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Preface

The Thirteenth International Tbilisi Symposium on Language, Logic and Computation
(TbiLLC 2019) was held during September 16–20, 2019, in Kobuleti, Georgia. The
symposium was organized by the Centre for Language, Logic and Speech at the Tbilisi
State University, the Georgian Academy of Sciences, the Institute for Logic, Language
and Computation (ILLC) of the University of Amsterdam, and the Collaborative
Research Center 991 of Heinrich Heine University Düsseldorf. This biennial confer-
ence series and the proceedings are representative of the aims of the organizing
institutes: to promote the integrated study of logic, information, and language. While
the conference is open to contributions from any of the three fields, it aims to foster
interaction among them by achieving stronger awareness of developments in the other
fields, and of work that embraces more than one field or belongs to the interface
between fields.

The scientific program of TbiLLC 2019 consisted of tutorials, invited lectures,
contributed talks, and two workshops. The symposium offered two tutorials in lan-
guage and logic and aimed at students as well as researchers working in the other areas:
“Sign language linguistics. State of the art” by Fabian Bross (University of Stuttgart,
Germany) and “Axiomatic Semantics” by Graham E. Leigh (University of Gothenburg,
Sweden).

Seven invited lectures were delivered at the symposium: four on logic, by Gianluca
Grilletti (Munich Center for Mathematical Philosophy, Germany), Philippe Balbiani
(CNRS, University of Toulouse, France), Adam Bjorndahl (Carnegie Mellon Univer-
sity, USA), and Alexandru Baltag (University of Amsterdam, the Netherlands), two on
language, by Thomas Ede Zimmermann (Goethe University Frankfurt, Germany) and
Berit Gehrke (Humboldt University of Berlin, Germany), and one on computation by
Libor Barto (Charles University in Prague, Czech Republic).

The workshop on Syntax, Semantics, and Pragmatics of Aspect Across Modalities
(SSPAM), organized by Berit Gehrke and Fabian Bross, featured six contributed talks.
The workshop on Topology and Modal Logic, organized by Adam Bjorndahl, featured
five invited talks.

The contributed talks at the symposium were selected based on peer-reviewed
extended abstract submissions. After the symposium, contributed talks, invited lec-
turers, and tutorial speakers were invited to submit full papers of their presented work
for the post-proceedings. This volume contains a selection of papers that went through
a rigorous two-stage, single-blind refereeing process during which each paper was
reviewed by one to three anonymous referees. The post-symposium paper submissions
and reviewing process were entirely organized by the editors of this volume. The
papers are listed in alphabetical authorship order and divided into two main groups:
Language and Logic, and Logic and Computation. Here we give a brief overview
of their contribution.



Nino Amiridze investigates a relatively new development in modern spoken
Georgian (Kartvelian) – the truncation of the final vowel in vocative forms of disyllabic
nouns. The author considers a similar rule, operating both in some of the Georgian
dialects and also in the former contact language Russian and argues between the
language-family-internal vs. external contact scenarios, to find out the origin of the new
pattern.

Fabian Bross offers a brief overview of linguistic research into sign languages. The
target audiences are people with some background in linguistics of spoken languages.
Bross briefly introduces sign languages, discusses some basics of phonological struc-
ture of these types of languages (including the use of space) as well as some new
findings on the syntax of sign languages, and, finally, addresses some methodological
issues. The majority of data comes from German Sign Language, although data from
other sign languages is also included.

Stergios Chatzikyriakidis and Zhaohui Luo look at the issue of gradability within
MTT-semantics. Specifically, they look at both gradable adjectives and nouns and
show that the rich typing mechanisms afforded by MTT-semantics can provide us a
natural account of gradability. Gradable adjectives take indexed nouns as their argu-
ments, while gradable nouns are R-types where their first projection is a degree
parameter. Chatzikyriakidis and Luo also look at multidimensional adjectives and use
enumerated types to capture the multiple dimensions. They formalize their account in
the Coq Proof Assistant and check its formal correctness. They also describe a recent
proposal to model gradability by means of subtype universes in MTTs.

Oleg Kapanadze, Gideon Kotzé, and Thomas Hanneforth describe past and present
work surrounding the development of treebank-related NLP resources for Georgian. In
particular, they provide an overview of efforts made in the development of a mor-
phologically and syntactically annotated treebank, as well as its application in the
development of a syntactic parser. Building on this, the authors also report ongoing
work in utilizing manual and automatic alignment solutions for the creation of a
Georgian/German parallel treebank. The end goal is the development of resources and
tools for improved computational processing and linguistic analysis of the Georgian
language.

Ralf Naumann and Wiebke Petersen outline a formal framework that combines
results from neurolinguistic research on two ERP components, the N400 and the LPP,
with formal semantics. At the semantic level they combine de Groote’s
continuation-based version of Montague semantics with van Eijck’s Incremental
Dynamics enriched with frames. Naumann and Petersen provide an analysis in terms of
complex properties that apply both to the semantic and the discourse level and which
combine world knowledge with syntagmatic and paradigmatic relationships.

Sebastian Padó and Daniel Hole are concerned with the phenomenon of function
word polysemy. They adopt the framework of distributional semantics, which char-
acterizes word meaning by observing occurrence contexts in large corpora and which is
in principle well situated to model polysemy. Although function words were tradi-
tionally considered as impossible to model reliably, due to their highly flexible use,
Padó and Hole establish that contextualized word embeddings, the most recent gen-
eration of distributional methods, offer hope in this regard. Using the German reflexive
pronoun sich as an example, they find that contextualized word embeddings capture
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theoretically motivated word senses for sich to the extent to which these senses are
mirrored systematically in linguistic usage.

Swantje Tönnis takes a new perspective on es-clefts in German, focusing on how an
es-cleft contributes to the discourse structure and how it does this differently than its
canonical counterpart. The provided analysis combines an adapted version of Roberts’
(2012) QUD stack and Velleman et al.’s (2012) approach to clefts. In particular, Tönnis
presents a model that includes implicit and potential questions into the QUD stack and
introduces the concept of expectedness, that she argues is crucial for the acceptability
of clefts. Tönnis proposes that the cleft addresses a question that came up in the
preceding context but that is not as urgent for the addressee to be answered at that point
in the discourse compared to other questions. Those questions that are more urgent are
answered with a canonical sentence. This approach is compatible with other functions
that have been proposed for clefts, such as marking exhaustivity, maximality, or cor-
rection. However, it can also account for examples where the cleft serves to establish
discourse coherence.

Thomas Ede Zimmermann scrutinizes the very notion of extension, which is central
to many contemporary approaches to natural language semantics. The starting point is a
puzzle about the connection between learnability and extensional compositionality,
which is frequently made in semantics textbooks: given that extensions are not part of
linguistic knowledge, how can their interaction serve as a basis for explaining it?
Before the puzzle is resolved by recourse to the set-theoretic nature of intensions, a few
clarifying observations on extensions are made, starting from their relation to (and the
relation between) reference and truth. Extensions are then characterized as the result of
applying a certain heuristic method for deriving contributions to referents and
truth-values, which also gives rise to the familiar hierarchy of functional types.

Malte Zimmermann, Lea Fricke, and Edgar Onea present two novel diagnostics for
gauging the exhaustivity level of German wh-interrogatives embedded under the
predicates wissen ‘know’ and überraschen ‘surprise’. The readings available in com-
bination with the concessive particle combination SCHON…aber ‘alright…but’ and the
Q-adverb teilweise ‘partially’ provide evidence that embedded wh-interrogatives under
veridical and distributive wissen ‘know’ have a weakly exhaustive (WE) reading as
their basic semantic interpretation. The logically stronger strongly exhaustive
(SE) reading is a pragmatic enrichment that can be cancelled by SCHON…aber.
Zimmermann, Fricke, and Onea provide an event-based analysis of know+wh as
expressing the maximal plurality of sub-events of knowing the individual answers to
the question. Under the cognitive-emotive attitude verb überraschen ‘surprise’, which
is not obligatorily distributive, wh-interrogatives allow for two types of
WE-interpretations, distributive and non-distributive. The SCHON…aber-diagnostic
shows the logically stronger distributive WE-reading to be a pragmatic enrichment. In
view of experimental evidence that surprise+wh allows for SE-interpretations, Zim-
mermann, Fricke, and Onea provide a tentative analysis of surprise+wh as expressing a
psychological state caused by a complex situation, or subparts or missing parts thereof.

Bahareh Afshari and Graham E. Leigh prove Lyndon interpolation for the modal µ-
calculus, a strengthening of Craig interpolation which is not implied by uniform
interpolation. The proof utilises ‘cyclic’ sequent calculus and provides an algorithmic
construction of interpolants from valid implications. This direct approach enables
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Afshari and Leigh to derive a correspondence between the shape of interpolants and
existence of sequent calculus proofs.

The core of the paper by Philippe Balbiani and Tinko Tinchev is constituted by
Chagrova’s Theorems about first-order definability of given modal formulas and modal
definability of given elementary conditions. Balbiani and Tinchev consider classes of
frames for which modal definability is decidable as well as classes of frames for which
first-order definability is trivial, and provide a new proof of Chagrova’s Theorem about
modal definability as well as the sketches of the proofs of new variants of Chagrova’s
Theorem about modal definability.

Alexandru Baltag, Nick Bezhanishvili, and Saúl Fernández González introduce a
multi-agent topological semantics for evidence-based belief and knowledge, which
extends the dense interior semantics developed in Baltag, Bezhanishvili, Özgün, and
Smets (2016). The authors provide the complete logic of this multi-agent framework
together with generic models for a fragment of the language. They also define a new
notion of group knowledge which differs conceptually from previous approaches.

In this paper, Dragan Doder, Zoran Ognjanović, Nenad Savić, and Thomas Studer
present a logic for reasoning about higher-order upper and lower probabilities of jus-
tification formulas. They provide sound and strongly complete axiomatization for the
logic and show that the introduced logic generalizes the existing probabilistic justifi-
cation logic PPJ.

Besik Dundua, Temur Kutsia, and Mikheil Rukhaia define an unranked nominal
language, an extension of the nominal language with sequence variables and term
tuples. They define the unification problem for unranked nominal terms and present an
algorithm solving the unranked nominal unification problem.

Gianluca Grilletti and Davide Emilio Quadrellaro focus on univariate formulae v,
that is, formulae containing at most one atomic proposition. For every such formula,
they introduce a lattice of intermediate theories: the lattice of v-logics. The key idea to
define v-logics is to interpret atomic propositions as fixpoints of the formula v2, which
can be characterised syntactically using Ruitenburg’s Theorem. Grilletti and
Quadrellaro show that v-logics form a lattice, dually isomorphic to a special class of
varieties of Heyting algebras. This approach allows the authors to build five distinct
lattices—corresponding to the possible fixpoints of univariate formulas—among which
the lattice of negative variants of intermediate logics.

Temur Kutsia and Cleo Pau focus on proximity relations: fuzzy binary relations
satisfying fuzzy reflexivity and symmetry properties. Tolerance, which is a reflexive
and symmetric (and not necessarily transitive) relation, can be also seen as a crisp
version of proximity. Kutsia and Pau discuss two fundamental symbolic computation
problems for proximity and tolerance relations: matching and anti-unification, present
algorithms for solving them, and study properties of those algorithms.

Graham E. Leigh presents a short introduction to the logical analysis of truth and
related concepts. He examines which assumptions are implicit in the paradoxes of truth
and self-reference, and presents some of the important formal theories of truth that have
arisen out of these considerations.

We would like to thank all the authors for their contributions, and the anonymous
reviewers for their high-quality reports. We would also like to express our gratitude to
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the organizers of the symposium, who made the event an unforgettable experience for
all of its participants. The Tbilisi symposia are renowned not only for their high
scientific standards, but also for their friendly atmosphere and heartwarming Georgian
hospitality, and the 13th symposium was no exception. Finally, we thank the ILLC
(University of Amsterdam) and the Department of Computational Linguistics at
Heinrich Heine University Düsseldorf for their generous financial support for the
symposium.

December 2021 Aybüke Özgün
Yulia Zinova
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Final-Vowel Truncation in the Forms of
Address in Modern Spoken Georgian

Nino Amiridze(B)

Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia

nino.amiridze@gmail.com

Abstract. This paper studies a relatively new development in modern
spoken Georgian (Kartvelian) – the truncation of the final vowel in voca-
tive forms of disyllabic nouns. It considers a similar rule, operating both
in some of the Georgian dialects and also in the former contact language
Russian and argues between the language-family-internal vs. external
contact scenarios, to find out the origin of the new pattern.

Keywords: Language contact · Borrowing · Vocative truncation ·
Georgian · Russian

1 Introduction

This paper deals with a relatively new development in modern spoken Georgian –
vocative (voc1) truncation of disyllabic proper nouns to express familiarity, close
social relationship, affection, and endearment (cf. (1a) vs. (1b)). The truncation
is optionally accompanied by lengthening of the remaining vowel (1c).2

(1) a. Standard Georgian

nana,
Nana

c.aik. itxe
you.sg.read.imp.it

es
this

c.ign-i!
book-nom

‘Nana, read this book!’ (simple address)

b. Spoken Georgian

nan,
Nan

c.aik. itxe
you.sg.read.imp.it

es
this

c.ign-i!
book-nom

‘Nana, read this book!’ (expressing familiarity)

The work was done within the project FR-19-18557, supported by the Shota Rustaveli
National Science Foundation of Georgia.
1 The following abbreviations are used in this paper: adv= adverbial; dat= dative;
erg= ergative; ev= epenthetic vowel; gen= genitive; H= high; imp= imperative;
inst= instrumental; L = low; narr= narrative; neg= negation; nom= nominative;
part= particle; pl= plural; sg= singular; tam= Tense, aspect, mood;
voc= vocative.

2 In Georgian, vowel quantity is not a phonological feature [55, p. 53], [7, p. 81].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Özgün and Y. Zinova (Eds.): TbiLLC 2019, LNCS 13206, pp. 3–25, 2022.
https://doi.org/10.1007/978-3-030-98479-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98479-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-98479-3_1


4 N. Amiridze

c. Spoken Georgian

naan,
Naan

c.aik. itxe
you.sg.read.imp.it

es
this

c.ign-i!3

book-nom

‘Nana, read this book!’ (expressing familiarity)

voc truncation has previously been known from several Georgian dialects
[26], where it operates exclusively on nouns with more than two syllables (cf.
(2a) vs. (2b)). In those dialects, it is not allowed to have lengthening of any of the
remaining vowels of the truncated form (see (2c) and (2d)). Due to urbanization,
the rule spread into the Tbilisi Georgian as well.

(2) Mtiulian-Gudamaqrian dialect, [26, p. 281]

a. manana!
Manana

‘Manana!’
(simple
address)

b. manan!
Manan

‘Manana!’
(expressing
familiarity)

c. *maanan!
Maanan

‘Manana!’
(expressing
familiarity)

d. *manaan!
Manaan

‘Manana!’
(expressing
familiarity)

The two groups of proper names, disyllabic ones vs. those with more than two
syllables, when truncated in voc, get a similar interpretation (cf. (1b) vs. (2b)).
They are used informally, to express familiarity, close social relationship, affec-
tion, and endearment, as opposed to the non-truncated form having a neutral
reading (see (1b) vs. (1a) and (2b) vs. (2a)). Then the following questions arise:
Is it possible that the previously operating rule (originating from dialects) which
truncated three-and-more-syllable names got analogically extended to truncate
disyllabic names in Tbilisi Georgian? Or does it have a different origin, as pat-
terns of vowel lengthening are different in the two groups of proper names?

To answer these questions and find out what is the origin of the more recent
rule, I will briefly describe the vocative marking in standard Georgian (Sect. 2).
Then, I will look into the voc truncation in the diachrony of Georgian as well
as in its modern dialects (Sect. 3). Section 4 overviews the voc truncation in
Russian, a former contact language for Georgian, in the search of a potential
donor language. Section 5 will discuss whether the new pattern originates from
Georgian dialects or is replicated from Russian. Section 6 concludes the paper.

Thus, this work addresses the following problems:

– What is the origin of the voc truncation in disyllabic names in Georgian:
does it come from Georgian dialects, or is it a change induced by contact
with Russian, a genetically unrelated donor language?

– What type of change is it? What is its contribution to the theory of language
contact?

3 Posted on February 27, 2020 at https://forum.ge/?showtopic=35132192&view=
findpost&p=55902429.

https://forum.ge/?showtopic=35132192&view=findpost&p=55902429
https://forum.ge/?showtopic=35132192&view=findpost&p=55902429


Final-Vowel Truncation in the Forms of Address in Modern Spoken Georgian 5

2 Vocative Marking in Georgian

According to the literature, there are seven cases in Georgian: nominative (nom),
narrative (narr),4 dative (dat), genitive (gen), instrumental (inst), adver-
bial (adv), and vocative (voc), see, e.g., [6,13,15,36,43,44,51,53]. These cases,
except inst, adv, and voc, participate in the marking of arguments of verbs
of different semantic classes in different tam series. The inst and adv cases
are used to mark oblique arguments and adjuncts. As for the voc, it is used in
address forms only.

In general, in the standard variety, the vocative case ending depends on both
formal and semantic properties of the stem to which it is applied to. In particular,
it matters whether or not

– the address form consists of several components,
– the referent is human,
– it is a common noun,
– the stem is consonant-final,
– the stem is monosyllabic.

In this paper, I will only discuss the allomorphs of the vocative morpheme, when
it attaches to a single item and will leave aside the syntax of applying voc within
a structure. The vocative ending for common nouns with consonant-final stems is
-o, irrespective of the number of syllables or of the semantic class of the referent
of the noun (e.g., human (3a), non-human animate (3b) or inanimate (3c)):

(3) Consonant-final stems

a. Human, animate

k.ac-o!
man-voc

‘[Hey,] man!’

b. Non-human, animate

mgel-o!
wolf-voc

‘[Hey,] wolf!’

c. Inanimate

mindor-o!
meadow-voc

‘[Oh,] the meadow’

Vowel-final common nouns, irrespective of the semantic class of the referent,
group into two sub-groups, depending on the number of syllables. In voc, those
with monosyllabic stems, get the ending -o (4), while those with polysyllabic
stems have -v :5

4 The narrative case has also been referred to as ergative (erg) in the Kartvelian
literature [23]. There has been some debate, whether Georgian is an ergative language
or not [3,19,21,22]. Here, I will be using the term narrative instead of ergative to
avoid the bias towards the ergative alignment type.

5 The voc ending -v originates from the voc ending -o. According to [44, p. 60], the
voc -o, when immediately following a vowel, historically lost syllabicity and went
through the stages of impoverishment such as -o � -w/-v � -∅. In spoken language,
both v- and -∅ are found and both are accepted by normative grammars as variants
[17, p. 62].
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(4) Vowel-final common monosyllabic nouns

a. Human, animate

Ze-o!
son-voc

‘[Hey,] son!’

b. Non-human, animate

xbo-o!
calf-voc

‘[Hey,] the calf!’

c. Inanimate

mta-o!
mountain-voc

‘[Hey,] the mountain!’

(5) Vowel-final common polysyllabic nouns

a. Human, animate

gogo-v!
girl-voc

‘[Hey,] girl!’

b. Non-human, animate

lok.ok. ina-v!
snail-voc

‘[Hey,] the snail!’

c. Inanimate

samšoblo-v!
motherland-voc

‘[Oh,] the motherland!’

Proper nouns also illustrate differences in voc marking. First of all, in voc,
consonant-final human first names (6a) and proper names of non-human ani-
mates (6b) are represented by the stem (and not by the nom form (cf. (6a) vs.
(6c) and (6b) vs. (6d))):

(6) Consonant-final proper names in Standard Georgian

a. Female first name

mariam,
Mariam

icek.ve!
dance

‘Mariam, dance!’

b. A name of a dog

julbas,
Julbas

iq. epe!

bark

‘Julbas, bark!’

c. Female first name

mariam-i
Mariam-nom

cek.vavs.
she.dances

‘Mariam is dancing.’

d. A name of a dog

julbas-i
Julbas-nom

q.eps.

it.barks

‘Julbas is barking.’

As for the consonant-final human last names (7a) and proper nouns with inani-
mate referents (7b), they are marked by -o.

(7) a. A family name

maγalašvil-o!
Maghalashvili-voc

‘[Hey,] Maghalashvili!’

b. A name of a mountain

mq. invarc.ver-o!

Mount.Kazbek-voc

‘[Oh,] Mount Kazbek!’

Proper nouns with vowel-final stems show a different grouping: human first (8a)
and last names (8b) are represented by the stem in voc (cf. (8a) vs. (9a) and (8b)
vs. (9b)), while those with non-human animate (10a) and inanimate referents
(10b) require -v6 in voc:

6 See footnote 5.
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(8) Vowel-final proper names in standard Georgian

a. First name

giorgi!
Giorgi

‘[Hey,] Giorgi!’

b. Family name

beriÿe!
Beridze

‘[Hey,] Beridze!’

(9) Vowel-final proper names in standard Georgian

a. First name

giorgi-m
Giorgi-narr

šeisc.avla
he.studied.them

tekst-eb-i.
text-pl-nom

‘Giorgi studied the texts.’

b. Family name

beriÿe-m
Beridze-narr

gamoik.vlia
(s)he.researched.them

dialekt.eb-i.
dialect-pl-nom

‘Beridze researched the dialects.’

(10) Proper nouns with non-human animate and inanimate referents

a. A name of a hamster

vanila-v!
Vanilla-voc

‘[Hey,] Vanilla!’

b. A name of a country

sakartvelo-v!
Georgia-voc

‘[Oh,] Georgia!’

Table 1 summarizes the vocative case marking in Georgian.

3 Truncation in Georgian, Its Diachrony and Synchronic
Variation

3.1 No Vocative Truncation in Old or Middle Georgian

Old and middle Georgian do not illustrate truncation of any case endings. The
only instance when a vowel gets deleted is elision, which refers to the deletion
of the final vowel of vowel-final stems (cf. the stem deda- in nom (11a) and voc
(11d) to the stem ded- in gen (11b) and inst (11c)).

According to [45, pp. 37–38], elision characterized only a part of the old
Georgian vowel-final common nouns, namely, those that end with the vowel a
(see (11a)) or e, while the nouns with o- or u-final stems do not undergo elision
[45, pp. 38–40]. However, the truncation is characteristic exclusively of genitive
(cf. (11b) vs. (11a)) and instrumental case forms (cf. (11c) vs. (11a)) but not to
vocative (11d):
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Table 1. voc marking of nouns in Georgian

Common

vs. proper

Stem Semantic category Number

of

syllables

voc marking Example

Common Consonant-final Human Any -o (3a)

Non-human animate Any -o (3b)

Inanimate Any -o (3c)

Vowel-final Human Monosyll. -o (4a)

Polysyll. -v (5a)

Non-human animate Monosyll. -o (4b)

Polysyll. -v (5b)

Inanimate Monosyll. -o (4c)

Polysyll. -v (5c)

Proper Consonant-final Human, first name Polysyll.a Represented by the

stem

(6a)

Human, last name Polysyll. -o (7a)

Non-human animate Polysyll. Represented by the

stem

(6b)

Inanimate Polysyll. -o (7b)

Vowel-final Human, first name Polysyll. Represented by the

stem

(8a)

Human, last name Polysyll. Represented by the

stem

(8b)

Non-human animate Polysyll. -v (10a)

Inanimate Polysyll. -v (10b)
aThere are no monosyllabic proper names in Georgian.

(11) Vowel-final common noun

a. deda-j
mother-nom

‘mother’

b. ded-is(a)
mother-gen

‘mother’s’

c. ded-it(a)
mother-inst

‘by the mother’

d. deda-o! /
mother-voc

*ded-o! /
mother-voc

*ded!
mother.voc

‘[Hey,] mother!’

Proper nouns with vowel-final stem do not undergo elision (for gen, cf. (12b) vs.
(12a) or for inst, cf. (12c) vs. (12a)). Their vocative form is given as the stem
and none of its parts get truncated either (12d):
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(12) Vowel-final proper noun

a. iovane-j
Iovane-nom

‘Iovane’

b. iovane-js7 /
Iovane-gen

*iovan-js /
Iovane-gen

*iovan-is
Iovane-gen

‘Iovane’s’

c. iovane-jt /
Iovane-inst

*iovan-jt /
Iovane-inst

*iovan-it
Iovane-inst

‘by Iovane’

d. iovane! /
Iovane

*iovan!
Iovane

‘Iovane!’

Obviously, elision is not applicable to consonant-final stems (see (13), (14)), as
there is no final vowel to be truncated there.8

(13) Consonant-final common noun

a. k.ac-i
man-nom

‘man’

b. k.ac-is(a)
man-gen

‘man’s’

c. k.ac-it(a)
man-inst

‘by a man’

d. k.ac-o!
Man-voc

‘[Hey], man!’

(14) Consonant-final proper noun

a. davit9

Davit

‘Davit’

b. davit-is
Davit-gen

‘Davit’s’

c. davit-it
Davit-inst

‘by Davit’

d. davit!
Davit

‘[Hey], Davit!’

However, note that the elision and the truncation of the final vowel of the voc
case-ending are essentially two different processes. While the former is mor-
phophonological, the latter is phonetic.

Middle Georgian reflects practically the same situation in nominal case mark-
ing.10 Namely, there is no truncation of voc (cf. (15a) vs. (16) or (15b) vs. (16))
or any other case endings:

(15) Middle Georgian variation

a. From [38, p. 17], address form represented by the stem

ruka,
Ruka.voc

did-ad
big-adv

miq.varxar[. . . ]

I.love.you.sg

‘Ruka, I love you much[. . . ]’

7 Consonant-final proper nouns do not get the epenthetic vowel (ev) -a in gen (cf.
(12b) vs. (11b)), inst (cf. (12c) vs. (11c)) (or dat [45, p. 41], [41, p. 32]).

8 Nouns with consonant-final stems get syncopated but I am not going to discuss the
rules governing that operation in this paper. For more information see [14,41,45].

9 Consonant-final proper nouns are represented by their stem in nom (14a), narr,
and voc (14d) forms [45, p. 41], [41, p. 32].

10 The difference from the old Georgian is that proper nouns start resembling common
nouns by developing case endings in nom, narr, and voc.
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b. From [38, p. 3]

ruka-v,
Ruka-voc

šengan
from.you

mik.virs
I.am.surprised

eget-i
that.kind-nom

saubar-i!
talk-nom

‘Ruka, such talk from you surprises me!’

(16) Middle Georgian

*ruk!
Ruka.voc

‘Ruka!’

3.2 Modern Georgian Dialects and Vocative Truncation

Address Forms in Northeastern, Eastern, Central, and Southwestern
Dialects. According to Jorbenadze [26], the Mtiulian-Gudamaqrian dialect in
the Northeast, Kakhetian in the East, Kartlian in the Center, and the Meskhian
dialect in the Southwest of Georgia show voc truncation in trisyllabic (cf. (17a)
vs. (17b)) and quadrisyllabic words (cf. (17c) vs. (17d)). The difference between
the truncated and non-truncated forms is that the former express familiarity
with the person referred to by the form and are used in informal contexts. As
for the latter, non-truncated vocative, it represents a simple address and has a
neutral reading:

(17) Georgian

a. Male

mamuk.a!
Mamuka

‘[Hey,] Mamuka!’
(simple address)

b. Male

mamuk. !
Mamuk

‘[Hey,]Mamuka!’
(expressing
familiarity)

c. Female

duduxana!
Dudukhana

‘[Hey,] Dudukhana!’
(simple address)

d. Female

duduxan!11

Dudukhan

‘[Hey,] Dudukhana!’
(expressing
familiarity)

Note, however, that in those dialects that allow truncation in nouns consisting
of three and more syllables, there is no truncation in disyllabic ones [26] (cf. (18a)
vs. (18b) and (18c) vs. (18d)):

11 https://www.kvirispalitra.ge/2011-03-31-07-00-04/11031-qarthveli-msakhiobebi-
dudukhana-tserodze.html.

https://www.kvirispalitra.ge/2011-03-31-07-00-04/11031-qarthveli-msakhiobebi-dudukhana-tserodze.html
https://www.kvirispalitra.ge/2011-03-31-07-00-04/11031-qarthveli-msakhiobebi-dudukhana-tserodze.html
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(18) Mtiulian-Gudamaqrian dialect

a. Male

mate!
Mate

‘[Hey,] Mate!’
(simple
address)

b. Male

*mat!
Mat

‘[Hey,] Mate!’
(expressing
familiarity)

c. Female

maro!
Maro

‘[Hey,] Maro!’
(simple
address)

d. Female

*mar!
Mar

‘[Hey,] Maro!’
(expressing
familiarity)

Therefore, modern spoken Georgian could not have copied the new pattern of
truncating the final vowel of voc forms of disyllabic names from these varieties
of Georgian, as they do not allow such a truncation in disyllabic forms.

Address Forms in Western Dialects. Western varieties do not allow the
truncation of the final vowel of address forms [26] (cf. (19a) vs. (19b)). However,
it is common there to truncate the final CV sequence (cf. (19a) vs. (19c)):

(19) Western Georgian dialects

a. Full address form

mamuk.a!
Mamuka

‘[Hey,] Mamuka!’
(simple address)

b. Truncating final vowel

*mamuk. !
Mamuk

‘[Hey,] Mamuka!
(expressing familiarity)

c. Truncating final CV

mamu!
Mamu

‘[Hey,] Mamuka!’
(expressing familiarity)

Thus, modern spoken Georgian could not have copied the new pattern of trun-
cating the final vowel in disyllabic names to express familiarity, close social
relationship, affection, and endearment from the Western varieties of Georgian
simply because they do not possess such a pattern.

3.3 Tbilisi Georgian Between 1950–1980

Starting from around the 1950s,12 the truncation of vocative forms of nouns
consisting of three and more syllables spread in Tbilisi Georgian (20). Probably
it can be attributed to the rapid urbanization of the previous decades, which
started in the 1910s, since such a truncation is functional in Northeastern, East-
ern, Central, and Southwestern dialects (see Sect. 3.2 and Table 2).

12 The dates like 1950s for the start of the spread of truncated voc forms of tri- and
quadrisyllabic names in the Tbilisi variety, as well as the 1980s for the start of the
spread of truncated voc forms of disyllabic names are an approximation (see the
Tables 2 and 3). In the absence of actual documented data of informal spontaneous
speech of those decades, I exclusively rely on impressions and reports of a limited
number of individuals as well as on address forms that sporadically occur in published
interviews/recollections (see, for instance, the source interview for Example (17d)).
A more thorough investigation will be needed to locate more precise dates.
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(20) Tbilisi Georgian of the post-urbanization period

a. Female

manana!
Manana

‘Manana!’
(simple
address)

b. Female

manan!
Manan

‘Manana!’
(expressing
familiarity)

c. Male

elguja!
Elguja

‘Elguja!’
(simple
address)

d. Male

elguj!
Elguj

‘Elguja!’
(expressing
familiarity)

However, disyllabic names do not get truncated in those dialect varieties
(Table 3). Nevertheless, the Tbilisi Georgian of around 1980s illustrates this use.

Table 2. Use of voc truncation in names with three and more syllables in varieties of
Georgian

Western

dialects

Northeastern, Eastern, Central

and Southeastern dialects

Tbilisi

variety

Before 1910s No Yes No

1910s (start of urbanization) – 1950 No Yes No

1950–1980 No Yes Yes

Since 1980 No Yes Yes

Table 3. Use of voc truncation in names with two syllables in varieties of Georgian

Western

dialects

Northeastern, Eastern, Central

and Southeastern dialects

Tbilisi

variety

Before 1910s No No No

1910s (start of urbanization) – 1950 No No No

1950–1980 No No No

Since 1980 No No Yes

Starting around the 1980s, in Tbilisi Georgian it became possible to truncate
the final vowel of the full vocative forms of disyllabic proper nouns (cf. (21a)
vs. (21b) and (21c) vs. (21d)). The truncated forms were pragmatically heavily
loaded and used to express familiarity, close social relationship, affection, and
endearment:

(21) Georgian disyllabic names giga (male) and nino (female) truncated in voc

a. giga!
Giga

‘[Hey,] Giga!’
(simple
address)

b. gig!
Gig

‘[Hey,] Giga!’
(expressing
endearment)

c. nino!
Nino

‘[Hey,] Nino!’
(simple
address)

d. nin!
Nin

‘[Hey,] Nino!’
(expressing
endearment)
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We would expect there to be some other source besides Georgian dialect varieties
from which the rule of truncating disyllabic nouns could have been replicated. A
look at the sister languages of Georgian (Svan, Megrelian, and Laz) reveals that
they do not employ the truncation of the final vowel in disyllabic nouns (or in
nouns with more than two syllables) in address forms [8,27,29,37,42,52]. Thus,
attributing the truncation of disyllabic nouns in voc to Kartvelian origins and
the influence from within the language family does not seem feasible.

4 Contact with Russian as a Possible Source

In the previous section, we have seen that for truncated vocatives of disyllabic
nouns the inheritance scenario from the earlier stages of Georgian looks unlikely
(Sect. 3.1). Modern spoken Georgian could not have directly copied the rule of
truncating vocative of disyllabic nouns from dialects of Georgian or its sister
languages either (Sect. 3.2).

Let us explore another possibility for how a new pattern could have been
acquired. Namely, let us consider a contact hypothesis: the voc truncation pat-
tern for disyllabic names could be copied from a language in close contact with
Georgian. A consideration of the time when the pattern became functional and
operating in spoken Georgian, that is around the 1980s, leaves us with the only
one possible option: the Russian language.

Russian is the most recent donor among the languages Georgian has been
in direct contact with [9,18]. The two languages came into contact around the
beginning of the 19th century [47,48]. Before the end of the active contact, in the
1990s, after the collapse of the former Soviet Union, Georgian-Russian language
contact could be argued to have reached Stage 3 [4, p. 3] on the borrowing scale
of Thomason and Kaufman [49, pp. 74–75].

The particular pattern of truncating the final vowel of vocative forms to
express familiarity, close social relationship, affection, and endearment has been
in Russian since the second half of the XIX century and ended up in the former
Soviet intelligentsia speech around 1960s [12]. The Soviet Russian speech pat-
terns have easily been copied into Georgian, as the Republic has been a part of
the former USSR. The contact with Russian could be a plausible explanation
for the spread of the new pattern of voc truncation in Georgian.

In the next sections, I will overview voc truncation in Russian (Sect. 4.1) and
compare it to the use of the new pattern of voc truncation in spoken Georgian
(Sect. 4.2).

4.1 Vocative Truncation in Russian

According to [12], in Russian, the truncation of the final vowel in vocative forms
was first used in the texts of the second half of the XIX century, mainly reflecting
the speech of peasants (the actual usage must predate those texts). The use got
spread to literature only later in the 1920s. Finally, in the 1960s, the pattern
came into the speech of the intelligentsia, which was an upper social class in the



14 N. Amiridze

USSR. Today, the pattern is used in everyday spoken Russian, it has an informal
usage, shows small social distance between interlocutors and is used to express
familiarity, close social relationship, affection, and endearment.

In modern Russian, there is a use of nominative pro vocative (cf. (22a) vs.
(22b) and (22d) vs. (22e)). Truncated vocative (or “new vocative” [12]) (see
(22c) and (22f)) is formed on personal names (22) and kinship terms (23) having
a penultimate-stressed nominative in -a [10,12]. Note that the truncation of the
final vowel can operate both on disyllabic nouns (cf. (22b) vs. (22c), (23a) vs.
(23b)) and on nouns consisting of three and more syllables (cf. (22e) vs. (22f),
(23c) vs. (23d) and (24b) vs. (24c)):

(22) Russian personal names

a. Disyllabic reference form

Máša
Masha

‘Masha’
(female name)

b. Full vocative

Máša!
Masha

‘[Hey,] Masha!’
(simple address)

c. Truncated vocative

Máš!
Mash

‘[Hey,] Masha!’
(expressing affection)

d. Trisyllabic reference form

Niḱıta
Nikita

‘Nikita’
(male name)

e. Full vocative

Niḱıta!
Nikita

‘[Hey,] Nikita!’
(simple address)

f. Truncated vocative

Niḱıt!
Nikit

‘[Hey,] Nikita!’
(expressing affection)

(23) Russian kinship terms in vocative

a. máma!
mom

‘[Hey,] mama!’
(simple
address)

b. mám!
mom

‘[Hey,] mama!’
(expressing
affection)

c. dedúl’a!
granddad

‘[Hey,] grandad!’
(simple
address)

d. dedúl’ !13

granddad

‘[Hey,] grandad!’
(expressing
affection)

(24) Russian quadrisyllabic patronym

a. Reference form

Andréjevna
Andreevna

‘Andreevna’
(daughter of Andrej)

b. Full voc

Andréjevna!
Andreevna

‘[Hey,] Andreevna!’
(simple address)

c. Truncated voc [24, p. 10]

Andréjevn!
Andreevna

‘[Hey,] Andreevna!’
(expressing affection)

According to [39], the use of truncated vocative forms of nouns in Russian is
optional, restricted to an informal setting with a relatively close interlocutor
relationship, and expresses the following pragmatic meaning: familiarity, close
social relationship, affection, and endearment. Note that in Russian truncated
13 Examples (23b) and (23d) are taken from the Russian National Corpus, http://www.

ruscorpora.ru/.

http://www.ruscorpora.ru/
http://www.ruscorpora.ru/
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vocatives, one can get the remaining vowel lengthened14 (cf. (23b) vs. (25) and
(26b) vs. (26c)):

(25) Russian kinship term, truncated, lengthened

maam!
mom

‘[Hey,] mom!’ (expressing affection)

(26) Russian kinship term

a. Full form

pápa!
dad

‘[Hey,] dad!’
(simple address)

b. Truncated

páp!
dad

‘[Hey,] dad!’
(expressing affection)

c. Truncated, lengthened

paap!
dad

‘[Hey,] dad!’
(expressing affection)

In those nouns that consist of three or more syllables, only the vowel which gets
an accent in the full form can be lengthened in truncated vocative forms. For
instance, when the stress falls on the second i of the proper noun Niḱıta (22e),
the correct truncated and lengthened voc form would be nikiit! (27a) but not
*niikit! (27b):

(27) Russian voc forms

a. Truncated, lengthened

nikiit!
Nikiit

‘[Hey,] Nikita!’
(expressing affection)

b. Truncated, lengthened

*niikit!
Niikit

‘[Hey,] Nikita!’
(expressing affection)

The same is true of the truncation of three and more-syllable common nouns
(here, kinship terms). It is the stressed vowel of the full form that becomes long
in the truncated form (cf. (23c) vs. (28a) and (23c) vs. (28b)):

(28) Russian voc forms

a. Truncated, lengthened

deduul’ !
granddad

‘[Hey,] grandad!’ (expressing affection)

b. Truncated, lengthened

*deedul’ !
granddad

‘[Hey,] grandad!’ (expressing affection)

As noted by [12], the lengthened vowel forms (see (25) and (26c)) can even
be hyphenated in writing (see, accordingly, (29a) and (29b)), as data from the
Russian National Corpus confirms:

14 In Russian, vowel quantity is not a phonological feature [50, p. 41].
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(29) Russian, hyphenated forms [12]

a. ma-am!
mom

‘Mommy!’
(expressing affection)

b. pa-a-ap!
dad

‘Daddy!’
(expressing affection)

4.2 Comparison of Vocative Truncation in Russian vs. Georgian

If we have a careful look at the Georgian truncated vocative forms of nouns,
their use is similar to the use of Russian truncated vocatives. In both languages,

(i) the truncation is restricted to an informal setting with a relatively close
interlocutor relationship;

(ii) the pragmatics of the uses in Georgian and Russian are similar: truncated
forms show close social distance between interlocutors and express famil-
iarity, close social relationship, affection, and endearment;

(iii) for both languages, in voc truncation the lengthening of a vowel is optional
(for Russian, see [12] and for Georgian cf. (30a) vs. (30b) and (30a) vs.
(30c)).

(30) Georgian truncated vocative with an optionally lengthened vowel

a. Full

lik.a!
Lika

‘Lika!’
(Simple address)

b. Truncated15

lik. [,]
Lik

Zalian
very

magariaaa[!]
coool.is

‘Lika, it’s very coool!’
(expressing affection)

c. Truncated, lengthened16

liiik. ,
Liiik

madloba[!]
thank.you

‘Lika, thanks[!]”
(expressing affection)

The features of being limited to informal setting (i) as well as similarity in the
pragmatics (ii) are shared by address forms in many languages. The pragmatics
of truncated forms could have also arisen in Georgian without any contact from
an outside source as well. That makes (i) and (ii) less convincing arguments in
favor of contact.

However, truncation accompanied by lengthening of a vowel might suggest
the contact scenario. Truncation optionally coupled with lengthening of a vowel
is not characteristic of any other variety of Georgian or its sister languages.
Nor it is known from languages that have been in contact with Georgian before
Russian. Thus, there is no possible source other than Russian to account for
the vowel lengthening that optionally occurs in truncation in Georgian address
forms. Therefore, (iii) might serve as an argument that the source language for
the phenomenon is Russian.

Here are some other similarities and differences. In both languages, the trun-
cation applies to the nouns ending on the vowel a. For Russian see (22b) vs.

15 Taken from https://forum.ge/?showtopic=35090121&view=findpost&p=54687325.
16 Taken from https://forum.ge/?showtopic=34490350&view=findpost&p=34939035.

https://forum.ge/?showtopic=35090121&view=findpost&p=54687325
https://forum.ge/?showtopic=34490350&view=findpost&p=34939035
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(22c); (22e) vs. (22f); (23a) vs. (23b); (23c) vs. (23d); and for Georgian observe
(21a) vs. (21b) and (30a) vs. (30b).

However, unlike Russian, Georgian also allows truncation of nouns that end
on vowels other than a (cf. (21c) vs. (21d)). It would not be surprising if the
truncated disyllabic vocatives started developing differently from those in the
donor language: “once borrowed, a form or a pattern is likely to diverge from
what it was in the source language, in terms of its formal adaptation, and also
its semantics and function” [1, pp. 22].

Truncation in Georgian disyllabic names extends to nicknames (cf. (31a) vs.
(31b) and (31a) vs. (31c)) and collective nouns (cf. (32a) vs. (32b) and (32a) vs.
(32c)):

(31) Georgian truncated vocative with an optionally lengthened vowel

a. Full17

icocxle[,]
live.imp

dega-v[,]
Dega-voc

Zma-o!
brother-voc

‘Live [long], Dega,
brother!’
(Simple address)

b. Truncated18

au[,]
oh

deg[,]
Deg

kargi
good

ra[!]
part

‘Oh, Dega, come on!’
(expressing affection)

c. Truncated, lengthened19

k.argi[,]
good

ra[,]
part

deeg[!]
Deeg

‘Come on, Dega[!]’
(expressing affection)

(32) Georgian truncated vocative with an optional vowel lengthening

a. Full voc form of a collective noun

xalx-o!
people-voc

‘[Hey,] people!’

b. Truncated voc20

dac.q.nardit[,]

calm.pl.down

xalx. . .
people

‘Calm down, people. . . ’

c. Truncated and lengthened voc21

xaalx!
people

ucxouri
foreign

sait.ebi
sites

ar
neg

mušaobs[.]
work

‘[Hey,] people! Foreign sites aren’t accessible[.]’

Note that Russian too allows voc truncation of collective nouns (cf. (33a) vs.
(33b) and (33c) vs. (33d), taken from [12, p. 226]) and nicknames22:

17 Taken from https://forum.ge/?showtopic=34890421&view=findpost&p=48809259.
18 Taken from https://forum.ge/?showtopic=34656179&view=findpost&p=41084605.
19 Taken from https://forum.ge/?showtopic=34620382&view=findpost&p=39679738.
20 Taken from https://forum.ge/?showtopic=35155595&view=findpost&p=56352277.
21 Taken from http://karavi.ge/viewtopic.php?t=3228&start=15.
22 One of the anonymous reviewers suggest that truncating non-conventional proper

names is common in Russian as well.

https://forum.ge/?showtopic=34890421&view=findpost&p=48809259
https://forum.ge/?showtopic=34656179&view=findpost&p=41084605
https://forum.ge/?showtopic=34620382&view=findpost&p=39679738
https://forum.ge/?showtopic=35155595&view=findpost&p=56352277
http://karavi.ge/viewtopic.php?t=3228&start=15
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(33) a. Full

rebjáta!
folks.voc

‘Folks!’

b. Truncated

rebját!
folks.voc

‘Folks!’

c. Full

devčáta!
girls

‘Girls!’

d. Truncated

devčát!
girls

‘Girls!’

Note that Georgian truncated vocatives started to be used as reference forms as
well. Example (34a) is a description of a young girl’s photo posted by her friend
on Facebook, illustrating the referential use of the phrase čem-i niin that has a
truncated vocative form with a lengthened vowel as a head. Compare (34a) with
the truncated form to (34b) with the regular nom phrase čem-i nino:

(34) a. Posted on Facebook on 29.04.201823

čem-i
my-nom

niin
Niin

or-i
two-nom

č. ika
glass.nom

šav-i
black-nom

γvin-is
wine-gen

šemdeg
after

‘My Niin after two glasses of red wine’

b. čem-i
my-nom

nino
Nino.nom

or-i
two-nom

č. ika
glass.nom

šav-i
black-nom

γvin-is
wine-gen

šemdeg
after

‘My Nino after two glasses of red wine’

This phenomenon of turning truncated vocatives into reference forms is attested
in Russian as well. For instance, compare the truncated voc form used as refer-
ence form in (35a) to the full form in (35b)):

(35) Russian

a. Truncated voc as a reference form24

Žal’
pity

Kat’
Kat’

ušla.
she.left

‘It’s a pity [that] Kat’ left.’

b. Non-truncated reference form25

Žal’
pity

Kat’a
Kat’a

ušla.
she.left

‘It’s a pity [that] Kat’a left.’

As known from the typological literature, it is common to have nom forms
used as forms of address, as many languages (including Russian) do not possess
an actual voc marker (see [11, pp. 631–632] and works discussed there). The
truncated voc forms used as reference forms (see (34a) for Georgian and (35a)
for Russian) illustrate the reverse, namely, how address forms get reanalyzed as
reference forms. Note that this too is a typologically standard development of
reference forms out of address forms (vocativus pro nominativo), that is frequent
in situations of language contact [11,46].

23 https://www.facebook.com/Ekarochikashvilii/posts/10211427432799934
24 Taken from https://eva.ru/forum/mobile/topic/3478053.htm#m94519819.
25 Taken from https://www.labuhov.net/modules.php?name=Files&op=view file&li

d=1460#27862.

https://www.facebook.com/Ekarochikashvilii/posts/10211427432799934
https://eva.ru/forum/mobile/topic/3478053.htm#m94519819
https://www.labuhov.net/modules.php?name=Files&op=view_file&lid=1460#27862
https://www.labuhov.net/modules.php?name=Files&op=view_file&lid=1460#27862
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5 Discussion

5.1 Borrowing from Within or Outside of the Language Family?

Truncation of the final vowel to express familiarity, affection, and close social
relationship has long been known in the Northeastern, Eastern, Central, and
Southwestern dialects of Georgian. However, this use was restricted to nouns
with three and more syllables. As for the new pattern of truncation that affects
disyllabic nouns, there can be two possible alternative explanations:

1. The rule of truncation of trisyllabic words, characteristic of some Georgian
dialects, which fed into Tbilisi Georgian, finally gets extended to the disyllabic
nouns as well, or

2. the rule of truncation of disyllabic nouns gets copied from the contact lan-
guage Russian which possesses such a rule.

The first of them would have been a sufficient explanation, if the disyllabic Geor-
gian nouns, when being truncated, did not have lengthening. The lengthened
remaining vowel of the truncated vocative clearly reflects the Russian rule, as
Georgian has no long vowels26 and no lengthening in native truncated trisyllabic
nouns (cf. (20b) vs. (2c); (20b) vs. (2d); (20d) vs. (36a); (20d) vs. (36b)):

(36) Mtiulian-Gudamaqrian dialect

a. Male

*eelguj!
Elguj

‘Elguja!’ (expressing familiarity)

b. Male

*elguuj!
Elguj

‘Elguja!’ (expressing familiarity)

Thus, the lengthening of the remaining vowel in disyllabic vocative forms
under truncation cannot be explained via the extension of the native rule for tri-
and other polysyllabic nouns to disyllabic ones.

What remains is to opt for the second alternative, namely, that truncation
of disyllabic vocative forms in Georgian is a replication of the voc truncation
rule from Russian.

The arguments for the new pattern to be a borrowing from outside of the
Kartvelian language family are the following:

– The pattern of truncating the vocative form of disyllabic nouns is not known
in dialect varieties except Tbilisi Georgian;

– It is not known in the sister languages of Georgian;
– The lengthening of the vowel in truncated forms of Georgian is similar to the

lengthening of the remaining vowel in Russian truncating vocatives;27

26 See footnote 2.
27 The fact that, apart from the simple truncation, the lengthening of the vowel (char-

acteristic of the Russian pattern) got also copied, might reflect the frequent code
switching and parallel use of Georgian and Russian, especially in the speech of the
Georgian intelligentsia of the Soviet period.



20 N. Amiridze

– Russian has been the language in intensive contact with Georgian from the
1st half of the XIX century up to 1991. This time frame includes the period
when the truncation of disyllabic nouns has started in Georgian;

– Russian has contributed to several contact phenomena in Georgian [5,32–34],
which makes the language contact scenario worth considering for the new
pattern.

Therefore, proper names can be divided into two main groups with regard to
how they behave in voc truncation:

N1. disyllabic names; and
N2. tri-, quadri-, etc.-syllabic names.

N1 get truncated in voc and have the remaining vowel optionally lengthened,
paralleling the Russian disyllabic names. As no dialect and no sister language of
Georgian has voc truncation in disyllabic names, N1 can be used to argue that
Tbilisi Georgian replicated the rule from Russian.

N2 get truncated in voc but have no lengthening at all. This does not parallel
the rule of truncation and lengthening in Russian tri- and more-syllabic names.
Rather it resembles the situation in several mountainous dialects of Georgian,
where N2 names get truncated in voc without lengthening of any of the remain-
ing vowels.

5.2 Which Type of Borrowing Is It?

As known from the contact linguistics literature, there are two types of struc-
tural borrowing: matter (mat) borrowing, when there is a direct replication of
morphemes and phonological shapes from a source language and pattern (pat)
borrowing, when “only the patterns of the other language are replicated, i.e., the
organization, distribution and mapping of grammatical or semantic meaning,
while the form itself is not borrowed” [40, p. 15] (see also [16,30,31]).28

Usually, a borrowed matter in mat borrowing and a borrowed rule in pat
borrowing will not carry all the functions characteristic of the source. Those that
are taken over might further develop additional characteristics in the recipient
language that are not known in the donor language. There are many factors that
contribute to this, including sociolinguistic and structural factors (the structure
and language internal development of the recipient language).

This particular case of copying a rule of voc truncation from Russian into
Georgian represents a case of pat borrowing. This is because a deletion of a
phonological matter in forms of address in Russian is a rule that gets repli-
cated in the recipient language Georgian. There is no addition of some actual
28 I am following here the terminology of [30,31,40]. Note that different terms have

been used in the contact linguistics literature to describe essentially the same main
distinction between replicating an actual matter and a rule/pattern (e.g., importation
vs. substitution [20]; transfer of elements vs. interference without outright transfer
[54]; global copying vs. partial copying [25], material borrowing vs. loan-translation
[35], diffusion of forms vs. diffusion of patterns [2] among other terms).
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phonological or morphological matter from the model language Russian to the
recipient Georgian.

However, there is a question whether it is a pat borrowing without any mat
or a pat borrowing with some mat. This question arises, as in Georgian disyl-
labic truncated forms the remaining vowel gets optionally lengthened (see, for
instance, (30c) as opposed to (30b)), just as the stressed vowel of the truncated
voc forms does in Russian (see, for instance, (27a) as opposed to (22f)). The
lengthening is optional and by no means obligatory. Still it replicates the rule of
lengthening of the vowel of the truncated voc form, functioning in Russian.

Can the optional lengthening of the vowel in voc truncation in Georgian
be considered as a mat borrowing? The lengthening of a vowel is a replication
of a rule of Russian truncated vocatives and can hardly be considered a mat
borrowing. However, if Georgian truncated disyllabic vocative forms get the
same intonation contour as Russian truncated vocatives do, one could argue
about borrowing prosodic material into Georgian.

According to the chapter on the prosody of address in Russian [28, pp. 161–
174], the lengthened vowel of truncated voc forms are characterized with a
specific rising-falling contour [28, pp. 161–174]. The full address form L’on’a
as a form of address is characterized with a rising-falling contour (37a). After
truncation, it seems that there is a compensatory lengthening to maintain the
intonation, the rising-falling one, and redistribute it on the two morae of the
long vowel o: (37b):

(37) A Russian male name Ljenja as an address form, adopted from [28, p. 162]

a. Non-truncated form; two syllables

L’o.
H

n’a!
L

Ljonja.voc

‘Ljonja!’

b. Truncated form; one syllable with a long vowel consisting of two morae

L’ o: n’ !
HL

Ljonja.voc

‘Ljonja!’

If the contour was adopted for the Georgian truncated vocatives, we could have
argued that such concrete matter as a specific contour has been adopted with
a specific function. And thus, there would be a mat borrowing of a prosodic
contour, in addition to the pat borrowing of truncation.

Up to the present, according to my observations, Georgian truncated voca-
tives do not have a rising-falling contour but only a lengthening of the vowel.
However, this is not sufficient to resolve the issue whether the replication of
the pattern of voc truncation involves the borrowing of some prosodic material
into Georgian or not. Rather resolution will depend on a detailed analysis of the
prosodic structure of disyllabic truncated vocatives in Georgian and has to await
further research.
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6 Conclusion

In modern spoken Georgian, a voc truncation rule for nouns with three and more
syllables has been directly copied from the Northeastern, Eastern, Central, and
Southwestern dialects of Georgian, where the rule does not operate on disyllabic
nouns.

In modern spoken Georgian, a new pattern of voc truncation has emerged
that operates on disyllabic nouns, truncates the final vowel (with an optional
lengthening of the vowel of the remaining syllable) to produce a pragmatically
marked reading.

We could hypothesize that the rule of truncating trisyllabic and quadrisyl-
labic nouns, functioning in Northeastern, Eastern, Central, and Southwestern
Georgian dialects was extended to other types of nouns (like disyllabic nouns)
when it was copied into the standard variety. However, the pattern that operates
on disyllabic nouns in the standard variety bears more resemblance to the voc
truncation rule, operating in Russian (a former contact language for Georgian).

In Russian, the rule of voc truncation operates on proper names and kinship
terms. It affects full vocative forms consisting of two and more syllables. The
final vowel of the full vocative form gets deleted (with an optional lengthening
of the vowel of the stressed syllable). As a result, a marked pragmatic reading is
obtained.

What the modern spoken Georgian truncated vocatives of disyllabic nouns
have in common with the Russian pattern is that in both languages, the remain-
ing vowel gets optionally lengthened. However, it is not characteristic of the
relevant dialects of Georgian, were we to argue for the new pattern to be a
replication from a related dialect, within the Kartvelian language family.

Therefore, the developments in truncating forms in the vocative have been
influenced from two different sources: (i) truncation in the tri- and more syllabic
nouns came from some of the related Georgian dialects and (ii) truncation in
the disyllabic nouns came from Russian. In both cases there is a contact – from
within the language family and from outside of it.

Thus, as the functioning of voc truncation in modern spoken Georgian illus-
trates, the same phenomenon in different sections of nominals (here, disyllabic
vs. other polysyllabic nouns) can be a result of contact with different donors.
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Abstract. This tutorial offers a brief overview of linguistic research into
sign languages. The tutorial’s target audiences are people with some
background in linguistics of spoken languages. For the sake of brevity,
I will only concentrate on some major topics. I will briefly introduce
sign languages, discuss some basics of phonological structure of these
types of languages (including the use of space), discuss some new findings
on the syntax of sign languages, and, finally, will briefly address some
methodological issues. The majority of data will come from German Sign
Language, although data from other sign languages is also included.

Keywords: Sign languages · Phonology · Syntax

1 Introduction

Sign languages are natural languages produced with the hands, arms, torso, head,
and the face. World-wide there are 150 known sign languages with approximately
5.000.000 speakers (Eberhard et al. 2021). However, there may be up to 300 and
400 different sign languages used all over the world (Zeshan 2009).

Sign languages develop naturally when acoustic communication is blocked
over a sufficiently long period of time (Kegl et al. 2014). The main reason for
acoustic communication not being possible is deafness. Thus, most sign languages
emerged as communicative devices for deaf people with most of the world’s sign
languages not being older than 200 to 300 years. This mainly holds true for
western sign languages (note that due to a lack of written records it is often
not possible to estimate the age of a sign language). The reason that most sign
languages are relatively young is that a requirement for a language to emerge
is that a sufficient number of potential language users are involved in social
interaction with each other. The prerequisite for this kind of widespread interac-
tion is the presence of large enough urban agglomerations, which only emerged
with the age of industrialization. During this time, the first schools for the deaf
were established (e.g., 1760 in Paris or 1817 in West Hartford, Connecticut).
Thus, the reason for most (western) sign languages being young languages is
that before industrialization one of the basic ingredients for a language, high-
lighted already by early Structuralist linguistics, was not met: “The existence
of language is only possible within a society” (Baudouin de Courtenay 1904, p.
128) (translation from Adamska-Sa�laciak 1998).
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Besides differences in modalities (visual-gestural versus auditory-vocal) there
are surprisingly few differences between signed and spoken languages. Sign lan-
guages fulfill the same communicative and social functions as spoken languages,
convey information at the same speed as spoken languages (Bellugi and Fischer
1972), are processed in the same brain regions as spoken languages (Emmorey
2002), and both are acquired without instruction, given normal exposure. The
last point deserves some attention as sign languages are often acquired under spe-
cial sociolinguistic circumstances. In most cases, children born deaf have hearing
parents and only around 10% have deaf parents (the exact numbers are subject
to variation depending on the general medical care situation in a given area).
For children born deaf who do not have access to sign language input, the tim-
ing of their first language acquisition is often off-schedule (e.g., Mayberry 1993,
2002). However, being deaf and the use of a sign language, of course, cannot be
equated. Additionally, it is worth mentioning that there is a widely adopted dis-
tinction between the audiological status of being deaf (written in lowercase) and
the self-identification of individuals as members of the Deaf community which is
spelled Deaf (with a capital letter) (Woodward 1972; see also the discussion in
Phillips 1996).

Until the 1960s, sign languages were not regarded as natural human lan-
guages, but as underdeveloped gestural communication systems. This radically
changed with the seminal publication of William Stokoe’s book Sign language
structure in 1960 (Stokoe 1960). Stokoe convincingly showed that individual
signs are not holistic units, but can be segmented into smaller, meaningless
units (see also Stokoe et al. 1965 and already Tervoort 1953).

In the following, I will briefly discuss some main topics from sign language
research. The selection of topics is (by far) not exhaustive and follows the same
order as in the tutorial held at the International Tbilisi Symposium on Logic,
Language, and Computation 2019. In the next section, I will discuss the phono-
logical make-up of manual signs. In Sect. 3, I briefly introduce how space is used
in sign languages. Section 4 is devoted to the discussion of the expression of the
three clausal layers (CP, TP/IP, VP/VoiceP), mainly building on my own work.
In Sect. 5, I discuss some recent methodological issues. Finally, in Section 6 I
conclude.

2 Phonology

For sign languages, the equivalent of spoken language phonology was originally
referred to as ‘chereology’ (derived from the Greek word for hand). However,
as it became clear that the underlying structural make-up of signed and spoken
languages is extremely similar, linguists started to use the same terminology for
both modalities (Bross 2015). The onset of sign language phonology is marked,
as mentioned, by the discovery of the fact that individual signs are composed of
smaller units.

One of the defining features of a natural language is taken to be that they
are created using a limited set of meaningless units which can be combined (in a
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Fig. 1. An example of a minimal pair from German Sign Language. The noun sign
belly and the verb sign have only differ in location.

rule-governed way) to larger units with meaning. This way of creating meaning is
called ‘double articulation’ (Hockett 1960; Martinet 1949). In spoken languages
the building blocks of this process were first thought to be phonemes (Bau-
douin de Courtenay 1881) and later to be distinctive features such as [±voiced]
(Jakobson et al. 1951).

The set of atomic building blocks a language uses can be identified by the
formation of minimal pairs. The English words car and par are an example of a
minimal pair only differing in the place of articulation. While the tongue creates
an obstruction at the velum to produce the /k/ in car, there is an obstruction
at the lips in the case of /p/.

Minimal-pair formation works in a very similar way in sign languages as
uncovered by Stokoe (1960). The following parameters are traditionally distin-
guished (cf. Battison 1978; Stokoe 1960):

– place of articulation (also called location),
– movement direction,
– hand shape, and
– palm orientation.

Let us briefly examine how this works using the first of these parameters. Figure 1
shows two signs from German Sign Language. In both cases, the signs are pro-
duced by a flat hand, i.e., the same hand shape is used, the same tapping move-
ments are performed, and the same palm orientation is used. The only thing
that is different between the two signs is the location at which the sign is pro-
duced. The location itself does not have a meaning (at least not necessarily),
but changing this parameter can lead to a difference in meaning.

In fact, there is not much difference between the basic phonological mech-
anisms between modalities. In both language types, language is produced via
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body movements. The movements produced with the speech organs in the case
of spoken languages generate sound waves perceived with the ears where they
are transformed into electrical signals. In the case of sign languages, the move-
ments produced are perceived as light waves which are transformed into electrical
signals within the retina.

