any (y1, -+ Y Yar1) € Jr and p = (p;)!" € R,

w 5 w
Gyt yniynn P) = &y, (D), 5)

where p = g € RO+ Dxm.

(2) Symmetry: For any permutation 7 of {1, - - -, n},
g}‘Z(l)’ S Yr(n) (p) = g?‘:‘lly""'}/n (7-(_1 (p))’ (6)
where 771 (p) = (Y, ..., p™),

P = Pty tymsts - - > Pia-t @iy -tymem) » 1 <0 <.

If the above type of family of sublinear functions (g, ), is given, following
the construction procedure in the proof of Theorem 3.5 in Ji and Peng [10], we can
construct a maximally distributed random field on sublinear expectation space.

Theorem 2 Let (gy)ycq be a family of real-valued functions such that, for each
Y=, vn) € Jb, the real function gy is defined on R™™ +— R and satisfies
the sub-linearity. Moreover, this family (g, )y 5 satisfies the compatibility condition
(5) and symmetry condition (6). Then there exists an m-dimensional maximally
distributed random field (W,,),er on a sublinear expectation space (2, H, E) such
that for eachy = (y1,-++,vn) € I, Wy = (Wy,, -+, W,,,) is maximally distributed
with generating function
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g;V(P) = E[Wy -pl = &(p), forany p e R™".

Furthermore, if there exists another maximally distributed random field (Wy)yel";
with the same index set T, defined on a sublinear expectation space (, H, E) such
that for each vy = (y1,-++ ,vn) € Ir, Wy is maximally distributed with the same
generating function g,, namely,

E[W, - pl = gy(p) forany p € R™™,

then we have W 4 w.

4 Maximally distributed white noise

In this section, we formulate a new type of maximally distributed white noise on R¢.

Given sublinear expectation space Q, H, £, let L”(Q) be the completion of H
under the Banach norm || X|| := E[|X]”] ’ .Forany X,Y € LY(Q), we say that X =Y
if E[|IX — Y|] = 0. As shown in Chapter 1 of Peng [18], E can be continuously
extended to the mapping from L' () to R and properties (i)-(iv) of Definition 1 still
hold. Moreover, (Q, L}(Q), £) also forms a sublinear expectation space, which is
called the complete sublinear expectation space.

Definition 8 Let (Q,L!(Q), £) be a complete sublinear expectation space and I’ =
Bo(Rd) = {4 € B(Rd), Aa < oo}, where 14 denotes the Lebesgue measure of
A€ B(RY). Let g : R — R be a given sublinear function, i.e.,

g(p) = pp* —pp~, —00 < p < p < +oo.

A random field W = {Wa}aer is called a one-dimensional maximally distributed
white noise if

(i) Foreach Ay,---,An €I, (Wa,, -+, Wy, ) is a R"-maximally distributed ran-

dom vector under E, and for each 4 € T,

ElWa-pl=g(p)da. peR. 7

(i) Let 4y, 4z, -+, Ap be in I and mutually disjoint, then {W4,}!_ | are indepen-
dent sequence, and

Wauasu-va, = Wa, + Wa, +---+ Wy, (8)

Remark 5 For each A € T', we can restrict that W, takes values in [Aau, Aau].
Indeed, let

da(x) = min  {|x — y|},
x) YE[lap,Aap] Y
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by the definition of maximal distribution,

Elda(Wa)l= max min  {|v - y|} =0,
VE[ A, Aapu] YE[AAp,AAp]

which implies that d4(W4) = 0.

We can construct a spatial maximal white noise satisfying Definition 8 in the
following way.

For each y = (41,--+,4,) € Jr, T = By(R?), consider the mapping g () :
R" — R defined as follows:

gy (p):= gk -p)Apw), peR”, )
kel 1}n

where k = (k1,- -, kn) € {0, 1}", and B(k) = ﬂ;‘:lBj, with

5[4 ifk=1
T A4S it k=0,

For example, given Ay, A2, A3 € T and p = (p1, p2, p3) € R3,

gA1,A2,A3(p) =g(p1+p2 +p3)/lA|ﬂA2ﬂA3
+8(p1 +p2)Aainarnas + 8(P2 + p3)Aacnasnas + 8(P1 + P3)Aa nagna,
+8(P1)Aainasnas + 8(P2)Aacnarnas + 8(P3)Aasnasna;-

Obviously, for each y = (A4y,---,4,) C T, g,(-) defined by (9) is a sublinear

function defined on R" due to the sub-linearity of function g(-). The following
property shows that the consistency conditions (5) and (6) also hold for {g, }, ¢ -

Proposition 4 The family {g, },c 5 defined by (9) satisfies the consistency conditions
(5) and (6).

Proof For compatibility (5), given Ay, -+, Ap, Aps1 € T and p7 = (p7,0) € R™!,
we have

8AL A (P) = Z g(k-p)ABx)

ke(o,1)n+1

= Z gk - P)(AB(k)NA, + ABGRNAS,)
K E@ 1

= Z g(k' 'p)/lB(k’) = gAl,'“,An(p)'
ke

The symmetry (6) can be easily verified since the operators & - p and B(k) = ﬂ;?:lB i
are also symmetry. O
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Now we present the existence of the maximally distributed white noises under the
sublinear expectation.

Theorem 3 For each given sublinear function
8(p) = max (u-p)=pup* —pup~, peR,
pElp,pl

there exists a one-dimensional maximally distributed random field (Wy)yer on a
sublinear expectation space (Q, L' (Q), E) such that, foreachy = (A1, ,4,) €
IJrs Wy = (Wa,, -+, Wa,,) is maximally distributed.

Furthermore (Wy)yer is a spatial maximally distributed white noise under
(QLYQ), E), namely, conditions (i) and (ii) of Definition 8 are satisfied.

If (Wy),,er is another maximally distributed white noise with the same sublinear

unction g in (9), then W dy.
i 8

Proof Thanks to Proposition 4 and Theorem 2, the existence and uniqueness of the
maximally distributed random field /¥ in a sublinear expectation space (Q, L' (Q), £)
with the family of generating functions defined by (9) hold. We only need to verify
that the maximally distributed random field W satisfies conditions (i) and (ii) of
Definition 8.

Foreach A € T, E[W4 -p] = g(p) A4 by Theorem 2 and (9), thus (i) of Definition 8
holds.

We note that if {4;}7.
(9), we have

, are mutually disjoint, then for p = (p1,- -, pn) € R", by

ElpiWa, +-+-+paWa,] = g(p1)da, + -+ +g(pn)da,.

thus the independence of {4, }_, can be implied by Proposition 3.
In order to prove (8), we only consider the case of two disjoint sets. Suppose that

AiNAy=0, A3z =A4,U A,
an easy computation of (9) shows that

8A1,42,45 (D) =8(P1 + p3)Aa, +&(p2 + p3)Aa,
= max max max (pj:vi+p2-va+p3-v3).
VIE[pAA,,uda I v2€luda,,uda, 1 V3=vi+v2

Thus, for each ¢ € C(R?),

Elo(Wa,, Wa,, Wa,)l = max max max  ¢(vi, v, v3).
10 VA2 W A3 > V2,
VIE[pda 1A I V2 E[HAA, pAA, ] V3=VIHYV2

In particular, we set ¢(v1, v, v3) = |vi + vo — v3], it follows that
E[|WA] + WA2 - WA[UAz'] = 0

which implies that
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WA]UA’_) = VVAl + WAz'
Finally, (ii) of Definition 8§ holds. O

Remark 6 The finite-dimensional distribution of maximally distributed whiten noise
can be uniquely determined by two parameters p and p, which can be simply
calculated by taking the maximum of the continuous function over the domain
determined by u and p.

Similar to the invariant property of G-Gaussian white noise introduced in Ji and
Peng [10], it also holds for maximally distributed white noise due to the well-known
invariance of the Lebesgue measure under rotation and translation.

Proposition 5 For each p € R¢ and O € O(d) := {0 e R4 : O = 07!}, we set
Too(A)=0-A+p, AecT.

Then, for each Ay, - , A, €T,

d
Waps s Wa,) = (W1, oA s WT, 0(40))-

5 Spatial and temporal maximally distributed white noise and
related stochastic integral

In Ji and Peng [10], we see that a spatial G-white noise is essentially different
from the temporal case or the temporal-spatial case, since there is no independence
property for the spatial G-white noise. But for the maximally distributed white noise,
spatial or temporal-spatial maximally distributed white noise has the independence
property due to the symmetrical independence for maximal distribution.

Combining symmetrical independence and boundedness properties of maximal
distribution, the integrand random fields can be largely extended when we consider
the stochastic integral with respect to spatial maximally distributed white noise. For
stochastic integral with respect to temporal-spatial case, the integrand random fields
can even contain the “non-adapted” situation.

5.1 Stochastic integral with respect to the spatial maximally
distributed white noise

We firstly define the stochastic integral with respect to the spatial maximally dis-
tributed white noise in a quite direct way.

Let (W, }yer, I = Bo(Rd), be a one-dimensional maximally distributed white
noise defined on a complete sublinear expectation space (Q,L!(Q), E), with gp) =
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upt — up~, —00 < u < u < oo. We introduce the following type of random fields,
called simple random fields.
Given p > 1, set

n
Mg’O(Q) ={n(x,w) = Z &i(w)la,(x), 41, -+, An € T are mutually disjoint
i=1
i=12...,n &, -, €elP(Q), n=12---,}
For each simple random fields n € Mé’ ’O(Q) of the form
n
n(xw) = > &), (%), (10)
i=1
the related Bohner’s integral for  with respect to the Lebesgue measure A is

o = [ ntran =Y E@ia,
i=1

It is immediate that /g (n7) : Mé’ ’O(Q) — LP(Q) is a linear and continuous mapping
under the norm for 7, defined by,

Inler = £ [ P a@nts.

The completion of Mg 0 () under this norm is denoted by Mg (Q) which is a Banach
space. The unique extension of the mapping /p is denoted by

fR () Ad) = Ipn), 1 € ME (@),

Now for a simple random field € Mé’ ’O(Q) of form (10), we define its stochastic
integral with respect to W as

Iw(n) = fRd N )W (dx) = 3" E(@)Wa,.
i=1

With this formulation, we have the following estimation.

Lemma 1 For each € My*(Q) of form (10), we have

E HL{{ n(x, )W (dx)

] < kE [\[Rd In(x,w)lxl(dx)] (11)

where k = max{|ul, |ul}.

Proof We have
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N N
£l fR nCe )W (A = 11 Y é(@)Wa, 1 < ELY (@) - Wa, ]
i=1 i=1

N
< KELY 1&1(@)] - A1 = KETIMl 1 )
i=1

The last inequality is due to the boundedness of maximal distribution (see Remark
5). m]

This lemma shows that Iy, : M;O(Q)  L!(Q) is a linear continuous mapping.
Consequently, Iy can be uniquely extended to the whole domain Mé (). We still
denote this extended mapping by

f W (dx) = I ().
Rd

Remark 7 Different from the stochastic integrals with respect to G-white noise in
Ji and Peng [10] which is only defined for the deterministic integrand, here the
integrand can be a random field.

5.2 Maximally distributed random fields of temporal-spatial types and
related stochastic integral

It is well-known that the framework of the classical white noise defined in a prob-
ability space (€, ¥, P) with 1-dimensional temporal and d-dimensional spatial pa-
rameters is in fact a R'*¢-indexed space type white noise. But Peng [17] and then
Ji and Peng [10] observed a new phenomenon: Unlike the classical Gaussian white
noise, the d-dimensional space-indexed G-white noise cannot have the property of
incremental independence, thus spatial G-white noise is essentially different from
temporal-spatial or temporal one. Things will become much direct for the case of
maximally distributed white noise due to the incremental independence property of
maximal distributions. This means that a time-space maximally distributed (1 + d)-
white noise is essentially a (1 + d)-spatial white noise. The corresponding stochastic
integral is also the same. But in order to make clear the dynamic properties, we
still provide the description of the temporal-spatial white-noise on the time-space
framework:

RY*xRY = {(t, x1,...,xq) € R* xRY),

where the index ¢ € [0, o) is specially preserved to be the index for time.

LetI' = {4 € B(R* x Rd), A4 < oo}, the maximally distributed white noise
{Wal}aer is just like in the spatial case with dimension 1 + d.

More precisely, let
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Q={weR': w(4UB)=w(4)+w(B),
VA,BeT, AUB =0},

and W = (W, (w) = wy)yer the canonical random field.
For T > 0, denote the temporal-spatial sets before time 7" by

It ={del:(s5,x) eA=>0<s<T}.

SetFr =o{Wa, A€}, F =\ Fr,and
T30

Lip(Q7) ={o(Wa,,...,Wa,), Yn €N,
Aielr,i=1,...,n¢¢€ CbALip(Rn)}.

We denote .
Lip(@) = | Lip(Qu).
n=1

For each X € L;,(£2), without loss of generality, we assume X has the form
X :‘;D(WA“’ R WAlm’ Tt WA,,I’ R WAnm),

whereAij = [t,'_l,t,-)XAj, 1<i<nl<j<mO0O=t<t) <<ty <oo,
(A1, -+, An) € Bo(R?Y) are mutually disjoint and ¢ € Cp.Lip(R™™). Then the
corresponding sublinear expectation for X can be defined by

EX1= Elg(Ways Wi Was W)

= max (p(/lAll Vi, """ /lAlmvlm, MY /lAnl Vv, " s /lA,m, Vnm),
vij €lpu,pl

I<i<ml<j<n

and the related conditional expectation of X under ¥, where t; < f < t;1, denoted
by E[X|F7], is defined by

EloWays - s Wai s Wans s W, I

=¢(WA”,"' , WA]m, cee, WAj],"' , WAjm)’
where
WXL, s X+ s Xj1s s 5 Xjm) = Ew(xll’... X Dms s X1 X W)H1.
Here

W= (WA(J'+1)1’ T WA(_iH)m’ WA WAnln)'
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It is easy to verify that £[-] defines a sublinear expectation on Lip(Q) and
the canonical process (W, ),er is a one-dimensional temporal-spatial maximally
distributed white noise on (€, L;, (Q), £).

For each p > 1, T > 0, we denote by Ly (Qr)(resp., L% (Q)) the completion
of L;, (Qr)(resp., L;, (Q)) under the norm ||.X||, := (E[IXl”])l/”. The conditional
expectation IAVAE Lip(Q) — Lip(£;) is a continuous mapping under || - ||, and
can be extended continuously to the mapping ng’ Q) — L’g7 (Q;) by

|ELX |F:] - ELY |F:]] < E0X = Y||F7] for X,Y € Lip(Q).

It is easy to verify that the conditional expectation £[-|7;] satisfies the following
properties, and the proof is very similar to the corresponding one of Proposition 5.3
in Ji and Peng [10].

Proposition 6 For each t > 0, the conditional expectation E[-|F;] : LZ Q) —
L% () satisfies the following properties: for any X,Y € Ly(Q), n € L% (),

(i) E:[Xl?;] > E[Y |FlforX>7.

(i) ElnlFl=n X

(iii) E[X+7Y|F] < E[X|F]+ ELY |F]

(iv) ElpX|F1=n"ELX|F]+n E[-X|F]1ifn is bounded.
(v)  E[EX|F1IF5] = E[X|Fins] for s > 0.

Now we define the stochastic integral with respect to the spatial-temporal maxi-
mally distributed white noise W, which is similar to the spatial situation.

For each given p > 1, let MI”O(QT) be the collection of simple processes with
the form:

._.

n—

m
s, x;w) = inj(w)lAj €3] AR O)N (12)
i=0 j=1
where X;; € LZ’(QT),i =0,---,n—-1,j=1---,mO0=¢ty<t; <---<t, =T,
and {4; }J’."zl c I is mutually disjoint.
Remark 8 Since we only require X;; € L’g’ (Qr), the integrand may “non-adapted”.
This issue is essentially different from the requirement of adaptability in the definition
of stochastic integral with respect to temporal-spatial G-white noise in Ji and Peng
[10].

The completion of MP*O(QT) under the norm || - ||asr, denoted by Mg (Qr),is a
Banach space, where the Banach norm || - ||3s» is defined by

T »
£ 1lazp :=(E UO fRd Lf (s, x)lpds/l(dx)])

m p
E Z |Xij 1P (i1 —t:)Aa; | ¢ -

i=0 j=1

n—1
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For f € MP0(Qr) with the form as (12), the related stochastic integral with
respect to the temporal-spatial maximally distributed white noise /¥ can be defined
as follows:

n-1 m

T
wn= [ [ S RW s ) = 3,3 X Uty < 4. (13)

Similar to Lemma 1, we have

Lemma 2 For each f € M"°([0, T] x R%),

T T
E [fo Ldf(s, x)W(ds,dx)|| < kE [fo jl;d s, x)Idsdx], (14)

where k = max{|ul, |ul}.
Thus Iy : M"%(Qr) + Ly (Qr) is a continuous linear mapping. Consequently,

Iy can be uniquely extend to the domain Mgl (Q7). We still denote this mapping by

T
f f f(s,x)W(ds,dx) := Iw(f) for f € M;(QT).
0 R4

Remark 9 Thanks to the boundedness of maximally distributed white noise, the do-
main of integrand Mél (Qr) is much larger since the usual requirement of adaptability
for integrand can be dropped.

It is easy to check that the stochastic integral has the following properties.

Proposition 7 For each f, g € My(Qr),0<s<r<t<T,
Q) [ o f )W (dudx) = [T [, £ )W (du,dx)+ [ [ f (X)W (du, dx).
(ii) [} Joa(af (e x) + g(u.x)) W (du, dx)

= af: fRd f(u, x)W(du,dx) + fst fRd g(u, x)W (du, dx), where a € Lé(QT) is
bounded.

Remark 10 In particular, if we only consider temporal maximally distributed white
noise and further assume that g > 0. In this case, the index set I' = {[s,#) : 0 <
s <t < oo}. The canonical process W ([0,?)) is the quadratic variation process of
G-Brownian motion, more details about the quadratic variation process can be found
in Peng [18].
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Pairs Trading under Geometric Brownian
Motion Models

Phong Luu, Jingzhi Tie, and Qing Zhang

Abstract This survey paper is concerned with pairs trading strategies under ge-
ometric Brownian motion models. Pairs trading is about trading simultaneously a
pair of securities, typically stocks. The idea is to monitor the spread of their price
movements over time. A pairs trade is triggered by their price divergence (e.g., one
stock moves up a significant amount relative to the other) and consists of a short
position in the strong stock and a long position in the weak one. Such a strategy
bets on the reversal of their price strengths and the eventual convergence of the price
spread. Pairs trading is popular among trading institutions because its risk neutral
nature. In practice, the trader needs to decide when to initiate a pairs position (how
much divergence is enough) and when to close the position (how to take profits or
cut losses). It is the main goals of this paper to address these issues and theoretical
findings along with related practical considerations.
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1 Introduction

This paper is about strategies for simultaneously trading a pair of stocks. The idea is
to track the price movements of these two securities over some period of time and
compare their relative price strength. A pairs trade is triggered when their prices
diverge, e.g., one stock moves up substantially relative to the other. A pairs trade
is entered and consists of a short position in the stronger stock and a long position
in the weaker one. Such a strategy bets on the reversal of their price strength and
eventual convergence of their price spread.

Pairs trading was introduced by Garry Bamberger and followed by Nunzio
Tartaglia’s quantitative group at Morgan Stanley in the 1980s. Tartaglia’s group
used advanced statistical tools and developed high tech trading systems by incor-
porating trader’s intuition and disciplined filtering rules. They were able to identify
pairs of stocks and trade them with a great success. See Gatev et al. [7] for related
background details. In addition, there are studies addressing why pairs trading works.
For related in-depth discussions in connection with the cause of the price divergence
and subsequent convergence, we refer the reader to the books by Vidyamurthy [21]
and Whistler [22].

Empirical studies and related considerations can be found in papers by Do and
Faff [4, 5], Gatev et al. [7], and books by Vidyamurthy [21] and Whistler [22]. Issues
involved in these works include statistical characterization of the spread process,
performance of pairs trading with various trading thresholds, and the impact of
trading costs in connection with pairs trading.

A major advantage of pairs trading is its ‘market neutral’ nature in the sense that
it helps to hedge market risks. For example, if the market crashes and takes both
stocks with it, the trade would result in a gain on the short side and a loss on the
long side of the position. The gain and loss cancel out each other and to some extent,
reduce the market risk.

In pairs trading, a crucial step is to determine when to initiate a pairs trade (i.e.,
how much spread divergence is sufficient to trigger a trade) and when to close the
position (when to lock in profits). Following empirical developments documented in
Gatev et al. [7], increasing efforts were made addressing theoretical aspects of pairs
trading. The main focus was devoted to development of mathematical models that
capture the spread movements, filtering techniques, optimal entry and exit timings,
money management and risk control. For example, in Elliott et al. [6], the price
spread is assumed to be a mean reversion process with additive noise. Several
filtering techniques were explored to identify entry points. One exit rule with a fixed
holding period was discussed in detail. In Deshpande and Barmish [3], a general
(mean-reversion based) framework was developed. Using a ‘spread’ function, they
were able to determine the numbers of shares of each stock every moment and how to
adjust them over time. They showed that such an algorithm leads to positive expected
returns.

Some recent efforts on pairs trading have been devoted to in-depth analysis based
on mean reversion models. For example, Kuo et al. [11] considered an optimal selling
rule. The objective is to determine the time of closing an existing pairs position in
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order to maximize an expected return or to cut losses short. In particular, given a
fixed cut-loss level, the optimal target level can be determined under a mean reversion
model. Further results on mean reversion models can be found in Song and Zhang
[18]. They have developed a complete system with both entry and exit signals. They
have shown that the optimal trading rule can be determined by threshold levels. The
calculation of these levels only involves algebraic equations.

We would like to point out that almost all literature on pairs trading is mean
reversion based one way or the other. On the one hand, this makes the trading
more intuitive. On the other, such constraint adds a severe limitation on its potential
applications. In order to meet the mean-reversion requirement, tradable pairs are
typically selected among stocks from the same industrial sector. From a practical
viewpoint, it is highly desirable to have a broad range of stock selections for pairs
trading. Mathematically speaking, this amounts to the possibility of treating pairs
trading under models other than mean reversion. In Tie et al. [19], they have developed
a new method to treat the pairs-trading problem under general geometric Brownian
motions. In particular, under a two-dimensional geometric Brownian motion model,
they were able to fully characterize the optimal policy in terms of two threshold
lines obtained by solving the associated variational inequalities. The principal idea
of pairs trading is that one builds the position of a pair when the cost is low and
closes the position when the pairs’ value is high. These two threshold switching lines
quantify exactly how low is low and how high is high. These policies are easy to
compute and implement. The most striking feature of these results is the simplicity
of the solution: Clean-cut assumptions and closed-form trading policies.

One important consideration in trading has yet received deserved attention: How
to trade with cutting losses. There are many scenarios when cutting losses may arise.
A typical one is a margin call. This is often proceeded with heavy losses leading to an
enforced closure of part or the entire pairs position. Often in practice, a pairs trader
chooses a pre-determined stop-loss level due to a money management consideration.
From a modeling point of view, the prices of the pairs may cease to behave as the
model prescribes due to undesirable events such as acquisition (or bankruptcy) of
one stock in the pairs position. It is necessary to modify the trading rule accordingly
in order to accommodate a pre-determined stop loss level. On the other hand, from
a control theoretical viewpoint, forcing a stop loss amounts to imposing a hard state
constraint. This often poses substantial challenges when solving the problem. Such
issues were addressed in Liu et al. [13] recently. They were able to establish regions
in terms of threshold lines to characterize trading rules. They also obtained sufficient
conditions that guarantee the optimality of these trading rules.

In this paper, we mainly involve stocks. Nevertheless, the idea of pairs trading
is not limited to stock trading. For example, the optimal timing of investments in
irreversible projects can also be considered as a pairs-trading problem. Back in 1986,
McDonald and Siegel [15] considered optimal timing of investment in an irreversible
project. Two factors are included in their model: The value of the project and its cost.
Greater project value growth potential and lesser future project cost will postpone the
transaction. See also Hu and @ksendal [9] for more rigorous mathematical treatment.
In terms of pairs trading, their results are about a pairs trading selling rule. Extension



360 Phong Luu, Jingzhi Tie, and Qing Zhang

along this line can be found in Tie and Zhang [20]. They treated the pairs selling
rule under a regime-switching model. They were also able to show threshold type
selling policies.

The problem under consideration is closely related to traditional portfolio se-
lection problems. Following Merton’s work in the late 60’s, much progress along
this direction has been made. A thorough treatment of the problem can be found
in Davis and Norman [2] in which they studied Merton’s investment/consumption
problem with the transaction costs and established wedge-shaped regions for the pair
of bank and stock holdings. To some extent, pairs trading resembles portfolio selec-
tion. Rather than balancing between bank and stock holdings, pairs trading involves
positions consisting of two stocks. In portfolio selection, risk control is achieved
through adjusting proportion of stock holdings; while, in pairs trading, the risk is
limited by focusing on highly correlated stocks that are traded in opposite directions.
Early theoretical development along portfolio selection with transaction costs using
viscosity solutions can be found in Zariphopoulou [23]. Further in-depth studies and
a complete solution to investment and consumption problem with transaction costs
can be found in Shreve and Soner [17].

Mathematical trading rules have been studied for many years. In addition to the
work by Hu and @ksendal [9] and Song and Zhang [18], Zhang [25] considered
a selling rule determined by two threshold levels, a target price and a stop-loss
limit. In [25], such optimal threshold levels are obtained by solving a set of two-
point boundary value problems. Guo and Zhang [8] studied the optimal selling
rule under a model with switching Geometric Brownian motion. Using a smooth-fit
technique, they obtained the optimal threshold levels by solving a set of algebraic
equations. These papers are concerned with the selling side of trading in which the
underlying price models are of GBM type. Some subsequent efforts were devoted
to strategies on complete trading systems including buying and selling decision
making. For example, Dai et al. [1] developed a trend-following rule based on a
conditional probability indicator. They showed that the optimal trading rule can be
determined by two threshold curves which can be obtained by solving the associated
Hamilton-Jacobi-Bellman (HJB) equations. A similar idea was developed following
a confidence interval approach by Iwarere and Barmish [10]. In addition, Merhi and
Zervos [16] studied an investment capacity expansion/reduction problem following a
dynamic programming approach under a geometric Brownian motion market model.
In connection with mean reversion trading, Zhang and Zhang [24] obtained a buy-
low and sell-high policy by characterizing the ‘low’ and ‘high’ levels in terms of the
mean reversion parameters.

