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Abstract. In this paper, we consider the history of nomograms as a
computational tool in mechanical engineering, together with their poten-
tial applications for teaching purposes, and summarize the mathematical
methods used to derive them. Nomograms are graphical descriptions of
a mathematical problem, such that the desired solution may be derived
through a simple geometric construction, which usually requires nothing
more than a straightedge. This way, a reasonably accurate solution to a
complex problem can be quickly obtained even in adverse environmen-
tal conditions by low-skilled users; moreover, a nomogram can provide
immediate insight on the relationship between the variables. Nomograms
date back to the 1800s and have been used by engineers for decades, due
to their convenience over manual computation, before computers became
widespread. While nomograms have now been largely superseded as engi-
neering tools, our analysis shows that they can still have some applica-
tions in workshops and for teaching purposes.

Keywords: Nomograms · Graphical · Vibrations · History of
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1 Introduction

In their work on a given problem, engineers usually develop an analysis which
is ultimately condensed in one or more equations to be solved. These could be,
for instance, the ordinary differential equations (ODEs) that describe the time-
behavior of a system, or an algebraic equation that defines the optimal design
parameters of a component to be realized. In the following, we will mostly focus
on engineering equations having only one or finitely many solutions; conversely,
we disregard equations that define a constraint (which correspond to a boundary
in a vector space, with infinitely many points).

Once the right equation (whether algebraic or differential) for the model
at hand has been found, finding the solution is usually a mechanical proce-
dure. Indeed, after the mass advent of personal computers in the ’60s and the
corresponding development of prepackaged numerical algorithms that are not
domain-specific (and can thus be used as “black boxes”), equation solving has
become little more than a minor step in most cases.
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This, however, was not the case up until a few decades ago; indeed, entire
teams of human “computers” were sometimes hired by research centers to man-
ually develop tedious arithmetical steps of numerical methods. Calculating by
hand is however a long and risk-prone procedure, where a minor mistake can
invalidate all the following work and which provides little to no insight that can
be used to check the intermediate results.

Graphical methods have been used by engineers since before our profession
was formally established; while their accuracy is physically limited by the tools
used, such as pencil and straightedge, they offer interesting advantages. For
example, they are quite immediate to understand and employ, such that they
may be used by low-skilled operators; furthermore, they can provide reason-
ably precise results in a fraction of the time required for analytical procedures.
Their strongest asset, however, is the intrinsic visualization of the data: this way,
one has immediate insight over the results and especially over the relationships
between variables, which is useful when exploring engineering alternatives.

Nomograms [5] are graphical methods developed for solving equations. Essen-
tially, they are graphs drawn such that the mathematical relationship between
the variables has a simple graphical equivalent (such as three points being
collinear). Thus, they can be used to find a numerical result by graphical means:
one “enters” the graph with given input parameters (corresponding, in general,
to points on lines) and finds a solution by a geometrical construction, which
usually requires no more than pencil and straightedge. A thin thread can also
be used, to avoid drawing lines, so the nomogram can be reused.

Nomograms have been used extensively by engineers up until the ’60s due to
their practical convenience in a number of applications, including those in the
field of mechanical engineering. Here, we will offer a bibliographic retrospective
on such methods, especially from the point of view of Machine Mechanics.

While no longer in widespread use, nomograms still offer interesting advan-
tages and have some niche applications, for instance in shop-floor and open-field
work, where digital tools would be less practical due to their lack of ruggedness.
We also believe nomograms can have interesting advantages as teaching tools,
again owing to their immediate visualization: thus, we present nomograms that
we created specifically for such applications, as examples of how a nomogram
can be developed and used. These nomograms have been designed through the
open-source Python package “pyNomo” [4].

The goal of this work is to discuss the role of nomograms in the history of
mechanical engineering, with a special attention to the field of Mechanisms and
Machine Science. An application of nomograms for educational purposes is also
presented, both for clarifying complex equations and for furthering interest in
classical methods among students.

The rest of this paper is structured as follows. In Sect. 2, we present a his-
tory of the applications of nomograms in engineering, particularly in machine
and mechanism design. In Sect. 3, we present the basic methods used to create
nomograms and how they may be combined to solve more complex equations;
we also present nomograms targeted for classical problems in Mechanisms and
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Machine Science. Moreover, we discuss potential applications of nomograms, for
example in industry and for educational purposes. Finally, in Sect. 4, we draw
conclusions and offer directions for future work.