Phonology in spoken languages is not merely a matter of concatenated mate-
rial as there are additional suprasegmental features that play a role. Most promi-
nently, intonation is produced “on top” of the linearly arranged segments. Again,
the same mechanism is found in sign languages. “On top” of the concatenated
manual signs we find non-manual articulation layered. A simple example from
English would be a declarative sentence like Paul drinks beer. This sentence
can be used as a statement or, with an appropriate rising intonation, also as a
question (Gunlogson 2002). The very same is true for sign languages. A simple
example from German Sign Language is given in (1). The sentence in (1a) is a
declarative, while the sentence in (1b) is an interrogative. The only difference
between the examples is that with the interrogative the manual signs are accom-
panied by non-manual markers abbreviated ‘pol’ (for polar interrogative). These
markers consist of raised eyebrows and a slightly forwarded and tilted head.

(1) German Sign Language:
a. paul beer drink

‘Paul drinks a beer.’

b.
pol

paul beer drink
‘Does Paul drink a beer?’

Note that I follow the traditional convention that individual manual signs are
written in capital letters. The starting and end points of non-manuals are indi-
cated by a line and the non-manuals used are specified on top of this line (see
Bross 2019b for a brief overview). Note that there are many more phonological
topics (e.g., iconicity or word formation) which I cannot discuss here for reasons
of space limitations.

3 The Use of Space

Sign languages are by definition spatial languages. While it is easy to refer to a
present referent (e.g., by pointing), absent referents are assigned unique loci (i.e.,
locations) in space. This can be best illustrated by the use of personal pronouns
which are realized by pointing with the index finger in many sign languages.
The first person singular pronoun is realized by the signer pointing to herself,
the second person singular is realized by the signer pointing to the addressee, and
third person is realized by either pointing to a present referent or by pointing to
a location where the referent in question was introduced before. A common way
to gloss this is to write index and indicate the person by an index (thus, index1

means first person and index2 means second person). Let’s look at example (2).
In (2a), Paul is introduced and assigned a locus in space (i.e., some point besides
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the signer). In (2b) this point is re-used and, again, refers to Paul for the rest of
the conversation.

(2) German Sign Language:
a. paul index3 beer buy

‘Paul bought beer.’
b. index3 beer like

‘He likes beer.’

Now, let’s look at verbal agreement. Following the seminal work of Padden (1983)
on American Sign Language, three different classes of verbs are traditionally
distinguished: agreement verbs, spatial verbs, and plain verbs. So far, we have
seen that referents are assigned unique loci in space. Agreement verbs show
overt agreement between the subject and the object, i.e., with the locations that
were assigned to the subject and object. Spatial verbs also show agreement, but
not between a subject and an object, but exhibit locative agreement (e.g., with
verbs like to put). Plain verbs, finally, show no agreement at all. There are,
however, also verbs which do not fit in the classification of verbs into these three
classes. In many sign languages there are, for examples, verbs which only exhibit
object, but no subject agreement. Additionally, there are so called “backward
verbs” which do not exhibit subject-object, but object-subject agreement (see,
for example Meir 1998). Although I do not know whether this holds true for the
majority of sign languages, at least for German Sign Language it was claimed
that the majority of verbs are plain (Pfau and Steinbach 2007, p. 310). In these
cases, word order signals grammatical roles. Speaking of word order, we are now
entering the realm of syntactic structures.

4 Syntax

The vast majority of spoken languages either follow an SVO or an SOV word
order (Dryer 2013). The same is true for sign languages (Napoli and Sutton-
Spence 2014). While American Sign Language, for example, is an SVO language
(Fischer 1975), German Sign Language follows a rather strict SOV order (Keller
1998; Pfau and Glück 2000). Deviations in the basic word order are allowed for
reasons of information-structural foregrounding. In German Sign Language, a
neutral SOV sentence would look like (3a). The example (3b) shows an OSV
structure resulting from a topicalization of the object (with t indicating its orig-
inal position).

(3) a. paul beer buy

b.
top

beeri paul t i buy

As in spoken languages, the topic is overtly moved into a structurally higher
position in (3b). However, it additionally receives a non-manual topic marking
consisting of a brow-raise. Syntactic structures are organized hierarchically. The
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position into which the topic moves is structurally rather high. To be more pre-
cise, it is located in a position in the structurally highest portion of the clause, the
CP-layer (Rizzi 1997). At the same time, the eyebrows are the highest articulator
available. Other CP-related functions are indeed also expressed with the face.
We have already seen that polar interrogatives are encoded by raised eyebrows
spreading over the whole clause. Wh-questions are expressed by brow-lowering
and imperatives are accompanied by furrowed brows (and an increased signing
speed). Thus clause-type marking is also marked via bodily high articulators.
This is not a peculiarity of German Sign Language, but a cross-linguistically
stable pattern in sign languages in general (cf., for example, Zeshan 2004, 1 for
interrogative marking).

The structure below the CP-layer is the TP-layer, where T stands for tense.
As you may have noticed with some examples (e.g., (2)) the English translations
were given in the past tense, although nothing in the glosses indicated this. This
is because the vast majority of sign languages does not have a tense system
(similar to many spoken languages, like Mandarin). It is, of course, nevertheless
possible to talk about time. This is achieved via temporal adverbs which, in
German Sign Language, usually appear in a clause-initial position:

(4) yesterday paul beer buy
‘Paul bought beer yesterday.’

German Sign Language uses a topic time system. This means that once a topic
time is set, the sentences to follow (4) will also be in the past until something
else is specified. However, there is at least one known sign language with a
documented tense system. Zucchi (2009) shows that tense marking is integrated
into the verb signs in a variety of Italian Sign Language. Future tense is expressed
by moving the shoulder forward while signing the verb, present tense is expressed
by a neutral shoulder position, and past tense by putting the shoulder backwards.

As with the CP, the TP does not only host one category, but several. In
German Sign Language (and all other sign languages I am aware of), these
categories all find manual expression. Sometimes, the differences between a CP-
and TP-category are not easy to see. Take the sentence Paul must be at home
early as an example. The sentence can have different meanings. It can mean that
it is necessary for Paul to be at home early given what the speaker knows about
the world and Paul’s behavior, or it can mean that it is necessary for Paul to be
at home early given the power relations present. The reason for this ambiguity
lies in the syntactic position of the modal verb must. The first interpretation is
an instance of what is called epistemic modality. Epistemic modality is located in
the CP-layer (e.g., Wurmbrand 2001). The second interpretation is an instance
of deontic modality and deontic modals are located in the TP-layer. While the
difference between epistemic and deontic modality is not visible on the surface in
English, it is visible in German Sign Language. Examples are given in (5). While
epistemic modality is expressed non-manually by furrowed brows spreading over
the whole clause (often with additional clause-final head nods and closed eyes),
as shown in (5a), the example in (5b) shows that deontic modality is expressed
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manually only by using the sign must.1 Note that there are also sign languages
in which there are also manual modal signs used to express epistemic modality.
In these cases, however, epistemic modality is not expressed manually only, but
by a combination of upper-face non-manuals a manual marker. This situation is
found, for example, in Turkish Sign Language (Karabüklü et al. 2018).

(5) a.
epistemic

paul early at-home Epistemic modality (CP-layer)
‘Paul must be at home early (given what I know)’

b. paul early at-home must Deontic modality (TP-layer)
‘Paul must be at home early (given what someone ordered).’

There is another shell structure below the TP which again hosts several cate-
gories. This structure, called VoiceP, also contains categories which have related
meanings in a higher structure. A case in point is frequentative aspect I, being
a TP-category, and frequentative aspect II, being a VoiceP-category. Again, the
difference between these categories is often not easy to spot. The English sen-
tence Paul often insults Maria can either mean that there are several different
events of insulting (e.g., one on Monday, one on Tuesday, etc.) or that there is
one single event of insulting with several subevents (‘Paul insults Maria many
times in a row’). The first case, called ‘frequentative I’ is an instance of a TP-
category and the second case is an instance of a VoiceP-category. Again, the
TP-category is expressed by using a manual sign. The VoiceP-category, in con-
trast, is expressed by manipulating the movement path of the verb sign. In this
case, the verb sign is reduplicated, as indicated by the plus signs.2 The claim
that VoiceP-internal categories are expressed by manipulating the movement
path of the verb sign is related to the idea that event structure in sign languages
is made visible through the phonological shape of the manual verb sign, called
“Event Visibility Hypothesis” (see, for example, Wilbur 2003, 2008).

(6) a. paul pam maria often insult Frequentative I (TP-layer)
‘Paul often insulted Maria.’

b. paul pam maria insult++ Frequentative II (VoiceP-layer)
‘Paul insulted Maria many times in row.’

The idea that there is a systematic mapping between the structural height of a
category and the way it is expressed in sign languages is called the “Bodily Map-
ping Hypothesis” (Bross 2020b; Bross and Hole 2017). As I have shown by way
of excursion, CP-categories are expressed with facial non-manuals, categories
inside the TP are expressed by manual signs, and VoiceP-internal categories are
expressed by manipulating the movement path of the verb sign. Thus, the hierar-
chical structure of a clause is mapped onto the body in German Sign Language,
and perhaps in all sign languages of the world.
1 A hyphen between two glosses, as in at-home, indicates that we are dealing with

one single manual sign that translates into several English words.
2 The sign pam is an abbreviation for “person agreement marker” (Rathmann 2003)

and is sometimes thought to be used for differential object marking (Bross 2020a).
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5 Methodological Considerations

There is a huge ongoing discussion about the standards of data in spoken lan-
guage linguistics (e.g., Bross 2019a; Featherston 2007; Schütze 2016). This dis-
cussion is also important for sign language linguistics inter alia in relation to the
use of non-manual markers discussed in the previous section. There are basically
three approaches: the collection of judgment data can be informal, it can be car-
ried out in a quasi-experimental way, or one can rely on corpus data. Informal
data collection has been criticized, not only in spoken language linguistics, but
also in the literature on sign languages (Kimmelman, to appear) for the reason
that many previous studies have found conflicting data. One case Kimmelman
(to appear) discusses are the judgments on American Sign Language presented
in Neidle et al. (1998) and Petronio and Lillo-Martin (1997, 1). As the judgments
presented by these authors contradict each other, he concludes that their meth-
ods must be questioned. It is indeed the case that these judgments differ. This,
however, is no wonder. First, the studies mentioned are based on a very small
amount of participants. Second, and more importantly, the grammar of sign lan-
guages is subject to large variations as they are usually used by a small, dispersed
community. Thus, grammar may vary from community to community, from city
to city, and sometimes even from signer to signer. Although I would agree that
sign language linguistics is in need of more quasi-experimental judgment data,
linguists first need to get a glimpse of where there might be (micro-)variation.
Thus, I would argue, that it makes sense to collect informal judgments as a first
step and then to proceed with collecting formal judgments on carefully selected
phenomena.

Just to give one example, consider the long-extraction sentence in (7) includ-
ing the wh-expletive what. I informally surveyed eleven native signers of German
Sign Language living in Southern Germany and asked them whether they would
accept a structure like this.

(7)
wh

paul report what maria buy which computer
‘Which computer did Paul say Maria bought?’

It turned out that some signers accepted the sentence, while other rejected it.
The reason for this disagreement was that the signers came from different cities.
If two linguists would have investigated the phenomenon in two different regions
they would have come to opposing conclusions. But not because their methods
are faulty, but because there is a lot of variation—which is often not random.
Formal testing methods, however, will of course uncover such variation and are
thus much needed.3

Other sign linguists stress the importance of corpus studies. Of course, corpus
data is often natural data and, thus, very interesting for a lot of reasons. However,
3 Note that there is also a lot of variation concerning the exact realization of which in

German Sign Language. Another reason for the variation found with this construc-
tion might also be an influence from spoken German. Thus, with formal testing it is
also be important to collect data on linguistic competence.
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corpus data has its limits, but not only because of its lack of negative evidence
and the problem that it is virtually impossible to find well-balanced minimal
pairs, i.e. two clauses only differing in one grammatical property. One important
issue are non-manual markers: Above I have claimed that epistemic modality is
expressed non-manually with the upper face in German Sign Language, while
deontic modality is expressed manually only. However, a linguist looking at cor-
pus data surely would have come to a different conclusion: sentences including
deontic necessity modals are usually accompanied by non-manual markers of
the upper face to indicate how strict an obligation is thought to be. These non-
manuals, however, represent a facultative signer evaluation (located in the CP-
layer). The non-manuals used for epistemic modality, in contrast, are obligatory.
Additionally, there are cases where one non-manual marker overrides another.
Reason clauses, for example, are marked by the manual sign reason in Ger-
man Sign Language which is obligatorily accompanied by a brow-raise. If the
clause, however, contains an additional evaluation (e.g., Unfortunately, Paul
didn’t come, because he is sick) this brow-raise is sometimes absent as the eval-
uation is also marked non-manually with the eyebrows. This makes corpus stud-
ies sometimes extremely difficult—in this case because we do not know which
non-manual markers are overridden in which cases. Taken together, I strongly
defend the view that informal judgments, quasi-experimental judgments, and
corpus studies form a triplet and should all be used to complement each other.

6 Conclusions

Much more could have been said about sign languages and their structures.
Nevertheless, I hope to have shown that signed and spoken languages share
many common features on all levels of linguistic description. If you want to know
more about sign language linguistics, I recommend the very basic introduction
in Baker et al. (2016), the handbook by Pfau et al. (2012), or the impressive
guide to sign language grammar writing by Quer et al. (2017).
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Abstract. In this paper, we look at the issue of gradability within for-
mal semantics in modern type theories (MTT-semantics). Specifically,
we look at both gradable adjectives and nouns, and show that the rich
typing mechanisms afforded by MTT-semantics can give us a natural
account of gradability. Gradable adjectives take indexed nouns as their
arguments, while gradable nouns are Σ-types where their first projection
is a degree parameter. Furthermore, we provide a standard polymorphic
measure function applicable to all gradable adjectives and nouns. We
also look at multidimensional adjectives and use enumerated types to
capture multidimensionality. We formalize our account in the Coq proof
assistant and check its formal correctness. Lastly, we briefly describe a
recent proposal of model gradability by means of subtype universes in
MTTs that can potentially give a unifying treatment of gradability for
both regular gradable adjectives, but also multidimensional ones.

1 Introduction

The term gradable adjectives refers to the class of adjectives that involve some
kind of grading property/parameter that allows them to be quantified according
to it. For example, in the case of small and large, the grading parameter is size.
Gradable adjectives have comparative and superlative forms and can be further
modified by degree adverbs (e.g. much). Besides gradable adjectives, one also
finds cases of gradable nouns, i.e. cases where the gradable element is not an
adjective, but rather a noun:

(1) John is an enormous idiot/He is a big stamp collector.

In (1), the most natural reading is not one of large physical size, but rather of
the nominal holding to a high degree.
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There are furthermore adjectives that can be quantified across more than one
dimension. For example in the case of tall, there is only one dimension involved,
tallness. This is not the case for adjectives like healthy and sick, which are called
multidimensional. Following [47], two different classes of multidimensional adjec-
tives are distinguished: positive and negative. The idea is that every positive
adjective has a negative counterpart, i.e. its antonym (e.g. healthy and sick).
What is different between the two is the form of quantification over dimensions
in each case. Positive adjectives involve universal quantification over dimensions,
while negative adjectives existential quantification. For example, for someone to
be considered healthy, s/he must be healthy in all dimensions, whereas for some-
one to be considered sick, it suffices to be sick across one dimension only. In order
for this intuition to be borne out more clearly, the exception phrase headed by
except can be used. The interesting bit here is that this phrase is only compati-
ble with universal quantification. As seen below, ‘healthy’ is compatible with an
‘except’ phrase, while ‘sick’ is not:

(2) Dan is healthy except with respect to blood pressure
(3) # Dan is sick except with respect to blood pressure

In this paper, we look at both gradable adjectives/nouns and multidimen-
sional ones from the perspective of formal semantics in modern type theories
(MTT-semantics) [10,35], arguing that MTT-semantics provides us with the
mechanisms to give reasonable formal semantics accounts of these phenomena.
The structure of the paper is as follows: in Sect. 2, we give a brief introduc-
tion to MTT-semantics, concentrating on the features that are mostly relevant
to the analyses in this paper. In Sect. 3, we present our analysis of gradable
and multidimensional adjectives/nouns. In Sect. 4, we formalize our account in
the Coq proof assistant and check its correctness. In Sect. 5, we provide a brief
investigation of an alternative way to deal with gradability by using recent work
in Type Theory on subtype universes. Lastly, in Sect. 6, we conclude and discuss
some future work.

2 Modern Type Theories: A Brief Introductioin

Formal semantics in modern type theories (MTT-semantics) [10,35] has been
proposed as an alternative to Montague Semantics, and various semantic
accounts have been given within this paradigm for a wide range of linguistic
phenomena [8,11,32,35,50]. We use the term Modern Type Theories (MTTs) to
refer to a class of type theories which have dependent types, inductive types and
other powerful and expressive typing constructions. MTTs can be predicative,
such as Martin-Löf’s intensional type theory [39,44], and impredicative, such
as the Unified Theory of dependent Types (UTT) [30]. In this paper, we shall
employ UTT complemented with the coercive subtyping mechanism [31,36].

In this section we provide a brief introduction to MTTs, concentrating mostly
on the features that are most relevant to this paper.
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2.1 Many-Sortedness, Common Nouns as Types and Subtyping

A key difference between MTT-semantics and Montague semantics (MS) lies in
the interpretation of common nouns (CNs). In [42], the underlying logic (Church’s
simple type theory [13]) is ‘single-sorted’ in the sense that there is only one type,
e, of all entities. The other types such as the type of truth values, i.e. t, and the
function types generated from types e and t do not stand for types of entities.
Thus, no fine-grained distinctions between the elements of type e exist, and as
such, all individuals are interpreted using the same type. For example, John and
Mary have the same type in simple type theory, i.e. the type e of individuals. An
MTT, on the other hand, can be regarded as a ‘many-sorted’ logical system in
that it contains many types. In this respect, MTTs can make fine-grained distinc-
tions between individuals and use those different types to interpret subclasses of
individuals. For example, one can have John : Man and Mary : Woman, where
Man and Woman are different types. Another very basic difference between
MS and MTTs is that common nouns in MTTs (CNs) are usually interpreted as
types [45] rather than sets or predicates (i.e., objects of type e → t) as in MS.
The CNs ‘man, human, table’ and ‘book’ are interpreted as types Man, Human,
Table and Book, respectively. Then, individuals are interpreted as being of one
of the types used to interpret CNs.

This many-sortedness has the welcome result that a number of semantically
infelicitous sentences involving category mistakes, which are however syntacti-
cally well-formed, like e.g. ‘he ham sandwich walks’ can be explained easily. This
is because a verb like ‘walks’ will be specified as being of type Animal → Prop,
while the type for ‘ham sandwich’ will be Food or Sandwich:

(4) the Ham sandwich : Food

(5) walk : Human → Prop

The idea that common nouns should be interpreted as types rather than
predicates has been argued in [34] on philosophical grounds as well. There, it is
claimed that the observation found in [20] according to which common nouns,
in contrast to other linguistic categories, have criteria of identity that enable
them to be compared, counted or quantified, has an interesting link with the
constructive notion of set/type: in constructive mathematics, sets (types) are
not constructed only by specifying their objects but they additionally involve an
equality relation. The argument is then that the interpretation of CNs as types
in MTTs is explained and justified to a certain extent. Extensions and further
theoretical advances using the CNs as types approach can be found in [12] and
an extension of the idea that CNs further specify their identity criteria with a
case study on counting with numerical quantifiers under copredication cases is
given in [9].

Interpreting CNs as types rather than predicates has also a significant
methodological implication: compatibility with subtyping. For instance, one may
introduce various subtyping relations by postulating a collection of subtypes
(physical objects, informational objects, eventualities, etc.) of the type Entity
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[2]. It is a well-known fact that if CNs are interpreted as predicates as in tradi-
tional Montagovian settings, introducing such subtyping relations would cause
problems. This is because the contravariance of function types would predict
that given the subtyping relation A ≤ B, B → Prop ≤ A → Prop would be
the case (the opposite relation than the one needed). Substituting A with type
Man and B with type Human, we come to understand why interpreting CNs
as predicates is not a good idea if we want to add a subtyping mechanism.

The subtyping mechanism used in the MTT endorsed in this paper is that of
coercive subtyping [31,36]. Coercive subtyping can be seen as an abbreviation
mechanism: A is a (proper) subtype of B (A ≤ B) if there is a unique implicit
coercion c from type A to type B and, if so, an object a of type A can be used in
any context CB [ ] that expects an object of type B: CB [a] to be legal (well-typed)
and equal to CB [c(a)].

To give an example: assume that both Man and Human are base types. One
may then introduce the following as a basic subtyping relation:

(6) Man ≤ Human

2.2 Σ-types, Π-types, Indexed Types and Universes

Dependent Σ-types. One of the basic features of MTTs is the use of Dependent
Types. A dependent type is a family of types that depend on some values. The
constructor/operator Σ is a generalization of the Cartesian product of two sets
that allows the second set to depend on values of the first. For instance, if Human
is a type and Male : Human → Prop, then the Σ-type Σh : Human. Male(h)
is intuitively the type of humans who are male.

More formally, if A is a type and B is an A-indexed family of types, then
Σ(A,B), or sometimes written as Σx : A.B(x), is a type, consisting of pairs (a, b)
such that a is of type A and b is of type B(a). When B(x) is a constant type
(i.e., always the same type no matter what x is), the Σ-type degenerates into
product type A × B of non-dependent pairs. Σ-types (and product types) are
associated projection operations π1 and π2 so that π1(a, b) = a and π2(a, b) = b,
for every (a, b) of type Σ(A,B) or A × B.

The linguistic relevance of Σ-types can be directly appreciated once we under-
stand that, in its dependent case, Σ-types can be used to interpret linguistic phe-
nomena of central importance, like adjectival modification (see above for inter-
pretation of modified CNs) [45]. For example, handsome Man is interpreted as a
Σ-type (7), the type of handsome men (or more precisely, of those men together
with proofs that they are handsome):

(7) Σm : Man handsome(m)

where handsome(m) is a family of propositions/types that depends on the man
m.

Dependent Π-Types. The other basic constructor for dependent types is Π. Π-
types can be seen as a generalization of the normal function space where the
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second type is a family of types that might be dependent on the values of the first.
A Π-type degenerates to the function type A → B in the non-dependent case.
In more detail, when A is a type and P is a predicate over A, Πx : A.P (x) is the
dependent function type that, in the embedded logic, stands for the universally
quantified proposition ∀x : A.P (x). For example, the following sentence (8) is
interpreted as (9):

(8) Every man walks.
(9) Πx : Man.walk(x)

Π-types are very useful in formulating the typings for a number of linguistic
categories like VP adverbs or quantifiers. The idea is that adverbs and quantifiers
range over the universe of (the interpretations of) CNs and as such we need a way
to represent this fact. In this case, Π-types can be used, universally quantifying
over the universe CN. (10) is the type for VP adverbs while (11) is the type for
quantifiers:1

(10)ΠA : CN. (A → Prop) → (A → Prop)
(11)ΠA : CN. (A → Prop) → Prop

Further explanations of the above types are given after we have introduced the
concept of type universe below.

Indexed Types. An indexed type is a type of dependent type. They are families
of types that are indexed by a parameter whose type is usually a simple one.
Indexed types here will be used in the main analysis of gradable adjectives, as
we will assume that gradable adjectives do not take simple CN types as their
arguments but rather CN types indexed with a parameter. For example, we can
think of the type representing humans along with their heights. We can do this
using indexed types by considering the family of types Human : Height → Type
indexed by heights: Human(n) is the type of humans of height n.

Type Universes. An advanced feature of MTTs, which will be shown to be very
relevant in interpreting NL semantics in general as well as adjectival modification
specifically, is that of universes. Informally, a universe is a collection of (the
names of) types put into a type [40].2 For example, one may want to collect all
the names of the types that interpret common nouns into a universe CN : Type.

1 The type for adverbs was proposed for the first time in [33].
2 There is quite a long discussion on how these universes should be like. In particular,

the debate is largely concentrated on whether a universe should be predicative or
impredicative. A strongly impredicative universe U of all types (with U : U and Π-
types) is shown to be paradoxical [19,21] and as such logically inconsistent. The
theory UTT we use here has only one impredicative universe Prop (representing
the world of logical formulas) together with an infinitely many predicative universes
which as such avoids Girard’s paradox (see [30] for more details).
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The idea is that for each type A that interprets a common noun, there is a name
A in CN. For example,

Man : CN and TCN(Man) = Man.

In practice, we do not distinguish a type in CN and its name by omitting the
overlines and the operator TCN by simply writing, for instance, Man : CN.

Having introduced the universe CN, it is now possible to explain (10) and
(11). The type in (11) says that for all elements A of type CN, we get a function
type (A → Prop) → Prop. The idea is that the element A is now the type
used. To illustrate how this works let us imagine the case of quantifier some
which has the typing in (11). The first argument we need, has to be of type CN.
Thus some human is of type (Human → Prop) → Prop given that the A here
is Human : CN (A becomes the type Human in (Human → Prop) → Prop).
Then given a predicate like walk : Human → Prop, we can apply some human
to get (some Human)(walk) : Prop. Similar considerations apply for (10).

3 Gradability in MTT-Semantics

In this section, we present an MTT account of a number of aspects of gradable
and multidimensional adjectives.

3.1 Gradable Adjectives

A standard assumption in the literature is that gradable adjectives involve some
kind of measurement. Usually, this measurement is assumed to be a degree argu-
ment, whose presence or not, is then considered to be the main difference between
gradable and non-gradable adjectives. This extra argument has been proposed
to be formally encoded in the adjective’s typing as in [3,23,49], or not as in
[25,29,41,48].

The account we are going to pursue here is one where the arguments of
gradable adjectives are not of simple types, but rather types indexed by degree
parameters (dependent types). In MTT-semantics, the universe CN of common
nouns are refined into subuniverses of CNs each of which is indexed by a degree.
For example, the collection represented by the common noun human may be
refined into the family of types indexed by heights: Human : Height → Type
and Human(n) is the type of humans of height n.3 We can then define a function
height that returns the value of the height-index of a human; i.e., height(i, h) is
the height of human h:

(12) height : Πi : Height. Human(i) → Height

(13) height(i, h) = i.

3 Informally, this family of types of humans are more refined than the type Human
of all humans. Formally, we’d have HHuman(i) ≤ Human.
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With these assumptions in line, we may consider the semantic interpretation
of tall to mean that the height of the human concerned is larger than some given
standard n:

(14) tall : Πi : Height. Human(i) → Prop

(15) tall(i, h) = height(i, h) ≥ n

The above definition for tall specifies that for any i of type Height, tall takes a
human argument indexed with i and returns the proposition saying that i, the
height of the human, is greater than or equal to a natural number n, which stands
for the contextually restricted parameter – humans taller than n are regarded
as tall. In a similar fashion, we can define the comparatives, where the RHS of
(17) is the same as i > j:

(16) taller than : Πi, j : Height. Human(i) → Human(j) → Prop

(17) taller than(i, j, h1, h2) = height(i, h1) > height(j, h2).

From this definition, we can easily prove that, for example, if height(i, h1) ≥
height(j, h2) and tall(j, h2), then tall(i, h1).

The natural question to ask at this point is the following: where does this
contextual parameter come from? In what we have provided so far, it is just a
number that does not depend on anything. A better and more intuitive way to
refer to this contextual parameter is to make its value dependent on the noun, the
adjective, and sometimes even some other contextual information. These latter
three parameters in MTT-semantics are represented as a type, a predicate and
a context (in type theory), respectively. In order to fornalize this idea, we use
polymorphism and type dependency. First, we introduce the universe of (totally
ordered) degree types, Degree. As examples of degrees, one would find in Degree
types such as Height, Weight and Width, among many others. The inference
rules of CNG are given below, the second of which says that CNg(D) is a subtype
of CN and the third is an example of an introduction rule for CNg:

D : Degree

CNg(D) : Type

D : Degree A : CNg(D)
A : CN

i : Height

Human(i) : CNg(Height)

We can now introduce the polymorphic standard, STND. First, for any common
noun A, let ADJ(A) be the type of syntactic forms of adjectives whose semantic
domain is A. For instance, TALL : ADJ(Human), where TALL strands for the
syntax of tall. Then, STND takes a degree D, a D-indexed common noun A
and (the syntax of) an adjective whose domain is A, and returns the relevant
standard for the adjective:

(18) STND : ΠD : Degree. ΠA : CNG(D). ADJ(A) → D

The next thing to consider in giving a more proper definition for tall, is
a polymorphic type that is not restricted to Human arguments with Height
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parameters only. Tall can be used with types of non-humans: for example one can
talk about a tall building or a tall cat. On the other hand, uses like tall democracy
or tall mind do not seem to be felicitous, at least without some sort of contextual
coercion. Using either Human(i) as argument for tall or a polymorphic argument
based over the universe CN will undergenerate and overgenerate respectively. One
can try to use a subuniverse of CN, CNPHY that basically includes all physical
objects (types Phy and its subtypes). In this respect, we can introduce the
universe CNPHY with the following introduction rule:

A : CN, A < Phy

A : CNPHY

With this rule and assuming that every physical object has a height, we are now
in a position to upgrade the definition for tall (we assume that the argument A
is implicit in the definition):

(19) tall : ΠA : CNPHY .Πi : Height.A(i) → Prop

(20) tall(i, h) = height(i, h) ≥ STND(Height,Human, TALL).

Note that indexing on the noun by means of a degree gives us for free the
fact that we are not talking about tallness in general but tallness with respect
to the relevant class (represented by the type Human in the above example). In
order to understand its importance, this indexing seems to be doing the work
done by using the dot combinator of [26] to compose comparison classes with
adjectives in the work of [24]. To give an example, let us say that one needs
to compose tall with its comparison class, say basketball player (represented as
BB). The typings we have are as follows: BB : e → t and tall : e → d. However,
we need functional application to return: BB(tall) : e → d. As obvious, normal
functional application will not work here. Thus, the dot combinator is used to
remedy this. This additional and arguably not well-motivated extra machinery
is not needed in our case. Furthermore, the polymorphic STND function can
be seen as a more straightforward interpretation of Kennedy’s context sensitive
function from measure functions (adjectives basically) to degrees [24]. Lastly,
one may consider standards that are dependent on other contextual information
as well: for example, whether something is regarded as an expensive car might
depend on where it is considered. In that case, the STND function may take an
additional parameter of locations that would take this into account.

Remark 1 (CN and Its Subuniverses). Type universes help us in MTT-semantic
formalizations. For example, we have used the universe CN as the universe that
makes polymorphism over all common nouns possible and allows adequate typing
for phenomena like VP-adverbs and subsective adjectives to be provided:

(21) V PADV : ΠA : CN. (A → Prop) → (A → Prop)
(22) ADJSUBS : ΠA : CN. A → Prop

Furthermore, we have used the universe CNPHY in our analysis of ‘tall’, in
order to restrict the domain of polymorphism to the subuniverse that includes



46 S. Chatzikyriakidis and Z. Luo

all physical objects and their subtypes. Other similar useful subuniverses can
be constructed in order to help us in our semantic representations. Consider
for example the subsective adjective ‘skilful’. According to what we have been
saying so far, it is of the type given in (22). Digging a bit deeper, one can see that
‘skilful’ is not really compatible with arguments that are not of type Human,
or at least of type Animal. For example, one cannot talk about a skilful carpet
or a skilful democracy. Thus, one could update the definition for ‘skilful’ taking
these issues into consideration. On the assumption that ‘skilful’ is only relevant
for human arguments, polymorphism is on the subuniverse CNH , i.e. the universe
including types Human and its subtypes:

(23) skilful : ΠA : CNH . A → Prop

An important question is, of course, how can we decide what the relevant
universe is in each case? Well, one way to do it is by linguistic investigation
as typically done in formal linguistics, i.e. getting judgments of native speakers
that will help us decide the elements of the universe to be formed. Another
way to do that is to use existing lexical-semantics resources that might contain
such information. For example, in [7], the authors experiment with JeuxdeMots
[27], a rich lexical-semantic network constructed using GWAPs [1], in order to
extract information relevant for multi-typed systems, e.g. common noun types,
subtyping relations, typings for predicates etc. We believe that such connections
should be explored in future work combining lexical-semantic information drawn
from linguistic resources with rich formal semantics formalisms like the one we
are describing in this paper.

The other question one need to answer is whether such subuniverses are
formally coherent in the sense that their introduction is logically okay. One has
to be careful when constructing such universes. Some universes can be formally
paradoxical even though they may seem justified from a linguistic perspective.4

Thus, a better way to put what we have been saying is the following: we construct
meaningful universes based either on linguistic intuitions and/or information
from lexical/semantic networks, but only when we can formally justify it, i.e.
to prove meta-theoretically that the incorporation of the new universe into the
original type theory is OK (e.g., logically consistent, among other properties).
The universes such as CNPHY and CNH are what we call subtype universes
studied recently by Maclean and the second author [37], see Sect. 5. ��

3.2 Gradable Nouns

As already discussed in the introduction, gradable nouns concern gradability
cases where the relevant gradable element is not an adjective, but rather a noun,
as (24) illustrates.

(24) John is an enormous idiot./He is a big stamp collector.

4 For example, the type theory studied by Martin-Löf in [38] has a type U of all types
(and hence, U : U) and has been proven to be logically inconsistent [19,21].
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Indexed types, as already mentioned, are a type of dependent types, i.e. families
of types indexed by a parameter whose type is usually a simple one. We have
used indexed types so far in our treatment of gradable adjectives. The question is
whether we can extend the usage of indexed types to gradable nouns as well. We
will argue that this is indeed possible. What we want to propose here is that the
distinction between nouns and adjectives is still clear: adjectives are taken to be
predicates, nouns are taken to be types. At the same time, however, we assume
that gradable nouns like idiot and gradable adjectives like tall both involve a
degree parameter, albeit an abstract one in the former case. A natural way to
capture this idea, i.e. abstract nouns being types but still involving a degree
parameter, is to use Σ-types and assume that the first projection is actually the
abstract parameter. To do this, we consider the type family IHuman : Idiocy →
Type indexed by idiocy degrees of type Idiocy : Degree, where Idiocy is a type
whose objects form a total order and can be compared to each other by, for
example, a ≥-relation. Then, idiot can be represented by means of (25):

(25) Idiot = Σi : Idiocy.IHuman(i) × (i ≥ STND(Idiocy, Human, IDIOTIC))

An idiot is thus a triple (i, h, p) where h is a human whose idiocy degree i is
larger than or equal to the standard of being an idiot. Note that this account
has not only similarities with the ideas proposed in [14] but also brings out a
connection with gradable adjectives in the sense that both gradable adjectives
and gradable nouns involve a degree parameter. However, these two are clearly
different in terms of their formal status, adjectives being predicates while nouns
types.

Let us now consider enormous idiot. The interpretation we want to get in this
case is one where someone is an idiot to a very high degree. This means that this
degree must be (much) higher than the degree of idiocy needed for someone to be
considered an idiot (the standard STND(Idiocy,Human, IDIOTIC) in (25)).
In order to capture that, we first propose that enormous can be interpreted as
having the following type, where PHYD : CNg(D) is the type of physical objects
indexed by D:

(26) enormous : ΠD : Degree ΠA : D → CNg(D) Πd : D. (A(D) → Prop)

Then we propose the following definition for ‘enormous’, for D : Degree,
A : D → CNg(D), d : D, and a : A(D):

(27) Enormous(D)(A)(d)(a) = d ≥ STND(D,PHYD, ENORMOUS)

We are now ready to interpret enormous idiot (D and A arguments are implicit):

(28) Enormous Idiot = Σh : Idiot. enormous((π1(h), π2(π1(h)))
where STND(D,PHYD, ENORMOUS) ≥ STND(Idiocy,Human, IDIOTIC)

Enormous idiot is thus a pair, where the first projection consists of a proof of
being an idiot h (Idiot itself also a Σ-type, see (25)) and the second projection
requires that the standard of idiocy associated with the first projection of the
second projection of h is greater than the standard for enormous.
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3.3 Multidimensional Adjectives

Multidimensional adjectives are adjectives that can be quantified across different
dimensions. Adjectives like sick and healthy fall into this category. Following [47],
two different classes of multidimensional adjectives are distinguished: positive
and negative. The idea is that every positive adjective has a negative counterpart,
i.e. its antonym (e.g. healthy and sick). What is different between the two is the
form of quantification over dimensions in each case. Positive adjectives involve
universal quantification over dimensions, while negative adjectives existential
quantification. For example, for someone to be considered healthy, s/he must be
healthy in all dimensions, whereas sick, it suffices to be sick across one dimension
only. In order for this intuition to be borne out more clearly, the exception
phrase except can be used. The interesting bit here is that this phrase is only
compatible with universal quantification. As seen below, ‘healthy’ is compatible
with ‘except’, but ‘sick’ is not:

(29) Dan is healthy except with respect to blood pressure
(30) # Dan is sick except with respect to blood pressure

This intuition can be implemented in an MTT setting using an inductive type
for multiple dimensions. Consider an adjective like healthy. In order for someone
to be considered healthy, one must be able to universally quantify over a number
of “health” dimensions: cholesterol, blood pressure etc. To formalize this, one can
introduce the inductive type Health of type Degree as follows:5

(31) Health : Degree = heart | blood pressure | cholesterol

We assume that the adjective healthy is of the following type (we use Human
as a simple type rather than a type-valued function as used earlier):

(32) healthy : Health → Human → Prop

We can now use this parameter as a primitive to define Healthy and Sick as
follows:

(33) Healthy = λx : Human.∀h : Health. healthy(h, x)
(34) Sick = λx : Human.¬(∀h : Health. healthy(h, x))

Note that, for multidimensional adjectives, each dimension may be gradable.
For example, when we say that a healthy person is a person healthy in all dimen-
sions, it basically means that each dimension surpasses a standard of healthiness.
Take the dimension ‘blood pressure’ as an example: a child x : Child ≤ Human
is healthy as far as blood pressure is concerned may mean that the blood pres-
sure of x is less than some threshold with respect to children. (See Sect. 5 for
formal details.)
5 The inductive type Health is a finite type (also called an enumeration type), some-

times written as {heart, blood pressure, cholesterol}.
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Remark 2. With respect to multidimensional adjectives, there are a number of
complications that need to be addressed. For example, the nature of the quan-
tifier associated with positive adjectives does not seem to always be the univer-
sal quantifier. Sassoon and Fadlon [46] define quantificational multidimensional
adjectives in the following sense:

Quantificational adjectives like optimistic often involve counting of dimen-
sions. As a default, entities fall under them iff they are classified under
sufficiently many (e.g., some, most or all) dimensions.

Of course, this is not a problem in itself. One can modify the account w.r.t
different adjectives as involving different quantificational force:

(35) Healthy = λx : Human. [all,some,most]h : Health.healthy(h, x)

The choice of quantifier can be context dependent. One can assume that the
quantifier quantifies over relevant dimensions in specific contexts. The defini-
tion of Healthy can be overloaded, picking the relevant dimensions in each case
(relevant means available in that context). This is similar to the overloading
technique as proposed by the second author to deal with homonymy [33].

��

3.4 Multidimensional Nouns

A further interesting discussion w.r.t multidimensionality concerns multidimen-
sional nouns. For example, a noun like ‘bird’, at least according to theories
like Prototype and Exemplar theories,6 is argued to involve a rich couple of
dimensions, i.e. in order for something to count as a bird, a couple of different
dimensions (for example, dimensions like winged, small, can breed, etc.) have
to be taken into consideration. Then, the idea is that the conceptual structure
of a noun like ‘bird’ will involve an ideal value for each dimension. A similar-
ity measure is mapping entities to degrees, representing how far from the ideal
dimensions of the prototype the values for the respective entities are. This is
represented as a weighted sum. The important thing, skipping formal details, is
summarized in the following passage:

The distances of x from the prototypical values in the different bird dimen-
sions integrate into a unique degree in the given noun by means of averaging
operations, like weighted-sums... [47].

The above passage argues that dimensions integrate (another way of putting
it is collapse) into a unique degree, and, thus, are not accessible for quantification
as it is the case with multidimensional adjectives. Viewing common nouns as
types seems to be compatible with this claim. The idea is as follows: in order for
an object to be of a CN type, the standard of membership w.r.t the weighted sum
of its similarity degrees to the ideal values in the dimensions of the noun has to
be exceeded.7 Actually, [46] revises later on her view, and talks about weighted
6 See [47] for references to the relevant literature.
7 See [43] for more details on this approach.
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products in the case of these type of nouns. Somewhere in the middle between
this two types of multidimensionality, i.e. multidimensional adjectives like healthy
and multidimensional nouns like bird, we find social nouns like linguist, artist.
These seem to behave like multidimensional adjectives, in that their dimensions
seem to be accessible for quantification as witness the example below:

(36) He is an artist in many respects.

Such cases are then argued to represent intermediate cases, where the dimen-
sions are integrated into a single degree, albeit the relevant operation is one of
weighted sum and not product. The argument is that these dimensions are made
easier available to quantification in these cases. This might then mean that the
types become more elaborate in these cases. Consider the case for artist, and con-
sider the inductive type for all its dimensions (we note them here as a1, a2, a3

pending a more serious discussion of what these dimensions really are):

(37) Inductive Art : D = a1 | a2 | a3

Now, one can think that in cases where social nouns make their dimensions
accessible, what happens is that some sort of quantification is at play in the form
of a Σ type, where the first projection is just a type Human, while the second
projection specifies that all dimensions of artistry hold of this human above the
relevant standard. Our definition for artist is given below:8

(38) artist = Σh : Human.∀a : Art.DIMCN (h, a)

Notice, that the above is still a type and not a predicate. One can think
that the creation of such types should be in general available, as even non-social
nouns, e.g. natural-kind nouns like duck, can be sometimes, context allowing,
used in a way that seems to make their dimensions available. For example, one
can imagine a context where the following is true:

(39) My dog is a cat in most respects.

Thus, it seems that the operation to turn simple types into Σ types that
make their dimensions available, is a more general one, and should be restricted
w.r.t context and general world-knowledge considerations.

There are far more issues to consider when one looks at multidimensional
adjectives (and nouns). However, we cannot go into detail into all these issues
here. This topic deserves a separate paper in its own right. We direct the inter-
ested reader to [47] and [46] for literature review and a detailed exposition of
the complexity of the phenomenon in question.
8 With DIMCN : ΠD : Degree.Human → D → Prop.)
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4 Coq Implementation

In this section, we present a Coq implementation for the different issues we have
been discussing in this paper. But first things first. What is Coq? Simplifying
things a bit, the main idea behind Coq can be roughly summarized as follows:
you use Coq in order to see whether propositions based on statements previously
pre-defined or user defined (definitions, parameters, variables) can be proven or
not. Coq is a dependently typed proof assistant implementing the calculus of
Inductive Constructions (CiC, see [18]). This means that the language used for
expressing these various propositions is an MTT. This is a good start, at least
for people using MTTs for NL semantics. Coq “speaks” so to say the language
we use to interpret linguistic semantics. Given that Coq is in effect a reasoning
engine, there are at least ways that can be used in studying linguistic semantics,
to an extent overlapping with each other: a) as a formal checker for the semantic
validity of proposed accounts in NL semantics and b) Natural Language Inference
(NLI), i.e. reasoning with NL.

Remark 3 (interim note on installation). Coq can be installed easily for all plat-
forms by visiting the system’s website.9 You can also get it using Macports,
Homebrew or Nix. For mac and linux users, it is recommended to use Proof
General,10 a Coq interface for emacs that provides support for several proof
assistants. ��
Remark 4 (the type system implemented in Coq). The main difference between
the type system that Coq implements [18] and the MTT we have been using so
far (the type theory UTT [30]) is the use of coinductive types in Coq. Coinductive
types are not used in any way in what we have been presenting so far, neither
used in the Coq implementations. There are other minor differences between the
two systems, but these are out of the scope of this paper, and play no important
role in understanding the discussion in this section. ��

Let us start with the formalization of gradable adjectives. We formulate the
Degree universe Tarski-style in Coq:

(* Degree is type of names of degrees
d : Degree corresponds to type D(d) *)
(* So, Degree is a Tarski universe! *)
(* Here is an example with three degrees. *)
Require Import Omega.
Inductive Degree: Set:= HEIGHT | AGE | IDIOCY.
Definition D (d: Degree):= nat.
Definition Height := D(HEIGHT).
Definition Age:= D(AGE).
Definition Idiocy:= D(IDIOCY).

9 http://coq.inria.fr/download.
10 https://proofgeneral.github.io.

http://coq.inria.fr/download
https://proofgeneral.github.io
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The code comments are enough to explain what is going on here: Degree is the
type of names of degrees and d : Degree corresponds to type D(d). The next
step is to formalize the universe CNg, and then the context dependent standard,
i.e. STND function:

(* Universe CN_G of indexed CNs *)

Definition CN_G (_:Degree) := Set.

Parameter STND: forall d:Degree, forall A: CN_G(d), ADJ d A -> D(d).

Note that, in Coq, forall stands for Π. With the previous parameter and
definitions, tall can be defined:

Definition tall (h:Human):= ge (height h) (STND HEIGHT Human TALL).

With this at hand, one can define taller ::

Definition taller_than (h1:Human) (h2:Human):= gt (height h2)
(height h1).

The next part involves formalizing gradable nouns, more specifically pro-
viding the type for idiot and the definitions for enormous and enormous idiot.
The definitions follow closely the ones proposed in the paper. Enormous idiot is
expressed as a Dependent Record Type:11

(**Definition for Idiot**)
Definition Idiot:= sigT(fun x: Idiocy=> prod (IHuman x)
(ge x (STND IDIOCY Human IDIOTIC))).
Definition enormous (d:Degree)(A:CN_G(d))(d1: D d) :=

fun P: A => ge (d1) (STND d (PHY(d))(ENORMOUS d)).
Record enormousidiot: Set:= mkeidiot

{h:> Idiot; EI: enormous IDIOCY
(IHuman(projT1(h)))(projT1(h))(projT1(projT2(h)))
/\ ge (STND IDIOCY (PHY(IDIOCY))(ENORMOUS IDIOCY))
(STND IDIOCY Human IDIOTIC)}.

We continue with multidimensional adjectives. What we want to do in this
case is implement the main idea we have been discussing in Sect. 3.3, namely the
use of enumerated types in order to implement the many-dimensions aspect of
multidimensional adjectives. Taking healthy as our example, we define the enu-
merated type Health that includes various health dimensions and then define
adjectives sick and healthy, as involving universal quantification over the dimen-
sions in healthy, and existential quantification in sick :

Definition Degree:= Set.

Inductive Health: Degree:= Heart|Blood|Cholesterol.

Parameter Healthy: Health->Human->Prop.

Definition sick:= fun y: Human => ~ (forall x: Health, Healthy x y).

Definition healthy:= fun y: Human => forall x: Health, Healthy x y.

11 Dependent Record Types in Coq are just syntactic sugar for Σ-types.
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This suffices to give us the basic inferences with respect to multidimensional
adjectives. For example one can prove that if John is healthy then he is healthy
with respect to cholesterol, blood pressure and heart condition, if John is sick
it suffices that he is not healthy across one dimension etc. These theorems,
a number of other similarly relevant ones, as well as the formalization of the
multidimensional noun artist, can be found in the Appendix A.2.

5 Modelling Gradability with Subtype Universes

Gradable adjectives and the related multidimensional cases provide challenging
examples for MTT-semantics. This has led to further studies to develop type-
theoretic mechanisms to formally deal with such phenomena. Recently, Maclean
and the second author [37] have developed subtype universes for MTTs, which
have interesting applications to programming and NL semantics. For the latter,
they have pointed out that, employing subtype universes, one can obtain a nice
semantics for gradable adjectives. We give a brief description here.

A subtype universe is a type that represents a collection of subtypes: for any
type H, the universe U(H) represents the collection of all subtypes of H. Such
subtype universes can be specified formally by the following formation rule (UF )
and introduction rule (UI), where A ≤ H is the shorthand for ‘A ≤c H for some
coercion c’ in the framework of coercive subtyping [36]:

(UF )
Γ � H : Type

Γ � U(H) : Type
(UI)

Γ � A ≤ H : Type

Γ � A : U(H)

Such type universes can be quantified over to form other propositions. For exam-
ple, the proposition ∀X : U(H).P (X) says that P holds for all subtypes of H.
This, among other things, gives a nice treatment of bounded quantification of
the form ∀A ≤ H. P (A) as proposed by Cardelli and Wegner [6], whilst avoiding
the type checking issues traditionally associated with it. Also, Maclean and Luo
have, for the first time, proved that extending MTTs with subtype universes
preserves logical consistency [37], which is indispensable for a type theory to be
used as a foundational semantic language.

Gradable adjectives such as ‘tall’ and ‘healthy’ can be modelled in MTT-
semantics with the help of subtype universes. For example, let T be a type
universe whose objects are base types H such as Human and Building for which
the property height : H → Prop makes sense. Then, the type of tall can be given
by means of subtype universes as in (40), which can be rewritten as (41) by means
of bounded quantification as a notational abbreviation. So, tall is a predicate on
subtypes of the base types. For instance, if Human : T and socrates : Man ≤
Human, then tall(Human,Man, socrates) is a proposition. Given a threshold
function ξ : ΠH : T.(U(H) → Nat), one may define tall as tall(H,A, x) =
height(x) ≥ ξ(H,A).

(40) tall : ΠH : TΠA : U(H). (A → Prop)
(41) tall : ΠH : TΠA ≤ H. (A → Prop)
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Note that, in modelling gradable adjectives as above, we have made use of the
fact that applicability of gradable adjectives respects the usual subtyping rela-
tions (for example, if ‘tall’ can be applied to a type, it can be applied to any of
its subtypes as well).

Multidimensional adjectives such as ‘healthy’ can also be modelled by means
of subtype universes. For example, ‘healthy’ may be given the type (42) which
can be rewritten as (43) in bounded quantification.

(42) Healthy : ΠA : U(Human). (A → Prop)
(43) Healthy : ΠA ≤ Human. (A → Prop)

With healthy thresholds ξi : ΠA ≤ Human.Nat with indexes i such as BP (for
blood pressure), we have, for A ≤ Human, Healthy(A, x) =

∧
i χi(A, x), where

χi’s are the corresponding propositions: for instance, χBP (A, x) = BP (x) ≤
ξBP (A), where A is a subtype of Human examples of which include, for example,
Boy and Woman.

Remark 5. As briefly described above, the approach to modelling gradability by
means of subtype universes [37] results in simple semantic constructions and it
is attractive and promising for modelling other linguistic features as well. It is
worth remarking that most of the type constructions in the account in Sect. 3 are
subtype universes to some extent. For example, CNPHY is a subtype universe of
those subtypes of Phy which are in CN as well. An in-depth comparative study
would be interesting and may require further work. ��

6 Conclusions and Future Work

In this paper, we have shown the use of MTT-semantics in the study of gradabil-
ity. More specifically, we have shown that the rich typing mechanisms afforded
by MTT-semantics can provide us with natural interpretations for both grad-
able and multidimensional adjectives/nouns. We have implemented the proposed
accounts in the Coq proof-assistant and have checked their correctness. We
have also briefly sketched an approach to modelling gradability by means of
the recently studied notion of subtype universes. As mentioned, a comparative
study of the two approaches to gradability is called for and left as future work.

One other issue that we have not looked at here and can be part of our
future work is vagueness. In plain words, vagueness makes deciding what counts
for something to be an X, where X is a gradable predicate (usually an adjective),
difficult. There are three main problems associated with vagueness, the first one
already mentioned and addressed in this paper: a) context dependency, b) the
existence of borderline cases and c) the fact that vague adjectives (and predicates
in general) give rise to the sorites Paradox. In the way our account stands, we
cannot capture vagueness. We believe that this kind of problem needs to involve
some kind of probabilistic reasoning. Indeed, a couple of researchers have pointed
this out and have produced a body of research to this direction [4,5,22,28].
At the moment, the authors do not know of any successful work in combining
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probability with dependent types and some new idea would be needed in order
to study probabilistic type theories.12

A Coq Code

A.1 Gradable Adjectives

(* Degree is type of names of degrees --*)

(*d: Degree corresponds to type D(d) *)

(* So, Degree is a Tarski universe! *)

(* Here is an example with three degrees. *)

Require Import Omega.

Inductive Degree: Set:= HEIGHT | AGE | IDIOCY |

Definition D (d: Degree):= nat.

Definition Height:= D(HEIGHT).

Definition Age:= D(AGE).

Definition Idiocy:= D(IDIOCY).

(* Universe CN_G of indexed CNs *)

Definition CN_G (_:Degree) := Set.

Parameter Human: CN_G(HEIGHT).

Parameter John Mary Kim : Human.

Parameter height: Human->Height.

(** Type of physical objects indexed with a degree**)

Parameter PHY : forall d: Degree, CN_G(d).

(* ADJ(D,A) of syntax of adjectives whose domain is A : CN_G(d) *)

Parameter ADJ: forall d:Degree, CN_G(d)->Set.

Parameter TALL SHORT: ADJ HEIGHT Human.

Parameter IDIOTIC: ADJ IDIOCY Human.

Parameter ENORMOUS: forall d: Degree, ADJ d (PHY(d)).

(* STND *)

Parameter STND: forall d:Degree, forall A:CN_G(d), ADJ d A -> D(d).

(* semantics of tall, taller_than *)

Definition tall (h:Human):= ge (height h) (STND HEIGHT Human TALL).

Definition taller_than (h1:Human) (h2:Human) := gt (height h2) (height h1).

Theorem TALLER:

taller_than Mary John /\ height Mary =

170 -> gt (height John) 170.

cbv. intro. omega. Qed.

Theorem trans:

taller_than Mary John /\ taller_than Kim Mary ->

taller_than Kim John.

cbv. intro. omega. Qed.

12 The work on probability in TTR (see, for example, [17].) studies probability in a set-
theoretical system, because TTR [15,16] is not a type theory, as the term is usually
understood, but rather a set-theoretic notational system.
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(**Definition for Idiot**)

Parameter IHuman : Idiocy -> CN_G(IDIOCY).

Definition Idiot:=

sigT(fun x: Idiocy=> (sigT (fun y: (IHuman x)

=> (ge x (STND IDIOCY Human IDIOTIC))))).

Definition enormous (d:Degree)(A:CN_G(d))(d1: D d)

:= fun P: A => ge (d1) (STND d (PHY(d))(ENORMOUS d)).

Record enormousidiot: Set:= mkeidiot

{h1:> Idiot; EI1: enormous IDIOCY

(IHuman(projT1(h1)))(projT1(h1))(projT1(projT2(h1)))

/\ ge (STND IDIOCY (PHY(IDIOCY))(ENORMOUS IDIOCY))(STND IDIOCY Human IDIOTIC) }.

(*From enormous idiot it follows that there exists an idiot such

that their standard of idiocy is higher or equal to

the standard for idiotic humans*)

Theorem ENORMOUS1:

enormousidiot -> exists H: Idiot,

projT1(H) >= STND IDIOCY (PHY IDIOCY) (ENORMOUS IDIOCY).

cbv. firstorder. Qed.

(*From enormous idiot it follows that there exists an idiot such

that their standard of idiocy is higher or equal to both

the standard for enormous idiots and the standard for idiotic

humans*)

Theorem ENORMOUS2:

enormousidiot -> exists H: Idiot,

projT1(H) >= STND IDIOCY (PHY IDIOCY) (ENORMOUS IDIOCY)

/\ projT1(H) >= (STND IDIOCY Human IDIOTIC).

cbv. firstorder. unfold Idiot in h2. exists h2. firstorder.

unfold enormous in H. firstorder. elim h2. intros. destruct p.

omega. Qed.

(*From enormous idiot it follows that there exists an idiot such

that their standard of idiocy is higher or equal to the standard

for enormous idiots and idiotic humans and also the standard for

enormous idiots is higher than that for idiotic humans*)

Theorem ENORMOUS3:

enormousidiot -> exists H: Idiot,

projT1(H) >= STND IDIOCY (PHY IDIOCY) (ENORMOUS IDIOCY)

/\ projT1(H) >= (STND IDIOCY Human IDIOTIC)

/\ STND IDIOCY (PHY IDIOCY) (ENORMOUS IDIOCY)

>= (STND IDIOCY Human IDIOTIC).

cbv. firstorder. unfold Idiot in h2. exists h2. firstorder.

unfold enormous in H. firstorder. elim h2. intros.

destruct p.

omega. Qed.
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A.2 Multidimensional Adjectives

(*Dealing with multidimensional adjectives Health as an inductive

type where the dimensions are enumerated. This is just an enumerated

type*)

Definition Degree:= Set.

Parameter Human: CN.

Parameter John: Human.

Inductive Health: Degree:= Heart|Blood|Cholesterol.

Parameter Healthy: Health -> Human -> Prop.

Definition sick:=fun y: Human => ~ (forall x : Health, Healthy x y).

Definition healthy:= fun y: Human => forall x: Health, Healthy x y.

Theorem HEALTHY:

healthy John -> Healthy Heart John /\ Healthy Blood John

/\ Healthy Cholesterol John.

cbv. intros. split. apply H.

split. apply H. apply H. Qed.

Theorem HEALTHY2:

healthy John -> not (sick John).

cbv. firstorder. Qed.

Theorem HEALTHY3:

(exists x: Health, Healthy x John) -> healthy John.

cbv. firstorder. Abort.

Theorem HEALTHY4:

(exists x: Health, not (Healthy x John)) -> healthy John.

cbv. firstorder. Abort.

Theorem HEALTHY5:

(exists x: Health, not (Healthy x John)) -> sick John.

cbv. firstorder. Qed.

(*Multidimensional noun Artist*)

Inductive Art: Degree:= a1|a2|a3.

Set Implicit Arguments.

Parameter DIM_CN : forall D: Degree, Human -> D -> Prop.

Record Artist: Set:= mkartist

{h:> Human; EI: forall a: art,

(DIM_CN h a)}.
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Abstract. We describe past and present work surrounding the development of
treebank relatedNLP resources forGeorgian. In particular,weprovide an overview
of efforts made in the development of a morphologically and syntactically anno-
tated treebank for this non-configurational language, as well as its application in
the development of a syntactic parser. Building on this, we also report ongoing
work in utilizing manual and automatic alignment solutions for the creation of a
Georgian/German parallel treebank. The end goal is the development of resources
and tools for improved computational processing and linguistic analysis of the
Georgian language.
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1 Introduction

The Georgian language has a multitude of language resources including grammars and
dictionaries. However, these resources are not suited for NLP needs, where many of
the developed tools and solutions exist for configurational languages such as English.
Georgian, on the other hand, is a non-configurational language with rich derivational
and inflectional morphology and very little fixed structure on the sentence level. These
languages for morphologically rich and less-configurational features are referred to as
MR&LC [1].

In this paper, we provide an overview of existing work done on the manual construc-
tion of a syntactically and morphologically annotated treebank for Georgian, and its
application in the development of a syntactic parser. We also report ongoing work in uti-
lizing manual and automatic alignment solutions for the creation of a Georgian/German
parallel treebank. The end goal is the development of resources and tools for improved
computational processing and linguistic analysis of the Georgian language.
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2 Background

2.1 Treebanks

Linguistic resource creation in a computational environment often consists of a series
of steps that are applied in sequence. A text is pre-processed by ensuring that characters
are consistently encoded, it may be filtered to create a corpus from a specific domain, or
tokenization and sentence boundary detection tools may be applied so that words and
sentences can be identified as units.

To create a useful linguistic resource for a language, often one or more of these
steps is required. One level of representation for the study of language is the treebank,
which is a corpus that is annotated with syntactic and/or semantic sentence structure in
the form of skeletal parses – a bank of linguistic trees. Syntactic structure is commonly
represented as a tree structure (in mathematical terms: an oriented graph) – hence, the
name “treebank”.

Treebanks are often created on top of a corpus that has already been annotated
with part-of-speech tags. The annotation can vary from constituent to dependency or
tecto-grammatical structures. Additionally, they are sometimes enhanced with semantic
or other linguistic information. They can be created manually or semi-automatically,
where a parser assigns some syntactic structure to a text that is checked and corrected,
where necessary, by linguists.

Treebanks are now valuable resources as repositories for linguistic research, since
corpus-based methods became useful in multilingual technology playing an important
role in empirical language studies. They can be used in contrastive studies and transla-
tion science, in corpus linguistics for studying syntactic phenomena, in computational
linguistics as evaluation corpora for different human language technology systems or for
training and testing parsers, as well as functioning as databases for translation memory
systems.

Many treebanks are annotated with syntactic structure that depends on a proper pre-
analysis of the sentence, its part-of-speech tags and, in some cases, its morphology. As
the Georgian language is assigned typologically to non-configurational languages, we
believe that morphology plays an important role in the syntactic analysis of Georgian.
This particular point of view will be discussed later in more detail.

Additionally, analysis is performed by a parser that is usually trained on a grammar
that follows a given approach. Context-free grammars, as described in this paper, are
one example. Grammars can be induced on treebanks or manually constructed.

Some treebanks follow a specific linguistic theory (for example, BulTreeBank for
the Bulgarian language, which follows HPSG1), but most try to be less theory specific.
However, twomain groups can be distinguished: treebanks that annotate phrase structure
(such as the Penn Treebank for Arabic [2], English [3] and Chinese [4]) and those that
annotate dependency structure (such as the Prague Dependency Treebank for the Czech
language [5]).

Phrase-structure annotation is a relatively dominant approach to modern computa-
tional linguistics, even though dependency structures are a much older idea and have

1 http://bultreebank.org/en/btb/.

http://bultreebank.org/en/btb/
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especially gained traction in the form of Universal Dependencies in recent years. Here,
we describe our efforts to build a parser that annotate phrase structure in Georgian using
a vanilla context-free grammar.

2.2 Parallel Treebanks and Alignment

Semantically equivalent or similar texts can be aligned on various levels in order to
indicate equivalence or similarity. Apart from their obvious linguistic interest, these
resources can also be used to train some NLP systems such as those used for machine
translation [6, 7]. In practice, alignment can be indicated by two or more sections of texts
sharing the same identification number or being put next to each other – aligned – within
a text file.

A parallel corpus is a collection of bitexts that is aligned on one or more levels. A
bitext can be defined as a document with one or more translations in other languages
[8].