In this paper, we focus on the mathematical aspects of pairs trading. We present key
ideas used in derivation of solutions to the associated HIB equations and summarize
the main results. In §2, we consider pairs trading under geometric Brownian motions.
It can be seen that pairs trading ideas are more general and they do not have to be
cast under a mean reversion framework. In §3, we address pairs trading with a stop-
loss constraint. We establish threshold type trading policies and provide sufficient
conditions that guarantee the optimality of these policies. In §4, we consider a two-
dimensional geometric Brownian model with regime-switching. We focus on related
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optimal pairs selling rules. Proofs of these results are omitted and can be found in
[13, 19, 20]. Finally, some concluding remarks are given in §5.

2 Pairs Trading under a GBM

In this section, we consider pairs trading under a two-dimensional geometric Brow-
nian motion model. A share of pairs position Z consists of one share long position
in stocks X! and one share short position in X2. Let (X, X?) denote their prices at ¢
satisfying the following stochastic differential equation:

X! X! Hi ool (W
al =" dt + al |, (1)
X7 X2 )|\ u2 o on| \W?

where y;, i = 1,2, are the return rates, o;, i, j = 1,2, the volatility constants, and
wh, Wtz) a 2-dimensional standard Brownian motion.

We consider the case that the net position at any time can be either long (with
one share of Z) or flat (no stock position of either X! or X?). Let i = 0,1 denote
the initial net position and let 19 < 11 < 7 < --- denote a sequence of buying and
selling (stopping) times. If initially the net position is long (i = 1), then one should
sell Z before acquiring any shares in the future. That is, to first sell the pair at 7y,
then buy at 7y, sell at 7», buy at 73, and so on. The corresponding trading sequence
is denoted by A = (70, 71, T2, . . .). Likewise, if initially the net position is flat (i = 0),
then one should start to buy a share of Z. That is, to first buy at 1, sell at 7», then
buy at 13, an so forth. The corresponding sequence of stopping times is denoted by
A() = (T1,T2, .. )

Let K denote the fixed percentage of transaction costs associated with buying or
selling of stocks X’, i = 1,2. For example, the cost to establish the pairs position Z
att=t¢yis (1+ K)thl -(1 —K)thl and the proceeds to close it at a later time ¢ = ¢,
is (1 —K)th2 -(1 +K)X,22. For ease of notation, let S, =1+ K and Bs =1-K.

Given the initial state (x1,x3), net position i = 0,1, and the decision sequences
Ao and Ay, the corresponding reward functions
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Jo(x1,x2, Ag) = E{[e‘f’” (Bs X3, = BoXp) 1y<co) =€ 77 (Bo X}, = B X7 ) () <0)]
+[e_pT4(ﬁSX‘l4 - BbX34)I€T4<°°} —e (BbX‘l3 - B5X33)I{73<°°]] +- '}’
Ji(x1,x2,A1) =E{e"”T°(ﬂsXTlo = Bo X7 (ry<co)

+[eFT (,BSXTIZ - BbX32)1{72<°° j—e M (BbXTll - lngTzl Mizi<eo}]
He P (BXg, = B X ryces) =€ T (Bo X7, = P X2 rycoo) 1+ }
@

where p > 0 is a given discount factor and /4 is the indicator function of an event A.
Fori =0,1, let V;(x1,x2) denote the value functions with (Xl,Xg) =(x1,x2) and
initial net positions i = 0, 1. That is, V;(x1,x2) = supy, Ji(x1,x2,A;),i=0,1.

Remark. Note that the ‘one-share’ assumption can be easily relaxed. For example,
one can consider any pairs Z consisting of n| shares of long position in X! and n
shares of short position in X?. This case can be treated by changing of the state
variables (X, l,th) — (n1 X, l,ngth). Due to the nature of GBMs, the corresponding
system equation in (1) will stay the same. The new allocations will only affect the
reward function in (2) implicitly. In addition, we only focus on the ‘long’ side of
pairs trading and note that the ‘short’ side of trading can also be treated by simply
switching the roles of the two stocks X! and X?. O

Example. In this example, we consider stock prices of Target Corp. (TGT) and Wal-
Mart Stores Inc. (WMT). In Figure 1, daily closing prices of both stocks from 1985
to 2014 are plotted. The data is divided into two parts. The first part (1985-1999) will
be used to calibrate the model and the second part (2000-2014) to backtest the per-
formance of our results. Using the prices (1985-1999) and following the traditional
least squares method, we obtain u; = 0.2059, u, = 0.2459, o011 =0.3112, o =
0.0729, 021 =0.0729, 02, =0.2943.

We assume (Al): p > p; and p > pp. Under these conditions, we can show that,
for all x1,x2 >0,

0<Vo(x1,x2) <xz, and  Bexy— Box2 < V1(x1,x2) < Box1 +Kx2.  (3)

Formally, the associated HIB equations have the form: For x1,x; > 0,

min {pvo(xl,m)—ﬂvo(xl,xz), vo(x1,x2) —vi(x1,x2) + Box1 —/D’sxz} =0, @

min {pV1(x1,xz) = Avi(x1,x2), vi(x1,x2) —vo(xX1,X2) — Bsx1 + Bbh} =0,

where

A= » 0 +2 : +anx; o + 9, 0
= anx;—s APRX1 X2 ——F— +tAad»X,——= X1— X2,
2 11 lax% 12X1 26x16x2 22 2c')x% M1 l()xl M2 2ax2
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Fig. 1 Daily Closing Prices of TGT and WMT from 1985 to 2014.

and a;; = 0'12] +a'122, aip = 0110721 + 01202, and ay = a'%l + (r%z.

We convert these HIB equations into single variable equations. Let y = x»/x; and
vi(x1,x2) = x1w;(x2/x1), for some function w; (y) and i = 0, 1. By direct calculation,
we have

(9Vi , (9Vi ,

= wi() —ywi(y), — =wi(y),

8x1 ) GXQ

vy w/(y) 0% w/(¥) 0% ywi(y)
= = , and =- .

ax? X1 9x3 X1 0x10x2 X

We can write Av; in terms of w; and obtain
1 2.1 ’
Avi = x4 5 [an —2an+an]y w (y) + (g2 — u)yw;(y) + iwi(y) ¢ -

Let Lwi(y)] = Ay*w/(y) + (12 — p)yw/(y) + piwi (y) with A = (a1 —2an +
a»)/2. Then, the above HIB equations can be given as follows:

min { pwo(y) = Lwo(y), wo(y) = w1 (y) + o= Bsy} =0, )

min { pwi (y) = Lw1 (7). w1 (») = wo(y) = s+ Boy} =0.

In this paper, we only consider the case when A # 0. If A = 0, the problem reduces to
a first order case and can be similarly treated. To solve these equations, we first focus
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on (p—L)w;(y) =0,i =0, 1. These are the Euler equations and their solutions are of
the form y%, for some . We substitute this into the equation (p — £)w; = 0 and obtain
the corresponding characteristic equation 62 — (1 + (1 — t2)/ )6 = (p— 1)/ = 0.
There are two real roots

1 - -2 4p-4
01 = 1+M+\/(1+#1 ,uz) Pl ol > 1,
2 a4 A A

1 - —m\2 4p-4
o= _[1+H4 ”2—\/(1+“‘ “2)+ P <.
2 1 1 1

(6)

The general solution of (p— £)w;(y) = 0 should be of the form: w;(y) = c;1y°! +
¢iny%2, for some ¢;; and ¢jp, i = 1,2.

Intuitively, if X' is small and X? is large, then one should buy X! and sell (short)
X2 1le.,to open a pairs position Z. If, on the other hand, X,1 is large and X,2 is small,
then one should close the pairs position Z by selling X! and buying back X?. In view
of this, the first quadrant P = {(x1,x2) : x1 > 0 and x, > 0} into three regions I';, I'5,
and I3 where I'y = {(x1,x2) € P: xo < kix1}, o ={(x1,x2) € P: kix1 <x2 <kpx1},
and I3 = {(x1,x2) € P: x2 > kpx1}. This is illustrated in Figure 2.

X2
x2 = kox
(o=A)W; =0 (p— AW =0
vo = Vi =fpX1 +Bsx2 (oA =0
Buy X', Sell Short X*
X2 = klxl
Hold
I3 (p—A)Wwy=0
; Vi = Vo +Bsx1 —Box2
I
I

Sell X!, Buy Back X?

o
Fig. 2 Regions I';, I';, and I3
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With a little bit abuse of notation, we can write the corresponding I';, i = 1,2,3,
interms of y(=x2/x1): T1={y: O<y<ki},In={y: ki<y<hk},andI3={y:
vy > ky}. Here 0 < k) < ky are slopes (thresholds) to be determined so that on

[y (p=LYwo =0, w1 =wo + Bs— Boy;
I: (p—L)Y)we =0, (p—=Lyw; =0; @)
[3:wo=wi =B+ By, (p—L)wi1=0.

Recall the boundedness of the value function in (3) and 6, < 0. The coeflicient
of the term y%2 in wy on T'j has to be zero. Thus, wy = Cyy®! for some Cy on Ty.
Likewise, on I'3, the coeflicient of y‘s1 must be zero because 6; > 1. The solution is
w1 = C1y% for some C; on I'3. Finally, these functions are extended to ['; and are
given by wo = Coy®! and w; = C;y®2. The solutions on each region should have the
form:

[y wo = Coy®t, wi = Coy®' + Bs — Boy;
I wo = Goy?', wi = C1y%;
I3:wy= Clyé2 — Bo+ Bsy, w1 = Clyéz.

Next we use smooth-fit conditions to determine the values for parameters: ki, k2,
Co, and Cj. Necessarily, the continuity of w; and its first order derivative at y = k;
imply Cy kfz = Cokf‘ + Bs — Bok1 and C; 62kf2_1 = Coélkf'_l — Bv. These equations
can be written in matrix form:

Y=k )G [ Boki - B
15 1 15 1 - g ®
5]/{117 —(52]{127 C ﬁb
Similarly, the smooth-fit conditions for wy at y = k; lead to equations:
KB -k [ G| [ Bka=B
= )
kS =5k N\ G Bs

Solve for Cp an C; and express the corresponding inverse matrices in terms of k
and k, to obtain
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Co 1 [ Bo(1=62)k ™% + Bo2k]”

-0 _ _
G| 'O Be(1-80)k O + o1k
(10)

1 [ Bs(1=62)k) " + Broak;”

-5 _ _ :
2\ Bs(1 =6k + P61k,

01

The second equality yields two equations of k1 and k. We can simplify them and
write

(1=62)(Boky ™" = Biky™*") = 62( Bk ™ = Bk ™),
(1=80)(Boky = Boky ) = 61(Boky” = ok ).
To solve these equations, let = k»/k1 and replace k> by rk; to obtain
(1=62)(Bo = Bar' ™Y1 = 62(Bor ™' = Bo)

and
(1=61)(Bo— Bsr'~)k1 = 61(Bor ™% = Bs).
‘We have
_ 82(Bor ™" = Bs) _ 51(Bor™%2 = Bs)
[(1=62)(Bo— Bsr! =] [(1=61)(Bo—Ber'~02)]

Using the second equality and write the difference of both sides, we have

ki

S) = 81(1=82)(Bor™ = i) (B = Bor' =)
—02(1 _61)(,Bbr_61 _lgs)(ﬁb_ﬁsrl—éz) -0.

where 8 = B85,/Bs(> 1). Then we can show f(82) >0 and f(r) — —co, as r — oco.
Therefore, there exists 7o > B2 so that f(ro) =0. Using this ry, we write k; and k;:

62(Bory® = Bs) 51(Bory® = Bs)

=B By ) (6B By ™)
52([31)’”(1)76l = Bsro) 51(,3]3}’(1)762 — Bsro)

L (=) (BB ) (1=80)(Bo—feri ™)

an

Finally, we can use these & and k; to express Cp and C; given in (10).

Theorem. Assume (A1). Then the solutions of the HIB equations (4) can be given
as vo(x1,x2) = x1wo(x2/x1) and vi(x1,x2) = x1wi(x2/x1) where
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1- 620k, + Bosok,®
ﬂb( 2)51 5 ﬂs ol yél’ if0<y<k2,
1—02
WO(y)= 1-6 -5
Bo(1 =61k, % + Bs61k; '
1 R y§2 +Bsy—Bv,  ify > ko,
51—65
Bo(1=62)k! %" + B2k .
511—52 Y+ B=Boy, ifO<y <,
w = _ _
R N N e L _
%, ify> k.
51—65

The optimal trading rule can be determined by two threshold lines (x, = k;x; and
x2 = kpx1) as follows:

Theorem. Assume (A1). Then, v;(x1,x2) =x1w;(x2/x1) =V;(x1,x2),i=0,1. More-
over, if initially i = 0, let A} = (7}, T;, 7;,...) suchthat 7 = inf{r > 0: (X}, X7) €T3},
Ty =inf{r > 770 (X, X7?) €T}, 75 =inf{t > 75 : (X}, X?) € I3}, and so on. Simi-
larly, if initially i = 1,let A} = (7, 1,72, ...)suchthat 7y =inf{r > 0: (Xl,th) eI},
T =inf{t > ;5 (X‘,Xz) €I3}, 7y =inf{r > 7} : (X].X7) €I}, and so on. Then
Af and A7 are optimal. O

Example 1 (cont.) We backtest our pairs trading rule using the stock prices of TGT
and WMT from 2000 to 2014. Using the parameters mentioned earlier, based on the
historical prices from 1985 to 1999, we obtain the pair (ky, k2) = (1.03905, 1.28219).
A pairs trading (long X! and short X?) is triggered when (X}, X?) enters T3. The
position is closed when (X/, X?) enters T'y. Initially, we allocate trading the capital
$100K. When the first long signal is triggered, buy $50K TGT stocks and short the
same amount of WMT. Such half-and-half capital allocation between long and short
applies to all trades. In addition, each pairs transaction is charged $5 commission.
In Figure 3, the corresponding ratio X7/X;, the threshold levels k| and k», and the
corresponding equity curve are plotted. There are total 3 trades and the end balance
is $155.914K.

We can also switch the roles of X! and X2, i.e., to long WMT and short TGT
by taking X'=WMT and X?=TGT. In this case, the new (ki,k2) = (1/ko, 1/k)) =
(1/1.28219,1/1.03905). These levels and the corresponding equity curve is given
in Figure 4. Such trade leads to the end balance $132.340K. Note that both types of
trades have no overlap, i.e., they do not compete for the same capital. The grand total
profit is $88254 which is a 88.25% gain.

Note also that there are only 5 trades in the fifteen year period leaving the capital in
cash most of the time. This is desirable because the cash sitting in the account can
be used for other types of shorter term trading in between, at least drawing interest
over time.
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Equity Curve (Long TGT and Short WMT): 2000/1/3 -- 2014/12/31 |
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Fig. 3 X'=TGT, X>=WMT: The threshold levels &, k; and the corresponding equity curve
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Fig. 4 X'=WMT, X?=TGT: The threshold levels ki, k; and the corresponding equity curve
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3 Pairs Trading with Cutting Losses

In this section, we consider our above-mentioned pairs trading rule with cutting
losses. Recall that a pairs position consists of a long position in stock X' and
a short position in X2. The objective is to open (buy) and close (sell) the pairs
positions sequentially to maximize the discounted reward function Jy and Jj in (2).
In practice, unexpected events could cause substantial losses. This normally occurs
when the long side X shrinks while the short side X? rises. To limit the downside
risk of the pairs position, we impose a hard cut loss level and require X,2 /X,1 <M.
Here M is a constant representing a stop-loss level to account for market reaction to
undesirable events. The introduction of such stop-loss level amounts to imposing a
hard state constraint which makes the corresponding optimal control problem much
more difficult.

Let 7, denote the corresponding exit time, i.e., Ty = {¢: X,z/X,l > M}. Then,
T, < Tp, for all n.

Our goal is to find Ag and A so as to maximize the reward functions Jy(x1, X2, Ag)
and Ji(x1,x2,A1) under such state constraints. For i = 0,1, let V;(x,x2) denote
the corresponding value functions with the initial state (X, .X2) = (x1,x2) and net
positions i =0, 1.

Example The main purpose of imposing a hard stop-loss level M is to limit losses
to an acceptable level to account for undesirable market moves to unforeseeable
events. The stock prices of Ford Motor (F) and General Motors (GM) are highly
correlated historically. They make good candidates for pairs trading. In Figure 5, the
daily closing price ratio (F/GM) from 1977 to 2009 is plotted. It can be seen that
the ratio remains ‘normal’ for most of the time during this period of time. The ratio
starts to rise when approaching the subprime crisis. This would normally trigger a
pairs position longing GM and shorting F. Finally, it spikes prior to GM’s chapter
11 filing on June 1, 2009 causing heavy losses to any F/GM pair positions. Such
hypothetical losses can be limited if one had a hard limit M in place to begin with
to force close the position before prices getting out of control.

The choice of M depends on the investor’s risk preference. Smaller M (tighter
stop-loss control) will cause frequent stop outs and limit profit potential. Larger M
(loose stop-loss), on the other hand, will leave more room for the position to run
with higher risks. O

Let H denote the feasible region under the hard state constraint x,/x; < M. Then,
H={(x1,x2):0<x1,0 < x2 < Mx}. We can show the same inequalities in (3) hold
on H. The associated HIB equations on H can be given as follows:

min{pvy(x1,x2) — Avo(x1,x2), vo(x1,Xx2) —vi(x1,x2) + Box1 — Bsx2} =0, 12

min{pv;(x1,x2) — Avi(x1,x2), vi(x1,x2) = vo(x1,%2) = BsX1 + Bpx2} =0,

with the boundary conditions vo(x1, Mx1) =0 and vi(x1, Mx1) = Bsx1 — BoMx;.
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Fig. 5 Daily closing ratio of F/GM from 1977 to 2009

Following similar approach as in the previous section, we divide the feasible
region H into four regions I'1 = {(x1,x2) € H: 0 < x3 < kyx1}, I = {(x1,x2) €
H: k])C] <x3 < kz)ﬂ}, F3 = {(X],XQ) eH: kQX] <xy < k3x1}, and Iy= {(xl,xz) €
H : k3x; < xp < Mx1}, where 0 < k; < k < k3 < M are threshold slopes to be
determined. The control actions on I'y, I'», and I'5 are similar as before. I'4 is the hold
and see region due to possible cut-loss at x, = Mx. This is illustrated in Figure 6.

Using the smooth-fit approach, we can show that the k| and &, are identical as
the ones given in (11) with ¢ and §; in (6).

To determine k3, let

MO By(x(1-62) + B62) . MO2By(x(51—1)— B61)
x6 x%2

Si(x) = +Bs(1-MB)(61—062).

We assume (A2): There is a k3 in (k2, M) such that fj(k3) =0.

A sufficient condition for this can be given as (A2) f1(k3) > 0.

On each of the regions I, i = 1,2,3,4, we can write the solutions of the HIB
equations in terms of d;, i = 1,2, with coefficients C;, j = 0,1,...,4. Then using
smooth-fit conditions, we can specify these constants as follows:
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. B st
(1- 52)135 '+ ook
G=C+ ,
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(61—-1D)Bsk; ™ - ﬁb51 ki
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1 —d7x X
K%(x) =
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Finally, we need an additional condition to guarantee all inequalities in the HIB
equations to hold. We assume (A3): Either f7(M) <0, or f7'(M) <0, where,

S2() = (C1y° + Cay®) = (C3y® + Cay®) + Boy — Bs.
A sufficient condition fo (A3) can be given as (A3’): u; > pp. Under these

conditions, we have the following theorems.

Theorem Assume (A1), (A2), and (A3). Then the following functions v;(x,x2) =
xiwi(x2/x1), i = 0,1, satisfy the HIB equations (12) where

Coy®", 0<y <k,
wo(y) = 4 C1y0' + Coy® + By — By ko <y <hs,
C3y61 +C4y62, k3 <y< M,
| Coy® + B = oy 0<y<ki,
Wl(y) - S5 S
Cry° + Gy, ki<y<M.

Theorem Assume (Al), (A2), and (A3) and vo(x1,x2) = 0. Then, v;(x1,x2) =
x1wi(x2/x1) = Vi(x1,x2), i = 0,1. Moreover, if i =0, let Aj = (7],75,75,...) =
(T?,Tg,rg, ...) ATy where T? =inf{t >0: (X},th) e I3}, ‘1'20 =inf{z > T? : (Xt],th) €
I}y =inf{r > 7 : (X X7) €T3},

Similarly, if i = 1, let A} = (7, TI*,TZ*, ) = (Tg, T?, Tg, ...) ATy Where TOO =inf{r >
0: (X X}) e}, 7 =inf{r > 1) : (X, X}) €T3}, 1) =inf{zr > 70 : (X, X}) €1 }.....
Then Aj and A} are optimal. O

Next, we consider the daily closing prices of Target Corp. (TGT) and Wal-Mart
Stores Inc. (WMT) from 1985 to 2019. The data are divided into two parts. The first
part (1985-1999) is used to calibrate the model and the second part (2000-2014)
to backtest the performance of our results. Let X'=WMT and X?>=TGT. Using the
traditional least squares method, we have

1 =0.2459, up = 0.2059,011 = 0.2943, 0712 = 0.0729, 0721 = 0.0729,022 = 0.3112.

14
And also, we take K = 0.001 and p = 0.5. Using these parameters, we obtain
(k1, k2, k3) = (0.780,0.963,1.913).

Backtesting 1: (WMT-TGT): We backtest our pairs-trading rule using the daily
closing prices of WMT and TGT from 2000/1/2 to 2019/3/15. Use (k1, k2, k3) =
(0.780,0.963,1.913). Assume initial capital $100K. We keep the 50:50 allocations
in longs and shorts. In Figure 7, the ratio of X,TGT /XIW MT | the threshold levels
(k1, k2, k3), and the equity curve are plotted with the x-axis representing the number
of trading days. Also, when there is no pairs position, we factor in a 3% interest for
the cash position. The overall end balance is $195.46K. For comparison purpose, a
money market return with 3% interest rate is also plotted in Figure 7. In this example,
the stop loss with M = 2 was not triggered and there was no forced stops.
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Fig. 7 The threshold levels ki, k2, k3 and the equity curve

Backtesting 2: (GM-F). Next, we backtest using the daily closing prices of GM
and F from 1998/1/2 to 2009/6/30. We take M = 2 and follow similar calculation
(with 2:1 ratio of F/GM) to obtain (ky, k2, k3) = (0.760,0.892,1.946). Also assume
the initial capital $100K. We keep the 50:50 distribution in dollar amount between
longs and shorts. In Figure 8, the ratio ZXf / XtGM , the threshold levels (ki, k2, k3),
and the equity curve are plotted. Similarly as in the previous example, when there
is no pairs position, a 3% interest was factored in for the cash position. The overall
end balance is $149.52K after hitting stop-loss limit A = 2 on 2009/3/6.

On the other hand, without cutting losses, the initial $100K will end up with
$86.38K in debt when the last pairs closed on GM’s bankruptcy (2009/6/1). A pure
money market return with 3% interest rate is also provided in Figure 8.

4 A Pairs Selling Rule with Regime Switching

Market models with regime-switching are important in market analysis. In this paper,
we consider a geometric Brownian motion with regime-switching. The market mode
is represented by a two-state Markov chain. We focus on the selling part of pairs
trading and generalize the results of Hu and @ksendal [9] by incorporating models
with regime switching. We show that the optimal selling rule can be determined
by two threshold curves and establish a set of sufficient conditions that guarantee
the optimality of the policy. We also include several numerical examples under a
different set of parameter values.

We consider two stocks X! and X2. Let {X/',# > 0} denote the prices of stock X!
and { X ,Z,t > 0} that of stock X2. Let also a; be a two-state Markov chain representing
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Fig. 8 The threshold levels ki, k2, k3 and the equity curve

regime mode. They satisfy the following stochastic differential equation:

xH (X ui(ay) onlay) opla)| (W)
1= aee| a7 as
X7 X7 | \ma(ar) o (ar) on(ay)) \W?

where p;, i = 1,2, are the return rates, o;;, i,j = 1,2, the volatility constants, and
(W}, w?) a2-dimensional standard Brownian motion.

-1 4

A2 Ay

Let M = {1,2} denote the state space for @; and let Q = ,with 41 >0
and 1, > 0, be its generator. We assume a; and (W), Wtz) are independent.

In this section, we consider a pairs selling rule under the regime switching model.
Again, we assume the corresponding pairs position consists of a one-share long
position in stock X! and a one-share short position in stock X2. The problem is to
determine an optimal stopping time 7 to close the pairs position by selling X! and
buying back X?.

Given the initial state (Xl,Xg) = (x1,x2), @p =i = 1,2, and the selling time 7, the
corresponding reward function

J(x1,x2,0,7) = E[e P (BX} = BoX7)], (16)

where p > 0is a given discount factor, B, = 1 + K, Bs = 1 — K, and X is the transaction
cost in percentage.

The problem is to find an {F;} = o-{(Xrl,sz,a/r) : r <t} stopping time 7 to
maximize J. Let V(xy,x2,i) denote the corresponding value functions:
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V(x1,x2,0) = supJ(x1,x2,1, 7). (17
T

As in the previous sections, we impose the following conditions: (B1) Fori = 1,2,

p > (i) and p > wo(i).
Under these conditions, we can obtain

Bsx1— Pox2 < V(x1,x2,0) < Bsxi. (18)
To consider the associated HIB equations, fori = 1,2, let
2 2 2

1 L 20 _ 20
A; = 5 all(z)x%a—x% +2a2(i)x1x2 931072 +a22(l)x%(9_x%

19)

+u1(i)x 6%1 + #2(1'))626%2

where

(i) = o, (D) + o, (0),

az(i) = on(i)oa (@) +on(on(),

an(i) = o3, (i) + o2, (i).
Using these generators, the associated HIB equations have the form:
min{(p - A)v(x1,x2, 1) = 1 (v(x1,%2,2) = v(x1,x2, 1)),

v(x1,x2,1) = Box1 + Pox2} =0,

(20)
min{(p—A)v(x1,x2,2) — Aa(v(x1,x2, 1) —v(x1,%2,2)),

v(x1,x2,2) = Bsx1 + Bpx2} = 0.

To solve the HIB equations (20), we can introduce change of variables: y = x2/x
and v(x1,x2,1) = x1w;(x2/x1), for some functions w;(y) and i = 1,2.