2 Nomograms in History of Machines and Mechanisms

Nomograms are a part of the larger history of graphical methods for compu-
tation: these were the most used techniques for numerical analysis in science
and engineering, before computers became widespread. For more than a cen-
tury, graphical methods were the object of research interest and were commonly
a part of technical education programs; in this paper, we can only provide a
very brief description of the landmarks in the development of nomograms, with
a focus on their use for mechanical engineering. For a broader historical perspec-
tive, we refer the reader to [6,13,14,18,30]; we are not aware of any historical
analyses of nomography specifically for our field.

To restrict the scope of our review, we only consider purely graphic
approaches that can (at least in principle) be applied with nothing more than pen
and paper. Thus, we disregard more general approaches using mobile elements,
such as slide rules, another instrument (conceptually related to nomograms) that
was in use until the ’60s.

We also remark that the terminology is not unequivocal: several works on
“nomograms” use in fact graphical methods that are quite different (and gen-
erally more cumbersome to use) than standard nomograms [17], for instance
by using graphs with multiple lookup curves on squared paper; here, we only
consider methods that require some form of geometrical construction. Moreover,
especially in older sources, alternative terms such as “nomographs”, “alignment
charts” and “abacs” are used interchangeably [6]. To avoid confusion, in this
paper we only use the term “nomogram”, first introduced by French mathemati-
cian and engineer Maurice d’Ocagne (1862–1938) in the late 19th century [5]
to distinguish his work from previous contributions: our bibliographic search on
scholarly research engines shows that this definition remains the prevalent one.

2.1 Invention and Diffusion: 1800–1960

In the history of mathematics, nomogram (from Greek words , meaning
“law”, and , which means “line”) is a relatively recent term, which should
strictly not be applied to calculating devices published before the seminal work
by d’Ocagne [13]; at the same time, d’Ocagne was influenced in his research
by several previous works, which are useful to understand the main concepts in
nomography as he developed it.

Several mechanical devices have been developed since ancient times to ease
complex computations; these mostly used movable components that allowed the
user to keep track of numbers and of their respective relationships. An example
is the abacus, using beads moving on wires. Devices that have been identified as
precursors to nomograms include:
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1. Astronomical calculating instruments [13,30], such as astrolabes and equa-
toria, used to compute the position of the Sun, the Moon and the planets;
examples are the Albion by Richard of Wallingford (dating to the early 1300s)
and the jovilabe 1600s) used by Galileo Galilei to study the orbits of the moons
of Jupiter.

2. Sundials [13,16] and moondials [30], which, while not strictly computing
instruments, are based on calculations and present graphically their results.

3. Volvelles and slide charts [13], related to the slide rules mentioned previ-
ously; composed of movable pieces of paper, they are designed for specialized
computations.

The first necessary element was the development (in the 17th century) of
coordinate geometry by Descartes, allowing the drawing of graphs of a function
F. In the following, we consider mostly three-variable nomograms, which provide
solutions for the equation

F(v1, v2, v3) = 0 (1)

We then define auxiliary functions Fi in the variables of interest vi and in the
coordinates x and y of a Cartesian plane: the Fi’s are such that the set of
equations

⎧⎪⎪⎪⎨

⎪⎪⎪
⎩

F1(x, y, v1) = 0
F2(x, y, v2) = 0
F3(x, y, v3) = 0

(2)

holds if and only if Eq. (1) is satisfied. Then, three families of curves in the
x-y plane can be graphed, one for each of the conditions in Eq. (2). Let us
denote each curve by the corresponding value of the fixed parameter vi: a point
at the intersection of three curves is then a solution to Eq. (1). Most of the
time, no exact intersection of three curves is available, as the values of vi’s have
been discretized (to avoid cluttering in the graph); the closest values are then
interpolated by the user from simple graphical approximation. Some of the main
features of the nomogram are already present in this simple concept:

– from two values vi, the third can be derived graphically, even if the relation-
ship in Eq. (1) cannot be inverted analytically; solving direct and inverse
problems (depending on which variables are defined as input) is thus equiva-
lently easy.