Historically, parallel corpora are aligned on sentence and word level for training
statistical machine translation systems. Memory requirements at the time dictated the
sentence boundary constraint, even though in practice, translations can overlap across
these boundaries.

A hierarchical iterative refinement strategy [9] is often applied, where equivalent
documents are aligned, after which, in these documents, paragraphs, sentences and then
words are aligned. Each step creates an additional boundary constraint that limits the
search space for which the specific alignment algorithm is to be applied, speeding up
the process and limiting memory requirements.

For creating a parallel treebank, the sentence boundary constraint is often applied
for the same reasons. A parallel treebank is a parallel corpus that has been analyzed and
aligned both on and below the sentence level. In the case of phrase structures, words as
well as so-called subtrees – smaller trees that have a constituent as its root node – can
be aligned to indicate phrasal and structural equivalence. Figure 1 presents an example
of a tree pair that is aligned on both the word and constituent level.

A phrase-structure parallel treebank is useful to indicate both structural and semantic
equivalences of translated sentences and to provide additional data for syntax-based
machine translation systems, since tree structure, not mere word-level annotation, is
present. However, lexical and grammatical differences between the languages that are
compared, as well as divergences between the tree structures, may lead to a lack of
coverage. It is therefore important to note that phrase-structure alignment is but one
level of representation of equivalence and that in the long term, additional layers and
approaches will benefit further applications in future.

(Literally: “If you believe in God (=For God’s sake), do not tell me now that black
is white”).
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Fig. 1. Example of an aligned tree pair on sentence level, taken from the Stockholm TreeAligner
[31]. Green lines indicate so-called “good” alignments that refer to an exact match, whereas red
lines indicate “fuzzy” alignments that indicate a non-exact match. Note that words (leaves of
the trees representing individual words) as well as constituents (non-terminal nodes representing
multi-word phrases) are aligned. Some nodes remain unaligned, as the equivalent in the other tree
is either not exactly represented by a constituent, or, mostly in the case of words, does not have
an equivalent in the translation. (Color figure online)

In this paper, we present ongoing efforts in the tree alignment of Georgian and
German for the creation of a parallel treebank.We have chosen German for the following
reasons:

• The GRUG project [10]2 already involved the alignment of Georgian with German.
Since the alignments in this resource are manually created, the natural next step would
be to investigate the viability of automatic tree alignment.

• The Georgian approach is closely modelled after the TIGER treebank [11, 12]. See
Sect. 3 for more detail.

• There is parallel data available for German/Georgian.
• Insights could be gained from comparing the agglutinative Georgian to the fusional
German language.

3 Creating a Georgian Treebank

For the syntactic annotation of Georgian text, we draw on the experience of parallel
treebanks for languages with different structures [13–17]. These studies provide use-
ful information on processing the Turkish and Quechua languages. For instance, in
a Quechua-Spanish parallel treebank, due to the strong agglutinative features of the

2 http://fedora.clarin-d.uni-saarland.de/grug/.

http://fedora.clarin-d.uni-saarland.de/grug/
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Quechua language, the monolingual Quechua treebank had been annotated on mor-
phemes rather than words. This allowed linking morpho-syntactic information precisely
to its source. However, according to the authors, building phrase-structure trees over
Quechua sentences does not capture the characteristics of the language. Therefore, a
Role and Reference grammar has been implemented that uses nodes, edges and sec-
ondary edges to represent the most important aspects of Role and Reference syntax for
Quechua sentences [18].

Georgian is also an agglutinating language. However, there is no need to annotate
the Georgian treebank on morphemes. Its syntax can be reasonably well represented by
functional relations on the clausal level. To paraphrase, morphological information for
the head words of the constituent phrases is provided in feature characteristics of the
corresponding wordforms. Therefore, there is no need to display morphological affixes
on the syntactic layer as additional clues for syntactic chunking procedures and assigning
them specific syntactic functions in the clause.

In general, for the manual syntactic annotation of GRUG monolingual trees, there
were two options. The first is employed in the INESS project, an open system serving
a range of research needs, offering an interactive, language independent platform for
building, accessing, searching and visualizing treebanks [19].

For a Georgian sentence

a simple XML code visualized by the INESS graphical viewer is depicted in Fig. 2.
A German translation of the sentence in Fig. 3,

can be viewed in Fig. 4.
As could be observed from the two tree structures, they lack morphological informa-

tion presented in the XML.Moreover, the INESS graph is unable to display a clear linear
order of the punctuation marks for the original input sentence, therefore visualizing it
under the ROOT node at the top of the consequent graph.

An alternative for syntactic annotation is presented by Synpathy, a tool for the mor-
phological and syntactic annotation of monolingual trees/oriented graphs [20] and used
previously in the GRUG project [10] and subsequent work on Georgian data. It uses
the so-called SyntaxViewer interface developed for the TIGER research project (Institut
für Maschinelle Sprachverarbeitung, Universität Stuttgart3) and requires TIGER-XML
format as input for syntactic tree visualization. This is especially useful since the TIGER-
XML encoding format is compatible with multiple tools including those that we use for
constituent alignment (Sect. 4).

3 https://www.ims.uni-stuttgart.de/.

https://www.ims.uni-stuttgart.de/
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<s id="s69.36">
  <graph root="s69_502">

<terminals>
    <t id="s69_1"word=" " pos="NE" morph="Dat.Sg." />
    <t id="s69_2"word=" " pos="NN" morph="Gen.Sg." />
    <t id="s69_3" word=" " pos="ENPOS" morph="--" />
   <t id="s69_4" word=" " pos="IPRN" morph="Nom.Sg." />
   <t id="s69_5" word=" " pos="NPRN" morph="Nom.Sg." />  

    <t id="s69_6" word=" " pos="VMFIN" morph="3.Sg.Past.Ind" />
   <t id="s69_7" word="." pos="$." morph="--" />

</terminals>
<nonterminals>

<nt id="s69_502" cat="S">
<edge label="SB" idref="s69_510"/>
<edge label="OO" idref="s69_500"/>
<edge label="DO" idref="s69_4"/>
<edge label="PD" idref="s69_501"/>

</nt>
<nt id="s69_500" cat="PP">

<edge label="NK" idref="s69_2"/>
<edge label="HD" idref="s69_3"/>

</nt>
<nt id="s69_501" cat="VP">

<edge label="NG" idref="s69_5"/>
<edge label="HD" idref="s69_6"/>

</nt>
<nt id="s69_510" cat="PN">

<edge label="PNC" idref="s69_1"/>
</nt>

</nonterminals>
</graph>

</s>

Fig. 2. An excerpt of the XML code for the Georgian sentence in the TIGER format.
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Fig. 3. A syntactically annotated Georgian sentence in the INESS output format.

Fig. 4. A syntactically annotated German sentence in the INESS output format.
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Synpathy is also equipped with a graphical shell for manual tree annotation. During
this process, the shell is able to provide the terminal entities (tokens) of the plain input
text with the necessary morphological features. In this way, morphological and syntac-
tic annotation is combined into a single step, although the process can be time con-
suming. Nevertheless, both options are compatible with the TIGER annotation scheme
implementation in the Synpathy environment.

For Georgian, the aforementioned two tasks were accomplished in separate steps.
The Georgian text was tokenized, POS tagged and lemmatized by the FST morpho-
logical (morpho) parser [21, 22]. An output of the morphological transducer, before
feeding to the Synpathy tool, is reformatted by a small Python script. It converts tagged
and lemmatized tokens into a format required by the Synpathy processing engine. Man-
ual annotation work is still ongoing; since TbiLLC 2019, the number of handcrafted
syntactically annotated trees has reached 1,000 sentences.

For the German text, there are also two possible ways for building a syntactically
annotated treebank. The first is an option outlined for the work with Synpathy—by hand,
using the graphical shell, or compiling an XML file in TIGER format.

The second possible scheme for the tokenization, morphological analysis and auto-
matic syntactic annotation of German text to create a treebank requires using BitPar
[23], an efficient Bit-Vector-based CKY-style context-free parser that computes a com-
pact parse forest representation of the complete set of possible analyses for large treebank
grammars and long input sentences. The parser is particularly useful when all analyses
are needed rather than just the most probable one. Its output must be converted from
Penn format into TIGER-XML, requiring a relatively time-consuming manual post-
editing step. Hence, for our data set – described in Sect. 4.1 – we have opted for using
Synpathy.

4 Parallel Treebanking

As mentioned earlier, one way to validate the utility of a treebank is to apply it as a
resource in one way or another. The same is valid of a parallel treebank, which can be
invaluable to extract bilingual information, for use in comparative studies, NLP appli-
cations and the like.

As the Georgian treebank is in some respects modelled on the TIGER project and
some parallel data exists, the decision was made to build a small constituent aligned
parallel treebank comprising these languages. The intention is to use this effort as a
testbed for gaining insights to help direct future work in this area.

The first step in obtaining a parallel treebank is to create a sentence aligned parallel
corpus, the process of which is described in the next subsection. The words are also
automatically aligned as this is a prerequisite for the constituent alignment solution that
we applied.

We then create the tree aligned parallel treebank in three steps: (1) create a training
and development test set by hand (2) train a model using a statistical tree aligner on the
manual set (3) apply the model to the word aligned parallel corpus. We expand on these
steps in the next few subsections.
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4.1 Creating a Parallel Corpus

We follow convention, where documents are segmented into sentences and utilized
as separate units within which further alignments with their equivalents in the other
language aremade below the sentence level on a 1:1 basis. By avoiding crossing sentence
boundaries, the task is simplified, both for humans (in terms of effort) and computer
systems (in terms of speed and memory requirements). Our data source is a selection of
public domain texts from the legislative domain comprising 14,307 parallel sentences.4,5

We also add the 308 sentence pairs from the set that we use as training data for our
tree alignment experiments, the reason being that those sentence pairs have to be word
aligned anyway and that we are using an unsupervised approach. See Sect. 4.3 for more
information on the training data set.

Data preparation consists of sentence boundary detection, sentence alignment, and
tokenization. The respective tokenizers described in Sect. 3 also performed the sentence
boundary detection. Sentence alignment was performed manually,6 after which the doc-
uments were converted and validated automatically. Validation consisted of steps such
as checking for Georgian characters in expected German text and ensuring that each
aligned document pair had the same number of lines. Conversion ensured that each
sentence appears on a separate line in a format that is suitable for word alignment.

Next, we remove duplicate sentence pairs from the parallel corpus and randomize
the set, after which we apply the clean-corpus-n.perl script7 that is included
with the Moses toolkit. This filters sentence alignments where there is a great difference
in the word length of the source and target sides, as well as removing any sentence pairs
where at least one contains fewer than or exceeds a certain number of words. Alignment
performance can drop sharply as the length of a sentence pair increases. Hence, keeping
to suggested parameter values, we set the maximum length at 80, noting that the longest
sentence in the tree alignment set is 73. The final version of the parallel corpus used for
word alignment is set at 13,425 sentence pairs.

4.2 Word Alignment

As previously mentioned, parallel treebanks are typically aligned on various levels in
order to extract as much information as possible. In the case of phrase-based trees, a
sentence-to-sentence alignment can contain sub-sentential alignments on the level of the
constituent and word. The success of constituent alignment depends on features such as
existing word alignments, POS and constituent tags, tree structure, as well as contextual
and history features (depending on the algorithm, see, for example, [9]).

4 http://library.court.ge/login.php?geo&authorisation.
5 http://lawlibrary.info/ge/books/2020giz-ge-Georgische-Gesetze-auf-Deutsch.pdf.
6 Note that automatic sentence alignment using tools such as HunAlign usually speeds up the
process, evenwithmanual post-processing included. This approachwill certainly be considered
in future expansions of the parallel corpus. One notable advantage of the manual effort is that
no valid parallel sentences are discarded, maximising the size of the – still rather small – data
set.

7 https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-corpus-n.perl.

http://library.court.ge/login.php?geo&amp;authorisation
http://lawlibrary.info/ge/books/2020giz-ge-Georgische-Gesetze-auf-Deutsch.pdf
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-corpus-n.perl
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Word alignments are best when trained on a large parallel corpus, typically in the
millions of aligned sentence pairs. This, however, depends on factors such as sentence
length, number of domains covered and the complexity ofmorphology, the latter ofwhich
can significantly increase the size of the vocabulary. As the quality of word alignment
drops, so typically does that of constituent alignment (Chapter 5 in [32]).

Two approaches for word alignment are prevalent [25], depending on the nature of
the application:

• The use of only alignments that have a high probability to be correct as deemed by the
algorithm – typically the intersection of bi-directional alignment models – can be an
option if the quality of the output needs to be high. This is generally seen as a viable
option for tasks such as lexicon extraction. For tree alignment, the lesser number of
word alignments may result in an insufficient weight value for a statistical aligner to
align candidate constituent nodes. On the other hand, it may be less likely for wrong
trees to be matched through their word alignments (see the well-formedness principle
discussed in Sect. 4.3).

• Also allowing alignments with a lower probability is a prevalent option for statistical
machine translation tasks. Some word alignment approaches, such as described here-
after, add alignments to the intersection according to specific heuristics. The union of
bidirectional models can also be considered. The larger number of word alignments
can be of sufficient weight for a statistical aligner to align candidate constituent nodes.
However, it may be more likely that the wrong trees are matched in the process, as the
higher number of incorrect word alignments may suggest more incorrect candidate
constituent nodes.

In short, an important challenge is to find a suitable word alignment approach with
just the right balance between high precision and high recall in order to optimize tree
alignment quality.

For the experiments reported here, we utilize thewell-established unsupervisedword
alignment approach implemented by the SyMGIZA++ tool [24]. SymGIZA++ is a tool
based on GIZA++ [25] and MGIZA++ [26]. The original GIZA++ implements several
different word alignment approaches, during which the EM [27] algorithm is applied
to estimate the parameters of the models. MGIZA++ is a multi-threaded implemen-
tation of GIZA++, whereas SyMGIZA++ extends both programs by implementing a
symmetrization mechanism that combines two directional models trained in parallel and
using parameters of these models during training for computations of the next model.

Symmetrization of directedmodels allows for the application of heuristics, exploiting
the fact that, for example, there is generally a high probability for the neighboring words
of strongly aligned words to also be aligned.

Using the high-precision intersection alignment set as starting point, these refinement
heuristics can be used to iteratively add these neighboring alignments according to spe-
cific conditions.8 Traditionally implemented by theMoses statisticalmachine translation
system [28], SyMGIZA++ also has the ability to do so.

8 http://www.statmt.org/moses/?n=FactoredTraining.AlignWords.

http://www.statmt.org/moses/?n=FactoredTraining.AlignWords
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Wecreateword alignmentmodels for a set of heuristics ranging fromhighprecision to
high recall, along with the intersection and union sets: grow, grow-diag, grow-diag-final
and grow-diag-final-and, with the intention of analyzing their effects on tree alignment
quality.

4.3 Tree Alignment

For our tree alignment experiments, we apply the toolbox Lingua-Align [29], which is a
freely available and highly customizable statistical aligner using the maximum entropy
learning method. It is able to process treebanks in TIGER-XML format and alignment
files in Stockholm TreeAligner format (discussed next), and has been shown in previous
work to performwell for language pairs such as Swedish/English [29] andDutch/English
[30].

The Stockholm TreeAligner (STA) [31] is a tool used to create, edit and view parallel
treebanks in TIGER-XML format. Link types can be customized but defaults to “good”
and “fuzzy”, as described in the caption of Fig. 1, which is a screenshot from an aligned
tree pair in STA. The tool generates an XML file containing node identification numbers
and implicit alignments through grouping elements containing the IDs together.

We apply a data set that was manually built in STA for both words and constituents,
partly containing data from the GRUG project and consisting of 178 sentence pairs from
the legislative domain and 130 from general fiction-journalistic texts, adding up to 308.
As [29] and [30] indicate that a training data size of this magnitude to be sufficient
for producing balanced F-scores of over 70 and even 80 when applied to word aligned
parallel corpora, at least for the language pairs of English/Dutch and English/Swedish,
we decided to use this data set for our experiments.

After some feature engineering,we settled on a parameter configuration thatwas used
in [32] to compare Lingua-Align with a transformation-based learning system discussed
in the thesis. This uses all types of features described in [33], including those from the
word alignment models that we created before. It uses the so-called GreedyWellformed
alignment strategy, aligning candidate node pairs in a greedy fashion but only if one or
more of the subtrees or their descendants do not share alignments with other subtrees.
Ancestor nodes should also be aligned to each other. See [34] for more information on
this so-called well-formedness constraint.

Next, we randomized the set and created folds for a ten-fold cross validation. 90% is
used for training and the rest for testing. Each fold’s last 31 sentence pairs are different,
except in two cases where the count amounts to 30. In this way, the remainder of the
division (308/10) is smoothed out over sets.

The next step was the implementation of a script to perform Lingua-Align training
and testing usingmultiple cores in parallel, in order to speed up processing. To the output
of each Lingua-Align model, we also apply a set of rule-based heuristics described in
[30] that uses a more relaxed form of the well-formedness constraint and is applied in a
greedy bottom-up fashion. In [30] and [32], it was shown that these heuristics increased
both the recall as well as balanced F-scores of high-precision Lingua-Align models.

Application of the heuristics is centered around two concepts: the well-formedness
constraint and subtree similarity. An unlinked subtree pair, with non-terminal nodes
as their roots, can be viewed as a candidate node pair to be possibly linked. Each of
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these trees has a certain number of terminal nodes that it dominates, i.e. the phrases that
it represents. If the terminal count difference between the trees is too great, it would
seem less likely that they should be linked. On the other hand, if the terminals that they
dominate share a great number of word alignments, it would seem more likely that they
should be linked, but less so if some of those alignments link to words that are dominated
by other subtrees. The regular well-formedness principle allows for none such “outside”
alignments to happen, whereas with the heuristics, the rule can be relaxed by allowing,
for example, one or two fuzzy word alignments.

With the subtree similaritymeasures, four features are important: the count difference
between the source and target-side terminals, the ratio of the counts, the count difference
of aligned and non-aligned terminals in both subtrees, and the ratio of those counts. If
one assumes that the count differences and the ratios are equally important, we use
the geometric mean of those scores. If one assumes that in the case of larger count
differences, the ratio should be less important, we subtract a weighted difference from
the ratio using a manually tuned normalization value.

For our experiments, we have applied both, whichwe call geo and not-geo. Similarly,
we have also applied relaxed well-formedness where a single fuzzy word alignment is
allowed to the “outside” (fuzzy1), as well as separate output sets where two are allowed
(fuzzy2).

Since these heuristic alignments are performed greedily, they can be applied in two
directions – from source tree to target tree or vice versa – of which we can calculate the
intersection and union, with a greater focus on precision and recall, respectively. These
different approaches can lead to a large number of different combinations of heuristic
outputs for which we use identification names such as LA+fuzzy2_not-geo_union in
order to track them (see Table 1).

4.4 Quantitative Evaluation

The model trained on each fold is applied to the aforementioned held-out section at the
end of the fold. For evaluation against the gold standard – i.e. the original manually
built data set – we use a script that is available with Lingua-Align. Our current inten-
tion is simply to optimize balanced F-scores for constituent alignment, with no direct
application to tasks as of yet. Therefore, only non-terminal alignments are evaluated.

We run the ten-fold cross validation for the intersection and union of the directional
models, as well as for each of the aforementioned word alignment heuristics: grow,
grow-diag, grow-diag-final and grow-diag-final-and. For each, we use the same Lingua-
Align parameters and heuristics, as well as the four different parameter values for the
tree alignment heuristics to be applied afterwards. For other parameters, such as the
aforementioned normalization factor, we use the default values. Table 1 presents the
best and second-best averages across all ten-fold cross validation sets for precision,
recall and balanced F-score.

Both the two best precision scores and two best F-scores are achieved by using the
Lingua-Align model only. Heuristics applied afterwards increases recall by 3.029 (gdf )
and 2.138 (grow) respectively, but precision drops by 4.829 (gdf ) and 4.598 (grow).
As the Lingua-Align models already have relatively high recall values, this is not too
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Table 1. Best average precision, recall and F-score for different word and tree alignment
approaches. The best scores are in bold and the second best in italics. Word refers to which
word alignment heuristic was used, where gdf refers to grow-diag-final. Tree refers to whether
the best score was achieved using Lingua-Align (LA) only, or also by applying a tree alignment
heuristic to its output. fuzzy2_not-geo_union means allowing two fuzzy word alignments to the
“outside”, not using the geometric mean (i.e. the formula with the normalization factor) and the
union of the heuristic applied bidirectionally.

Best Word Tree Precision Recall F-score

Precision gdf LA 72.627 73.409 72.965

grow LA 72.359 73.653 72.939

Recall gdf LA+fuzzy2_not-geo_union 67.798 76.438 71.804

grow LA+fuzzy2_not-geo_union 67.761 75.971 71.576

F-score gdf LA 72.627 73.409 72.965

grow LA 72.359 73.653 72.939

unexpected. Also not surprising is the fact that the union of the heuristic with the most
relaxed well-formedness setting (two fuzzy links) leads to the highest recall.

All the best scores are based on gdf alignments and all the second best on grow
alignments. This shows that word alignment heuristics have a consistent effect no matter
if we only run Lingua-Align or also apply tree alignment heuristics to the output.We also
note that especially F-scores are very close to each other. This is consistent throughout
the evaluation data, also of those not shown here. This suggests that word alignments
have only a small effect and tree alignment heuristics almost no effect. We hypothesize
that using a larger parallel corpus may lead to better word alignment and hence higher
tree alignment precision, and a training curve may point to that trend, but this is left for
future work.

Adding all the output alignments of the folds of the two “best” data sets together,
we can extract some relevant statistics as found in Table 2.

The total number of tree alignment heuristic alignments added to the best recall set
is 209, 11% of the total number of constituent alignments. In other data sets where the
sole focus was not on maximizing recall, the number is lower. This reflects the relatively
little effect that it has on the current set of alignments.

The number of non-terminals aligned in the gold standard and the other sets are
relatively equal. However, note the large difference in aligned terminals count in the gold
standard between the source and target trees (1241) as opposed to in the other two sets
(4). This suggests an asymmetry between the two treebanks for which a unidirectional
model may be a better fit.

The number of aligned terminal nodes in the automatic sets is much lower than in
the gold standard, with a difference of 2,140. This suggests that many word alignment
probabilities are not high enough to be used in the tree alignment data set, as Lingua-
Align uses a default threshold for such alignments. Apart from the small size of the
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Table 2. For each data set, comprising the combined output of each ten-fold cross validation,
here we present some statistics concerning the number of terminal and non-terminal alignments
in the sets (Term alignments and NT alignments), as well as the number of aligned terminals and
aligned non-terminals in both the source-side tree (German; stree) and target-side tree (Georgian;
ttree). Note that all three data sets are for the word alignment heuristic grow-diag-final, which
explains the same number of terminal alignments and aligned terminals across different sets.

Data set Term
alignments

NT
alignments

Term
aligned
stree

NTs
aligned
stree

Term
aligned
ttree

NTs
aligned
ttree

Gold 5,950 1,701 5,353 1,675 4,112 1,662

Precision+F-score 3,810 1,665 3,805 1,663 3,809 1,660

Recall 3,810 1,857 3,805 1,816 3,809 1,836

parallel corpus, the existence of a subset from the literature genre that is not represented
by the parallel corpus is a possible factor here.

4.5 Qualitative Evaluation

Finally, we present two examples of tree pairs that illustrate some of the aforementioned
issues. In Figs. 5 and 6,we showa small tree pair from the gold standard and its equivalent
from the data set with the best F-score, respectively.

In the gold standard version (Fig. 5), the Georgian PP is aligned with the second
German PP. In Fig. 6, it is aligned with the first PP. Although Lingua-Align learns that
PPs are more likely to align with other PPs, it is very likely that the alignments linking
the wrong words have significantly contributed to the fact that the first PP has been
chosen as the correct candidate.

Note also the relative lack of word alignments in the automatic output. There are
only 1:1 alignments and the second PP dominates words that have no alignments at all.
In general, candidate nodes cannot be aligned if there is no word alignment evidence to
guide decision making.

In Fig. 7, we present an example of a subtree pair that was correctly aligned by a
rule.
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Fig. 5. A tree pair from the gold standard showing multiple n:1 word alignments. See Fig. 6 for
the equivalent from the data set that achieved the best F-score.

Fig. 6. An output tree pair showing a lack of word alignments. See Fig. 5 for its gold standard

The gold standard tree pair is very similar, but Lingua-Align did not align the Ger-
man NP with the Georgian AVP, even though the trees are well-formed. A significant
difference was probably the fact that they only share a fuzzy and a good word alignment.
In the gold standard, “wie ein richtiger” all align with the same Georgian word, with
“richtiger” also aligning with the sameword as presented here. The well-formedness and
perceived similarity of the subtrees led to the algorithm aligning the constituent nodes
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Fig. 7. A tree pair from the high-recall output data set showing a correct non-terminal alignment
added by a rule (NP/AVP).

in question. With the relaxed rules, a fuzzy link may, for example, have gone from one
of the two Georgian words to “lief”, and the trees would still have been aligned.

Note also that Georgian words can sometimes equate to multi-word German phrases.
This could be problematic since longer phrases tend to occur less frequently in corpora. It
might therefore require a larger corpus for models to learn how to align certain Georgian
words.

5 Discussion and Future Work

We have presented our efforts in creating treebank-related resources for the Georgian
language. For building a full-scale Georgian syntactic parser, we intend to make use
of the developed vanilla CFG that was extracted from the monolingual Georgian tree-
bank. It will be utilized for finding optimal morphological features/preterminals for
implementation in the probabilistic CFG parser. The reason for such a decision is the
advantage of a deterministic part-of-speech tagger that can produce a morphologically
annotated Georgian corpus achieving almost 100% accuracy after manual disambigua-
tion [35]. Moreover, it is able to annotate the tokens with just POS tags, or also with
morphological information using features such as case, number, person and tense.

At the first stage, the most successful supervised constituent parsers apply a proba-
bilistic context-free grammar (PCFG) to extract possible parses. The n-best list parsers
keep just the 50–100 best parses according to the PCFG. These feature templates exploit
atomic morphological features and achieve improvements over the standard feature set.
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These methods use a large feature set—usually a few million features—and are engi-
neered for English, in some cases requiring distributed computing solutions (such as
[36]) for proper application.

The innovative aspect of the proposed approach is a unique procedure for finding
the optimal set of preterminals by merging morphological feature values. The main
advantage of this methodology over previous undertakings is the performance speed—it
operates inside a PCFG instead of using a parser as a black box with retraining for every
evaluation of a feature combination—and it can investigate particular morphological
feature values instead of removing a feature with all of its values.

The aforementioned GRUG project has provided some insights on how to achieve
automatic tree alignment with German on a larger scale. Here, our present experiments
highlighted some important issues. [30, 32] and [33] have shown that tree alignment
F-scores approaching and surpassing 80 are possible. However, those use cases involved
large parallel corpora with millions of sentence pairs. It is therefore desirable to increase
the size of the Georgian/German parallel corpus both in terms of size as well as variety.
There are also techniques to extract parallel sentences from comparable corpora, which
are easier to obtain [37].

Apart from better feature engineering, more recent toolsmay also be used, or existing
ones adapted. For example, the EFMARAL word alignment tool has been shown to be
efficient for statisticalmachine translation [38]. Lingua-Align could be adapted to use the
morpheme attribute as a feature. The transformation-based learning system presented
by [32] could also be adapted and combined with existing solutions to improve tree
alignment results. And of course, different machine learning approaches including deep
learning methods may be used to improve current results.

In Figs. 1 and 5, aswell as inTable 2,we have shown that n:1 alignments fromGerman
to Georgian may be common. It might be useful to consider a different segmentation
approach, such as presented by [39], in order to improve alignment convergence, but
this has to be guided by the approach taken with the parser.

Finally, a future parallel treebank can also be extended using other layers of data, such
as dependency relations, valency frames, anaphoric resolutions and semantic knowledge,
which in turn may provide the necessary clues to improve the parallel treebank as a
knowledge source for linguistics and NLP applications.
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Abstract. We outline a formal framework that combines results from
neurolinguistic research on two ERP components, the N400 and the LPP,
with formal semantics. At the semantic level we combine de Groote’s
continuation-based version of Montague semantics with van Eijck’s Incre-
mental Dynamics enriched with frames. We analyze them in terms of
complex properties that apply both to the semantic and the discourse
level and which combine world knowledge with syntagmatic and paradig-
matic relationships. DPs and common nouns are interpreted as sequences
of update operations which are related to these properties. In turn, each
ERP component is correlated to at least one update operation. Whereas
the N400 is related to success of these operations and the way they reduce
uncertainty about the situation described by a discourse, the LPP is cor-
related to the failure to execute these updates.

1 The N400 and the Late Posterior Positivity

An ERP-component is the summation of the post-synaptic potentials of large
ensembles (in the order of thousands or millions) of neurons synchronized to
an event. When measured from the scalp, continuous ERP waveforms manifest
themselves as voltage fluctuations that can be divided into components. A com-
ponent is taken to reflect the neural activity underlying a specific computational
activity carried out in a given neuroanatomical module. The N400 component
is a negative deflection in the ERP signal that starts around 200–300 ms post-
word onset and peaks around 400 ms. Besides the N400 component, there is a
set of later positive-going ERP components that is visible at the scalp surface
between approximately 500 and 1000 ms. The most prominent element is the
late posterior positivity (LPP, also known as semantic P600), which is maximal
at parietal and occipital sites.

The two most prominent interpretations of the underlying neuro-cognitive
function of the N400 are the integration and the retrieval view. On the integration
account, the N400 amplitude ‘indexes the effort involved in integrating the word
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meaning of the eliciting word form with the preceding context, to produce an
updated utterance interpretation’, [DBC19]. On the retrieval/access account ‘the
N400 amplitude reflects the effort involved in retrieving from long-term memory
conceptual knowledge associated with the eliciting word which is influenced by
the extent to which this knowledge is cued (or primed) by the preceding context,
[DBC19]. What is left open by the above characterization is which properties of
words and the context underly the N400 amplitude. Five prominent properties
that have been suggested are (i) semantic features, (ii) plausibility, (iii) semantic
similarity, (iv) selectional restrictions and (v) schema-based knowledge. However,
taken individually, none of the five features can explain the N400 amplitude.

Evidence for semantic features as being correlated with the N400 amplitude
comes from the fact that the correlation between the N400 amplitude and the
cloze probability, that is the probability of a target word to be the best comple-
tion in a cloze test, is not monotone.

(1) They wanted to make the hotel look more like a tropical resort. So along
the driveway they planted rows of palms/pines/tulips. [FK99]

In (1) ‘pine’ but not ‘tulips’ comes from the same semantic category ‘tree’ as
the best completion ‘palms’. Though ‘pines’ and ‘tulips’ have the same low cloze
probability (< 0.05), their N400 amplitudes differ. Within category violations
(pines) elicit smaller N400 amplitudes than between category violations (tulips).
Federmeier and Kutas argue that this result suggests that it is feature overlap
like being tall or having a similar form that affords within category violations a
processing benefit relative to between category violations, [FK99, p. 485].

However, feature overlap with the best completion is not without exceptions,
as shown by the following example.

(2) The wreckage of the sunken ship was salvaged by the victims . . . [PK12].

Though the critical word ‘victims’ shares few semantic features with the best
completion ‘divers’, no N400 effect is observed.

A second candidate is plausibility which can be quantized by offline rating
tasks using, e.g., a Likert scale. Plausibility is often related to the integration
view of the N400. The less plausible a resulting interpretation is the more diffi-
cult it is to integrate the critical word in the preceding context. Evidence for the
role of plausibility comes from the fact that in the Federmeier & Kutas study
best completions elicited the smallest N400 amplitude and the highest plausi-
bility ratings. Between category violations elicited the largest N400 amplitudes
and got the lowest plausibility ratings. Within category violations were interme-
diate on both variables, [FK99, p. 486]. However, in semantic illusion data like
that in (3) no N400 effect is observed although the sentence has an implausible
interpretation.
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(3) The fox that on the poacher hunted . . . .

A third candidate is semantic similarity. On this account the N400 amplitude is
modulated by the degree to which a critical word in a target sentence is seman-
tically related to the words preceding it in the context. One way of quantifying
semantic similarity is to use Latent Semantic Analysis. On this account pairwise
term-to-document semantic similarity values (SSVs) are extracted from corpora
(see [KBW0] for an application). Semantic similarity underlies the Retrieval-
Integration model of [VCB18]. One of its strengths is that it can explain seman-
tic illusion data as given in (3). As there is a semantic relation between the
arguments preceding the verb (‘fox’, ‘poacher’) and the verb itself (‘hunted’) no
N400 effect is expected for the verb.

However, similar to both the notions of semantic feature overlap and plausi-
bility, there are counterexamples to the thesis that the N400 amplitude is (mono-
tonically) related to the corresponding LSA value. Kuperberg et al. [KPD11]
showed that the degree of causal relationship in three-sentence scenarios with
matched SSVs influences the N400 amplitude: highly related < intermediately
related < causally unrelated. The authors conclude that it is the situation model
constructed from the context (message-level meaning) that influences semantic
processing of the critical word and not semantic relatedness. Similarly, [KBW0]
could show an influence of high- versus low-constraint contexts on the N400
amplitude for controlled SSVs.

A fourth property is related to selection restrictions imposed by verbs. Each
verb imposes constraints on its arguments that are independent of the context
in which it is used. One prominent example of such a constraint is animacy.
Violations of selectional restrictions (typically) evoke robust N400 effects that
are larger than those for non-expected words that do not violate these restric-
tions. Furthermore, the amplitude of the N400 in case of such violations is not
modulated by semantic similarity measured by LSA.

(4) The pianist played his music while the bass was strummed by the drum /
coffin during the song.

In (4) taken from [PK12] both ‘drum’ and ‘coffin’ violate the animacy constraint
imposed by ‘strum’ on its actor argument. Furthermore, though ‘drum’ is seman-
tically more related to the preceding context than ‘coffin’ using LSA (0.18 vs.
0.01), the two N400 amplitudes did not differ. By contrast, the N400 amplitude
evoked by words that do not violate selectional restrictions is modulated by
semantic relatedness quantized by LSA.

(5) The pianist played his music while the bass was strummed by the
drummer / gravedigger during the song.

Similar to the case of ‘drum’ and ‘coffin’, the semantic relatedness to the pre-
ceding context differs: 0.18 for ‘drummer’ vs. 0.00 for ‘gravedigger’. However,
in contrast to (4), in (5) the N400 amplitude for the semantically unrelated
‘gravedigger’ is larger than that for ‘drummer’.
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However, violations of selection restrictions need not always produce an N400
effect, which brings us to the fifth property that is related to schema-based
knowledge.

(6) A huge blizzard swept through town last night. My kids ended up getting
the day off from school. They spent the whole day outside building a big
jacket in the front yard.

In (6) ‘jacket’ violates the selection restriction (animacy) imposed by the verb
‘build’. Although a robust (large) N400 effect is expected due to the restric-
tion violation only an attenuated N400 is measured compared to the expect
‘snowman’. This data suggests that the N400 is also modulated by schema-based
knowledge about a particular scenario that is depicted by a discourse (cf. [PK12],
[KBW0]). This knowledge is based on a semantic network of interrelated con-
cepts and goes beyond the information provided by words in a single sentence.
For example, in (6) a winter scene involving children is described. The corre-
sponding semantic network is related to the clothes of the children which are
most likely such that they keep warm, a condition satisfied by jackets. Evidence
for such a dependency of the N400 on schema-based knowledge comes from the
fact that the attenuation of the N400 effect of such examples depends on the
context in which the target sentence containing the critical word is embedded.
Leaving this context out, e.g. the two sentences preceding the target sentence in
(6), leads to a robust N400 effect on the critical word.

The second ERP component that we are considering here is the Late Pos-
terior Positivity (LPP) which is usually associated with the impossibility of an
interpretation. Evidence for this functional interpretation comes from examples
like those in (7)

(7) a. He spread the warm bread with socks.
b. For breakfast, the eggs would eat . . .
c. The lifeguards received a report of sharks right near the beach. Their

immediate concern was to prevent any incidents in the sea. Hence,
they cautioned the swimmers / trainees / drawer . . . .

In each case an LPP is elicited due to the violation of a selection restriction that
blocks a direct interpretation. An LPP is not only elicited if there is a violation
of selection restrictions, but also if direct interpretation is blocked differently.
One example are so-called reversal anomalies that are a subset of the semantic
illusion data.

(8) The restaurant owner forgot which waitress the customer had served.

In (8) no selection restriction is violated as both arguments satisfy the animacy
constraint imposed by ‘serve’. What is unexpected and explains the elicited LPP
is the assignment of thematic roles. Instead of the waitress being the actor and
the customer being the theme, the roles are reversed. An LPP can be also elicited
on the discourse level:



Bridging the Gap Between Formal Semantics and Neurolinguistics 83

(9) John left the restaurant. Before long, he opened the menu . . .

In (9) it is the order of events which is unexpected. The first sentence triggers
schema-based knowledge about a restaurant which includes particular kinds of
actions that are partially ordered. This ordering requires the opening of the menu
to occur before the leaving of the restaurant.

In summary, an LPP is elicited whenever a direct interpretation is impossible
due to selection restrictions or world knowledge about thematic roles or schema-
based knowledge.

2 The Functional Interpretation of the N400 and the LPP

Our main theses concerning the two ERP components are: (i) Two principle
levels of representation must be distinguished: situation models (global) and
event models (local); (ii) predictions are related to the level of situation models
whereas integration operations are related to both levels; they are based on (a)
syntagmatic relationships, (b) semantic features and (c) world knowledge; (iii)
the N400 is directly related to predictions and, therefore, to the level of situation
models; in addition, it is related to integration at the level of situation models
but not to integration at the level of event models; its amplitude is modulated
by a complex semantic-cognitive property and a pragmatic (discourse) property
related to linking, i.e. the referent of the critical word needs to be linked to an
object that is already part of the current situation model; and (iv) the LPP is
related to failure at the level of integration at the situation model and at the
event model.1

In this article we will pursue two aims that are closely related. On the one
hand, we will combine functional interpretations of the N400 and the LPP that
have been given in the neurolinguistic literature (access and integration) with
concepts used in formal semantic theories (e.g. update operations). On the other
hand, we will outline an extension of a dynamic semantics in which these func-
tional interpretations can be incorporated. For example, we interpret access as
the introduction of objects or features into the model and integration as an
update operation. Predictions are modelled in terms of probability distributions
on frames.

1 We do not assume that there is a monophasic N400 activity. Rather, semantic pro-
cessing in the brain is always biphasic with the first phase indexed by the N400 and
the second phase indexed by late positivities like the LPP. Whereas N400 activity
is always related to the situation model, late positivities are related to the situation
model and the event model. Hence, integration at the (local) event model is not cap-
tured by N400 activity but only by the late positivities like the LPP. Thus, there will
always be activity in the post N400 time window related to this kind of integration.
We are indebted to one reviewer for stressing this relation between activity in the
N400 time window and post-N400 time window.



84 R. Naumann and W. Petersen

2.1 Predictions and Situation Models

We follow growing evidence that predictions are based on scripts. A script is
a standardized sequence of events that together make up a particular complex
situation and that describes some stereotypical human activity such as going to
a restaurant or visiting a doctor. Script knowledge is common knowledge that is
shared between speakers of a community or culture. This knowledge comprises
information about sorts of events and the sorts of objects typically involved in
the realization of a script. In addition, it includes information about the temporal
and causal relations between the events and which sorts of objects are related
to which sorts of events. Consider the following example from [MTD+17].

(10) a. The waiter brought the . . .
b. We got seated. The waiter brought the . . .
c. We ordered. The waiter brought the . . .

These examples are partial descriptions of a restaurant script. Knowledge about
such a script includes knowledge about events like ordering, bringing and eating
as well as objects participating in these events like waitresses, food and bills. One
possible temporal ordering of the events is: enter, being seated, bring menu, order
food, bring food, ask for bill, bring bill, pay bill, leave. Examples like (10) show
that script knowledge not only constrains the sort of objects participating in an
event relative to a particular thematic role but that the sort of the object also
depends on the temporal placement of the event in the temporal order specified
by the script. Theoretically, a bringing event as in (10-a) can be located at
any of the three possibilities in the temporal order. Hence, expected objects
are (instances of) food, the menu or the bill. By contrast, in the context of
(10-b) the bringing is temporally located after the being seated so that the
menu is the most expected object. Finally, in (10-c) the expected object is the
food because the bringing event is temporally located after the ordering. The two
above examples show that script knowledge can impose additional constraints on
objects and events by constraining for particular events and objects participating
in them. On the other hand, a context can constrain strongly for a particular
situation model but not for a specific event or a specific object that is related
to this event [KJ16]. For example in the blizzard example in (6), the jacket
is not expected as a theme of the building event. Semantic processing of the
critical word ‘jacket’ is facilitated because the semantic features associated with
its interpretation are expected relative to a particular situation model (winter
scene) and an object already introduced into this model (children) though these
features are (highly) unexpected or even anomalous relative to the current event
model (building). Objects of sort ‘jacket’ are expected as clothes of the children
because the situation model ‘winter scene’ expects clothes that keep warm.

The important point about script knowledge is that upon its instantiation
it activates a network of individuals and events as well as relations between
these objects. Given such a network, predictions are not restricted to the cur-
rent event (e.g. ‘What is being brought?’) or the next event (e.g. ‘Which event is
mentioned next and which objects participate in it?’) but can target both objects
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that have already been introduced into the current situation model (‘What were
the children wearing?’) as well as objects that are likely to be encountered in
the continuation of the description of the situation (e.g. the bill and the leaving
event). Two principle cases need to be distinguished: (a) to what degree are
the features (properties) of a newly introduced object expected given the cur-
rent partial description of a situation model?, and (b) can a newly introduced
object be related to an object that has already been introduced into the current
situation model?

More formally, suppose that a context specifies a situation model whose pro-
totypical realization consists of the action sequence e1 . . . er with objects partic-
ipating in them given by the set {o1, . . . , ot} and that so far the initial sequence
e1 . . . ek has been introduced into the context. Predictions are possibly related to
any of the events ek+1 . . . er and objects participating in them as well as relative
to participants that are related to objects involved in one of the events e1 . . . ek.
Hence, script knowledge allows to capture ‘long-range dependencies, [MTD+17].

2.2 The Functional Interpretation of the N400

Expectations are based on semantic features (or properties) of objects. Consider
again example (1) repeated below for convenience.

(11) They wanted to make the hotel look more like a tropical resort. So along
the driveway they planted rows of palms/pines/tulips.

Given the preceding context, expected features are the tropics as the natural
geographical range, and tall trees as sort for visability. Objects that satisfy all of
these features, like palms, are most expected, followed by objects like pines that
satisfy a proper subset (being trees and being tall) and objects like tulips which
satisfy none of these features being the least expected. The N400 amplitude
is modulated in accordance with these expectations leading to our first thesis
concerning the functional interpretation of the N400:

(12) One factor underlying the modulation of the N400 amplitude are
paradigmatic relationships based on semantic features of objects that
are related to a particular attribute in a situation model.

However, the following example shows that this thesis is too weak to fully capture
the behavior of the N400.

(13) The pianist played the music while the bass was strummed by the
guitarist / drummer / gravedigger / drum / coffin during the song.

(13) is a partial description of a concert scenario whereas ‘the bass was
strummed . . . ’ is a partial description of an event in the concert. Each real-
ization of such a scenario has attributes musicians, instruments and actions
whose values are the set of musicians, instruments and actions, respectively. For
example, for the partial description in (13) one has: musicians = {pianist},
instruments = {bass} and actions {play, strum}. Predictions are related to
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features of objects belonging to the values of these attributes: How likely is it
that this concert also has a drummer or a guitarist, respectively and how likely
is it that a drum is an instrument? For these objects, the respective probabilities
are high. For example, guitarist and drummer are expected as extensions of the
value of the musicians attribute whereas a drum is expected as an extension of
the value of the instruments attribute. By contrast, neither a gravedigger nor
a coffin are expected relative to these two attributes. Thus, according to thesis
(12), one would expect a larger N400 amplitude for ‘coffin’ than for ‘drum’, con-
trary to the fact that both elicit amplitudes of the same magnitude. One may
argue that the amplitude of the N400 in examples like (13) is due to a selection
restriction violation which overrides any semantic relationships based on fea-
tures and world knowledge. However, this strategy fails to explain the absence
of an N400 effect for the critical words in (6) as well as for the critical words in
the following semantic illusion data in which the thematic role assigned to the
argument(s) clashes with the constraints imposed by the verb on these roles.

(14) a. For breakfast, the eggs would eat . . .
b. De speer heeft de atleten geworpen. (The javelin threw the athletes)

The problem with (12) is that it ignores semantic relationships that exist between
objects belonging to different attributes. It does not constrain how a newly intro-
duced object is or can be related to objects that have already been introduced
into the current situation model. We hypothesize that the difference between
‘drummer’ and ‘guitarist’ on the one hand and ‘drum’ and ‘coffin’ on the other
lies in the way they can be anaphorically linked to the preceding context. Con-
sider first the examples in (15) taken from [Bur06].

(15) a. Tobias besuchte einen Dirigenten in Berlin. Er erzählte, daß der
Dirigent . . .
(Tobias visited a conductor in Berlin. He said that the conductor
. . . )

b. Tobias besuchte ein Konzert in Berlin. Er erzählte, daß der Dirigent
. . .
(Tobias visited a concert in Berlin. He said that the conductor . . . )

c. Tobias unterhielt sich mit Nina. Er erzählte, daß der Dirigent . . .
(Tobias talked to Nina. He said that the conductor . . . )

Burkhardt found an attenuated N400 effect for bridged DPs (Konzert - Dirigent)
and an enhanced effect for new DPs (Nina - Dirigent) compared to the given
DP (Dirigent - Dirigent). We follow Burkhardt and assume that this modulation
of the N400 amplitude is related to discourse linking. In (15) this modulation
cannot be related to the event model to which the object introduced by the
interpretation of the critical word belongs because this object is the first to
be introduced into this model. Rather, what is at stake in these contexts is a
constraint to the effect that the newly introduced object needs to be linked to
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an object that has already been introduced. In (15-a) and (15-b) a concert script
(scenario) is introduced in the first sentence. In (15-b) this situation model is
explicitly introduced by the DP ‘the concert’. In (15-a) the interpretation of the
two occurrences of the DP ‘the conductor’ can be anaphorically linked by the
relation of identity. In (15-b) the interpretation of ‘the conductor’ can be linked
to the interpretation of ‘the concert’ in the preceding context. The conductor
is the value of an attribute that is defined for the concert, e.g. the attribute
conductor. By contrast, in (15-c) no situation model to which an object of
sort ‘conductor’ can be linked is explicitly introduced. As a result, ‘the conductor’
cannot be anaphorically linked to the preceding context.

We generalize discourse linking in the following way. Let o1 . . . ok be the
objects already introduced into the current situation model and let ok+1 be the
object related to the interpretation of the currently processed word, ok+1 has
to be linked to an oi, 1 ≤ i ≤ k. As a consequence, linking can also be done
relative to the current event model. Linking defined in this way satisfies ‘maxi-
mize anaphoricity’ because each newly introduced object needs to be related to
an object already introduced and is therefore a necessary condition to ensure
discourse coherence. When taken together we arrive at our second hypothesis
for the functional interpretation of the N400 component.

(16) A second factor underlying the modulation of the N400 amplitude is the
possibility of linking the interpretation of the critical word to an object
that has already been introduced into the situation model. Specifically,
establishing such a linking relation consists in a bridging inference. The
interpretation of the critical word is the value of an attribute associated
with an object that has already been introduced.

On this approach, the effect of a selection restriction violation is to exclude
one possibility of linking the critical word to the current situation model via
a particular thematic role in the current event model. This violation alone is
therefore not sufficient to block the establishment of a bridging inference. This
is different if the situation model is reduced to a single event model, e.g. if the
context is made up by of a single sentence.

(17) Dutch trains are sour.

In (17) ‘sour’ must be linked to the trains because no other objects have been
introduced so far. Since there is no attribute of objects of sort ‘train’ for which
‘sour’ is an admissible value, linking fails. As expected ‘sour’ in (17) elicits an
N400.

2.3 The Functional Interpretation of the LPP

According to the preceding section, the N400 is based on two factors: paradig-
matic relationships based on semantic features and anaphoric linking, or, more
generally, the establishing of a bridging inference. The linking operation fails, if
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no bridging inference can be established. We hypothesize that this failure triggers
a revision-modification operation. At the ERP level, this operation is indexed
by the LPP.

(18) One factor underlying the LPP is a revision-modification operation as a
reaction to a failed linking operation.

An example of a revision operation is to question bottom-up information. Con-
sider e.g. (15-c). A comprehender could countenance a reading or hearing error
and assume ‘a conductor’ instead of ‘the conductor’. Alternatively, bottom-up
information already processed can be questioned in a similar way. Depending on
which bottom-up information is questioned, situation models that have already
been discarded can again become options. A third strategy is to extend the cur-
rent situation model with additional information. One possibility is to introduce
a concert as the subject or topic about which Tobias talked to Nina. This has the
effect that some other situation models that are options according to bottom-up
information become excluded, for example, models in which the topic is not a
concert.

If the linking operation succeeds, the current situation model is updated with
the information provided by the critical word. This success does not imply that
a corresponding transition at the level of the current event model is possible
as well. Two principle cases must be distinguished: For the first case consider
example (19).

(19) The restaurant owner forgot which waitress the customer had served.

Although the critical word ‘served’ can be linked to an object already introduced
into the current situation model (‘restaurant’) and no selection restriction vio-
lation occurs an LPP is elicited. Recall that predictions relative to arguments of
a verb are dependent on the placement of the events in the temporal ordering if
the sort of events denoted by the verb can occur more than once in this ordering.
Generalizing this pattern, one has that each sort of objects that is admissible
in a particular situation model is related to a particular set of action-role pairs
that specify in which actions it can occur in which thematic roles in this situ-
ation model. For example, in a restaurant script an object of sort ‘waitress’ is
at least assigned the set 〈serve, actor〉, 〈ask, actor〉, 〈ask, theme〉. If objects of a
particular sort are assigned such a set, they are said to be free only for pairs in
this set. We hypothesize that if the interpretation of the critical word is assigned
an action and a thematic role for which it is not free, an LPP is elicited. This
is the case if an object of sort waitress is assigned the theme role in a serving
event in a restaurant scenario. The second principle case occurs if objects are
not assigned action-role pairs that are relevant in the situation model.

(20) The pianist played the music while the bass was strummed by the
gravedigger . . .



Bridging the Gap Between Formal Semantics and Neurolinguistics 89

In (20), none of the action role pairs like 〈dig, actor〉 associated with the object
‘gravedigger’ is licensed by the situation model ‘playing music’. Such objects are
free for any action-role assignment that respects the selection restrictions and no
LPP is elicited. This accounts for the absence of an LPP for ‘gravedigger’ in a
‘playing music’ script. We hypothesize that freeness is a second factor underlying
the LPP.

(21) A second factor underlying the LPP is a revision-modification operation
as a reaction to a failure of the freeness constraint.

In response to a violation of a freeness constraint, one strategy open to a compre-
hender is to extend the set of possible situation models by changing the freeness
constraint. For example, upon encountering ‘The restaurant owner forgot which
waitress the customer had served’, a comprehender can extend his action-role
assignments for restaurant scripts by adding the action role pair 〈serve, actor〉
to the sort ‘customer’ and the pair 〈serve, theme〉 to the sort ‘waitress’. As a
result, restaurant scripts now also allow serving events in which customers serve
waitresses. Freeness is a special case of anaphoric linking that differs from it
in the following two respects. First, in contrast to linking, freeness is restricted
to the current event model and second, satisfaction of sortal constraints is not
sufficient as shown by (19).

2.4 The Processing Model Underlying the N400 and the LPP

The processing model outlined in the last two sections based on particular func-
tional interpretations of the N400 and the LPP consists of three steps. In the first
step participants and actions must be linked to objects that have already been
introduced into the current situation model. The leading question is: ‘Does this
information continue information already supplied in the context?’ Success of
this linking operation is a precondition for the next operation to be applied. This
has the following consequences: (i) if the linking operation fails, neither paradig-
matic relationships based on semantic features nor the freeness constraint play a
role and (ii) as an effect, the N400 amplitude is therefore not modulated by this
relationship and this constraint, in accordance with the empirical findings about
this component. Failure of the linking operation triggers a revision-modification
operation that is indexed by the LPP. Processing of the remaining text is con-
tinued on the basis of the result of this operation. In the case that the linking
operation succeeds, the second step consists in integrating the new information
into the current situation model. The leading question is: ‘How probable is this
information given the information in the context?’. This operation is related to
paradigmatic relationships based on semantic features. As an effect, the modu-
lation of the N400 amplitude is graded. Hence, the N400 is related to the linking
operation in a double way. If it fails, an N400 effect is elicited and if it succeeds
a graded N400 effect results with the limiting case that no N400 effect is elicited.
The final step is related to integrating the new information in the current event
model. This integration fails if the freeness constraint is violated. Similar to the
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failure of the linking operation, a revision-modification operation is triggered
which is indexed by the LPP. Processing is continued with the result of this
operation which, again, is a changed model. Since the N400 indexes integration
at the situation model, no N400 is elicited if freeness is violated. If this constraint
is not violated, the new information gets integrated into the current event model
without eliciting an LPP.

The LPP indexes the impossibility of executing an integration operation,
either at the level of situation models or at the level of event models. Both
the N400 and the LPP are elicited at most once. If linking fails, a biphasic
N400 - LPP is elicited. Since the other operations are not executed no second
effect in relation to these two components is produced. If linking succeeds, no
LPP in relation to this operation is elicited. Such an effect is still possible if
freeness is violated. Similarly, an N400 effect can be produced in relation to the
integration operation based on (successful) linking and the semantic-cognitive
property. Since a violation of freeness does not elicit an N400 effect, this effect
is produced at most once.

Empirical evidence for this model is based on two studies. First, a study by
[DMK16] challenges the one-step model of language comprehension proposed in
[HHBP04], who considered sentences like (22).

(22) Dutch trains are yellow / white / sour.

For each sentence, the N400 amplitude was measured relative to the critical
word. They found that there was no difference in the N400 onset or peak latency
between the semantic violation ‘sour’ and the world-knowledge violation ‘white’.
The authors concluded that semantic and world knowledge are processed in par-
allel during language comprehension. In a recent study this conclusion was chal-
lenged by [DMK16]. Similar to [HHBP04], the authors used correct sentences,
semantically violated sentences and sentences violated by world knowledge. In
contrast to [HHBP04], the critical word was kept constant. In addition to ana-
lyzing standard measures for component onset, i.e. the fractional area under the
N400 curve and the relative-criterion-peak latency measure, they used a cluster-
based permutation test that is sensitive to picking up differences by taking into
account biophysical constraints in the testing procedure and which are able to
deal with the multiple comparison problem. Specifically, this method allowed to
determine the time point at which each of the conditions reached a fixed 2 µV cri-
terion starting from the peak preceding the N400. When using this method, the
authors found that the semantic violation condition differed significantly from
the world-knowledge condition with regard to the time point when the 2 µV
criterion was reached: the former crossed this criterion earlier than the latter.

The second study is [PK12] who found that the onset of the LPP to selec-
tion restriction violations in examples like ‘The pianist played the music while
the bass was strummed by the drum / coffin during the song’ was somewhat
later (approximately 100 ms) than the LPP evoked on verbs in semantic illu-
sion data like ‘The restaurant owner forgot which waitress the customer had
served’. Applied to our approach, the results of the study in [DMK16] support a
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sequential execution of the operations associated with linking and the semantic-
cognitive property. Success of the linking operation is a precondition for the
execution of the operation associated with the semantic-cognitive property. The
result by [PK12], on the other hand, is evidence for a temporal dissociation of
the two conditions evoking an LPP: failure of linking and violation of a freeness
constraint.

3 The Formal Framework

In order to account for the empirical neurophysiological findings in the previous
sections in theoretical linguistics it is necessary develop a truth-theoretical formal
semantics that reflects the empirical results. Our approach is based on Frame
Theory and Incremental Dynamics extended by continuations.

3.1 Frame Theory

Frames are elements of a separate domain Df of frames. Each frame is related to
a particular object (an individual or a (complex) event) as its root and is a partial
description of that object in a particular world. Being a partial description of an
object, a frame is linked to a relational structure that is built by (finite) chains
of attributes. This link is captured by a function θ which maps a frame f to a set
of pairs θ(f) = {〈R1, o1〉, . . . 〈Rn, on〉}; each pair consists of an attribute chain
Ri and an object oi that is related to the root of the frame by the chain. The
Ri are 3-ary relations (Ri ⊆ Df × Do × Do) that are functions in the sense that
different objects cannot be related to the frame root by the same chain. Being
partial descriptions, frames can be ordered by the information ordering �. A
frame f ′ is an extension of a frame f (f � f ′) iff (i) f and f ′ have the same root
and (ii) θ(f) ⊆ θ(f ′). Furthermore, f ′′ is said to be a subframe of f (f ′′ � f) if
it is embedded in f , that is in f there is a chain connecting the root of f with
the root of f ′′ (e.g., a conductor frame is a subframe of a concert frame). For a
given object, its associated frame stores information got during a discourse so
far as well as world knowledge. Besides the domain Df , there are the domains
Di of individuals and the domain De of events, which together make up the
domain Do of objects. We extend our approach in [NP19a] by set-valued frames
for the current situation. Situation models sm are based on complex events.
Their associated frames fsm have an attribute actions whose value is the set
of actions (events) occurring in this scenario together with an associated frame
(denoted by a(fsm)). A second attribute is participants whose value is a set of
individuals together with an associated frame p(fsm). Each element of this set
is related to at least one action or one other participant, the set of these pairs
pr(fsm) is the value of the attribute participancy relation. The value of the
attribute order is a set o(fsm) of pairs of events that preorders the value of
the actions attribute. Situation frames are sorted by SM which are sorts of
complex events like ‘wintery scenario’ or ‘restaurant scheme’.
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Our frame theory is embedded into a particular type logic that combines de
Groote’s continuation-based framework with van Eijck’s Incremental Dynam-
ics, [DG06,vE01]. De Groote, [DG06], extends Montague’s framework with a
continuation-passing style technique. In addition to the two basic types e of
entities and t of truth values, there is a third type γ, representing the type of
contexts or environments. Terms of this type store the information from what has
already been processed in the computation of the meaning of the whole discourse,
[Leb12]. The type γ is taken as a parameter which can define any complex type.
This has the effect that the context can easily be elaborated without affecting
the core of the logical framework, [Leb12]. For example, in [DG06] the context is
a list of objects (or discourse referents), whereas in [Leb12] it is taken as a list of
propositions or a list of pairs consisting of an object and a proposition. The inter-
pretation of a sentence can change the context, e.g. by adding a new object or
by adding an anaphoric relationship between discourse referents. This updated
context needs to be passed as an argument to the interpretation of the next
sentence. In De Groote’s approach this requirement is implemented by defining
the meaning of a sentence not as a set of contexts or a relation between contexts
but as a function of its (input) context and a continuation with respect to the
computation of the meaning of the whole discourse. Specifically, continuations
are of type 〈γ, t〉. Hence, a continuation denotes what is still to be processed
in the computation of the meaning of the whole discourse, [Leb12]. As a result,
the interpretation of a sentence is of type 〈γ, 〈〈γ, t〉, t〉〉 = Ω. For example, the
interpretation of (23-a) is (23-b).

(23) a. John loves Mary.
b. λc.λφ.love(j)(m) ∧ φ(c∗).

In (23-b) c∗ is the context obtained by updating the input context c. The con-
junct φ(c∗) indicates that an updated context is passed as an argument to the
continuation of the proposition expressed by (23-a). If the context c of type γ
is interpreted as a list of objects (or discourse referents), both proper names in
(23-a) contribute an object. For example, the interpretation of ‘John’ is (24).

(24) λP.λcφ.Pjc(λc′.φ(j :: c′)).

In (24) P is a dynamic property of type 〈e,Ω〉 and :: is an update function
of type 〈e, 〈γ, γ〉〉, i.e. it maps an object and a context to a (new) context.
Applied to (23-b), the updated context is c∗ = j::m::c. When taken together,
the interpretation is (25) and the updated context j::m::c is accessible by future
computations.

(25) λc.λφ.love(j)(m) ∧ φ(j :: m :: c).

The update of a discourse interpreted as D with a sentence interpreted as S
both of type Ω is defined by λc.λφ.D(c)(λc′.S(c′)(φ)).

We follow [NP19b,NP19a,NPG18], based on Incremental Dynamics, [vE01],
and take a context as a stack. A stack can be thought of as a function from an
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initial segment {0, . . . , n − 1} of the natural numbers N to entities of a domain
Do that are stored in the stack. Hence, a stack can equivalently be taken as a
sequence of discourse objects {〈0, d0〉, . . . , 〈n − 1, dn−1〉} of length n. If c is a
stack, |c| is the length of c. By c(i) we denote the object at position i at stack c.
A link between stack positions and discourse objects that are stored at a position
is established by two operations. First, there is a pushing operation:

(26) c�d := c ∪ {〈|c|, d〉}.

Pushing an object d on the stack extends the stack by this element at position
|c|. The second operation retrieves a discourse object from the stack.

(27) ret := λi.λc.ιd.c(i) = d.

We write c[i] for ret(i)(c). In our application objects stored at a position i are
pairs consisting of an object and an associated frame. Such objects are called
discourse objects.

3.2 Adapting the Framework

The framework introduced in the last section still resembles standard semantic
theories in one important respect. The interpretation of sentences is derived
in parallel to its syntactic structure. This way of deriving the interpretation
is not built on an incremental left-to-right processing strategy. For example, a
sentence with a transitive verb is derived by first combing the verb with the direct
object and only then is the resulting VP combined with the subject. By contrast,
neuro- and psycholinguistic studies and experiments are based on an incremental
left-to-right processing strategy. This makes it necessary to calculate semantic
representations for non-constituents. For example, in the context of ‘The cat
chases . . . ’ it is necessary to have a semantic representation of the combination of
the NP and the verb before the second NP is encountered, [BS17]. This example
also shows a second problem. ‘The cat’ can be interpreted e.g. as actor, as theme
or as experiencer. This indeterminacy of a thematic role assignment must be
modelled too in a formal framework.