Consider characteristic equations for (p —Aj;)vi — A1 (v2—v1) =0 and (p—
ﬂz)VQ - /lz(V] - V2) =0:

[p+A1=601(6)][p+ A2—-62(6)] = 2112 =0, 21

where, fori =1,2. 8;(0) = 076(6 — 1)+ [(2(?) — p1({)]16 + 1 (i) and o = [a11 (i) —
2a12(i) +axn(i)]/2.
It can be seen the above equation has four zeros: §; > 92 > 1 > 0> §3 > d4.
Heuristically, one should close the pairs position when X is large and X7 is small.
In view of this, we introduce H; = {(x1,x2) : x2 < k1x1} and Hy = {(x1,x2) 1 x2 <
kpx1}, for some k; and k» (to be determined) so that one should sell when (X,I,th)
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enters H; provided a; =i, i = 1,2. In this paper, we only consider the case: k| < k».
Other cases can be treated similarly.

To represent the solutions to the HIB equations on each of these regimes, we
apply the smooth-fit approach and obtain:

Cr = =045 + (64— 1) Bok2
1= 5
13(83 = 04)ky°
C = 0385+ (1-63) Boka
2= 5
14(63 = 64) k3"
Cr = Y2(Bs —a1) + (1 —y2)(Bp + ax) ki
3= ,
(v2=y)k'
Cy = =v1(Bs—a1) + (y1—D(Bp+a2)k
4= ,
(y2—yDk

where n;j= (p+/11 —91(51'))//11, fOI'j =1,2,3,4, and

1 1) - (1 1 1)- 2 -
= L@ 1 =) e+ A= (D),
2 20 2 201 e

(22)
1 m(1)— (1) 1 (D =-m)) | p+ai—m(D)
Y2_2+T_\/(2+T)+ o1 :
Let
2(r) = Ai—y2(Bs—a™ A+ yi(Bs—a)r” 23)
(1=y2)(Bo+a)r” =Bir  (y1—1)(Bo+ax)r*? —Byr’
where
4, = T9aPs(r2=63)  93Bs(y2-64) —a
! n3(63—04) n4(63 = 64) 24
Ay = _54Bs(63_71)+63,8s(64_')’l)+y]a]
T O
By = 294~ Y2—03)Pb —03)pb(y2—04) 1
: n3(63 —04) " 14(63 = 64) (r2=Daz
_ (04=D(E3=y)fo  (1-63)B(64=71) —(l-y)a
73(63—64) n4(63 = 64) ’

with a; = /l]ﬂs/(p+/11 —y](l)) and a; = —/l],Bb/(p+/l] —,ug(l)).
We assume (B2): g() has a zero rg > 1.
Using this 7, we can obtain
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B Ay =y2(Bs —a)ry
(1=y2)(Bo+az)ry' = Birg’ 24)
Arro=y2(Bs—apr) ™!
(1=y2)(Bo+az)ry' = Birg’

1

ky =rok) =

We can express Cj, Cp, C3, and Cy in terms of k; and k». The solutions to the
HIJB equations have the form v(x,x2, @) = x1wq(x2/x1), @ = 1,2, with

Bs = Boy fory e,

wi(y) = Gy + Cay” +ay+ary fory eIy,

C1y% + Cry% fory € I3;
() Bs— Bvy foryel Ul
waly) =
Cin3y® + Conay® fory T,

where
I =(0,k], T2=(ki,k2), and I3 =[kp,o0).

To guarantee the variational inequalities in the HIB equations, we need the fol-
lowing conditions:

; (25)

s mm{(p—ﬂz(l))ﬁb’ (0= 22

(p—u1(1)Bs (p—p1(2))Bs }

1
wi(y) £ Bs— Boy + 1 [(p—u1(2))Bs — (o= p2(2)) Boy] on I,. (26)

In addition, let ¢(y) = wi(y) — Bs + Bvy. Then

¢” (k1) = Csy1(y1 = DK+ Cyya(y2— DA, and

$(ks) = C3kY + Gk + a1 + aska = Bo + Poy.

We need conditions
¢" (k1) > 0and ¢(k) > 0. 27

Finally, on I'3, let ¢ (y) = wa(y) — Bs + Bvy. Then,
" (ka) = Ci363(83 — DA 7 + Canada (84— 1)k 2.

We need
¥ (k2) > 0 and C; y® + Coy™ > By — By on 3. (28)
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Theorem. Assume (B1) and (B2). Assume also (25), (26), (27), and (28) hold.
Then, v(x 1, x2,@) = x1wa(x2/x1) =V (x1,x2,), @ =1,2. Let D = {(x1,x2,1) : x2 >
kix1}U{(x1,x2,2) : x2 > kax1}. Let 7° = inf{t : (X}, X2, a,) ¢ D}. Then 7* is
optimal. O

Finally, we give an example to illustrate the results.

Example 1n this example, we take

u1(1)=0.20, p2(1)=0.25, u1(2)=-0.30, u2(2) = -0.35,
o11(1) =0.30, o12(1) = 0.10, 021 (1) =0.10, o22(1) =0.35,
T1(2) = 0.40, 12(2) = 0.20, 721(2) = 0.20, T22(2) = 0.45,

A1 =6.0, A2 =10.0, K =0.001, p=0.50.

Then, we use the function g(7) in (23) and find the unique zero o = 1.020254 > 1.
Using this 7o and (24), we obtain k; = 0.723270 and k; = 0.737920. Then, we
calculate and get C; = 0.11442, C; = -0.00001, C3 = 0.29121, C4 = 0.00029,
n3 =0.985919, and n4 = —1.541271. With these numbers, we verify all variational
inequalities required in (B2). The graphs of the value functions are given in Figure 9.
O

Fig. 9 Value Functions V (x1, x2, 1) and V (x1, x2, 2)

5 Conclusions

In this paper, we have surveyed pairs trading under geometric Brownian motion
models. We were able to obtain closed-form solutions. The trading rules are given in
terms of threshold levels and are simple and easy to implement. The major advantage
of pairs trading is its risk-neutral nature, i.e., it can be profitable regardless of the
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general market directions. Pairs trading is a natural extension to McDonald and
Siegel’s [15] irreversible project investment decision making. We were able to obtain
similar results under suitable conditions.

Some initial efforts in connection with numerical computations and implementa-
tion have been done in Luu [14]. In particular, stochastic approximation techniques
(see Kushner and Yin [12]) can be used to effectively estimate these threshold levels
directly. Finally, it would be interesting to examine how these methods work through
backtests for a larger selection of stocks.

It would be interesting to extend the results to incorporate more involved models
(e.g., models with incomplete observation in market mode a; ). In this case, nonlinear
filtering methods such as the Wonham filter can be used for calculation of the
conditional probabilities of @ =i given the stock prices up to time ¢. Some ideas
along this line have been used in Dai et al. [1] in connection with the trend-following
trading.
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Equilibrium Model of Limit Order Books: A
Mean-Field Game View

Jin Ma and Eunjung Noh

Abstract In this paper, we propose a continuous time equilibrium model of the (sell-
side) limit order book (LOB) in which the liquidity dynamics follows a non-local,
reflected mean-field stochastic differential equation (SDE) with state-dependent in-
tensity. To motivate the model we first study an N-seller static mean-field type
Bertrand game among the liquidity providers. We shall then formulate the continu-
ous time model as the limiting mean-field dynamics of the representative seller, and
argue that the frontier of the LOB (e.g., the best ask price) is the value function of a
mean-field stochastic control problem by the representative seller. Using a dynamic
programming approach, we show that the value function is a viscosity solution of the
corresponding Hamilton-Jacobi-Bellman equation, which can be used to determine
the equilibrium density function of the LOB, in the spirit of [32].

1 Introduction

With the rapid growth of electronic trading, the study of order-driven markets
has become an increasingly prominent focus in quantitative finance. Indeed, in
the current financial world more than half of the markets use a limit order book
(LOB) mechanism to facilitate trade. There has been a large amount of liter-
ature studying LOB from various angles, combined with some associated op-
timization problems such as placement, liquidation, executions, etc. (see, e.g.
[1, 3, 4,5, 7, 14, 18, 20, 30, 35, 36, 39, 40] to mention a few). Among many
important structural issues of LOB, one of the focuses has been the dynamic move-
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ment of the LOB, both its frontier and its “density" (or “shape"). The latter was
shown to be a determining factor of the “liquidity cost" (cf. [32]), an important
aspect that impacts the pricing of the asset. We refer to, e.g., [2, 19, 26, 32] for the
study of LOB particularly concerning its shape formation.

In this paper, we assume that all sellers are patient and all buyers are impatient. We
extend dynamic model of LOB proposed in [32] in two major aspects. The guiding
idea is to specify the expected equilibrium utility function, which plays an essential
role in the modeling of the shape of the LOB in that it endogenously determines both
the dynamic density of the LOB and its frontier. More precisely, instead of assuming,
more or less in an ad hoc manner, that the equilibrium price behaves like an “utility
function", we shall consider it as the consequence of a Bertrand-type game among
a large number of liquidity providers (sellers who set limit orders). Following the
argument of [13], we first study an N-seller static Bertrand game, where a profit
function of each seller involves not only the limit order price less the waiting cost,
but also the average of the other sellers’ limit order prices observed. We show that the
Nash equilibrium exists in such a game. With an easy randomization argument, we
can then show that, as N — oo, the Nash equilibrium converges to an optimal strategy
of a single player’s optimization problem with a mean-field nature, as expected.

We note that the Bertrand game in finance can be traced back to as early as 1800s,
when Cournot [15] and Bertrand [8] first studied oligopoly models of markets with
a small number of competitive players. We refer to [17] and [41] for background and
references. Since Cournot’s model uses quantity as a strategic variable to determine
the price, while Bertrand model does the opposition, we choose to use the Bertrand
game as it fits our problem better. We shall assume that the sellers use the same
marginal profit function, but with different choices of the price-waiting cost prefer-
ence to achieve the optimal outcome (see Sect. 3 for more detailed formulation).

We would like to point out that our study of Bertrand game is in a sense “mo-
tivational" for the second main feature of this paper, that is, the continuous time,
mean-field type dynamic liquidity model. More precisely, we assume that the liquid-
ity dynamics is a pure-jump Markov process, with a mean-field type state dependent
jump intensity. Such a dynamic game is rather complicated, and is expected to in-
volve systems of nonlinear, mean-field type partial differential equations (see, e.g.,
[23, 27]). We therefore consider the limiting case as the number of sellers tends
to infinity, and argue that the dynamics of the total liquidity follows a pure jump
SDE with reflecting boundary conditions and mean-field-type state-dependent jump
intensity. We note that such SDE is itself new and therefore interesting in its own
right.

We should point out that the special features of our underlying liquidity dy-
namics (mean-field type; state-dependent intensity; and reflecting boundary con-
ditions) require the combined technical tools in mean-field games, McKean-
Vlasov SDEs with state-dependent jump intensity, and SDEs with discontinuous
paths and reflecting boundary conditions. In particular, we refer to the works
[10, 11, 12, 21, 22, 24, 25, 29, 31, 33, 37] (and the references cited therein) for
the technical foundation of this paper. Furthermore, apart from justifying the under-
lying liquidity dynamics, another main task of this paper is to substantiate the corre-
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sponding stochastic control problem, including validating the dynamic programming
principle (DPP) and showing that the value function is a viscosity solution to the
corresponding Hamilton-Jacobi-Bellman (HJB) equation.

This paper is organized as follows. In Sect. 2, we introduce necessary notations
and preliminary concepts, and study the well-posedness of a reflected mean-field
SDEs with jumps that will be essential in our study. We shall also provide an It&’s
formula involving reflected mean-field SDEs with jumps for ready reference. In
Sect. 3 we investigate a static Bertrand game with N sellers, and its limiting behavior
as N tends to infinity. Based on the results, we then propose in Sect. 4 a continuous
time mean-field type dynamics of the representative seller, as well as a mean-field
stochastic control problem as the limiting version of dynamic Bertrand game when
the number of sellers becomes sufficiently large. In Sect. 5 and Sect. 6 we validate
the Dynamic Programming Principle (DPP), derive the HIB equation, and show that
the value function is a viscosity solution to the corresponding HIB equation.

2 Preliminaries

Throughout this paper we let (€, 7,P) be a complete probability space on which
is defined two standard Brownian motions W = {W, : ¢t > 0} and B = {B, : t > 0}.
Let (A, B 4) and (B, Bg) be two measurable spaces. We assume that there are two
Poisson random measures N° and N'?, defined on Ry X A xR, and R, x B, and
with Lévy measures v*(-) and v’ (-), respectively. In other words, we assume that the
Poisson measures N* and N’ have mean measures /\73'(-) = (mxvSxm)(-) and
NP = (mxvP)(), respectively, where m(-) denotes the Lebesgue measure on
R,, and we denote the compensated random measures N S(A) .= (NS - N )(A) =
N5 (A) = (mxv* xm)(A) and N?(B) := (N? =N?)(B) = N?(B) - (mxv?)(B), for
any A € (R X AxR,) and B € ZB(R; x B). For simplicity, throughout this paper
we assume that both v* and v? are finite, that is, v* (A), vb (B) < o0, and we assume
the Brownian motions and Poisson random measures are mutually independent. We
note that for any A € Z(AXR,) and B € B(B), the processes (t,w) — N*([0,1] x
A,w), N?([0,1]X B,w) are both FVN"*N” martingales. Here FN"“N” denotes the
filtration generated by NS and N'?.

For a generic Euclidean space E and for T > 0, we denote C([0,T];E) and
D([0,T]; E) to be the spaces of continuous and cadlag functions, respectively. We
endow both spaces with “sup-norms", so that both of them are complete metric
spaces. Next, for p > 1 we denote LP (¥ ;E) to be the space of all E-valued ¥ -
measurable random variable & defined on the probability space (€, 7,P) such that
E[|£]|P] < o0. Also, for T > 0, we denote Lg([t, T1;E) to be all E-valued F-adapted

process 17 on [#,T], such that ||nll,r := E[ftT |ns|Pds]'/P < co. We often use the
notations L? (F;C([0,T];E)) and LP (F;D([0,T]; E)) when we need to specify the
path properties for elements in Lg ([0,T]; E).
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For p > 1 we denote by &7, (E) the space of probability measures p on (E, Z(E))
with finite p-th moment, i.e. ||,u||f)7 = fE |x|P u(dx) < 0. Clearly, for & € LP(F; E),
its law L(&) =Pz :=Po¢™! € 2,(E). We endow 2, (E) with the following p-
Wasserstein metric:

1
Wy(uv) = inf{(f |x—y|pzr(dx,dy))” ime P,(EXE)
EXE
with marginals u and v} D
= inf{ll£-€ lr() : &€ € LP(F1E) with P = 1, Py = v}.

Furthermore, we suppose that there is a sub-c-algebra G ¢ ¥ such that (i) the
Brownian motion W and Poisson random measures N5, N'? are independent of G;
and (ii) G is “rich enough" in the sense that for every u € £, (R), there is a random
variable ¢ € L>(G;E) such that u = Pgs. Let F = FW-BANSNPVG {F:}+>0, where
F=FVVFEvFN v?—;Nh V G, t >0, be the filtration generated by W, B, N'¥,
N?, and G, augmented by all the P-null sets so that it satisfies the usual hypotheses
(cf. [38]).

Let us introduce two spaces that are useful for our analysis later. We write
C ;’1 (Z,(R)) to denote the space of all differentiable functions f : 9, (R) — R such
that g, f exists, and is bounded and Lipschitz continuous. That is, for some constant
C > 0, it holds

D) 10, f(,x)| <C, pe P[R), x €R;
(i) [0 f (i, X) = Op f (W, x| < Cl{lx = x|+ W (i, 1)}, o p” € P2 (R), x,x" €R.

We shall denote CZ’I (Z,(R)) to be the space of all functions f € C}i’l (Z(R)) such
that

(i) Guf (x) € Cp N (P(R)) forall x € R;
(ii) 63 1 PR)XRXxR — R®R is bounded and Lipschitz continuous;
(iil) 0, f (1, -) : R — R is differentiable for every u € & (R), and its derivative

Oyouf : Z>(R) xR — R®R is bounded and Lipschitz continuous.
2.1 Mean-field SDEs with reflecting boundary conditions

In this subsection we consider the following (discontinuous) SDE with reflection,
which will be a key element of our discussion: for t € [0,T],

Xy = x+f f 0(r, X, PX,. D10, X, 2x, (N (drdzdy) 2
r JAxRr,

S S
+ f b(r, X, P, )dr + f o (r,X,,Px,)dB, + Bs +Ks,  s€[,T],
t t
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where 6, A, b, o are measurable functions defined on appropriate subspaces of
[0,T1x QxR x P (R) xR, B is an F-adapted process with cadlag paths, and K is a
“reflecting process". That is, it is an F-adapted, non-decreasing, and cadlag process
so that

(i) X. >0, P-as.;

(i) fOT 1;x,>0;dK; =0, P-a.s. (K¢ denotes the continuous part of K); and

(iii) AK; = (X;— +AY;)” forallt € [0,T], where Y = X — K.

We call SDE (2) a mean-field SDE with discontinuous paths and reflections
(MFSDEDR), and we denote the solution by (X**, K**), although the superscript is
often omitted when context is clear. If b,0- = 0 and S is pure jump, then the solution
(X, K) becomes pure jump as well (i.e., dK¢ = 0). We note that the main feature of
this SDE is that the jump intensity A(:--) of the solution X is “state-dependent” with
mean-field nature. Its well-posedness thus requires some attention since, to the best
of our knowledge, it has not been studied in the literature.

We shall make use of the following Standing Assumptions.

Assumption 2.1 The mappings A1 : [0, T]XRX Z(R) » Ry, b: [0, T] X QX R X
PR R, 0 [0,TIXQAXRXZR) >R, and 0: [0,T]XQAXRX Z,(R) XR -
R are all uniformly bounded and continuous in (t,x), and satisfy the following
conditions, respectively:

(i) For fixed p € %, (R) and x,z € R, the mappings (t,w) — 0(t,w,x, i4,2),
(b,0)(t,w, x, u) are B-predictable;

(ii) For fixed u € %,(R), (t,z) € [0,T]XR, and P-a.e. w € Q, the functions
A, W), b(t,w,-, W), ot,w,-uw), 8(t,w,- 1,z) € Cli R);

(iii) For fixed (t,x,z) € [0,T] xR?, and P-a.e. w € Q, the functions A(t,x,-),
b(t,w,x,), T (t,w,%,°), 0(t,w,x,-,2) € Cp (P2 (R));

(iv) There exists L > 0, such that for P-a.e. w € Q, it holds that

[At,x, 1) = A(t,x", () + [b(t, w, x, ) = b(t,w,x", 1)
ot w,x, 1) — o (tw,x', )| +10¢, 0, x, 1,2) — 0(t,w, x", 1, 2)|
<SL(x=x1+Wi(up)),  t€[0T], x,x",z€R, pu' € Z(R).

Remark 2.2 (i) The requirements on the coefficients in Assumption 2.1 (such as
boundedness) are stronger than necessary, only to simplify the arguments. More
general (but standard) assumptions are easily extendable without substantial diffi-
culties.

(ii) Throughout this paper, unless specified, we shall denote C > 0 to be a generic
constant depending only on 7 and the bounds in Assumption 2.1. Furthermore, we
shall allow it to vary from line to line.

It is well-known that (see, e.g., [9]), as a mean-field SDE, the solution to (2) may

not satisfy the so-called “flow property", in the sense that X~ # Xf’X;'X,O <t<s<
r <T.Itis also noted in [9] that if we consider the following accompanying SDE of
(2): for s € [1,T],



386 Jin Ma and Eunjung Noh

N N
xhé =§+f b(r, X 5P t,g)dr+f o(r, X" P ie)dB, + By + Ko
t t

N
& NS
[ X R O e N @z G)
and then using the law Py+.¢ to consider a slight variation of (3):
N N
X958 = xt f b(r, Xy 5% Pyre)dr + f o (r, X7 Pyre)dB, + By + K¢
t " t "
A
+f f o(r, Xf’,x"';’:, PX:,g, Z)]‘[O’/l(ryxﬁ,ix,f,]lz . f)](y)N“'(alrdzafy), %)
r JAxR, X[

where ¢ € L>(%;;R), then we shall argue below that the following flow property
holds:

X E ol E
(X;"XS X xS Xs ):(Xﬁ’x’f,xﬁ"’f), 0<t<s<r<T, (5)

for all (x,&) e Rx L%(%;;R). We should note that although both SDEs (3) and (4)
resemble the original equation (2), the process X’*¢ has the full information of the
solution given the initial data (x, £), where & provides the initial distribution P, and
x is the actual initial state.

To prove the well-posedness of SDEs (3) and (4), we first recall the so-called
“Discontinuous Skorohod Problem" (DSP) (see, e.g., [16, 31]). Let Y € D([0,T7]),
Yy > 0. We say that a pair (X, K) € D([0,7])? is a solution to the DSP(Y) if

) X=Y+K;

(i) X; 20,1 >0; and

(iii) K is nondecreasing, Ko =0, and K; = fot 1x, —0)dK,t > 0.

It is well-known that the solution to DSP exists and is unique, and it can be shown
(see [31]) that the condition (iii) amounts to saying that fot 1ix, >0ydKS =0, where
K€ denotes the continuous part of K, and AK; = (X;- + AY;)™. Furthermore, it is
shown in [16] that solution mapping of the DSP, I" : D([0,T]) — D([0,T]), defined
by I'(Y) = X, is Lipschitz continuous under uniform topology. That is, there exists a
constant L > 0 such that

sup [T(YY), —=T(Y?),| <L sup |Y,'—Y?| YL Y? e D([0,T)). (6)
tel0,T] t€[0,T]

Before we proceed to prove the well-posedness of (3) and (4), we note that the
two SDEs can be argued separately. Moreover, while (3) is a mean-field (or McKean-
Vlasov)-type of SDE, (4) is actually a standard SDE (although with state-dependent
intensity) with discontinuous paths and reflection, given the law of the solution to (3),
Py:.¢, and it can be argued similarly but much simpler. Therefore, in what follows we
shall focus only on the well-posedness of SDE (3). Furthermore, for simplicity we
shall assume b = 0, as the general case can be argued similarly without substantial
difficulty.
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The scheme of solving the SDE (3) is more or less standard (see, e.g., [31]). We
shall first consider an SDE without reflection: for & € Lz(ﬁ ;R) and s € [1,T1],

Ysl,f = f+f f e(r’F(Yt’é‘)rf,PF(thf)wZ)l[o /lr(z,f)](y)}vs(drdZdy)
t AXR, e

A
+f U(r,r(yl’f)r,Pr(yt,f)r YdB; + fs, (7N
t

where /lfﬁt’g) = /l(r,F(Y”f)r_,Pr(Yt,g)r). Clearly, if we can show that (7) is well-

posed, then by simply setting Xif =T (Y"¢), and Kﬁ‘f = Xé"f - Yst"f, s €[t,T], we see
that (X"¢, K¢) would solve SDE (3)(!). We should note that a technical difficulty
caused by the presence of the state-dependent intensity is that the usual L*-norm
does not work as naturally as expected, as we shall see below. We nevertheless have
the following result.

Theorem 2.3 Assume that Assumptions 2.1 is in force. Then, there exists a solution
Yh€ e L%(D([t, T))) to SDE (7). Furthermore, such solution is pathwisely unique.

Proof Assumet =0.ForagivenTy>0,and y € LI;(D([O, Tov])), consider a mapping
T

S —_—
T(y)s = £+ f f 00Ty Prsy ) Li0.00rx 02000, 0 (N (drdzd)
0 AXR,
N
+ f o (r,I'(y)r,Pr(y), )dB + B, s> 0. (®)
0

We shall argue that .7 is a contraction mapping on LfF(D([O, To))) for Ty > 0 small
enough.

To see this, denote, for € D([0,7p]), nl; := supy<, <, [7-], and define 65(z) :=
005, T (V)5 Priyys»2)»> As 1= AT ()5, Prey),)s 05 1= 0(8,T(¥)s: Pry), )» s € [0,T5].
Then, we have

A

Ty
E[l7 (] < C{EIEI+E] fo fA ) 16, (2)1(0.0,1 0)|V* (dz)dudr]

([ lorar)”)

Ty
CE|¢| +CE| fﬂ fA 10,(2)A,1v* (d2)dr |

ez [ )] <on
0

thanks to Assumption 2.1. Hence, .7 (y) € L]IF(D([O, To))).
We now show that .7 is a contraction mapping on LHL(D([O, To])). For yi,y; €
L]}:(D([O, Tol)), we denote 9t A, and o, respectively, as before, and denote Ay :=

IA
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ol =2 for ¢ =0,4,0, and AT (s) := T (y1)s — 7 (y2)s, s > 0. Then, we have, for
s € 10,Tp],

Aﬁ(@:f Aa,dBr+ff (86, ()19, 11, (»)
0 0 JAXR,
+07(2) (g a1y (9) = g2 () |V (drdzdy).

Clearly, A7 = 7 (y1) — 7 (y2) is a martingale on [0,Tp]. Since N =N —N and
[10,a1(-) = Lj0,61(-)| £ Ljanb,avp)(-) for any a,b € R, we have, for 0 < s < Tp,
N l N
EIAT|: < E[(f (Ao [2dr)?] +2E[f f 102(2) (1011, (3 = 1.2, ()
0 0 Jaxr,
+A0, () 1,V (d2)dydr| == I + I, )

Recalling from Remark 2.2-(ii) for the generic constant C > 0, and by Assumption
2.1-(iv), (6), and the definition of W, (-,-) (see (1)), we have

5 . 1/2
1< CB[( [ty =32l + Wi ro, Frow, 21ar) ]
0

< CE[Vs(ly1 = y2l; +Ely1 = y205) ] < CVTolly1 = v2ll ooz
N S
L < C(E[f f|A9,(z)|vS(dz)dr]+E[f |A/1,|dr]) (10)
0 A 0
N
< Ca[ [ (1P, =T 0214 W1 B, Frow,)ar]
0
N
< CE[f |F(y1)—1"(yz)|r*dr] < CTollyr = y2llLr oo, 10) -
0

Combining (9) and (10), we deduce that

IAZ I oqozany < CTo+ VIO = 2lloioqozyy S €0.Tol. (11

Therefore, by choosing Ty such that C(Ty + VTp) < 1, we see that the mapping
T is a contraction on L!(D([0,7p])), which implies that (7) has a unique so-
Iution in L%(D([O, To])). Moreover, we note that 7Ty depends only on the univer-
sal constant in Assumption 2.1. We can repeat the argument for the time interval
[Ty, 2191, [2Ty, 3Tp], - - -, and conclude that (7) has a unique solution in LEI,(D([O, 1))
for any given T > 0.