– the approximation of a given solution is immediately visible from the distance
to the closest curve of the output variable, thus providing a visual feedback
of the error;

– the precision is limited by the resolution of the graph and by the user’s capa-
bilities, especially in approximating a quasi-exact solution; however, large
errors due to misreading are unlikely (and out-of-scale errors are impossible,
since one only plots the curves corresponding to meaningful ranges for the
vi’s);

– graphical methods are targeted for a specific equation, while other calculating
devices (such as slide rules) are more general; however, once a graph has been
produced, its usage is immediate and less prone to user errors.
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With reference to Eq. (2), suppose that F1 = v1 − x and F2 = v2 − y; then, we can
set F3 = F. The nomogram is obtained by drawing the curves (called isopleths) on
plane x-y corresponding to constant F3. See for example the Pouchet nomogram
in Fig. 1a.

The first known example of such a graph (also called intersection nomograms)
was presented by French manufacturer Louis-Ézéchiel Pouchet (1748–1809), who
generalized the discrete multiplication tables (known since Pythagoras) to con-
tinuous curves, namely hyperbolas; this way, multiplying between non-integer
numbers is also possible through interpolation (see Fig. 1a). Pouchet’s work is
also historically significant as he was the first to introduce the expression “graph-
ical calculus” to describe his approach [29].

An issue of the method above was that it required graphing complex curves
on paper, which was a time-consuming process to do by hand. A further improve-
ment was offered by French engineer Léon-Louis Lalanne (1811–1892), who sug-
gested to use nonlinear scales for graphs. Consider again the multiplication graph
introduced by Pouchet: the isopleths in this case are given by xy = C, with C
being a constant value. If the x and y values are reported on logarithmic axes,
however, the graph can be simplified: indeed, taking the logarithm of both sides,
one has log(x) + log(y) = log(C), meaning that on a log-log plot the isopleths
become straight lines. While drawing nonlinear scales is somewhat more com-
plex, this is more than compensated by the advantage of drawing straight lines
instead of curves, as the former can be defined by only two points and are thus
much easier to plot. See Fig. 1b: here, the graph in Fig. 1a has been redrawn
using a nonlinear scale for V . Lalanne described his concept as anamorphosis,
in reference to a painting technique using exaggerated projective distortions.
The use of nonlinear scales later became an essential tool in devising simple
nomograms for complex equations.

The final element in this development was presented by d’Ocagne in several
works, which in 1899 culminated in the first book on nomography [5]. There,
the author put to use the tools of projective geometry, a branch of geometry
that had recently been introduced by Poncelet and others, and in particular
of the principle of duality between points and lines. Through this concept, each
straight line in Lalanne’s anamorphic graph was represented by a point; the con-
dition of having three curves through a point then corresponds to having three
points aligned on the same line. This also simplifies the procedure to read the
nomogram, which is much less cluttered: one only needs to draw a straight line
through two points, corresponding to the two input variables, to find the third
one, which corresponds to the output. The other idea advanced by d’Ocagne was
to substitute the (orthogonal) coordinate axes with three curves Ci (i = 1, 2, 3) in
the plane, thus introducing alignment nomograms. Each variable vi then defines
a point on the corresponding curve, which is graded along its length; the scale
may be linear or nonlinear (Fig. 1c and 1d), depending on which approach makes
the resulting nomogram simpler to draw and to use. If each curve is paramet-
rically defined by Ci =

(
fix(vi), fiy(vi)

)
in the Cartesian plane, the condition for

alignment of three points is then given by
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�
�
�
�
�
�

f1x(v1) f1y(v1) 1
f2x(v2) f2y(v2) 1
f3x(v3) f3y(v3) 1

�
�
�
�
�
�

= 0 (3)

If a function F(v1, v2, v3) can be rewritten in the form from Eq. (3), then a
nomogram can be developed for solving Eq. 1. A further advantage of alignment
nomograms is that they allow to easily solve equations in more than three vari-
ables; for instance, to solve F(v1, v2, v3, v4, v5) one may first derive v3 from v1 and
v2 and then obtain v5 from v3 thus obtained and v4; the two nomograms (for the
two steps of the solution) can then be combined, by having a curve C3 that is
common to both. While writing an equation in this form is a complex problem
in general, the resulting nomogram is significantly easier to use and understand
than an intersection nomogram. Another aspect to observe is that the nomo-
gram for a given equation is not unique: with a different choice of scaling (for
instance, logarithmic instead of linear) the scales are defined by different curves.
Creating easy-to-use nomograms thus required skill and experience, a limitation
that has now been largely superseded by software [4]. One can also modify a
nomogram by multiplying the matrix in Eq. (3) by another (constant) matrix
and then taking the determinant: geometrically, this is equivalent to applying a
linear transformation in the plane (such as scaling, rototranslations, stretching
and shearing), which results in a valid nomogram that still solves the original
equation, but may be easier to read.