Incremental Left-to-Right Processing. As our starting point for imple-
menting an incremental left-to right processing strategy we choose [BS17], which
presents an event semantics with continuations based on [DG06]. In this frame-
work all expressions are translated as terms of type 〈〈t, t〉, 〈t, t〉〉. For example,
the general format for the interpretation of a verb is (28).

(28) λc.λp.c(∃e(verb(e) ∧ p)).

In (28) c is of type 〈t, t〉 and ranges over continuations which take the existential
quantifier in their scope; p is of type t and ranges over continuations within
the scope of the quantifier and which provide additional information about the
event. (28) maps two continuations to a truth value. This type is also used
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for the determiner ‘a’ and the interpretation of common nouns. This has the
effect that the general rule of combination is functional composition: �A+B� :=
λc.(�A�(�B�(c))). A verb and its arguments are combined by thematic roles,
which too are of type 〈〈t, t〉, 〈t, t〉〉.
(29) a. �a� := λc.λp.∃xi.c(p).

b. �boxer� := λc.λp(boxer(xi) ∧ c(p)).
c. �agi� := λc.λp.c(p ∧ agent(e, xi)).
d. �a boxer� := λc.λp.∃xi.(boxer(xi) ∧ c(p ∧ agent(e, xi))).

Note that the interpretation of common nouns and the determiner ‘a’ contains a
(possibly free) indexed object variable. When a determiner and a common noun
are combined, it is supposed that both indices are the same. Furthermore, the
interpretation of a thematic role contains a free event variable which is assumed
to be the same variable as the event variable of the verb. This has the effect that
constructions with more than one verb cannot be accounted for.

We will adapt this framework in the following way. First, instead of having
contexts of type t and continuations of type 〈t, t〉, we follow de Groote and have
contexts of type γ and continuations of type 〈γ, t〉. Second, in our approach
objects that are associated with the interpretation of lexical elements are always
related to the current situation model and/or the current event model, which
are interpreted as discourse objects, i.e. pairs consisting of a (complex) event
and an associated frame. Both kinds of models are not fixed once and for all but
change during the processing of a discourse. For events, this is obvious because
with each verb a new event is introduced. Empirical evidence for a fine-grained
individuation of situation models comes from ERP-experiments using data like
the following.

(30) Jörn ist mit dem Frühstück fertig. Er geht in die Küche, wo er Teller
abwäscht. Dann beginnt er mit dem (a) Abtrocknen / (b) Joggen, . . .
‘Jörn has finished breakfast. He goes to the kitchen, where he washes
plates. Then he starts to (a) dry / (b) jog, . . . ’

[DDC18] found an N400 effect at the critical word ‘Joggen’ compared to the
critical word ‘Abtrocknen’. This is taken by the authors as evidence that com-
prehenders expect the description of a situation model (or a complex event) to
be continued in the next sentence or the subsequent discourse. Whenever this
expectation is not satisfied because a new situation model (or complex event)
is described an N400 effect is elicited. For example, in (30) a breakfast scenario
is followed by a scenario describing an outdoor activity. Hence, two different
situation models are involved. In our approach situation and event models are
similar to indexical elements of a discourse like the speaker, the speech time and
the reference time which, too, change during the processing of a discourse due
to new bottom-up information. We therefore assume that the current situation
model and the current event model are stored in particular stack position called
sm and em, respectively. Specifically, we assume that they are stored at the posi-
tions 0 and 1, respectively. This has the effect that the current situation model
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and the current event model are always accessible if new bottom-up information
is processed. In contrast to other elements like the speaker or the reference time
situation models and event models are built up incrementally.

The Interpretation of DPs. We follow [Cha15] and [BS17] and assume that
the interpretation of a verb in the lexicon does not (yet) provide information
about thematic roles. Rather, thematic roles are introduced separately. Specifi-
cally, we assume the following structure for DPs: [[DetN ]DP1 [TR]]DP2 . Whereas
N provides sortal information, TR assigns a thematic role by which the object
introduced by the interpretation of Det is related to the event introduced by the
interpretation of the verb. On this interpretation the assignment of a thematic
role can be taken as a non-deterministic operation that introduces branching.

Evidence for such a non-deterministic assignment is the fact that semantic
processing in the brain is done in a left-to-right, incremental manner (see [BS17]
for examples and further evidence). Further empirical evidence for such an anal-
ysis of thematic roles comes from studies involving languages like German in
which the thematic role can at least sometimes be uniquely determined from the
case of the determiner. Consider the following examples from [FS01].

(31) a. Paul fragt sich, welchen Angler der Jäger gelobt hat.
‘Paul wonders which angler the hunter praised.’

b. Paul fragt sich, welchen Angler der Zweig gestreift hat.
‘Paul wonders which angler the branch caught.’

The authors observed an N400 effect at the position of an inanimate subject
(actor) following an animate object (theme) in German verb-final sentences,
(31-b). No such effect was found for (31-a) where both arguments are animate.
In our approach this is explained as follows. In (31-b) ‘welchen Angler’ is (deter-
ministically) assigned the theme role because ‘welchen’ being accusative only
allows for this role. As an effect, the actor argument is expected next. However,
‘Zweig’, being inanimate, cannot be assigned this role so that an N400 effect
compared to ‘der Jäger’ is elicited (see [BSS08] for a similar analysis based on
predictions). If in English or Dutch thematic roles were assigned on the basis of
a thematic role hierarchy (actors outrank themes) or a syntactic analysis based
on an NP VP structure, one would likewise expect an N400 to be elicited on the
verb or the second noun in fragments like ‘For breakfast, the eggs would eat . . . ’
and ‘De speer heeft de atleten . . . ’. However, no such effects are observed (see
[BSS08] for further discussion).

The Interpretation of Common Nouns and Verbs. The interpretation
of common nouns and verbs has to reflect the fact that each lexical element
of one of these two syntactic categories can possibly modulate the amplitude
of the N400 as well as that of the LPP. According to the analysis of these
ERP-components given above, the N400 amplitude is modulated by a linking
property and paradigmatic relationships based on features. By contrast, the
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LPP is related to the failure of a constraint. Either linking fails or a freeness
constraint is violated. These properties and constraints apply to the level of
situation models and/or the level of event models. Following the considerations
in Sect. 2.4, we further assume that there is a temporal dissociation between the
two properties: the linking property applies before paradigmatic relationships
are applied.

The relation between these constraints and our formal framework is the fol-
lowing. Consider the case of common nouns.2 They are part of DPs with the
structure [[DetN ]DP1 [TR]]DP2 . Each component in this structure is related to a
particular update operation, which, in turn, is correlated to a particular informa-
tion ordering. Furthermore, the properties associated with the ERP components
are related to these constituents and their update operations in a particular way.
Similar to standard dynamic approaches, the interpretation of the determiners
‘a’ and ‘the’ is a domain expansion operation: a new object is pushed on the
stack. Hence, this operation is directly related neither to the current situation
model nor to the current event model. The interpretation of the nominal element
(i.e. the head noun) is related to linking and paradigmatic relationships based on
features and applies to the level of the current situation model. Linking is mod-
elled as an update operation that targets the participancy relation attribute
in these models. This operation tests whether the frame component of a newly
introduced discourse object o can be a subframe of an extension of the frame
component of an object o′ that has already been introduced into the current sit-
uation model. If this test is successful, the pair 〈o′, o〉 is added to the value of the
participancy relation attribute. For example, in (15-a) above the conductor
can be linked to the concert by extending the concert frame with the attribute
conductor whose value is the frame associated with the interpretation of ‘con-
ductor’ in the second sentence. Linking fails, if no such relationship between o
and some o′ in the situation model can be established. In this case none of the
remaining update operations are executed. The update operation associated with
paradigmatic relationships is related to the participants attribute. It adds the
newly introduced object together with its associated frame to the value of this
attribute. The precondition of this update operation is a successful execution of
the linking update operation. This means that there must be an o′ such that
〈o′, o〉 is an element of the participancy relation attribute. This operation
has no side-effects, i.e. it always succeeds provided its precondition, the update
operation associated with the linking property, is satisfied.

The operations associated with linking and paradigmatic relationships based
on features together integrate a new object into the current situation model.
However, success of these two operations does not guarantee that the newly
introduced object can be successfully integrated into the current event model as
well. Integration at the level of an event model is always related to the current
event and a thematic role. This integration operation fails if a freeness constraint
associated with the sort of o is violated. If successful, this update operation adds

2 For verbs, we assume a decompositional structure that is strictly similar to that for
DPs.
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the pair 〈Rtr, o〉 to the value of θ for the current event. This operation is related
to the TR element in a DP structure. The relationships between DP structure,
update operations, and the levels and attributes they apply to is summarized in
the Table 1 and formally defined in Sect. 3.3.

Table 1. Update operations and the level and attributes they apply to.

Operation DP constituent Level Attribute

Pushing a stack object Determiner Global stack n.a.

Linking Head noun SM Participancy relation

SEM Head noun SM Participants

Integration EM TR element EM Thematic roles

3.3 Formal Definitions of the Update Operations

The update operations listed in Table 1 are uniformly of type 〈γ, 〈〈γ, t〉, t〉〉 = Ω.
The update operation interpreting the determiners ‘a’ and ‘the’ is defined in
(32).

(32) a. �det� = λc.λφ.∃o.∃fo(θ(fo) = {〈Ro, o〉} ∧ root(fo) = o ∧
φ(updexp(c, o, fo))).

b. updexp(c, o, f) = ιc′.(c′ = c�〈o, f〉).
The determiners ‘a’ and ‘the’ push a new discourse object on the stack, i.e. they
add such an object to the input context. Ro is the lift of the domain Do to the
relational level with frames: Ro(f)(o)(o′) = 1 iff root(f) = o ∧ o = o′ ∧ o ∈ Do.
The frame component is the most general one which applies to any object in
the domain because so far no sortal information is provided (see [NP19a] for
details). The update operation correlated with linking is defined in (33).

(33) a. �linkingσ� = λc.λφ.∃o′.∃fo′ .∃o.∃fo.∃f ′
o′(〈o′, fo′〉 ∈ p(fc[sm]) ∧ o ∈

Dσ ∧ c[|c| − 1] = 〈o, fo〉 ∧ fo′ � f ′
o′ ∧ fo � f ′

o′ ∧ φ(updlink(c, o, o′))).
b. updlink(c, o, o′) = ιc′.(c′ ≈〈o′,o〉 c).
c. c′ ≈〈o′,o〉 c := p(fc[sm]) = p(fc′[sm]) ∧ a(fc[sm]) = a(fc′[sm]) ∧

o(fc[sm]) = o(fc′[sm]) ∧ pr(fc′[sm]) = pr(fc[sm]) ∪ {〈o′, o〉} ∧ ∀i(0 ≤
i < |c| ∧ i �= sm → c′[i] = c[i]) ∧ |c| = |c′|).

The constraint o ∈ Dσ is related to the sortal information of the head noun. For
example, for ‘dog’, σ = dog and Dσ is the set of dogs. The linking operation
tests whether the frame fo associated with the newly introduced object o is a
subframe (fo � f ′

o′) of an extension f ′
o′ of the frame fo′ (fo′ � f ′

o′) associated
with an object o′ already in the current situation model (see [NP19a] for def-
initions and further details). If this test succeeds, the pair 〈o′, o〉 is added to
the participancy relation attribute of the current situation model. It is not
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required that o′ be an element of the input context c. This is the case because
objects can be added via a modification operation (accommodation) to the cur-
rent situation model if linking fails. (see below Sect. 4.3 for details). The frame
component is not added because this is accounted for in the update operation
correlated with paradigmatic relationships based on features, which is defined in
(34).

(34) a. �semσ� = λc.λφ.∃o.∃fo.∃f ′
o(c[|c| − 1] =

〈o, fo〉 ∧ θ(f ′
o) = θ(fo) ∪ {〈Rσ, o〉} ∧ φ(updsem(c, o))).

b. updsem(c, o) = ιc′.(c′ ≈〈o〉 c).
c. c′ ≈〈o〉 c := p(fc′[sm]) = p(fc[sm])∪{〈o, f ′

o〉}∧a(fc[sm]) = a(fc′[sm])∧
o(fc[sm]) = o(fc′[sm])∧ pr(fc′[sm]) = pr(fc[sm])∧∀i(0 ≤ i < |c| ∧ i �=
sm → c′[i] = c[i]) ∧ |c| = |c′|).

This operation always succeeds provided the preceding update operation asso-
ciated with linking succeeds. It adds the newly introduced object together with
its associated frame o at position c[|c| − 1] to the participants attribute of
the current situation model. The associated frame is extended by the sortal
information provided by the head noun. Similar to Ro, Rσ is the lift of the
subdomain Dσ of objects of sort σ to the relational level: Rσ(f)(o)(o′) = 1 iff
root(f) = o ∧ o = o′ ∧ o ∈ Dσ. The update operation correlated with a thematic
role constituent is defined as follows.

(35) a. �tr� = λc.λφ.∃o.∃fo.∃Rtr.∃eem.∃feem
.∃f ′

eem
(c[|c| − 1] = 〈o, fo〉 ∧

c[em] = 〈eem, feem
〉 ∧ ¬∃o′.〈Rtr, o

′〉 ∈ θ(feem
) → (θ(f ′

eem
) =

θ(feem
) ∪ {〈Rtr, o〉} ∧ φ(updtr(c, o,Rtr, f

′
eem

)))).
b. updtr(c, o,Rtr, f

′
eem

) = ιc′.(|c′| = |c| ∧ ∀i(0 ≤ i < |c| ∧ i �= em →
c′[i] = c[i]) ∧ c′[em] = 〈eem, f ′

eem
〉).

The update operation correlated with the thematic role constituent tests whether
this role is already defined for the current event model. If this is not the case,
this model is updated by adding the thematic role together with the object o to
the value of θ yielding a new frame f ′

eem
.

In contrast to the interpretation of DPs, the interpretation of verbs is related
neither to a determiner nor to a thematic role. Therefore, the four update opera-
tions are related to the interpretation of a verb as a whole and are not distributed
over several constituents. The first three update operations do not differ from
those for DPs except for the fact that the newly introduced object is added to the
actions attribute. The interpretation of a verb introduces a discourse object on
the stack. This object needs to be linked to an object that is already an element
of the current situation model. If this operation is successful, the pair relating
the event to this object is added to the participancy relation of the current
situation model and next the object together with its associated frame is added
to the actions attribute of the current situation model. The update operations
differs w.r.t. the thematic role. In the case of a DP the thematic role constituent
relates an object to the current event model by a thematic role. By contrast,
the interpretation of a verb adds sortal information about the current event to
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this model. Hence, the contribution of tr is the relation Rσ and not a thematic
role Rtr. Furthermore, the event eem is updated by o because this event has now
been introduced.

(36) a. �trσ� = λc.λφ.∃o.∃fo.∃eem.∃feem
.∃f ′

eem
(c[|c|−1] = 〈o, fo〉∧c[em] =

〈eem, feem
〉∧θ(f ′

eem
) = θ(feem

)∪{〈Rσ, o〉}∧φ(updtr(c, o,Rσ, f ′
eem

)).
b. updσ(c, o,Rσ, f ′

eem
) = ιc′.(|c′| = |c| ∧ ∀i(0 ≤ i < |c| ∧ i �= em →

c′[i] = c[i]) ∧ c′[em] = 〈o, f ′
eem

〉).
Each update operation is correlated with a particular information ordering. For
situation models, the most general ordering is defined in (37).

(37) sm �sm sm′ iff o(fsm) ⊆ o(fsm′) ∧ pr(fsm) ⊆ pr(fsm′) ∧ ∀〈o, fo〉 ∈
p(fsm) ∪ a(fsm) : ∃〈o, f ′

o〉 : fo � f ′
o.

According to (37), situation model sm′ extends situation model sm if it contains
at least the information about all objects in sm. Specifically, sm′ extends sm by
(i) possibly having information about more objects, (ii) by having more infor-
mation about objects in sm or (iii) by having more information about relations
between objects. The information ordering correlated with the update operation
associated with linking is defined in (38).

(38) a. A situation model sm is related to a situation model sm′ by a
linking relation, denoted by sm �link sm′, iff ∃o.∃o′ : o′ ∈ p(fsm) ∪
a(fsm)∧pr(fsm′) = pr(fsm)∪{〈o′, o〉}∧p(fsm) = p(fsm′)∧a(fsm) =
a(fsm′) ∧ o(fsm) = o(fsm′).

b. �link⊆�sm.

The (possible) extension is related to the participancy relation attribute of a
situation model. �link only reflects the changes of a (successful) linking operation
to the value of the sm position. It does not reflect the test that is executed inside
this operation. However, this test only checks whether the linking operation can
be successfully executed. The information ordering correlated with the update
operation associated with paradigmatic relationships based on features is defined
in (39).

(39) a. A situation model sm is related to a situation model sm′ by paradig-
matic relationships based on features, denoted by sm �sem sm′, iff
∃o.∃fo(p(fsm′) = p(fsm)∪{〈o, fo〉}∧pr(fsm) = pr(fsm′)∧o(fsm) =
o(fsm′) ∧ a(fsm) = a(fsm′)).

b. �sem⊆�sm.

Both �link and �sem are subrelations of �sm. The information ordering corre-
lated with the updated operation associated with thematic role assignment is
defined in (40).
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(40) An event model em is related to an event model em′ by a thematic role,
denoted by em �tr em′, iff ∃e.∃fe.∃f ′

e(em = 〈e, fe〉 ∧ em′ = 〈e, f ′
e〉 ∧

θ(fe) ⊆ θ(f ′
e)).

The ordering em �em em′ on event models holds if the two models describe the
same event and if f ′

e contains at least the information about that event that fe

contains. The additional information is either sortal information about the event
or information relating the event to an object by means of a thematic role.

4 Probability Distributions and Information Metrics

Having defined update operations together with their information orderings that
are related to ERP components, we are interested in probabilities between a
given context and its possible continuations relative to these update operations
and orderings. The relation between probabilities and the ERP components, in
particular the N400, is the following. The N400 amplitude on a word w in a
context c = w1 . . . wt is typically inversely related to its conditional probability
given this context: P (w | c), [KJ16]. Underlying this relation is a model of online
processing according to which at every step during this processing there exists
a probability distribution over the words that could be encountered next. On
this view, a prediction is simply the presence of such a probability distribution,
(see [KJ16] for an overview). This conditional probability can be measured in
at least two ways. The first way uses subjective human ratings and is based on
the notion of cloze probability. Participants are presented the context plus the
target sentence with the critical word missing. They are then asked to fill in the
first word that comes to their mind. The cloze probability is the percentage of
participants who provide this word as the filler. A second way of quantifying
predictability is as the information-theoretic notion of surprisal. Given an initial
sequence of words w1 . . . wt−1, wt can be viewed as a random variable. Its sur-
prisal (or self-information) is defined as the negative logarithm of the conditional
probability P (wt |w1 . . . wt−1) and is estimated by probabilistic language models
trained on large text corpora. In contrast to these strategies, we define probabil-
ities not at the level of word forms (or referring expressions) but at the semantic
level. Interpreting lexical items as objects of type Ω has the effect that each
input context is related to its set of possible continuations on which probability
distributions can be defined. More specifically, one has the following. For a given
context c, λφ.T (c)(φ) is of type 〈〈γ, t〉, t〉 and, therefore, a set of continuations.
Each continuation is a set of contexts. The contexts in a continuation can be
ordered according to one of the information orderings defined in the preceding
section. It is therefore necessary to lift the orderings on these models in a first
step to the level of contexts. Since there are three orderings, we get a total of
three lifts:

For the ordering correlated with the update operation associated with linking,
the lifted ordering on contexts is defined in (41-a).

(41) a. c �link c′ iff c[sm] �link c[sm′].
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b. c �sem c′ iff c[sm] �sem c[sm′].
c. c �tr c′ iff c[em] �tr c′[em].

For example, the lifted ordering correlated with the update operation associ-
ated with linking c[sm] �link c[sm′] requires that the frame component of the
discourse object stored in c[sm′] extends the corresponding component in c[sm]
according to (38). The other two lifted orderings are defined analogously.

4.1 Probability Distributions on Frames

Next we define properties of frames. We start with properties of events in
event models. Let the current event be e of sort σ with a frame fe and
θ(fe) = {〈R1, o1〉, . . . 〈Rm, om〉}. Each Ri is a relation that maps fe and its
root to a (unique) object o. Hence, to each Ri corresponds the property of
frames Qi = {f | ∃o.Ri(f)(root(f))(o)} = dom(Ri). The frame fe is therefore
related to the property Q1 ∩ . . . ∩ Qm. If the next expression is a DP, it con-
tributes the discourse object 〈o, fo〉 with θ(fo) = {〈R′

1, o
′
1〉, . . . , 〈R′

k, o′
k〉}. Rel-

ative to the current event model, this triggers a move along the information
ordering �tr based on the update operation tr defined in (35). Let tr1 . . . trl

be the thematic roles defined for events of sort σ. If in the given context
tr1, . . . , trj have already been discharged, information growth is possible only
with respect to the thematic roles trj+1, . . . trl. Hence, fo is related to fe by
some thematic role trk, j + 1 ≤ k ≤ l with interpretation Rtrk

. One therefore
has θ(f ′

e) = θ(fe) ∪ {〈R′
1, o

′
1〉, . . . , 〈R′

k, o′
k〉} and Qf ′

e
the corresponding property

of frames.
We define conditional probability functions on subsets of Df . P�em

(Qf ′ |Qf )
is the probability that frame f can be extended to frame f ′ by a move along the
information ordering �tr. P�tr

(Qf ′ |Qf ) > 0 indicates that frame f ′ is accessible
from frame f relative to �tr. The probability P�tr

of a move along �tr depends
on the context. For example, given that the actor of an event has already been
introduced, the probability of extending the frame of the current event by this
relation is 0 because the corresponding update operation fails.

For situation models, properties of frames are defined in a way similar to that
for event models. Given a situation model sm with associated frame fsm and
θ(fsm) = {〈R1, S1〉 . . . , 〈Rn, Sn〉}, the corresponding property is Q1 ∩ . . . ∩ Qn

where Qi = {fsm | ∃S.Ri(fsm)(root(fsm))(S)}. Similar to the case of an event
model, the contribution of the next word is based on the discourse object 〈o, fo〉.
For situation models, there are two update operations with corresponding infor-
mation orderings �link and �sem. Hence, one gets two conditional probability
distributions: P�link

and P�sem
. The constraints on these distributions are the

same as in the case of P�em
. For example, P�link

(Qf ′ |Qf ) > 0 means that frame
f ′ is accessible from frame f along the ordering �link.

4.2 Information Metrics: Entropy and Entropy Reduction

The situation model sm stored at the stack of a context c can be taken as a partial
description of a (complete) situation model smc, i.e. one has sm �sm smc. Given
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context c and sm, a comprehender wants to know which smc is described by the
discourse. Each new word that is processed contributes additional information
and therefore (possibly) decreases the uncertainty the comprehender has about
which situation model is described. The comprehender expects the new informa-
tion to comply with her expectations based on discourse principles (linking) and
paradigmatic relationships as well as her world knowledge. The update opera-
tion associated with linking targets bridging inferences. The conductor example
in (15) shows that at this level the N400 amplitude is smallest in the case of
an identity relation as in (15-a). This kind of DP does not exclude any exten-
sions that were possible before this DP was encountered because the information
related to this DP was already known in the input information state. For bridged
DPs, this will in general not be the case because some extensions are excluded
by establishing a linking relation that was not known before. Take, for example,
the case of the jackets in (6). This excludes situations in which the children
were wearing coats or ski suits. If linking fails, no transition along �sem is pos-
sible so that all continuations are discarded. This data suggests that the update
operation associated with linking is related to the information metric of entropy
reduction. Hence, we hypothesize the following relation to the modulation of the
N400 amplitude:

(42) The modulation of the N400 amplitude is monotonically related to
entropy reduction.

Let us make this idea formally precise. One way to proceed is to define
entropy over maximal continuations relative to a particular situation model.
However, the number of possible continuations in such contexts is in general
far too large. We will therefore use another approach and define n-step entropy
instead (see [Fra13] for further details). We start by defining conditional prob-
abilities P�link

(cj | ci) between contexts relative to the ordering �link defined
above for situation models. Let fsmi

be the frame component of the discourse
object stored at position sm in context ci.

(43) P�link
(c2 | c1) =

{
P�link

(Qfsm2
|Qfsm1

) if c1 �link c2

0 otherwise

In the next step we define conditional probabilities for n-step transitions. This
is done by using the chain rule from probability theory.

(44) P�link
(ct+n

t+1 | ct
1) = Πn

i=1P�link
(ct+i

1 | ct+i−1
1 ).

In (44) ct+i−1
1 is the context got from c1 by t + i − 2 moves along the ordering

�link. More generally, cj
i is the context got from context i by j − i moves along

the ordering �link. The definition of n-step entropy is given in (45).

(45) Hn�link
(Φn; ct

1) = −Σct+n
t+1 ∈ΦnP�link

(ct+n
t+1 | ct

1) log P�link
(ct+n

t+1 | ct
1).
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Φn is the set of n-step continuations. Processing word wt+1 leads to the new
context ct+1

1 which drops out of the computation of uncertainty concerning the
situation model described by the discourse. The relevant entropy at this point
is over the probabilities of moves in Φn−1 so that the simplified reduction in
entropy due to wt+1 becomes (46).

(46) ΔHn�link
(Φn; ct+1) = Hn�link

(Φn; ct
1) − Hn−1�link

(Φn−1; ct+1
1 ).

However, using entropy reduction in this way is problematic for cases involving
paradigmatical relationships as in the example of the holiday resort.

(47) They wanted to make the hotel look more like a tropical resort. So along
the driveway they planted rows of palms / pines / tulips.

Recall that for ‘pines’ the N400 amplitude was less enhanced than that for
‘tulips’. However, if for example pines and tulips have the same (low) conditional
probability, they do not differ with respect to entropy reduction. As a result,
the N400 amplitude for ‘pine’ and ‘tulips’ should be the same, contrary to the
empirical findings. This shortcoming is similar to using cloze probabilities. Both
‘pines’ and ‘tulips’ have the same (low) cloze probability.

We suggest the following solution to this problem. One has to compare the
actual (surviving) continuations with the continuations that have the highest
conditional probability. Let us make this precise. Given a particular context c
with c[sm] = 〈esm, fsm〉, there is a maximal sortal constraint on elements of the
values of fsm. This constraint is determined by selectional restrictions, bottom-
up information and world knowledge. Given these constraints, particular exten-
sions are most expected, i.e. have the highest conditional probability relative to
�sem. For example, in the case of (47) these are extensions which assign to the
theme of the planting event objects that are tall trees whose geographical range
are the tropics. Whereas palms satisfy all of these features, pines only satisfy
two (they are trees and tall) and tulips satisfy none of these features. Hence,
the question is: to what degree do the actual found features satisfy the most
predicted ones? This idea can be made precise as follows.

Let the input context got after processing (47) up to but excluding the criti-
cal word be ct and the next word be wt+1 with interpretation 〈o, fo〉. In the case
of (47) this is either ‘palm’, ‘pine’ or ‘tulip’. In all three cases the plant o (i.e.
the palms, the pines or the tulips) can be linked to the event of planting by the
theme relation. One has that fo is a subframe of an extension f ′

o′ of the frame fo′

associated with the planting event o′ (fo � f ′
o′ and fo′ � f ′

o′). Bottom-up infor-
mation only yields the sortal information provided by the head noun. Enriching
this information with world knowledge yields frames with the following values:
θ(fpalm) = {sort = palm,range = tropics, species = plant, subspecies =
tree,height = tall}, θ(fpine) = {sort = pine,range = moderate, species =
plant, subspecies = tree,height = tall} and θ(ftulip) = {sort =
tulip,range = moderate, species = plant, subspecies = flower,height =
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small}.3 These frames will be referred to by ffound. Predictions are calculated
by extensions of ct along the information ordering �sem. Instead of entropy
reduction in the case of linking, we consider n-step conditional probabilities.
Probabilities at the level of contexts relative to the ordering �sem are defined in
a way similar to those for �link.

(48) P�sem
(c2 | c1) =

{
P�sem

(Qfsm2
|Qfsm1

) if c1 �sem c2

0 otherwise

We are interested in those contexts got after n-steps that have the highest con-
ditional probability given ct relative to the ordering �sem. φn is the set of n-step
continuations.

(49) For a given context ct, let Sct = λφ.T (c)(φ). max(c,�sem) =
{ct+n

t+1 | ct+n
t+1 ∈ φn ∧ φn ⊆ Sct ∧ ∀ĉt+n

t+1 ∈ φn : P�sem
(ct+n

t+1 | ct) ≥
P�sem

(ĉt+n
t+1 | ct)}.

Let’s assume for the sake of simplicity that max(c,�sem) is a singleton, i.e.
there is only one continuation of length n. Let c∗ be the maximal element in this
continuation relative to �sem with c∗[smc∗ ] = 〈esmc∗ , fesmc∗ 〉 and p(fesmc∗ ) =
{o1, . . . ok}. Since wt+1 contributed the object o which is linked to the planting
event o′ by the theme relation Rtheme, we need the object oj in p(smc∗) for which
one has 〈o′, oj〉 ∈ pr(fesmc∗ ) and 〈Rtheme, oj〉 ∈ θ(fo′). The frame associated
with oj is foj

. Recall that we are interested in the question: given ffound i.e. the
frame for the palms, the pines or the tulips, what is the percentage of features
that this frame has in common with foj

? The set of features common to both
frames is given by θ∗(ffound) ∩ θ∗(foj

) where θ∗(f) is the projection of θ(f) to
its relational component. Finally, one calculates the percentage in (50).

(50)
|θ∗(ffound)∩θ∗(foj

)|
|θ∗(foj

)| .

If θ∗(foj
) is θ∗(fpalm), one gets: For ‘palm’, (50) yields a value of 1. By contrast,

for ‘pine’, θ∗(ffound) ∩ θ∗(foj
) has three elements which yields a value of 0.60.

For ‘tulips’, finally, one has θ∗(ftulip)∩θ∗(foj
) = {species = plant} and one gets

0.20. Tulips satisfy only the most general feature that is determined by ‘plant‘
for its theme argument.

4.3 The LPP and Exception Handling

Due to lack of space, we can only sketch how the LPP component is related
to our formal framework. By way of example, we will illustrate with the linking
operation. Recall that the linking update operation is based on the establishment
of a bridging inference. So far, there are only two possibilities: such an inference
can be established or not. However, what is required is a threefold distinction

3 To ease readability, we use a simplified notation. For a detailed analysis of this
‘tropical resort’ example refer to [NP17].
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between true and false bridging inferences and the failure of such an inference.
Recall that empirical evidence for such a distinction is twofold. First, N400
amplitudes that correspond to failure of linking in our approach are maximal
and are independent of semantic similarity and paradigmatic relationships based
on features. Second, cases of failure of linking in our approach elicit an LPP
(usually associated with semantic violations) whereas this is not the case for
cases in which linking succeeds but is false according to general world knowledge
(usually associated with world knowledge violation).

We follow [dGL10] and [Leb12] and assume that update operations that have
side-effects depend on a function sel. In our approach, for the linking update,
sel takes a context c, an object o, a frame f and returns, if successful, another
frame f ′. It is defined in (51).

(51) sel(c, o, fo) = ιo′.∃fo′ .∃f ′
o′ .〈o′, fo′〉 ∈ p(fc[sm]) ∧ fo � f ′

o′ ∧ fo′ � f ′
o′ .

By itself, sel is a partial function: If it returns an object o′, linking is successful.
In this case the established bridging inference can either be true or false. If
no object is returned, sel raises an exception to the effect that no object was
found whose frame can be linked by a feature to the frame fo. The exception is
catched and the object will be returned to the exception handler. The handler
introduces a new object into the context whose associated frame allows for a
bridging inference with fo. Hence, the linking update operation is called with
an enriched context that makes a bridging inference possible. Formally, this can
defined in terms of an exception handling mechanism (see [Leb12] for details).

(52) a. D;S = λφ.D(λc.S(c)(φ)) handle (fail fo) with
λφ.D(λc′.∃c.∃o′′.∃fo′′ .∃e.∃fe.∃f ′

e

(c �sm c′ ∧ c[sm] = 〈e, fe〉 ∧ c′[sm] = 〈e, f ′
e〉 ∧ 〈o′′, fo′′〉 ∈

p(f ′
e)∧φ(c′));S λφ.D(λc′.∃o′′.∃fo′′ .φ(updatehandle(c, fo, o

′′, fo′′)));S
b. updatehandle(c, fo, o

′′, fo′′) = ιc′∃e.∃fe.∃f ′
e(|c′| = |c| ∧ ∀i(0 ≤ i <

|c|∧i �= sm → c′[i] = c[i])∧c[sm] = 〈e, fe〉∧c′[sm] = 〈e, f ′
e〉∧a(f ′

e) =
a(fe)∧ o(f ′

e) = o(fe)∧ pr(f ′
e) = pr(fe)∧ p(f ′

e) = p(fe)∪〈o′′, fo′′〉)∧
fo � fo′′ ∧ φ(c′))

In (52) D is the discourse up to the linking operation. It is of type 〈〈γ, t〉, t〉.
S is the update operation associated with linking. handle with takes a set of
continuations, an exception of type χ and a set of continuations and maps it to
a set of continuations. The effect of the exception handling is to execute D with
respect to continuations that are augmented by an addition object together with
its associated frame so that a bridging inference relative to fo becomes possible.
Note that in this case the frame for o′′ can directly be assumed to have the
required attribute (feature) that links it to the frame fo. The revised linking
operation is given in (53).

(53) �linkingσ� = λc.λφ.∃o.∃fo(o ∈ Dσ ∧ c[|c| − 1] = 〈o, fo〉 ∧
φ(updlink(c, o, sel(c, o, fo)))).
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The test for a bridging inference is now part of the sel-function which provides
or fails to provide an argument of the update operation. Our hypothesis for the
LPP is given in (54).

(54) The LPP is related to failure of the sel function to return an object.
In this case the situation model in the input context is updated by a
suitable discourse object. This is a case of accommodation.

For the update operation associated with thematic roles, other handling mech-
anisms are required that modify constraints like those imposed by freeness. We
assume that such constraints are part of the common ground which, in turn, is
part of the initial context of a discourse. Elaborating on this strategy must be
left to another occasion. This account of the LPP may also shed some light on
the fact that the evocation of an LPP is sometimes task-dependent. For example,
the critical word in ‘De bomen die in het park speelden . . . ’ (The trees that in
the park played . . . ’) elicited an LPP effect compared to the expected ‘stonden’
(‘stood’) (and no N400 effect) when participants made explicit sentence accept-
ability judgments about these sentences, but when participants simply read the
sentences for comprehension, the critical words only evoked an N400 effect and
no LPP effect (see [Kup07] for references and further details). In our approach
this difference is explained as follows. Participants execute an exception han-
dling operation (accommodation) if they know that the discourse is continued
or if they have to evaluate the coherence of the discourse so far. If they only
have to read a particular discourse up to a particular point, there is no need to
adapt the current context in order to continue or answer a question related to
its coherence.

5 Comparison to Three Related Models

Three related models that have been proposed in the literature are the Retrieval-
Integration model by Brouwer and colleagues, the MUC-model by Baggio and
Hagoort and the approach by Rabovsky and colleagues that is based on a prob-
abilistic representation of meanings.

The Retrieval-Integration model of Brouwer et al. [BFH12,BCVH17,DBC19],
is based on the assumption that incremental, word-by-word language processing
proceeds in retrieval-integration cycles where each cycle is modelled by a func-
tion process which maps a word form w1 and a context to an updated context.
The function process, in turn, is the composition of two functions retrieve and
integrate. The former maps a word form and the prior context to the disam-
biguated meaning of the word form whereas the latter takes this meaning and
the context and maps it to an updated context. The N400 component reflects
the effort involved in retrieving from long-term memory conceptual knowledge
associated with the eliciting word, which is influenced to the extent to which this
information is cued (or primed) by the preceding context, [DBC19, p. 2]. The
retrieval operation is viewed as a bottom-up process that does not involve inte-
grative semantic processing or semantic composition, [BFH12, p. 134]. Top-down
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information, e.g. from the existing mental representation of the preceding sen-
tence fragment, does play a role, but it adds to the activation pattern and does
not constrain the pattern of activation. A reduced (attenuated) N400 amplitude
reflects facilitated access, and hence retrieval, of lexical information, [DBC19, p.
2]. As an effect, the N400 amplitude for a critical word should be relatively insen-
sitive to the plausibility of a sentence within which it is contained. For example,
if one of two words makes a given sentence implausible, while the other does
not, there will be no N400 effect if both are approximately equally primed by
the preceding context. A by-product of this conception of the retrieval operation
is that the language processing system is able to anticipate or predict upcoming
words, [BFH12, p. 134]. In this approach, the absence of N400 effects in semantic
illusion sentences results from contextually-cued retrieval mechanisms that are
based on semantic similarity or semantic associations, [DBC19, p. 2]. An N400
effect is observed for critical words that are semantically weakly associated with
the prior context. By contrast, if there is a strong semantic association, no N400
effect occurs.

According to the Retrieval-Integration model, late positivities to which the
LPP belongs reflect the word-by-word construction, reorganization or updating
of a mental representation of what is being communicated. It is functionally inter-
preted as the brain’s natural electrophysiological reflection of updating a mental
representation with new information. Each member of this family corresponds to
a specific subprocess of this updating process. Subprocesses include: accommo-
dating new discourse referents; establishing linking relations between discourse
referents; assigning thematic roles to discourse referents; imposing constraints
on discourse referents; revision of already established relations and resolving
conflicts between different sources of information. Integration difficulty does not
result from a conflict between two or more processing streams. Rather, it reflects
the degree to which the current mental representation needs to be adapted to
incorporate the current input, [BFH12, p. 138].

[BCVH17] use a neurocomputational model that is an extension of a Simple
Recurrent Network to implement this approach. This network instantiates the
process function with its two subprocesses retrieve and integrate. The N400
amplitude is an index of the amount of processing involved in activating the
conceptual knowledge associated with an incoming word in memory. Specifically,
the N400 amplitude for a word w is taken as the degree of change that w induces
in the activity pattern of the retrieval layer that implements the ‘retrieve’
subprocess. Similarly, the LPP amplitude for a given word w is estimated as the
degree of change that processing this words induces in the activity pattern of
the integrate which implements the integrate subprocess.

The Retrieval-Integration model and our model have in common that lan-
guage processing is taken as a biphasic process with the first phase indexed by
the N400 and the second by the LPP. The difference is twofold. First, we dis-
tinguish between a global level of the situation model and a local level of the
event model. The representation of an incoming word must be integrated at
both levels, which is modelled by update operations. Integration at the level of
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the situation model is related to the N400. Adding the object is followed by an
integration operation which adds the semantic representation of the incoming
word to the situation model. Since this operation adds new information to this
model, its associated probability distribution is changed. This change leads to a
change in the expectations of the comprehender. Hence, the N400 is related to
an operation that changes and, therefore, constrains the model.

In both models the LPP is indexed by integration. However, the set of oper-
ations modelling this integration operation is only a subset of those assumed
in the Retrieval-Integration model. In the latter model integration captures all
kinds of semantic update operations, whereas in our model these operations are
restricted to those related to the current event model. For example, the LPP is
related to establishing a linking operation.

Rabovsky et al. [RHM18], interpret N400 amplitudes as the change induced
by an incoming word in a probabilistic representation of meaning. In this model
each word in a sentence provides clues that constrain the formation of a proba-
bilistic representation of the event described by the sentence, [RHM18, p. 693].
The context and each word is represented by a set of activation units which are
modelled as probability distributions over features. Examples of such units are
‘Agent’, ‘Action’ and ‘Patient’. Features for the ‘Agent’ unit include ‘woman’,
‘man’, ‘boy’ and ‘girl’ and capture semantic similarities among event partic-
ipants. The magnitude of the activation update produced by each successive
word of a sentence corresponds to the change in the model’s probabilistic repre-
sentation that is triggered by that word, [RHM18, p. 693]. The N400 amplitude
of the n-th word is defined as the semantic update (SU) induced by this word.
This update is defined as the sum of the absolute values of the change of each
unit’s activation (across the model) that the word triggers. For a given unit ai

the change is the difference between the unit’s activation after processing the
n-th word and the activation of this unit prior to processing it, i.e. after the
(n-1)-th word.

(55) N400n = SUn =
∑

i |ai(wn) − ai(wn−1)|.
Consider the sentence fragment ‘I take my coffee with cream and . . . ’. The
activation state associated with this fragment already implicitly represents a
high subjective probability that in addition to cream the speaker takes her coffee
with sugar. As an effect, the state will change very little if ‘sugar’ is in effect
found as the next word and the N400 amplitude is small. If instead ‘dog’ is
encountered, the activation state is changed to a much larger degree so that a
larger N400 amplitude is elicited.

In contrast to most other accounts of N400 activity this model does not
assume separate stages for lexical access and subsequent integration. It resem-
bles an access view in that the change in activation state is fast, automatic and
implicit. However, there is no separate step that consists of the isolated represen-
tation of the incoming word. Rather, the resulting activation state already is the
updated activation state, i.e. the change that is triggered by this word. Hence,
this activation state can be taken as representing the result of integrating the
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representation of the incoming word with the representation of the context. This
model and our model have in common that the effect of processing a word is
represented as a change in information state. However, in contrast to this model,
in our model a static representation can be isolated for each word, which is the
frame representation of the concept associated with this word. Furthermore, in
our model, separate stages of processing are distinguished: the two stages of
N400 activity and the stage indexed by the LPP. By contrast, the resulting
activity state in the Rabovsky et al. approach represents all aspects of the event
described by the sentence, [RHM18, p. 700].4

The approach by Baggio and Hagoort, [BH11], is based on the Memory-
Unification-Control (MUC) model of language processing in the brain. The
memory component is a lexicon that stores phonological, syntactic and seman-
tic information about morphemes, words and other constructions. What gets
stored are unification-ready structures which supply constraints across levels of
description. The unification component combines stored lexical information to
more complex units. This is done by solving (or unifying) sets of constraints
given by the context and an input, say the next word in a sentence. This solving
of constraints is done in a dynamic fashion. Memory supplies constraints for the
Unification component, which retains a context for subsequent stages of mem-
ory retrieval and unification, [BH11, p. 1341f]. Finally, the Control component
presides over executive functions in language like turn taking in conversations.
Each component corresponds to a set of brain regions. The memory component
is localized in temporal regions (superior temporal gyrus, STG; middle tempo-
ral gyrus, MTG; and inferior temporal gyrus, ITG). The unification component
is subserved by the inferior frontal gyrus (IFG) and the Control component is
localized in anterior cingulate and dorsolateral prefrontal cortices.

The N400 is explained as the result of the summation of currents injected by
frontal into temporal areas (unification) with currents that are already circulat-
ing within temporal cortex due to the local spread of activation to neighbouring
neuronal populations (pre-activation). More specifically, the N400 component
reflect reverberating activity within the MTG/STG-IFG network, [BH11, p.
1358f]. Processing an initial fragment of a sentence or a discourse sets up a
context, i.e. a set of unification-ready structures or constraints, in MTG/STG.
This corresponds to the pre-activation component. Encountering the next word
of the sentence/discourse similarly activates a unification-ready structure repre-
senting the meaning of this word. The next step is the unification component,
i.e. the solution of the constraints representing the context and the new word,
which amounts to calculating the unification of the unification-ready structures.
If the constraints representing the context include features that are also part of
the constraint associated with the new word, there will be some overlap between
the populations in MTG/STG associated with the context and those associated
with the word. The relation to the N400 is the following. The larger the overlap
of features between the representations of the context and the new word, the
smaller the amplitude of the N400. Consider the sentence ‘The girl was writ-

4 Though late positivities like the LPP are not captured in this model.
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ing letters when her friend spilled coffee on the paper/tablecloth’. Processing
the initial fragment up to but excluding the final word sets up a representation
of the context that activates more features contained in the representation of
‘paper’ than in the representation of ‘tablecloth’. This is due to features acti-
vated with the representations of the words ‘write’ and ’letters’. As a result, the
N400 amplitude for ‘paper’ is smaller than that for ‘tablecloth’.

Similar to this theoretical account of the N400 we assume that N400 activity
is related to two components: prediction and integration at the level of situa-
tion models. However, whereas in the Baggio and Hagoort account the N400
amplitude is modulated only by the unification component, this amplitude is a
function of both components in our model. Second, in the Baggio and Hagoort
approach unification is an operation at the sentential or discourse level because
the representation of the context and that of the incoming word are combined
(unified) to a new (updated) context. By contrast, in our approach integration
is related to two different levels: the situation model and the event model. The
N400 activity is related to integration in the situation model, i.e. to the combi-
nation of the representation of the incoming word and the representation of the
situation model. Integration at the event model is related to the LPP. Finally, in
our approach stochastic frames are used as representations in the lexicon which
results in a probabilistic framework that allows for a weighting of features.

6 Closing Outlook

We have outlined a formal framework in which results from neuro-linguistic
research on the N400 and the LPP can be incorporated. Obviously, this frame-
work needs to be extended in several directions. Two of the most important
directions are: (i) besides the N400 and the LPP, data on the Left Anterior Pos-
itivity has to be accounted for as well as more data on the N400 and the LPP;
(ii) our implementation of a left-to-right processing strategy only accounts for
simple sentences. Extending it to include constructions like proper quantification
and modification, e.g. in form of adjectives, adverbs or relative clauses, requires
a more complex framework that has to use some kind of storing mechanism (see
[BS17] for a similar argument).
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Abstract. In this paper, we are concerned with the phenomenon of
function word polysemy. We adopt the framework of distributional
semantics, which characterizes word meaning by observing occurrence
contexts in large corpora and which is in principle well situated to model
polysemy. Nevertheless, function words were traditionally considered as
impossible to analyze distributionally due to their highly flexible usage
patterns.

We establish that contextualized word embeddings, the most recent
generation of distributional methods, offer hope in this regard. Using
the German reflexive pronoun sich as an example, we find that contex-
tualized word embeddings capture theoretically motivated word senses
for sich to the extent to which these senses are mirrored systematically
in linguistic usage.

1 Introduction

Theoretical linguists observe with envy the way in which distributional seman-
tics in computational linguistics renders research viable whose foundations were
postulated by clear-sighted structuralists [10,13]. Their interest diminishes upon
seeing that computational linguistics has dealt mainly with parts of speech dom-
inated by content words (nouns, verbs, adjectives), whereas theoretical linguists
firmly believe that function words and morphosyntax define the interesting back-
bone of natural language. In this respect, the focus of computational linguistics
has broadened only in recent years.

This paper brings together the advanced computational tools of distribu-
tional semantics with the interest of formal linguistics in function words and
in particular their disambiguation. We consider a multiply polysemous function
word, the German reflexive pronoun sich, and investigate in which ways natural
subclasses of this word which are known from the theoretical and typological
literature map onto recent models from distributional semantics. Due to the dif-
ferences between lexical and functional polysemy, our results are different from
those of distributional studies of systematic polysemy in content words such
as [5].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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We submit that our results open a window onto patterns of polysemy that
may, in the long run, turn out at least as interesting and relevant to the compu-
tational study of natural languages as content words. What we find in our pilot
is that some traditional subclasses of sich not only map neatly onto clusters pro-
duced by distributional methods, but that others which are predicted by theory
to belong to constructional metaclasses with a wider distribution pervade the
whole clustering space. What is more, the distribution of causative-transitive
vis-à-vis anticausative verb types and of other verb classes partly reproduces
the semantic map of the middle domain on a typological database [15]. We take
these results to be a promising starting point for more in-depth studies of func-
tion morphemes in distributional semantics.

2 Background: Distributional Analysis

Today, distributional analysis is the dominant paradigm for semantic analysis in
computational linguistics. Building on the distributional hypothesis, “you shall
know a word by the company it keeps” [10], it typically represents words as high-
dimensional vectors which summarize the words’ occurrence contexts (see [19]
for an introduction and overview). Traditionally, these vectors were obtained
by counting: each dimension corresponded to one particular linguistic context
(often, another word), and the value in the vector for this dimension was the
co-occurrence frequency of the two words, or some function thereof.

This procedure was increasingly replaced by neural network-based methods,
where the co-occurrence frequencies are not directly used as vectors. Instead,
they form the “output” that the neural network is supposed to predict, and the
vectors are given by the internal parameters of the neural network, now often
called ‘word embeddings’ [3]. Crucially, traditional fundamental intuitions about
distributional semantics mostly carry over to the new paradigm. In fact, some
widely used types of word embeddings are mathematically equivalent to count
vectors to which dimensionality reduction has been applied [17].

At the same time, the move to neural network-based vector learning has
opened the door for innovative network architectures. Prominent among these are
the recently introduced contextualized embeddings. These models concurrently
learn (a) general vectors for word types (lemmas) and (b) specialized vectors for
word tokens (instances) in their local context. In this manner, they overcome
the traditional limitation of distributional semantics, which generally used to
aggregate the contexts of all instances, and thus all senses, into one vector.
The most successful model architecture to create contextualized embeddings
are so-called transformers [20], a class of models which lets each context word
directly influence the representation of the target word, and automatically learns
to weigh these contributions using a mechanism called self-attention. In this
process, which is carried out several times, transformers uncover (some degree
of) implicit linguistic structure such as predicate-argument relations, coreference,
or phrase structure [14].

As introduced above, the focus of this paper is the polysemy of function words
such as sich. Traditionally, distributional analysis has concentrated mostly on
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Table 1. Salient classes of sich, inspired by Kemmer (1991), plus feature representation
(± indicates the possibility of both positive and negative cases depending on context)

Class/Example Predictable Agentive Stressable +lassen Disposition

1. Inherent reflexives: Paul

schämte sich/

‘Paul felt ashamed’

+ ± – – ±

2. Anti-causatives: Die Erde dreht

sich/

‘The earth revolves’

+ – – – ±

3. Change in posture: Paul setzte

sich hin/

‘Paul sat down’

+ ± – – –

4. Typically self-directed: Paul

kämmte sich/

‘Paul combed his hair’

– + – – –

5. Typically other-directed:

Paul erschoss sich/

‘Paul shot himself’

– + + – –

6. Dispositional middle: Die Dose

lässt sich leicht öffnen/

‘The can opens easily’

+ – – + +

7. Episodic middle: Paul lässt sich

beraten/

‘Paul takes advice’

+ + – + –

8. Reciprocals: Die Geraden

schneiden sich im Unendlichen/

‘The lines intersect in the infinite’

- ± ± – ±

content words (common nouns, verbs and adjectives), following the intuition that
these word classes refer to categories whose properties and relational structure
can be learned from distributional analysis [6]. Exceptions notably include dis-
tributional studies of compositionality, which have modeled the semantic effects
of quantifiers [4] and determiners [2] on sentence-level entailment.

Crucially, these studies do not consider polysemous function words. Indeed,
the context of function words is typically so general that traditional methods
of distributional analysis tended to fail in this domain, since any reflection of
the function word meaning was likely to be masked by the topic of the sur-
rounding linguistic material. Consequently, the only (partially functional) word
category that has received more than cursory attention in distributional seman-
tics with regard to senses and disambiguation are prepositions [1,18]. Our study
takes benefit of the development that the contextualized embeddings created by
transformers take a major step towards alleviating the generality problem: Even
if the representation of the word type sich is still too general to be useful, the
embeddings for each instance of sich, arising from the combination of word type
meaning and context, is informative enough for analysis.
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3 Phenomenon: The German Reflexive Pronoun sich

The reflexive pronoun in German is a notorious case of polysemy because pro-
totypical instances such as sich loben ‘praise oneself’ are by far outnumbered by
other uses. These other uses cover large portions of what has come to be known
as the ‘middle domain’ in linguistic typology [15]. The classification in Table 1
provides our simplified overview of this domain in German including examples.

Class 1 is a metaclass, as it assembles historically fossilized combinations of
verbs with reflexive pronouns (sich benehmen ‘to behave oneself’). These verbs
invariably occur with reflexive pronouns. This class includes fossilized combina-
tions of sich with prepositions, such as Kant’s Ding an sich ‘thing in itself’. The
anti-causatives of Class 2 derive non-agentive intransitive uses of transitive verbs
(sich drehen ‘to turn’), potentially expressing a disposition. Class 3 comprises
constructions denoting changes in body posture with obligatory sich, such as
sich setzen ‘to sit down’. Class 4 consists of agentive predicates such as predi-
cates of grooming (sich kämmen ‘to comb one’s hair’) or predicates of assessment
(sich in der Lage sehen ‘to feel equal to doing sth.’) which are typically, but not
exclusively, used with sich. The ‘prototypical’ sich instances (sich erschießen ‘to
shoot oneself’), where sich is used to express the identity of subject and another
argument, are concentrated in Class 5. Another diagnostic to distinguish classes
4 and 5 is that sich is typically unstressed in Class 4, whereas the reflexives of
Class 5 may be stressed. The dispositional middles of Class 6 form a construc-
tion that encodes a disposition of the subject referent (sich leicht öffnen lassen
‘to open easily’). Class 7 is similar, but an episodic event is referred to instead
of the stative property of Class 6 (sich beraten lassen ‘to get advice’). Class 8,
finally, encompasses uses of sich that could be replaced by einander ‘each other,
one another’ and are, hence, reciprocals (sich kennen ‘to know each other’).

One caveat is in order here. The classes are not completely mutually exclusive.
If, for instance, sich legen ‘lay down’ is used as in ...der sich wie eine weiße
Schimmelschicht auf die Kleidung legt... ‘...which covers the clothes like a white
layer of mold’, either Class 2 or Class 3 (with a non-literal use) could host this
example. We avoided multiple classifications and allotted examples of this kind
on a ‘best fit’ basis (Class 2 for the example given).

As the right hand side of the table shows, these eight senses can be distin-
guished in terms of five properties:

– Is sich predictable in this context? Predictability is meant to describe the
property that the reflexive pronoun in the relevant classes cannot be replaced
by another 3rd person pronoun (∗ Paul schämte ihn).

– Is the event agentive?
– Is sich stressable in this context?
– Does the construction involve lassen?
– Does the construction describe a disposition?

In the table, the value ± indicates neutrality (both positive and negative val-
ues exist, depending on context). In our experience, these features can provide
valuable criteria for choosing the right category in manual annotation.
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4 Data and Annotation

As basis of our study, we use the 700M token SdeWAC web corpus [9]. We
selected the first 335 out of more than 5.5 million instances of sich for manual
annotation with the eight classes as defined above. The annotation was carried
out by the two authors individually. We computed Cohen’s kappa as a mea-
sure of inter-annotator agreement and obtained a value of 0.73, which indicates
substantial agreement [16], despite the possible non-exclusivity of the classes.

The confusion matrix is shown in Table 2. The largest classes, according to
both annotators, are Class 1, 2, and 4. There is essentially perfect agreement
on the reciprocals and the middles and some disagreement on Classes 4 and
5 (typically self- vs. other-directed), but most diagreements involve Classes 1
through 3 – specifically Class 1 vs. Class 2 (31 cases – more than half of all
disagreements), and Class 1 vs. Class 3 (8 cases).

Some of the disagreements were oversights by one of the two annotators. How-
ever, there were also cases of systematic differences in judgments. For instance,
the Class 1 vs. Class 2 disagreements often concern instances where the main
criterion for Class 2 (intransitive use of transitive verb) is debatable:

Jedes Jahr wieder stauen sich zur Urlaubszeit die Blechlawinen auf den
Autobahnen [...]
‘Every year again, avalanches of metal back up Ø on the motorways during
holiday time, [...]’

If one is willing to accept this as a reflexive analogue to transitive uses like
Blockaden stauen den Verkehr ‘blockades back up traffic’, this is a case of Class
2, otherwise Class 1.

As for Class 1 vs. Class 3, a recurring problem is to delineate the verbs of
change of posture (Class 3) – in particular with regard to nonliteral uses, which
are frequent for motion verbs. For example,

Die Revision wendet sich nur gegen die Ansicht des Berufungsgerichts [...].
‘The revision only turns against/opposes Ø the view of the appellate court
[...]’

We resolved these disagreements via joint adjudication. The resulting fre-
quency distribution over classes is shown in Table 3. The final labeled dataset
is available, together with the Jupyter notebook documenting the subse-
quent analysis, from https://www.ims.uni-stuttgart.de/forschung/ressourcen/
korpora/sich20/.

5 Experimental Setup

The specific word embedding model we employ is BERT [8], a state-of-the-art
transformer. We use the ‘German BERT cased’ model, which was trained on
a variety of German corpora, including Wikipedia, OpenLegalData, and news

https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/sich20/
https://www.ims.uni-stuttgart.de/forschung/ressourcen/korpora/sich20/
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Table 2. Confusion matrix for sich categories by two annotators

Annotator 1

Class 1 2 3 4 5 6 7 8

Annotator 2 1 143 6 6 1 0 0 0 0

2 25 60 0 2 0 0 0 0

3 2 1 11 0 0 0 0 0

4 6 0 1 28 4 0 0 0

5 2 0 1 3 18 0 0 0

6 0 0 0 0 0 3 0 0

7 0 0 0 0 0 0 8 0

8 1 0 0 0 0 0 0 3

Table 3. Frequency distribution of sich senses in manually annotated sich dataset

Class 1 2 3 4 5 6 7 8 Sum

Frequency 161 84 11 42 22 3 8 4 335

articles [7]. In comparison to the ‘BERT multilingual’ model which can also be
used to model the semantics of German text, the restriction of the training data
to German leads in particular to better tokenization. The model provides 768-
dimensional contextualized embeddings for all tokens presented to it as input.

We experiment with two conditions of presenting the sich instances in con-
text to BERT. Recall that BERT learns contextualized word embeddings – that
is, word embeddings that differ among instances of the same word, reflecting
the influence of context on word meaning. In the first condition, we present
sich instances in their local phrasal context, as approximated by punctuation.
That is, the context is formed by all words surrounding sich up to the clos-
est commas, (semi)colons, or other phrasal delimiters. The reason to use this
oversimplification is that a proper syntactic identification of the current phrase
would have involved full parsing of the sentences, which is still not possible at
the near-perfect accuracy we would require as a starting point for our analysis.

In the second condition, we present them in their complete sentential context.
To illustrate, the underlined part of the following sentence makes up the phrasal
context for the italicized sich (the English gloss is designed so as to match
German word order and punctuation):

Unsere Universität hat exzellent abgeschnitten und war auch nur indirekt
– aufgrund der landesweiten Unterauslastung – lediglich in den 3 Bereichen
Chemie, Physik und Slawistik, tangiert, die für sich genommen allerdings
ebenfalls exzellent dastehen: [...]

‘Our university has performed excellently and was only indirectly affected
– due to the countrywide underutilization – only in the three areas of
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Chemistry, Physics and Slavic Studies, which, considered on their own,
however also appear excellent: [...]’

Our hypothesis is that the phrasal context provides a better basis for distin-
guishing the senses of sich, since its contents are of higher average relevance.
On the other hand, there is no guarantee that our shallow definition of phrasal
context captures all relevant context cues. In the worst case, even the main verb
may not be present in the phrasal context, as the next example illustrates:

Abschließend lässt sich sagen, dass sich der Aufwand für diese Ver-
anstaltung (22 Stunden Zugfahrt an 2 Tagen für 2 Tage Seminar) insofern
gelohnt hat, [...]

‘In sum, we conclude, that Ø the effort for this event (22 hours of train
ride on 2 days for 2 days of workshop) paid off Ø insofar as [...]’

This is why we also present sich in the full sentence context.

6 Exploratory Analysis

As a first step, we perform an exploratory analysis in which we assess to what
extent we can recover the manually annotated senses in the contextualized word
embeddings produced by BERT when presented in phrasal context. We do so
visually, by performing principal components analysis (PCA), a dimensionality
reduction method which constructs a two-dimensional approximation of a higher-
dimensional space by capturing the directions of maximal variation (i.e., dif-
ferences among instances). The result is a 2D representation of our 335 sich
instances, as shown in Fig. 1 (above: all classes, below: without Class 1).

In our estimation, the overall picture is promising. Even though the classes
are not completely separated, clear tendencies are visible. Our observations are:

– Inherently reflexive verbs (Class 1) are interspersed through all event types
and do not form a cluster of their own, as can be expected given their pre-
dictable nature. This motivates our showing a figure with Class 1 removed.

– Typically other-directed reflexive events like ‘shooting oneself’ and typically
self-directed reflexive events like ‘defending oneself’ or ‘combing’ (Classes 4,
5) form neighboring categories in the bottom and right sectors.

– The sectors at the bottom generally assemble agentive causative verb uses,
whereas sectors in the top left corner assemble anticausative verb uses like
‘diminishing’ or ‘revolving’ (Class 2), which involve use of sich in German.
Hence the gradient from top left to bottom right forms a path of growing
agentivity, with traditional middle constructions (Classes 3, 6, 7) literally
occupying the middle of the plot.

– Some of the classes show a ‘core’ surrounded by outlier clouds. For the change-
of-posture verbs (Class 3), the outliers to the bottom and right are formed
by the non-literal uses sich aus dem Verderben erheben ‘to rise from doom’
and sich auf die Rechtsgrundlage stützen ‘to rest on the legal foundation’).
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Fig. 1. Distributional representations of sich instances based on phrasal contexts. All
classes (above), without inherent reflexives (below). Class labels according to Table 1.