Finally, we claim that the solution Y € L%(D([O, T1)). Indeed, by Burkholder-
Davis-Gundy’s inequality and Assumption 2.1, we have
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A

EIVE?) s ClEeP+E] [ [ 0@t 0Py ]

51 [ lovPan +Elpl) (12)
0

IA

C{E|§|Z+E[fos[1+|Yr|2+W1(0,r(Y)r)]2dr] +EIB1;*

IA

C{E|g|2+f‘(1+E[|Y|:»2])dr+15|ﬁ|;’2}, se[0,T].
0

Here, in the last inequality above we used the fact that
Wi (0,T(Y))* < (ITW),llpie)® < BITW)H* < CE[IY[F?,  rel0;s].

Applying the Gronwall inequality, we obtain that E[|Y|;’2] < o0, The proof is now
complete. g

Remark 2.4 (i) It is worth noting that once we solved X %€ then we know Pxe.e,
and (4) can be viewed as a standard SDEDR with coefficient A(s, x) := A(s, x, Pyre),
which is Lipschitz in x. This guarantees the existence and uniqueness of the solution
(XHX%E KB%€) to (4).

(ii) The uniqueness of the solutions to (3) and (4) implies that Xé’x’f |x=&=

Xé’f, s € [¢t,T]. That is, X;’x’g |x=¢ solves the same SDE as Xé’f, s € [t,T]. (See more
detail in [34].)

(iii) Given (1, x) € [0,T]1XR, if P, = Py, for &,&, € L*(F;;R), then X"*¢! and
X% are indistinguishable. So, X*Fé := X%¢ je. X*¢ depends on & only
through its law.

2.2 An Ito’s formula

We shall now present an Itd’s formula that will be frequently used in our future
discussion. We note that a similar formula for mean-field SDE can be found in [9],
and the one involving jumps was given in the recent work [22]. The one presented
below is a slight modification of that of [22], taking the particular state-dependent
intensity feature of the dynamics into account. Since the proof is more or less standard
but quite lengthy, we refer to [34] for the details.

In what follows we let (€, 7, ) be a copy of the probability space (Q, ,P), and
denote E[-] to be the expectation under P. For any random variable © defined on
(Q, 7,P), we denote, when there is no danger of confusion, e (Q, 75', P) to be a
copy of ¢ such that Pﬁ = Pgy. We note that that B[] acts only on the variables of the
form 4.

We first define the following classes of functions.

Definition 2.5 We say that F € C;> " ([0,T] xR xR x 2,(R)), if
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(i) F(t,v,,") € C;' (RX P2(R)), forall t € [0,T] and v € R;
(ii) F(-,v,x, u) € C;([O, T1), for all (v, x, u) € RXRX P (R);
(iii) F(t,-x, 1) € CL(R), for all (t,x, 1) € [0, TIXR X P (R);

(iv) All derivatives involved in the definitions above are uniformly bounded over
[0,T]XRXR x % (R) and Lipschitz continuous in (x, ), uniformly with respect to
t.

We are now ready to state the Itd’s formula. Let V" be an Itd process given by
S s
ViV =v+ f bY (r,VE)dr + f oV (r,V}V)dBY (13)
t t

where v € R and (BV)teoT is a standard Brownian motion independent of
(Bt)teqo,)- For notatlonal 51mphclty, 1n what follows for the coefficients ¢ =

b,o,B,4, we denote oor €= (s, X0* u;) ng'f(z) = 0(s, X0F ’,Pxé,g,z),
GE = (s, X152, th) and 6% (2) 1= 6(s, X" ,th_,g,z). Similarly, denote b%" :=

BY (s, VEY) and ob” = oV (s, V"), Also, let us write @ := (s, V;’V,X;’x’f,PXt,g),
from which we have @] = (7,v, x,P¢).

Proposition 2.6 (Itd’s Formula) Let ® € ;> (0,71 xR xR x 2,(R)), and
(XE, X15E VIV be the solutions to (3), (4) and (13), respectively, on [t,T). Then,
for0<t<s<T, it holds

O(0)) - 0(6)

N
=f (8, 0(OL) + 0, DO by + za§x®(®;)(a£’x’f)2+avc1>(®;)b;vv
t

1
+§av2vq>(®;)((r;»V)2)dr
s s S
facb(@)’)a,"de favq>(®;)a§”d3}’+f 8 ®(OL_)1x, —o)dK,
t t

ff(l)(rV”, ”ﬂe”‘f(z),P,f)—@(@g_)

—0, (0] )0, (2)) 47V (d2)dr (14)
+ f f (OO VA, XL 67 (2), Py = 0(O! )1 o, (1IN (drdzdy)
AXR, T

f [acb(@) ’f)b’f+ a(acb)(® REE) (5042

ff (8. 0(0. R4 400" (2))-0,0(0), ’f)) 07 () 275 v* (dz)dp dr.
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3 A Bertrand game among the sellers (static case)

In this section we analyze a price setting mechanism among liquidity providers
(investors placing limit orders), and use it as the basis for our continuous time model
in the rest of the paper. To begin with, recall that in this paper we assume all sellers
are patient and all buyers are impatient. We therefore consider only the sell-side
LOB. Following the ideas of [13, 27, 28], we shall consider the process of the (static)
price setting as a Bertrand-type of game among the sellers, each placing a certain
number of sell limit orders at a specific price, and trying to maximize her expected
utility. To be more precise, we assume that sellers use the price at which they place
limit orders as their strategic variable, and the number of shares submitted would be
determined accordingly. Furthermore, we assume that there is a waiting cost, also as
a function of the price. Intuitively, a higher price will lead to a longer execution time,
hence a higher waiting cost. Thus, there is a competitive game among the sellers for
better total reward. Finally, we assume that the sellers are homogeneous in the sense
that they have the same subjective probability measure, so that they share the same
degree of risk aversion.

We now give a brief description of the problem. We assume that there are N
sellers, and the jth seller places limit orders at price p; = X +1;, j = 1,2,---,N,
where X is the fundamental price. Without loss of generality, we may assume X = 0.
As a main element in an oligopolistic competitions (cf. e.g., [28]), we assume that
each seller i is equipped with a demand function, denoted by th (p1,p2,-++,pnN), for
a given price vector p = (p1,p2,--+,pn), reflecting the seller’s perceived demand
from the buyers. The seller i will determine the number of shares of limit orders
to be placed in the LOB based on the values of his/her demand function, given the
price vector. Hence this is a Bertrand-type game'. More specifically, we assume
that the demand functions th ,i=12,---,N, are smooth and satisfy the following
properties:

any o o
— <0, and —— >0, forj#i. (15)
opi dpj

We note that (15) simply amounts to saying that each seller expects less demand (for

her orders) when her own price increases, and more demand when other seller(s)

increase their prices. Furthermore, we shall assume that the demand functions are
invariant under permutations of the other sellers’ prices, in the sense that, for fixed

p1,--+,py and all i, j € {1,---, N},

h{\,(pl"..’pi"..’pj’...’pN):h;}](pl"..5pj7..'7pi’."’pN)' (16)

It is worth noting that the combination of (15) and (16) is the following fact: if a
price vector p is ordered by p; < p» <--- < pn, then for any i < j, it holds that

A Cournot game is one such that the price p; is the function of the numbers of shares g =
(q1, - -+, qn) through a demand function. The two games are often exchangeable if the demand
functions are invertible (see, e.g., [28]).
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hjv(p) = h;'v(ph"’pj’",pi,",pN) < hll'v(ph"’pi’"’pi’",pN) < h{v(p) (17)

That s, the demand functions are ordered in a reversed way, which in a sense indicates
that the shape of LOB should be a non-increasing function of prices in the LOB.
Finally, for each i, we denote the price vector for “other" prices for seller i by p_;.
For seller i, the “least favorable" price for given p_; is one that would generate zero
demand, which is often referred to as the choke price. We shall assume such a price
exists, and denote it by p;(p-;) < oo, namely,

h?’(ph"'9pi—1>ﬁi9pi+1""9pN):0' (18)

We note that the existence of the choke price, together with the monotonicity property
(15), indicates the possibility that hj\’ (p) <0, for some j and some price vector p.
But since the size of order placement cannot be negative, such scenario becomes
unpractical. To amend this, we introduce the notion of actual demand, denoted by
{ﬁi (p)}, which we now describe.

Consider an ordered price vector p = (py,---,pn), With p; < p;, 1 < j, and we
look at h%(p). If h’,\‘f(p) > 0, then by (17) we have th(p) >0foralli=1,---,N.
In this case, we denote 71;(p) = hN (p) for all i = 1,---,N. If h}(p) <0, then we

set ZN (p) = 0. That is, the N-th seller does not act at all. We assume that the
remaining N — 1 sellers will observe this fact and modify their strategy as if there
are only N — 1 sellers. More precisely, we first choose a choke price py so that
hN.(p1,-+,pn-1,PN) = 0, and define

RN prpa. - pn-) = hY (pLpa. - p-LDN), i=1 N=1,

and continue the game among the N — 1 sellers.
In general, for 1 <n < N —1, assume the (n + 1)-th demand functions {h;‘+1 }?:11
are defined. If W"*!(p1,--+,pns1) < 0, then other n sellers will assume (n + 1)-th

n+l
seller sets a price at p,;; with zero demand (i.e., h;‘ﬂ (p1,p2, > PusPn+1) = 0), and

modify their demand functions to
i (prop2oeopn) = B (prpa P Par), i=1ne (19)

We can now define the actual demand function {E }i’i {

Definition 3.1 (Actual demand function) Assume that {hf.v }il\:' | is a family of demand

functions. The family of “actual demand functions", denoted by {hi}iA:’ | are defined
in the following steps: for a given ordered price vector p,

(i) ifh%(p) > 0, then we set h;(p) = hfv(p)foralli =1,---,N;

(ii) if h%(p) < 0, then we define recursively for n = N —1,---1 the demand
Junctions {h}}' | as in (19). In particular, if there exists an n < N such that
W (p1 D2+ s Pus Pust) < 0 and By (p1, pa,-++, pn) = 0, then we set

n+l1
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7 hn(pl,pZ,,p ) iZl,"'&”
hi(p) =4 ' R (20)

0 i=n+1,---,N;

(iii) if there is no such n, then Ei(p) =0foralli=1,---,N

We note that the actual demand function will always be non-negative, but for each
price vector p, the number #{i : h;(p) > 0} < N, and could even be zero.

3.1 The Bertrand game and its Nash equilibrium

Besides the demand function, a key ingredient in the placement decision mak-
ing process is the “waiting cost" for the time it takes for the limit order to be
executed. We shall assume that each seller has her own waiting cost function
cN 2 cN(pi,p2---.pN.Q), where Q is the total number of shares available in the
LOB. Similar to the demand function, we shall assume the following assumptions

for the waiting cost.

Assumption 3.2 For each selleri € {1,---,n} with n € [1,N], each clN is smooth in
all variables such that

. ..o ocN 0. and ocN 0 N
(i) (Monotonicity) apr >0, an Ty <0, forj#i,
(it) (Exchangeability) ¢ (1, pis i) = €N (01, pjs i N7
(i) ¢V ()]0 = 0. and S| e @.1);

iii) ¢;* (p)] ;=0 = 0, and - pe<0t , 1),

v) Ti _bi _i=1...
(iv) limp, -0 s =0,i=1,---,N.

Remark 3.3 (a) Assumption 3.2-(i), (ii) ensure that the price ordering leads to the
same ordering for waiting cost functions, similar to what we argued before for
demand functions. In particular, the second part of Assumption 3.2-(i) is due to
(15). That is, if other seller submits an order at a higher price, the demand for seller
i increases, which would lead to faster execution, hence shorter waiting time and
lower waiting cost.

(b) Consider the function J;(p,Q) = p; — cl.N (p, Q). Assumption 3.2 amounts to

. aJ; (p, .
saying that J;(p,Q)|,,o = 0. %i@ izor 0, and lim,, e J;(p, Q) < 0. Thus,
; 0_ 0 . 9Ji(p.Q) _ 191;(1) 0)
there exists p; = p; (p-i» Q) > 0 such that ap, ‘pi: =0, and |p o
(c) Since J;(0,Q) =0, and 9Ji (” Q) pi=0+ > (, one can easily check that J; (pl. ,0) >
0 This, together with Assumptlon 3.2-(iv), shows that there exists p; = p;(p-;, Q) >
p?, such that J; (p;, )|, =, =0 (or, equivalently cN(p1,-+ pic1, PisDists -+ PN, Q) =

Pi). Furthermore, remark above implies that J; (pl,Q) < 0 for all p; > p;(p-i, Q). In
other words, any selling price higher than p;(p-;, Q) would yield a negative profit,
and therefore should be prevented.
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The Bertrand game among sellers can now be formally introduced: each seller
chooses its price to maximize profit in a non-cooperative manner, and their decision
will be based not only on her own price, but also on the actions of all other sellers.
We denote the profit of each seller by

Hi(p13p23"’pNs Q) = Ei(pl,sz 9pN) X (pl _C;V (plap2s PN Q))9 (21)

and each seller tries to maximize her profit I1. For each fixed O, we are looking for
a Nash equilibrium price vector p*N (Q) = (pY’N(Q), N p*A’,N(Q)). We note that in
the case when Z,v (p*™N) = 0 for some i, the i-th seller will not participate in the game
(with zero profit), so we shall modify the price

PN 2NN, N0 =N N, 0), (22)

and consider a subgame involving the N — 1 sellers, and so on. That is, for a subgame
with n sellers, they solve

kN __ n *,N *,N *,N *,N *N .
p; —argrgggﬂi Py 0y DDy Pe QD) i =1, n (23)
*,n+1

to get p** = (py", - pp" e ,c;‘\’,N). More precisely, we define a Nash Equi-
librium as follows.

Definition 3.4 A vector of prices p* = p*(Q) = (p},py " *>PN) is called a Nash
equilibrium if

p; = argmaxILi(py. py. = PP Pisrs P> Q) 24)

and p; = ¢} (p*,Q) whenever hi(p)=0,i=1,2,---,N.
We assume the following on a subgame for our discussion.

Assumption 3.5 For n = 1,---, N, we assume that there exists a unique solution to
the system of maximization problems in equation (23).

Remark 3.6 We observe from Definition of the Nash Equilibrium that, in equilib-
rium, a seller is actually participating in the Bertrand game only when her actual
demand function is positive, and those with zero actual demand function will be
ignored in the subsequent subgames. However, a participating seller does not nec-
essarily have positive profit unless she sets the price higher than the waiting cost. In
other words, it is possible that E,- (p") > 0, but p! = ¢;(p*,Q), so that I1; (p*, Q) = 0.
We refer to such a case the boundary case, and denote the price to be c:’b.

The following result details the procedure of finding the Nash equilibrium for the
Bertrand competition. The idea is quite similar to that in [13], except for the general
form of the waiting cost. We sketch the proof for completeness.
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Proposition 3.7 Assume that Assumption 3.2 is in force. Then there exists a Nash
equilibrium to the Bertrand game (21) and (24).

Moreover, the equilibrium point p*, after modifications, should take the following
form:

#b ,b
p* = (st"' sp]t»ck_'_l»“' 70:[ ’C:H-l’“. sc}k\])s (25)

Jfrom which we can immediately read: Ei (P*)>0andp; > ci,i=1,--,k; E,- (p")>0
butp; <cf,i=k+1,---,n; and/h\,-(p*) <0,i=n+1,---,N.

Proof We start with N sellers, and we shall drop the superscript N from all the
notations, for simplicity. Let p* = (p}, p3, - -, pjy) be the candidate equilibrium prices
(obtained by, for example, the first-order condition). By exchangeability, we can
assume without loss of generality that the prices are ordered: p} < p; <--- < pj,
and so are the corresponding cost functions ¢j < ¢; < --- < cj,, where ¢} = ¢;(p*, Q)
fori=1,---,N.

We first compare p}k\’,N and c}k\’,N .

Case 1. pj, > c,. We consider the following cases:

(a) If h% (p*) > 0, then by Definition 3.1 we have Ei (p") = th (p*) > 0, for all i,
and p* = (p},p5, -+, py) is an equilibrium point.

(b) If h%(p*) < 0, then in light of the definition of actual demand function
(Definition 3.1), we have ZN (p*) = 0. Thus, the N-th seller will have zero profit
regardless where she sets the price. We shall require in this case that the N-th seller
reduces her price to c}*v, and we shall consider remaining (N — 1)-sellers’ candidate
equilibrium prices p*NV-! = (p’f’N_l, e ,p;’,]:[l_l).

Case 2. pj, < c. In this case the N-th seller would have a non-positive profit
at the best. Thus, she sets p}, = cj,, and quits the game, and again the problem is
reduced to a subgame with (N — 1) sellers, and to Case 1-(b). We should note that in
the “boundary case" described in Remark 3.6, we will write py, = c;‘\}b.

Repeating the same procedure for the subgames (forn =N —1,---,2), we see that
eventually we will get a modified equilibrium point p* of the form (25), proving the
proposition. g

3.2 A linear mean-field case

In this subsection, we consider a special case, studied in [27], but with the modified
waiting cost functions. More precisely, we assume that there are N sellers, each with
demand function

hN (p1,--,pn) 2 A= Bp; +CpY, (26)
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where A,B,C > 0, and B > C, and p N w1 Z pj- We note that the structure of

the demand function (26) obviously reflects a mean-field nature, and one can easily
check that it satisfies all the assumptions mentioned in the previous subsection.
Furthermore, as was shown in [27, Proposition 2.4], the actual demand function
takes the form: foreachn € {1,--- ,N -1},

R (pi,-+ pn) = an—bppi +cpp;, fori=1,---n,

where p' = — 1 Z pj» and the parameters (ay, b,,c,) can be calculated recursively
J#i
forn=N,---,1, with ay = A, by = B and ¢y = C. We note that in these works the

(waiting) costs are assumed to be constant.
Let us now assume further that the waiting cost is also linear. For example, for
n=1,---,N,

i = ¢ (pi, P} Q) = xn(Q)pi = yn(Q)P}, xn(Q), yn(Q) > 0.
Note that the profit function for seller i is
i (p1,++ P @) = (an = bupi + cnp!) - (Pi = (Xnpi = ynB) ) - 27)

An easy calculation shows that the critical point for the maximizer is

n ap Cn Yn _n
= — _— <y 28
Pi +(2bn 2(1—xn))p’ (28)

which is the optimal choice of seller i if the other sellers set prices with average
== 1 Z#lp Now, let us define

i

_li * an(l—x,) (29)
n &P 2, (U= 2) = n(T=x) + by

Tzl;en, it is readily seen that p!’ = -5 p" — ﬁ pi, which means (plugging back into
(28))

, a 1
*, N n -n
g = + . 30
P e 1 bava | nl_2bu(xn 1V (30)
n'top-1 n—-11-x, n cn(l-x,)-buyn n

For the sake of argument, let us assume that the coefficients (ay, by, cpy, X, (Q),
vn(Q)) converge to (a,b,c, x(Q),y(Q)) as n — co. Then, we see from (29) and (30)
that
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a(l—x)

lim p" = =:p;

noe? T () —c(l-x)+by F an
lim ™" = & c(l-x)-by - a(l-x) o
P T =) el T @b—o-x+by L

It is worth noting that if we assume that there is a “representative seller" who
randomly sets prices p = p; with equal probability %, then we can randomize the
profit function (27):

T (p, ) = (an = bup + cnp) (p = (xup = yu)), (32)

where p is a random variable taking value {p;} with equal probability, and p ~ E[p],
thanks to the Law of Large Numbers, when n is large enough. In particular, in the
limiting case as n — oo, we can replace the randomized profit function IT,, in (32)
by:

M = [(p, Elp]) := (a—bp+cElp])(p— (xp—yEIp)). (33)

A similar calculation as (28) shows that (p*,E[p*]) € argmaxII(p, E[p]) will take the
form
% C(l - .X') - by *

a o
p= WE[P I+5, and  E[p']=

a(l—x)
2b(1-x)—c(1-x)+by’

Consequently, we see that p* = %, as we see in (31).

Remark 3.8 The analysis above indicates the following facts: (i) If we consider the
sellers in a “homogeneous" way, and as the number of sellers becomes large enough,
all of them will actually choose the same strategy, as if there is a “representative
seller" that sets the prices uniformly; (ii) The limit of equilibrium prices actually
coincides with the optimal strategy of the representative seller under a limiting profit
function. These facts are quite standard in mean-field theory, and will be used as the
basis for our dynamic model for the (sell) LOB in the next section.

4 Mean-field type liquidity dynamics in continuous time

In this section we extend the idea of Bertrand game to the continuous time setting.
To begin with, we assume that the contribution of each individual seller to the LOB
is measured by the “liquidity" (i.e., the number of shares of the given asset) she
provides, which is the function of the selling price she chooses, hence under the
Bertrand game framework.
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4.1 A general description

We begin by assuming that there are N sellers, and denote the liquidity that the
i-th seller “adds" to the LOB at time ¢ by Q'. We shall assume that it is a pure
jump Markov process, with the following generator: for any f € C([0,T7]xR"), and
(t.q) €[0,T]xR",

VA = [ Vg0l 0.0, = f )
~( Oy, . (1,6.2)) )V (d2), (34)

where g € RYN, and q-iy) =(q1,"**+qi-1,¥,gi+1>* - »gn ). Furthermore, Kt denotes
the demand function for the i-th seller, and 6 € R¥ is a certain market parameter
which will be specified later. Roughly speaking, (34) indicates that the i-th seller
would act (or “jump") at stopping times {TJ’:} with the waiting times T; » —T;
having exponential distribution with intensity A?(-), and jump size being determined
by the demand function 4?(---). The total liquidity provided by all the sellers is then

a pure jump process with the generator

00

J=1

N
N f16g.0)= ) S Nfltg),  geRY, NeN, 1e[0,T]. (35)
i=1

We now specify the functions A’ and A’ further. Recalling the demand function
introduced in the previous section, we assume that there are two functions A and 4,
such that for each i, and for (z,x,q,p) € [0,T]x RxR?V,

A(t,q,0) = At,q",p', V), K (1,6,2) = hit,x,q",p', 2), (36)

where uV := ﬁ Zf\i 10pi, x denotes the fundamental price at time ¢, and p'is the
sell price. We shall consider p = (p!,---, p™) as the control variable, as the Bertrand
game suggests. Now, if we assume v’ = v for all i, then we have a pure jump Markov
game of mean-field-type, similar to the one considered in [6], in which each seller
adds liquidity (in terms of number of shares) dynamically as a pure jump Markov

process, denoted by Q}, t > 0, with the kernel
v(t,q' 1N, p'dz) = At g p' M)y o 7 (8, x.4", )] (d2). (37)

Furthermore, in light of the static case studied in the previous section, we shall assume
that the seller’s instantaneous profit at time ¢ > 0 takes the form (P; - Cf)AQi, where
c! is the “waiting cost" for i-th seller at time z. We observe that the submitted sell
price p' can be written as p’ = x + %, where x is the fundamental price and [’ is the
distance from x that the i-th seller chooses to set. Now let us assume that there is an
invertible relationship between the selling prices p and the corresponding number of
shares ¢, e.g., p = ¢(g) (such a relation is often used to convert the Bertrand game
to Cournot game, see, e.g., [27]), and consider [ as the control variable. We can then
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rewrite the functions A and % of (36) in the following form:

A(t,q,0) = At ¢ 1L @i (9(9)), K (t,4,0) = h(t,x,q",1',2). (38)

To simplify the presentation, in what follows, we shall assume that A does not depend
on the control variable /%, and that both A and 4 are time-homogeneous. In other
words, we assume that each Q' follows a pure jump SDE studied in §2:

t
0,=¢q +£ foR+ h(XmQr_,lr,Z)l[o,,z(QL,H‘I;’(QH)](Y)N‘ (drdzdy), (39)

where Q; = (Q,l, - ,va), N* is a Poisson random measure on R, X R xR, and
{X:};>0 is the fundamental price process of the underlying asset which we assume
to satisfy the SDE (cf. [32]):

) A
X0% = x4 f b(X")dr + f o (XE¥)dW,, (40)
t t

where b and o are deterministic functions satisfying some standard conditions.
We shall assume that the i-th seller is aiming at maximizing the expected total
accumulated profit:

E{ ) (p}-c)AQ]}

t>0
:E{f0 fAh(X,,Qi,lf,z)(X,+l§—cf)/l(Qi,pf;’(Qt))v“'(dz)dt}. (41)

We remark that in (41) the time horizon is allowed to be infinity, which can be
easily converted to finite horizon by setting A(X;,--) =0 for ¢t > T, for a given time
horizon T > 0, which we do not want to specify at this point. Instead, our focus will
be mainly on the limiting behavior of the equilibrium when N — oo. In fact, given
the “symmetric" nature of the problem (i.e., all seller’s having the same A and #),
as well as the results in the previous section, we envision a “representative seller" in
a limiting mean-field type control problem whose optimal strategy coincides with
the limit of N-seller Nash equilibrium as N — oo, just as the well-known continuous
diffusion cases (see, e.g., [29] and [9, 12]). We should note such a result for pure
jump cases has been substantiated in a recent work [6], in which it was shown
that, under reasonable conditions, in the limit the total liquidity Q, = f\; ! Q;' will
converge to a pure jump Markovian process with a mean-field type generator. Based
on this result, as well as the individual optimization problem (39) and (41), it is
reasonable to consider the following (limiting) mean-filed type pure jump stochastic
control problem for a representative seller, whose total liquidity has a dynamics that
can be characterized by the following mean-field type pure jump SDE:

t
0:r=¢q +f f h(Xr, Qr—1r, D) 110,2(0,_Po, 1IN (drdzdy),  (42)
0 Jaxg,
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where A1(Q,Pp) := A(Q,E[¢(Q)]) by a slight abuse of notation, and with the cost
functional:

I(g,0) = E{f(; Lh(Xth»lt’ (X +1; =) A(Q, P, )V* (dZ)dl}- (43)

4.2 Problem formulation

With the general description in mind, we now give the formulation of our problem.
First, we note that the liquidity of the LOB will not only be affected by the liquidity
providers (i.e., the sellers), but also by liquidity consumer, that is, the market buy
orders as well as the cancellations of sell orders (which we assume is free of charge).
We shall describe its collective movement (in terms of number of shares) of all such
consumptional orders as a compound Poisson process, denoted by S; = Zf\i FPAYS
t > 0, where {N;} is a standard Poisson process with parameter A, and {A;} is a
sequence of i.i.d. random variables taking values in a set B C R, with distribution
v. Without loss of generality, we assume that counting measure of S coincides with
the canonical Poisson random measure N2, so that the Lévy measure is vP = v. In

other words, S, := fot [, 52 N’ (drdz), and the total liquidity satisfies the SDE:

t
Q?:q+f f h(Xr,Q(r)_,lr,z)llo,/l(Q(L’P O)I(y)NS(drdZdy)—ﬂ,. 44)
0 JAxR, T Qr

We remark that there are two technical issues for the dynamics (44). First, the
presence of the buy order process 8 brings in the possibility that Q? < 0, which should
never happen in reality. We shall therefore assume that the buy order has a natural
upper limit: the total available liquidity Q¥. That is, if we denote Sg = {t : AS; # 0},
then for all 7 € Sg, we have Q¥ = (Q%_—ApB,)*. Consequently, we can assume that
there exists a process K = {K;}, where K is a non-decreasing, pure jump process
such that (i) Sk = Sg; (i) AK, := (Q"_ —AB,)™, t € Sk; and (iii) the Q°-dynamics
(44) can be written as, for ¢ > 0,

t
0 =g+ f f h(Xr. Qs )N i0.000, 0, (IN® (drdzdy) - B + K,
0 JAxR,
t o~
— g+ f f WXy Qe a0, - po, n (VN (drdzdy) 45)
0 AXR

- f f 2 NP (drdz) + f f h(Xys Q1 2) A(Qr P, )V (d2)dr + K.
0 JB 0JA

where K is a “reflecting process", and ﬁs(drdzdy) is the compensated Poisson
martingale measure of N'*. That is, (45) is a (pure jump) mean-field SDE with
reflection as was studied in §2.
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Now, in light of the discussion of MFSDEDR in §2, we shall consider the following
two MFSDEDRSs that are slightly more general than (45): for £ € Lz(?};R), q €R,
and 0 < s <t,

;‘f = f+f f h(X}{»x,Qi’i Iy, 2) llO,/l(Qi'f,]P ,yf)J(y)ﬁS(drdZdy)
t AXR bt
s s
_f f z NP (drdz) +f a(X;’x,Qi’f,PQr,f,lr)dr+K§"§, (46)
t JB . 5
S

t,q,& tx AbL9.& =
: = q+f f h(X;",0.2°,1,2) 1 1. € MN?(drdzdy)
’ t JAXR, 02074 Pore)]

- f ‘ f ¢ NP (drdz) + f Ca(XP QLM P el )dr + KEVE, (47)
t JB t "

where [/ = {I;} is the control process for the representative seller, and Q; = ts’q’g,

s > t, is the total liquidity of the sell-side LOB. We shall consider the following set
of admissible strategies:

U =1{l € L]%([O,OO);RJr) : [ is F-predictable}. (48)

The objective of the seller is to solve the following mean-field stochastic control
problem:

v(x,q.Pg)= sup I1(x,q,Pg, 1) = sup E[f ePTLIXS, QFF P e 1 )dr | (49)
0 r

1€Upa 1€Uqa

where L(x,q, p,1) := fA h(x,q,1,2)c(x,q,1)A(q, W)v*(dz), and %, 4 is defined in (48).
Here we denote X* := X0*, 0%¢ := Q%9¢,

Remark 4.1 (i) In (46) and (47), we allow a slightly more general drift function a,
which in particular could be a(x, g, 1,1) = A(q, 1) fA h(x,q,1,2)v*(dz), as is in (45).