D’Ocagne greatly helped to popularize his invention through a number of
publications, in which he presented example nomograms for several applications,
such as physics, hydraulics, topography, navigation, aviation and accounting [30].
By the 1920s, nomograms had become the main research topic in graphic com-
putation [29, p. 142, Fig. 3]; moreover, they were of interest also in terms of their
mathematical analysis. For example, German mathematician David Hilbert, in
his famed list of 23 unsolved problems presented in 1901 [20], posed the 13th one
in terms of nomographic analysis, by asking whether a 7th-degree polynomial
equation (which cannot be solved in closed form through algebraic functions)
can be solved instead through nomograms. A solution was found by d’Ocagne
himself, which however relied on a movable element in addition to a nomogram
and was thus considered as unsatisfactory.

A practical problem in nomography was to determine whether a given equa-
tion of three variables can in fact be solved through nomograms, and if so, to
write it in determinant form as in Eq. (3): this problem was finally solved in a
practical form in 1959 by Polish mathematician Mieczyslaw Warmus [32], who
also presented a useful classification of the functions that can be written in
nomographic form.

By the ’50s, research in nomography, at first mostly published in French [29,
p. 141, Fig. 2] after the pioneering works by Pouchet, Lalanne and d’Ocagne,
had become of interest at the global level; we observe, for example, a significant
amount of works by authors from the former Soviet Union [13], possibly due to
delayed access to computers.
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(a) Intersection nomogram.
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(b) Intersection nomogram with nonlinear
scales.
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(c) Alignment nomogram, first version.
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3

(d) Alignment nomogram, second version.

Fig. 1. For the same task (calculating the product of two variables, that is, F = v3 −

v2v1 = 0) different charts can be provided, with the alignment nomogram offering an
elegant solution. Notice that this can be drawn in different ways; the one in Fig. 1d has
two linear scales (which are easier to draw). Charts reproduced from [5], with some
changes for clarity.

2.2 Decline: 1960–1990

The research on nomography began to decline in the 1960s [29, p. 140, Fig. 1],
as computers became commonly used in academia and industry. Nevertheless,
nomograms were still used by engineers; published papers frequently developed
calculations in nomographic form for practical applications. Topics that saw a
significant use of nomograms until very recently were the analysis of internal
combustion engines, manufacturing technology, design of hydraulic systems and
civil engineering (especially for the study of soil mechanical properties): in all
these cases, one needs to work with complex relationships that are often approx-
imated from numerical data, thus the reduction in accuracy is not an issue. On
the other hand, the possibility of obtaining a quick result that can be used in
the field makes nomograms appealing for these applications.
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Fig. 2. Nomogram for thermal therapy of tissue injuries. Reprinted with permission
from [24].

Regarding applications in Machine Mechanics, we observe that until the ’70s
nomographic solutions for mechanism design problems were appreciated for their
practicality [1]: indeed, mechanism design generally leads to complex equations
in which it is convenient to explore different design solutions, by designating dif-
ferent parameters as outputs. In particular, [1] showed a nomogram to optimize
a four-bar linkage for function generation and observed how, after some practice,
one can arrive in a relatively short time at a suitable solution with acceptably
small errors. As it was common, the nomogram was also offered in large format
on graph paper [1] for practical use.

Other nomograms were developed during this period specifically for mech-
anism design; for instance, planar, four-bar mechanisms were studied in [3,34],
while [26] considered their spherical equivalents. A planar mechanism with higher
(contact) pairs, namely a cam-follower linkage, was studied in [8] with the goal
of preventing undercut. We also cite [7], on the vibration analysis of a spatial
(Hooke’s) joint.

Nomograms proved useful also in the design of gears [28,33], to present large
amounts of experimental data in a form that is more convenient for designers
(with respect to numerical tables). Some applications were also proposed for
vibration analysis [21,27].