– The most inhomogeneous class is the class of self-directed verbs (Class 4),
with one cluster in the mid-left sector and another on the right hand side.
This can be explained in terms of the distinction between PP-sich and DP-
sich [11]: The mid-left ‘core’ of Class 4 consists of the DP cases, e.g. sich
unterziehen ‘to undergo’. In contrast, the outliers are made up of PP cases
like bei sich tragen ‘to carry’. The latter are clearly more causative, in line
with the ‘causation’ gradient described above.
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Fig. 2. Distributional representations of sich instances based on sentential contexts.

For comparison, Fig. 2 shows the instance embeddings for sentential contexts.
The picture is overall similar to the phrasal contexts. However, the clusters for
the classes tend to be even less tight than before, notably for Class 2 (for which
we see instances also at the bottom) and Class 7 (which also occurs at the top).
We interpret these observations as evidence for our hypotheses stated above: the
phrasal contexts – which are on average 12 tokens long – are generally sufficient
to disambiguate sich, while in the full sentential contexts – which are on average
77 tokens long – the contribution of sich is sometimes overwhelmed by the
topic of the complete sentence, as was observed in pre-transformer distributional
investigations. In the spirit of Occam’s razor, we focus on the phrasal context
condition in the remainder of this investigation.1

7 Classification Experiments

The analysis in the previous section took into account only the 335 instances
that we annotated manually. Naturally, it would be desirable to scale up this
analysis to large corpora and to automatically obtain a large number of disam-
biguated sich instances. In order to do so, we trained a classifier which takes the
contextualized embeddings of sich instances as input and returns one of the eight
senses as output. In essence, this classifier learns decision boundaries between
regions in embedding space that map onto different classes.

To gauge the prospects for success in this procedure, we may inspect Fig. 1.
Even though it is dangerous to draw strong conclusions from dimensionality

1 We found a comparable, but slightly lower, performance for the sentential contexts
in the classification experiments reported below. These experiments are part of the
companion Jupyter notebook to this article.
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reduced visualizations (since there is a loss of information compared to the orig-
inal high-dimensional vectors), it appears clear that Class 1 (inherent reflexives)
follows an essentially random distribution and will be hard to separate from the
other classes. For this reason, we carry out two experiments: one where we con-
sider all classes, and one where we leave Class 1 aside. Finally, we report on an
experiment that attempts to predict the individual features of the classes.

7.1 Experiment 1: Classification with All Classes

For classification, we use a Support Vector Machine (SVM) with a linear kernel,
a standard choice of classification model.2 We perform 5-fold cross-validation,
that is, we divide the dataset into five partitions of 20% each and run the model
five times, training on four partitions and evaluating on the fifth.

For evaluation, we apply the standard classification evaluation measure, accu-
racy. As the percentage of correct predictions, accuracy ranges between 0% (all
wrong) and 100% (all correct). As a point of comparison, we consider the most
frequent class baseline, the accuracy achieved when always assigning the pre-
dominant class. According to Table 3, Class 1 is the most frequent class, with a
relative frequency of 48.1% – that is, simply assigning Class 1 to each datapoint
would lead to an overall accuracy of 48.1%. Clearly, an informed model should
outperform this baseline.

The SVM model, using the phrasal context, achieves an accuracy of 63.8%.
This result is some 15 points accuracy above the baseline, but not even two out
of three model’s predictions are correct. This indicates that the classification is
relatively hard to make based on the information present in the word embed-
dings. Table 4 shows a simplified confusion matrix for Class 1 vs. all other classes,
where correct predictions are shown on the diagonal and incorrect predictions
off-diagonal. Indeed, this distinction is the main problem of the classification.
Most Class 1 instances are classified as such, but more than one third of the
instances of other classes are also classified as Class 1. This is consistent with
the classifier’s attempt to model the largest class (Class 1) as well as possible.
Unfortunately, this also means that the smaller classes are not modeled appro-
priately.

However, the blame should probably not fall entirely on the classifier: As we
saw in Sect. 4, the human annotators also ran into problems to agree on some of
the borderline Class 1–Class 2 and Class 1–Class 3 cases, pointing towards the
inherent difficulty of these distinctions.

2 We also experimented with fine-tuning the embeddings, but did not obtain compet-
itive results, presumably due to the small size of the training set.
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Table 4. Experiment 1: Confusion matrix. Aggregated version: shows only Class 1 vs.
all other classes. Overall accuracy of model: 63.8%.

Predicted

Class 1 Other

Actual Class 1 129 32

Other 72 102

Table 5. Experiment 2: confusion matrix for classification among all classes except
Class 1. Full version. Overall model accuracy: 78.7%)

Predicted

Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Actual Class 2 77 1 5 1 0 0 0

Class 3 3 2 5 1 0 0 0

Class 4 4 1 34 3 0 0 0

Class 5 1 0 5 16 0 0 0

Class 6 2 0 0 0 0 1 0

Class 7 0 0 0 0 0 8 0

Class 8 2 0 2 0 0 0 0

7.2 Experiment 2: Classification Without Inherent Reflexives

Motivated by this finding, we tested in a second experiment how well the other
classes can be distinguished from one another. We adopted the same setup as
in Experiment 1 (SVMs with cross-validation), but used only the 174 instances
that were labeled as not Class 1 in the gold standard.

This time, the classifier achieved an accuracy of 78.7%, whereas the most
frequent class baseline is almost unchanged at 48.3% (now the most frequent class
is Class 2). This is a clear improvement over the accuracy shown in Experiment 1
– the model outperforms the baseline by 30 points accuracy. Clearly, the model
is not perfect – however, its performance appears fair given the presence of
ambiguous cases, as discussed above.

The confusion matrix in Table 5 shows that the highest numbers are indeed
on the diagonal. In this setup, the hardest part of the problem appears to be to
distinguish Class 4 from Classes 2 and 3. This corresponds to our observations
in Sect. 6, where we found Class 4 to be represented in a relatively scattered
manner due to its internal heterogeneity (NP-sich vs. PP-sich, nonliteral cases).
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Table 6. Experiment 3: prediction of individual semantic features

Feature Predictable Agentive Stressable +Lassen Disposition

# Instances 335 159 331 335 86

Accuracy 80.0% 88.6% 95.4% 99.4% 96.5%

7.3 Experiment 3: Prediction of Semantic Features

A different approach towards distinguishing among the senses of sich is to con-
sider these senses as bundles of features, as defined in Table 1. Concretely, this
means that we can predict the presence (or absence) of the five features from
the embeddings by phrasing them as binary classification tasks, again with con-
textualized word embeddings as input. This approach enables us to investigate
whether any of these features are particularly easy or difficult to predict.

We carried out this experiment for each of the features, using the same exper-
imental setup, model, and evaluation measure as in Experiments 1 and 2. For
each feature, we removed the instances for classes which are neutral with regard
to this feature (± in Table 1) from consideration.

The results are shown in Table 6, including the number of remaining
instances. Overall, the numbers look positive, with even the hardest feature
showing an accuracy of more than 80% correct predictions.

The easiest feature to predict is ‘+lassen’, which is not altogether surprising,
given the obligatory presence of (an inflected form of) lassen in the context. In
fact, the only error of this classifier is an instance where lassen was over ten words
away from sich. The features ‘stressable’ and ‘disposition’ are also relatively easy
to predict (>90% accuracy). In the case of ‘disposition’, this may be an effect of
correlation with ‘+lassen’, since, excluding the classes that are neutral for this
feature, the ‘disposition’ instances are a strict subset of the ‘+lassen’ instances.
This interpretation is bolstered by the observation that two of the three errors
again involve large distances between sich and lassen, as above. It is interesting
that ‘stressable’ belongs to this category, since stressability is a prosodic property
that might not be reflected directly in word embeddings, and arguably a property
of the construction rather than the individual instance.

The two features that are more difficult to predict are ‘agentive’ and ‘pre-
dictable’. Again, it is not surprising that ‘predictable’ is a hard feature, since this
feature captures idiosyncratic, historically fossilized properties of the predicate
which, as we found over the course of this article, are hard to capture for the
embedding-based methods we employed. There are also some borderline cases
such as the following:

[...] wenn sie sich redlich informiert haben und vom geschichtlichen Hin-
tergrund der Chilbi wissen [...]

‘If they have informed themselves honestly and know about the historical
background of the Chilbi’
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We analysed this instance of sich informieren ‘to inform oneself’ as an inher-
ent reflexive (and thus ‘predictable’) despite the existence of the transitive jmd.
informieren ‘to inform someone’. The reasons for our analysis are that sich is
always unstressed in this collocation, and that ∗er hat sich und andere informiert
‘∗he informed himself and others’ is not possible, further evidence for the inde-
pendence of the two constructions. The classifier, however, did not reproduce
our analysis. At any rate, these results tie in well with our observation in Exper-
iment 2 about the difficulty of distinguishing Class 4 from Classes 2 and 3, which
differ exactly with regard to these two features.

Unfortunately, ‘recomposing’ predictions for the individual features into pre-
dictions about classes is not straightforward. The reason is the partial neutrality
of the classes with respect to the features, which makes the mapping from fea-
tures onto classes underspecified. For example, an instance which is predictable,
not agentive, not stressable, without lassen, and not dispositional, could belong
to either Class 1 or Class 2.

8 Discussion and Conclusion

In this study, we have investigated the use of distributional meaning representa-
tions to characterize the senses of a function word, the German reflexive pronoun
sich. The main outcome of our study is a positive one: the recent advances in
distributional modeling of lexical semantics, namely transformer-based contextu-
alized embeddings, have substantially increased the ‘resolution’ of distributional
analysis: we can now characterize the meaning of function words not only at the
lemma level, but also at the level of individual instances. In turn, this enables us
to computationally model function word polysemy and use the associated tools,
such as visualization and quantitative evaluation, to develop a better under-
standing of the senses at hand.

An important limitation which we encountered in this study was that one
of the senses – (meta-)Class 1, ‘inherent reflexives’ – turned out to be rather
difficult to distinguish from the other Classes, due to the idiosyncratic behavior
of its instances. This is an important take-home message regarding the general-
izability of our approach to other function words or other phenomena in general:
distributional approaches, at the least in the incarnation we considered in this
study, are apt at capturing distinctions that can be grounded in linguistic pat-
terns, but they cannot account well for patterns that are the result of historical
fossilization.

This means that the classification setup that we used in the present study,
does not scale up directly to large corpora, as the results for the other classes
would be polluted by instances of Class 1, and vice versa. Note that this negative
result hinges on the fact that we used the standard formulation of classification,
where we force the model to assign a class to each and every instance. In view of
the very large number of attested sich instances, which number 5.5 million in the
SdeWAC corpus alone, this may not be the best approach. A promising avenue
for future work appears to be experimenting with classifiers that only assign
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a class to instances that they are very confident about. These ‘high-precision,
low-recall’ classifiers would stand a better chance at identifying ‘prototypical’
instances of the various classes (maybe with the exception of Class 1) and should
still be able to collect substantial numbers for each class. Evaluating such an
approach would however require annotating another sample of sich instances,
based on the confidence estimates of the classifiers for the various classes.

Our present study can be compared and contrasted to another recent study
which investigated to what extent word embeddings encode world knowledge
attributes such as countries’ areas, economic strengths, or olympic gold medals
[12]. The findings of that study were remarkably similar to the present one in
that the result was also overall positive, but the difficulty of individual attributes
was directly related to the extent to which these attributes correlate with salient
patterns of linguistic usage in the underlying newswire corpus – high for area,
low for olympic gold medals. Taken together, these observations reaffirm the
tight interactions between linguistic and referential considerations in forming
language, and the difficulty of distinguishing between them in distributional
analysis.
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12. Gupta, A., Boleda, G., Baroni, M., Padó, S.: Distributional vectors encode refer-
ential attributes. In: Proceedings of EMNLP. Lisbon, Portugal (2015)

13. Harris, Z.S.: Distributional structure. Word 10(2–3), 146–162 (1954)
14. Jawahar, G., Sagot, B., Seddah, D.: What does BERT learn about the structure

of language? In: Proceedings of ACL. Florence, Italy, pp. 3651–3657 (2019)
15. Kemmer, S.: The Middle Voice, Typological Studies in Language, vol. 23. John

Benjamins, Amsterdam and Philadelphia (1991)
16. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical

data. Biometrics 33(1), 159–174 (1977). http://www.ncbi.nlm.nih.gov/pubmed/
843571

17. Levy, O., Goldberg, Y.: Neural word embedding as implicit matrix factorization.
In: Proceedings of NeurIPS. Montréal, QC, pp. 2177–2185. (2014)
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It is not the Obvious Question
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Abstract. I take a new perspective on es-clefts in German, that focuses
on how an es-cleft contributes to the discourse structure and how it does
this differently than its canonical counterpart. My analysis is inspired
by naturally occurring examples from German novels. It combines an
adapted version of Roberts’ (2012) QUD stack and Velleman et al.’s
(2012) approach to clefts. In particular, I present a model that includes
implicit and potential questions into the QUD stack and I introduce the
concept of expectedness, that I argue is crucial for the acceptability of
clefts. I propose that the cleft addresses a question that came up in the
preceding context but that is not as expected for the addressee to be
answered at that point in the discourse compared to other questions.
Those question that are more expected are answered with a canonical
sentence. This approach is compatible with other functions that have
been proposed for clefts, such as marking exhaustivity, maximality, or
contrast. However, it can also account for examples where the cleft serves
to establish discourse coherence.

Keywords: German es-clefts · QUD · Discourse expectations

1 Introduction

In German, cleft structures are not very frequent (especially in spoken German)
and one could wonder why an author would even use an es-cleft, such as (1-a)1,
instead of the the much less complex canonical equivalent in (1-b).

(1) a. Es
It

ist
is

die
the

Ungewissheit,
uncertainty

die
that

mir
me

keine
no

Ruhe
quiet

lässt.
let.

‘It is the uncertainty that bothers me.’

I thank Edgar Onea, Lea Fricke, Maya Cortez Espinoza, the reviewers, and the audience
of TbiLLC 2019 for valuable feedback and comments. The analysis of German es-clefts
presented in this paper is based on my dissertation, Tönnis (2021), which includes a
much more detailed version of this analysis.
1 Taken from the novel Herzenhören (Sendker (2012). Herzenhören. Heyne, München,

p. 21.)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
A. Özgün and Y. Zinova (Eds.): TbiLLC 2019, LNCS 13206, pp. 128–147, 2022.
https://doi.org/10.1007/978-3-030-98479-3_7
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b. Die
The

Ungewissheit
uncertainty

lässt
let

mir
me

keine
no

Ruhe.
quiet.

‘The uncertainty bothers me.’

A preliminary corpus search, based on data from German novels, revealed some
interesting occurrences of es-clefts, that seemed much more natural than those
examples found in a corpus study that mainly investigated newspaper texts, such
as Tönnis et al. (2016). As Wedgwood et al. (2006) pointed out, clefts have often
been analyzed in unnatural contexts (or even without a context), which failed to
capture the effect of clefts as part of a discourse. The preliminary corpus search
showed that it does make a difference when the cleft is replaced with its canonical
equivalent, which was not so obvious in the newspaper texts. The difference has
to do with discourse coherence, but is not easily explicated precisely. Intuitively,
the es-cleft in German seems to pick up a question that is less prominent at
the moment it is uttered. However, in many occurrences of clefts in novels, it
was still only a small degradation of acceptability when it was replaced with a
canonical sentence.

In order to get to the core of the cleft’s discourse function, I constructed an
example, inspired by several examples from novels, which clearly favors the cleft
over the canonical sentence. Example (2) presents a context in which the cleft
is more appropriate than its canonical equivalent.2

(2) Lena hat gestern auf der Party mit einem Typen1 gesprochen. Die beiden
haben viel gelacht und sich direkt für den nächsten Abend verabredet.
Dann ist Lena glücklich nach Hause gefahren.
‘Yesterday at the party, Lena talked to some guy1. The two of them
laughed a lot and they agreed to meet again the next evening. Then, Lena
went home happily.’
a. Es

it
war
was

Peter1,
Peter1

mit
with

dem
whom

sie
she

gesprochen
talked

hat.
has

‘It was Peter1 she talked to.’
b. ?Sie

She
hat
has

mit
with

Peter1
Peter1

gesprochen.
talked

‘She talked to Peter1.’

The es-cleft in (2-a) can easily be interpreted as referring back to the discourse
referent introduced by einem Typen (‘some guy ’), which establishes discourse
coherence and which makes it an appropriate continuation. The canonical sen-
tence in (2-b), in contrast, seems to be incapable of referring back to that dis-
course referent and leaves the reader a bit puzzled. The canonical sentence in
(2-b) does not seem relevant in this context, which makes it an inappropriate
discourse continuation.

In this paper, I will be concerned with the question that a cleft addresses in
comparison to the question a canonical sentence addresses. Example (2) suggests

2 The judgments for this example, as well as for examples (3)–(5), are confirmed by a
couple of speakers but still have to be tested empirically.
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that the cleft addresses a less expected question than the canonical sentence,
here Which guy did Lena talk to?. The canonical sentence can only address
more expected questions and can, thus, not refer back to the discourse referent
introduced in the very first sentence by einem Typen (‘some guy ’).

A cleft can, however, not address a question that is extremely unexpected.
More precisely, the appropriateness of the cleft decreases when a pressing ques-
tion arises between the cleft and the question it addresses3, as in (3).

(3) Lena hat gestern auf der Party mit einem Typen1 gesprochen. Die beiden
haben viel gelacht und sich direkt für den nächsten Abend verabredet.
Lena hat ihm sogar ein Geheimnis verraten.
‘Yesterday at the party, Lena talked to some guy1. The two of them
laughed a lot and they agreed to meet again the next evening. Lena even
told him a secret.’
a. ?Es

it
war
was

Peter1,
Peter1

mit
with

dem
whom

sie
she

gesprochen
talked

hat.
has

‘It was Peter1 she talked to.’
b. ?Sie

She
hat
has

mit
with

Peter1
Peter1

gesprochen.
talked

‘She talked to Peter1.’

In example (3), the sentence in bold evokes the question ‘What was the secret?’.
This seems to make the cleft and the canonical sentence equally inappropriate.

However, if a sentence interferes between the second pressing question and
the cleft/canonical sentence, such as the bold sentence in (4), the situation is
similar to (2). The cleft is again better than the canonical sentence.

(4) Lena hat gestern auf der Party mit einem Typen1 gesprochen. Die beiden
haben viel gelacht und sich direkt für den nächsten Abend verabredet.
Lena hat ihm sogar ein Geheimnis verraten. Dann ist Lena glücklich
nach Hause gefahren.
‘Yesterday at the party, Lena talked to some guy1. The two of them
laughed a lot and they agreed to meet again the next evening. Lena even
told him a secret. Then, Lena went home happily.’
a. Es

it
war
was

Peter1,
Peter1

mit
with

dem
whom

sie
she

gesprochen
talked

hat.
has

‘It was Peter1 she talked to.’
b. ?Sie

She
hat
has

mit
with

Peter1
Peter1

gesprochen.
talked

‘She talked to Peter1.’

3 Thanks to Edgar Onea (p.c.) for raising this issue.
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Example (5) provides another context in which the cleft and the canonical sen-
tence are equally degraded.4

(5) Lena ist gestern Abend bei der Party angekommen und hat
erstmal einen leckeren Cocktail getrunken. Danach hat sie mit ihrer
Freundin Andrea getanzt und die beiden hatten sehr viel Spaß. Dann ist
Lena glücklich nach Hause gefahren.
‘Lena arrived at the party yesterday and first of all she had a
tasty cocktail. Thereafter, she danced with her friend Andrea and the
two of them had a lot of fun. Then, Lena went home happily.’
a. ?Es

it
war
was

ein
a

Bloody
Bloody

Mary,
Mary

den
that

sie
she

getrunken
drunk

hat.
has

‘It was a Bloody Mary she drank.’
b. ?Sie

She
hat
has

einen
a

Bloody
Bloody

Mary
Mary

getrunken.
drunk

‘She drank a Bloody Mary.’

Here, the sentence in bold raises the question Q:‘Which cocktail did Lena drink?’.
Moreover, the subsequent context does not give rise to any other pressing ques-
tion. Nevertheless, the cleft is again as inappropriate as the canonical sentence,
just like in (3). It seems that the cleft, even without a pressing question inter-
fering, still cannot address a question that is too unexpected to be addressed at
that point in the discourse.

I approach these puzzles by providing a discourse model that makes differ-
ent predictions about the discourse behavior of clefts and canonical sentences. I
argue that existing approaches, which focus on the exhaustivity/maximality or
contrastivity of clefts, cannot account for the effect of discourse (in-)coherence
of clefts or canonical sentences, respectively. My approach takes a new perspec-
tive on clefts, while still being compatible with those cases of clefts that mark
exhaustivity/maximality or contrast.

In Sect. 2, I briefly present previous approaches to different features of clefts.
In Sect. 3, I develop an adapted discourse model, which introduces a QUD set,
based on Roberts’ (2012) QUD stack, including implicit questions and discourse
expectations. In Sect. 4, I present an application of the proposed model to the
examples presented above. Finally, Sect. 5 concludes.

2 Background

Several features of clefts are discussed in the literature, and different approaches
tend to focus on one feature that determines the function of the cleft. In this
section, I will briefly introduce those features and the most important approaches
to analyzing the semantics and pragmatics of cleft structures.
4 An anonymous reviewer questions the proposed judgments for examples (3) and (5),

suggesting that the cleft is still more acceptable than the canonical sentence, as in
the other examples. If this was the case, it would still need to be explained why the
clefts in (3) and (5) are less acceptable than the clefts in (2) and (4).
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The cleft in (6) has the existence presupposition in (6-a), which is rather
uncontroversial.

(6) It is Peter Lena talked to.
a. Existence presupposition: Lena talked to somebody.
b. Exhaustivity inference: Lena talked to nobody else than Peter.
c. Canonical inference: Lena talked to Peter.

Furthermore, it has the exhaustivity inference in (6-b). It is still a point
of debate what status this inference has (see Onea (2019) for an overview of
exhaustivity in it-clefts). Furthermore, the cleft in (6) is assumed to have the
at-issue content in (6-c), which is called the canonical inference or the pre-
jacent.

In this paper, I address the question of what function the cleft has, especially
when compared to its canonical form. Why would the author of a text use a cleft
instead of the structurally much simpler canonical form in German?

Horn (1981), Büring and Kriz̆ (2013) and others argued that clefts are used
to mark exhaustivity. Others, e.g., Destruel and Velleman (2014), consider clefts
to mark contrast or to correct a previous statement. A third approach analyzes
clefts as marking focus unambiguously or marking prominence of the clefted
element (cf. De Veaugh-Geiss et al. 2015; Tönnis et al. 2016).

My analysis, to be presented in Sect. 3 and Sect. 4, is closely related to a
fourth approach by Velleman et al. (2012). They take a discourse-oriented app-
roach by treating clefts as inquiry terminating (IT) constructions. They show
that the exhaustivity inference of clefts is focus sensitive. Compare (7-a) and
(7-b), where the inference changes depending on the focus in the cleft pivot.

(7) a. It was PETER’sF eldest daughter that Lena talked to.
→ Lena did not talk to anybody else’s eldest daughter.

b. It was Peter’s ELDESTF daughter that Lena talked to.
→ Lena talked to no other daughter of Peter’s.

Hence, Velleman et al. (2012) argue that clefts contain a focus sensitive operator
in the sense of Beaver and Clark (2008). This operator refers to the Current
Question (CQ).5 More precisely, Velleman et al. argue that clefts provide a
maximal answer to the CQ and, thereby, terminate the ongoing inquiry about
CQ. They predict the cleft in (6) to maximally answer the question Who did Lena
talk to?. The focus sensitive cleft operator is composed of minS(p) and maxS(p),
where p is the prejacent and S is the context, that contains the current question
CQ: “minS(p), which ensures that there is a true answer to the CQ which is
at least as strong as the prejacent p, and maxS(p), which ensures that no true
answer is strictly stronger than p.” (Velleman et al. 2012:450) While the cleft
marks minS(p) as at-issue content, it presupposes maxS(p).

5 I will later adopt a different version of CQ based on Simons et al. (2017).
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Velleman et al. (2012) point out a problematic example for their own app-
roach, which is illustrated in (8) and (9) (a slightly adapted version of Velleman
et al. 2012:449).

(8) A: What did Mary eat?
B: ?It was a PIZZA that Mary ate.

(9) A: What did Mary eat?
B: I thought she said she was gonna get a pasta dish, but I might be
wrong.
A: And did she also order a salad?
C: Guys, I was there and actually paid attention. It was a PIZZA that
Mary ate.

While the cleft is odd as a direct answer to a question as in (8), it is felicitous
once other material intervenes between the question and the answer, as in (9).
The approach of Velleman et al., however, incorrectly predicts B’s answer to be
felicitous as long as it is a maximal answer to A’s question, for both (8) and (9).

Velleman et al. (2012) argue that it is not necessary to mark the end of
the inquiry in (8), since it is not an extended inquiry. Accordingly, no special
cleft marking is needed and that is why the cleft is infelicitous. This argument
does not seem very convincing. Strictly speaking, one could even argue that an
extended inquiry is more likely to terminate than a short one and, therefore,
the latter needs more marking than the former. This would predict the cleft in
(8) to be felicitous. Thus, the extent of the inquiry per se cannot be the crucial
factor, neither can maximality.

Destruel et al. (2019) also take an approach that is related to the discourse
function of the cleft, but from a different perspective. They provide empirical
evidence for the hypothesis that the acceptability of French c’est-clefts improves
the more they indicate that an utterance runs contrary to a doxastic commitment
of the interlocutor. Destruel et al. focus on examples of clefts that express a
contrast or, more precisely, correction. However, as the data in Sect. 1 shows,
not all clefts are contrastive. The referent of Peter in example (2) to (5) does
not contrast with another alternative in the presented context.

In my analysis, I will adopt the approach of Velleman et al. (2012) by analyz-
ing what kind of question the cleft addresses and how it addresses this question.
I will argue that not maximality is crucial, but the expectedness of the question
addressed by the cleft (see Definition 1 in the next section).

3 Analysis

I focus on how an es-cleft in German contributes to the discourse structure and,
in particular, how it does this differently than its canonical counterpart. In a
nutshell, I propose that an es-cleft addresses a question that came up in the
preceding context, but that is not as expected for the addressee to be answered
at that point in the discourse as other questions. Those questions that are more
expected are answered with a canonical sentence.
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In order to provide a formal analysis of es-clefts, I first describe the dis-
course model that I am using. I further develop Roberts’ (2012) Question Under
Discussion stack. She assumes that, in the course of a conversation, several ques-
tions under discussion (QUDs) are piled up on a QUD stack one after the other.
Whenever a question is accepted by the interlocutors, it is added to the stack
as the top-most element. The top-most question is the one that is supposed to
be addressed first. In the following, I will spell out what exactly needs to be on
the QUD stack in order to explain the discourse function of a cleft and other
sentences. Furthermore, I will argue that the discourse is better represented by
assuming a QUD set instead of a QUD stack. I, first, discuss different kinds
of questions, that will play a role for my approach. Based on Roberts, Simons
et al. (2017) define the notion of the current question as opposed to the
discourse question.

Current Question
The current question (CQ) is directly associated with a corresponding utterance,
in particular, it is dependent on the focus of that utterance. Accordingly, the
CQ of (10-a) is (10-b).

(10) a. LENAF talked to Peter.
b. CQ: Who talked to Peter?

Simons et al. (2017) analyze the CQ as the domain-restricted subset of the focus
alternatives of the utterance. I will adopt this definition of CQ (which differs from
Velleman et al.’s (2012) version). For the cleft, I take the CQ to be associated
with the cleft pivot, as (11) indicates.6

(11) a. It was Lena who talked to Peter.
b. CQ: Who talked to Peter?7

This definition of CQ is independent of the discourse function of its correspond-
ing utterance. This means that the identification of the CQ of an utterance is
independent of whether that utterance is later accepted or not. In order to model
6 Even with narrow focus inside of the pivot, as in (i), I assume that the CQ is

associated with the entire pivot. This is still a point of debate that I will not be able
to solve in this paper (see Velleman et al. (2012) and É. Kiss (1998) among others
for discussion).

(i) a. It is LENA’SF boyfriend who talked to Peter.
b. CQ: Who talked to Peter?

7 I intentionally do not assume the cleft question Who is it who talked to Peter? as the
CQ of the cleft. It is possible that the cleft question would be more adequate as the
CQ of the cleft. However, the semantics and pragmatics of cleft questions are even
less understood than of cleft assertions. Therefore, the predictions made on the basis
of a clefted CQ would be unclear. For reasons of feasibility, I assume an unclefted
CQ, which is well understood. Hopefully, the insights about cleft assertions from this
paper can contribute to the investigation of cleft questions in future research.
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the acceptability of an utterance in a discourse, Simons et al. (2017) introduce
the notion of a discourse question.

Discourse Question
The discourse question (DQ) is a discourse-segment relative notion and can
intuitively be interpreted as the topic of a (sub-)inquiry (inquiry in the sense
of Roberts 2012). This concept can also be found in van Kuppevelt (1995) who
calls it the question that corresponds to the discourse topic. Admittedly, the DQ
is not always unambiguously identifiable, which is also pointed out by Tonhauser
et al. (2018:footnote 7). I make the simplifying assumption that it is given by the
linguistic context. Importantly, it does not depend on the continuation, i.e. cleft
versus canonical sentence.

According to Roberts (2012) and Simons et al. (2017), a discourse move
realized by utterance U is accepted if the CQ of U is identical to the DQ or if
its CQ contributes to the ongoing inquiry about DQ. If either of these conditions
is fulfilled for U, it is accepted as a valid discourse move and the CQ of U is
added to the QUD stack as the top-most element. Whether a CQ contributes
to an inquiry, is subject to relevance constraints. The more relevant the CQ is,
given the preceding context, the higher its probability to be accepted.

Example (2) from the introduction, however, cannot be explained relying only
on the CQ and the DQ. The es-cleft and the canonical sentence in (2) have the
same CQ:Who did Lena talk to?, and whatever the DQ is, it is also identical for
both sentences (because they occur in the same linguistic context). Hence, they
are either both acceptable or both unacceptable, based on the relation between
CQ and DQ. More precisely, it seems that both sentences do not contribute
to the DQ, assuming that the DQ is What did Lena do after the party. Given
that the cleft is still acceptable, I assume that other kinds of questions must
be relevant for the acceptability of an es-cleft in German, such as sub-questions
and implicit questions.

Implicit/Potential Questions
My analysis refers to van Kuppevelt (1995) and Onea (2016), who use the concept
of implicit questions (van Kuppevelt 1995) or potential questions (PQs)
(Onea 2016). Van Kuppevelt notices that discourses contain many questions that
are not formulated explicitly, but arise implicitly, especially in monologues. He
characterizes implicit questions as questions “which the speaker anticipates to
have arisen with the addressee as the result of the preceding context.” (van Kup-
pevelt 1995:110) He also includes sub-questions of explicit or implicit questions
and follow-up questions, if the answer to a preceding question was unsatisfac-
tory, into his discourse model. He concludes that many implicit questions arise
due to unsatisfactoriness of the provided answer to a previous question. I will
make use of van Kuppevelt’s concept of satisfactoriness.

Onea (2016) focuses on potential questions, which are evoked by the immedi-
ately preceding utterance, and which are explicitly not sub-questions of preceding
questions. An example of a PQ is given in (12-b).
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(12) a. My boss called me an idiot today.
b. PQ: Why did he call you an idiot?

Most of the examples I analyze in this paper are narratives which do not include
explicit questions. Accordingly, I use a model that focuses on the questions
that the author anticipates the addressee to have, based on the previous text. I
assume that those questions are not all equally expected to be addressed from
the perspective of the addressee. Consider example (13).

(13) Lena told Andrea a secret.

The author of this example would anticipate the addressee to wonder what the
secret was, but also why Lena told the secret to Andrea. However, intuitively,
the first question has a higher expectedness than the second. Whether a question
arises and how expected it is, depends on many factors such as the addressee,
the situation, and the common ground. The latter is illustrated by (14-a) and
(14-b). In (14-a), the potential question Why did he call you an idiot? arises. In
(14-b), in contrast, the answer to that question is already in the common ground
and the question does not arise.

(14) a. Yesterday, I came to the meeting. My boss called me an idiot.
b. Yesterday, I forgot about the meeting. My boss called me an idiot.

In order to account for this difference, I need to include the common ground
into my analysis. My definition of the common ground follows Cohen and Krifka
(2014) and Krifka (2015), who introduce Commitment Space Semantics. Intu-
itively, a commitment space C subsumes all sets of propositions that contain the
shared information and any number of continuations that are consistent with
that shared information. Furthermore, Krifka (2015:329) defines the update of a
commitment space C, C + p, where p is an assertion. Moreover, in Kamali and
Krifka (2020), the update of C with a question is defined. My approach does
not rely on this specific definition of common ground. Any other system that
incorporates the concept of an update with a proposition or a question would
serve the same purpose.

Having introduced all the preliminaries, I will now adapt Roberts’ QUD
stack. First of all, I introduce the concept of expectedness. I assume that
the author of a text can anticipate how strongly the addressee expects a cer-
tain question to be addressed, given the provided information (recall example
(13)). This understanding of expectedness is based on Zimmermann (2011), who
assumes that unexpected discourse developments need extra linguistic marking.
I interpret these discourse expectations as expectations with respect to ques-
tions. I assume that the addressee has expectations about whether a question
will be asked or answered in the next discourse move, and those expectations
differ depending on the kind of question and on the previous discourse, hence
on the commitment space.8

8 Note that expectedness is formulated from the addressee’s perspective. The speaker
comes into play when s/he anticipates the expectations of the addressee and chooses
her/his next discourse move accordingly.
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In order to formalize expectedness, I define the expectedness function fe,
which takes a commitment space C and a possible question q as its input and
yields the respective expectedness value e between 0 and 1. Expectedness val-
ues (EVs) can also be seen as probabilities for the addressee to expect q to
be addressed in a commitment space C. It is a recursive function that evalu-
ates expectedness of a question by describing the difference between the current
commitment space and the previous commitment space. This way, each update
of the commitment space incrementally changes the EVs of the questions. The
formal definition is provided in the following, and will be explained step by step
below.

Definition 1 (Expectedness function). The expectedness function fe : CS×
Q → E is a recursive function, where

– CS is the set of all possible commitment spaces,
– Q is the set of all possible questions,9

– E is the set of expectedness values from 0 to 1,

such that for a given C ∈ CS
∑

x∈Q
fe(C)(x) = 1.

fe is defined recursively as follows:

i. For any q ∈ Q and for C0 ∈ CS such that C0 is the commitment space at the
beginning of a conversation, fe(C0)(q) assigns a prior EV to q.10

ii. For any q ∈ Q, any C ∈ CS, and any update p:

fe(C+p)(q) ∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

fe(C)(q) + α iff q is a subquestion of p sub.q

fe(C)(q) + β iff q is a PQ of p pq

max((fe(C)(q) − γ), 0) iff q is the CQ of p.γ differs cq

with respect to completeness of p as answer to CQ.
fe(C)(q) + α + β + δ iff q = p. expl.q

fe(C)(q) otherwise. other

(For all conditions, it holds that q has not been answered yet. If q has already
been answered in C + p, then fe(C + p)(q) = 0.)

The condition that the EVs have to add up to 1 (for the range of fe) expresses
the similarity of EVs and probabilities. Hence, it implies that once an EV is
raised, others must decrease.11 The function fe is defined recursively, which
means that not only the current update but each former update has an effect on
the expectedness of all the questions.
9 The term question refers to the discourse move of asking a question.

10 I am not concerned with those priors here and will just assume them to be well-
defined.

11 Empirically, the EVs would probably not exactly add up to 1. This needs to be
considered if this model is tested empirically.
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Step i. of the recursion provides the prior EVs at the beginning of a conver-
sation, given that we never start a conversation without any shared information.
Based on this common ground, some questions are a priori more expected than
others. Step ii. defines the effect of an update on the expectedness of different
kinds of questions in relation to the previous commitment space.12 The effect
is modeled by adding α, β, or δ, or subtracting γ to/from the EV of q in the
commitment space before the update.13 Those variables are context-dependent,
hence, no constants. As we will see in the application of the model, some of the
cases must be further subcategorized leading to α1, ..., αn, β1, ..., βn, etc. The
conditions of sub.q, pq, cq, and expl.q are not at all an exhaustive list of
effects on expectedness, but rather a first approach to provide an idea of what
can affect expectedness. I will now explain each of the conditions of step ii. of fe.

Condition SUB.Q: This condition describes the strategy of asking a sub-question
when one cannot answer the super-question, as in example (15).

(15) Peter celebrated his birthday.︸ ︷︷ ︸ I wonder who had a present for him?︸ ︷︷ ︸
C C + p

Here, a sub-question of the broader super-question Who had a present for
him? would be Did Nina have a present for him?, which would have a higher
expectedness in C + p as compared to C, if we do not know anything specific
about Nina’s and Peter’s relationship.

Condition PQ: If a commitment space C is updated with a proposition p and q
is a PQ of p, then the expectedness is higher after the update (in the commitment
space C + p) than before in C. An example for this situation would be (14-a),
repeated in (16-a).

(16) a. Yesterday, I came to the meeting.︸ ︷︷ ︸ My boss called me an idiot.︸ ︷︷ ︸
C C+p

b. Yesterday, I forgot about the meeting.︸ ︷︷ ︸ My boss called me an idiot.︸ ︷︷ ︸
C C+p

After the first sentence in (16-a), the question of why the speaker’s boss called
him/her an idiot is not very expected. After the second sentence, however, it
is expected, given that it is a potential question of the second sentence. The
addition in brackets in Definition 1 explains why, in (16-b), fe(C + p)(PQ) is
not higher than fe(C)(PQ) for the PQ Why did he call you an idiot?, namely
because that PQ is already answered.

12 The definition uses ‘+’ for two different operations: an update as in C + p and for
adding a variable to an EV.

13 Strictly speaking, those variables should not be added or subtracted, but α, β and
(α + β + δ) should be increasing functions and γ should be a decreasing function,
that take fe(C)(q) as their argument.
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Condition CQ: If a commitment space C is updated with a proposition p and q
is the CQ of p, the expectedness of q is lower in C +p than in C. The CQ of p in
(17) is Who did Lena talk to?, which is very expected at C. At C + p, however,
this question is addressed and has, thus, a reduced expectedness.

(17) Who did Lena talk to?︸ ︷︷ ︸ Lena talked to PETER.︸ ︷︷ ︸
C C+p

This example also shows how γ could differ depending on whether we take p
to be an exhaustive answer, a partial answer or a mention-some answer. If we
had expected that Lena would talk to many people, the expectedness would
be reduced less than if we had expected her to talk to just one person. In the
terminology of van Kuppevelt (1995), this describes that the more satisfactorily
a question is addressed, the more its EV is reduced.

The function max in CQ makes sure that there will be no negative EVs
and will yield 0 in case fe(C)(q) − γ would be negative. Otherwise it yields
fe(C)(q) − γ.

Condition EXPL.Q: For an explicit question q, the expectedness is forced to be
high. By taking the sum of α and β plus an additional constant δ, it is guaranteed
that an explicit question will always have the highest EV. This means that an
explicit question will reduce the expectedness of all questions in C + q compared
to C, except for q itself of course.

The actual prior EVs, as well as the actual values for α, β, γ and δ must
be determined empirically. One preliminary approach to do this is presented in
Westera and Rohde (2019). They presented snippets of texts to participants and
asked them which questions are evoked. The EV of a question could be calculated
from the relative frequency of that question.

Based on the expectedness function, I now define an adapted version of
Roberts’ (2012) QUD stack. It is actually not a stack anymore but a set of pairs
of questions and their EVs, hence it is called the QUD set. This set depends
on the commitment space, since each update changes the EVs of questions.

Definition 2 (QUD set). For a C ∈ CS, the QUD set is defined as the set
SC = {〈q, ei〉 | q ∈ Q}, such that ei = fe(C, q).

My definition of the QUD set differs from earlier versions, like Roberts’ (2012),
with respect to including also implicit questions. Actually, it includes all possible
questions paired with their EVs. The consequence is that accepting a discourse
move never implies adding a new question since all questions are already included
in the set. Furthermore, the top-most question in the stack looses importance.
The model I am proposing allows, in principle, to address any question in the
QUD set. Acceptance conditions are modeled via expectedness. Accepting a
discourse move means identifying its CQ with a question in the QUD set which
has a sufficiently high EV. This is defined as follows for the default case.
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Definition 3 (Accepting a sentence – default case). A sentence pn is
acceptable iff for a given C ∈ CS and cqn being the CQ of pn

fe(C, cqn) > edef

where edef is the EV that is necessary for a sentence to be accepted by default.

The value edef is most likely not a constant value, but depends on the con-
text and must again be determined empirically. Turning back to the difference
between clefts and canonical sentences, I assume the canonical sentence to be a
default case which is covered by Definition 3. The cleft, however, is a non-default
case resulting in additional requirements for acceptability, as defined below.

Definition 4 (Accepting a cleft sentence – non-default case). A cleft
sentence pcl is acceptable iff for a given C ∈ CS and cqcl being the CQ of pcl

edef > fe(C, cqcl) > ecl

where ecl is the EV that is necessary for a cleft sentence to be accepted.

What Definition 4 says, is that the EV for an acceptable cleft has to exceed
the threshold ecl for an acceptable cleft. Furthermore, the EV of an acceptable
cleft has to fall below the threshold for the EV of an acceptable sentence in the
default case. In other words, clefts address less expected questions than other
sentences do in most of the default cases.14 Still, also the cleft needs a minimum
value of expectedness ecl in order to be acceptable. It cannot address just any
question with an EV below edef .15

4 Applying the Model

I will now apply the proposed model to the examples mentioned before, which
showed a difference in acceptability of the canonical sentence and the cleft. First
of all, I will provide a different explanation for the example of Velleman et al.
(2012), repeated in (18).

(18) A: What did Mary eat?
B: ?It was a PIZZA that Mary ate.

14 An anonymous reviewer pointed out that there are other non-default cases, besides
clefts, that impose additional restrictions on acceptability, and that could be grouped
with clefts. One such example is a sentence including the phrase by the way. I argue
that we still need to assume different thresholds for each of these non-default cases,
since by the way-sentences can address even less expected questions than clefts. Even
in examples (3) and (5), in which the cleft in unacceptable, a by the way-sentence
would be acceptable.

15 In order to account for those cases where both a cleft and canonical sentence are
acceptable, one would have to introduce a variable m, that is added to edef in
Definition 4. This would make sure that there is an interval of EVs (edef , edef + m)
where both the cleft and the canonical sentence are acceptable. For presentational
purposes in Sect. 4, I will use the simpler definition in this paper.
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According to Definition 1:excl.q, the CQ of the cleft will have the highest EV in
the QUD set in the commitment space C0+q:What did Mary eat?. The highest
EV will exceed the threshold edef for default cases and, therefore, the cleft is not
acceptable in (18) (Definition 4), but a canonical sentence would be acceptable
(Definition 3). My approach can also explain why the acceptability of the cleft
improves in (9), repeated in (19).

(19) A: What did Mary eat?
B: I thought she said she was gonna get a pasta dish, but I might be
wrong.
A: And did she also order a salad?
C: Guys, I was there and actually paid attention. It was a PIZZA that
Mary ate.

The difference between (18) and (19) is not only the extendedness of the inquiry
but also the amount and the kind of questions that are evoked. B’s answer evokes
the question Did Mary get a pasta dish?, and A’s second statement evokes the
question Did Mary order a salad?. The EVs of both questions increase after the
updates, the former is a sub-question of the first question and the latter is an
explicit question. This means that they push down the EV of the CQ of the cleft,
which is the more general question What did Mary eat?. It is plausible that the
value is pushed below or at least close to edef . If it is pushed below edef , the
cleft is predicted to be acceptable in (19) (Definition 4). Example (19) could also
be a case for which both the canonical sentence and the cleft are acceptable.

Also example (2), repeated in (20), can now be explained by analyzing the
anticipated questions and their EVs. I indicated the commitment spaces C0 –
C3 in the example.

(20) (C0)Lena hat gestern auf der Party mit einem Typen1 gesprochen. (C1)
Die beiden haben viel gelacht und sich direkt für den nächsten Abend
verabredet. (C2) Dann ist Lena glücklich nach Hause gefahren.(C3)
‘(C0)Yesterday at the party, Lena talked to some guy1. (C1)The two
of them laughed a lot and they agreed to meet again the next evening.
(C2)Then, Lena went home happily.(C3)’
a. Es

it
war
was

Peter1,
Peter1

mit
with

dem
whom

sie
she

gesprochen
talked

hat.
has

‘It was Peter1 she talked to.’
b. ?Sie

She
hat
has

mit
with

Peter1
Peter1

gesprochen.
talked

‘She talked to Peter1.’

I will discuss this example in a bit more detail, also in order to illustrate how the
proposed model works. For simplicity, I assume a very reduced set of possible
questions Q = {q1, q2, q3, q4, q5}. The questions are explicated in (21).

(21) SC0 = {
〈q1:What did Lena do after the party?, 0〉,
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〈q2:What happened to Lena and the guy after the party?, 0〉,
〈q3:Which guy did Lena talk to?, 0〉,
〈q4:What happened to Lena at the party?, 1〉,
〈q5:How was the conversation?, 0〉}

If (20) took place in a context where it is common knowledge that we are talking
about Lena and yesterday’s party, the QUD set SC0 at C0 would look like (21).
Accordingly, only q4 will be an a priori expected question in C0.

Table 1 presents how fe(C)(q) changes for each question progressing from C0

to C3. For the variables from Definition 1, I stipulate values that will make the
correct predictions for the purpose of illustration. As mentioned before, the real
values would have to be determined empirically. For a strong PQ, I take β1 = 0.5
and, for a weaker PQ, I take β2 = 0.3. Furthermore, I assume γ = 0.8 for a rather
satisfactory answer (in van Kuppevelt’s (1995) sense of satisfactoriness).

Table 1. Application of the model for example (20) for commitment spaces C0–C3

and β1 = 0.5, β2 = 0.3, and γ = 0.8.

q fe(C0)(q) fe(C1)(q) fe(C2)(q) normalized

q1 0 fe(C0)(q1) = 0 fe(C1)(q1) + β2 = 0.3 0.23

q2 0 fe(C0)(q2) = 0 fe(C1)(q2) + β1 = 0.5 0.38

q3 0 fe(C0)(q3) + β1 = 0.5 fe(C1)(q3) = 0.5 0.38

q4 1 max(fe(C0)(q4) − γ) = 0.2 max(fe(C1)(q4) − γ) = 0 0

q5 0 fe(C0)(q5) + β2 = 0.3 0 (answered) 0

q fe(C3)(q) normalized

q1 fe(C2)(q1) + β1 = 0.73 0.41

q2 fe(C2)(q2) + β2 = 0.68 0.38

q3 fe(C2)(q3) = 0.38 0.21

q4 fe(C2)(q4) = 0 0

q5 fe(C2)(q5) = 0 0

In C1, after the update with the first sentence, q1 and q2 do not change their EV,
they fall under the other-condition of Definition 1. I interpret q3 as a strong
PQ of the first sentence and, thus, 0.5 is added to its EV, while q5 is a weak
PQ of the first sentence and 0.3 is added. The question q4 is the CQ of the first
sentence and it is answered rather satisfactory, though not complete. Therefore,
0.8 is subtracted from the EV of q4.

In C2, after the update with the second sentence, q1 is interpreted as a
weak PQ of the second sentence (probably triggered by the expression the next
evening) and q2 as a strong PQ. According to the Definition 1:pq, 0.3 and
0.5, respectively, are added to their EVs. The EV of q3 falls under the other-
condition and does not change. The EV of q4 is further reduced since it addresses
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again the CQ of the second sentence. The value of q5 is set to 0 since the second
sentence fully answers q5. After the application of fe, the values are normalized
for them to still sum up to 1.

In C3, both EVs of q1 and q2 increase, triggered by the discourse progressive
element then (I treat them as PQs of the third sentence triggered by then). I
take q1 to be a stronger PQ than q2. However, as long as they increase, it would
not change the outcome with respect to the acceptability of the cleft if they
were switched or if they both received +0.5. Question q3, q4 and q5 fall under
the other-condition and keep their EV. Again, the values are normalized.

Now, we could assume edef = 0.25 and ecl = 0.1 and the model would predict
the cleft in (20-a) to be acceptable (Definition 4), since the EV of the CQ cqcl

of the cleft falls below edef and above ecl:

edef > fe(C3)(cqcl) = fe(C3)(q3) > ecl

The canonical sentence in (20-b), on the other hand, has the same CQ as the
cleft (cqcan = cqcl), but its EV still does not exceed edef :

fe(C3)(cqcan) = fe(C3)(q3) < edef

Hence, the canonical sentence, as a default case, is predicted to be unacceptable.
The most important message to take away from this example is that the

EV of q3, which is later identified with the CQ of the cleft, decreases from
update to update just because the EVs of other questions (q1 and q2) increase.
This is how the length of the inquiry is naturally incorporated as a predictor
of acceptability of the cleft. It is, however, not the length per se, but also the
relative expectedness of other questions after each update. If the new questions
had a low EV or were already answered, the cleft would be predicted to be less
acceptable and the canonical sentence might be preferred.

Contra Velleman et al. (2012), my model does not require the cleft to provide
a maximal answer to the question it addresses. The model can, therefore, account
for examples like (20), where the answer does not mean that Lena did not talk
to anybody else. Nevertheless, it does allow the cleft to be exhaustive or provide
a maximal answer. Maximality might be a side effect of the discourse function
of clefts. My admittedly speculative explanation is that the reader/hearer might
pragmatically infer the following: Given that the author/speaker bothered to
pick up a question that was already settled or decreasing in expectedness, she
probably has a complete/satisfactory answer to it, which would justify addressing
it even though it is not expected.

I will discuss the example (3) and (5), repeated in (22) and (23), from the
introduction in less detail, but will provide the gist of it.

(22) Lena hat gestern auf der Party mit einem Typen1 gesprochen. Die beiden
haben viel gelacht und sich direkt für den nächsten Abend verabredet.
Lena hat ihm sogar ein Geheimnis verraten.
‘Yesterday at the party, Lena talked to some guy1. The two of them
laughed a lot and they agreed to meet again the next evening. Lena
even told him a secret.’
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a. ?Es
it

war
was

Peter1,
Peter1

mit
with

dem
whom

sie
she

gesprochen
talked

hat.
has

‘It was Peter1 she talked to.’
b. ?Sie

She
hat
has

mit
with

Peter1
Peter1

gesprochen.
talked

‘She talked to Peter1.’

Example (22) is predicted by the model, given that the update Lena even told
him a secret evokes the PQ What was the secret? with a very high EV. This
would mean that the EV of the PQ Which guy did Lena talk to? would be
pushed below the cleft threshold ecl and the cleft would be predicted to be an
unacceptable discourse move, as well as the canonical sentence of course. Finally,
example (23) is easy to explain.

(23) Lena ist gestern Abend bei der Party angekommen und hat
erstmal einen leckeren Cocktail getrunken. Danach hat sie mit
ihrer Freundin Andrea getanzt und die beiden hatten sehr viel Spaß.
Dann ist Lena glücklich nach Hause gefahren.
‘Lena arrived at the party yesterday and first of all she had a
tasty cocktail. Thereafter, she danced with her friend Andrea and the
two of them had a lot of fun. Then, Lena went home happily.’
a. ?Es

it
war
was

ein
a

Bloody
Bloody

Mary,
Mary

den
that

sie
she

getrunken
drunk

hat.
has

‘It was a Bloody Mary she drank.’
b. ?Sie

She
hat
has

einen
a

Bloody
Bloody

Mary
Mary

getrunken.
drunk

‘She drank a Bloody Mary.’

The PQ Which cocktail did Lena drink?, which is evoked by the first sentence,
can be assumed to be a rather weak PQ. Hence, it receives a low EV. Given
the intervening material, that again raises new questions, this already low value
will be pushed down further, most likely below the cleft threshold ecl. Therefore,
both the canonical sentence and the cleft are inappropriate discourse moves.

5 Conclusion

In this paper, I presented an approach to German es-clefts that analyzes them
embedded in a broader discourse context and discusses how they structure the
discourse. The analysis was based on four constructed examples, that were
inspired by examples of clefts from novels, some of which constituted the rare
case of the cleft being acceptable while the canonical sentence was not.

In order to describe the discourse function of the cleft, I presented a discourse
model that is based on the QUD stack, as assumed by Roberts (2012). My model
departed from the original by assuming a QUD set that does not only include
current questions but also implicit or potential questions that were evoked by
the preceding text. Furthermore, I added the concept of expectedness, which
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describes for each possible question in a given commitment space how strongly
the reader/hearer expects that question to be addressed.

This model is capable of predicting why es-clefts in German can be used to
refer back to questions that are not particularly pressing at that point in the con-
versation. And it explains why canonical sentences cannot be used if the question
they address is not expected enough. And most importantly, it incorporates the
progression of discourse updates and how that affects the acceptability of clefts.
To my knowledge, previous approaches had not captured that. Moreover, the
model provides an alternative explanation for existing puzzles in the literature,
in particular, example (18) and (19) by Velleman et al. (2012).

Previous approaches struggle to account for the differences between the cleft
and its canonical equivalent, presented in example (20), (22) and (23), since
they cannot be explained by the need to mark exhaustivity, focus, or correction.
Even though my approach does not focus on exhaustivity, it is compatible with
the observation that clefts do quite frequently express exhaustivity. I analyze
exhaustivity as a side effect of the discourse function of the cleft. I suggested
that exhaustivity could be a pragmatic inference of the discourse function of
the cleft, namely that an author/speaker would only address an unexpected
question if she/he had a satisfying answer to it. The fact that the exhaustivity
inference was shown to be cancelable (e.g., by Horn 1981) speaks in favor of it
being a pragmatic inference anyway. This issue needs further investigations on
the interaction of the expectedness of addressed questions and exhaustivity.

Another open issue is correction, which is frequently expressed by a cleft
(Destruel and Velleman 2014; Destruel et al. 2019). This is problematic for my
account because in corrections the cleft addresses a question that has already
been answered and, thus, received the EV 0. My model would, therefore, incor-
rectly predict that a cleft cannot address that question. However, this seems to
be a more general problem of incorporating revisions of a statement made by one
of the discourse participants into the discourse model, which exceeds the scope
of this paper. It is a promising extension to be investigated in future research,
though.

Furthermore, example (4), repeated in (24), remains to be explained.

(24) Lena hat gestern auf der Party mit einem Typen1 gesprochen. Die beiden
haben viel gelacht und sich direkt für den nächsten Abend verabredet.
Lena hat ihm sogar ein Geheimnis verraten. Dann ist Lena glücklich
nach Hause gefahren.
‘Yesterday at the party, Lena talked to some guy1. The two of them
laughed a lot and they agreed to meet again the next evening. Lena even
told him a secret. Then, Lena went home happily.’
a. Es

it
war
was

Peter1,
Peter1

mit
with

dem
whom

sie
she

gesprochen
talked

hat.
has

‘It was Peter1 she talked to.’
b. ?Sie

She
hat
has

mit
with

Peter1
Peter1

gesprochen.
talked

‘She talked to Peter1.’



146 S. Tönnis

In this example, there is a pressing question Q:What was the secret? intervening
between the cleft and the question that the cleft addresses. My model would
predict Q to have very high EV that pushes the value of the CQ of the cleft
below the cleft threshold and would make the cleft unacceptable. The sentence
in bold, however, seems to raise the EV of Q making the cleft acceptable again.
As pointed out by a reviewer, the sentence in bold causes the feeling that the
speaker is ignoring Q. Hence, the explanation of the cleft’s acceptability is rather
based on the relation between Q and the sentence in bold than on the relation
between Q and the cleft. In order to capture this example, one would probably
have to incorporate the effect of a topic shift into the model, following, e.g., van
Kuppevelt (1995).

Furthermore, a reviewer pointed out the following example of an acceptable
cleft in the context of a cleft question.

(25) A: Who is it that Lena talked to?
B: It is Peter that she talked to.

My model would incorrectly predict the cleft to be degraded given that its CQ
(Who did Lena talk to? ) is very expected to be addressed in the context of the
cleft question. I assume that the acceptability of the cleft in this example arises
from its interaction with the cleft question. Thus, we first need to understand
the discourse effect of a cleft question before modeling the interaction of a cleft
and a cleft question. I leave this for future research.

Finally, an important next step would be to determine the variables of the
model by conducting a series of suitable experiments, that could be inspired
by Westera and Rohde (2019). Once those values are approximated, the model
makes testable predictions.
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Tönnis, S., Fricke, L.M., Schreiber, A.: Argument asymmetry in german cleft sentences.
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Abstract. The paper scrutinizes the very notion of extension, which is
central to many contemporary approaches to natural language semantics.
The starting point is a puzzle about the connection between learnability
and extensional compositionality, which is frequently made in semantics
textbooks: given that extensions are not part of linguistic knowledge,
how can their interaction serve as a basis for explaining it? Before the
puzzle is resolved by recourse to the set-theoretic nature of intensions, a
few clarifying observations on extensions are made, starting from their
relation to (and the relation between) reference and truth. Extensions are
then characterized as the result of applying a certain heuristic method for
deriving contributions to referents and truth-values, which also gives rise
to the familiar hierarchy of functional types. Moreover, two differences
between extensions and their historic ancestors, Frege’s Bedeutungen,
are pointed out, both having repercussions on the architecture of com-
positional semantics: while the index-dependence of extensions invites
a weak, unattested form of ‘non-uniform’ compositionality, Bedeutungen
do not; and while the former are semantic values of expressions, the latter
pertain to occurrences and, as a result, give rise to a universal principle
of extensional compositionality. However, unlike extensions, they are of
no help in resolving the initial mystery about learnability.

Keywords: Extensions · Intensions · Truth · Reference ·
Compositional semantics · Frege · Carnap · Montague

1 A Puzzle About Extensions

The following mystery has been part of the linguists’ agenda ever since the
beginnings of generative grammar (cf. [6]):

(Q1) How come speakers can identify indefinitely many linguistic expressions?

According to generative folklore, grammars come with (a characterization of)
finitely many primitive elements, from which finitely many operations (or rules)
derive ever more complex expressions in a stepwise fashion. The details of this
process are moot, as is the nature of the elements involved – strings, trees,
derivational histories, or what have you. However, there is general agreement
that the syntax of a given language largely comes down to an inductive definition
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of its expressions.1 Hence identifying the expressions of a language only requires
speakers to know finitely many primitives and finitely many ways of combining
them – which lets (Q1) appear far less mysterious.

Inductive definitions, then, help mitigating potential learnability worries in
syntax. But semantics is plagued with similar problems. Indeed, ever since the
early days of generative grammar, (Q1) has been extended from the individuation
of linguistic forms to their interpretation (cf. [27]):

(Q2) How come speakers can grasp the meanings of indefinitely many linguis-
tic expressions?

There appears to be wide agreement within the semantic community that at
least one natural and plausible strategy of accounting for (Q2) is by way of
compositionality :

(C) The meaning of a compound expression derives from combining the mean-
ings of its immediate parts.

The details of (C) are open to debate. In particular, the pertinent part-whole
relation may be determined by surface syntax or on a separate (syntactic) Logical
Form level. However, as long as it is well-founded and the number of ultimate
parts and ways of combining them is finite, then so is the knowledge speakers
need to acquire in order to interpret the expressions of a language, thus resolving
part of the mystery (Q2).

There are other ways of accounting for (Q2) than adopting (C), as there
are other reasons for adopting (C) than accounting for (Q2).2 However, intro-
ductory textbooks usually do make a connection between the two, motivating
compositionality by appeal to learnability.3 Yet when it comes to the specifics
of semantic analysis, meanings quickly give way to semantic values that are
especially tailored for the process of meaning composition and devoid of any
distracting additional features. Characters and intensions are cases in point:
they determine truth and reference (more about which in the next section),
but they avowedly leave the expressive dimension of meaning out of account,
given that it does not interfere with the compositional process.4 According to
the truth-conditional approach, their knowledge is part of language mastery.
Indeed, inasmuch as the conditions under which a sentence S of a language L is
true can be modeled by a set of points in Logical Space, knowing what S means

1 I shun Chomsky’s [6, p. 24] possibly more restrictive term ‘recursive device’ for
reasons given by Tomalin [55, p. 307].

2 For instance, those provided by Janssen [23, Sect. 4] and Szabó [53, Sect. 3], respec-
tively.

3 See, e.g., the textbooks by Dowty, Wall & Peters [10, pp. 4–10]; Heim & Kratzer
[22, pp. 2f.]; Chierchia & McConnell-Ginet [5, pp. 6–8]; as well as Zimmermann &
Sternefeld [63, pp. 58f.].

4 I am assuming familiarity with the basic architecture of Kaplanian two-dimensional
semantics along the lines of [26]. As to expressive meaning and its relation to com-
positional values, see Sect. 7 of Gutzmann’s survey article [20].
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amounts to knowing which proposition S expresses – i.e. its intension. In general,
though, this requires additional contextual knowledge, on top of mastering L: the
character of S, which is known to any L-speaker, only determines S’s intension
given a context of utterance. However, speakers cannot always be expected to be
acquainted with all aspects of the utterance context that are needed to identify
the intensions of deictic expressions. But they may be expected to know in what
way the intensions of expressions depend on the utterance context, which is why
a slightly more involved version of (C) is called for in the general case:

(Cχ) The character of a compound expression derives from combining the
characters of its immediate parts.

The compositionality of characters (Cχ) suggests a straightforward route to a
partial answer to (Q2): as far as those parts of meaning that determine truth and
reference are concerned, speakers can acquire them by associating a character
with each of the finitely many words in the lexicon and an operation on charac-
ters with each of the finitely many ways of forming compound expressions from
their immediate parts. Moreover, (Cχ) has an interesting consequence for the
large fragment of eternal expressions that do not contain any deictic (or, more
generally, context-dependent) expressions and whose intension will thus be the
same across all contexts. Hence speakers of L can identify the intension of a sen-
tence S on the basis of their knowledge of S’s character and thus solely in virtue
of their linguistic competence. Since the same goes for S’s sub-expressions, the
following adaption of (C), with the superscript indicating its restricted range,
may indeed help providing a partial answer to (Q2):

(C−
ι ) The intension of an eternal compound expression derives from combining

the intensions of its immediate parts.