(i) In (49), the pricing function c(x,q,/) is a more general expression of the
original form x +/ —c in (43), taking into account the possible dependence of the
waiting cost ¢; on the sell position / and the total liquidity ¢ at time .

(iii) Compared to (43), we see that a discounting factor e " is added to the cost
functional IT(---) in (49), reflecting its nature as the “present value".

In the rest of the paper we shall assume that the market parameters b, o, A, h, the
pricing function c in (46) — (49), and the discounting factor p satisfy the following
assumptions.

Assumption 4.2 All functions b,o € C°(R), 1 € L°(R x Z,(R);R,), h € LO(R? x
R4 X A), and ¢ € L2(RxR, XR,) are bounded, and satisfy the following conditions,
respectively:
(i) b and o are uniformly Lipschitz continuous in x with Lipschitz constant L > 0;
(ii) 0(0) = 0 and b(0) > 0;
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(iii) A and h satisfy Assumption 2.1;

(iv) Forl e Ry, c(x,q,1) is Lipschitz continuous in (x, q), with Lipschitz constant
L>0;

(v) h is non-increasing, and c is non-decreasing in the variable I;

(vi) p>L+ %LZ, where L > 0 is the Lipschitz constant in Assumption 2.1;

(vii) For (x, u,1) € Ry X Z5(R) xRy, II(x, g, u,1) is convex in q.

Remark 4.3 (i) The monotonicity assumptions in Assumption 4.2-(v) are inherited
from §3. Specifically, they are the assumption (15) for /, and Assumption 3.1-(i) for
¢, respectively.

(ii) Under Assumption 4.2, one can easily check that the SDEs (40) as well as
(46) and (47) all have pathwisely unique strong solutions in L]%(D([O, T1)), thanks
to Theorem 2.3; and Assumption 4.2-(ii) implies that X:* > 0, s € [£,), P-a.s.,
whenever x > 0.

5 Dynamic programming principle

In this section we substantiate the dynamic programming principle (DPP) for the
stochastic control problem (46)—(49). We begin by examining some basic properties
of the value function.

Proposition 5.1 Under the Assumptions 2.1 and 4.2, the value function v(x,q,P¢)
is Lipschitz continuous in (x,q,P¢), non-decreasing in x, and decreasing in q.

Proof We first check the Lipschitz property in x. For x,x’ € R, denote X* = X%*
and X* = X®*" as the corresponding solutions to (40), respectively. Denote AX, =
X7 —th', and Ax = x —x’. Then, applying Itd6’s formula to |AX,|> and by some
standard arguments, one has

t t
IAX, | = |Ax|? + f Qas + BHIAX, P ds + f 2B5|AX, |2 AW,
0 0

where «, § are two processes bounded by the Lipschitz constants L in Assumption
2.1, thanks to Assumption 4.2. Thus, one can easily check, by taking expectation
and applying Burkholder-Davis-Gundy and Gronwall inequalities, that

E[IAX[?] < |Ax|?eL+E1 t>0. (50)

Furthermore, it is clear that, under Assumption 4.2, the function L(x,q, i, 1) is
uniformly Lipschitz in x, uniformly in (g, /). That is, for some generic constant
C > 0 we have
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IMT(x,q.Pe. 1) ~TI(x',q. P 1)| < CE| f f P! |AX, v (dz)dt ]
0 A

< C]E[f e \JE[IAX];1d1 | SCIAfo e eI gy < Clx - x|,
0 0

Here the last inequality is due to Assumption 4.2-(vi). Consequently, we obtain
v(x,q,Pz) —v(x',q,Pg)| < Clx—x'|, Vx,x" €R. (51)

To check the Lipschitz properties for g and Pg, we denote, for (¢,Pz) € Ry X
Pr(R), B = (X, 0515 1, 2), AT = AQFHE P ). and o€ = (X, 0574, 1y),

s > t. Furthermore, for ¢, ¢’ € R, and P¢,Pgr € 92, (R), we denote Ay, = ;! & lﬁf/’f/
for = h, A,c. Now, by Assumptions 2.1 and 4.2, and following a similar argument
of Theorem 2.3, one shows that

II(x,q,Pg, 1) —I1(x,q",Per, 1)]

< E{ f f " (hEE el E AL+ AT | A |+ B 28 | Acy )V (dz)dr
0 A

<E{ f f ePIIQYHE — QE T v (d)dr) < C (g —q' |+ Wi (P, Be)),
0 A
which implies that

V(x,0,P) —v(x.q" Pp)I < C(lg—q'|+ Wi (Pe,Pe)) . (52)

Finally, the respective monotonicity of the value function on x and ¢ follows
from the comparison theorem of the corresponding SDEs and Assumption 4.2. This
completes the proof. g

We now turn our attention to the DPP. The argument will be very similar to that
of [32], except for some adjustments to deal with the mean-field terms. But, by using
the flow-property (5) we can carry out the argument without substantial difficulty.

Theorem 5.2 Assume that Assumptions 2.1 and 4.2 are in force. Then, for any
(x,q,P¢) € R x 25 (R) and for any t € (0,00),

v(x,q,Pz) = sup E[f e P L(X], qfl, Qg;[,lx)ds

€Uy q

+e PTy(XF, Q8¢ fl)] (53)

Proof Let us denote the right side of (53) by #(x, q,P¢) = sup; (x,q, Pg;l). We first
note that X, and (Q;"f, er,q,g) have the flow property. So, for any ! € %4,
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&) _ ’ ’l
exareit =5 [ L0500 Pt
t ’
- E[f eipSL(X;C’Qg”E’ ,Pszz,ls)ds
0 s
+e B f ePOOLXE QB per, 1) ds| ) (54)
t
t
) E[fo LT OF B g l)ds + PTG OF 7L B e D]

t
e 43t - N3
< E[f(; e P L(X7,0f ,PQf_;I,ls)ds+e Py (X, 0f ’PQ,'E;')]

= l:[(x,q,]P’g;l).

This implies that v(x, g, Ps) < ¥(x,q,Ps).

To prove the other direction, let us denote I' = Ry X R X % (R), and consider,
at each time 7 € (0,00), a countable partition {I';}°, of I" and (x;,g:,Pg,) €1, & €
Lz(ﬁ),i =1,2,---,suchthat for any (x, g, 1) € I'; and for fixed € > 0, itholds |x —x;| <
&,qi—e<q<gq;,and Wo(u,Pg) < &. Now, for each i, choose an g-optimal strategy
I' € Uga, such that v(t, x;,q;, Pg,) <TI(t, X1, G, Pe, 3 1') + &, where TI(t, x;, ¢, Pg, 3 1) 1=
E[ftoo e_p(s_t)L(X;’xi, g’qi’&,PQ;vf.‘ , l;)ds] and v(t, x;, q:',Pfi) =SUPjicqy, , T1(¢, x;, qi,
Pss 19).

Then, by definition of the value function and the Lipschitz properties (Proposition
5.1) with some constant C > 0, for any (x, g, u) € I';, it holds that

(1, x,q, p1;1") > TI(t, X1, i, Pg;3 1) — Ce > v(t, x4, Gi, Pe,) — (C+ D)e
> v(t,x,q, 1)) —(2C+ De. (55)

Now, for any [ € %,4, we define a new strategy I as follows:

Iy = Lo () + [ ) 1n (X Q8P pe) [ 1.0 (5). (56)
L
Then, clearly [ € %,4. To simplify notation, let us denote

t
I = f e LXEQVEL P e, 1) ds. (57)
O s

By applying (55) and flow property, we have
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v(x,q, 1) > T1(x, q, ;1)
=E[l +¢'E{ f e‘p(s")L(X;‘,Qg’f;l,PQg;z,ls)ds‘?}}]
t S

I+ e P X, Q5 P e D]
t

|
E[l+e Y T X5 0 P oe s 1D, (X5, 01 P o)
[

>E[1 +e P v(X}, Q?’f,PQf)] —2C+1)e=T1(x,q,Ps;1) - (2C + e,

Since & > 0 is arbitrary, we get v(x,q,Pz) > V(x,q,P¢), proving (53). OJ

Remark 5.3 We should note that while it is difficult to specify all the boundary
conditions for the value function, the case when g = 0 is relatively clear. Note that
q = 0 means there is zero liquidity for the asset. Then by definition of the liquidity
dynamics (45) we see that O, will stay at zero until the first positive jump happens.
During that period of time there would be no trade, thus by DPP (53) we should have

v(x,0,u) =0. (58)

Furthermore, since the value function v is non-increasing in ¢, thanks to Proposition
5.1, and is always non-negative, we can easily see that the following boundary
condition is also natural

0yv(x,0, 1) = 0. (59)

We shall use (58) and (59) frequently in our future discussion.

6 HJB equation and its viscosity solutions

In this section, we shall formally derive the HIB equation associated to the stochastic
control problem studied in the previous section, and show that the value function of
the control problem is indeed a viscosity solution of the HIB equation.

To begin with, we first note that, given the DPP (53), as well as the boundary
conditions (58) and (59), if the value function v is smooth, then by standard arguments
with the help of the Itd’s formula (14) and the fact that

Oqv(Xi-, 0, Px, )10, —0ydK; = 04v(X,-,0,Px, )10, —0ydK; =0,
it is not difficult to show that the value function should satisfy the following HIB

equation: for (x,q, u) € RXR, X FZ(R),

leR, (60)

{pV(x, g.1) = sup[_#'[vI(x.q, 1) + L(x.q, 1.1,
v(x,0,u) =0, 8,v(x,0,u) =0,
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where ¢ ! is an integro-differential operator defined by, for any ¢ € Ci’a’]) RXxR;x
P (R)),

A 1
A1) = (D)0 + 07 ()39 + alx. . 113y ) ¢, . 1)
+fA(¢(x,q+ h(x, g1, 2), j) = (5 G, 1) =B $(x, 4, (%, 1,2)) A (g, 1) v* (d2)

- fB (6(x.q =2 1) = ¢(x,q, 1) = Dy $ (x,q, )2) " (d2)

1
+B [0up(x, g Ha(x & u )] +E| fo fA (Buo(x.q. & +yh(x1,2)
~0u (%, 4, 1)) h(x, &L, 2) AE, p)v* (d2)dy |
1
B[ fo fB (0up(x.q. 1€ = 72) = Bud(x,q. 1. D)) X 2" (dD)ly . 1)

We note that in general, whether there exists smooth solutions to the HIB equation
(60) is by no means clear. We therefore introduce the notion of viscosity solution for
(60). To this end, write 2 := RXR, x #(R), and for (x,q, 1) € Z, we denote

U(xq.1) = {e e CLA(D) v(xq, 1) = p(x,q, 1) };

U (x, q,p) = {go € U (x,q, 1) : v— ¢ has a strict maximum at (x, g, /J)};

U (x,q, 1) := {go € U (x,q, 1) : v— has a strict minimum at (x, g, ,u)}.

Definition 6.1 We say a continuous function v : 9 +— R, is a viscosity subsolution
(supersolution, resp.) of (60) in D if

pp(x.q. 1) - sup [ 7' 0)(x.q. ) + L(x.q. j1.1)] < 0, (resp. > 0) (62)

for every ¢ € U (x,q, ) (resp. ¢ € U (x,q, 11)).
A function v : 9 — R, is called a viscosity solution of (60) on Z if it is both a
viscosity subsolution and a viscosity supersolution of (60) on 9.

Our main result of this section is the following theorem.

Theorem 6.2 Assume that the Assumptions 2.1 and 4.2 are in force. Then, the value
function v, defined by (49), is a viscosity solution of the HIB equation (60).
Proof For a fixed X := (,¢, i) € Z with i =Pz and £ e L*(F;R), and any 17 > 0,
consider the set Zz ;, := {x = (x,q,p) € Z : ||Ix - x| <7}, where ||x-xX| := (Ix—
1/2

TPt lg =gl + Wau ) and ji= Be with £ € L2(F 1R,

We first prove that the value function v is a subsolution to the HIB equation (60).
We proceed by contradiction. Suppose not. Then there exist some ¢ € % (x) and
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&o > 0 such that

pp(%) ‘f‘%p[/ [1(R) + L(x,D)] =: 250 > 0. (63)

Since Al(x) := 4 ! [¢](x) + L(x,!) is uniformly continuous in x, uniformly in /,
thanks to Assumption 4.2, one shows that there exists > 0 such that for any
X € Yg p, it holds that

pp(x) —IS%P[/I[QO](X) +L(x,1)] = &o. (64)

Furthermore, since ¢ € @(x), we assume without loss of generality that 0 = v(k) —
¢(X) is the strict maximum. Thus for the given n > 0, there exists 6 > 0, such that

max {v(x) - ¢(x) 1 x ¢ gy} =—6 <0. (65)

On the other hand, for a fixed € € (0, min(&g, dp)), by the continuity of v we can
assume, modifying n > 0 if necessary, that

v(x)—vE)| =v(x)-pX)| <e, X € D . (66)

Next, forany 7 > 0 and any [ € %,q we set 7! :=inf{t >0: 0, ¢ Dz} AT, where
0O, := (X7, Q?’g’l, PQq,g ). Applying It6’s formula (14) to e " ¢(®,) from 0 to 77 and
noting that v(x) = got()‘x) we have

TT
E| f e_”’L((:)t,l,)dt+e_“’TTv(@Tr)]
0

= B| f e P L@yl )dt+eT p(@,r) +ePT [v-¢](O,1)] (67)
0

T M —_
=E| f e (LB 1) + 71910, - pp(By)) dt + ™ [v = ](@,1)| +v(F)
0
<E[- %(1 —e ) 4P [ =) (@,1)] +v(F)
= E[e_pTT (f +[v-— go](@Tr)) 1l < T]
o
+E[e_pTT (f +[v —gD](@TT)) crl = T] +v(X) — f.
P p
Now note that on the set {t7 < 7'} we must have (:)TT ¢ Dz n, thus [v - go](@TT) < -0,
thanks to (65). On the other hand, on the set {t! =T} we have @, = Or € Zx,,

and then (66) implies that [v — go](@r) <v(x) - go(@T) + &. Plugging these facts in
(67), we can easily obtain that
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T

E| f e_’”L(@t,l,)dt+e_”TTv(@TT)]
0
< (E-o)pi <+ Cre)e? 4vm) -2
p p p
< (£+s)epr+v(§:)—£.
p p

Here in the last inequality above we used the fact that £/p— ¢ < 0, by definition of
e. Letting T — oo we have

TT
E[f e P L(®,,1,)dt + €_pTTV(®TT)] <v(x) - g
0 P

Since | € %4 is arbitrary, this contradicts the dynamic programming principle (53).
The proof that v is viscosity supersolution of (60) is more or less standard, again
with the help of Itd’s formula (14). We only give a sketch here.
Let x € Z and ¢ € % (x). Without loss of generality we assume that 0 = v(X) —
¢(X) is a global minimum. That is, v(x) — ¢(x) > 0 for all x € Z. For any & > 0 and
| € Uqa, we apply DPP (53) to get

h
0> ]E[f e P L(O, 1) dt + ey (O) | —v(x)
0

h
> B[ f P L(O I)dt + e p(O))] - p(x). (68)
0

Applying 1t6’s formula to e ¢(0,) from 0 to /& we have

h
02E[ [ e (L@l + /6O - pp(©)) di] (69)

Dividing both sides by & and sending / to 0, we obtain pp(x, g, Ps) > /l[go] (x,q,Pg)+
L(x,q,Pg,1). By taking supremum over [ € %,4 on both sides, we conclude

pp(x,q.Pg) > sup [_Z'[¢](x,q,Pg) + L(x,q,Pg, D]

le, ad
The proof is now complete. O

Finally, we remark that, as the limiting case of a Bertrand-type of game for a
large number of sellers, the value function v(x,q,P¢) in (49) can be thought of as
the discounted lifelong expected utility of a representative seller, and thus can be
considered as “equilibrium" discounted expected utility for all sellers. Moreover, as
one can see in Proposition 5.1, the value function v(x, q,P¢) is uniformly Lipschitz
continuous, non-decreasing in x, and decreasing in g. Also, by Assumption 4.2-
(vii), the value function is convex in g. Consequently, we see that the value function
v(x,q,Pg) resembles the expected utility function U (x, q) in [32] which was defined
by the following properties:
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(i) the mapping x + U(x, q) is non-decreasing, and aua(;’q) <0, azléc(;;’q) > 0;
(ii) the mapping (x,q) — U(x,q) is uniformly Lipschitz continuous.

In particular, we may identify the two functions by setting U (x,q) = v(x,q,Pg)l¢=4,

which amounts to saying that the equilibrium density function of a LOB is fully

described by the value function of a control problem of the representative seller’s

Bertrand-type game. This would enhance the notion of “endogenous dynamic equi-

librium LOB model" of [32] in a rather significant way.
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Bounded Regret for Finitely Parameterized
Multi-Armed Bandits

Kishan Panaganti, Dileep Kalathil, and Pravin Varaiya

Abstract We consider multi-armed bandits where the model of the underlying
stochastic environment is characterized by a common unknown parameter. The true
parameter is unknown to the learning agent. However, the set of possible parame-
ters, which is finite, is known a priori. We propose an algorithm that is simple and
easy to implement, which we call Finitely Parameterized Upper Confidence Bound
(FP-UCB) algorithm, which uses the information about the underlying parameter
set for faster learning. In particular, we show that the FP-UCB algorithm achieves a
bounded regret under a structural condition on the underlying parameter set. We also
show that, if the underlying parameter set does not satisfy this structural condition,
the FP-UCB algorithm achieves a logarithmic regret, but with a smaller preceding
constant compared to the standard UCB algorithm. We also validate the superior
performance of the FP-UCB algorithm through extensive numerical simulations.

1 Introduction

The Multi-Armed Bandit (MAB) problem is a canonical formalism for studying how
an agent learns to take optimal actions through repeated interactions with a stochas-
tic environment. The learning agent receives a reward at each time step which will
depend on the action of the agent as well as the stochastic uncertainty of the environ-
ment. The goal of the agent is to act so as to maximize the cumulative reward. When
the model of the environment is known, computing the optimal action is a standard
optimization problem. The challenge in MAB is that the agent does not know the
stochastic model of environment a priori. The agent needs to explore, i.e., take ac-
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tions to gather information and estimate the model of the system. At the same time
the agent must exploit the available information to maximize the cumulative reward.
This exploration vs. exploitation trade-off is at the core of the MAB problem.

Lai and Robbins in their seminal paper [19] formulated the non-Bayesian stochas-
tic MAB problem and characterized the performance of a learning algorithm using
the metric of regret. They showed that no learning algorithm can achieve a re-
gret better than &'(logT). They also proposed a learning algorithm that achieves
an asymptotic logarithmic regret, matching the fundamental lower bound. A simple
index-based algorithm called UCB algorithm was introduced in [5] which achieves
the order optimal regret in a non-asymptotic manner. This approach led to a number
of interesting algorithms, among them linear bandits [13], contextual bandits [11],
combinatorial bandits [10], and decentralized and multi-player bandits [15].

Thompson (Posterior) Sampling is another class of algorithms that give superior
numerical performance for MAB problems. The posterior sampling heuristic was
first introduced by Thompson [25], but the first rigorous performance guarantee, an
O (log T) regret, was given in [2]. The Thompson sampling idea has been used in al-
gorithms for bandits with multiple plays [17], contextual bandits [3], general online
learning problem [14], and reinforcement learning [23]. Both classes of algorithms
have been used in a number of practical applications, like communication networks
[24], smart grids [16], and recommendation systems [29].

Our contribution: We consider a class of multi-armed bandits problems where
the reward corresponding to each arm is characterized by a common unknown pa-
rameter with a finite set of possible values. This restriction is inspired by real-world
applications. For example, in recommendation systems and e-commerce applica-
tions (Amazon, Netflix), it is typical to assume that each user has a certain ‘type’
parameter (denoted by 0 in our formulation), and the set of possible parameter val-
ues is finite. The preferences of the user is characterized by her type (for exam-
ple, prefer science books over fiction books). The set of all possible types and the
preferences of each type may be known a priori, but the type of a new user may
be unknown. So, instead of learning the preferences of this user over all possible
choices, it may be easier to learn the type parameter of this user from a few obser-
vations. In this work, we propose an algorithm that explicitly uses the availability of
such structural information about the underlying parameter set which enables faster
learning.

We propose an algorithm that is simple and easy to implement, which we call FP-
UCB algorithm, which uses the structural information for faster learning. We show
that the proposed FP-UCB algorithm can achieve a bounded regret (£'(1)) under
some structural condition on the underlying parameter set. This is in sharp contrast
to the increasing (&'(logT)) regret of standard multi-armed bandits algorithms. We
also show that, if the underlying parameter set does not satisfy the structural con-
dition, the FP-UCB algorithm achieves a regret of ¢'(logT), but with a smaller
preceding constant compared to the standard UCB algorithm. The regret achieved
by our algorithm also matches with the fundamental lower bound given by [1]. One
remarkable aspect of our algorithm is that, it is oblivious to whether the underlying
parameter set satisfies the necessary condition or not, thereby avoiding re-tuning
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of the algorithm depending on the problem instance. Instead, it achieves the best
possible performance given the problem instance.

Related work: Finitely parameterized multi-armed bandits problem were first
studied by Agrawal et al. [1]. They proposed an algorithm for this setting, and
proved that it achieves a bounded regret when the parameter set satisfies some
necessary condition, and logarithmic regret otherwise. However, their algorithm is
rather complicated, which limits practical implementations and extension to other
settings. The regret analysis is also involved and asymptotic in nature, different from
the recent simpler index-based bandits algorithms and their finite time analysis. [1]
also provided a fundamental lower bound for this class of problems. Compared to
this work, our FP-UCB algorithm is simple, easy to implement, and easy to ana-
lyze, while providing non-asymptotic performance guarantees that match the lower
bound.

Some recent works exploit the available structure of the MAB problem to get
tighter regret bounds. In particular, [4] [20] [22] [12] consider the problem setting
similar to our paper where the mean reward of each arm is characterized by a single
unknown parameter. [4] assumes that the reward functions are continuous in the
global parameter and gives a bounded regret result. [20] gives specific conditions on
the mean reward to achieve a bounded regret. [22] considers a latent bandit problem
where the reward distributions are partitioned into a number of clusters and indexed
by a latent parameter corresponding to the cluster. [12] characterizes the minimal
rates at which sub-optimal arms have to be explored depending on the structural
information, and proposes an algorithm that achieves these rates. [8] [7] [26] exploit
a different structural information where it is shown that if the mean value of the
best arm and the second best arm (but not the identity of the arms) are known,
a bounded regret can be achieved. There also are bandit algorithms that exploit
side information [28] [9], and recently in the context of contextual bandits [6]. Our
problem formulation, algorithm, and analysis are different from these works. We
also note that our problem formulation is fundamentally different from the system
identification problems [21] [18] because the goal here is to learn an optimal policy
online.