2.3 Resurgence? 1990–Today

After the ’90s, nomograms have largely disappeared from engineering research,
having been replaced by code listings that can be easily distributed. Nevertheless,
nomograms are still present in published literature: for instance, they are still
used in design standards and manufacturers’ catalogs, to present results in a
compact way. A common application is the Smith chart [16], used in electrical
engineering for the design of transmission lines.
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Outside of engineering, it should be noted that nomograms have had a signif-
icant impact on medicine [17,23,24]; see also Fig. 2. For instance, they are often
used to quickly compute the BMI of a patient [16]. Note that the application
of nomograms in medicine is somewhat controversial [17]; however, even in a
2008 review that was highly critical of their usage [17], the author noted that
they were undergoing a “resurgence”, with more than 150 citations in the year
2007 alone. Nomograms, indeed, are observed to have a didactic value, which
can be helpful in explaining a complex situation to a patient; this is especially
true in comparison to PCs, which may hinder transparency. Nomograms are also
low-cost, easily protected by environmental damage (by using waterproof paper)
and allow users to compute results in an emergency situation. These advantages
can also be useful for engineers in some industrial applications.

Finally, nomograms have a place where speed is essential: for example, they
are used to predict the behavior of forest fires or the lift of hot-air balloons
[16]. Artillery was another relevant application, in which nomograms were in use
up to World War I [18].

Considering in particular the field of Machine Mechanics over the last 30
years, we found several works on nomograms for the design of gear trains [9–12];
they are also still used in some cases for mechanism design, for planar [19] or
spherical [22,25] linkages, for the optimization of motion laws in cams [15], for
the analysis of efficiency in kinematic chain [2] or for studying tire dynamics in
a vehicle [35].

3 Nomograms: Methods and Applications

In this Section, we present a very brief description of how nomograms can be
produced, using modern tools, for a few example problems in Machine Mechan-
ics. While a complete guide on drawing nomograms [6] is beyond the scope of
this work, we believe some examples of nomograms can effectively show their
advantages and limitations.

3.1 Modern Nomographic Tools: PyNomo

Traditionally, a notable limit of nomograms is the fact that they require skill
in their design, not to mention the time needed to manually draw them in high
resolution. Recently, however, some software tools and packages have been pre-
sented that allow us to automate nomogram design, which can help reintroduce
nomography in practical usage. Indeed, as observed in [23], it is desirable to
have a tool that “combines computerization with classical nomograms”. At the
time of writing, the most complete tool for this task (that we are aware of) is
pyNomo [4], a library for the Python programming language written to automate
nomogram design. We therefore have created a few nomograms with pyNomo to
illustrate some basic concepts in Machine Mechanics. The output of a pyNomo
script is a PDF file containing the nomogram in high-resolution vector graph-
ics; this is achieved by automatic compilation of a LATEX program generated in
Python.



Nomograms: An Old Tool with New Applications 323

12345678910

m [kg]

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

11
00

ccr
Ns
m

1000020000300004000050000 k N
m

ccr = 2
√

km

12
00

13
00

14
00

Fig. 3. Nomogram for calculating the critical damping coefficient ccr of a 1-DoF
damped harmonic oscillator; points K, C and M are defined by the values k, c and
m of the stiffness and damping coefficients and of the system mass, respectively (each
on the corresponding scale). For a critically-damped system, points K, C and M are
aligned on a line l.

In the following, we refer to the classification in the pyNomo documentation,
which identifies 10 types of nomograms. Traditionally, the most typical nomo-
gram is the one defined by three parallel1 straight lines (Type 1 in pyNomo), as
shown in Fig. 3. The most general alignment nomogram determinant of Eq. (3)
becomes simpler: if the j-th scale (along the line x = xj) starts at y = yjS and
ends at y = yjE ( j = 1, 2, 3), one has

fjx(vj) = xj (constant)
fjy(v1) = yjS + Δyjgj(vj)

with

{

gj(vjS) = 0
gj(vjE ) = 1

and Δyj = yjE − yjS (4)

where vj ∈
[

vjS, vjE
]

is a variable corresponding to a point on the scale and gj is
a general monotonic continuous function; for linear scales, for example, it holds
gj(vj) =

vj−vjS
vjE−vjS

. Substituting in the determinant from Eq. (3) and expanding,
one has

(x3 − x2) Δy1g1(v1) + (x1 − x3) Δy2g2(v2) + (x2 − x1) Δy3g2(v3) + C0 = 0 (5)

where C0 is a constant (once the nomogram has been defined): thus, any weighted
sum of functions gj (with weights (xi − xk) Δyj that can be set by a proper choice
of the start and end points) can be achieved with a nomogram such as the one
shown in Fig. 3.