To begin with, the intensions of all non-deictic words are known to all speakers,
as the values of the (constant) characters they have learned to associate with
these words. Moreover, to combine the intensions of eternal expressions, speakers
may apply the pertinent character combinations to the values of the (constant)
characters of their parts and then obtain the value of the resulting (constant)
character. Hence, as far as the intensions of eternal expressions are concerned,
speakers can acquire them as a by-product of acquiring the compositional inter-
pretation of their characters.

It should be noted that it is crucial for the above reasoning about (Cχ) and
(C−

ι ) that characters and, as a consequence, certain pertinent intensions are
known to speakers by virtue of their language mastery. Given this assumption,
there is nothing per se wrong with trading meanings for semantic values when
making a connection between compositionality and learnability. However, the
semantic values that usually enter the equations and adorn the analysis trees in
the semantic literature are neither characters nor intensions, but extensions. In
particular, textbooks tend to feature a principle of extensional compositionality
that holds throughout a large part of any language:
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(C−
ε ) The extension of a compound extensional expression derives from com-

bining the extensions of its immediate parts.

More often than not, though, the extension of an expression is unknown to the
majority of speakers. As a case in point, given that the extensions of (declar-
ative) sentences are their truth-values, knowing them all would come close to
omniscience – hardly a prerequisite to linguistic proficiency. To be sure, (C−

ε )
is not supposed to apply to all expressions of a given language. As Frege [15]
famously pointed out, the principle stops short at attitude reports and other
(nowadays called) intensional environments. However, a substantial part of lan-
guage does respect (C−

ε ), and it this extensional fragment that introductory
semantics courses use as their didactic starting point. Still, restricting (C−

ε ) to
extensional environments does not bring it closer to linguistic (as opposed to
empirical) knowledge: even though all parts of a sentence like No planet outside
our solar system contains plants conform to (C−

ε ), the extensions of some of
them are unknown to speakers of English. Hence the connection between (C−

ε )
and (Q2) is not as straightforward as in the case of (Cχ) and (C−

ι ). This, then,
is the puzzle announced in the section header:

(P) How does the compositionality of extensions bear on speakers’ ability to
grasp the meanings of indefinitely many linguistic expressions?

As it turns out (and the reader may already have noticed), (P) is not a substantial
problem; a straightforward solution will be presented in due course. So why
bother? Two reasons. For one thing, it is important to realize that there is a
gap between motivating the compositionality of meaning in terms of learnability
on the one hand, and observing the compositionality of extensions throughout a
large portion of language on the other. Anyone who follows this line of reasoning
should therefore be prepared to address this gap and close it; in particular,
those of us who teach semantics at an introductory level ought to be aware of
this commitment. For another thing, and perhaps more importantly, in order to
address (P), one needs to have a clear understanding of what extensions are in
the first place, arriving at which is the principal aim of this paper.

In the main body of this paper, the very concept of extension will be scru-
tinized and teased apart from various related yet importantly distinct construc-
tions. More specifically, Sects. 2 and 3 address what I (and others) take to be the
core of the theory of extension and intension. The discussion will be mostly in
line with Montague’s [36] and [37]. In particular, it will be based on the possible-
worlds version of intensions (and thus certain extensions: see below), rather than
Carnap’s [4] original state descriptions. Moreover, extensions will not be sharply
distinguished from Frege’s [15] Bedeutungen, since much of what will be said
applies to both concepts alike. Some less obvious differences will, however, be
addressed in Sect. 4. The final section returns to the puzzle about (C−

ε ). As it
turns out, unlike Carnapian intensions, Fregean Bedeutungen stand in the way
of a straightforward answer to (Q2).
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2 Truth and Reference

2.1 Extension and Reference

The term Bedeutung as used by Frege is commonly rendered by reference.5

Indeed, in certain prototypical cases, an expression does refer to its extension.
However, there are at least two reasons why the two notions of reference and
extension are better kept apart:

– For one thing, an expression may have an extension that is distinct from its
referent. Names and descriptions, if analysed as quantifiers, are cases in point.
Thus, for instance, to say that the extension of the name Batumi is the set
of all sets (of individuals) that contain the city of Batumi as a member does
not mean that that name refers to a set, let alone that that city is a set.
Rather, Batumi is the name of a city, and it is that city that the name refers
to. However, there is a close relation between the referent and the extension
of the name: the latter determines the former in a canonical way. In fact, part
of the predictive power of semantic theory rests on the fact that at least the
referents of some expressions can be gleaned from their extensions – even if
they do not coincide with them.6

– For another thing, many linguistic expressions do not have a referent in the
first place, and assigning them an extension does not make them refer to it
(or anything else, for that matter). Determiners and (declarative) sentences
are cases in point. It is hard to see what is won by proclaiming disjointness
the referent of no. And even though it is a constitutive feature of the theory of
extension and intension (as I understand it) that the extensions of declarative
sentences are truth-values, saying that two plus two equals four refers to the
same object as the description the truth-value of all tautologies is at best a
puzzling or eccentric way of speaking but certainly not a result of semantic
or conceptual analysis.

5 – at least since the first English edition [18] of [15], due to Max Black. Later trans-
lations traded reference for the even more unfortunate term meaning (the closest
English cognate of Bedeutung in ordinary German), thus making the English text
as rough a read as the original; Beaney [2] tells the whole history. In his defense of
Black’s original translation, Bell [3, p. 193] speculates that ‘employing everyday if
somewhat misleading words, [Frege] believed that fewer readers would be repelled
and his works would gain a wider audience’. I concur, but then Montague’s [36],
[37] and Putnam’s [44] use of extension for Bedeutung, philologically questionable
though it may be, fares even better in view of the fact that it lacks any non-technical
meaning or connotation. Of course, Carnap [4, §29] had scrupulously laid out the
differences between his distinction and Frege’s.

6 In an earlier paper [60], I have said more on the distinction between theory-internal
values like extensions and their relation to theory-external objects like referents.
To be sure, all this is about semantic reference – a concept whose coherence I do
not wish to dispute, but that needs to be distinguished from the purely pragmatic
concept of speaker’s reference, as famoulsy pointed out by Kripke [32].
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So rather than stretching the notion of reference beyond recognition, one should
only apply it where it makes immediate sense. This certainly includes the indi-
vidual reference of proper names and (non-empty) definite descriptions, but also
the divided reference of common nouns and sentence predicates, which may be
construed as distributing individual reference across their extensions.7 However,
it clearly does not extend to sentences and their truth-values. If a less misleading
cover term for both is needed, extension does not appear to be the worst choice,
even as a translation of Bedeutung. For the most part of this paper, excepting
Sect. 4, I will follow this tradition and also use the same notation for both, writ-
ing ‘�A�i’ for the extension of expression A relative to an index i (= world, time,
world-time pair,. . . ).

Why would anyone want to put truth-values and referents in the same cate-
gory? To be sure, both concern and depend on the objects linguistic expressions
are about. Moreover, the syntactic environments in which substitution of co-
referential nominals preserve reference and truth-value seem to be the same as
those in which substitution of materially equivalent clauses do. Arguably, this
remarkable fact had been Frege’s primary motive to treat them on a par, but it
is hardly a clue as to why truth-values should be the sentential counterparts of
nominal referents.8 What, then, if anything, unifies the two? The answer to this
question depends on what is taken to be the prototypical case of reference. More
specifically, it is the difference between individual and divided reference that is
at stake. I will take the two options in turn.

2.2 Truth and Individual Reference

If the starting point for the motivation of truth-values is individual rather than
divided reference, the index-dependence of both the referents of definite descrip-
tions and the truth-values of sentences may be exploited to assimilate the latter
to the former. Given an index i, the phrase the open door refers to the sole, or
perhaps the most prominent, object in i that is a door and standing open in i.9

Identifying the extension of that description with its referent, one may charac-
terize �the open door�i as that object in i that fits the description [the] open door
in i. Extrapolating from this example (and glossing over a lot of messy details),
the following recipe for determining the extension of a definite description D
emerges, where the ι-operator is to be understood along Fregean lines.10

7 Quine, who introduced the term [45, pp. 8ff.], took divided reference to be epistemo-
logically prior to individual reference. Traditionally, the term extensio[n] has chiefly
been used for divided reference; cf. Frisch’s [19, pp. 183ff.] detailed account.

8 The same point has been made by Tugendhat [56, pp. 178f.]. (In a recent paper,
Richard Heck and Robert May [21] offer an interesting reconstruction of Frege’s own
motives, relating them to the analysis of (Boolean) connectives.)

9 – or in any situation corresponding to i, given that in general indices are tuples of
situational parameters, in the sense of [59, Sect. 8].

10 . . . as defined by Heim & Kratzer [22, p. 75, (5)]. A Russellian construal of the definite
article ([47], [37, p. 393]) would have to distinguish between extension and referent,
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(1) �D�i = ιx. x is in i and x matches D at i

A straightforward way of adapting (1) to sentences S and their truth-values is
by taking them to refer to the entire index:11

(2) �S�i = ιj. j is in i and j matches S at i

(2) might be hard to parse, but it can still be made sense of. To begin with, the
containment relation between indices may be construed as identity, assuming
that no index can be part of another, distinct one (with a qualification to be
made in the next paragraph). Next, the notion of matching is naturally construed
by taking propositions expressed by sentences as sets of indices they are true of.
And the potentially alleged index-dependence of this match may either be taken
as redundant or as a result of diagonalizing a character.12 I concentrate on the
former option, if only to avoid two-dimensional complications, and reformulate
(2) as:

(3) �S�i = ιj. j = i and S is true of j

According to (3), the extension of a sentence S is the index i at which it is
evaluated – provided that S is true of i; otherwise the extension of S is undefined.
Hence one may identify the truth-values accordingly: the evaluation index i
corresponds to truth, whereas some default value # may mark absence of truth
as undefinedness. That the former comes out as situation-dependent while the
latter is not even a proper object ought to be regarded as cosmetic irritations
that should not blind anyone to the achievement of (2) and (3): they bring out
the parallelism between nominal and sentential extensions.

The reformulation (3) of (2) turns on the identification of index-inclusion
and identity. This may be natural for some construals of indices – worlds or
parameter-tuples, say – but it is a dubious move when it comes to a more nat-
uralistic evaluation of expressions relative to situations with rich mereological
structure. One way to go is to shift the starting point of the analogy between
referents and truth-values from (1), which is restricted to descriptions headed
by singular count-nouns, to (4), which also covers plurals and mass nouns and
takes the part-whole relation � into account (following Sharvy [49, p. 612]):

(4) �D�i = ιx. x fits D in i and for all y: if y fits D in i, then y � x

The sentential counterpart of (4) can be obtained by confining the situations
j that fit a sentence S at a point i to parts of i:

but still provide the same two possibilities, depending on whether the extension of
the head noun is a singleton.

11 A sketch of this characterization of truth-values can be found in a handbook article
[61, p. 191], which follows my earlier class notes [57, pp. 108f.]; Fabian [12, p. 86]
and Leonardi [34] have expressed similar ideas.

12 More precisely, in a two-dimensional framework. (2) could be the result of evaluating
the character [λi.λk.ιj. j is in k and j matches S at i] at context i.
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(5) �S�i = ιj. S is true of j � i and for all k: if S is true of k � i, then k � j

As long as sentences S express ‘persistent’ propositions (as postulated by Kratzer
[29, p. 616ff.]), (5) will pick out i if S is true and nothing otherwise, as desired.

2.3 Truth and Divided Reference

Both (3) and (5) adapt to divided reference if the ι-operator is replaced by set (or
λ-) abstraction. However, a more compelling analogy between nominal referents
and truth-values emerges if sentence predicates are construed as (distributively)
referring to the (individual) referents of potential (singular) subjects: the pred-
icate snore thus (distributively) refers to all (singular) referents u of (singular)
subjects x of whom it can be truly said that x snores, which may be comprised
in one single set {u: u snores}. Although this identification of the referents of
verb phrases has come under attack since the days of Frege and Carnap, I will
stick to it here, if only for simplicity.13 In any case, the divided individual ref-
erence of sentence predicates does not directly extend to other kinds of verbal
constituents: transitive verbs like kiss distributively refer to pairs of individuals
and ditransitive verbs like give distribute their reference over triples, although
they side with transitives, once partially saturated with an (indirect) object, as
in give a student. Indeed, there is a familiar parallelism between the number n of
(nominal) arguments x1, . . . , xn of an n-place predicate P and the length of the
tuples (u1, . . . , un) it distributively refers to: the predicate kiss thus refers to the
pairs (u1, u2) that are the respective referents of subjects and objects such that
x1 kisses x2 holds true. More generally, the referents of an n-place predicate P
may be comprised in its satisfaction set, which may in turn be identified with
its extension:14

(6) �P �i = {(u1, . . . , un) | P (x1, . . . , xn) is satisfied by u1, . . . , un at i}
Since an n-place predicate may be construed as a sentence that lacks n (nominal)
arguments, a sentence may be construed as a 0-place predicate. Adapting (6)
to the limiting case n = 0 thus leads to the following characterization of the
extension of a (declarative) sentence S:

(7) �S�i = {( ) | S is satisfied at i}
Here ( ) is the (only) 0-tuple, which will be identified with the empty set ∅, and
satisfaction boils down to (index-relative) truth simpliciter, given that there are
13 There are good reasons for analyzing verb meanings in terms of events, as famously

pointed out by Davidson [8] as well as his pre- and successors Ramsey [46] and
Parsons [41]. Even so, much of what will later be said about extensions in general,
carries over to event semantics.

14 The parallelism also plays a role in Frege’s [14] construction of verbal extensions to
be addressed in the next section. The characterization (6) is reminiscent of Tarski’s
[54] account of predicate logic, as is the downward generalization (7) due to Carnap
[4, §6-1]), but neither can be found in Frege’s writings, where individual referents
were taken as basic and predicate extensions were derived from them.
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no satisfiers. Hence the extensions of all true and all false sentences come out as
{∅} and ∅, respectively, and could thus be taken as the set-theoretic surrogates
of the truth-values.15

3 Determining Extensions

Though the derivation of truth-values as extensions of 0-place predicates appears
more cogent than their justification by analogy to the referents of definite descrip-
tions, I will follow semantic tradition and make the connection between language
and world in terms of truth and individual reference. The exponents of this
connection are truth-valuable sentences and referential terms, whose parts sys-
tematically contribute to the truth-values and referents they have. According
to Fregean tradition, they do so in a compositional way: the extensions of sen-
tences and terms – i.e., their referents and truth-values – are obtained by suitably
combining the extensions of their immediate parts, which in turn are obtained
by suitably combining the extensions of their parts, etc.16 For this to work, all
expressions need to have extensions that they can contribute in the composition
process. What, then, are the extensions of expressions that neither refer nor
have truth-values? The answer to this question is usually given by construing
contributions as functions:17

15 This is so because the set in (6) contains all (and only) the objects of the form
(u1, . . . , un) such that the clause to the right of the abstraction operator ‘|’ holds;
hence the set in (7), where n = 0, contains all (and only) the objects of the form ∅
such that S is satisfied (at i). So if S is true (at i), then �S�i contains precisely the
objects of the form ∅, i.e. �S�i = {∅}, because there is only one such object, viz. ∅;
but if S is false (at i), then nothing (and a fortiori, nothing of the form ∅) satisfies
the clause to the right of ‘|’, and thus �S�i = ∅. It so happens that the two sets
∅ and {∅} are the set-theoretic representatives of the numbers 0 and 1, given the
standard ordinal construction by von Neumann [38] – or, in fact, Zermelo (cf. [11,
pp. 133f.]). Moreover, in view of this representation, the truth-functional connectives
come out as the familiar set-theoretic Boolean operations on ∅ and {∅} – conjunction
as intersection, disjunction as union, etc.

16 This characterization of extensions generalizes the basis of Frege’s [13, p. x] infa-
mous context principle, according to which sentences should form the starting point
of semantic analysis, from truth-evaluability to referentiality. Without this gener-
alization, functional contributions risk becoming either indeterminate or non-well-
founded, in view of the relativity of the function-argument relation (aka ‘flip-flop’
[42, p. 375]). Though it is unlikely that this was Frege’s motive for generalizing truth
(-values) to reference, it is helpful for the set-theoretic construal of (FH1). Critical
discussions of the tension between compositionality and contextuality can be found
in papers by Pelletier [43] and Janssen [24].

17 Frege’s idea of ‘reifying’ contributions to semantic values is actually independent of
the choice of extensions and can also be used starting from truth-values and divided
referents, or even from individuals and propositions; in the latter case, the so-called
‘Russellian’ hierarchy of denotations ensues, which turns out to be equivalent to (8)
below, modulo some suitable coding like Kaplan’s Russelling of Frege-Churches [25].
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(FH1) 1st Fregean Heuristics cf. [14]

Unless determined independently, the extension of an expression X
is that function that assigns to every extension of a (possible) sister
constituent Y of X the extension of the mother constituent X + Y .

Applications of (FH1) abound and ought to be familiar from semantics text-
books; see, e.g., [22, Chaps. 2 and 6]. In particular, the extensions of (i) verb
phrases, (ii) transitives, (iii) ditransitives,. . . can be derived as (curried) (i) unary,
(ii) binary, (iii) ternary,. . . relations. In all these cases, Y would be a referential
nominal, whose extension coincides with its referent. In case (i), X + Y is a
sentence with subject Y and predicate X, whose extension coincides with its
truth-value.18 For (ii), Y would be the direct object of X and X + Y would be
a verb phrase, whose extension has been determined by an earlier application of
(i); the result of (ii) could in turn be fed into (iii), where X + Y is a complex
transitive with indirect object Y ; and so on. As a result, the extensions obtained
for verbal constituents are curried versions of the divided referents assumed in
Sect. 2.3. Still, the truth-values cannot be derived in the same way, since they
have been taken for granted from the very first step (i) of applying (FH1).

Part of the power of (FH1) lies in the fact that it can be iterated ad libitum,
as illustrated in steps (ii) and (iii) above: once suitable extensions of one kind of
expression have been identified, the result can be fed into further applications of
(FH1), thus proceeding from immediate constituents to indirect ones. This way
a large number of ever more abstract extensions are obtained.

Some remarks on the status of (FH1) are in order. To begin with, it is not
part of semantic theory but merely a discovery procedure (in the sense of [6, p.
51]) that helps identifying possible candidates for contributions to referents and
truth-values. If everything goes well, it will output theoretical entities that may
play the role of extensions in a compositional account of the language under
scrutiny. In fact, as an immediate consequence of (FH1), the extensions of the
mother constituents X + Y locally satisfy (C−

ε ) in that they can be obtained
from those of their immediate parts: �X +Y �i = �X�i(�Y �i). Thus the success of
(FH1) as a strategy of determining extensions may lead to the impression that
functional application is a (cognitively or linguistically) privileged combination
of extensions, when it is actually the result of a specific way of reconstructing
(some) contributions to referents and truth-values in terms of (mathematical)
functions.

The procedure (FH1) is far from being perfect:

• It is not deterministic: which extension (FH1) outputs for a given expression
X depends on the syntactic environment in which it is applied. Quantifica-
tional nominals X like everyone are a case in point. Their extensions are

18 Hence X +Y need not be the concatenation of (the terminal strings of) X and Y ; in
particular, the order may be reversed, and additional morpho-syntactic interactions
may take place. It should also be mentioned that binarity is not essential: (FH1) eas-
ily generalizes to n-ary constructions, where n ≥ 1. The derivation of the extensions
of coordinating conjunctions as binary connectives is a case in point.
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usually determined by taking the sister Y to be a verb phrase and X as its
subject so that the outcome is the familiar (characteristic function of a) set
of predicate extensions. However, in principle the procedure could also apply
where X is the object of a transitive verb, whence its extension comes out as
a function from binary to unary relations.

• Even arbitrarily many iterations of (FH1) need not cover all expressions X of
a given language, because no sister nodes Y and mothers X +Y can be found
both of whose extensions have been identified before. The immediate con-
stituents of English determiner phrases like every person are a case in point.
Neither seems to be part of other syntactic constellations that would allow
determining its extension beforehand. Hence independent considerations are
required to find appropriate extensions, like the assumed equivalence of nouns
(person) and corresponding predicate nominals (be a person).

• (FH1) fails to produce results in the absence of extensionality (aka exten-
sional substitutivity), when the extension of the mother node X +Y does not
depend on that of sister Y , as substitution of Y by some co-extensional Z
brings out: �X + Y �i �= �X + Z�i, though �Y �i = �Z�i. Attitude verbs X
like know and their clausal complements are a case in point: two materially
equivalent sentences Y and Z may lead to distinct sets of attitude holders
when embedded under the same verb.

It is, of course, the third imperfection that gave rise to an amendment of (FH1)
to save compositionality:

(FH2) 2nd Fregean Heuristics cf. [15]

In the absence of extensionality, the extension of X is that function
that assigns to every intension of a (possible) sister constituent Y of X
the extension of the mother constituent X + Y .

According to (FH2), intensions come to the rescue when substitution failures
challenge extensional compositionality. This repair strategy raises two problems.
Firstly, how are intensions individuated? And in the second place, is there any
guarantee that they do not pose additional substitution problems? As to the
first question I will, until further notice, follow the popular, broadly Carnapian
strategy of identifying intensions with (set-theoretic) functions from indices to
extensions. Unfortunately, this decision has negative repercussions on the sec-
ond question: most of the environments that give rise to extensional substitu-
tion problems are also sensitive to intensional substitution. I will again follow
semantic tradition and ignore this complication in the hope it can be resolved
by pragmatic considerations (see, e.g., Stalnaker’s [50,51] suggestions); however,
the topic will be briefly revisited in Sect. 5.

Even though (FH2) inherits the other two imperfections of (FH1), together
the two discovery procedures go a long way towards identifying extensions (and
thereby intensions) for all expressions. However, since an expression whose exten-
sional contribution has been determined in one environment, may also occur in
many other environments, this generalization is bound to lead to more com-
positional combinations than functional application (or its intensional variant
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resulting from (FH2)); see [58] for pertinent considerations. But to the extent
that the functional contributions constructed according to these heuristics are
sufficient, the following peculiar form of compositionality emerges, which Mon-
tague [36, pp. 75f.] dubbed Frege’s functional principle:

(FFP) The extension of a compound expression derives from combining the
extensions or intensions of its immediate parts, depending on whether
they exhibit extensional substitutivity.

Given the Fregean heuristics of identifying them, extensions come in two kinds:
the basic ones that connect language with the world; and the derived extensions
that are obtained by applying (FH1) or (FH2). The former are the truth-values
and the individual referents. The latter are functions assigning mother extensions
to sister extensions or intensions; moreover, in the latter case one of the sisters
also contributes its intension to the maternal extension. Hence the extensional
contributions may be arranged in a hierarchy of intensional types:19

(8) The hierarchy of extensional contributions cf. [37]

• Individuals and truth-values are extensional contributions of type e
and t, respectively;

• functions from extensional contributions of any type a to extensional
contributions of any type b are extensional contributions of type
(a, b);

• functions from the set of indices to extensional contributions of any
type a are extensional contributions of type (s, a).

The (allegedly Fregean) principle (7) must not be confused with a weaker prin-
ciple to the effect that intensions behave compositionally, which – applied to
his ‘Sinne’ and restricted to eternal expressions – Frege apparently took to be
obvious:

(Cι) The intension of a compound expression derives from combining the
intensions of its immediate parts.

(Cι) is much stronger than the principle (C−
ι ) above, which was restricted to

eternal expressions. Still, it is frequently taken to be valid, quite independently
of any learnability considerations. Thus, in Kaplan’s [26, p. 510] two-dimensional
account of context-dependence, (Cι) comes in the guise of a ban on so-called
monsters – environments in which the extension of a mother node would depend
on the whole character of one of its daughters. On the other hand, (Cι) is slightly
weaker than (FH2) as will be argued next.

19 The term extensional contribution is meant to avoid the paradoxical ring which the
more common term ‘(possible) extension’ has in view of the third clause of (8). –
As Klev [28, p. 75] pointed out, the split between e and t goes against the spirit of
Frege’s view of truth-values as referents; but it has become an important ingredient
in type-logical reconstructions of Frege’s theory of reference, starting with Church
[7].
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4 Extension and Bedeutung

In this section, I wish to address some potential terminological confusions sur-
rounding the very term extension and its relation to Frege’s Bedeutung. It is
well-known that, despite certain commonalities, Carnap’s [4] intensions, like its
modern descendants [37], are much more coarse-grained than Frege’s [15] Sinne.
Given that the extensions of ‘intensional operators’ (like modal and attitude
verbs) have intensions in their domain, this granularity gap also affects the dif-
ference between extensions and Bedeutungen. Moreover, since the derived exten-
sions are set-theoretic functions from the hierarchy (8), they too are less fine-
grained than their Fregean counterparts. We will get back to these differences
in Sect. 5, arguing that this fine-grainedness blocks the road to a straightfor-
ward solution to the initial puzzle (P). In the current section two less obvious
differences and their impact on semantic analysis will be scrutinized.

4.1 The Arguments of extension

The technical term extension denotes a binary function from parameters and
expressions to extensional contributions,20 where the parameters comprise any-
thing that the extension of a given expression may depend on: model, assignment,
context, index, etc. Suppressing all parameters but the index, the extension of
extension (in semantics parlance – as opposed to the hairdresser’s usage, which
Daniel Hole reminded me of in correspondence), is that function f that satis-
fies f(X)(i) = �X�i for any expression X of the object language (non-technical
English, say) and any index i; likewise, assuming the rigidity of proper names
[31], the extension of the complex nominal the extension of ‘Batumi’ is the city
of Batumi. However, like all relational or functional nouns of English as well
as its cognates in other languages, the technical term extension has a number
of additional usages obtained by dropping arguments. As a rule, these miss-
ing arguments are interpreted either by reference to some contextually given
object or by existential quantification over such objects.21 Thus the functional
noun capital can refer to the singleton of Tbilisi or Atlanta if the contextu-
ally salient state happens to be one of the Georgias; and in predicative posi-
tion the same noun may denote the set of all capitals of a given region – the
German federal states, say: {Berlin, Munich, Hamburg, Düsseldorf,. . . }. For
expository purposes, the contextual and the existential construals may be dis-
tinguished by subscripts ‘i’ and ‘∃’, where the former denotes the pertinent
20 Depending on how expressions are individuated, a further argument place specifying

the object language may also be needed.
21 The availability of these construals, which are presumably structural ambiguities or

systematic polysemies, appears to be restricted, one potential factor being function-
ality. Thus, e.g., while the plural description the fathers may be used to refer to a
group determined by existential quantification, an analogous reading of the cousins
seems hard to hear. Although restrictions on the omission of verb arguments have
been studied (notably by Sæbø [48]), I am not aware of any account of these asym-
metries in the nominal domain.
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index that the latter quantifies over. Since the noun extension has two indepen-
dently elidable argument slots, disambiguation may proceed by a superscript
(for the expression) and a subscript (for the index). Thus, e.g., the extensioni

of ‘It’s raining’ may refer to the truth-value of It’s raining at a contextually
given index i; the plural the extensions∃ of ‘the number of planets’ can denote
the set {n| (∃i) �the number of planets�i = n}; the statement Truth-values are
extensions∃

∃ says that {0, 1} ⊆ {x|(∃X)(∃i) x = �X�i} (where the existential
quantifiers are likely to be contextually restricted); etc.

Turning to the principle (C−
ε ) now, it appears that extension is the relevant

reading for both occurrences of the surface form extension[s] in it: the expression
argument is overt (in both occurrences) and existential quantification over the
index would obliterate its intended co-reference across the occurrences – mother
and daughters are meant to be evaluated at the same index, of course. However,
there is still a subtle ambiguity hidden in the formulation (C−

ε ): the evaluation
index i shared by both occurrences of extensioni may or may not coincide with
the index at which the combination of the daughters’ extension is performed.
Of course, due to the generic character of (C−

ε ), i is not one contextually salient
index but intended to be arbitrary, or universally quantified.

To see what is at stake here, one may consider an analogy involving a well-
studied functional noun (cf. [35]):

(9) a. The temperature can be read off from a thermometer.
b. The temperature can be read off from www.wunderground.com.

On its most prominent reading, (9-a) expresses that a thermometer read off
at a given (local and temporal) position, will provide the temperature at that
position. While (9-b) can also be construed along these lines, an equally obvious
reading ensues if temperature relates to an aforementioned distant time and place
– e.g., in response to a detective’s question concerning the weather at the scene
of a crime. Using the above disambiguation device, the difference between the
two constellations in (9) are brought out in:

(10) a. The temperaturei can be read offi from a thermometer.
b. The temperaturei can be read offj from www.wunderground.com.

In (10-a) and (10-b), the second subscript stands for the index of evaluation
of the predicate can be read off, i.e., the time and place at which a potential
reading takes place. Like the first index, it is likely to be construed as universally
quantified. Hence the crucial difference between the two sentences consists in
the coreference between that position and the argument of the functional noun
temperature: to get the temperature at a position, you may use a thermometer at
that position or consult a certain website even when at some potentially different
position.

While the disambiguations in (10) correspond to the most plausible readings
of the sentences in (9), the opposite distribution of subscripts is certainly also
possible: (9-a) may be taken to express that a thermometer can be used at one
position to determine the temperature at another one, though this is unlikely by
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what we know about how thermometers work; and similarly for (9-b). Seman-
tically, both sentences are ambiguous as to how the index of evaluation of the
predicate and the argument of the noun temperature are related. This, then, is
the very kind of ambiguity that can also be observed in (C−

ε ):22

(11) a. The extensioni of a compound expression derives from combiningi

the extensionsi of its immediate parts.
b. The extensioni of a compound expression derives from combiningj

the extensionsi of its immediate parts.

Using semantic notation, the two readings (11-a) and (11-b) of (C−
ε ) can be

expressed by the following two equations:

(12) a. �X + Y �i = �X�i ⊕i �Y �i

b. �X + Y �i = �X�i ⊕j �Y �i

In (12) the plus sign indicates an arbitrary syntactic construction in which the
constituents X and Y stand, and the encircled plus sign denotes the corre-
sponding combination of extensions (assuming there is one). The equations are
to be understood as holding for any indices i and j. As a consequence, the
index-dependence of the operation ⊕ in (12-b) is spurious: replacing j with any
other index k, results in the same combination of the extensions �X�i and �Y �i:
�X�i ⊕j �Y �i = �X + Y �i = �X�i ⊕k �Y �i, given that both j and k are sup-
posed to satisfy the equation (12-b).23 The difference between the two versions
of (C−

ε ), then, depends on whether this combination is itself index-dependent.
While (12-b) implies (12-a), the two ways of reading the principle (C−

ε ) of exten-
sional compositionality are certainly not equivalent: (12-a) would be satisfied if
⊕ sometimes combined the daughter extensions in one way, by conjunction say,
and sometimes in another, perhaps by disjunction [62, p. 282]. A glance at the
semantic literature reveals that such constructions appear to be unheard of, so
that the stronger, uniform version of (extensional) compositionality (12-b) ought
to be preferred over the weaker (12-a). However, there is nothing in the general
set-up that would force this choice. So if (12-b) rather than (12-a) is to be under-
stood as a defining principle for the extensional fragment of a language, it better
be motivated somehow.

22 It should be noted that the subscript on the noun extension does not relate to the
point of evaluation of its extension but to an argument of the latter. The point of
evaluation only becomes relevant when it comes to counterfactual extensions due to
different underlying meanings, as in the following variation of a Kripkean [31, p. 289]
theme: People might have spoken a language in which the extension of ‘two plus two
equals four’ was 0, where extension needs to be interpreted at certain counterfactual
points, though its index argument could also relate to the actual utterance situation.

23 More precisely, ⊕j and ⊕k coincide on all daughter extensions �X�i and �Y �i. If the
operations are extrapolated (cf. [62, pp. 280f.]), they may still diverge on ‘ineffable’
contributions.
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To see how Frege’s Bedeutungen fare better in this respect, it is worth looking
at the source of the (binary) functionality of the noun extension: by definition,
x is the extension of an expression X at an index i iff x is the (unique) value
that X’s intension assigns to the argument i. As a consequence, extension and
intension may be seen as having the very same extension.24 To sees this, one
may observe that extension can be interpreted as denoting a function that is
successively applied to expressions X and indices i of the object-language, to
yield the extension of X relative to i. Using double slashes for the interpreta-
tion of the meta-language and suppressing its extension-determining parameters
(‘. . . ’), we thus have:

(13) �extension �... (X)(i) = �X�i

At the same time, the meta-linguistic noun intension may be taken to denote
a function that, when applied to any object-linguistic expression X, yields X’s
intension:

(14) �intension �... (X) = λi. �X�i

But then successive application of either of the functions specified in (13) and
(14) to any X and i in their domains yields the same result �X�i, which means
that:

(15) �extension�... = �intension�...

Their co-extensionality notwithstanding, the two nouns differ in their syntactic
behaviour. In particular, if omitted, the second (index) argument of extension
may be supplied contextually or existentially, as in the case of the first (expres-
sion) argument. However, the second argument of intension cannot be so con-
strued; it is syntactically invisible. As a consequence the noun intension always
refers to the function, whereas the noun extension never does; for there is no
way of construing the omission of its index argument by abstraction.

There is nothing unusual, let alone paradoxical, about this relationship, which
any functional noun bears to a corresponding ‘abstract’ count noun that denotes
its extension: square root vs. square root function, sum vs. addition, etc. One
might say that the members of such pairs are co-designative without being syn-
onymous, because they resist substitution, if only for syntactic reasons.25 How-
ever, Frege’s Bedeutung and Sinn do not stand in this relationship, for the simple
reason that the latter does not denote a function in the first place. For although
the Bedeutung of a given expression generally depends on the circumstances, it
24 Or so I am assuming, be it for dramatic effect; see [63, pp. 101f.] (with a correction

in https://tinyurl.com/ybtw3oh9) for an interpretation of functional nouns along
these lines, which easily (though not inevitably) generalizes to binary functionals as
in (13).

25 The situation is vaguely reminiscent of the reference to an unsaturated function by
means of a saturated term, which Frege [17] seems to have excluded on principle,
albeit for dubious reasons (as Parsons [40] argued). However, in the case at hand,
both nouns would count as syntactically unsaturated in that they lack a determiner.

https://tinyurl.com/ybtw3oh9
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is not defined as the result of applying a certain function – sense, intension, or
whatever – to (a representation of) those circumstances: Bedeutungen are Bedeu-
tungen of something, but not at something – there just is no index argument. As
a consequence, the index-dependent reformulations of (C−

ε ) with Bedeutungen
in lieu of extensions should look like this:

(11) c. The Bedeutung of a compound expression derives from combiningj

the Bedeutungen of its immediate parts.

(12) c. �X + Y � = �X� ⊕j �Y �

Hence, like (12-b), (12-c). is a principle of uniform compositionality in that
the Bedeutungen are combined independently of the index at which they are
determined. But in this case there is no alternative non-uniform reading like
(12-a). Of course, this does not mean that such a non-uniform combination
could not be formulated in terms of Fregean Bedeutungen. In fact, it could, by
explicitly mentioning (possible) circumstances or indices. But nothing like the
non-uniform principle (11-a) suggests itself as a reading of (C−

ε ). In other words,
uniform compositionality falls out of a Fregean construal of Bedeutungen without
having to be motivated or postulated ([62, p. 284]). And it even goes beyond the
extensional fragment, as will be argued now.

4.2 Occurrence and Bedeutung

By virtue of the last clause, the hierarchy defined in (8) not only contains all
possible extensions of expressions but also their intensions. This is so because
it is meant to cover whatever an expression may contribute to the referent of
a definite description or the truth-value of a sentence in which it occurs; and
according to (FFP), this contribution may consist in its extension or in its inten-
sion. In particular, the contribution an expression makes depends on the position
in which it occurs: it is occurrence-dependent. For the sake of definiteness, an
occurrence x of an expression X in a (host) expression Y may be identified with
a pair x = (p, Y ), where p is the structural position of x in Y (cf. von Stechow’s
[52] account). Then x’s (extensional) contribution to Y will be either (a) X’s
extension or (b) X’s intension, as determined by the following induction on p: if
p marks an immediate constituent of Y , then (a) applies just in case X exhibits
extensional substitutivity in the construction of Y ; and if p is the position of
an indirect constituent of Y with mother y = (q, Z), then (a) applies iff the
contribution of y to Y is Z’s extension and X exhibits extensional substitu-
tivity in the construction of Z. Hence extensional contributions are extensions
throughout the extensional fragment, whereas intensions take over throughout
all intensional environments.

Somewhat confusingly, Frege [15] used the German noun Bedeutung to denote
extensional contributions, distinguishing between direct [gerade] ones, which
consist in Bedeutungen, and indirect [ungerade] ones, which denote Sinne. So
Bedeutung not only displays the systematic ambiguity typical of functional
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nouns, it is also polysemous in an unsystematic way: apart from acting on expres-
sions, the functions it denotes may also apply to their occurrences. More specifi-
cally, the relevant reading Bedeutung loc may be construed as denoting a function
mapping occurrences to their extensional contributions.26 Given this construal,
the following compositionality principle holds without exception:

(Cloc) The Bedeutungloc of a compound expression derives from combining
the Bedeutungenloc of its immediate parts.

On the basis of the above characterization of extensional contributions, (Cloc)
immediately follows from (FFP) and (Cι), if adapted to Bedeutungen. In their
original form, these principles sum up the central compositionality properties
of possible worlds semantics. However, though frequently attributed to Frege,
(FFP) is not the only way of understanding the pertinent passages in [15]. In fact,
a more popular reading has it that iterated intensional embeddings necessitate
ever more indirect contributions (cf. Kripke’s account [33, p. 183], but then again
also Parsons’ doubts [39]). Thus in a sentence like (16), the doubly underlined
clause would not contribute its sense to the Bedeutungloc (the sense) of the
singly underlined clause, but its ‘indirect sense’:

(16) Sue believes that Billy suspects that most plush toys are former pets.

Following this line of analysis, the full hierarchy of intensions or senses of types
a, (s, a), (s, (s, a)), . . . would have to be invoked to account for the interpreta-
tion of all occurrences of a single expression, which seems to undermine any
attempts to explain learnability in terms of compositionality (as Davidson [9, p.
136] pointed out). One may thus see Kripke’s [30] approach to intensional oper-
ators as quantifying over the evaluation points of the embedded material while
introducing a new index dependence, as an escape from this analytic impasse.
Yet the fact that multiply embedded clauses as in (16) may be construed as
simultaneously depending on more than one index (as observed by Bäuerle [1]),
might be taken as a reason to re-evaluate the (allegedly) Fregean strategy of
higher-order indirectness; see [62, pp. 291ff.] for more on this perspective.

5 Back to the Puzzle

Learnability had also been the focus of the initial puzzle, repeated here for the
reader’s convenience:

(P) How does the compositionality of extensions bear on speakers’ ability to
grasp the meanings of indefinitely many linguistic expressions?

26 I continue to assume the interpretation of functional nouns mentioned in fn. 24
above. – Incidentally, Frege did not use the term occurrence (or its German cognate
Vorkommen) but spoke of the way in which the expressions are used: ‘die Wörter
werden in der ungeraden Rede ungerade gebraucht’ [in indirect speech, words are
used indirectly ] [15, p. 28].
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The answer is embarrassingly simple. In a nutshell, the connection is made by the
intensions of the expressions involved. By definition (and as mentioned above),
extensions are the values that corresponding intensions assign to indices. So if
the extensions behave compositionally (as they do throughout the extensional
fragment), this means that at any index i, the extension of any mother con-
stituent �X + Y �i can be obtained by suitably combining the extensions �X�i

and �Y �i of its daughters. It suffices to consider the more general, non-uniform
case:

(12-a) �X + Y �i = �X�i ⊕i �Y �i

The crucial observation is that, if (12-a) holds, the mother intension �X + Y �∧

can be obtained from the intensions �X�∧ and �Y �∧ of the daughters too: at any
index i, the value that �X + Y �∧ assigns to i is determined by the extensions of
the daughters, which are in turn determined by their intensions:

(17) �X + Y �∧(i)
= �X + Y �i

= �X�i ⊕i �Y �i

= �X�∧(i) ⊕i �Y �∧(i)

Since (17) holds for all indices i, the entire function �X + Y �∧ can now be
collected by functional abstraction:

(18) �X + Y �∧

= λi. �X + Y �∧(i)
= λi. �X�∧(i) ⊕i �Y �∧(i)

which is a ‘pointwise’ specification of the mother intension in terms of the daugh-
ter intensions. In particular, the pertinent combination ⊕̂ of intensions comes
out as:

(19) ⊕̂ = λf. λg.λi.f(i) ⊕i g(i)

The operation in (19) not only combines intensions so as to guarantee (12-a), it
is also unique in this respect:27 if there were an alternative distinct operation �
to the same effect, then due to the extensionality of set-theoretic functions, it
would have to differ from ⊕ when applied to at least some intensions �X�∧ and
�Y �∧, and an index i:

(20) [�X�∧ ⊕ �Y �∧](i) �= [�X�∧ � �Y �∧](i)

But this cannot be, given that, by intensional compositionality, both sides of the
inequality in (20) come down to �X + Y �∧(i). Hence the conclusion from (12-a)
to (19) not only shows that extensional compositionality implies intensional
compositionality, but also that extensional composition determines intensional

27 The same reservations concerning extrapolation and effability as in fn. (23) apply,
though.
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composition: from the way the extensions combine (in extensional constructions),
one can conclude how the corresponding intensions do. Hence to the extent that
identifying the intensions of expressions is a matter of linguistic knowledge (as
argued in Sect. 1), extensional compositionality helps explaining how this knowl-
edge is acquired: even though speakers generally do not know what the extensions
of the expressions they (or others) use are, as long as they behave composition-
ally, they also know how their intensions combine and can thus identify them
compositionally. Of course, the reasoning is restricted to the extensional frag-
ment. To go beyond it, further strategies such as the (alleged) Fregean strat-
egy (FFP) of employing intensions as ersatz extensions are required. But the
large domain of extensional constructions is a good starting point, especially for
semantic rookies.

While the above reasoning is by no means original, it is well worth remem-
bering whenever a connection is made between extensional compositionality and
learnability. It is also worth pointing out that, for the ‘pointwise’ determina-
tion of intensional compositionality in (18) and (19) to work, it is essential that
intensions are defined as set-theoretic functions. Fregean senses, despite their
structural similarity to intensions, do not support anything like the inference
from (12-a) to (19). In fact, their compositionality is quite independent of the
compositional behavior of extensions and intensions. If say, John or Mary shares
its sense with its converse Mary or John (as Frege may have taken for granted),
replacing one with the other might well result in a subtle sense difference, even if
the environment is extensional. Of course, there may be independent reasons for
ruling out such non-compositional behavior, but neither extensional nor inten-
sional compositionality does the job. And even if senses behave compositionally
(as Frege seems to have assumed), extensional compositionality underdetermines
their compositional behavior, as a simple permutation argument shows.28 For
concreteness, one may consider two expressions with the same intension but a
sense difference that is inherited to a larger expression:

(21) �Some oculists are occultists�$

= �some oculists�$ ⊗ �are occultists�$

�= �Some eye-doctors are occultists�$

= �some eye-doctors�$ ⊗ �are occultists�$

. . . where ‘�X�$’ denotes the sense of an expression X and ⊗ is the relevant sense
composition, which corresponds to a fully extensional construction:

(22) �Some oculists are occultists�i

= �some oculists�i ⊕ �are occultists�i

= �some eye-doctors�i ⊕ �are occultists�i

= �Some eye-doctors are occultists�i

28 As Kai Wehmeier pointd out to me, Frege used a similar argument in his Grundge-
setze [16, pp. 10] to illustrate the underdetermination of functions by their courses of
values, of which the relation between senses and intensions may be seen as a special
case.



168 T. E. Zimmermann

However, unlike the corresponding intensional combination that could be defined
as in (19), the sense operation ⊗ is not uniquely determined by the (universally
quantified) equations in (22). To see this, one could define an operation � that
behaves like ⊗ except that:

x � �are occultists�$ = y ⊗ �are occultists�$,

whenever x, y ∈ {�some oculists�$, �some eye-doctors�$}. Hence � swaps the
senses of the two determiner phrases in the above environment. But the move
from ⊗ to � would not affect the observations in (22): the intensions determined
by the permuted senses are the same anyway. Hence, as far as the extensional
behavior in (22) is concerned, � is as good a hypothesis for the underlying sense
composition as is ⊗. As a consequence, extensional compositionality, though per-
fectly sound as a basis for resolving the puzzle (P) in terms of intensions, should
not be employed to motivate the compositionality of Fregean senses.

6 Conclusion

Extensions feature prominently in contemporary semantic theory, owing their
pivotal position largely to their compositional behavior. Textbooks tend to pre-
sent compositionality as the keystone to the learnability of meaning and illus-
trate it by combining extensions. As argued in Sect. 1, this way of proceeding
leaves a puzzling explanatory gap (P): why would the compositional behavior
of extensions be relevant to learnability, given that they are not part of linguis-
tic knowledge? The answer to this question, finally given in Sect. 5, lies in the
specific relation between extensions and intensions. In many cases, knowledge of
the latter is part of linguistic knowledge and thus their compositionality may
be seen as offering a route to semantic learnability; and due to their very defini-
tion as set-theoretic abstractions from extensions, the compositional behavior of
intensions may piggyback on extensional compositionality. Hence to the extent
that extensions do behave compositionally, their compositional behavior guar-
antees intensional compositionality and may thus form the basis of an account of
semantic learnability. The textbook practice is thus fully legitimate, even though
an explicit justification is not always provided. This is the first take-home mes-
sage of the above, admittedly somewhat encyclopedic, exposition of the role of
extensions in semantic theory.

Due to their set-theoretic nature, extensions differ from their ancestors,
Frege’s Bedeutungen, in a number of important respects. As a case in point,
once we go beyond the extensional fragment, Bedeutungen diverge from the cor-
responding extensions, inheriting the fine-grainedness of their argument Sinne.
More importantly, the latter are not derived by set-theoretic abstraction from
corresponding (possible) Bedeutungen: whereas the intension of an expression is
determined by the totality of its possible extensions, there is no way of deriv-
ing its Sinn from its potential Bedeutungen. As a consequence, Bedeutungen are
susceptible to a natural and unambiguous concept of extensionality – a mild
advantage of Frege’s approach over the theory of extension and intension (as
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argued in Sect. 4.1). Yet the commonalities between extensions and Bedeutun-
gen seem to outweigh their differences: both make the connection between word
and world by generalizing the notions of reference and truth-value from definite
descriptions and declarative sentences to arbitrary categories (as explained in
Sect. 2); both are conceptually and formally simpler than full-fledged meanings
or contents of expressions; both extensions and Bedeutungen display the same
kind of compositional interaction with informational content as represented by,
respectively, intensions and Fregean senses (cf. Sect. 3); and whereas knowledge
of the latter values is often part of the mastery of a language, the extensions and
Bedeutungen of most expressions are unknown to its speakers. In view of these
parallels, it may seem that the compositionality of Bedeutungen is every bit as
relevant to learnability as extensional compositionality. But it is not: whether or
not Bedeutungen behave compositionally is independent of the compositionality
of Fregean senses; rather than being derived from extensional compositionality,
the compositionality of senses needs to be assumed on independent grounds.
The second take-home message, then, is a warning to those who prefer to have
their semantic values more finely grained than extensions and intensions: the
compositional behavior of extensions (or Bedeutungen) provides no evidence for
the compositionality of linguistic meaning, so conceived.
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15. Frege, G.: Über Sinn und Bedeutung. Zeitschrift für Philosophie und philosophische

Kritik NF 100(1), 25–50 (1892)
16. Frege, G.: Grundgesetze der Arithmetik. vol. 1. Pohle, Jena (1893)
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Abstract. We present two novel diagnostics for gauging the exhaustivity level
of German wh-interrogatives embedded under the predicates wissen ‘know’ and
überraschen ‘surprise’. The readings available in combination with the conces-
sive particle combinationSCHON…aber ‘alright…but’ and theQ-adverb teilweise
‘partially’ provide evidence that embedded wh-interrogatives under veridical and
distributive wissen ‘know’ have a weakly exhaustive (WE) reading as their basic
semantic interpretation [19]. The logically stronger strongly exhaustive (SE) read-
ing is a pragmatic enrichment that can be cancelled by SCHON…aber. In our
event-based analysis, know + wh expresses the maximal plurality of sub-events
of knowing the individual answers to the question. Under the cognitive-emotive
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1 Introduction

This paper takes a fresh look at the different exhaustivity levels of wh-interrogatives
embedded under the veridical and distributive predicate wissen ‘know’, and under the
cognitive-emotive and non-distributive überraschen ‘surprise’, cf. (1), (2).1

(1) Nino weiß, [wer getanzt hat].
  ‘Nino knows who danced.’ 

(2) Es überraschte Nino, [wer getanzt hat]. 
  ‘It surprised Nino who danced.’ 

The discussion will be based on two novel empirical diagnostics regarding the
interaction of embedded wh-interrogatives with the concessive particle combination
SCHON…aber ‘alright…but’ and the Q-adverb teilweise ‘partially’, as shown in (3).

(3) Nino weiß SCHON/teilweise, [wer getanzt hat].
‘Nino knows who danced alright, Nino knows who danced alright.
/Nino knows in part who danced. ’ 

A highly debated issue in question semantics is which of the observable surface
readings of varying exhaustivity (strongly exhaustive [SE], intermediate exhaustive
[IE], weakly exhaustive [WE]) are underlying semantic interpretations, and which ones
are mere pragmatic inferences, if any. To this end, we will investigate the interpre-
tive effect of particle combinations and Q-adverbs on the interpretation of interroga-
tives under know and surprise. We will show that insertion of the particle combination
SCHON…aber blocks the generation of some pragmatic implicatures. From this, we
conclude that exhaustivity inferences of wh-interrogatives that are blocked by the pres-
ence of the particle combination are pragmatic inferences. The Q-adverb teilweise ‘par-
tially’, by contrast, operates on truth-conditional semantic content proper. We conclude
that exhaustivity inferences targeted by teilweise must be part of the truth-conditional
semantic content of embedded wh-interrogatives. Applying the two diagnostics to wh-
interrogatives embedded under wissen ‘know’ and überraschen ‘surprise’, we find the
following: First, SE-readings under wissen ‘know’ are pragmatic inferences that are
derived from a weaker semantic interpretation [19, 40] under an internal subject per-
spective [13, 39]. This internal perspective follows from the novel general pragmatic
Principle of Attitude Report Verification (PARV). Second, the observable distributive
readings with überraschen ‘surprise’ result from pragmatic strengthening of a relatively

1 The distributivity of wissen ‘know’ is evidenced by the fact that knowledge of who danced
in s will entail knowledge of every individual that danced in s: In a situation s with three
individuals, Berit, Daniel and Malte, that danced, the truth of (1) entails that Nino knows that
Berit danced and that Daniel danced and that Malte danced. By contrast, [24] was the first to
show that überraschen ‘surprise’ is non-distributive, as one can be surprised by the composition
of a group (e.g., that B and D and M and all danced together) without being surprised at the
individual dancers; see §2 for more discussion of the semantics of know and surprise.
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weak underlying semantic interpretation, which can be cast in terms of an existential
WE-semantics [14, 34, 35], or by analyzing cognitive-emotive attitude verbs like surprise
as predicates operating on facts/situations rather than propositions/questions [12].

The article is structured as follows: Sect. 2 provides background information on
the exhaustivity of wh-interrogatives and the interpretive effects of SCHON…aber and
teilweise. Section 3 presents the novel empirical findings forwh-interrogatives embedded
underwissen ‘know’ (henceforth: know + wh), and it sketches an event-based analysis of
know as operating over the plural sum of knowledge sub-events, effectively giving rise
to a semantic WE-interpretation. Section 4 presents the novel empirical findings and
a preliminary analysis of wh-interrogatives embedded under überraschen ‘surprise’.
Section 5 concludes.

2 Background: Exhaustive Force, Particles, and Q-Adverbs

This section provides background information on the variable interpretation of embedded
wh-interrogatives as weakly or strongly exhaustive (Sect. 2.1), on the interpretive effects
of the discourse particle SCHON ‘alright’ in combination with concessive aber ‘but’
(Sect. 2.2), and on the semantic import of the Q-adverb teilweise ‘partially’ (Sect. 2.3).

2.1 Different EXH-Force Under Know and Surprise: SE vs. WE

The surface interpretation of sentences with embedded wh-interrogatives can vary in
the exhaustive force of the embedded interrogative, depending in part on the meaning
of the embedding predicate. Consider (1) with wissen ‘know’ in a scenario with four
individuals, Mary, Alex, Paul and Anna. Of these four, Mary and Alex danced, and Paul
andAnna did not. The two readings of (1) of interest differ in howmuch informationNino
must have regarding who did and who did not dance. On the strongly exhaustive reading
[13], she must have complete information regarding the entire answer space, namely
that Mary and Alex danced, and Paul and Anna did not. On the weakly exhaustive
reading [19], it suffices for (1) to be true that Nino’s information state is complete with
respect to the positive answer space: She would only need to know that Mary and Alex
danced. Moreover, non-exhaustive readings [41] with know are blocked by the inherent
distributivity or homogeneity of this predicate [4, 24].2

2 We focus on WE- and SE-readings in the discussion to come, in which we derive the SE-
reading from theWE-reading, which we take to be the semantic basis of any semantic theory of
embedded questions. The additional intermediate exhaustive reading (IE) is a strengthenedWE-
reading with the additional requirement that the subject have no false beliefs about individuals
that are not in the extension of the embedded predicate. For (1), this would require that Nino
does not (falsely) believe of Paul or Anna that they danced. We have nothing of substance to
say about the IE-reading in this paper and will therefore remain silent on how it derives from
the WE-reading. [40] derives IE-readings by applying an exhaustivity operator. Alternatively,
there may be a no-false belief constraint as part of the semantics of the embedding verb know,
which is veridical, i.e. truth-bound, so that theWE-reading with know is indistinguishable from
the so-called IE-reading, as proposed by [36, 37] and [22] for other embedding predicates, such
as predict. Throughout, we will continue to use the traditional label WE-reading in connection
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The cognitive-emotive attitude predicate überraschen ‘surprise’ differs semantically
from wissen ‘know’ in several ways. This has repercussions for the interpretation of
embedded wh-interrogatives. For one, surprise is not obligatorily distributive [24]. So,
(2) could still be true if Nino did not expect both Mary and Alex to dance at the same
party (because they are rivals and never dance if the other does) even though she is not
surprised by Mary’s dancing per se, nor by Alex’s. Given non-distributivity, surprise
+ wh may give rise to different readings than know + wh in the above scenario. The
different readings will crucially depend on Nino’s prior expectations. On the distributive
WE-reading (WE_dist), Nino didn’t expect Mary nor Alex to dance, so that her surprise
is complete with respect to the positive answer space ofWho danced?. A non-distributive
WE-reading (WE_nondist; cf. [14, 34, 35]) obtains if it’s justAlex thatNino didn’t expect
to dance. Now her surprise is directed at the positive answer space in a non-distributive
manner. In addition, there may be two SE-readings with surprise, which make reference
to the full logical answer space including the non-dancers: the non-distributive SE-
reading (SE_nondist) obtains if Nino is not surprised by the actual dancers, but she
did expect Anna to dance as well, contrary to fact. Finally, the distributive SE-reading
(SE_dist)would requireNino to be surprised by everybodywhodanced andby everybody
who didn’t (= complete counter-expectation).

Notice that know and surprise also exhibit different entailment patterns [32, 40], i.a.
Know is upward entailing so that SE entails WE: If Nino knows who was and who was
not at the party (SE), it follows that she knows who was at the party (WE). The same
entailment does not hold for surprise: If it surprises Nino who did and who did not dance
(SE), it does not follow that she is surprised by who actually danced (WE). The surprise
may be directed exclusively at the non-dancers.

The literature offers different views on the available interpretations of wh-
interrogatives under know. In [13], all embedded wh-interrogatives denote propositions
inducing a full partition of the entire logical space. In this partitioning question seman-
tics, all embedded wh-interrogatives are predicted to be strongly exhaustive. For [17],
the SE-reading with interrogatives under know follows from the lexical partitioning
semantics of the matrix predicate, such that (1) will be true iff Mary knows the com-
plete answer to who was at the party, and that this is the complete answer. Differences
aside, both accounts only predict SE-readings for know + wh. This strong position is
problematic on at least two counts: Firstly, whereas SE-readings are indeed prominent
with know, other embedding verbs such as predict, tell, or announce allow for weaker
interpretations, which cannot be modelled in a partition semantics [4, 17]. Secondly,
recent experimental work has found the weaker IE/WE-readings (i.e. to know the com-
plete positive answer and nothing more) to be readily available with an acceptability
rate of >90% even with English know and French savoir ‘know’ [6, 8]. In addition,
[7] provide experimental evidence for both WE_nondist and SE_nondist-readings with
interrogatives under surprise. The experiments in [6] and [7] involved picture matching
and acceptability judgments with an external, participant-centered perspective.

with know and surprise, where it should be understood as (empirically) equivalent to the label
IE-reading in the case of know, as in [40] modulo our non-commitment regarding the derivation
of IE.
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Novel Experimental Evidence. In two experiments with novel setups, we were able
to replicate to some extent these findings for German wissen ‘know’ and überraschen
‘surprise’. In a contradiction experiment [10], we tested for the obligatoriness of SE-
readings with wissen ‘know’ predominantly from the internal perspective of the attitude
holder. Participants had to judge the contradictoriness of discourse sequences, such as
(4) (in italics), in which the SE-reading is explicitly negated in the final clause.

(4) Context: [Anna, Beth, Chloe, Doro, Emma and Franzi share a flat in Berlin.] On 
the long weekend, they organized a games night. [Their former flatmate] Jan-
nick was there as well. During games night, they mixed drinks.
Jannick knows who out of the flatmates mixed a cocktail, but he doesn’t know 
that Emma and Franzi did not mix a cocktail. 

If only SE-readings were available under wissen, such sequences should be sys-
tematically judged as contradictory. Conversely, if participants judge them as non-
contradictory, this constitutes evidence for the WE/IE-reading. The results show
that more than 25% of all cases were judged as non-contradictory, indicating that
WE/IE-readings are available to some extent.

The second experiment was carried out for a range of matrix predicates in German,
including wissen ‘know’ and überraschen ‘surprise’ [11]. Target sentences were objects
of bets, and compensation was performance based, so that participants were actively
engaged through a financial incentive. Again, the linguistic items and contexts were
designed such that target sentences had to be judged from the internal perspective of
the attitude holder, while the external perspective of the addressee had to be taken into
account as well. This design targets the optimal reading from a communication-oriented
perspective; see [11] for details on the experimental setup. The descriptive results for the
two predicates of interest are as follows: For wissen, there was evidence for a WE/IE-
reading in 46% of all cases, as opposed to a ceiling 100% for SE. For überraschen,
there was evidence for the two WE-readings (WE_dist: 100%, WE_nondist: 96%), but,
interestingly, also for the SE_nondist-reading at a robust level of 58%. The availability
of SE_nondist will play a crucial role in the analysis of überraschen in Sect. 4.

Previous Analyses of Flexible SE/WE-Interpretations. There is ample evidence
from introspection and experiments that the interpretation ofwh-interrogatives is flexible
between SE and WE under wissen ‘know’, and variable between three surface interpre-
tations under überraschen ‘surprise’. The literature offers different ways to account for
this flexibility, with different sources for the observed variability in exhaustive force. [3]
derive the variability from two covert answer operators ANS1 (giving rise to WE) and
ANS2 (deriving SE), which both operate on an unconstrained interpretation of the inter-
rogative in terms of Hamblin-alternatives [16]. [22] postulate covert EXH-operators
either in the embedded interrogative (deriving SE) or in the matrix clause (deriving
WE/IE). [40] derives an IE-interpretation as the only available semantic reading by
placing covert EXH in the matrix clause. SE-readings are derived as a pragmatic enrich-
ment via a hearer-based (excluded middle) competence assumption. Finally, [39] posit
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a lexical ambiguity in the attitude verb know as expressing an internal perspective (SE-
reading) or external perspective (WE/IE-reading), respectively. Our analysis of know +
wh in Sect. 3 will incorporate core ingredients from the last two accounts.

2.2 The Interpretive Effect of SCHON…Aber: Implicature Blocking

According to [42], the German discourse particle schon ‘alright’ is a modal comparative
degree operator that commits the speaker to the truth of the prejacent proposition p,
after weighing the circumstantial evidence in favor of p against the evidence for its polar
counterpart ¬p. In general, the presence of schon indicates that there may be some
reason to doubt the validity of p. Because it expresses polar comparison, schon, and
accented SCHON in particular, are commonly found in verum focus contexts [18]. In
combination with the (implicit) concessive particle aber ‘but’ in a subsequent clause,
accented SCHON has an additional effect on interpretation: It consists in the blocking
of pragmatic implicatures based on prototypicality or relevance.3 Consider (5A), which
gives rise to the relevance-based implicature that Levan is not hungry in the absence of
SCHON. With SCHON, this implicature is blocked. Likewise, B’s implicit question in
(6) is whether she can get petrol, so that A’s response without SCHON would give rise
to the relevance-based conversational implicature that the petrol station is open and sells
petrol. This implicature is blocked in the presence of SCHON, thereby indicating that
the implicit question is answered in the negative: no petrol available.

(5) Q: Is Levan hungry? Has he had breakfast?
A: Er hat (SCHON) gefrühstückt (, aber…) 

‘He’s had breakfast (alright, but ...)’  

(6) Context: B tells A that she needs petrol and asks about a petrol station nearby.
A: Es gibt hier (SCHON) eine Tankstelle (, aber …)

‘There is a petrol station (alright, but ...)’