2 Problem Formulation

We consider the following sequential decision-making problem. In each time step
t €{1,2,...,T}, the agent selects an arm (action) from the set of L possible arms,
denoted a(¢) € [L] = {1,...,L}. Each arm i, when selected, yields a random real-
valued reward. Let X;(7) be the random reward from arm i in its tth selection. We
assume that X;(7) is drawn according to a probability distribution P;(-; 6°) with
mean [;(0°). Here 6° is the (true) parameter that determines the distribution of the
stochastic rewards. The agent does not know 6° or the corresponding mean value
1;(69). The random rewards obtained from playing an arm repeatedly are i.i.d. and
independent of the plays of the other arms. The rewards are bounded with support
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in [0,1]. The goal of the agent is to select a sequence of actions that maximizes
the expected cumulative reward, E[Y.L_, Ha(r)(0°))]. The action a(t) depends on the
history of observations available to the agent until time . So, a(t) is stochastic and
the expectation is with respect to its randomness.

Clearly, the optimal choice is to select the best arm (the arm with the highest
mean value) all the time, i.e., a(t) = a*(6°),Vt, where a*(0°) = argmax;c ;) 1i(6?).
However, the agent will be able to make this optimal decision only if she knows the
parameter 0° or the corresponding mean values p;(6°) for all i. The goal of a MAB
algorithm is to learn to make the optimal sequence of decisions without knowing
the true parameter 6°.

We consider the setting where the agent knows the set of possible parameters ©.
We assume that @ is finite. If the true parameter were 6 € ©, then agent selecting
arm i will get a random reward drawn according to a distribution P;(-; 8) with mean
U;i(0). We assume that for each 6 € @, the agent knows P;(-;0) and p;(0) for all i €
[L]. The optimal arm corresponding to the parameter 6 is a*(6) = argmax;c ;) 1:(0).
We emphasize that the agent does not know the true parameter 6° (and hence the
optimal action a*(0°)) except that it is in the finite set ©.

In the multi-armed bandits literature, it is standard to characterize the perfor-
mance of an online learning algorithm using the metric of regret. Regret is defined
as the performance loss of an algorithm as compared to the optimal algorithm with
complete information. Since this is b(¢) = a*(6°), the expected cumulative regret of
a multi-armed bandits algorithm after 7' time steps is defined as

T
ER(T)]:=E | Y (Ua(60)(6°) — ta(r) (6°)) | - )

t=1

The goal of a MAB learning algorithm is to select actions sequentially in order
to minimize E[R(T)].

3 UCB Algorithm for Finitely Parameterized Multi-Armed
Bandits

In this section, we present our algorithm for finitely parameterized multi-armed ban-
dits and the main theorem. We first introduce a few notations for presenting the
algorithm and the results succinctly.

Let n;(¢) be the number of times arm i has been selected by the algorithm until
time 7, i.e., n;(t) = Y5_; 1{a(t) = i}. Here 1{.} is an indicator function. Define the
empirical mean corresponding to arm i at time ¢ as,

L) = — Y Xi(1). @)
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Define the set A := {a*(0) : 6 € ©®}, which is the collection of optimal arms cor-
responding to all parameters in @. Intuitively, a learning agent can restrict selection
to arms from the set A. Clearly, A C [L] and this reduction can be useful when |A| is
much smaller than L.

Our FP-UCB Algorithm is given in Algorithm 1. Figure 1 gives an illustration of
the episodes and time slots of the FP-UCB algorithm.

For stating the main result, we introduce a few more notations. We define the
confusion set B(6°) and C(6°) as,

B(6°):= {0 € ©:a"(8) #a (6°) and Ly (gu)(87) = e o) ()},
C(6°) :={a*(p): 0 € B(6°)}.

Intuitively, B(6°) is the set of parameters that can be confused with the true pa-
rameter 6°. If B(6°) is non-empty, selecting a*(0°) and estimating the empirical
mean is not sufficient to identify the true parameter because the same mean reward
can result from other parameters in B(6°). So, if B(6?) is non-empty, more explo-
ration (i.e., selecting sub-optimal arms other than a*(6?)) is necessary to identify
the true parameter. This exploration will contribute to the regret. On the other hand,
if B(6°) is empty, the optimal parameter can be identified with much less explo-
ration, which results in a bounded regret. C(0°) is the corresponding set of arms
that needs to be explored sufficiently to identify the optimal parameter. So, whether
B(6°) is empty or not is the structural condition that decides the performance of the
algorithm.

We make the following assumption.

Assumption (Unique best action) For all 6 € O, the optimal action, a*(0), is unique.

We note that this is a standard assumption in the literature. This assumption can
be removed at the expense of more notations. We define A; as,

A = g (90)(07) — pi(6°), ©)

which is the difference between the mean value of the optimal arm and the mean

value of arm i for the true parameter 6°. This is the standard optimality gap notion

used in the MAB literature [5]. Without loss of generality assume natural logarithms.
For each arm in i € C(60?), we define,

i ' i(07) — i (0)]. 4
2 9:668(161371){1‘1*(9)=i|u( ) — wi(6)] )

We use the following Lemma to compare our result with classical MAB result.
The proof for this lemma is given in the appendix.

Lemma 1 Let A; and B; be as defined in (3) and (4) respectively. Then, for each
i € C(0°), B; > 0. Moreover, 3; > A,.

We now present the finite time performance guarantee for our FP-UCB algo-
rithm.



416 Kishan Panaganti, Dileep Kalathil, and Pravin Varaiya

Algorithm 1 FP-UCB

1: Initialization: Select each arm in the set A once

2: Initialize episode number k = 1, time step 7 = |A| + 1
3: whilet <T do

4: th=t—1

5:  Compute the set

Ac={a(0).0 €@ VieA, |pn) — u(0)] < /22D |

6:  if |Ax| # 0 then

7 Select each arm in the set Ay once
8: 1+ Ay

9: else
10: Select each arm in the set A once
11: tt+|A|
12: end if
13: k+k+1

14: end while

Iepisode 1 Iepisode 2 Iepisode k

L > L > [ ] [ ] [ ] L >

I Ay I Az I

1 1 1 Ay,
———— b —————— - b ———— - 4 ———
lﬂA|:t1 1+t to ) te 1+t

Fig. 1: An illustration of the episodes and time slots of the FP-UCB algorithm.

Theorem 1 Under the FP-UCB algorithm,
E[R(T)] < Dy, if B(6°) empty, and

E[R(T)] < Dy +12log(T) Y 4

go iFB(O°) non-empy, 5)
icC(6°) Fi

where D and D are problem dependent constants that depend only on the problem
parameters |A| and (1;(0),0 € ©), but do not depend on T.

Remark 1 (Comparison with the classical MAB results) Both UCB type algorithms
and Thompson Sampling type algorithms give a problem dependent regret bound
O (logT). More precisely, assuming that the optimal arm is arm 1, the regret of the
UCB algorithm, E[Rycg(T)], is given by [5]

L
E[RUCB(T)} =0 <Z %log T) .

i=2 B

On the other hand, the FP-UCB algorithm achieves the regret, E[Rpp.ycg(T)],
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A; .
0(1),if B(6?) empty, and & ( Z ﬁZIOgT> ,if B(6?) non-empty.
ieC(0°) Fi

Clearly, for some MAB problems, FP-UCB algorithm achieves a bounded re-
gret (O(1)) as opposed to the increasing regret (0 (logT)) of the standard UCB
algorithm. Even in the cases where FP-UCB algorithm incurs an increasing regret
(O(logT)), the preceding constant (4;/ ﬁiz) is smaller than the preceding constant
(1/A;) of the standard UCB algorithm because f3; > A;.

We now give the asymptotic lower bound for the finitely parameterized multi-
armed bandits problem from [1], for comparing the performance of our FP-UCB
algorithm.

Theorem 2 (Lower bound [1])

For any uniformly good control scheme under the parameter 0°,

*(Qo hu a* (00 0°) — u 0°
i ER(T)) > min max Yuea\{a*(09)) hu(la(60)(0°) — 1,(67))
T—e log(T) ~ heH 0eB(6°) Yuea\(a*(69)} huDu(0°]|60)

where H is a probability simplex with |A| — 1 vertices and, for any u € A\ {a*(6°)},
D, (0°||6) = [ Py(x;0°)log(P,(x;0°)/P,(x; 0))dx is the KL-divergence between the
probability distributions P,(-;0°) and P,(-; ).

Remark 2 (Optimality of the FP-UCB algorithm) From Theorem 2, the achievable
regret of any multi-armed bandits learning algorithm is lower bounded by Q(1)
when B(0°) is empty, and Q(logT) when B(0°) is non-empty. Our FP-UCB algo-
rithm achieves these bounds and hence achieves the order optimal performance.

4 Analysis of the FP-UCB Algorithm

In this section, we give the proof of Theorem 1. For reducing the notation, without
loss of generality we assume that the true optimal arm is arm 1, i.e., a* = a*(6°) = 1.
We will also denote ;(67) as uf, for any j € A.

Now, we can rewrite the expected regret from (1) as

E[R(T)] =E

T
wa—u;(z))]

t=1
L T L
= ;A,’ E [; 1{a(t) = 1}1 = ;Ai E [n,(T)].

Since the algorithm selects arms only from the set A, this can be written as

E[R(T)] =Y A E[ni(T)]. (©6)

icA
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We first prove the following important propositions.
Proposition 1 For alli € A\ C(60°),i # 1, under FP-UCB algorithm,
E[ni(T)] < G, (N
where C; is a problem dependent constant that does not depend on T.
Proof Consider anarm i € A\ C(0?),i# 1. Then, by definition, there exists a 6 € @

such that a*(0) = i. Fix a 0 which satisfies this condition. Define

o1(0) := | (0°) — i (8)].

It is straightforward to note that when i € A\ C(6°), then the 6 which we considered
above is not in B(6?). Hence, by definition, ¢ (6) > 0.

For notational convenience, we will denote p;(0) simply as u;, for any j € A.
Notice that the algorithm picks i arm once in ¢ € {1,...,|A|}. Define K7 (note that
this is a random variable) to be the total number of episodes in time horizon T for
the FP-UCB algorithm. It is straightforward that K7 < T. Now,

En(T)|=14+E

Z 1{a(t) i}]

t=|A|+1

WitE Ki(ﬂ{i €A} + 1{A; = 9})1
k=1

P({i € A}) +P({Ar = 2})] ®)

IN
+
M'ﬂ

~
Il

P({i € A1 €A +P({i € A1 € A}) +P({Ac = )]

Il
+
M'ﬂ

~
I

P{i€ A1 €AL)+P({i € Ap, 1 ¢ Ar}) +P({i ¢ A, 1 ¢ Ar})]

IN
_|_
Mﬂ

T
I

A
M*!

[P({i € A, 1 € Ax}) +P({1 ¢ A} )

T
I

Here (a) follows from the algorithm definition.

We will first analyze the second summation term in (9). First observe that, we
can write n;(t;) = 1+ YX_! (1{j € A;} + 1{A; = @}) for any j € A and episode k.
Thus, n;(t) lies between 1 and k. Now,
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L u R ) 3logk
Z P({1 ¢ A)) Y ZP<U{IHj(tk)—uj|> )
k=1 k=1 jeA J\k
) & 3logk
< P () —usl >
LL (' R oy
nj(t)
© v 1 ) 3logk
=Y Y Pl Xj(0) —ul| > | [ o8
k=1 jeA nj(t) = nj(t)
@ k 1 & . 3logk
<Y Y YRl YXi(r)-u|> d
k=1jeAm=1 m:= m
() L k
<Y Y Y 2exp (— 31°gk) Zsz <4/l (10)
k=1 jeAm=1 =1j€eA

Here (a) follows from algorithm definition, (b) from the union bound, and (c) from
the definition in (2). Inequality (d) follows by conditioning the random variable
n;(t) that lies between 1 and k for any j € A and episode k. Inequality (e) follows
from Hoeffding’s inequality [27, Theorem 2.2.6].

For analyzing the first summation term in (9), define the event Ej := {n;(#) <
12logk/a?(6)}. Denote the complement of this event as E¢. Now the first summa-
tion term in (9) can be written as

T T T
Y P({i€ A1 €A}) = Z ({i €A1 €AGE(N) + Y. P({i € Ar,1 € AL Er}).
k=1 k=1 k=1
= Term = Termy
(11)
Analyzing Term; in (11), we get,
P({i € A, 1 € A, E(})
. 3logk 3logk
o (e 1< 205 -1 < 2088 e
JEA nj JEA

sp({m<tk>—uf|< S i (n) ] < zl‘ggf}Ek>=o. (12)

.. ~ 3logk 3logk
This is because the events {|f; (f) — u?| < moti }and {|f (%) — | < ”loi }

are disjoint under Ef, that is, when n; (t;) > 121log(k)/ o (6). To see this, notice that
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{ﬂl(tk)“ﬂ < 3logk} C {|ﬂ1(lk)ﬂf < al(e)},

nl(tk) 2
{'ﬂ‘(tk)“" < 315;’;} < {1 ) -] < 22,

for ny (1) > 12logk/a?(0). Moreover, since |u — | = a1 (0), {|fu (%) — uf| <
01(0)/2} and {|f (t) — 1| < 01 (0)/2} are disjoint sets. Hence, their subsets are
also disjoint.

For analyzing Term, in (11), we start by setting up few notations. Define
n(tx) =1+ Z’;;ll 1{1 € A;}. Note that, according to the FP-UCB algorithm, arm
1 can be selected if A; is empty as well, so 7} () < nj (). Define k;(6) and m(k)
as,

ki(0) :=min {k: k >3,k > [121og(k)/ai(0)]}, (13)
m(k) :=max{1,k— [121og(k)/a?(6)]}. (14)

Note that k;(6) is a problem dependent constant and does not depend on T. Also,
m(k) =k— [12log(k)/c} ()] for all k > k;(6). We claim that for all k > k;(8),

{n) (&) < 121og(k)/af(0)} C {1 ¢ A¢,for some T,m(k) < T<k—1}. (15)
To see this, suppose there exists no 7, m(k) <t <k — 1, such that 1 ¢ A;. Then,
1 € A; for all 7, where m(k) < 7 <k — 1. So, by definition ) (t;) > (k —m(k)) =
[12log(k)/ 0} ()] for k > ki(6). So, the complement of the RHS of (15) is a subset
of the complement of the LHS of (15). Hence the claim follows.
Now,

]P({l € A, 1 GAk,Ek}) <

™~
M~

P(E)

k=1

P (n} (1) < 12log(k) /0 (0))

—_
=T

AN
™~

k=1

A
@

0)+ Y P(n(n) < 12log(k)/ai(6))
k=k;(0)

T
T
T

A
T‘,
NS
—

)+ Y, P({1¢A; forsome T,m(k) <T<k—1})

ki
k=k;(6)

—

on 2 U ymon-wi- 2

k=k;(6) t=m(k) JEA
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T _
<k(0)+ Y Z ZP(M il > 31(f§>

(e) T k—1 214
Ske)r Yy y A (16)
k=k;(0) T=m(k)
L 2Ak
< ki(0)+
k:§9> (m(k))>
T
—no)r Yy — AR D) k), (17)
12log(k) |\5
k=k;(6) (k_lr a12(9) —‘)

where K;(6) is a problem dependent constant that does not depend on 7.

In the above analysis, (a) follows from the definition of Ej and the observation
that n () < ni (). Considering 7 to be greater than or equal to k;(6)|A[, equality
(b) follows; note that this is an artifact of the proof technique and does not affect
the theorem statement since E[n;(T")], for any 7’ less than k;(0)|A|, can be trivially
upper bounded by E[r;(T)]. Inequality (c) follows from (15), (d) by the FP-UCB
algorithm, (e) is similar to the analysis in (10), and (f) follows from the fact that
k> [12log(k)/a?(8)] for all k > k;(6).

Now, using (17) and (12) in (11), we get,

1~

P({i € Ax, 1 € Ax}) < ki(0) + Ki(). (18)

k=1

Using (18) and (10) in (9), we get,
E[ni(T)] < G,

where C; = 1+ 4|A[ + ming.,(g)—; (ki(8) + K;(8)), which is a problem dependent
constant that does not depend on T'. This concludes the proof. ]

Proposition 2 For any i € C(0°), under the FP-UCB algorithm,

12log(T
E[ni(T)] < 2+ 44| + Bgz(). (19)
i
Proof Fix an i € C(6°). Then there exists 6 € B(GO) such that a*(0) = i. Fix 6
which satisfies this condition. Define the event F(¢) := {n;(t — 1) < 12logT /B?} .

Now,
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T
En(T)|=14+E Z 1{a(t) =i}
t=|A|+1
T T
=1+E Z 1{a(t) = Z Ha(t) =i, F°(t)}|.
t=|A|+1 t=|A|+1
(20
Analyzing the first summation term in (20) we get,
T T
Y Wa@)=iFn}| =E| Y Wa@)=i}1{m(—-1)< 1210gT/ﬁi2}]
t=|A|+1 t=|A[+1
<14 12logT/B?. 1)

We use the same decomposition as in the proof of Proposition 1 for the second
summation term in (20). Thus we get,

T
El Y 11{a(t)=i,FC(t)}]=
r=|A|+1
E %Il{ieAk7FC(tk+l)}+]1{Ak:®7Fc(tk+l)}
k=1
T
<Y Pic A1 € ALF (6 +1)}) (22)
k=1
T
+ Y P({1 ¢ A, Fé(tx +1)}), (23)
k=1

following the analysis in (9). First, consider (23). From the analysis in (10) we have

T
P({1 ¢ A, F*(1+1) Z ({1 ¢ Ac}) <4[A]. 24)

Mﬂ

k=1
For any i € A and episode k under event F¢(#; + 1), we have

12logT _ 12logt; _ 12logk
7 2 7 2 2
B B B

since 1y, satisfies k <1, < T. From (4), it further follows that

ni(ty) >

Slogk _ fi _ [mi(67) — pi(6)]
nj(te) = 2 7 2 .

So, following the analysis in (12) for (22), we get
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P({i € Ar,1 €ALFS (e +1)})
Njeal () = 1;(6°)] < /35 1
Njead () = 1(0)] < 3¥°§;’;},Ff<rk+1>
_p [ {180 —mi0%) < T Lo 05)
{1u(1) = wi(8)] < |/ 3285} Fe (14 1)

Using equations (21), (24), and (25) in (20), we get

12log(T
Efn(T)] <2+ 4/4] + “280).
Bi

This completes the proof. g

We now give the proof of our main theorem.
Proof (of Theorem 1)

From (6),

N=Y AEn(T)]= Y AEnm(T)+ Y AER(T). (26
icA i€A\C(8°) icC(6°)

Whenever B(6°) is empty, notice that C(6°) is empty. So, using Proposition 1,
(26) becomes

= LAER(T)] < ) AG < |A|maxAC.

icA icA

Whenever B(6°) is non-empty, C(6°) is non-empty. Analyzing (26), we get,

ER(T)= Y AEmT)]+ ) AER
i€A\C(6°9) i€C(6°)
(a)
< ACi+ Y, AE[n(T)]
i€A\C(6°) i€C(6°)
() 121
< Y aAG+ Y A (2+4A| +°gz(T))
i€A\C(6°) i€C(6°) B;
A

< |A|max A;(2+C; +4/A)+1210g(T) ). —5.
icA iecre) Bi

Here (a) follows from Proposition 1 and (b) from Proposition 2. Setting

1 := JA|max A;C; and D; := |A|max A;(2+C; +4|A]) 27
icA icA
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proves the regret bounds in (5) of the theorem. g

We now provide the following lemma to characterize the problem dependent con-
stants C; given in Proposition 1. The proof for this lemma is given in the appendix.

Lemma 2 Under the hypotheses in Proposition 1, we have

G < L+4lAl+  min (2E,(6)(E(6) + 1)lA| +414]od(6)).

where E;(0) = max{3,[144/0{(0)]} and 01 (0) = |11 (0°) — 11 (6)].

Now, using the above lemma with (27), we have a characterization of the problem
dependent constants in Theorem 1.

5 Simulations

In this section, we present detailed numerical simulation to illustrate the perfor-
mance of FP-UCB algorithm compared to the other standard multi-armed bandits
algorithms.

We first consider a simple setting to illustrate intuition behind FP-UCB algo-
rithm. Consider ® = {0, 62} with [u;(8")u2(68")] =[0.9,0.5] and [ (6?), u2(62)]
= [0.2,0.5]. Consider the reward distributions P,,i = 1,2 to be Bernoulli. Clearly,
a*(8') = 1and a*(6?) = 2.

Suppose the true parameter is 0!, i.e., 8 = 0'. Then, it is easy to note that, in
this case B(6°) is empty, and hence C(6°) is empty. So, according to Theorem 1,
FP-UCB will achieve an &'(1) regret. The performance of the algorithm for this
setting is shown in Fig. 2. Indeed, the regret doesn’t increase after some time steps,
which shows the bounded regret property. We note that in all the figures, the regret
is averaged over 10 runs, with the thick line showing the average regret and the band
around shows the +1 standard deviation.

Now, suppose the true parameter is 62, i.e., 6° = 62. In this case B(6°) is non-
empty. In fact, B(6°) = 6! and C(6°) = 1. So, according to Theorem 1, FP-UCB
will achieve an &'(logT') regret. The performance of the algorithm shown in Fig. 3
suggests the same. Fig. 4 plots the regret scaled by log#, and the curve converges to
a constant value, confirming the & (log T') regret performance.

We consider a problem with 4 arms where the mean values for the arms (cor-
responding to the true parameter 6°) are p(6°) = [0.6,0.4,0.3,0.2]. Consider the
parameter set ® such that (1(6) for any 0 is a permutation of 1(6?). Note that the
cardinality of the parameter set, |@| = 24, in this case. It is straightforward to show
that B(6°) is empty for this case. We compare the performance of FP-UCB algo-
rithm for this case with two standard multi-armed bandits algorithms. Fig. 5 shows
the performance of standard UCB algorithm and that of FP-UCB algorithm. Fig.
6 compares the performance of standard Thompson sampling algorithm with that
of FP-UCB algorithm. The standard bandits algorithm incurs an increasing regret,
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while FP-UCB achieves a bounded regret. For p(6') = [0.4,0.6,0.3,0.2], we have
a*(6') = 2. Now we give a typical value for the k»(0’), defined in (13), used in
the proof. For this 6" we have k,(6) = min {k: k >3,k > [12log(k)/a}(6')]} =
min {k : k >3,k > [12log(k) /0.2*]} = 2326 since o (6’) = 0.2. When the reward
distributions are not necessarily Bernoulli, note that k;(0) is 3 for any 6 with
a*(0) = i satisfying a1 (8) > 2,/3/e.

As before assume that 1 (6°) = [0.6,0.4,0.3,0.2]. But consider a larger param-
eter set O such that for any 8 € @, u(6) € {0.6,0.4,0.3,0.2}*. Note that, due to
repetitions in the mean rewards for the arms, definition of a*(6) needs to be up-
dated, and the algorithmic way is to pick the minimum arm index out of which are
having the same mean rewards. For example, consider u(6) = [0.5,0.6,0.6,0.2],
and so as per our new definition, a*(6) = 2. Even in this scenario, we have B(6?) to
be empty. Thus, FP-UCB achieves an &(1) regret rather than ¢'(log(T')) as opposed
to standard UCB algorithm and Thompson sampling algorithm.

We now consider a case where FP-UCB incurs an increasing regret. We again
consider a problem with 4 arms where the mean values for the arms are p(6°) =
[0.4,0.3,0.2,0.2]. But consider a larger parameter set ® such that for any 6 € 0,
() € {0.6,0.4,0.3,0.2}*. Note that the cardinality of @, |®| = 4* in this case. It
is easy to observe that B(6°) is non-empty, for instance 6 with mean arm values
[0.4,0.6,0.3,0.2] is in B(6°). Fig. 7 compares the performance of standard UCB
and FP-UCB algorithms for this case. We see FP-UCB incurring ¢'(log(T')) regret
here. Also note that the performance of the FP-UCB in this case also is superior to
the standard UCB algorithm.
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6 Conclusion and Future Work

We proposed an algorithm for finitely parameterized multi-armed bandits. Our FP-
UCB algorithm achieves bounded regret if the parameter set satisfies some neces-
sary condition and logarithmic regret in other cases. In both cases, the theoretical
performance guarantees for our algorithm are superior to the standard UCB algo-
rithm for multi-armed bandits. Our algorithm also shows superior numerical perfor-
mance.

In the future, we will extend this approach to linear bandits and contextual ban-
dits. Reinforcement learning problems where the underlying MDP is finitely pa-
rameterized is another research direction we plan to explore. We will also develop
similar algorithms using Thompson sampling approaches.
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Appendix

6.1 Proof of Lemma 1

Proof Fix ani € C(0°). Then there exists a 8 € B(6?) such that a*(6) = i. For this
0, by the definition of B(0?), we have

11(67) = (). (28)

Using Assumption 1, it follows that

Hi(0) = Hyr(6)(0) > 11(0) = p1(0°) = Uyr(90)(07) > pi(6°).

Thus, B; = ming.gep(go) o+ (6)=i |1i(87) — 1i(0)] > 0.
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Now, for any given 6 considered above, suppose |i;(0) — 1;(6°)| < A;. Since
A; > 0 by definition, this implies that

Hat(6)(0) = 1i(0) < Ai+ p1i(67) @ 111 (87) — p1;(67) + i (6°) = 11 (67) ) 11, (6),

where (a) follows from definition of A; and (b) from (28). This is a contradiction
because [i,+(g)(0) > 11(6).
i(0) —1i(6°)] > A, for any 6 € B(6°) such that a*(0) = i. So, f; > A;.00

6.2 Proof of Lemma 2

Proof We have C; = 1 +4|A[+ming.,«(9)—;(ki(0) + Ki(0)).
First recall that k;(0) := min {k : k >3,k > [12log(k)/a} ()] }. Since log(x) <
(x—1)/+/xforall 1 <x < oo, we have

12(k—1
{k:k23,k> af((e)\ﬁ)cH} C {k:k>3,k> [12log(k)/a?(6)]}.