A product of functions can also be computed by this type of nomogram:
indeed, the equation v3 = v1v2 (for which Eq. (1) can be written as F(v1, v2, v3) =

1 In most nomograms of this type, the lines are vertical, for clarity. Here the lines are
horizontal, due to lack of space; the y axis in the drawing plane is parallel to the
scales.



324 G. Mottola and M. Cocconcelli

v3 − v1v2 = 0) becomes log(v3) = log(v1)+ log(v2) by taking the logarithm of both
sides. We are thus again in the case defined by Eq. (5), with all three gj ’s being
logarithmic functions.

In Fig. 3 we show a nomogram to compute the critical damping coefficient ccr
of a one-Degree-of-Freedom (1-DoF) system composed of a mass m (translating
along a line) connected to a fixed frame through a linear spring of stiffness k and
a viscous damper of coefficient c, acting in parallel; this is a classical topic in
Vibration of Machinery which is commonly presented in undergraduate courses.
From the definition of ccr , one finds

ccr = 2
√

km ⇒ log (ccr ) = log(2) + 1/2 log(k) + 1/2 log(m) (6)

Multiplying by 1/2 the logarithms of the input values and adding log(2) to the
result is “embedded” in the way the scales have been drawn (which is possible
since 1/2 and log(2) are constant values) and does not complicate the nomogram.
An isopleth has been added to Fig. 3 to show how a computation is performed:
for k = 30000 N

m and m = 3 kg, one has ccr = 600 Ns
m , which is found by drawing

a straight line l over the points K and M in Fig. 3 and finding the intersection
C of l with the scale for ccr .

A given equation can be represented in nomographic form in different ways.
For example, another possible representation of an equation containing a prod-
uct of functions v3 = v1v2 can be achieved with a “N” (also called “Z”) type
nomogram (Type 2 in pyNomo), corresponding to Figs. 1c and 1d; this nomo-
gram is a graphical embedding of a multiplication between functions, but (unlike
Fig. 3) requires using only one logarithmic scale. Consider three scales for the
variables vi, each starting at point PjS = (xjS, yjS), corresponding to gj(vj) = 0.
The direction of each scale is defined by vector

(
Δxj, Δyj

)
, which we assume to

have unit magnitude, for simplicity. Equation (3) then becomes
�
�
�
�
�
�

x1S + Δx1g1(v1) y1S + Δy1g1(v1) 1
x2S + Δx2g2(v2) y2S + Δy2g2(v2) 1
x3S + Δx3g3(v3) y3S + Δy3g3(v3) 1

�
�
�
�
�
�

= 0 (7)

If the scale for variable v2 passes through P1S and P3S , and if the scales for
v1 and v3 are parallel, it can be shown that linear scales can be set for v1 and
v3, such that g1(v1) and g3(v3) are linear functions and that it holds v2 = v3/v1
(and thus again v3 = v1v2). Since the only nonlinear scale is the one for v2,
the resulting nomogram is simpler to draw and, in some cases, more compact
than the equivalent Type 1 nomogram for the same equation (obtained by using
logarithmic scales, as explained above).

As another example application, we present a “concurrent scale” (or “angle”)
nomogram in Fig. 4. This kind of nomogram (Type 7 in pyNomo) is defined by
having three scales passing through a common point, which for simplicity is
taken to be also the origin P1S = P2S = P3S of all three scales; the origin O of
the coordinate plane is also set in this point. Defining the angles αj formed by
the j-th scale with the x-axis, one has

sin (α3 − α2)

g1(v1)
+

sin (α1 − α3)

g2(v2)
+

sin (α2 − α1)

g3(v3)
= 0 (8)
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Fig. 4. Nomogram for the stiffness keq of a spring, equivalent to two springs in series
having stiffnesses k1 and k2, respectively. In this case, all three scales have the same
units of measurement.

A possible application for this nomogram that is of interest for Machine
Mechanics is computing the combined stiffness of a system of two linear springs
(having stiffnesses k1 and k2, respectively) attached in series. It can be shown
that the resulting system is statically equivalent to a single spring of stiffness
keq, having

1
keq

=
1
k1

+
1
k2

(9)

which can be directly implemented in a Type 7 nomogram. See Fig. 4, where
the isopleth l has been drawn for an example problem with k1 = 45000 N

m and
k2 = 30000 N

m (corresponding to points K1 and K2, respectively); the stiffness
keq = 18000 N

m is found at Keq. Notice that unrealistic cases having k j = 0
are automatically excluded by the graphic procedure, making it impossible to
obtain incorrect results from a mistake in the input. The angles αj can be chosen
according to convenience; having α3 − α2 = α2 − α1 = 60◦ leads to the same unit
length being used for all three scales, as in Fig. 4.