Crucially, SCHON…aber does not block scalar implicatures. In (7), its presence does not
rescue the impending contradiction between the implicature (not all) and its contradiction
in the subsequent clause (all).

(7) #Cleo hat SCHON einige Kekse gegessen, aber eigentlich hat sie alle gegessen.
‘Cleo has eaten some cookies alright, but actually she’s eaten all of them.’

3 How exactly this blocking of implicatures should be modelled is an open question. It seems to
us that the presence of SCHON in a sentence is understood by the hearer as a cue suggesting
that (a certain type of) implicatures should not be derived in the first place. However, for the
purposes of this paper a somewhat weaker formulation would also suffice: SCHON is licit in
contexts in which certain types of implicatures are cancelled with an upcoming aber (‘but’)
construction. We will use the stronger claim in this paper for explicitness.
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We speculate that the insensitivity to scalar implicatures follows from the polar compar-
ative nature of modal SCHON [42], and from the fact that the scalar alternative (C ate all
the cakes) logically entails the literal meaning p (C ate some cakes): Adding implicature-
blocking SCHON to a proposition p normally constitutes a reason for doubting p, but in
the case of the scalar not-all implicature in (7) the validity of the unblocked alternative
(all the cakes) casts no doubt on the entailed p (some cakes). For this reason, the presence
of SCHON is unmotivated as there is no contradiction.

Moreover, modal SCHON does not resolve lexical ambiguities, as shown for the
German homonym Bank (‘bench’ or ‘bank’) in (8). (8) can only be understood in jest (
☺) as a play of words, i.e., at a meta-linguistic level.

(8) Ich kenne SCHON eine Bank hier in der Nähe, die Deutsche Bank, aber auf der 
kannst du nicht bequem sitzen. ☺
‘I know a bank nearby alright, Deutsche Bank, but it’s not comfy to sit on.’

Finally, SCHON…aber does not affect truth-conditional semantic content. Its presence
in (9) does not lead to a rejection of the claim that at least five beers were drunk:

(9) #Ich habe SCHON fünf Bier getrunken, aber eigentlich nur drei.
‘I drank five beers alright, but actually only three.’

The insensitivity of SCHON…aber to semantic content will play an important role in
our semantic analysis of wh-interrogatives under know and surprise. In particular, we
can conclude that any inferences blocked by the presence of SCHON…aber are not
semantic entailments, but mere pragmatic implicatures triggered by considerations of
prototypicality or relevance. Pragmatically, the presence of SCHON…aber indicates
that a prototypical default does not obtain, which in turn casts doubt on the truth of the
prejacent p by the semantic meaning of SCHON as a modal degree operator.

2.3 The Meaning of Teilweise ‘Partially’: Quantifying Over Pluralities

In contrast to SCHON…aber, the Q-adverb teilweise ‘partially, in parts’ is a quantifica-
tional modifier operating on truth-conditional semantic content. For the purposes of this
paper, there are three important aspects to the meaning of teilweise:

Firstly, teilweise affects the truth-conditions. Whereas Nino must have eaten all of
the (contextually salient) Khachapuris for (10) to be true, (11) will already be true if
Nino ate only a subset of them. More generally, sentences with teilweise are true if a
subpart of the theme-related eventualities in question are instantiated.

(10) Nino hat die Khachapuris gegessen. 
‘Nino ate the Khachapuris.’

(11) Nino hat die Khachapuris teilweise gegessen. 
‘Nino ate the Khachapuris partially.’
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Secondly, we assume that teilweise only excludes maximal eventualities in the prag-
matics, as (11) will also be true in situations in which Nino ate all of the Khachapuris.
Having said this, we concede that it is quite misleading to use teilweise in a situation in
which Nino ate all of the Khachapuris, but there is good evidence for the assumption
that the partiality associated with teilweise is a pragmatic effect. (12) will be true if
Ninos granny is pleased with Nino eating some or (even better!) all of the Khachapuris.
Moreover, there is a clear contrast between teilweise vs. nur teilweise, as shown in (13).

(12) Wenn Nino die Khachapuris teilweise gegessen hat, ist ihre Oma zufrieden. 
‘If Nino ate the Khachapuris partially, her granny will be pleased.’

(13) Nino hat die Khachapuris nur teilweise gegessen.
‘Nino ate the Khachapuris only partially.’

Thirdly, teilweise only operates on pluralities of discrete eventualities, which must be
tied to atomic entities in the individual domain, as expressed by plural count NPs. As
a result, teilweise in (14) cannot be used to express that Nino ate only part of the soup,
unlike the part-whole modifier zum Teil ‘in part’. The only felicitous reading of (14) is
one in which Nino ate the soup in discrete portions (possibly together with others).

(14) #Nino hat die Suppe teilweise gegessen.
‘#Nino partially ate the soup.’

(11) and (14) show that teilweise is not lexically connected to question embedding, but
to plural eventualities. Most importantly, all these requirements can only be fulfilled if
the atomic pluralities are targeted by teilweise in the process of semantic composition.

There are several conceivable ways to implement the semantics of teilweise. An
obvious possibility would be to follow [4] or [24] in assuming that teilweise is a run-
of-the-mill adverbial quantifier that takes individuals, propositions, or eventualities as
its arguments. An alternative would be to implement teilweise as a quantifier that takes
a plurality as argument and returns a part of that plurality for the further compositional
procedure, [2]. Here, we opt for an event-semantic analysis, though, in which teilweise
operates on mereological part-whole structures. Providing arguments in support of our
analysis goes beyond the scope of this paper. For its core arguments, not much hinges
on the particular choice of analysis for teilweise, as long as it accounts for the three
main empirical observations. For this reason, the present analysis should be considered
a mere handy tool for formally implementing the essential points viz. the semantics
of embedded questions. For the same reason, we refrain from a detailed compositional
analysis. Most of what follows could be restated in any analysis that takes questions to
denote a Hamblin/Karttunen style set of alternatives.

For explicitness, we analyze the Q-adverb teilweise as a quantificational part-whole
modifier of a verbal projection that operates over plural mereological sub-event struc-
tures. We assume that a clause with teilweise will be true iff there exists some sub-event
e of a complex plural event e’. In (11), this plural event is the maximal eating event
of a contextually given maximal set of khachapuris, which is formally derived by the
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sum-formation operator⊕. The Neo-Davidsonian event-semantic representation of (11)
is shown in (15), with TH = Theme; see also [2, 26], i.a.

(15) 

To conclude, the meaning parts targeted by teilweise constitute semantic content proper.
Any inferences that are not affected by teilweise must be considered pragmatic implica-
tures. In Sect. 3, we will employ this diagnostic to show that SE-readings with know +
wh must be pragmatic implicatures, and not semantic entailments!

3 Wissen ‘Know’ +Wh: Data and Analysis

This section presents novel empirical data on the interpretation of wh-interrogatives
embedded underwissen ‘know’. In Sect. 3.1, we present evidence from the interpretation
of such interrogatives in combination with SCHON…aber and with teilweise that shows
that their basic semantic interpretation is theWE-reading. We will put forward an event-
based semantic analysis of know + wh in Sect. 3.2. The SE-reading, in turn, is not an
independent semantic reading, but derived from the WE-reading by way of pragmatic
enrichment. Our analysis in Sect. 3.3 will take up ideas by [40] and [39], but we will put
the ingredients together in a different manner.

3.1 Novel Evidence on Know +Wh: IE is Semantic, but SE is Pragmatic!

Looking first at the interpretive effect of teilweise, we find that this Q-adverb only
ranges over the positive alternatives in the question, i.e. the complete set of true answers
constituting the WE-reading [19]. The semantic effect of teilweise is to turn this WE-
interpretation into a non-exhaustive question interpretation. Consider (16) and recall
from Sect. 2.3 that teilweise only operates on truth-functional semantic content. (16) will
be true if Nino knows for only part of the dancers that they danced, i.e., her knowledge
is non-exhaustive regarding the WE-interpretation. As a result, the follow-up in (16a) is
licit. Crucially, the alternative follow-up in (16b), in which Nino’s knowledge is shown
to be incomplete regarding the entire answer space including negative answers (= SE),
is NOT felicitous. But it should be if SE-readings were bona fide semantic entailments,
thus making (16) semantically ambiguous. The infelicity of (16b) thereby constitutes
negative evidence against the analysis of SE as a semantic entailment.

(16) Nino weiß nur teilweise, wer getanzt hat, weil sie nicht weiß, … 
  ‘Nino knows only partially who danced because she doesn’t know…’ 

a. …, dass Levan getanzt hat. b. # …, dass David nicht getanzt hat.
‘… that Levan danced. ‘… that David didn’t dance.’

Next, consider the effect of SCHON…aber in (17). Here, the particle combination
indicates that the SE-inference blocked. This is compatible with the felicitous follow-up
in (17b), which is directed at the negative answer space (= part of the SE-denotation),
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and which improves significantly in the presence of SCHON…aber as opposed to its
counterpart without. In contrast, as SCHON…aber cannot operate on the semantic con-
tent of the clause, cf. (9), it cannot be used to turn the underlying WE-reading into a
non-exhaustive reading, viz. the infelicity of (17a), which marks Nino’s knowledge as
incomplete regarding the WE-denotation.

(17) Nino weiß SCHON, wer getanzt hat, aber sie weiß nicht, … 
  ‘Nino knows who danced alright, but she doesn’t know…’ 

a. #…, dass Levan getanzt hat.   b. …, dass David nicht getanzt hat.
‘… that Levan danced.’ ‘… that David didn’t dance.’

In sum, the infelicity of (17a) constitutes negative evidence that the WE-reading is
the underlying semantic interpretation of know + wh, whereas the felicity of (17b)
constitutes positive evidence that SE is a mere pragmatic implicature. The data in (18)
and (19) illustrate the same point (follow-ups in English for reasons of space):

(18) Nino weiß teilweise wer getanzt hat,
  ‘Nino knows partially who danced,

a. # … but she doesn‘t know that this is all. (SE violation #)
b. … but she doesn‘t know of all dancers that they danced. (WE violation OK)

(19) Nino weiß SCHON wer getanzt hat, aber
‘Nino knows who danced alright, but
a. … she doesn‘t know that this is all. (SE violation OK)
b. # … she doesn‘t know of all dancers that they danced. (WE violation #)

3.2 An Event-Semantic Analysis of WE-Readings withWissen ‘Know’

In our event-semantic account of the basic semantic WE-reading of know + wh, com-
pleteness of the answer is aspectually derived via event summation. We suggest the
lexical entry in (20) for wissen ‘know’, using event composition with knowledge events
and content arguments, as suggested by [29] and [26]. According to (20), for x to know
(the answer to) Q means that x is in an attitudinal state e that is composed of the maximal
sum of K(nowledge) substates e′ that have the individual positive answers p to Q as their
content.4

(20) 

We also assume that the denotation Q of wh-interrogative clauses is the set of Hamblin-
alternatives [16]. Given the veridicality and factivity of the knowledge attitude, wemore-
over assume that only true propositions can be known, i.e., that only true propositions inw

4 We assume that K is a primitive knowledge predicate over eventualities.
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can form the content of a knowledge eventuality; in otherwordsKw
(
e′)∧Contentw

(
e′, p

)

can only be true iff w ∈ p. Finally, we assume that the ⊕-operator is part of the lexical
aspect of wissen, making e the maximal possible knowledge eventuality concerning the
questionQ. This derivesweak exhaustiveness forQ as an aspectual phenomenon, thereby
eliminating the need for a covert ANS-operator [3, 17]: ⊕ sums in e the sub-states of
knowledge of all true propositions in Q. For (1), this results in an event predication over
the stative eventuality of x knowing the complete list of dancers, or rather the complete
list of true propositions of the form y danced, as shown in (21) for the world of evalua-
tion w. Further application of (21) to the denotation of Nino and subsequent existential
closure over events will yield the complete meaning of (1).

The analysis in (20) and (21) directly extends to know + that when that-CPs aremodelled
as singleton sets of sets of worlds (〈〈s, t〉, t〉) [5]. Notice, too, that the event maximality
imposed by ⊕ makes the eventuality bounded, which explains the old puzzle of why
stative verbs of knowledge are crosslinguistically marked as perfective/telic, such as e.g.
in Finnish [21] or in Hausa [27].

Applying the Q-adverb teilweise ‘partially’ to (21), and following the logic from
Sect. 2.3, we derive the meaning of (18) in (22). (22) specifies a sub-event e of the
maximal knowledge eventuality e’ regarding the question Who danced?, and x is the
attitude holder of this knowledge sub-eventuality e.

Feeding in the subject meaning and existential closure over events yields the correct
meaning for (18). In sum, combining teilweise and know + wh results in a non-exhaustive
semantic interpretation. We turn to pragmatic strengthening from WE to SE next.

3.3 Pragmatics: Strengthening to SE

As mentioned in Sect. 2.1, the SE-reading of know + wh does not only entail knowledge
of the complete answer to the question, but also the knowledge that this is the complete
answer [17]. In other words, to know-SE entails not only that the attitude holder knows
the complete answer, but also that she knows that this is the complete answer, cf. [17].
In the event-semantic reformulation of know + wh in (23), this is represented in terms
of two conjoined knowledge eventualities, where the second eventuality e” captures the
missing component that turns the formula into a valid representation of SE-knowledge.
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In view of the evidence for the blocking of pragmatic implicatures and SE-readings
with SCHON…aber presented in Sect. 2.3 and Sect. 3.1, we propose to analyze the
strengthened SE-reading in (23) as a pragmatic enrichment of (22). This enrichment
follows from a hearer-based pragmatic preference for interpreting 3rd person attitude
reports from the internal 1st person-perspective of the attitude holder. To capture this
preference, we propose the novel general pragmatic principle PARV in (24).

(24) PRINCIPLE OF ATTITUDE REPORT VERIFICATION (PARV): In lack of 
further evidence, assume that if the utterance “S has the attitude X” is true, S is 
in a state of mind that allows her to truthfully utter: “I have the attitude X”.   

WithPARV, the SE-reading of (1) (Nino weiß, wer getanzt hat ‘Nino knowswhodanced’)
is derived from its underlying semantic WE-interpretation in (21) by the defeasible
assumption that Nino is able to confirm (1) by uttering (25), i.e. that she knows that
she knows the WE-reading, and not just part of it. Crucially, such 1st person knowledge
reports are always SE, as is evidenced by the infelicity of the subsequent follow-up,
which contradicts the 1st person SE-knowledge. The obligatory SE-construal with 1st

person attitude reports follows from the fact that the reporting 1st person attitude holder
must know that the summed (WE) knowledge eventuality is the complete knowledge
state regarding Q, for else she cannot rule out that her knowledge is incomplete. In the
formula in (24), this is captured in the occurrence of the second event e”.

(25) Nino: Ich weiß, wer getanzt hat…
‘Nino: I know who danced…’ 
# …but I don’t know everybody who danced. 

Notice that (24) ismute onnegative embedders, such as keine Ahnung haben ‘be unaware’
in (26), in which case the speaker cannot commit to the embedded content. Such predi-
cates trigger logical scale reversal, such that the SE-interpretation is no longer an inde-
pendent and logically stronger entailment, but rather entailed by semantic WE. If Nino
is already unaware of the complete list of dancers in w (WE), it follows that she is also
unaware of the complete list of dancers and non-dancers (SE).

(26) Nino hat keine Ahnung, wer getanzt hat.
  ‘Nino is unaware who danced.’ 
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Although not semantic in nature, the PARV-driven SE-reading is the default surface inter-
pretation of know + wh in the absence of further evidence, whichmakes it difficult to can-
cel in the absence of context information or explicit discoursemarking. This is evidenced,
for instance, by the fact that SE-violations with know + wh were rated as contradictory
in almost 75% of all cases in the contradiction experiment in [10] reported in Sect. 2.1.
However, same as other prototypicality-based implicatures (Sect. 2.2), the default prag-
matic SE-enrichment can be blocked by the particle combination SCHON…aber, as
illustrated in (17) in Sect. 3.1.

More generally, PARV captures the implicit hearer-based assumption that attitude
holders will normally be reported to have an attitude X if they are de se aware of having
X. In such cases, they could explicitly commit to X in the form of a 1st person report.
Presumably, the PARV-driven preference for evaluating attitude reports from the internal
perspective of the attitude holder is due to the fact that attitudes are mental objects
located in the holder’s mind, for which the best or most reliable kind of evidence is a
commitment by the attitude holder in the form of a 1st person report. If so, PARV would
be connected to more general cognitive mechanisms associated with Theory of Mind
[30]. Importantly, PARV in (24) is best considered a general interpretive principle that
is not tied to questions per se, but which is also active, for instance, in the resolution of
de re/dicto-ambiguities: In full parallel to SE-readings with know + wh, DPs contained
in 3rd person attitude reports receive de dicto readings by default, and they must be de
dicto in 1st person reports, cf. (27). In particular, the de re reading of (27a) is verified by
a situation in which Rico owns a ruby which he falsely believes to be a worthless glass
stone. The speaker may use the term a ruby to refer to that ruby, and correctly report
that Rico knows that he owns that object. Crucially, Rico cannot report of himself that
he owns a ruby, as long as he is not aware of the fact that this stone is in fact a ruby, cf.
(27b). The contrast can be replicated with definite descriptions, too.

(27) a. Rico knows that he owns a ruby, but he is not aware it’s a ruby. 
   3rd person: cancelled default reading = de dicto

b. Rico: #I know that I own a ruby, but I am not aware it’s a ruby. 
   1st person: obligatory de dicto

Likewise, de se-pronouns as commonly found with logophoric construals [20, 28] are
also tied to the internal perspective of the attitude holder. Given these observations, the
pragmatic SE-enrichment with wh-interrogatives under know appears to be just another
instance of perspective-dependent interpretation in natural language.

Our proposal to derive SE-readings by way of pragmatic enrichment is similar in
spirit to the account in [40], but it differs in how the enrichment is triggered. [40]
derives SE-readings from IE-readings via a hearer-based (excluded middle) competence
assumption (CA). However, this is problematic, as the exact content of CA is unclear. On
the formulation in (28a), CA is already equivalent to the SE-reading of (1), resulting in
circularity. The formulation in (28b) does not generalize to other SE-compatible verbs,
such as the verbs of saying predict or tell, as predictions or statements do not follow
from beliefs. Another issue with the analysis of [40] is that it assumes a neg-raising like
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property of predicates like know,5 even though no evidence exists to this assumption – in
fact, it seems that exactly the contrary is supported by facts.

(28) Competence assumption (CA) by addressee of (1):
a. Nino knows for everybody whether they danced or not. 
b. Nino has some belief about everybody whether they danced or not. 

This being said, there are some valid concerns as to whether PARV can also handle
speech act verbs correctly. After all, PARV is limited to verbs of propositional attitude.
For speech act verbs, it no longer holds true that the main evidence for their truth is in
fact in the mind of the subject, as speech act verbs have public effects. But then again,
(i.) speech act verbs tend to have less of a bias towards SE-readings; (ii.) even with
speech act verbs it is essential what the subject meant when making her utterance, cf.
the de re/de dicto ambiguities in (29); and (iii.) there are no sufficient empirical data for
teasing apart the attitude component and the quotational aspects of speech act verbs [37]
as would be necessary for an in-depth evaluation of PARV.

(29) Nino predicted that the winner will be the spy.
a. Nino: “The winner will be the spy.” De dicto

Nino: “I predicted that the winner will be a spy.” 
b. Nino: “The winner will be Rico.” (incidentally, Rico is a spy!) De re

Nino: “??I predicted that the winner will be a spy but I was not aware of it.”

In deriving SE-readings as an effect of assuming an internal perspective, we adopt a
core idea of [39], first traces of which are already found in [13]. [39] also link the weaker
WE- (for them: IE) and the SE-reading to the external and internal perspectives of speaker
and attitude holder, respectively. They do so, however, by treating the attitude predicate
know as semantically ambiguous between [± internal perspective]. Their account in
terms of a lexical ambiguity clashes with the above argument against semantic SE,
though, and in particular with the observation that SCHON…aber cannot be exploited
for disambiguating semantic ambiguities, cf. (8). Moreover, the availability of WE- and
SE-readings with other question-embedding verbs (predict, tell…) [6, 11, 22]) would
necessitate the assumption of a systematic WE/SE-ambiguity in the lexicon of such
verbs, an undesirable consequence. In view of these findings, and given the observable
parallels to other perspective-dependent phenomena in 1st and 3rd person reports, we
consider our pragmatic account superior.

5 According to [40], neg-raising is the crucial step for deriving the SE-reading from underlying
IE. The IE-reading guarantees that for any false alternative p, the subject does not believe p.
By neg-raising, now we move from the proposition that the subject does not believe p to the
proposition that the subject does in fact believe not p. In other words, neg-raising transforms
the non-belief of false alternatives into a positive belief that false alternatives are false.
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3.4 Conclusion on Wissen ‘know’ +Wh

In this section, we presented two novel diagnostics shedding light on the under-
lying semantic interpretation of wh-interrogatives under the veridical and homoge-
neous/distributive attitude verb wissen ‘know’. The combination of such interrogatives
with the Q-adverb teilweise ‘partially’ and the particle combination SCHON…aber
‘alright…but’ shows that their underlying semantic interpretation isWE,whereas theSE-
reading is a pragmatic enrichment. In Sect. 3.3, we argued that this pragmatic enrichment
is triggered by a default tendency to interpret 3rd person attitude reports from the atti-
tude holder’s 1st person internal perspective.We also suggested that the same enrichment
process is at work in the derivation of de dicto readings and logophoricity effects.

4 Überraschen ‘Surprise’ +Wh: Data and Analysis

This section presents novel empirical data on the interpretation of wh-interrogatives
embedded under the cognitive-emotive attitude verb überraschen ‘surprise’. In Sect. 4.1,
we consider the interpretation of surprise + wh in combination with SCHON…aber and
teilweise. Our findings provide novel evidence for the claim in [34, 35], and [14] that
they come with a fairly weak non-distributive, or non-homogeneous semantic WE_non-
dist interpretation, which can be pragmatically strengthened to WE_dist. Again, such
pragmatic strengthening is blocked in the presence of SCHON…aber. Sect. 4.2 dis-
cusses the interpretation of surprise + wh from a theoretical perspective. We discuss a
shortcoming of the existential WE-interpretation à la [14], and we end by sketching a
tentative analysis of überraschen ‘surprise’ and other cognitive-emotive attitude verbs
as denoting a cognitive-emotive attitude towards a fact, or a proposition-dependent or
proposition-exemplifying situation à la [12, 25], and [1].

4.1 Novel Evidence: WE_nondist is Semantic, but WE_dist is Pragmatic!

Recall from Sect. 2.1 that wh-interrogatives under überraschen ‘surprise’ allow for two
WE-construals of different logical strength. In (2), the attitude holder Nino may be sur-
prised by each and every individual in the positive answer space of dancers (=WE_dist).
Alternatively, she may be surprised by just some of the dancers (WE_nondist), cf. [14,
34]. WE_dist logically entails WE_nondist.

If we add the concessive particle combination SCHON…aber, we find that it blocks
the logically stronger WE_dist interpretation, which involves surprise at each individual
answer. This is evidenced by the felicitous follow-up in (30a) vs. (30b), in which the
presence of SCHON…aber does not serve to cancel a semantic entailment.

(30) Es hat Nino SCHON überrascht, wer getanzt hat, … 
  ‘It surprised Nino alright who danced …’ 

a. …aber es hat sie nicht bei jedem Tänzer überrascht 
‘… but she wasn’t surprised at every dancer.’

b. #…aber sie war gar nicht überrascht.
   ‘… but she wasn’t surprised at all.’
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Secondly, the Q-adverb teilweise ‘partially’ is difficult to interpret with surprise + wh, if
not outright degraded, in the absence of other suitable plural expressions, cf. (31). This
combination is also not readily attested in corpora:

(31) ??Es überrascht Nino teilweise, wer getanzt hat.
??‘It partially surprises Nino who danced.’ 

As teilweise operates over plural events only, cf. (14), it is conceivable that the deviant
status of (31) is due to the absence of such event pluralities with surprise + wh.

4.2 Towards a Non-propositional Analysis of Surprise + Wh

A classic way of deriving WE_nondist-readings for surprise + wh would consist in
adopting an existential analysis with weak exhaustive force à la [34, 35], and [14].
Überraschen ‘surprise’ would take the WE-set of minimal (believed to be) true answers
Q as its complement and map these to true iff there is at least one proposition p in this
set such that the attitude holder did not expect this proposition to be true in w, cf. [14]:

(32) [[ surprise ]] w (Q)(z) = True iff for all worlds w’ compatible with z’s past ex-

pectations in w, there is at least one p∈{q: q∈Q ∧ w∈p} such that w’∉p; de-

�ined if for all p∈{q: q∈Q ∧ w∈p}, z believes p in w.

Pragmatic strengthening toWE_dist would formally amount to replacing the existen-
tial quantifier in (32) with the universal quantifier. Informally, such pragmatic strength-
ening is licit as the strengthened readings still entail the truth of the underlying semantic
entailment. They just depict particular ways of making (32) true. This is entirely parallel
to what we find in the domain of adnominal quantifier scope in (33), in which the surface
∀∃-reading (all the students watched a movie) can be pragmatically strengthened to an
inverse ∃∀-pseudoscope reading (there is a movie that all the students watched), which
is again just a specific way of making the semantic ∀∃-reading true [31]:

(33) All the students have watched a/some movie.

Finally, the deviant status of (31) with teilweisemay simply follow from semantic redun-
dancy, as the underlying WE_nondist semantics already captures the incompleteness or
subpart requirement of teilweise.

Alternatively, the deviant status of (31)may also follow from the inability of teilweise
to access the subparts of individual situations with complex non-atomic substructure
[23]. And indeed, there is some reason to believe so, as surprise can also give rise to
SE_nondist-readings, which are not accounted for at all on theWE-analysis in (32) [7, 9,
11]. There is indeed some experimental evidence that the target of the surprise in cases
of SE_nondist is not from the set of positive true answers that are accessed in (32). For
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illustration, consider the following example from the betting experiment [9, 11]. In the
betting experiment, participants could decide to cash in a betting slip, or not, depending
on how they interpreted the meaning of a sentence with a wh-interrogative embedded
under surprise, cf. (34a). The truth-value judgment underlying participants’ choices is
made on the basis of a 1st person report of the attitude holder (here: Tiffany), cf. (34b),
and of information about the circumstantial facts, cf. (34c).

(34) a. BET: Tiffany war überrascht, wer von den Teilnehmerinnen und
Teilnehmern in der Sendung eine Heuschrecke gegessen hat. 
‘It surprised Tiffany who of the participants ate a grasshopper on the show.’

b. Tiffany: “I often think about the show, in which Freddy and Alessa bravely 
ate a grasshopper and the other three refused to do it. I expected that Carlo 
and Sophie would also eat a grasshopper on the show. After all, the two of  
them are generally quite flexible when it comes to food.”  

c. Facts:  Alessa  Carlo Freddy Mara  Sophie ate a grasshopper. 
YES NO  YES  NO     NO

In the setting in (34bc), the surprise of Mary is directed at the negative answer space:
What is unexpected is that Carlo and Sophie did NOT eat the grasshopper. Crucially, the
WE-based lexical entry for surprise in (32) predicts the bet to be false in this SE_nondist-
setting, so that participants should not cash it in. This prediction stands in stark contrast
to participants’ behavior, who opted for cashing in in 58% of all cases, where cashing
in is equivalent to judging (34a) true in the SE_nondist setting (34bc).

The availability of SE_nondist readings for surprise + wh casts some serious doubt
on the adequacy of theWE-meaning representation in (32). For this reason,wewould like
to raise the possibility that überraschen ‘surprise’, and other cognitive-emotive attitude
verbs, such as be glad, be happy, be worried etc., differ from know (and other epistemic
attitude verbs) in a more fundamental way. Following [12], we would like to propose that
such predicates do not select for a set of propositions (a question meaning), but rather
for – what [12] call – a fact, or an exemplified or situated proposition [1, 25]. On this line
of thought, the attitude of surprise may be conceptualized as a psychological state that
is caused by potentially complex situations and their overall constitution or make-up,
including missing subparts.6 Put differently, we think of the meaning of surprise and
of other emotive-cognitive factives as lexically decomposable into a causing eventuality
and a primitive emotional state (here: surprisal) caused by the eventuality.

It is important to see that this means that the actual states of surprisal or happiness
or worry etc. are primitive neuropsychological or emotional states, as typically assumed
in language processing [15]. They are not phenomenologically intentional in that they
do not have a propositional attitude argument. The impression of intentionality, i.e., the
directedness towards a proposition or situation, is the result of associating the causing
propositional attitude or cognitive attitude towards a situation with the resulting state.

6 This is reminiscent of [38]’s notion of surprise as being directed at the overall size and consti-
tution of the answer, except that the propositional notion of answer is replaced with a directly
observable situation with unexpected subparts or unexpectedly missing subparts.
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The general pattern for the meaning of cognitive-emotive factives is formally captured
in (35), where the causing stimulus s could stand for a situation or a fact; see above.

(35) s surprises X = X’s acquaintance with s causes X to experience surprisal

The surprisal is then not caused by a belief in the truth of a proposition, but more directly
by becoming acquainted with some situation or fact. In this vein, surprise can also be
triggered non-verbally, e.g., by the content of pictures and photographs, or by the absence
of content on such pictures, which are visual representations of complex situations. The
famous picture of Lenin giving a speech in front of a revolutionary crowd in Sverdlov
Square, Moscow, which was later purged of Trotzki’s presence, constitutes a striking
example of surprise by the absence of content. As a result, there are different ways of
making (36) true:

(36) The Communist Party members were surprised by [what the picture showed].
i. by what it showed (WE: surprise at visible content, e.g. Lenin) 
ii. by what it didn’t show (SE_nondist: surprise at missing content: Trotzki) 

There are other kinds of evidence pointing towards a different semantic status of epis-
temic and cognitive-emotive attitude verbs. Surprise can take situation-referring DPs or
depictive DPs as arguments (37a), whereas wissen ‘know’ cannot (37b).

(37) a. Der Krach/Das Bild überraschte Nino.
   ‘The noise/the picture surprised Nino.’

b. *Nino weiß den Krach/das Bild. 
‘Nino knows #the noise/the picture.’

Secondly, the situation argument is directly expressed with the mandatory pronoun es
‘it’ with überraschen in (38a), whereas such a pronominal reference is at best optional
with wissen ‘know’ in (38b).

(38) a. *(Es7) überrascht Nino, wer getanzt hat.   
‘It surprised Nino who danced.’

b. Nino weiß (??es7), wer getanzt hat. 
‘Nino knows it who danced.’

The empirical differences in (37) and (38) motivate a different semantic analysis for
überraschen and other cognitive-emotive verbs in which they do not operate directly on
the propositional content of the wh-interrogative. Following ideas in [12], and in partic-
ular [1] on the cognitive-emotive attitude predicate interesting, überraschen ‘surprise’
can be analyzed as directly selecting for a situation s such that s is a stimulus situation or
fact that is part of a larger situation s’ that (fully) resolves the wh-interrogative meaning
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Q, and s causes a surprisal e of x in w, as tentatively shown in (39). For a situation
to resolve a wh-question meaning, the situation must contain sufficient information for
allowing at least for a partial answer to the wh-question.

(39) 

Importantly, our theory of surprise naturally predicts that surprise has both a stative and
an achievement reading, as shown in (40). For the stative reading (40a), the aspectual
modification targets the resulting surprisal state whereas the achievement reading (40b)
focuses on the causation event.

(40) a. I am surprised that…     b. It surprises me that…

Given that a situation can cause surprisal by its size or by its general make-up or con-
stitution [38], the denotation in (39) is general enough to be compatible with WE_dist,
WE_nondist and SE_nondist readings alike. In the default case, this underspecified
interpretation will be pragmatically enriched to the strongest logical reading, namely
WE_dist, which expresses surprisal at all relevant subparts of the situation. Same as with
wissen ‘know’, such pragmatic enrichment is blocked in the presence of SCHON…aber.
Finally, the Q-adverb teilweise can only operate on semantically plural sums of eventu-
alities, but not on the internal subparts (or lumps, [23]) of a complex situation, cf. the
soup-eating situation by Nino in (14) above. This accounts for the observed infelicity of
teilweise in combination with surprise + wh, where the surprise is directed at a complex
situation. In order to express partial surprise, i.e., surprise at the subparts of a complex
situation, we require the part-whole modifier zum Teil ‘in part’, which CAN operate on
the material subparts of individual situations:

(41) Nino ist zum Teil überrascht, wer getanzt hat.
‘It surprises Nino in part who danced.’

We postpone a more detailed situation-based analysis of überraschen ‘surprise’ to
another occasion, and we conclude by pointing the interested reader to a recent analysis
in [25] of depictive verbs like imagine as taking proposition-dependent situations as
complements. As imagine can select for wh-interrogatives, too, it is tempting to aim at
a unified analysis of different situation-selecting attitude verbs.

5 Conclusions and Theoretical Implications

In this paper, we investigated the interpretation of wh-interrogative clauses embedded
under the attitude predicates wissen ‘know’ and überraschen ‘surprise’ in interaction
with the particle combination SCHON…aber ‘alright…but’ and the Q-adverb teilweise
‘partially’. We have shown that SCHON…aber does not operate on semantic content,
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but rather blocks the emergence of pragmatic implicatures based on considerations of
relevance or prototypicality. The Q-adverb teilweise, by contrast, operates on semantic
content by presenting an event as a mereological subpart of some plural sum event.
Applying these novel empirical diagnostics to know + wh, we found that SE-inferences
with know + wh are pragmatic in nature, whereas the logical weaker WE-inferences
are semantic in nature. Applying the same diagnostics to surprise + wh, we found
that the WE_dist reading under surprise is pragmatic and the result of default pragmatic
strengthening.We also saw that the existence of bothWE_dist andWE_nondist readings
with surprise is accounted for on an existential WE-analysis à la [19] and [14], but the
unexpected emergence of SE_nondist-readings is not! This led us to tentatively propose a
fact- or situation-based reanalysis of cognitive-emotive attitude verbs like überraschen
‘surprise’ à la [12], on which the denotation of surprise does not operate on a set of
propositions, i.e. the set of true answers in w, but on a fact that is situated or exemplified
by the Karttunen-meaning of the wh-interrogative.

The general theoretical repercussions of our endeavor are as follows. We have pre-
sented novel empirical evidence that the meaning of embedded wh-interrogatives is
indeed underspecified in the form of a set of Hamblin-alternatives, cf. [3]. Moreover,
the observation that there is no inherent distributivity or homogeneity component built
into the meaning of such wh-clauses argues against the obligatory presence of a max-
operator in wh-clauses, pace [33]. Likewise, we have argued that the exhaustivity effects
frequently observed with embedded questions are not located in the denotation of the
wh-interrogatives themselves, for instance in the form of covert ANS(wer)- or EXH-
operators. Instead, they follow from the aspectual semantics of the embedding attitude
predicates. As a result, some attitude verbs such as cognitive-emotive surprise only come
with veryweak exhaustivity requirements, whereas the completeWE-interpretationwith
epistemic know is the result of sum formation over knowledge sub-events. The corre-
sponding SE-inferences are not semantically derived. Finally, we tentatively suggested
that cognitive-emotive attitude verbs may express a relation not to sets of propositions,
but to proposition-dependent situations or facts, which may also be expressed in the
form of plain nominal DPs.
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Abstract. It is known that the modal μ-calculus has the Craig inter-
polation property, indeed uniform interpolation. We prove Lyndon inter-
polation for the calculus, a strengthening of Craig interpolation which is
not implied by uniform interpolation. The proof utilises ‘cyclic’ sequent
calculus and provides an algorithmic construction of interpolants from
valid implications. This direct approach enables us to derive a corre-
spondence between the shape of interpolants and existence of sequent
calculus proofs.
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1 Introduction

The modal μ-calculus is an extension of modal logic by two quantifiers, μ and ν,
that bind propositional variables. The formulæ μxA and νxA are interpreted over
Kripke frames (labelled transition systems) respectively as the least and greatest
fixed points of the function x �→ A(x). Modal μ-calculus can thus be thought
of as a logic that allows for restricted second-order quantification while still
maintaining computationally attractive properties such as decidability of validity
and the finite model property. Moreover, many program logics (LTL, PDL, CTL,
etc.) can be embedded into μ-calculus making it an important metatheory [3,4].

Modal logics are known to widely enjoy interpolation (see e.g. [7,23]) and
μ-calculus does so in a very strong sense: given a formula A and a finite set of
propositions and modality operators L, there exists a formula I (the interpolant)
in the language L such that A → I is valid and for every formula B whose com-
mon language with A lies within L, A → B is valid if and only if I → B is valid.
This property, called uniform interpolation, easily implies Craig interpolation:
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if A → B is valid then there is a formula I in the language common to A and
B such that both A → I and I → B are valid. Lyndon interpolation [14] is a
strengthening of Craig interpolation where a proposition is considered to be in
the common language only if it occurs with the same polarity in both A and B.
Note that uniform interpolation does not entail Lyndon interpolation.

Uniform interpolation for modal μ-calculus was established by D’Agostino
and Hollenberg in [6]. Their proof involves both semantic and syntactic argu-
ments. The authors utilise (disjunctive) modal automata from [9] to show that
a form of propositional quantifier, known as bisimulation quantifiers [16,21], is
representable in modal μ-calculus and can be used to define interpolants.

Aside from the method of propositional quantification, there are a number
of other ways to approach interpolation in non-classical and modal logics (see
e.g. [5,12]) among which is the syntactical approach via sequent calculus. If
one has to hand a (complete) sequent calculus that admits elimination of cuts
then (Craig) interpolants can often be constructed by recursion over the cut-free
derivations. Indeed, there is an intimate connection between interpolation and
the existence of various forms of sequent calculi [8,13].

Following the proof-theoretic approach to interpolation, in this paper we show
how to directly extract interpolants for modal μ-calculus from sequent calculus.
The first proof system to consider is Kozen’s axiomatisation [11] which expands
the standard axioms of the modal system K by regeneration and induction rules
for the least (μ) and greatest (ν) fixed point quantifiers:

ν-regeneration: νxA(x) → A(νxA(x))
μ-regeneration: A(μxA(x)) → μxA(x)

ν-induction: B → A(B) � B → νxA(x)
μ-induction: A(B) → B � μxA(x) → B

Completeness of Kozen’s axiomatisation was established by Walukiewicz [22].
The proof, imitated for the natural sequent formulation of the system,makes essen-
tial use of cut and it remains a significant open problem whether Kozen’s formu-
lation without cut is also complete. But aside from cut, the induction rules them-
selves do not preserve interpolants, so an alternate proof calculus is still needed.

We will instead utilise a finitary and complete ‘circular’ proof system intro-
duced in [1] and utilised in [2]. This system discards Kozen’s induction rules in
favour of an inference that focuses on repeating sequents

[ � Γ
]

...
� Γ

dis� Γ

The sequent at the top in brackets is understood as an assumption of the proof
which is discharged. Applications of such a rule are subject to a global sound-
ness condition: after identifying leaves with their point of discharge, every infinite
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path through the resulting graph must feature an infinite formula trace along
which a greatest fixed point formula of ‘outermost’ importance is regenerated.
In other words, the discharging rules provide a finitary description of a refu-
tation tableaux in the sense of [15]. The question of designing such a calculus
rests on encoding the global soundness condition within the syntactic confines
of (finitary) sequent calculi, so that correctness of a cyclic proof becomes a local
requirement and not based on properties of the infinite tree described by the
cyclic proof. This can be achieved by adopting an annotated sequent calculus.
In the cyclic calculi of Jungteerapanich [10] and Stirling [20] each formula in the
proof (and also each sequent) is annotated by a word from a finite set of names
for ν-quantified variables in such a way that correctness of the proof can be
inferred by checking a syntactic property of names in the finite proof. Refining
the calculus of [20], the authors, in [1], present a cyclic proof system in which
correctness of the discharge inference can be inferred directly from the syntactic
shape of the discharged sequent. It is this latter calculus, named Circ in [1], that
we utilise in this paper.

Unbeknown to the authors a proof of Lyndon interpolation for the modal
μ-calculus, using a similar approach, was announced by Shamkanov in [17]. The
unpublished result utilises ill-founded proofs and their automata induced regu-
larisations [18].

2 Modal µ-Calculus

Formulæ of the modal μ-calculus are specified by the grammar:

A = � | ⊥ | p | p̄ | x | A ∧ A | A ∨ A | 〈a〉A | [a]A | μxA | νxA

where p ranges over a set Prop of propositions, x over a set Var of variable
symbols and a over a set Act of action symbols. Formulæ � and ⊥ are called
constants, p and p̄ are literals, and μxA and νxA are quantified formulæ.
Roman letters A, B, C, etc. range over formulæ. The set of free and bound
variables of a formula, FV(A) and BV(A) respectively, are defined as usual. A
formula with no free variables is closed.

2.1 Syntactic Considerations

By definition, variables cannot occur in negated contexts. This is important as
it excuses the need for a syntactic restriction on forming quantified formulæ.
In the present framework, negation is simulated by duality of the connectives,
modalities and quantifiers. We write A for the dual of A, given by

A ∧ B = A ∨ B [a]A = 〈a〉A μxA = νxA x = x � = ⊥
A ∨ B = A ∧ B 〈a〉A = [a]A νxA = μxA p = p ⊥ = �

Implication is introduced as a defined connective, A → B = A ∨ B. Given A, B
and x, A[x/B] denotes the formula obtained by replacing every free occurrence
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of x in A by B and renaming bound variables of A to avoid variable capture.
This will also be written as A(B) if the choice of x is clear from the context. The
notion of sub-formula most useful for μ-calculus is given by the Fischer–Ladner
closure, FL(·), defined as follows

FL(l) = {l} l a constant, literal or variable
FL(A ◦ B) = {A ◦ B} ∪ FL(A) ∪ FL(B) ◦ ∈ {∧,∨}
FL((a)A) = {(a)A} ∪ FL(A) (a) ∈ {〈a〉, [a]}
FL(σxA) = {σxA} ∪ FL(A[x/σxA]) σ ∈ {μ, ν}

For the purposes of this article, a sub-formula of A is any formula B ∈ FL(A).
Fix a formula A. A literal l is said to occur in A if l ∈ FL(A); an action

symbol a occurs in A if there is a modal sub-formula 〈a〉B or [a]B of A. The
language of A, denoted L(A), is the set of literals and action symbols that
occur in A. For example, the language of A = μx((p ∨ [a](x ∧ q)) ∨ (p ∧ 〈b〉x)) is
L(A) = {p, p, q, a, b}. In particular, q �∈ L(A). If L(A) ⊆ L we say A is in the
language L.

The relative position of free and bound variables in a formula generates a
relation on variable symbols called the subsumption relation. Given A, this is
the binary pre-order <A on variables generated by setting x <A y if x �= y and
x occurs free in the scope of the quantifier σy in A. In general, <A need not be
well-founded, but every formula is α-convertible to a formula with well-founded
subsumption relation. For convenience, we assume a single, global, well-founded
pre-order < on Var and restrict attention to formulæ A with <A ⊆ <. We say x
subsumes y if x ≤ y.

2.2 Semantics

Formulæ are interpreted over labelled transition systems (LTS), tuples S =
〈S, {→a}a, λ〉, where S is a non-empty set of states, →a ⊆ S × S is the acces-
sibility relation on S, and λ : Prop → Pow(S) is a labelling of states by propo-
sitions, given as a function from the set of propositions to the power set of S. A
valuation over the LTS S is a function v : Var → 2S assigning a set of states to
each variable symbol. Given a valuation v and T ⊆ S, we write v[x �→ T ] for the
valuation v′ such that v′(x) = T and v′(y) = v(y) for y ∈ Var \ {x}. The deno-
tation of A over S and v, denoted ‖A‖S

v , is a subset of S defined inductively
on A:

– For literals, constants and variables:

‖x‖S
v = v(x) ‖�‖S

v = S ‖⊥‖S
v = ∅ ‖p‖S

v = λ(p) ‖p̄‖S
v = S \ λ(p)

– For logical connectives and modal formulæ:

‖A ∧ B‖S
v = ‖A‖S

v ∩ ‖B‖S
v ‖[a]A‖S

v = {s ∈ S : ∀t ∈ S((s →a t) ⇒ t ∈ ‖A‖S
v )}

‖A ∨ B‖S
v = ‖A‖S

v ∪ ‖B‖S
v ‖〈a〉A‖S

v = {s ∈ S : ∃t ∈ S((s →a t) ∧ t ∈ ‖A‖S
v )}
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– For quantified formulæ:

‖μxA‖S
v =

⋂
{T ⊆ S : ‖A‖S

v[x�→T ] ⊆ T}
‖νxA‖S

v =
⋃

{T ⊆ S : T ⊆ ‖A‖S
v[x�→T ]}

Observe that ‖A‖S
v = S\‖A‖S

v where v is the valuation defined by v(x) = S\v(x).
In particular, for A closed, A denotes the negation of A in the usual sense. We
write S, s |= A if s ∈ ‖A‖S

v for every valuation v. A formula A is valid if S, s |= A
for every LTS S and state s.

2.3 Annotations and Sequents

In the next section we introduce a labelled sequent calculus for the modal μ-
calculus. These labels, henceforth called annotations, are finite words built
from a fixed set of names for fixed point variables. To each variable symbol x
we associate an infinite set Nx of names (for x) which is assumed to be parti-
tioned into two infinite sets: NV

x , the variable names, and NA
x , the assumption

names for x. We assume Nx ∩ Ny = ∅ if x �= y. Symbols x, y, etc. (also with
indices) range over variable names, and x̂, ŷ, etc. over assumption names. The
set of all assumption names is denoted NA =

⋃
x∈Var N

A
x , and the set of all names

is N =
⋃

x∈Var Nx. Given x̂ ∈ N we let Nx̂ = Nx where x is such that x̂ ∈ Nx.
For a set M ⊆ N of names, M∗ is the set of finite words in M and includes the

empty word ε. The (reflexive) sub-word relation on N∗ is denoted � and defined
by x1 · · · xm � a iff there exists a0, . . . , am ∈ N∗ such that a = a0x1a1 · · · xmam.
For M ⊆ N and a ∈ N , a � M is the maximal word in M∗ which is a sub-word
of a. The global subsumption ordering < extends to names in the natural way:
for x, y ∈ N , x ≤ y (x < y) if x ∈ Nx, y ∈ Ny and x ≤ y (resp. x < y). If a ∈ N∗

we write a ≤ x if a ∈ M∗ where M =
⋃

y≤x Ny.
We now introduce the notions of annotated formula and sequent required for

the present work.
Definition 1. An annotation is a non-repeating word a ∈ N∗, i.e., a =
x0 · · · xm where each xi is a name and xi = xj iff i = j. An annotated formula
is a pair (a,A), henceforth written Aa, where A is a formula and a ∈ N∗ is an
annotation. A sequent is an expression a : Γ where a ∈ N∗

A is an annotation
in assumption names (only) and Γ = {Aa1

1 , . . . , Aan
n } is a finite set of annotated

formulæ such that ai � NA � a for each i. The word a is called the control of
the sequent.
Unannotated formulæ are identified with their annotation by the empty word
and finite sets of unannotated formulæ with sequents with empty control, in
which case the control is omitted. Annotations play a purely syntactic role and
are ignored for all semantic considerations. When there is no cause for confusion
we refer to annotated formulæ simply as ‘formulæ’. Finite sets of annotated for-
mulæ are denoted Γ , Δ, etc. As usual for sequent calculi, formulæ are identified
with singleton sets and comma is used in place of union of sets of formulæ. Sub-
stitution extends to sequents in the obvious way, setting (a : Γ )[x/A] to be the
sequent a : {B[x/A]b : Bb ∈ Γ}.
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Fig. 1. Axioms and rules of Koz, where σ ∈ {μ, ν} and Γ denotes
∧

A∈Γ A.

3 Sequent Calculi

Kozen [11] introduced an axiomatisation for the modal μ-calculus which was
proved complete by Walukiewicz [22]. Presented as a (one-sided) sequent calcu-
lus, Kozen’s system, denoted Koz, extends the natural formulation of the modal
logic K by fixed point and induction inferences for the two quantifiers (see Fig. 1),
with the restriction that all formulæ are closed. The induction rule ind formalises
the semantic argument leading to B → νxA being valid, namely that for every
transition system S, if ‖B‖S ⊆ ‖A(B)‖S then ‖B‖S ⊆ ‖νxA(x)‖S .

To obtain a syntactic proof of interpolation one typically argues by induction
on the proof witnessing the valid implication, showing that for each rule of
inference an interpolant for the conclusion can be constructed from interpolant(s)
for the premise(s). Both cut and induction rules, however, violate the sub-formula
property needed to constrain the language of the interpolant, thus it is important
to work instead with an analytic sequent calculus.

3.1 A Circular Proof System

We will utilise the cut-free sequent calculus introduced in [1] by the name of
Circ. As discussed in the introduction, Circ is a cyclic proof system in the sense
that in addition to axioms, leaves of a (closed) proof may be non-axiomatic
sequents provided the sequents are repeated on the path descending to the root.
This additional rule allows to omit the problematic induction and cut rules at
the cost of finding a sound notion of repeat. For this we utilise the annotated
sequents defined in Sect. 2.3. The inference rules of Circ are presented in Fig. 2.
Note that axioms do not depend on annotations. The logical rules ∨, ∧, mod
and weak have the same form as in Koz but incorporate annotations which are
carried directly from premise(s) to conclusion; an instance of weak introduces an
arbitrary annotated formula to the conclusion provided the conclusion remains
an annotated sequent.

Notable restrictions on annotations occur in the quantifier rules μ and νx, the
expansion rule exp, and the discharging inference disx̂. The first of these allows
to deduce a : Γ, μxAb from a : Γ,A(μxA)b provided the annotation b names only
variables subsuming x. The dual quantifier inference νx specifies the same fixed
point property for ν-quantified formulæ, but in addition, allows dropping a single
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Fig. 2. Axioms and rules of Circ.

name for the quantified variable from the annotation. In the presence of the rule
exp, removing a name from the premise is optional so a ν inference analogous to μ
is also available. The rule exp, called the expansion rule, allows annotations to
be arbitrarily expanded, subject to the result being an (annotated) sequent. The
final rule, disx̂, referred to as the discharge rule, deserves further explanation.
Ignoring annotations, the inference marks proof cycles:

[Γ,A0, . . . , Ak]
...

Γ,A0, . . . , Ak
dis

Γ,A0, . . . , Ak

The control and annotations restricts which simple cycles are admissible. Read-
ing from root to leaf, the inference expresses that, given a sequent a : Δ, it is
possible to append the control and (some) annotations by a fresh assumption
name x̂ (for the variable x, say), and find a repeat of the sequent further up in
the proof at which the same control and annotations are witnessed but where
each occurrence of the name x̂ has been extended by some other name for x.
Since the names (xi)i in the rule disx̂ are required to be variable names (rather
than assumption names), it follows there has occurred instances of the rules
(νxi

)i along this path. These properties are essential to deducing soundness of
applications of the inference, a matter which we expand upon below.

Definition 2 (Proofs). A proof (in the calculus Circ) is a finite tree π of
sequents locally correct with respect to the inference rules of Fig. 2 subject to the
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restriction that for every assumption name x̂ there is no more than one instance
of disx̂ in π. The sequent labelled at a vertex α of π is denoted π[α]. The sub-
proof of π rooted at α, written πα, is the maximal sub-tree of π with root α.
The conclusion of π is the sequent π[ρπ] annotating the root ρπ of π.

A leaf λ of a proof π is axiomatic if the sequent π[λ] is an instance of Ax1
or Ax2; otherwise, λ is an assumption (of π). The assumptions are further
classified into two groups:

– A discharged, or closed, assumption of π is an assumption λ such that
π[λ] matches the pattern of a discharged assumption for some occurrence of
an inference disx̂ on the path from λ to ρπ.

– An open assumption of π is any assumption which is not discharged in the
sense above.

A proof is closed if all assumptions are discharged. Given a finite set A ∪ {a : Γ}
of annotated sequents and proof π, we write A �π a : Γ to express that the
conclusion of π is the sequent a : Γ and all open assumptions in π are sequents
in A. Explicit mention of the proof π will be dropped in cases it is not relevant.
In particular, � a : Γ denotes the existence of a closed proof of a : Γ .

As an example, we present a cyclic proof of the axiom Ax3 from the system Koz.
For the result it is necessary to prove a more general property which we now
formulate. Let A = A(x0, . . . , xn) be any formula such that FV(A) ⊆ {x0, . . . , xn}
and assume that for every i ≤ n and every y ∈ BV(A), xi < y. We claim that for
all closed formulæ (Ci)i≤n and any three annotations a, c, d ∈ (

⋃
i≤n Nxi

)∗ such
that a : Ac, Ad is a sequent, we have

{a : Cc
i , Cd

i | i ≤ n} � a : A(C0, . . . , Cn)c, A(C0, . . . , Cn)d (1)

The claim is established by induction on the formula A. For A quantifier-free,
the argument is straightforward. We consider the case A = νyB(y, x0, . . . , xn)
and make the simplifying assumption that n = 0. Let A = {a : Cc, Cd} be the
single assumption of the proof in (1) and let ŷ ∈ NA

y and y ∈ NV
y be fresh names

for y. By the induction hypothesis we have

A, {aŷ : A(C)cŷy, A(C)d} � aŷ : B(A(C), C)cŷy, B(A(C), C)d

Note, an application of exp has been inserted at uses of the assumption A as
compared to the induction hypothesis. To the conclusion of this proof we now
apply the μ-rule to the formula B(A(C), C)d, yielding A(C)d, followed by νy to
the formula B(A(C), C)cŷy eliminating the variable name y. Then the conclusion
and the assumption aŷ : A(C)cŷy, A(C)d are of the required form to apply the
discharge inference:
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[
aŷ : A(C)cŷy, A(C)d

]ŷ

...

aŷ : B(A(C), C)cŷy, B(A(C), C)d

μ
aŷ : B(A(C), C)cŷy, A(C)d

νy
aŷ : A(C)cŷ, A(C)d

disŷ
a : A(C)c, A(C)d

Hence, A � a : A(C)c, A(C)d is deduced.

Theorem 1. Circ is sound and complete for the modal μ-calculus. I.e., a for-
mula A is valid iff there exists a closed proof with conclusion A. In addition,
there is an effective procedure for constructing proofs of valid formulæ.

The proof of Theorem 1 presented in [1] provides a procedure for obtaining proofs
from valid sequents: Given an arbitrary valid sequent, Stirling’s goal-orientated
tableaux rules from [20] can be applied to yield a finite proof in his sequent
calculus; from there, a process of proof-regularisation generates a closed proof
in Circ [1, Theorem 5.4].

Soundness of Circ-proofs can be deduced via a reduction to Niwinski–Wal-
ukiewicz refutation tableaux [15]. A proof can be considered as finite representa-
tions of ill-founded proof-trees obtained by identifying discharged assumptions
with the sequents at which they are discharged. Formally, given a proof π which
discharges an assumption

[
ax̂ : Γ,Aa0x̂x0

0 , . . . , Aamx̂xm
m

]x̂

...
ax̂ : Γ,Aa0x̂

0 , . . . , Aamx̂
m

disx̂
a : Γ,Aa0

0 , . . . , Aam
m

we may consider the infinite unravelling of this assumption:

...
ax̂ : Γ,Aa0x̂

0 , . . . , Aamx̂
m

exp
ax̂ : Γ,Aa0x̂x0

0 , . . . , Aamx̂xm
m...

ax̂ : Γ,Aa0x̂
0 , . . . , Aamx̂

m
exp

ax̂ : Γ,Aa0x̂x0
0 , . . . , Aamx̂xm

m...
ax̂ : Γ,Aa0x̂

0 , . . . , Aamx̂
m

disx̂
a : Γ,Aa0

0 , . . . , Aam
m
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The only role of the discharge inference in this ill-founded ‘proof’ is to introduce
(reading from conclusion to premise) the assumption name x̂ which now persists
throughout this infinite path along with all other assumption names occurring
in a. Indeed, every infinite path through this ‘unravelled’ proof can be expressed
in this form for some choice of control a and discharge rule. By weak König’s
Lemma there exists an infinite ancestor trace �B = (Bbi

i )i∈ω through each such
path which starts at a formula Bb0

0 ∈ {Aa0
0 , . . . , Aam

m } and such that every bi for
i ≥ 1 contains x̂, from which it follows that the most subsuming variable of B0

that is unravelled infinitely often in �B is a ν-variable.
The following lemma will prove useful.

Lemma 1. If � a : Γ then there exists a closed proof of a : Γ such that for every
sequent b : Δ in the proof which is not the conclusion of an application of exp:

1. b comprises precisely the assumption names present in Δ;
2. for each formula Cc ∈ Δ, the annotation c

(a) contains only names of variables bound in C, and
(b) is weakly increasing in the subsumption ordering, i.e., if c = c0xc1yc2

then x ≤ y.

Proof. Suppose �π a : Γ . We argue that the desired proof can be obtained by
restricting every annotation occurring in π to the form required of the lemma by
inserting, where appropriate, instances of exp. In order to fulfil conditions 1 and
2(a) it will suffice to replace all annotations and controls in π by the maximal
subword satisfying these criteria. To fulfil 2(b) these annotations are further
refined by replacing c = x0 . . . xk by the maximal subword c− = xi0 · · · xil

� c
such that for every j ≤ l, xij

≤ xij+1 · · · xk.
The described transformation preserves axioms, logical, modal and structural

rules, though in the case of binary inferences, instances of exp may need to be
inserted at premises. The quantifier rules νx and μ are also unproblematic. It
therefore suffices to consider an instance of disx̂ in π:

[
ax̂ : Γ,Aa0x̂x0

0 , . . . , Aakx̂xk

k

]x̂

..... (πα)

ax̂ : Γ,Aa0x̂
0 , . . . , Aakx̂

k
disx̂

a : Γ,Aa0
0 , . . . , Aak

k

We assume the annotations a, a0, . . . , ak have been reduced as per the lemma.
Observe that the specified restriction of the annotation aix̂ contains the name
x̂ iff x̂ names a variable x bound in Ai. In particular, we require to check that if
x is not bound in some Ai then removing x̂ from the annotation in the premise
one can still make an application of disx̂ to discharge the open assumption.
Let α mark the premise of the final inference in π and let X = νxX0 be the
quantified formula which x̂ names. Wlog, we may assume at least one leaf is
discharged by this inference or else x̂ can be removed from the whole sub-proof
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πα along with this application of disx̂ without consequence. Thus, we have X ∈
FL(A0∨ . . .∨Ak), so let us assume X /∈ FL(Ai) for each i < kX and X ∈ FL(Ai)
for kX ≤ i ≤ k. Then this instance of dis can be replaced by an instance in which
x̂ annotates the formulæ AkX

, . . . , Ak only: the proof given by the induction
hypothesis ensures that assumptions discharged by this rule in πα have the
appropriate form to allow discharging by the new inference.

4 Extracting the Interpolant

Our main result is effective Lyndon interpolation for our sequent calculus:

Theorem 2 (Lyndon interpolation). Let A, B be closed formulæ and sup-
pose A ∨ B is valid. Then there exists a closed formula I in the language
L(A)∩L(B), effectively computable from A and B, and proofs � A, I and � I,B.

By completeness, we may assume a closed proof π of A,B from which we will
construct the interpolant I and witnessing proofs

�πA
A, I �πB

I,B

It is convenient to place some simplifying restrictions on π before proceeding
with the proof. The first of these will be the assumption BV(A) ∩ BV(B) = ∅
which guarantees that FL(A) ∩ FL(B) comprises quantifier-free formulæ only.1

However, we will work with the stronger assumption that all annotated sub-
formulæ of A and B are marked such that we can consider FL(A) and FL(B)
as having no formulæ in common. The simplest way to manage this is to first
transform the proof �π A,B into a (closed) proof of ε : Aa, Bb where a, b ∈ NV

are two (fresh) names which subsume all bound variables in the two formulæ and
prefix all annotations in π. In such a proof, at every sequent the A-ancestors and
B-ancestors will be explicitly isolated by their annotation. Such a proof can be
constructed either via the completeness argument sketched above or directly
from π. We will briefly sketch the latter approach. Starting at the root, which
is annotated ε : Aa, Bb, the construction attempts to prefix the annotation of
all formulæ in π by either a or b. Let us call a sequent annotated in this way
a marking. Given annotated formulæ Γ we let Γ a = {Gag | Gg ∈ Γ} and
similarly Γ b. Given a proof π with conclusion Δ and a partition Δ = Δ0 ∪ Δ1,
the intention is to construct a proof πΔ0 with conclusion Δa

0 ,Δ
b
1 whose open

assumptions are markings of assumptions in π. This proceeds by induction on π.
For most inferences, the desired marking of the premise(s) is immediate given a
marking of the conclusion. In cases in which the natural process would annotate a
single formula by both names, the marking by a is preferred and the b-marking is
eliminated from the premise by inserting an instance of weak. Note however, our
assumption on variables means that such a formula is quantifier-free, whereby
the assumption of Lemma 1 implies the formula has otherwise empty annotation.
1 We leave to the interested reader how to handle the situation that A and B have

bound variables in common.
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The only non-trivial inference is the discharge rule where selecting a marking of
the conclusion will induce markings of the premise and (discharged) assumptions
which need not coincide. Suppose we are considering the following instance of
discharge in π. [

cx̂ : Γ,Cc0x̂x0
0 , . . . , Cckx̂xk

k

]x̂

...
cx̂ : Γ,Cc0x̂

0 , . . . , Cckx̂
k

disx̂
c : Γ,Cc0

0 , . . . , Cck

k

Consider a marking of the conclusion Γ,Cc0
0 , . . . , Cck

k given by Δa
0 ,Δ

b
1. The Ci-

formulæ all contain a common quantified sub-formula (the variable which x̂
names), whence one of Δ0 or Δ1 contains all the formulæ Cc0

0 , . . . , Cck

k . Let us
suppose this is Δ1, and let Γ1 = Γ ∩Δ1. By the induction hypothesis, this mark-
ing lifted to the premise induces a marking of each associated closed assumption:
suppose the sequent at a discharged leaf λ is assigned the marking Δa

λ,0,Δ
b
λ,1.