The LHS of the above equation simplifies to {k: k >3,k > 144/0(6) }. Thus, we
have k;(6) < max{3,[144/0;(6)]}.
Now, recall that K;(6) is defined as

r 2|Alk
Ki(®)= ), — T
ite) (k— | 258 ] )3
o 2|Alk
<Y
k=ki(0) (k — 121120(%)@1)5
Ei(6) 2/Alk o 2|Alk
=Y —FoeTst L T PR
k=k;(0) (k — W—‘) k=E;(0)+1 (k [ a2(6) —‘)

We analyze the first summation in (29). Thus, we get,

E;(6) 2/Alk E;(0) E;(6)
Y T S L 2MAk< Y 204k =E(0)(E(0) + DAl (0)
k=k;(0) (k [ 2(6) bS k=k;(6) k=1

Since log(x) < (x—1)/y/x for all 1 < x < oo, we have

121og(k) 121og(k) (k—1)(a?(8)Vk—12)
[aae>12k— o) - aﬁmv% '

Using this, the second summation in (29) can be bounded as
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i 2|Alk i 201720 (6)

e (- [ 280])5 = i) (= (@ (O)VE—12))

> 20AlKal0()
(k—1)°
oo k7/2 (b)

<2/Ale{°(6) ¥ T < 4Alef°(6) (3D
k=4

where (a) follows from the observation that (a?(8)v/k —12) > 1 for k > E;(0) + 1
and (b) follows from calculus (an integral bound).

Thus using (30) and (31) in (29), we get K;(0) < E;(0)(E:(0)+1)|A| +4|A|a[°(0).
This concludes the proof of this lemma. g

,\
INS

k=E;(6)+1
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Developing the Path Signature Methodology and
Its Application to Landmark-Based Human
Action Recognition

Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin

Abstract Landmark-based human action recognition in videos is a challenging task
in computer vision. One key step is to design a generic approach that generates
discriminative features for the spatial structure and temporal dynamics. To this end,
we regard the evolving landmark data as a high-dimensional path and apply path
signature techniques to provide an expressive, robust, non-linear, and interpretable
representation for the sequential events. We do not extract signature features from
the raw path, rather we propose path disintegrations and path transformations as
preprocessing steps. Path disintegrations turn a high-dimensional path linearly into
a collection of lower-dimensional paths; some of these paths are in pose space
while others are defined over a multi-scale collection of temporal intervals. Path
transformations decorate the paths with additional coordinates in standard ways to
allow the truncated signatures of transformed paths to expose additional features. For
spatial representation, we apply the non-linear signature transform to vectorize the
paths that arise out of pose disintegration, and for temporal representation, we apply
it again to describe this evolving vectorization. Finally, all the features are joined
together to constitute the input vector of a linear single-hidden-layer fully-connected
network for classification. Experimental results on four diverse datasets demonstrated
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that the proposed feature set with only a linear shallow network is effective and
achieves comparable state-of-the-art results to the advanced deep networks, and
meanwhile, is capable of interpretation.

1 Introduction

Human action recognition (HAR) is one of the most challenging tasks in computer
vision with a wide range of applications, such as human-computer interaction, video
surveillance, behavioral analysis, etc. A vast literature has been devoted to this task
in recent years, among which are some informative surveys [1, 2, 3, 4, 5, 6, 7, 8].
An attractive option of HAR is Landmark-based HAR (LHAR) where the object is
regarded as a system of correlated labelled landmarks. Johansson’s classic moving
light-spots experiment [9] demonstrated that people can detect motion patterns and
recognize actions from several bright spots distributed on the body, which has
stimulated research on pose estimation and LHAR [10, 11, 12]. Different from
skeleton-based HAR (SHAR), LHAR, using no knowledge of skeletal structure, is
flexible to extend to any landmark data streams with no explicit physical structures,
e.g. traffic or people flow.

Although many solutions have been proposed to address the challenge of LHAR,
the problem remains unsolved due to two main challenges. First, there is the problem
of designing reliable discriminative features for spatial structural representation,
and second of modelling the temporal dynamics of motion. In this paper, the path
signature feature (PSF) is used and refined as an expressive, robust, non-linear, and
interpretable feature set for spatial and temporal representation of LHAR.

The path signature, which was initially introduced in rough paths theory as a
branch of stochastic analysis, has been successfully applied to many machine learning
tasks. Most existing work can be devided into two categories: sliding-window-based
and global-based. In the sliding temporal window approach [13, 14, 15, 16, 17,
18, 19], signatures of small paths are extracted and embedded into multi-channel
feature maps as input of a CNN. The signatures herein are merely local descriptors
from which the deep models are then trained to learn hierarchical representation.
The global-based approaches combine all the cues into a high-dimensional path to
compute high-level signatures over the whole time interval [20, 21] or low-level
signatures over hierarchical intervals [22, 23]. They are straightforward but not
efficient for high dimensional or spatio-temporal data.

To represent spatial pose, most methods [12, 24, 25, 26, 27, 28, 29, 30] used
predefined skeletal structures. The connections distributed on a physical body are
intuitive spatial constraints but not necessarily the crucial ones to distinguish actions.
The connections discarded by imposing a skeletal structure could contain valuable
non-local information. To solve this, hand-designed features [31, 32, 33, 34] were
employed, but they are limited to encode non-linear dependencies. In this paper,
we propose to localize a pose by disintegration into a collection of m-node sub-
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paths. The signatures of these paths encode non-local and non-linear geometrical
dependencies.

To model temporal dynamics, hand-designed local descriptors [31, 34] were pop-
ular, but it is difficult to encode complex spatio-temporal dependences in these.
Recently, recurrent neural networks (RNN) [35], especially long short-term mem-
ory (LSTM) [36], have gained increasing popularity in handling sequential data,
including human actions [37, 24, 38, 39]. In particular, a variation of LSTM [40, 25]
succeeded in simultaneously exploring both spatial and temporal information. These
deep models play a vital role in feature representation and achieve state-of-the-art
performance, but the features learned by them are not as interpretable as hand-
designed features. In this paper our temporal disintegration turns the original paths
into hierarchical paths, from which the signatures encode multi-scale dynamical de-
pendencies. Moreover, our path transformations decorates the paths with additional
coordinates to allow signatures to expose additional valuable features.

To build the spatial and temporal representation, in each frame the spatial PSFs
are extracted from the localized paths obtained by pose disintegration. In the clip,
the evolution of each spatial feature along the time axis constitutes a spatio-temporal
path. After path transformations and temporal disintegration, the temporal PSFs
are then extracted from the spatio-temporal paths. Finally, the concatenation of all
the features forms the input vector of a linear single-hidden-layer fully-connected
network for classification. To extensively evaluate the effectiveness and flexibility
of our method, several datasets (i.e., JHMDB [31], SBU [41], Berkeley MHAD
[42], and NTURGB+D [39]) collected by different acquisition devices were used
for experiments. Using our feature set and only a linear shallow net, we achieve
comparable results to the advanced deep learning methods. Moreover, we took a
further step toward understanding human actions by analyzing the PSFs and the
linear classifier.

Our major contributions lie in four aspects:

1. PSFs are adopted and refined for LHAR with interpretations, proofs, experi-
ments, and discussions of their properties and advantages.

2. Pose disintegration is proposed for non-local spatial dependencies, and tempo-
ral disintegration is proposed for multiscale temporal dependencies.

3. Path transformations, decorating the original paths with additional coordinates,
are proposed to allow signatures to expose additional features.

4. Using signature-based spatio-temporal representation and only a linear shal-
low net, we achieve comparable state-of-the-art results to those with deep models.
Meanwhile, this interpretable pipeline facilitates the understanding of HAR.

The authors are delighted to dedicate this paper to Mark H. A. Davis for many
personal and professional reasons. Mark was wonderfully supportive friend. He was
also an adventurous innovator who took mathematical ideas deep into commercial
finance. In some sense this paper represents a similar pioneering spirit. It has a long
history, and is the first effort to introduce path signature to the central area of action
analysis and understanding in computer vision. This stream of research, as we report
here, has developed these ideas into a viable methodology for analyzing evolving
landmark style data in contexts where the datasets are too small to build effective
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deep learning approaches. We hope that by consolidating it here, we will recognize
Mark with a paper he would have supported and approved of.

2 Related work
2.1 Path signature feature (PSF)

Rough path theory is concerned with capturing and making precise the interactions
between highly oscillatory and non-linear systems [43]. The essential object in rough
path theory, called the path signature, was first studied by Chen [44] whose work
concentrates on piecewise regular paths. More recently, the path signature has been
used by Lyons [45] to make sense of the solution to differential equations driven
by very rough signals. It was extended by Lyons’ theory from paths of bounded
variation [45] to rough paths of finite p-variation for any p > 1 [46].

Some successful applications of the PSF have been made in the fields of machine
learning, pattern recognition and data analysis. First of all, the most notable applica-
tions of using PSFs is handwriting understanding. Diehl [21] used iterated integrals
of a handwritten curve for recognition and found that some linear functions of the
PSF satisfy rotation invariance. Graham [19] used the sliding-window-based PSF
as feature maps of a CNN for large-scale online handwritten character recognition,
based on which he won the ICDAR2013 competition [47]. Inspired by this, Xie et
al. [15, 16] extended the method to handwritten text recognition. Yang et al. [17, 18]
explored the higher-level terms of the PSF for text-independent writer identification
which requires subtle geometric features. For financial data, useful predictions can
be made with only a small number of truncated PSFs [20, 48]. The truncated signa-
ture kernel for hand movement classification was presented in [49], and was further
extended to an untruncated version [50]. Moreover, PSFs were used on self-reported
mood data to distinguish psychiatric disorders [23]. In [51], path signature trans-
form was applied to describe the behaviour of controlled differential equations for
modelling temporal dynamics of irregular time series. To model topological data, a
novel path signature feature based on the barcodes arising from persistent homology
theory was proposed for classification tasks [52]. These applications demonstrate
the value of the PSF as an effective and informative feature representation.

The paper has been a long time in development, and the preprints [53] on the
ArXiv have already influenced other developments. To name a few, in [54, 55, 56], the
extraction of the path signature feature was treated as a flexible intermediate layer
in various end-to-end network architectures like CNNs, LSTMs, or Transformer
Networks. Also, variants of our proposed feature set were successfully applied to
tasks like Arabic handwriting recognition [57], writer identification [58], personal
signature verification [59], sketch recognition [60], action/gesture recognition [61,
62], speech emotion recognition [63], etc., showing its generalization ability. The
proposed invisibility-reset transformation was further analyzed in [64].
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2.2 Landmark-based human action recognition

A human body can be regarded as an articulated system composed of joints that
evolve in time [65]. For recent surveys of LHAR, we refer the reader to [8, 66, 67,
68].

Approaches based on hand-designed features for LHAR can be categorized into
two classes: joint-based and part-based. The joint-based ones regard the human
body as a set of points and attempt to capture the correlation among body joints
by using the motion of 3D points [69], measuring the pairwise distances [31, 70,
26, 33, 34], or using the joint orientations [71]. On the other hand, the part-based
approaches focus on connected segments of the human skeleton. They group the
body into several parts and encode these parts separately [27, 28, 72, 73, 74, 29, 75].
Some methods in this category represent a pose by means of the geometric relations
among body parts, for examples, [27, 28] employed quadruples of joints to form a
new coordinate system for representation, and [12] considered measurements of the
geometric transformation from one body part to another. Some methods assume that
certain actions are usually associated with a subset of body parts, so they aim to
identify and use the subsets of the most discriminative parts of the joints.

Given the recent success of deep learning frameworks, some works aim to capture
correlation among joint positions using CNNs [76, 77, 78, 79]. In [76], the input
feature maps of a CNN were joints colored according to their sequential orders, body
parts, or velocity, while in [77] and [78], the CNN’s inputs were the concatenation
of hand-designed local features. Since human actions are usually recorded as video
sequences, it is natural to apply RNNs or LSTMs. HBRNN [24] and Part-aware
LSTM [39] contained multiple networks for different groups of joints. Zhu et al.
[37] proposed a deep LSTM to learn the co-occurrence of discriminative joints
using a mixed-norm regularization term in the cost function. By additional new
gating to the LSTM, the Differential LSTM [38] is able to discover the salient
motion patterns, and [40, 25] achieved robustness to noise. It is noteworthy that the
spatio-temporal RNNs in [40, 25] concurrently encoded both spatial and temporal
context of actions within a LSTM. Liu et al. [80] used an attention-based LSTM
to iteratively select informative keypoints for recognition. Zhang et al. [81] used a
multilayer LSTM to fuse several simple geometric features for recognition. By taking
advantage of the graph structure of human skeleton, Graph Convolutional Networks
(GCNs) were introduced into the action recognition task. Yan et al. [30] used spatial
graph convolutions along with interleaving temporal convolutions. Concurrently,
Li et al. [82] proposed a similar approach but introduced a multi-scale module for
spatio-temporal modelling. DGNN [83] represented the skeleton as a directed acyclic
graph to encode both joint and bone information. MV-IGNET [84] extracted multi-
level spatial features and leveraged different skeleton topologies as multi-views to
generate complementary action features. MMDGCN [85] proposed a dense graph
convolution for local dependencies and used spatial-temporal attention module to
reduce the redundancy. These deep learning methods achieved high accuracy on
most large-scale action datasets, but they often require a lot of training data and
suffer from a lack of interpretability.
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3 Path Signature
3.1 Definition and geometric interpretation

The rigorous introduction of the path signature as a faithful description or feature
set for unparameterized paths can be found in [43, 86, 87, 88], so in this paper we
present it in a practical manner.

A d-dimensional path or stream of timestamped events P over the time interval
[0,T] c R can be represented as a continuous map P : [0, 7] — R<. The coordinates
of P at time 7 are P, = (PL,P2,...,P9). To illustrate the idea, we consider the
simplest case when d = 1. The path is a real-valued path for which the path integral
is defined as

S(P)or = /qu dP. = P; - P, (1

which is the increment of this 1-dimensional path over the whole time interval and
is called the 1-fold iterated integral. We emphasize that S (P)(l) ~»0<7t<Tisalsoa
real valued path w.r.t 7. The 2-fold iterated integral is

1 2
S(P)()T —/0 o S(P)(]),Tzdp‘lrz = 2 (P]T - P(l)) ) @)
<73 <

which is proportional to the square of the increment. Again, S (P) is a real-valued
path, so if we continue recursively, the k-fold iterated integral of P is

S(P)Y! = / / / dPL P! ...dP
O<7 <T 0<1y<13 JO<T<r

1 1\
=P -n)

3

which is proportional to the increment to the power of k.
Now, when d = 2 , the 1-fold iterated integral of the path {PIT Pi} has 2 elements

S(P)or = / dP. = P; - P,, )
0<t<T

S(PYor = / dP; = Pj - P;. 5)
0<t<T

Each element is the increment of the path on the corresponding axis over the time
interval [0, T']. They denote the displacement of the given path. The 2-fold iterated
integral of this 2D path contains d” = 2° elements
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S(P)(]),]T = /0<7st /0<T] <t dP‘lrl dPt]z = % (P]T - P(l))2 ’ (6)
Sy = frcrner Joer ry WPHAPT = 51 (P = PY)° )
S(P)(l),zT = fo<rst fo«lsn dPlTl dP%Z’ ®)
S(P)(%,IT = /0<1st f0<t1 <t dP%I dPlTZ' )

We note that the first two elements are the same as (2) in the 1-dimensional case.
For the other two elements, the geometric intuitions are the areas shown in Fig. 1(a)
and Fig. 1(b). Together they represent the Lévy area [86] depicted in Fig. 1(c). The
Lévy area, which is a signed area enclosed by the path and the chord connecting the
endpoints, can be expressed by

Aor = S(P)go — S(P)ly. (10)

The sign of the area depends on the sign of the winding number of the path moving
around it [89]. The interpretation of the k-fold iterated integral (k > 2) of a 2D path
is not trivial, so it is not included here. By analogy, for a 3D path, the 1-fold, 2-fold,
and 3-fold iterated integrals are units of displacement, area, and volume respectively.

In general, for a path in R? , the superscript of the k-fold iterated integral, which
describes the order of integration, is a multi-index (i,i,...,ix) € {1,..., d}k.
Therefore, the d* elements of the k-fold iterated integral of a d-dimensional path
can be generally expressed as

¥y d 1 L, 1 2
e A 8Py = J‘D«.r-: < J‘u\.-, <1y dP"J d[’,: )
B 5
X
@ r 7 LU B
y The Lévy area: ¥ The shuﬂlui: product: R " 2
i A A= S(P)Lzr 75(P)é,lr P? A ‘S(‘P)OI b(P)('”, = S(P)u-r +S(P)U.T
o - o
. .
b SRR,
+ s ..
I B
T D i X
© =& I ) £ sy, =], dp' =R - I

Fig. 1 The geometric intuition of the PSF of a 2D path. The path in red moves from A to D over
the time interval [0, T]. The dashed line is the chord connecting the endpoints. Panels (a) and (b)
depict two terms of the 2-fold iterated integrals of the path, (c) is the Lévy area enclosed by the
path and its chord, and (d) is a demonstration of the shuffle product identity.
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S(P)y / / / dPl dP2 ... dP% . (1)
O<7e <T 0<tr <13 JO<TI<T2

Then the signature of a path P over the time interval [0, 77 is the collection of all the
iterated integrals of P:

S(Plor = (1LS(P) 7o S(PYE
S(P)gigs- - S(P)(l);’,S(P)OT,.. S(P)Ss - S(PYGS (12)
S(P)l 1,..., l, S(P)l] 12 ,,,,, ik S(P)d d,..., d, . ) ,

where the O-th term is conventionally set to 1. Since the signature is defined on top
of all the possible indices of finite length, the number of elements in the signature
is infinite. In practical use we usually consider the signature truncated at a certain
level n written as

S,,(P)O,T:(I,S(P)(')’T,.. SR LSt d) (13)

of which the dimensionality is ¢(d,n) = (d"*' = 1) (d — 1)~!. The elements of
the truncated signature are taken as features (i.e., PSF) encoding the informative
geometric properties of sequential data in applications in machine learning. For the
feature set, the O-th term (i.e., a constant value set to 1) is optional, so the dimension
can be reduced to

o' (d,n) = (d"” - d) (d-1)". (14)

For the 1-dimensional case (d = 1), the feature dimension is exactly equal to n
(excluded the 0-th term) according to (1), (2), and (3).

3.2 Calculation of the signature for a discrete path

Although the path signature is initially defined for continuous paths with bounded
variation, it is easily extended to discrete paths by linear interpolation [90]. The
signature is canonical and does not depend on the choice of timescale used for the
interpolation.

Computing the signature of a piecewise linear path does not require integrals. For
each line segment of the path, the elements of its signature are given by

(P ,}H( P). a3

where P is the i j-th coordinate value of path P at time 7. For the entire path, Chen’s
identity [44] states that for any time stamps (s, 7, u) satisfying that s < ¢ < u, we
have
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n
S(P)izrmin = 3" S(PYL 2Pyt i, (16)
k=0

This implies that the signature of the entire path can be calculated from the signatures
of its pieces.

We recommend the three open-source python software libraries, esig (on PyPi),
derived from the CoRoPa C++ library libalgebra [91], iisignature [92], and Signatory
[93] which has a dependency on PyTorch and works well on the CPU as well as the
GPU. They all allow fast computation of the path signature.

3.3 Properties of the path signature

3.3.1 Uniqueness

It is proved that the path signature determines a path if and only if the path is not
tree-like (this notion is introduced in [45]). A tree-like path is a trajectory containing
a section where the path exactly retraces itself. Tree-like paths are common in real-
world data streams, for instance, in some human actions, especially periodic ones,
like clapping or jumping in place. An effective way to avoid the tree-like situation is
adding an extra monotone dimension, such as time, to the original path.

3.3.2 Invariance under translation

The signature computed by (11) or (15) is invariant under translation of the paths,
which is a practical advantage and avoids complex recentering normalization.

3.3.3 Invariance under time reparameterization

A time reparameterization of a path is a continuous, nondecreasing substitution for
the time variable of a path. It changes the speed of recording of the path. Human
actions are largely invariant under changing the speed of the action or viewing
speed of the video. The ease with which the signature can completely filter out these
changes in the representation is a major advantage for machine learning, substantially
reducing the dimensionality of the feature set needed for action classification. The
use of the path signature, with its fixed-dimensional feature set, can help the classifer
to recognize the same action performed or sampled at different speeds. We refer the
reader to [43, 88] for a detailed proof of the invariance of the path signature under
time reparameterization.
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3.3.4 Nonlinearity of the signature

The shuffle product identity [86] states that the product of two signatures of lower
level can be expressed as a linear combination of some higher-level terms. For
instance, for the two-dimensional case in section 3.1, we can easily derive the
following equation from Fig. 1(d),

S(P)y1 - S(P)g.1 = S(P) + S(P)gly. (17)

In other words, the nonlinear behavior in terms of lower level terms can be expressed
by linear combination of higher-level terms. Therefore, when we incorporate the
higher-level terms into the feature representation, we automatically include more
nonlinear prior knowledge in our feature set. If the introduced nonlinearity is suffi-
cient, we need only linear classifiers to distinguish the targets.

3.3.5 Fixed dimension under length variations

Another practical property of the path signature is that the dimension of the PSF
extracted from the entire path depends on the truncation level of the signature and
the intrinsic dimension of the path but is independent of the (sampled) length of
the path, as described in 14. For human action recognition, the durations of actions
are variable. The use of the path signature allows us to extract a fixed dimension of
features and use them with classification methods which require a fixed-length input.

4 Path disintegrations and transformations

The principled and robust representation of unparameterized paths, along with the
convenience of reducing polynomial functions on the space of paths to linear ones
(which establishes their universality) provide the core motivations for using signa-
tures as features. One can always take the signature of a raw path to remove any
dependence on parameterization or translation, but sometimes it is prudent to apply
path disintegrations or path transformations as preprocessing to improve the effi-
ciency and effectiveness of PSFs. The disintegrations turn a path into a composition
of subpaths while the transformations turn a path into a higher-dimensional path.
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4.1 Path disintegrations

4.1.1 Pose Disintegration

In many cases, non-local clues are informative and straightforward, for instance,
the non-local displacement between two hand points is a key feature for the action
of clapping. To exploit both local and non-local clues in pose, we propose pose
disintegration. Landmarks that are labelled with corresponding body parts have
no inherent order, so a predefined priority order is randomly chosen and fixed —
different random choices of initial order yield comparable results in preliminary
experiments. The pose is then regarded as an ordered collection of points in R¥,
Our pose disintegration localizes the pose into all possible subposes containing m
points. Connecting the m points in each subpose in the inherited order forms a unique
m-node sub-path that visits each point once. We end up with a collection of sub-paths
which do not need to be parts of physical body and are available for further path
transformations or signature extractions.

We consider that functions on a pose can be approximated by functions on the
piecewise linear localized paths of its subposes. For convenience, one can view these
functions as linear functions on the signature of its localized paths. The terms of
the first two levels of signatures cover the displacement and the area information
similar to the traditional hand-designed features [31, 34], while the higher-level
terms capture more non-linear features. For a pose with N joints, the dimension of
the signatures of its localized paths is Cy; - ¢’(d, n), where m is the number of points
in a subpose, d is the dimension of the path, and # is the truncated signature level.
The selections of these parameter values are highly correlated and associated with
the uniqueness of the paths. According to [94], any piecewise linear paths in R?,
consisting of at most m = d + 1 points, can be uniquely recovered from the signature
at the third level. A larger m brings semantically high-level components but requires
a larger n for the path uniqueness [95], which exponentially increases the feature
dimension according to 14, and means less shareability and more sub-paths. The
number of m-node subpaths is in line with Pascal’s triangle and increases along with
m(m > N/2). To avoid feature set of very large dimension, m < 3,n =3 ford =2
and m < 4,n = 3 for d = 3 are suggested. Beyond the signature level n required for
the unique recovery of a path, the non-linearity (as described in 3.3.4) of the extra
high-level terms may still contribute to facilitate the training of the model until the
dimensionality of the feature set becomes impractical.

4.1.2 Temporal Disintegration

Temporal disintegration is based on the basic theory of the path signature which
suggests that low-level terms of signatures on all intermediate length time intervals
can be far more efficient than signatures of high levels over the whole time interval
[86]. Therefore, instead of extracting the PSF over the whole time interval, the dyadic
path signature features (DPSF) [22] split the entire interval into small intervals with
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a dyadic hierarchical structure and then extracts PSF over each small interval. Given
a path over the whole time interval [0, 7] C R the j-th dyadic level of the hierarchical
structure is the collection of subintervals [i7/27, (i + 1)T/27] ,i € [0,2/ = 1], €
N. Note that the 0-th dyadic level contains exactly the whole path. The DPSF over
long, medium, and short time intervals describes multi-scale dynamical dependences
more efficiently than the PSF over the entire interval, which requires higher-level
terms to capture local dependencies.

Slightly different from the hierarchical structure in [22] which may break the
events that occur near the conjunctive time stamps {iT/2/ | i € [1,2/ — 1], j € N*},
we consider an overlapping version over the time intervals [iT/2/*!, (i +2)T/2/*!],
i€ [O, 2- (2 - 1)] The overlapping DPSF is expected to supplement the original
DPSF with additional local details. Its dimension is

¢(h,d,n) = (2”“ —h—z) - ¢'(d,n), (18)

where h € N* is the number of the hierarchical level. The selection of / is a tradeoff
between improving efficiency and introducing local noises over finer intervals.

4.2 Path transformations

4.2.1 Time-incorporated transformation

The signature is invariant under parameterization, but in many situations, one would
like to keep the dependence on time. Adding a monotone increasing time dimension is
adopted to encode motion speed. The signature of a time-incorporated path contains
two parts: time-independent (TI) and time-dependent (TD). The TI part is exactly
the signature of the original path, so its integration order is

i1,00,...,0k €{1,...,d}. (19)
The TD part is related with time. Its integration order is
i1,00, .. ik €{l,....,d+1},Im e [L k], i =d+1, (20)

which means each term of the signature in TD is an integral along the time dimension
at least once. Given the truncated signature level n, the dimensionality of the TD
part is ¢’(d + 1,n) — ¢’(d,n). The signature of the original path filters out the
information about the speed of motion and the sampling rate but the signature of the
time-incorporated path allows us to select one and suppress the other according to
significance to the classification.
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4.2.2 Invisibility-reset transformation

The signature capturing relative position information is invariant under translation.
Given that the absolute position may be essential for some scenarios (e.g., HAR
under static CCTVs), we propose the invisibility-reset transformation of a path to
retain the absolute position information in signatures. For a path P in R? within the
interval [0, T'], we add two time steps T+1 and 7+2 with value Py and O respectively
at the end of P and add a visibility dimension v with values 1 in [0,7] and O in
(T,T + 2]. In other words, the invisibility-reset path P;g in R?*! first becomes
invisible at time 7+1 and then is reset to the origin at 7+42. According to (15) and
(16), we have

S(Pir)y s = =S(P)g 3 ™ insig, .. ik € {1,...,d} (21)
which means certain terms in S (Pyg) encode the relative positions as in S (P).
Moreover, the terms of the first level of S (P;g), given by

S(PIR) 140 = —Pgsi1 € {1,...,d}, (22)

are the absolute position of the initial point. This simple transformation retains
different position information in signatures and thus allows the network to select one
and suppress the other according to significance to the task.