3.2 Applications

To illustrate concrete applications of nomography in machines’ and mechanisms’
analysis, we present an example design of a more complex nomogram, devised to
solve a practical problem in the kinematic analysis of a spatial mechanism. This
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Fig. 5. Combined nomogram (composed of three “intermediate” Type 2 nomograms,
denoted as 1, 2 and 3) for calculating the variable displacement of a volumetric axial
piston pump.

design has been inspired by a collaboration with a company working on variable-
displacement axial piston pumps (with a swashplate to control the displacement).
One minor need reported by the company was to compute the pump displace-
ment from measurements on its main parameters: this is useful when working
on a shop floor, as the pump data (such as the serial number and product spec-
ification) is not directly available. The displacement V can then be computed
from easily measured quantities, as

V =
πd2

4
ZD tan(α) (10)

where d is the diameter of the pistons, Z their total number, D the diameter of
the cylinder through which the piston axes pass and α the swashplate inclination.

Clearly, Eq. 10 can be implemented in any computation software, for instance
as a spreadsheet. However, operating a digital device when disassembling a pump
(which is generally filled with lubricant) for maintenance operations is clearly
inconvenient. Moreover, there is a significant risk of operator errors due to incor-
rect data entry.

Nomograms provide an interesting possibility for this task. However, Eq. (10)
contains five variables; thus, it cannot be directly expressed as a nomogram of one
of the types presented previously. We then divide the corresponding nomogram
in parts, as follows.
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1. We create a nomogram to compute A = πd2

4 Z; this is the total cross-sectional
area of the pistons. This is achieved through a simple Type 2 nomogram
with three variables, as described in Subsect. 3.1, where v1 = d2, v2 = Z and
v3 = A 4

π .
2. The result from the previous nomogram is used for a second step, by joining

two nomograms at the scale for A; the corresponding expression is V0 = DA.
Again, being a product of two variables, this result can be computed with a
Type 2 nomogram.

3. Finally, a third nomogram is introduced, joined at the previous one at the
scale for V0. This computes the final result V = V0 (tan(α)).

The final result is shown in Fig. 5; here, the two vertical scales in the middle
correspond to variables A and V0, respectively. The values of these intermediate
quantities are not required in the final result; thus, no ticks are displayed, to avoid
cluttering the graph. The isopleth on the graph shows an example calculation
for a realistic pump design; on one corner of the nomogram, a sectional view
of the central cylinder block of the pump is shown for reference, to clarify the
definition of diameters D and d.

This nomogram has been printed on laminated paper, to protect it from
oil spills, and introduced in shop-floor practice for quick computations. The
isopleths for each step can be found with any rigid element having a straight-
line segment of sufficient length.

We also suggest an application in education. As noted in [6,23,30], nomo-
grams allow us to easily understand the behavior of equations with complex
algebraic expressions; also, nomography is a graphical approach that makes it
unlikely to misinterpret inputs or results. Besides nomograms, other graphical
methods, such as those used for planar mechanism kinematics and statics, are
currently taught in mechanical engineering courses. While these methods could
be replaced by purely analytical approaches, they are still used due to their
pedagogical value. We thus expect nomograms to easily fit in existing courses;
in particular, nomography extends graphical approaches to any equation that
can be written in determinant form as Eq. (3). An experience on nomograms
for math education in high schools was reported in [31]; a test on their useful-
ness for university-level education would then be worthwile to understand their
strengths and limitations. We also believe that mentioning examples of nomo-
grams, together with their uses and applications, within a course in Machine
Mechanics, could also enhance students’ interest in historical methods for engi-
neering analysis and in the broader historical development of our field.

4 Conclusion and Outlook

We have presented a brief history of nomograms, a graphical method once com-
monly used to solve equations. We focused on their applications in mechani-
cal engineering, with the goal of performing a didactic experiment for a course
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in Machine Mechanics, to appreciate their pedagogical potential. We also pre-
sented some original nomograms developed with pyNomo, a nomographic soft-
ware package. We expect that computers, which once made nomograms obsolete,
can indeed help in reviving interest in these tools.
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