4.2.3 Multi-delayed lead-lag transformation

The lead-lag transformation proposed in [20, 87, 90] is designed to exploit the
quadratic cross-variation between the original path and its delayed path. To extend
its capability to describe long-term dependencies of sequential events, our modified
lead-lag transformation, as shown in Fig. 2, is constructed by the original path and
its multiple delayed paths (instead of one delayed path in [20]). We denote the
dimension of a lead-lag transformed path as dy r 7. The signatures of lead-lag paths
with smaller dy ;7 encode short-term dependencies, while those with larger dy
explore more long-term dependencies.

Fig. 2 The illustration of Original Path (1 Dimension)

multi-delayed lead-lag trans- PSF, PSF, PSF, PSF, PSFs
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Table 1 Proposed features for LHAR

Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin

Spatial structural features

# of joints (for each frame)

Temporal dynamical features
(along the time axis)

S-J: The d-dimensional coordinates of
each of the predefined N joints are used.

1 (a single joint)

T-J-PSF: The temporal PSF over the
evolution of each joint up to signature
level ny j is extracted.

S-P-PSF: The PSF over each pair of
joint up to signature level ngp is ex-
tracted.

2 (joint pair)

3 (joint triple)  [S-T-PSF: The PSF over each triple of

T-S-PSF: The evolution of each
dimension of spatial PSF is treated as
a path, over which the temporal PSF
up to signature level nr g is extracted.

joint up to signature level ngr is ex-
tracted.

S Feature extraction for human action recognition

Our proposed feature set for LHAR, which we describe in this section, is outlined
in Table 1. We note that an unofficial Python implementation of the feature set is
available on GitHub [96].

5.1 Spatial structural features

First of all, the basic information describing the spatial structure is the d-dimensional
coordinates of each of the N joints of the body. The keyword S-J denotes the spatial
coordinate values of the joints. The dimension of this part is Dg; = N - d for each
sampled frame.

Time
fJ fZ -fi le fS
Sequence of frames M
/ I ¢ —
4 4 Predefined priority
order of joints
- . P o s
Joint pairs fq. P Fan ,’p“ fan d \ "oy 4/,
ar Lol 'Sl s ) N4 -
Pathiets R . 5
oint triples (2 __ 11, oL AR U gy A } N2 g
| Path signature feature extraction (from each pathlet) ‘
S-P-PSF, S5-P-PSF, S5-P-PSF, S5-P-PSF, 5-P-PSF;
S-T-PSF, S-T-PSF, S-T-PSF, S-T-PSF, S-T-PSF;
Canct_:tgﬂat!on 5

Spatial path signature features ( S-P-PSF and S-T-PSF )

Fig. 3 The illustration of spatial feature (S-P-PSF and S-T-PSF) extraction. Note that we predefine
the priority order of all the N joints (N = 15 in this figure). The red quadrangles denote the feature
extraction of joint pairs, while the blue ellipses denote that of joint triples. All possible pairs and
triples of joints are considered.
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To encode the spatial context we use pose disintegration with m = 2 and m = 3
, which means joint pairs and joint triples are used as illustrated in Fig. 3. The
signatures of each of these subpaths are computed to model the spatial constraints
in each frame. The spatial PSF of joint pairs and joint triples are denoted by S-
P-PSF and ST-PSF respectively. If the truncation level of the signature of pairs
and triples are ngp and ngr respectively, then the feature dimensions per frame are
Dsp =C% ¢’ (d,nsp) and Dy = C3, - ¢’ (d, nsr) respectively. Finally, the spatial
features from all sampled frames are extracted and concatenated. The dimension of
S-P-PSF and S-T-PSF per frame is denoted by Dg = Dgp + Dsr.

5.2 Temporal dynamical features

Inspired by the works in [40, 25] which jointly learned the spatial and temporal
contexts in a variant of LSTM, we suggest that the dynamics of landmark-based
human action can be described by the evolution of spatial context. The spatial
context herein are the features we extracted in section 5.1, although other spatial
features can be used alternatively. From these, we are going to extract two kinds of
temporal features T-J-PSF and T-S-PSF.

The T-J-PSF, illustrated in Fig. 4, is the temporal PSF of the evolution of each
joint along the time. The evolution of each joint is naturally a time-sequence, so
we consider its time-incorporated transformation. For N-joint bodies in R?, the
dimension of T-J-PSF is Dy; = N - ¢’ (d + 1,nyy), where nyj is the truncation
level of the signature.

Since each dimension of the spatial contextual features (S-P-PSF and S-T-PSF)
characterizes one particular spatial constraint of a pose, the evolution of this spatial
constraint along the time forms a spatio-temporal path which delivers temporal
constraints of a motion. The temporal PSF of these spatio-temporal paths is denoted
by T-S-PSF and illustrated in Fig. 5. Since the signature of a spatiotemporal path
(i.e., a 1D path) is just the increments to a certain power, the multi-delayed lead-lag
transformation is applied to each path to enrich the PSF with cross variations among

fi f f s fs
i |
N joints ? I I }
(Each Jointis | i I !
d-dimensional) I | | } .
I | :
i |
I | [ ] [ |
| - | IS
} | v .2 - - . ' .§ Temporal
| ' g8 2. path
| o 2 s £ cignat
N paths ¢ o 5% [ signature
ks e = The evolution of each joint - § features
£
{d+1)-dimensional) h3 (with extro time dimension) 8 2 (T-J-PSF)
8 )
Time i ® *: * =
Dimension: 1 2 3 4

Fig. 4 Illustration of temporal features extracted from the evolution of each corresponding joint
(T-J-PSF).
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Fig. 5 Tllustration of temporal features extracted from the evolution of spatial context (T-S-PSF).
Each dimension of the spatial features is treated equally and individually.

events of the path. If the truncation level of the signature is ny g and the dimension of
the lead-lag paths is dpr 1, the dimension of T-S-PSF from all spatio-temporal paths
is Drs = Ds - ¢’ (dprT,nrs). Considering there might exist complicated or long-
range actions, the temporal disintegration in section 4.1.2 can be applied. If so, the
dimensions are DTJ =N- tﬁ (hT_], d+ l,nTJ) and DTS = DS . (ﬁ (/’lTs, dLLT’ nTs)
where hr; and hrg are the corresponding hierarchical levels.

The dimension of all temporal PSFs is Dy = Dt + Drs. Finally, the total
dimension of spatial and temporal features per clipis D = M - (Dsy + Ds) + Dt ,
where M is the number of sampled frames. Moreover, the spatial components can be
covered by the temporal PSFs extracted from invisibility-reset paths which require
no sampling step.

6 Experimental results and analysis
6.1 Datasets

Monocular videos recorded by 2D cameras are capable of collecting spontaneous
actions, but their sensitivity to viewpoint variations and occlusions makes recognition
a difficult task [1]. Intuitively, human body is general in 3D space, so marker-based
motion capture systems [97] were designed to collect highly accurate locations
of human joints. However, they are often expensive and impractical for recording
realistic action videos. Fortunately, costeffective depth cameras (e.g. Kinect sensor
[98]) were designed to provide reliable joint locations via real-time pose estimation
algorithms (e.g., [99]). Our method is general enough to be applied to various kinds
of data. To extensively evaluate the proposed methods, we conducted experiments
on four datasets containing examples of all three types of data: JHMDB [31], SBU
[41], Berkeley MHAD [42], and NTURGB+D [39]. The information we used herein
for action recognition is the locations of landmarks in all the frames. However, it is
worth noting that our method is flexible and additional information such as visibility
state or confidence score can be included.
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The JHMDB dataset [31] is a 2D human action dataset. There are 928 clips,
each clip containing between 15 and 40 frames. A clip captures only one person
doing one of 21 actions. The 2D joint positions are manually annotated. There are 3
splits separating the whole dataset into training and testing set. The final result is the
average of them. The sub-JHMDB is a subset of JHMDB with the full body inside
the frame. The challenges are the spontaneity of the actions captured by the clips
from YouTube and the loss of information due to 2D projection.

The SBU Interaction [41] is a 3D Kinect-based dataset. It has 282 clips categorized
into 8 classes of two-actor interactions, and has 30 joints per frame. Its depth
information suffers from self-occlusion, causing measurement errors in the estimated
joint locations.

The third dataset is Berkeley MHAD dataset [42] captured by a marker-based
motion capture system. It consists of 659 clips, of which 384 clips, performed by 7
actors, are used for training and 275 clips by 5 different actors are used for testing.
The 3D locations of 43 joints captured by LED markers are very accurate.

The Kinect-based NTURGB+D [39] is one of the largest 3D action recognition
datasets and contains 56 thousand clips of 60 classes. The large viewpoint variations
and unconstrained number of actors pose considerable challenges for analysis of this
dataset.

Note that the quantitative analysis was conducted on JHMDB, and all the pa-
rameters were determined by 5- fold cross validation on the training set of the first
split.

6.2 Network configurations

Since PSFs are rich non-linear features, we adopted a single-hidden-layer linear neu-
ral network as our classifier (1- layer net also works well in preliminary experiments).
The network is fully-connected and the activation of the hidden neurons is the iden-
tity function. The input dimension is decided by the PSF (i.e., S-P-PSF, S-T-PSF,
T-J-PSF, T-S-PSF, or some combinations of them) and the output is a probability
distribution given by a softmax layer over all the class labels in a dataset. The single
hidden layer has 64 neurons. The networks are trained by stochastic gradient descent
on the cross-entropy with momentum 0.7 and mini-batch size 30. The learning rate
updates in accordance to a(t) = a(0) - exp(—A¢) where @(0) = 0.005, A = 0.005.
The maximum epoch is 300 for all experiments.

Dropconnect [100], a generalization of Dropout [101], randomly omits a propor-
tion of connections at each training iteration. It is applied to the connections between
the input and the single hidden layer for regularization. A high ratio of Dropconnect
is essential to mitigate overfitting because the features herein are of very high dimen-
sion. Additionally, since the actions of some joints are highly correlated with each
other, a small proportion of joints or features may already be sufficient to distinguish
some actions. Based on our preliminary experiments, the Dropconnect rate is set to
0.95.
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6.3 Data preprocessing and benchmark

We used two kinds of data augmentation. One is horizontal flipping, and the other
one is adding Gaussian noise (inspired by [31]) over joint coordinates to simulate
the noisy positions caused by estimation or annotation.

To cope with translation variation, we normalized the joints from world coordinate
system to person-centric coordinate system by placing the center point of the body at
the origin. To compensate for the biometric differences, we normalized the coordinate
values to the range of [-1,1] over the entire clip. For feature normalization, each
feature was divided by the maximum absolute value of the corresponding dimension
and normalized to [-1, 1].

The spatial components (S-J, S-P-PSF, and S-T-PSF) are calculated for each
frame. To obtain a fixed-length input to the network, we uniformly sampled M (in
this paper, M = 10) frames from each clip. As the signature has a fixed dimension
under length variation, the temporal features (T-J-PSF and T-S-PSF) are extracted
from all the frames without subsampling. Our baseline method is using S-J, the
d-dimensional coordinate values of all N joints. This leads to MNd-dimensional
feature set, for which we obtained a validation error rate of 57.54 + 3.26%.

6.4 Investigation of the spatial features

As described in section 4.1.1 and 5.1, by pose disintegration with m =2 and m = 3
, we constructed all the joint pairs and triples as localized paths for S-P-PSF and
S-TPSF respectively. The error rates on the validation set obtained by these feature
sets are shown in Table 2 and Table 3. The performance improves when higher terms
of the signature are considered, but the improvements tend to be negligible and the
variance increases when the dimension of the feature grows exponentially with the
signature level n. For the joint pairs, a suitable truncation level ngp is 2 or 3, while
for the joint triples, the level ngr needs to be as high as 3 or 4, which suggests the
choice of n should depend on m. We refer the reader to [95] which discusses the
relationship among m, n, and the path dimension d from the view of path recovery.
For the following experiments, we chose to fix ngp = 2, nsr = 3.

Table 2 Effect of different signature levels on the performance of S-P-PSF

Type of subpaths Signature level ngp  Feature dim. Error rate (%)
1 2100 32.79 £ 4.49

Joint Pairs 2 6300 25.41 + 4.55
3 14700 24.10 + 5.65
4 31500 24.10 £ 5.72
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Table 3 Effect of different signature levels on the performance of S-T-PSF

Type of subpaths Signature level nsr Feature dim. Error rate (%)
1 9100 43.93 +2.87
2 27300 32.46 £ 3.26

Joint Triples 3 63700 26.39 +3.99
4 136500 24.75+4.79
5 282100 23.77 £ 6.41
6 573300 25.24 £ 6.44

6.5 Investigation of the temporal features

6.5.1 Investigation of T-J-PSF

First, we investigated the effect of the time-incorporated transformation and the
truncation level nr ; of the T-J-PSF. As shown in Fig. 6, if the truncation level nr s
(the horizontal axis) is 1, adding a time dimension (the green plot) only improves the
performance a little. This is because the first level term related to the time dimension is
only the duration of the action. When nr; increases, the performance improvements
of using time-incorporated PSF are more significant, showing the effectiveness of
the time-incorporated path transformation. As to the truncation level, when nr
increases, the results have lower bias together with gradually higher variance, so a
trade-off is required. Here, ny; = 5 is a good choice.

In addition, we investigated the effect of the signature of the time-incorporated
path at different frame rates. We artificially increased the frame rate by interpolating
additional frames at random time stamps of the original clips. Bodies of the additional
frames were copied from those of their adjacent frames. On the other hand, we
decreased the frame rate by random subsampling. The networks were trained using
the training clips at original frame rate (30fps) and tested 10 times using artificial
validation clips at each of the frame rates ranging from 6fps to 90fps in 6fps steps.
As shown in Fig. 7, when the frame rate increases from 30fps to 90fps, the error
rates of using the time-independent part (TI) stay the same, while those of using
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the time-dependent part (TD) raise rapidly. It demonstrates the TI (i.e. the signature
of original path) is invariant under time reparameterization while the TD is very
sensitive to speed variation. The larger the signature level n, the more sensitive
the TD is to speed variation. Similarly, in the other direction, when the frame rate
decreases from 30fps to 6fps, the influence to TD is far more significant than that to
TI, showing the tolerance of TT under missing frames.

If we replace the PSF with the overlapping DPSF, then an appropriate hierarchical
level hr ; needs to be chosen. As shown in 8, in terms of performance, the low-level
(e.g., nty = 2) overlapping DPSFs over the hierarchical intervals (e.g., hr; = 3)
often outperform the high-level (e.g., nyy = 5) PSFs over the whole interval (hr; =
1), which shows the efficiency of using temporal disintegration. However, when the
disintegrated paths are too fragmented to avoid being dominated by local noises
(e.g., when hr; > 3), the additional features are harmful. We thus fixed hr; = 3.
Another observation is that the improvements from A7 ; = 1to hr; = 3 become less
significant along with the increasing nr y, demonstrating a trend that the high-level
PSF and lowlevel DPSF yield similar information eventually.
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6.5.2 Investigation of T-S-PSF

Regarding the PSF derived from the evolution of the spatial context (T-S-PSF), two
factors were evaluated: the dimension dy ;7 of the lead-lag path and the truncation
level nrs of the signature. As shown in Fig. 9, the results improve when a higher
dimension dy 7 of the lead-lag path is adopted, but the marginal improvement
is less obvious when dyrr > 3. For the truncation level nrg, the improvements
are significant from nrg = 1 to nps = 2, but they are negligible when nrg > 2.
The dashed lines in Fig.9 show the trends of feature dimension under different
parameters. By making a trade-off between model complexity and performance, we
fixed dLLT = 3, nrs = 2.

By using the overlapping DPSF instead of PSF, the validation error rates are
30.82 £ 7.00%, 26.07 + 6.12%, 26.39 + 5.51%, and 26.07 + 5.23%, when the
hierarchical level hrg is 1, 2, 3, and 4 respectively. Thus, we fixed hrg to 3.

6.6 Ablation study

For the ablation study of our features on the JHMDB [31], we used the parameter
setting for each feature based on the foregoing analysis. We retrained the network
using the whole training set (including the validation set) and took the final result
as the average of the three splits. The results are shown in Table 4. We can see
that adding the spatial PSF (Ex. 4) to the baseline (Ex. 1) gives an improvement of
about 20%, and further adding the temporal PSF (Ex. 9) contributes an additional
10%. The spatial context may be alternative between joint pairs and joint triples, for
example Ex. 2 vs. Ex. 3, or Ex. 7 vs. Ex. §, but they are complementary as shown in
Ex. 4 and Ex. 9.

Applying the invisibility-reset transformation to all the paths before taking the
temporal signatures allow us to remove all the spatial components S-J, S-P-PSF,
and S-TPSF, while obtain the same accuracy as that of Ex. 9.
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Also, we evaluated the method which directly takes all the evolving N landmarks
inR¢ as a Nd-dimensional path for signature extraction. Together with S-J, it achieves
55.0% in accuracy. The dimension of this PSF is ¢’(Nd, n) = 838,230 when n = 4
and will be impractical when n > 4. This shows the cost-effectiveness of using pose
and temporal disintegration.

Table 4 Effect of different signature levels on the performance of S-T-PSF

Ex.# S-J S-P-PSF |S-T-PSF | T-J-PSF |T-S-PSF | T-S-PSF | Accuracy
(S-P)y* |(S-D*  |(%)
1 o 489
2 o o 68.4
3 o [ 68.7
4 o o o 69.2
5 o ) 62.0
6 o [ o) o 73.5
7 o o o o 79.1
8 o o) o ) 78.3
9 o 0 [ o [ o 80.4

# S-P (S-T) means the temporal features are only on the base of spatial joint
pairs (joint triples).

6.7 Comparison with the state-of-the-art methods

To achieve our best results, we adopted the best settings of parameters from the
foregoing analysis. For the JHMDB dataset [31], the results were given in the previous
subsections. For the other three datasets, we followed the evaluation criteria in [40].

6.7.1 Comparison over small datasets

For the JHMDB dataset, previous state-of-the-art methods are high-level pose feature
(HLPF) [31] and its modified version (i.e. Novel HLPF [34]), dense trajectory features
[102] encoded by Fisher vectors [103], and the pose-based CNN features (P-CNN)
[79]. As shown in Table 5, our method, which uses only the joint locations, achieve
better performance than the P-CNN which requires additional RGB information.
Further, our method manages the high degree of nonlinearity, and outperforms other
methods using hand-designed features like HLPF. Also, the computation of our
feature extraction is very fast. The average speed using esig [91] on a single thread
of an Intel 2.4GHz Xeon Gold 6240R CPU is 85 fps on the JHMDB dataset.
Moreover, we used the off-the-shelf pose estimation called Alphapose (with Pose-
flow) [104] to get a set of 17 estimated joints from the RGB videos of the sub-JHMDB
dataset, and then trained and tested the network using the estimated poses. By us-
ing only location information, our test accuracy is 68.2%, which outperforms that
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of PCNN [79] (66.8%), PA-AP [105] (61.5%), JointAP [106] (61.2%), or HLPF
[31] (54.1%). As an example of the flexibility of our method on additional clues,
taking the confidence scores from the pose estimation as an additional dimension of
landmarks raises the accuracy rate to 75.7%. However, a gap of accuracy still exists
between using estimated poses and ground truth poses (84.23% by ours).

Table 5 Comparison of methods on JHMDB using ground-truth landmarks

Methods Accuracy (%)
DT-FV [102] 65.9
P-CNN [79] 74.6
HLPF [31] 76.0
Novel HLPF [34] 79.6
Path Signature (Ours) 80.4

For the SBU Interaction dataset, the two human bodies are regarded as one
united articulated system with a total of 30 joints in 3D. As shown in Table 6,
the proposed method using PSF significantly outperforms the other skeleton-based
methods including many RNN-based or LSTM-based ones. Aside from the accuracy,
the interpretable PSF could facilitate further understanding of interactions.

Table 6 Comparison of methods on SBU dataset

Method Accuracy (%)
Yun et al. [41] 80.3
Jietal. [107] 86.9
CHARM [108] 83.9
HBRNN [24] (reported by [37]) 80.4
Deep LSTM (reported by [37]) 86.0
Co-occurrence LSTM [37] 90.4
STA-LSTM [109] 91.5
ST-LSTM-Trust Gate [40, 25] 93.3
SkeletonNet [110] 93.5
GC-Attention-LSTM [80] 94.1
Path Signature (Ours) 96.8

Table 7 Comparison of methods on MHAD dataset

Method Accuracy (%)
Vantigodi et al. [111] 96.1
Ofli et al. [73] 95.4
Vantigodi et al. [112] 97.6
Kapsouras et al. [113] 98.2
HBRNN [24] 100
ST-LSTM-Trust Gate [40, 25] 100
Path Signature (Ours) 100




454 Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin

For the Berkeley MHAD dataset, we achieve the same accuracy (100%) as the
state-of-the-art methods shown in Table 7, showing the effectiveness of PSF for
recognizing actions with accurate joint locations.

These results show that the proposed hand-designed feature set with single-layer
linear network can outperform most deep learning methods on small datasets.

6.7.2 Comparison over large-scale datasets

We also conducted experiments on the large-scale NTURGB+D data.

For normalization, we applied the same 3D rotation and scaling as those in [39],
so the body in the first frame faces the camera directly and those in the following
frames are compensated accordingly. Since in this dataset different actions contain
different number of detected actors, we applied a two-stage classification. The first
stage is a binary classifier separating the actions into two types: 1-body or 2-body
actions, then the second stage is the corresponding classifier (1-body or 2-body
classifier) for each type. The supervised label of the binary classification at the first
stage can be found by going through all the training samples and calculating the
average number of actors in each action class. The range of the numbers is [1.02,
1.06] for the first 49 classes which are annotated as 1-body actions, while the range
is [1.87, 2.04] for the remaining 11 classes which are annotated as 2-body actions.

Before feature extraction, we ranked all the detected actors in each clip based on
the magnitudes of their movements. Then, for the 1-body classifier, features were
extracted from the most active actor. For the first-stage binary classifier and the
2-body classifier, the two most active actors were regarded as one evolving object;
this means we ended up having twice the number of joints per frame (i.e., 50 joints
per frame). If a body is missing in the entire clip, the coordinates of this body are set
to O; if a body is missing in some medial frames, its coordinates are filled in using
cubic spline interpolation [114].

The final results were given by two-stage classification as shown in Table 8. Table
9 shows that our method outperforms many deep learning based methods. The GCN
[30] and its variants [83, 84, 85] achieve the current state-of-the-art accuracy on
NTURGB-+D dataset by taking advantage of the human skeleton structure. To utilize
this skeleton structure as a prior knowledge to reduce complexity in our feature set
is worth further studying.

Table 8 Accuracy (%) of the two-stage classification on NTURGB+D dataset

The 2nd stage .
Task The 1st stage T-body 2-body Final
Cross-subject 99.2 75.7 919 783
Cross-view 99.3 82.5 94.4 86.1
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Table 9 Comparison of methods on NTURGB+D dataset

Method Deep networks? |Cross-subject Cross-view
Dynamic Skeletons [115] X(SVM) 60.2 65.2
HBRNN [24] v (RNN) 59.1 64.0
Part-aware LSTM [39] v (LSTM) 62.9 70.3
ST-LSTM-Trust Gate [40, 25] v (LSTM) 69.2 77.7
STA-LSTM [109] Vv (LSTM) 73.4 81.2
SkeletonNet [110] V' (CNN) 75.9 81.2
Joint Distance Maps [116] v/ (CNN) 76.2 82.3
GC-Attention-LSTM [80] v (LSTM) 74.4 82.8
Deep STGC [82] v (GCN) 74.8 86.3
ST-GCN [30] v (GCN) 81.5 88.3
Path Signature (Ours) X(Single-layer NN) 78.3 86.1

6.8 Toward understanding of human actions

The interpretable geometric properties of PSF facilitate the understanding of human
actions. By using a linear classifier the importance of each feature to each action
class can be evaluated by the product of the two-layer weight matrices. For each class
of sub-JHMDB, we ranked the joint pairs/triples according to the average over the
weights connecting the features of joint groups and the corresponding class label.
The top-3 joint pairs/triples for spatial and temporal features are shown in Fig. 10.
The spatial ones often emphasize static constraints while the temporal ones highlight
dynamic variations. Notice that many top pairs/triples are physically non-local, which
demonstrates the effectiveness of the pose disintegration method.

Moreover, by using temporal disintegration (k2 = 3), we can evaluate the impor-
tance of different timescales and time intervals. As shown in Fig. 11, discriminative
motions often appear in various intervals of finer timescales, e.g., the start of “catch”
or “pick”, the middle of “kick ball” or “swing ball”, and the end of “golf” or “jump”.

7 Conclusions

In this paper, we refined the path signature as a robust, nonlinear, and interpretable
feature for landmark-based data. Path disintegrations and transformations are pro-
posed to improve the effectiveness and efficiency of signature features. Based on
these, we designed and built the signature-based spatio-temporal representation of
action sequences. Experimental results show that using our feature set, a linear
shallow fully-connected neural network achieves comparable results to advanced
methods including CNN-based and RNN-based ones, especially on small datasets.
For future work, one could reduce the size of the representation of the body or
feature set based on our analysis and understanding of human actions. It would also
be interesting to integrate our landmark-based representation with other informative
cues (e.g., appearance) to improve the performance of HAR. Moreover, our method



456 Weixin Yang, Terry Lyons, Hao Ni, Cordelia Schmid, Lianwen Jin

'a) Catch Climb stairs Golf Jump Kick ball Pick Pull up Push Run  Shoot ball Swing ball Walk

LD

2nd
A

N

VARRIE

\
2%
N
\
\
/

1st
L

<
<. -€ . <
R 2l 2
N B

(b) Catch Climb stairs Golf Jump Kick ball Pick Pull up Push Run  Shootball Swingball Walk
5 N I ST SO \\ ! :.t.'. :__\'. - / ok
R N o e o o O O T I IO

A

2nd

x

fo i ke [ [ A2

2nd
AN NS

3w | e |

F .
| e

Fig. 10 Top-3 most important joint pairs/triples for (a) spatial features and (b) temporal features
based on our linear network.

is general enough for other landmark-based objects where the given information in
each landmark can be diverse.
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