Note, as before {Cc0x̂x0
0 , . . . , Cckx̂xk

k } ⊆ Δλ,1. In order to apply a single instance
of disx̂ that discharges all these leaves, we require that Δλ,0 = Δ0 for each λ. If
this is not satisfied of an assumption λ then in place of closing the assumption
it is necessary to insert a copy of the marked proof πΔλ,0 with an additional
instance of discharge (where Γλ,1 = Γ ∩ Δλ,1):

.....
πΔλ,0

cx̂x̂′ : Δa
λ,0, Γ

b
λ,1, C

bc0x̂x̂′
0 , . . . , Cbckx̂x̂′

k
disx̂′ + exp

cx̂ : Δa
λ,0, Γ

b
λ,1, C

bc0x̂x0
0 , . . . , Cbckx̂xk

k
.... πΔ0

cx̂ : Δa
0 , Γ

b
1 , Cbc0x̂

0 , . . . , Cbckx̂
k

disx̂
c : Δa

0 , Γ
b
1 , Cbc0

0 , . . . , Cbcm
m

Assumptions in πΔλ,0 corresponding to the original discharge will be assigned
markings. Any that match either the marking at λ or the root can be discharged,
otherwise further unravellings are required. In general, an application of dis may
need to be unfolded 2n times where n = |FL(A) ∩ FL(B)| (these are the only
formulæ which may appear on either side of a marking).

Thus, in the following we assume a closed proof π of the sequent Aa, Bb

and that every formula in π features either a or b in its annotation (and never
both) and each assumption name occurs only in annotations prefixed by a or
b (but never both). Let S = g : Γ be a sequent in π. The splitting of S
is the pair of annotated sequents SA = gA : ΓA and SB = gB : ΓB where
Γ = {Cac : Cc ∈ ΓA} ∪ {Cbc : Cc ∈ ΓB} and gA (gB) is the restriction of g to
assumption names in ΓA (resp. ΓB). Thus, (ε : {A}, ε : {B}) is the splitting of
ε : Aa, Bb.

Let D be the set of vertices of π which are conclusions to instances of dis-
charge. Let {xα | α ∈ D} be a set of fresh variable symbols. For each assumption
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leaf λ in π we let λ∗ ∈ D be the corresponding vertex at which λ is discharged.
To each sequent π[α] = g : Γ in π we associate:

1. a formula Iα over variables indexed in D where xβ is free in Iα only if β is on
the path from α to ρπ.

2. proofs AA
α �πA

α
gA : ΓA, Iα and AB

α �πB
α

gB : Iα, ΓB where for each open
assumption λ of πα there exists (unique) open assumptions (dA : ΔA, xλ∗) ∈
AA

α and (dB : xλ∗ ,ΔB) ∈ AB
α such that dA : ΔA and dB : ΔB is the splitting

of the sequent π[λ].

Given the above, the desired interpolant will be the (closed) formula I = Iρπ

associated to the root of π. The construction is determined by a case distinction
on the final inference rule of πα:

Ax1 There are three cases depending on the splitting: {p, p} ⊆ ΓA, {p, p} ⊆ ΓB

or (l, l) ∈ ΓA × ΓB where l ∈ {p, p}. Define Iα = ⊥, � or l respectively: the
desired proofs πA

α and πB
α are then instances of axioms.

Ax2 Analogous to the case above: Iα is either � or ⊥.
Assumption In this case α is an assumption leaf. Define Iα = xα∗ . The two

proofs πA
α and πB

α are the (open) assumptions specified by the splitting of
π[α] and requirement 2 above.

Disjunction Let β be the premise of α and define Iα = Iβ . The desired proofs
πA

α and πB
α immediately follow from πA

β and πB
β .

Conjunction Let β and γ be the two premises of α. If the principal formula
of this inference falls in the sequent ΓA, set Iα = Iβ ∨ Iγ ; otherwise, Iα =
Iβ∧Iγ . Again, the proofs πA

α and πB
α are easily constructed from the induction

hypothesis.
Modality Let β be the unique premise. Suppose π[α] = g : 〈a〉Γ, [a]Cbc. If ΓA = ∅

set Iα = �, otherwise Iα = [a]Iβ . Notice that if a /∈ L(A) ∩ L(B) then indeed
ΓA = ∅. In the case ΓA = ∅ (whence gA = ε) the two proofs πA

α and πB
α can

be constructed directly:

(Ax2) ε : Iα

πα

g : 〈a〉Γ, [a]Cc

weak
g : Iα, 〈a〉Γ, [a]Cc

Otherwise, πA
α and πB

α are constructed from premises πA
β and πB

β respectively:

πA
β

gA : ΓA, Iβ
mod

gA : 〈a〉ΓA, Iα

πB
β

gB : Iβ , ΓB , Cc

mod
gB : Iα, 〈a〉ΓB , [a]Cc

The case Cc is marked as Cac is symmetric and we choose Iα = 〈a〉Iβ .
Discharge Let β be the premise of this rule and suppose π[β] has the form

gx̂ : Γ,Cbc0x̂
0 , . . . , Cbckx̂

k (the case each Ci is marked with a is symmetric). Let
πA

β and πB
β be given with assumptions AA

β and AB
β as in condition 2 above.

Define

AA
α = {(d : Δ, xγ) ∈ AA

β : γ �= α} AB
α = {(d : xγ ,Δ) ∈ AB

β : γ �= α}
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Set Iα = νxα Iβ . We claim there exist proofs

AA
α �πA

α
gA : ΓA, Iα AB

α �πB
α

gB : ΓB , Cc0
0 , . . . , Cck

k , Iα.

We begin with the proof πB
α . Let B = AB

β \ AB
α . We have, by assumption,

AB
α ,B �πB

β
gBx̂ : ΓB , Cc0x̂

0 , . . . , Cckx̂
k , Iβ .

Each sequent S ∈ B has the form S = gBx̂ : ΓB , Cc0x̂x0
0 , . . . , Cckx̂xk

k , xα for
some x0, . . . , xk ∈ NV

x̂ . Uniformly substituting in πB
β every occurrence of xα

by Iα and applying the inference μ at the root yields a proof

AB
α ,B[xα/Iα] �πB

β
gBx̂ : ΓB , Cc0x̂

0 , . . . , Cckx̂
k , Iα.

An application of disx̂ will discharge the assumptions B[xα/Iα] and provide
the desired proof.
The case of building πA

α is similar. By assumption we have

AA
α , {gA : ΓA, xα} �πA

β
gA : ΓA, Iβ .

Notice that the discharged name x̂ does not occur in this proof since it names
a variable in B. We now introduce annotations to the formula Iβ . Pick (x̂, x) ∈
NA

xα
×NV

xα
. Expanding the control of every sequent in πA

β by x̂ and annotating
all Iβ sub-formulæ in the proof by x̂x, we obtain a proof

AA
α , {gAx̂ : ΓA, xx̂x

α } �π′ gAx̂ : ΓA, I x̂x
β .

The sequents in AA
α do not require further annotations as instances of exp

can be inserted at leaves. In π′, replace every occurrence of xα by Iα, yielding

AA
α , {gAx̂ : ΓA, I x̂x

α } �π′′ gAx̂ : ΓA, I x̂x
β [x/Iα].

Appending the rule νx to the root and discharging the assumptions by an
application of disx̂ gives the proof πA

α .
Remaining rules The quantifier and structural rules are unary and, like the case

of ∨, choosing Iα = Iβ where β is the immediate premise suffices.

This completes the proof of Theorem 2. Analysing the construction, bounds on
the sizes of I, πA and πB are readily obtained:

Corollary 1. Suppose �π Aa, Bb and every formula in π contains a or b in its
annotation. There exists an interpolant I and associated proofs πA and πB whose
sizes are linearly bounded in the number of vertices in π.

5 On the Form of the Interpolant

The interpolant constructed in the previous section is structurally identical to
the proof witnessing the interpolated implication and from this observation one
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can immediately infer results on the logical form of the interpolant. For exam-
ple, given a proof π of A,B, a conjunction-free interpolant is constructed if π
avoids the conjunction rule on any ancestor of B and the disjunction rule on any
ancestor of A. An action label occurs in the interpolant only if a modality rule
for this action is used in the π. Note that although we generate the interpolant
from an unravelling of π (and not directly from π), these two properties of proofs
are preserved through unravellings.

As it is the quantifiers that are the source of expressibility and complexity in
the μ-calculus, it is of interest to examine the quantifier structure of interpolants
and their dependence on the structure of proofs. A simple example is given by
the next lemma.

Lemma 2. If the sequent ε : A,B has a closed proof which does not feature
assumption names for variables in A (B) then there is a Π1 (resp. Σ1) formula
I such that A ∨ I and I ∨ B are valid.

A proof is n-open if the control of every sequent in π is a word of length no
greater than n. Note, there exists an n-open proof for a sequent iff there exists
a proof π such that for every α ∈ π the set of controls from open assumptions
in πα has cardinality at most n.

Lemma 3. If Aa, Bb admits an n-open proof there is an interpolant with at
most n distinct variables.

Proof. The interpolant constructed in the previous section utilised a (fresh) vari-
able symbol xα for each application of discharge in the proof, and a variable xα

occurs free in the generated interpolant Iβ just if α is the conclusion of an
instance of discharge on the path strictly between β and the root. Thus, given
an n-open proof the construction can be carried out assuming at most n many
distinct variable symbols.

Let us call a proof separated if every control contains names for variables
from at most one formula in the conclusion. A separated proof may still utilise
applications of the discharge rule for variables from different formulæ but if an
assumption is open in the use of a discharge rule then the two variables associated
to these discharges are from the same formula in the conclusion.

Lemma 4. If A,B admits a separated proof and BV(A)∩BV(B) = ∅ then there
exists an alternation-free interpolant.

We recall the alternation-free fragment is the class of μ-formulæ for which the
subsumption ordering does not relate variables bound by different quantifiers.

Proof. Since separated proofs are closed under the unravelling of closed assump-
tions (described in the previous section) we may assume a separated closed proof
of Aa, Bb with the usual restrictions. We remark that in the construction the
interpolant I acquires a quantifier ν only at instances of the discharge rule asso-
ciated to variables from B and a μ-quantifier at instances of the discharge rule
associate to A-variables. Since the proof is assumed to be separated, at no point
will a sub-formula Iα of the interpolant be generated that contains free two
variables x and y such that x is ν-quantified in I and y is μ-quantified.
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An immediate consequence of Lemma 4 is the following:

Lemma 5. If every valid implication in alternation-free μ-calculus admits a sep-
arated proof then alternation-free μ-calculus has the Lyndon interpolation prop-
erty.

Although we leave open the question of whether alternation-free μ-calculus has
interpolation, we remark that valid implications between Σ1/Π1 formulæ readily
admit separated proofs, yielding an interpolation theorem for the first level of
the alternation-free hierarchy [24].

Theorem 3. Every valid implication between formulæ in the Boolean closure of
Π1 ∪ Σ1 admits an alternation-free interpolant.

6 Discussion

We have shown how to extract interpolants for modal μ-formulæ via sequent
calculus. The proof rests on the cyclic proof calculus called Circ introduced in [1]
which is both cut-free and analytic. Our approach is similar to the method used
to obtain interpolation for Gödel–Löb provability logic from a cyclic proof system
over S4 [19].

A natural continuation of this work consists of adapting the above methods
to other modal and temporal logics with fixed points. Our result depends on two
important properties of the modal μ-calculus: the existence of an analytic cyclic
proof system and the expressive capabilities to define interpolants from (nested)
back-edges. For fragments of the modal μ-calculus in which only a subset of
fixed points are available the latter will be more constraining whereas for richer
systems such as μ-calculus with converse modalities, adequate cyclic calculi are
problematic. We believe both pursuits can offer fruitful contributions to interpo-
lation techniques and an understanding of these logics. An outstanding question
is whether uniform interpolation can likewise be deduced proof-theoretically.
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Abstract. The core of this paper is Chagrova’s Theorems about first-order defi-
nability of given modal formulas and modal definability of given elementary con-
ditions. We consider classes of frames for which modal definability is decidable
and classes of frames for which first-order definability is trivial. We give a new
proof of Chagrova’s Theorem about modal definability and sketches of proofs of
new variants of Chagrova’s Theorem about modal definability.
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1 Introduction

The question of the correspondence between elementary conditions and modal formu-
las is concomitant with the creation of the relational semantics of modal logic, frames
serving as interpretation structures both for first-order formulas in the signature with
one binary predicate and equality and for propositional modal formulas in the lan-
guage with one box. Kripke [22] already observed that some elementary conditions
possess a modal correspondent: transitivity vs �p → ��p, symmetry vs p → �♦p,
etc. Less than 20 years have elapsed between Kripke’s observation and the develop-
ment of Correspondence Theory culminating in the publication of the book “Modal
Logic and Classical Logic” [5]: in 1975, Sahlqvist [26] isolated a large set of modal
formulas which guarantee completeness with respect to first-order definable classes of
frames whereas van Benthem [4] and Goldblatt [17] independently noticed that McK-
insey formula �♦p → ♦�p has no first-order correspondent.

Since the first-order conditions corresponding to Sahlqvist formulas are effectively
computable [6, Section 3.6], it is natural to ask whether Sahlqvist fragment contains
all modal formulas possessing first-order correspondents. This question has received a
negative answer, the conjunction (�♦p → ♦�p) ∧ (�p → ��p) possessing a first-
order correspondent while not being equivalent to a Sahlqvist formula. See [6, Exam-
ple 3.57 and Exercise 3.7.1] for details. See also [18] for an extension of the Sahlqvist
set of modal formulas. Hence, owing to the significance of Correspondence Theory, it
is natural to ask whether the following problems are decidable:
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First-order definability: determine whether a given modal formula possesses a first-
order correspondent,

Modal definability: determine whether a given first-order sentence possesses a modal
correspondent.

This question has received a negative answer, the limitative results in this topic having
been firstly obtained by Chagrova in her doctoral thesis [11] and then further developed
in [7–9,12]. Chagrova’s results (henceforth called Chagrova’s Theorems) have been
obtained by reductions from accessibility problems in Minsky machines and by the use
of the frames presented in [8, Figures 1 and 2].

In Chagrova’s Theorems, when we are talking about first-order sentences corre-
sponding to modal formulas, we mean that they correspond with respect to the class
of all frames. Thus, immediately, there is the question whether Chagrova’s Theorems
still hold if one consider restricted classes of frames. Giving rise to the modal logic
S5, the class of all partitions is perhaps the most simple class of frames that one may
conceive of. The simple character of the class of all partitions also appears within the
context of first-order definability: every modal formula being equivalent in this class
to a modal formula of degree at most 1, it follows from a remark of van Benthem [5,
Lemma 9.7] that the class of all partitions gives rise to a trivial first-order definability
problem. As for the modal definability problem, Balbiani and Tinchev [2] have proved
that it is PSPACE-complete with respect to the class of all partitions when the modal
language is extended by the universal modality.

Other classes of frames of simple character are the classes giving rise to the modal
logics KD45 (the class of all serial, transitive and Euclidean frames) and K45 (the
class of all transitive and Euclidean frames). As for the class of all partitions and for the
same reason, Georgiev [15,16] has proved that the first-order definability problem is tri-
vial with respect to these classes whereas the modal definability problem isPSPACE-
complete. The most important computational property shared by the modal logics S5,
KD45 andK45 is theNP-completeness of the satisfiability problem. The satisfiabil-
ity problem ofK5 isNP-complete too and this modal logic shares many computational
properties with the modal logics S5,KD45 andK45 as well, for instance the polysize
model property. Nevertheless, with respect to the class of all K5-frames (the class of
all Euclidean frames), although the first-order definability problem is still trivial, the
modal definability problem becomes undecidable [1].

The core of this paper will be Chagrova’s Theorems about first-order definability
and modal definability. In Sect. 3, we will consider classes of frames for which modal
definability is decidable. In particular, we will demonstrate a new result—namely, The-
orem 1—saying that the problem of deciding modal definability of first-order sentences
with respect to the class of all partitions is PSPACE-complete. In Sect. 4, we will
consider classes of frames for which first-order definability is trivial. In particular, we
will demonstrate a new result—namely, Theorem 2—saying that the problem of decid-
ing first-order definability of modal formulas with respect to the class of all reflexive,
transitive and connected frames with finitely many clusters is trivial. In Sect. 5, using
standard methods in model theory such as relativization of first-order formulas and
reduct of frames, we will give a new proof of Chagrova’s Theorem about modal defina-
bility and we will give sketches of proofs of new variants of Chagrova’s Theorem about
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modal definability. We assume the reader is at home with the basic tools and techniques
in model theory and modal logics. For more on them, see [14,19] and [6,10,21].

2 Preliminaries

We introduce a handful of definitions that will be useful throughout the paper.

2.1 Frames

For all sets E, ‖E‖ will denote the cardinality of E. A frame is a structure F = (W,R)
where W is a nonempty set of states and R is a binary relation on W . For all frames
F = (W,R), for all s in F and for all subsets S of F , let R(s) = {t ∈ W : sRt} and
R(S) =

⋃{R(s) : s ∈ S}. For all frames F = (W,R) and for all s in F , let R�(s) =⋃{Rn(s) : n ∈ N} where R0(s) = {s} and for all n ≥ 1, Rn(s) = R(Rn−1(s)). For
all frames F = (W,R), we say F is rooted if there exists s in F such that R�(s) = W .
In that case, we say s is a root of F . For all frames F = (W,R) and for all s in F , the
subframe of F generated from s is the frame Fs = (Ws, Rs) where Ws = R�(s) and
Rs is the restriction of R to Ws. Obviously, s is a root of Fs. In a frame F = (W,R),
we will say that

– R is reflexive if for all s in F , sRs,
– R is serial if for all s in F , there exists t in F such that sRt,
– R is symmetric if for all s, t in F , if sRt then tRs,
– R is transitive if for all s, t, u in F , if sRt and tRu then sRu,
– R is Euclidean if for all s, t, u in F , if sRt and sRu then tRu and uRt,
– R is connected if for all s, t, u in F , if sRt and sRu then either tRu, or uRt.

The frame F = (W,R) is reflexive (respectively serial, symmetric, transitive, Eucli-
dean, connected) if R is reflexive (respectively serial, symmetric, transitive, Euclidean,
connected). The frame F = (W,R) is a partition if R is reflexive, symmetric and tran-
sitive. The partition F = (W,R) is bounded if there exists a positive integer n such that
for all s in F , ‖R(s)‖ ≤ n. For all bounded partitions F = (W,R), let nF be the least
positive integer n such that for all s in F , ‖R(s)‖ ≤ n. The partition F = (W,R) is
small if there exists a positive integer π such that for all s in F , ‖{R(t) : t ∈ W and
‖R(s)‖ = ‖R(t)‖}‖ ≤ π. For all small partitions F = (W,R), let πF be the least posi-
tive integer π such that for all s in F , ‖{R(t) : t ∈ W and ‖R(s)‖ = ‖R(t)‖}‖ ≤ π. In
this paper, we will consider the following classes of frames: the class Call of all frames,
the class CE of all Euclidean frames, the class CsE of all serial and Euclidean frames,
the class CtE of all transitive and Euclidean frames, the class CstE of all serial, transitive
and Euclidean frames and the class Cpar of all partitions. We will also consider other
classes of frames: the class Crtc of all reflexive, transitive and connected frames and the
class Cω

rtc of all reflexive, transitive and connected frames F such that for all s in F , Fs

contains finitely many clusters. Remind that for all reflexive, transitive and connected
frames F = (W,R), a cluster is an equivalence class modulo the equivalence relation
�F on F such that for all s, t in F , s �F t iff sRt and tRs.
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2.2 Modal Language and Truth

Modal Language. Let us consider a countable set PVAR of propositional variables
(denoted p, q, . . .). The setLMF of allmodal formulas (denoted ϕ, ψ, . . .) is inductively
defined as follows:

– ϕ,ψ ::= p | ⊥ | ¬ϕ | (ϕ ∨ ψ) | �ϕ,

where p ranges over PVAR. We define the other Boolean constructs as usual. The
modal formula ♦φ is obtained as the well-known abbreviation: ♦φ ::=¬�¬φ. We adopt
the standard rules for omission of the parentheses. The degree of the modal formula ϕ
(in symbols deg(ϕ)) is the nonnegative integer inductively defined as usual [6, Defini-
tion 2.28]. The set of all subformulas of the modal formula ϕ (in symbols sf(ϕ)) is the
set of modal formulas inductively defined as follows:

– sf(p) = {p},
– sf(⊥) = {⊥},
– sf(¬ϕ) = {¬ϕ} ∪ sf(ϕ),
– sf(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ sf(ϕ) ∪ sf(ψ),
– sf(�ϕ) = {�ϕ} ∪ sf(ϕ).

The set of all boxed subformulas of the modal formula ϕ (in symbols sf�(ϕ)) is the
set of modal formulas inductively defined as follows:

– sf�(p) = ∅,
– sf�(⊥) = ∅,
– sf�(¬ϕ) = sf�(ϕ),
– sf�(ϕ ∨ ψ) = sf�(ϕ) ∪ sf�(ψ),
– sf�(�ϕ) = {�ϕ} ∪ sf�(ϕ).

As is well-known, for all modal formulas ϕ, ‖sf�(ϕ)‖ + 1 ≤ ‖sf(ϕ)‖.

Truth. A valuation on a frame F = (W,R) is a function V assigning to each proposi-
tional variable p a subset V (p) of W . The satisfiability of a modal formula ϕ at a state
s with respect to a valuation V in a frame F = (W,R) (in symbols F , V, s |= ϕ) is
inductively defined as follows:

– F , V, s |= p iff s ∈ V (p),
– F , V, s |= ⊥,
– F , V, s |= ¬ϕ iff F , V, s |= ϕ,
– F , V, s |= ϕ ∨ ψ iff either F , V, s |= ϕ, or F , V, s |= ψ,
– F , V, s |= �ϕ iff for all states t in F , if sRt then F , V, t |= ϕ.

As a result, F , V, s |= ♦ϕ iff there exists a state t in F such that sRt and F , V, t |= ϕ.
A modal formula ϕ is true with respect to a valuation V in a frame F (in symbols
F , V |= ϕ) if ϕ is satisfied at all states with respect to V in F . A modal formula ϕ is
valid in a frame F (in symbols F |= ϕ) if ϕ is true with respect to all valuations on F .
A modal formula ϕ is valid in a class C of frames (in symbols C |= ϕ) if ϕ is valid in
all frames in C. A frame F is weaker than a frame F ′ (in symbols F � F ′) if for all
modal formulas ϕ, if F |= ϕ then F ′ |= ϕ. For all positive integers n, let
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– ψn ::=
∧{♦pi : 0 ≤ i ≤ n} → ∨{♦(pi ∧ pj) : 0 ≤ i < j ≤ n}.

It is a well-known fact that for all positive integers n and for all partitions F , F |= ψn

iff F is bounded and nF ≤ n.

Generated Subframes. A frame F ′ = (W ′, R′) is a generated subframe of a frame
F = (W,R) (in symbols F � F ′) if W ′ ⊆ W and

– for all s′, t′ in F ′, if s′R′t′ then s′Rt′,
– for all s′ in F ′ and for all t in F , if s′Rt then t is in F ′ and s′R′t.

The least generated subframe of a frame F = (W,R) generated by a state s in F is
the frame Fs = (Ws, Rs) where Ws = R�(s) and Rs is the restriction of R to Ws.
Generated subframes give rise to the following results:

Proposition 1 (Generated subframes Theorem). If the frame F ′ is a generated sub-
frame of the frame F then F � F ′.

Proof. See [6, Theorem 3.14 (ii)].

Proposition 2. Let F = (W,R) be a frame, s be a state in F , V be a valuation on F
and Vs be the restriction of V to Ws. For all modal formulas ϕ and for all t in Ws,
F , V, t |= ϕ iff Fs, Vs, t |= ϕ.

Proof. By induction on ϕ.

Disjoint Unions. The frame F ′ = (W ′, R′) is the disjoint union of a family of frames
Fi = (Wi, Ri) where i ranges over a nonempty set I if for all i, j ∈ I , if i = j then
Wi ∩ Wj = ∅, W ′ =

⋃{Wi : i ∈ I} and R′ =
⋃{Ri : i ∈ I}. Disjoint unions give

rise to the following result:

Proposition 3 (Disjoint unions Theorem). If the frame F ′ is the disjoint union of a
family of frames Fi where i ranges over a nonempty set I then for all i ∈ I , F ′ � Fi.

Proof. Suppose the frame F ′ is the disjoint union of a family of frames Fi where i
ranges over a nonempty set I . Let i ∈ I . Obviously, Fi is a generated subframe of F ′.
Hence, by Proposition 1, F ′ � Fi

Bounded Morphic Images. A frame F ′ = (W ′, R′) is a bounded morphic image of a
frame F = (W,R) (in symbols F � F ′) if there exists a function f assigning to each
state s in F a state f(s) in F ′ such that

– f is surjective,
– for all s, t in F , if sRt then f(s)R′f(t),
– for all s in F and for all t′ in F ′, if f(s)R′t′ then there exists t in F such that sRt
and f(t) = t′.

In that case, the function f is a surjective bounded morphism. Bounded morphic images
give rise to the following result:

Proposition 4 (Bounded morphic images Theorem). If the frame F ′ is a bounded
morphic image of the frame F then F � F ′.

Proof. See [6, Theorem 3.14 (iii)].
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2.3 First-Order Language and Truth

First-Order Language. Let us consider a countable set IVAR of individual variables
(denoted x, y, . . .). The set LFOF of all first-order formulas (denoted A, B, . . .) is
inductively defined as follows:

– A,B ::=R(x, y) | x = y | ¬A | (A ∨ B) | ∀xA,

where x and y range over IVAR. We define the other Boolean constructs as usual. The
first-order formula ∃xA is obtained as the well-known abbreviation: ∃xA ::=¬∀x¬A.
We adopt the standard rules for omission of the parentheses. For all first-order formulas
A, let fiv(A) be the set of all free individual variables occurring in A. A first-order for-
mula A is a sentence if fiv(A) = ∅. The quantifier rank of the first-order formula A (in
symbols qr(A)) is the nonnegative integer inductively defined as usual [14, Chapter 1].
The relativization of a first-order formula C with respect to a first-order formula A and
an individual variable x (in symbols (C)Ax ) is inductively defined as follows:

– (R(y, z))Ax isR(y, z),
– (y = z)Ax is y = z,
– (¬C)Ax is ¬(C)Ax ,
– (C ∨ D)Ax is (C)Ax ∨ (D)Ax ,
– (∀yC)Ax is ∀y(A[x/y] → (C)Ax ).

In the above definition, A[x/y] denotes the first-order formula obtained from the first-
order formula A by replacing every free occurrence of the individual variable x in
A by the individual variable y. From now on, when we write (C)Ax , we will always
assume that the sets of individual variables occurring in A and C are disjoint. The
reader may easily verify by induction on the first-order formula C that fiv((C)Ax ) ⊆
(fiv(A)\{x}) ∪ fiv(C). Hence, if C is a sentence then fiv((C)Ax ) ⊆ fiv(A)\{x}.

Truth. An assignment on a frameF is a function g assigning to each individual variable
x a state g(x) in F . The update of an assignment g on a frame F with respect to a state
s in F and an individual variable x (in symbols gx

s ) is the assignment gx
s on F such that

gx
s (x) = s and for all individual variables y = x, gx

s (y) = g(y). Given a frame F , for
all nonnegative integers n, for all states s1, . . . , sn in F and for all individual variables
x1, . . . , xn, gx1...xn

s1...sn
is the assignment g′ on F inductively defined as follows

– if n = 0 then g′ = g,
– if n ≥ 1 then g′ = (gx1...xn−1

s1...sn−1 )xn
sn
.

The satisfiability of a first-order formula A with respect to an assignment g in a frame
F = (W,R) (in symbols F , g |= A) is inductively defined as follows:

– F , g |= R(x, y) iff g(x)Rg(y),
– F , g |= x = y iff g(x) = g(y),
– F , g |= ¬A iff F , g |= A,
– F , g |= A ∨ B iff either F , g |= A, or F , g |= B,
– F , g |= ∀xA iff for all states s in F , F , gx

s |= A.
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As a result, F , g |= ∃xA iff there exists a state s in F such that F , gx
s |= A. A

first-order formula A is valid in a frame F (in symbols F |= A) if A is satisfied with
respect to all assignments in F . A first-order formula A is valid in a class C of frames
(in symbols C |= A) if A is valid in all frames in C. For all positive integers n, let

– Bn ::=∀x0 . . . ∀xn(
∧{R(xi, xj) : 0≤ i < j ≤ n}→ ∨{xi = xj : 0≤ i < j ≤ n}).

It is a well-known fact that for all positive integers n and for all partitions F , F |= Bn

iff F is bounded and nF ≤ n.

Lemma 1. Let A be a sentence. The following conditions are equivalent:

1. Cpar |= A,
2. for all small and bounded partitions F , if nF , πF ≤ qr(A) then F |= A,

Proof. (1 ⇒ 2) Obvious.
(2 ⇒ 1) Suppose Cpar |= A. Hence, there exists a partition F such that F |= A. Let
F ′ be the bounded partition obtained from F by eliminating in all equivalence classes,
as many states as it is needed so that the size of each equivalence class becomes at most
equal to qr(A). Obviously, nF ′ ≤ qr(A). Moreover, Duplicator wins the Ehrenfeucht-
Fraı̈ssé game Gqr(A)(F ,F ′)1. Thus, for all sentences B, if qr(B) ≤ qr(A) then F |=
B iff F ′ |= B. Since F |= A, F ′ |= A. Let F ′′ be the small and bounded partition
obtained from F ′ by eliminating for all positive integers π, as many equivalence classes
as it is needed so that the number of equivalence classes of size π becomes at most equal
to qr(A). Obviously, nF ′′ , πF ′′ ≤ qr(A). Moreover, Duplicator wins the Ehrenfeucht-
Fraı̈ssé game Gqr(A)(F ′,F ′′). Consequently, for all sentences B, if qr(B) ≤ qr(A)
then F ′ |= B iff F ′′ |= B. Since F ′ |= A, F ′′ |= A.

Lemma 2. The problem of deciding the Cpar-validity ofLFOF-formulas isPSPACE-
complete.

Proof. By Lemma 1, a sentence A is not Cpar-valid iff there exists a small and bounded
partition F such that nF , πF ≤ qr(A) and F |= A. Hence, in order to determine
whether a given sentence A is Cpar-valid, it suffices to execute the following procedure:

procedure val(A)
begin
for all small and bounded partitions F such that nF , πF≤qr(A), call
MC(F , A);
if all these calls are accepting then accept;
otherwise, reject;
end

where the call MC(F , A) is accepting iff F |= A. Obviously, the call val(A) is accept-
ing iff A is Cpar-valid. Since the procedure MC can be implemented in polynomial
space [27,30], the procedure val can be implemented in polynomial space. Thus, the

1 Ehrenfeucht-Fraı̈ssé games constitute a useful tool for characterizing frames modulo elemen-
tary equivalence. See [14, Chapter 2] for a general introduction.
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problem of deciding the Cpar-validity of LFOF-formulas is in PSPACE. As for the
PSPACE-hardness of the problem of deciding the Cpar-validity of LFOF-formulas, it
immediately follows from the PSPACE-hardness of the membership problem in the
first-order theory of pure equality [28].

Relativization. Let F , F ′ be frames. F ′ is a relativized reduct of F if there exists a
first-order formula A, there exists an individual variable x and there exists an assign-
ment g on F such that F ′ is the restriction of F to the set of all states s in F such that
F , gx

s |= A. In that case, we say F ′ is the relativized reduct of F with respect to A, x
and g. Relativized reducts give rise to the following result:

Proposition 5 (Relativization Theorem). Let F , F ′ be frames, A be a first-order for-
mula, x be an individual variable and g be an assignment on F . If F ′ is the relativized
reduct of F with respect to A, x and g then for all first-order formulas C(y1, . . . , yn)
and for all assignments g′ on F ′, F , gy1...yn

g′(y1)...g′(yn)
|= (C(y1, . . . , yn))Ax iff F ′, g′ |=

C(y1, . . . , yn).

Proof. See [19, Theorem 5.1.1].

2.4 Modal Definability and First-Order Definability

Let C be a class of frames. A sentence A is modally definable with respect to C if there
exists a modal formula ϕ such that for all frames F in C, F |= A iff F |= ϕ. In that
case, we say ϕ is a modal definition of A with respect to C. A modal formula ϕ is first-
order definable with respect to C if there exists a first-order sentence A such that for all
frames F in C, F |= ϕ iff F |= A. In that case, we say A is a first-order definition
of ϕ with respect to C. Table 1 contain examples of the correspondence between modal
formulas and sentences.

Table 1. Examples of the correspondence between modal formulas and sentences.

ϕ A

p → ♦p “R is reflexive”

♦♦p → ♦p “R is transitive”

p → �♦p “R is symmetric”

♦� “R is serial”

♦p → �♦p “R is Euclidean”

Proposition 6. Let C be a class of frames. For all modal formulas ϕ, if there exists a
modal formula ψ such that C |= ϕ ↔ ψ and deg(ψ) ≤ 1 then ϕ is first-order definable
with respect to C.
Proof. See [5, Lemma 9.7].
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3 Modal Definability: Decidable Cases

We consider classes of frames for which modal definability is decidable: CtE , CstE and
Cpar. For the purpose of proving the decidability of modal definability with respect to
Cpar, we need to consider the following lemmas.

Lemma 3. Let F = (W,R),F ′ = (W ′, R′) be bounded partitions. If nF ≥ nF ′ then
for all modal formulas ϕ, if F |= ϕ then F ′ |= ϕ.

Proof. Suppose nF ≥ nF ′ . Let ϕ be a modal formula. Suppose F |= ϕ and F ′ |= ϕ.
Hence, there exists a valuation V ′ on F ′ and there exists a state s′ in F ′ such that
F ′, V ′, s′ |= ϕ. Thus, by Proposition 2, F ′

s′ , V ′
s′ , s′ |= ϕ where V ′

s′ is the restriction
of V ′ to Ws′ . Consequently, F ′

s′ |= ϕ. Obviously, nF ′ ≥ nF ′
s′ . Since nF ≥ nF ′ ,

nF ≥ nF ′
s′ . Hence, let s be a state in F such that ‖R(s)‖ ≥ ‖R′

s′(s′)‖. Since F |= ϕ,
by Proposition 1, Fs |= ϕ. Moreover, Fs � F ′

s′ . Thus, by Proposition 4, F ′
s′ |= ϕ: a

contradiction.

Lemma 4. Let F ,F ′ be bounded partitions such that nF ≥ nF ′ . For all sentences A,
if A is modally definable with respect to Cpar and F |= A then F ′ |= A.

Proof. Let A be a sentence. Suppose A is modally definable with respect to Cpar and
F |= A. Hence, there exists a modal formula ϕ such that for all partitions F ′′, F ′′ |=
A iff F ′′ |= ϕ. Since F |= A, F |= ϕ. Since nF ≥ nF ′ , by Lemma 3, F ′ |= ϕ.
Since for all partitions F ′′, F ′′ |= A iff F ′′ |= ϕ, F ′ |= A.

Lemma 5. Let A be a sentence. If Cpar |= A and Cpar |= ¬A then A is modally
definable with respect to Cpar iff there exists a positive integer n such that n < qr(A)
and for all bounded partitions F , F |= A iff n ≥ nF .

Proof. Suppose Cpar |= A and Cpar |= ¬A.
(⇒) Suppose A is modally definable with respect to Cpar. Let N = {nF : F is
a bounded partition such that F |= A}. Since Cpar |= A and Cpar |= ¬A, by
Lemma 1, there exists bounded partitions G′ and G′′ such that nG′ ≤ qr(A), G′ |= A
and G′′ |= ¬A. Hence, G′′ |= A. Since A is modally definable with respect to Cpar,
by Lemma 4, nG′ is strictly greater than all positive integers in N . Moreover, nG′′ ∈ N .
Thus, N = ∅. Since nG′ is strictly greater than all positive integers in N , N possesses a
maximal element. Let n = maxN . Since nG′ ≤ qr(A) and nG′ is strictly greater than
all positive integers in N , n < qr(A). For the sake of the contradiction, suppose there
exists a bounded partition H such that either H |= A and n < nH, or H |= A and
n ≥ nH. In the former case, nH is in N . Consequently, n ≥ nH: a contradiction. In the
latter case, by Lemma 4, nH is strictly greater than all positive integers in N . Hence,
n < nH: a contradiction.
(⇐) Suppose there exists a positive integer n such that n < qr(A) and for all bounded
partitions F , F |= A iff n ≥ nF . For the sake of the contradiction, suppose there
exists a partition G = (W,R) such that either G |= A and G |= ψn, or G |= A and
G |= ψn, ψn being the modal formula defined in Sect. 2.2. In the former case, since
for all partitions F , F |= ψn iff F is bounded and nF ≤ n, if G is bounded then
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nG > n. Thus, there exists a state s in G such that ‖R(s)‖ ≥ n + 1. Since n < qr(A),
n + 1 ≤ qr(A). Let G′ be the bounded partition obtained from G by eliminating in
all equivalence classes, as many states as it is needed so that the size of each equiv-
alence class becomes at most equal to qr(A). As the reader can check, Duplicator
wins the Ehrenfeucht-Fraı̈ssé game Gqr(A)(G,G′). Consequently, for all sentences B,
if qr(B) ≤ qr(A) then G |= B iff G′ |= B. Since G |= A, G′ |= A. Since there
exists a state s in G such that ‖R(s)‖ ≥ n + 1 and n + 1 ≤ qr(A), nG′ ≥ n + 1.
Hence, nG′ > n. Since for all bounded partitions F , F |= A iff n ≥ nF , G′ |= A: a
contradiction. In the latter case, since for all partitions F , F |= ψn iff F is bounded
and nF ≤ n, G is bounded and nG ≤ n. Since for all bounded partitions F , F |= A
iff n ≥ nF , G |= A: a contradiction. As a result, we obtain that for all partitions G,
G |= A iff G |= ψn. Thus, A is modally definable with respect to Cpar.

Lemma 6. Let A be a sentence. The following conditions are equivalent:

– A is modally definable with respect to Cpar,
– one of the following conditions holds:

• Cpar |= A,
• Cpar |= ¬A,
• there exists a positive integer n such that n < qr(A) and for all bounded parti-
tions F , F |= A iff n ≥ nF .

Proof. By Lemma 5, using the fact that if Cpar |= A then A corresponds to the modal
formula � with respect to Cpar and if Cpar |= ¬A then A corresponds to the modal
formula ⊥ with respect to Cpar.

Lemma 7. Let A be a sentence. If Cpar |= A and Cpar |= ¬A then A is modally
definable with respect to Cpar iff there exists a positive integer n such that n < qr(A)
and Cpar |= A ↔ Bn, Bn being the sentence defined in Sect. 2.3.

Proof. Suppose Cpar |= A and Cpar |= ¬A.
(⇒) Suppose A is modally definable with respect to Cpar. Since Cpar |= A and
Cpar |= ¬A, by Lemma 6, there exists a positive integer n such that n < qr(A)
and for all bounded partitions F , F |= A iff n ≥ nF . Hence, for all bounded parti-
tions F , F |= A iff F |= Bn. Thus, for all bounded partitions F , F |= A ↔ Bn.
Consequently, by Lemma 1, Cpar |= A ↔ Bn.
(⇐) Suppose there exists a positive integer n such that n < qr(A) and Cpar |= A ↔
Bn. Hence, for all bounded partitions F , F |= A ↔ Bn. Thus, for all bounded parti-
tions F , F |= A iff F |= Bn. Consequently, for all bounded partitions F , F |= A iff
n ≥ nF . Since n < qr(A), by Lemma 6, A is modally definable with respect to Cpar.

Lemma 8. Let A be a sentence. The following conditions are equivalent:

– A is modally definable with respect to Cpar,
– one of the following conditions holds:

• Cpar |= A,
• Cpar |= ¬A,
• there exists a positive integer n such that n < qr(A) and Cpar |= A ↔ Bn.
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Proof. By Lemma 7, using the fact that if Cpar |= A then A corresponds to the modal
formula � with respect to Cpar and if Cpar |= ¬A then A corresponds to the modal
formula ⊥ with respect to Cpar.

Lemma 9. Let A be a sentence. The following conditions are equivalent:

– Cpar |= A,
– Bqr(A) → A is modally definable with respect to Cpar.

Proof. (⇒) Suppose Cpar |= A. Hence, Cpar |= Bqr(A) → A. Thus, Bqr(A) → A
corresponds to the modal formula � with respect to Cpar. Consequently, Bqr(A) → A
is modally definable with respect to Cpar.
(⇐) Suppose Bqr(A) → A is modally definable with respect to Cpar. For the sake of
the contradiction, suppose Cpar |= A. Hence, by Lemma 1, there exists a bounded
partition F such that nF ≤ qr(A) and F |= A. Thus, F |= Bqr(A). Since F |=
A, F |= Bqr(A) → A. Consequently, Cpar |= Bqr(A) → A. Moreover, obviously,
Cpar |= ¬(Bqr(A) → A). Since Bqr(A) → A is modally definable with respect to
Cpar, by Lemma 6, there exists a positive integer n such that n < qr(Bqr(A) → A) and
for all bounded partitions G, G |= Bqr(A) → A iff n ≥ nG . Hence, n ≤ qr(A). Let
F ′ be a bounded partition such that nF ′ > qr(A). Thus, F ′ |= Bqr(A). Consequently,
F ′ |= Bqr(A) → A. Since for all bounded partitions G, G |= Bqr(A) → A iff n ≥ nG ,
n ≥ nF ′ . Since nF ′ > qr(A), n > qr(A): a contradiction.

As a result,

Theorem 1. The problem of deciding the modal definability with respect to Cpar of
LFOF-formulas is PSPACE-complete.

Proof. By Lemma 8, a sentence A is modally definable with respect to Cpar iff either
Cpar |= A, or Cpar |= ¬A, or there exists a positive integer n such that n < qr(A)
and Cpar |= A ↔ Bn. Hence, in order to determine whether a given sentence A is
modally definable with respect to Cpar, it suffices to execute the following procedure:

procedure MD(A)
begin
call val(A);
if this call is accepting then accept;
otherwise, call val(¬A);
if this call is accepting then accept;
otherwise, for all positive integers n such that n<qr(A), call val(A ↔
Bn);
if one of these calls is accepting then accept;
otherwise, reject;
end

Obviously, the call MD(A) is accepting iff A is modally definable with respect to Cpar.
Since the procedure val can be implemented in polynomial space, the procedure MD can
be implemented in polynomial space. Thus, the problem of deciding the modal defina-
bility with respect to Cpar of LFOF-formulas is in PSPACE. As for the PSPACE-
hardness of the problem of deciding the modal definability with respect to Cpar of
LFOF-formulas, it immediately follows from Lemmas 2 and 9.
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An interesting question is the following: when the ordinary language of modal logic
is extended either with the universal modality, or with the difference modality, is the
problem of deciding the modal definability with respect to Cpar, CtE and CstE of
LFOF-formulas still decidable? If the answer is “yes”, is this problem still PSPACE-
complete? The answers to these questions have been given in [2,15,16].

Proposition 7. When the ordinary language of modal logic is extended with the univer-
sal modality, the problem of deciding the modal definability with respect to Cpar, CtE

and CstE of LFOF-formulas is PSPACE-complete.

4 First-Order Definability: Trivial Cases

In this section, we consider classes of frames for which first-order definability is trivial:
CtE , CstE and Cpar. We take as well a special interest in CE , CsE and Cω

rtc and we prove
that they give rise to a trivial first-order definability problem too. It is a well-known fact
that with respect to CtE , CstE and Cpar, every modal formula is equivalent to a modal
formula of degree less than or equal to 1. As a result,

Proposition 8. The problem of deciding first-order definability with respect to CtE ,
CstE and Cpar is trivial: every modal formula is first-order definable with respect to
CtE , CstE and Cpar.

Proof. By Proposition 6.

The reader may ask whether there exists classes of frames with respect to which the
problem of deciding first-order definability is trivial and there exists modal formulas
equivalent to no modal formula of degree less than or equal to 1. It is a well-known fact
that with respect to CE and CsE , every modal formula is equivalent to a modal formula
of degree less than or equal to 2 but some modal formula is equivalent to no modal
formula of degree less than or equal to 1. Nevertheless,

Proposition 9. The problem of deciding first-order definability with respect to CE and
CsE is trivial: every modal formula is first-order definable with respect to CE and CsE .

Proof. Since CE contains CsE , it suffices to prove that (Π) every modal formula is first-
order definable with respect to CE . The proof of (Π) has been presented by Balbiani
et al. [1]. It is based on the following line of reasoning. For all frames F = (W,R) in
CE and for all states s in F , exactly one of the following conditions holds:

– Rs = ∅,
– Rs = Ws × Ws,
– Rs = ({s} × S) ∪ (T × T ) for some nonempty subsets S and T of Ws\{s} such

that S ⊆ T .

When F is finite, for all states s in F , Fs can be exactly characterized by a triple
σ = (σ1, σ2, σ3) in {0, 1} × N

2: σ1 will be the number of irreflexive states in Fs; σ2

will be the number of states accessible from s in 1 step; σ3 will be the number of states
accessible from s either in 1 step, or in 2 steps. When Rs = ∅, this triple will be such
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that σ1 = 1, σ2 = 0 and σ3 = 0. When Rs = Ws × Ws, this triple will be such that
σ1 = 0, σ2 ≥ 1 and σ3 = σ2. When Rs = ({s} × S) ∪ (T × T ) for some nonempty
subsets S and T of Ws\{s} such that S ⊆ T , this triple will be such that σ1 = 1,
σ2 ≥ 1 and σ3 ≥ σ2. A type is a triple σ = (σ1, σ2, σ3) in {0, 1} ×N

2 such that one of
the following conditions holds:

– σ1 = 1, σ2 = 0 and σ3 = 0,
– σ1 = 0, σ2 ≥ 1 and σ3 = σ2,
– σ1 = 1, σ2 ≥ 1 and σ3 ≥ σ2.

Obviously, for all types σ = (σ1, σ2, σ3), one can construct a finite rooted frame Fσ =
(Wσ, Rσ) in CE which is characterized by σ. Moreover, for all types σ = (σ1, σ2, σ3),
one can write a first-order formula Aσ(x) such that for all assignments g on Fσ , if g(x)
is equal to the root of Fσ then Fσ, g |= Aσ(x). For all types σ = (σ1, σ2, σ3), x is
the only individual variable freely occurring in the first-order formula Aσ(x) associated
to it. Given a type σ = (σ1, σ2, σ3), how is constructed the finite rooted frame Fσ =
(Wσ, Rσ) and how is written the first-order formula Aσ(x)?We will answer later in this
section to a similar question within the context of the first-order definability problem
with respect to Cω

rtc. Now, for all modal formulas ϕ, let Δ(ϕ) = {σ : σ = (σ1, σ2, σ3)
is a type such that Fσ |= ϕ and σ3 ≤ ‖sf(ϕ)‖}. Obviously, for all modal formulas
ϕ, Δ(ϕ) is finite. The finite rooted frame Fσ = (Wσ, Rσ) and the first-order formula
Aσ(x) associated to a given type σ = (σ1, σ2, σ3) possess interesting properties. For
example2,

Lemma 10. For all types σ = (σ1, σ2, σ3) and for all assignments g on Fσ, if g(x) is
the root of Fσ then Fσ, g |= Aσ(x).

Lemma 11. Let F be a frame in CE and g be an assignment on F . For all types σ =
(σ1, σ2, σ3), if F , g |= Aσ(x) then there exists a surjective bounded morphism f :
Fg(x) � Fσ such that f(g(x)) is the root of Fσ .

Lemma 12. Let ϕ be a modal formula. For all frames F in CE , if F |= ϕ then there
exists a type σ = (σ1, σ2, σ3) such that Fσ |= ϕ, σ3 ≤ ‖sf(ϕ)‖ and F |= ∃x Aσ(x).

In Lemmas 10, 11 and 12, Fσ denotes the finite rooted frame in CE associated to σ and
Fg(x) denotes the subframe of F generated from g(x). For all modal formulas ϕ, let
Aϕ be the first-order formula ¬∃x

∨{Aσ(x) : σ ∈ Δ(ϕ)}. Notice that for all modal
formulas ϕ, Aϕ is a sentence. Given a modal formula ϕ, the reason for our interest in
the sentence Aϕ is the following result:

Lemma 13. Let ϕ be a modal formula. For all framesF in CE , the following conditions
are equivalent:

– F |= ϕ,
– F |= Aϕ.

2 Lemmas 10, 11 and 12 assert the properties that are needed for proving Proposition 9. Their
proofs have been given with full details in [1]. Similar properties needed for proving Theorem 2
below are asserted in Lemmas 14, 15 and 16. Their proofs are given with full details below.
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This ends the proof of Proposition 9.
The reader may ask whether there exists classes of frames with respect to which

every modal formula is first-order definable and for all n ∈ N, there exists modal for-
mulas equivalent to no modal formula of degree less than or equal to n. It is a well-
known fact that with respect to Cω

rtc, for all n ∈ N, some modal formula is equivalent
to no modal formula of degree less than or equal to n. Nevertheless,

Theorem 2. The problem of deciding first-order definability with respect to Cω
rtc is tri-

vial: every modal formula is first-order definable with respect to Cω
rtc.

Proof. We will follow a line of reasoning similar to the line of reasoning sketched
in the proof of Proposition 9. For all frames F in Cω

rtc and for all states s in F , Fs

contains finitely many clusters. When F is finite, for all states s in F , Fs can be exactly
characterized by a finite nonempty sequence σ = (σ1, . . . , σa) of positive integers. In
this proof, a type is a finite nonempty sequence σ = (σ1, . . . , σa) of positive integers.
For all types σ = (σ1, . . . , σa), let ‖σ‖ = σ1+. . .+σa. For all types σ = (σ1, . . . , σa),
let Fσ = (Wσ, Rσ) be the Cω

rtc-frame such that Wσ = {(i, k) : 1 ≤ i ≤ a and
1 ≤ k ≤ σi} and Rσ is the binary relation on Wσ such that for all (i, k), (j, l) in
Wσ , (i, k)Rσ(j, l) iff i ≤ j. For all types σ = (σ1, . . . , σa), let Aσ(x) be the first-
order formula ∃x1,1 . . . ∃x1,σ1 . . . ∃xa,1 . . . ∃xa,σa

Bσ where Bσ is the conjunction of
the following formulas:

– x = x1,1 ∨ . . . ∨ x = x1,σ1 ,
– xi,k = xj,l for all (i, k), (j, l) in Wσ such that either i = j, or k = l,
– R(xi,k, xj,l) for all (i, k), (j, l) in Wσ such that i ≤ j,
– ¬R(xj,l, xi,k) for all (i, k), (j, l) in Wσ such that i < j,
– ∀y(R(x, y) → ∨{R(y, xi,k) : (i, k) is in Wσ}).
Notice that for all types σ = (σ1, . . . , σa), x is the only individual variable freely
occurring in Aσ(x). Now, for all modal formulas ϕ, let Δ(ϕ) = {σ : σ = (σ1, . . . , σa)
is a type such that Fσ |= ϕ and ‖σ‖ ≤ 3.‖sf(ϕ)‖}. Obviously, for all modal formulas
ϕ, Δ(ϕ) is finite. The finite rooted frame Fσ = (Wσ, Rσ) and the first-order formula
Aσ(x) associated to a given type σ = (σ1, . . . , σa) possess interesting properties. The
following result will play in this proof the role played by Lemma 10 in the proof of
Proposition 9.

Lemma 14. For all types σ = (σ1, . . . , σa) and for all assignments g on Fσ , if g(x) is
in {(1, 1), . . . , (1, σ1)} then Fσ, g |= Aσ(x).

Proof. Let σ = (σ1, . . . , σa) be a type and g be an assignment on Fσ . Suppose g(x) is
in {(1, 1), . . . , (1, σ1)}. Let g′ be the assignment on Fσ such that

– g′(x) = g(x),
– g′(xi,k) = (i, k) for all (i, k) in Wσ ,
– for all individual variables z = x, if z = xi,k for all (i, k) in Wk then g′(z) = g(z).
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Since g(x) is in {(1, 1), . . . , (1, σ1)},
– either g′(x) = g′(x1,1), . . ., or g′(x) = g′(x1,σ1),
– g′(xi,k) = g′(xj,l) for all (i, k), (j, l) in Wσ such that either i = j, or k = l,
– Rσ(g′(xi,k), g′(xj,l)) for all (i, k), (j, l) in Wσ such that i ≤ j,
– not Rσ(g′(xj,l), g′(xi,k)) for all (i, k), (j, l) in Wσ such that i < j,
– for all (j, l) in Wσ , if Rσ(g′(x), (j, l)) then there exists (i, k) in Wσ such that

Rσ((j, l), g′(xi,k)).

Hence, Fσ, g′ |= Bσ . Since g′ is an assignment on Fσ such that g′(x) = g(x) and
for all individual variables z = x, if z = xi,k for all (i, k) in Wk then g′(z) = g(z),
Fσ, g |= Aσ(x).

The following result will play in this proof the role played by Lemma 11 in the proof
of Proposition 9.

Lemma 15. Let F = (W,R) be a frame in Cω
rtc and g be an assignment on F . For

all types σ = (σ1, . . . , σa), if F , g |= Aσ(x) then there exists a surjective bounded
morphism f : Fg(x) � Fσ such that f(g(x)) is in {(1, 1), . . . , (1, σ1)}.
Proof. Let σ = (σ1, . . . , σa) be a type. Suppose F , g |= Aσ(x). Let g′ be an assign-
ment on F such that

– g′(x) = g(x),
– for all individual variables z = x, if z = xi,k for all (i, k) in Wk then g′(z) = g(z),
– F , g′ |= Bσ.

Hence,

– either g′(x) = g′(x1,1), . . ., or g′(x) = g′(x1,σ1),
– g′(xi,k) = g′(xj,l) for all (i, k), (j, l) in Wσ such that either i = j, or k = l,
– R(g′(xi,k), g′(xj,l)) for all (i, k), (j, l) in Wσ such that i ≤ j,
– not R(g′(xj,l), g′(xi,k)) for all (i, k), (j, l) in Wσ such that i < j,
– for all states t in F , if R(g′(x), t) then there exists (i, k) in Wσ such that

R(t, g′(xi,k)).

Let C1 be the cluster of g′(x1,1), . . . , g′(x1,σ1) in Fg′(x), . . ., Ca be the cluster of
g′(xa,1), . . . , g′(xa,σa

) in Fg′(x). By the above 5 itemized conditions,

– g′(x) is in C1,
– ‖Ci‖ ≥ σi for all i in {1, . . . , a},
– Ci � Cj for all i, j in {1, . . . , a} such that i ≤ j,
– not Cj � Ci for all i, j in {1, . . . , a} such that i < j,
– for all states t in Wg′(x), there exists a least element i in {1, . . . , a} such that

tRg′(x)g
′(xi,1), . . ., tRg′(x)g

′(xi,σi
),

where � is the reflexive, antisymmetric, transitive and connected relation between F’s
clusters such that for all F’s clusters C,D, C � D iff there exists states t, u in F such
that t ∈ C, u ∈ D and tRu. Let f : Wg′(x) −→ Wσ be such that
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– either f(g′(x)) = (1, 1), . . ., or f(g′(x)) = (1, σ1),
– for all i in {1, . . . , a}, f|Ci

is a surjective function from Ci to {(i, k) : 1 ≤ k ≤ σi},
– for all states t in Wg′(x)\(C1 ∪ . . . ∪ Ca), f(t) is in {(i, k) : 1 ≤ k ≤ σi} where i
is the least element in {1, . . . , a} such that tRg′(x)g

′(xi,1), . . ., tRg′(x)g
′(xi,σi

).

Obviously, f : Fg(x) � Fσ is a surjective bounded morphism. Moreover, since
g′(x) = g(x), f(g(x)) is in {(1, 1), . . . , (1, σ1)}.
The following result will play in this proof the role played by Lemma 12 in the proof
of Proposition 9.

Lemma 16. Let ϕ be a modal formula. For all frames F in Cω
rtc, if F |= ϕ then there

exists a type σ = (σ1, . . . , σa) such that Fσ |= ϕ, ‖σ‖ ≤ 3.‖sf(ϕ)‖ and F |=
∃xAσ(x).

Proof. Let F = (W,R) be a frame in Cω
rtc. Suppose F |= ϕ. Hence, there exists

a valuation V on F and there exists a state s in F such that F , V, s |= ϕ. Since F
is a Cω

rtc-frame, Fs contains finitely many clusters. Moreover, s belongs to the first
cluster of Fs. For all states t in Fs, let B(t) = {�ψ ∈ sf�(ϕ) : Fs, Vs, t |= �ψ}
where Vs is the restriction of V to Ws. Notice that for all states t, u in Fs, if tRsu then
B(t) ⊆ B(u). Let n ≥ 1 and t1, . . . , tn be states in Fs such that

– for all states t in Fs, there exists i in {1, . . . , n} such that B(t) = B(ti),
– for all i, j in {1, . . . , n}, if i < j then B(ti) is strictly contained in B(tj).

Notice that n ≤ ‖sf�(ϕ)‖+1. Thus, n ≤ ‖sf(ϕ)‖. Moreover, for all i, j in {1, . . . , n},
if i < j then tiRstj and not tjRsti. For all i in {1, . . . , n}, let CB(ti) = {C(u) : u
is a state in Fs such that B(u) = B(ti)}. Obviously, for all i in {1, . . . , n}, C(ti) ∈
CB(ti). For all i in {1, . . . , n}, let ui be a state in the last cluster of CB(ti). For all
i in {1, . . . , n}, let αi ≥ 0 and �ψi,1, . . . ,�ψi,αi

be a list of sf�(ϕ)\B(ti) when
i = n and a list of B(ti+1)\B(ti) otherwise. Obviously, α1 + . . . + αn ≤ ‖sf�(ϕ)‖.
Consequently, α1 + . . . + αn + 1 ≤ ‖sf(ϕ)‖. For all i in {1, . . . , n} and for all j in
{1, . . . , αi}, let vi,j in C(ui) be such that Fs, Vs, vi,j |= ψi,j . For all i in {1, . . . , n},
let τi be the cardinality of {s, ui} ∪ {vi,1, . . . , vi,αi

} when s is in C(ui) and the
cardinality of {ui} ∪ {vi,1, . . . , vi,αi

} otherwise. Obviously, for all i in {1, . . . , n},
τi ≤ αi + 2. Let σ be (τ1, . . . , τn) when s is in C(u1) and (1, τ1, . . . , τn) otherwise.
Obviously, ‖σ‖ ≤ τ1 + . . . + τn + 1. Since for all i in {1, . . . , n}, τi ≤ αi + 2,
‖σ‖ ≤ α1+ . . .+αn+2.n+1. Since n ≤ ‖sf(ϕ)‖ and α1+ . . .+αn+1 ≤ ‖sf(ϕ)‖,
‖σ‖ ≤ 3.‖sf(ϕ)‖. Moreover, by construction of σ, F obviously satisfies the sentence
∃xAσ(x). In the end, let us notice that Fσ is isomorphic to F ′ = (W ′, R′) where
W ′ = {s, u1, . . . , un}∪{v1,1, . . . , v1,α1 , . . . , vn,1, . . . , vn,αn

} and R′ is the restriction
of R to W ′. More important is that, as the reader can prove it by induction on ψ, for
all ψ ∈ sf(ϕ) and for all w′ ∈ W ′, F ′, V ′, w′ |= ψ iff F , V, w |= ψ where V ′ is the
restriction of V to W ′. Since F , V, s |= ϕ, F ′, V ′, s |= ϕ. Hence, F ′ |= ϕ. Since Fσ

is isomorphic to F ′, Fσ |= ϕ.

For all modal formulas ϕ, let Aϕ be the first-order formula ¬∃x
∨{Aσ(x) : σ ∈

Δ(ϕ)}. Notice that for all modal formulas ϕ, Aϕ is a sentence. Given a modal formula
ϕ, the reason for our interest in the sentence Aϕ is the following result:
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Lemma 17. Let ϕ be a modal formula. For all frames F in Cω
rtc, the following condi-

tions are equivalent:

– F |= ϕ,
– F |= Aϕ.

Proof. Let F = (W,R) be a frame in Cω
rtc.

(⇒) Suppose F |= ϕ and F |= Aϕ. Hence, there exists an assignment g on F
such that F , g |= ∃x

∨{Aσ(x) : σ ∈ Δ(ϕ)}. Thus, there exists a state s in F such
that F , gx

s |= ∨{Aσ(x) : σ ∈ Δ(ϕ)}. Consequently, there exists σ ∈ Δ(ϕ) such
that F , gx

s |= Aσ(x). Hence, Fσ |= ϕ. Moreover, by Lemma 15, Fs � Fσ . Since
F |= ϕ, by Proposition 1, Fs |= ϕ. Since Fs � Fσ , by Proposition 4, Fσ |= ϕ: a
contradiction.
(⇐) Suppose F |= Aϕ and F |= ϕ. Thus, by Lemma 16, there exists a type τ such
that Fτ |= ϕ, ‖τ‖ ≤ ‖3.sf(ϕ)‖ and F |= ∃x Aτ (x). Consequently, τ is in Δ(ϕ).
Let g be an assignment on F . Since F |= ∃x Aτ (x), F , g |= ∃x Aτ (x). Hence, there
exists s ∈ W such that F , gx

s |= Aτ (x). Since τ is in Δ(ϕ), F , gx
s |= ∨{Aσ(x) :

σ ∈ Δ(ϕ)}. Thus, F , g |= ∃x
∨{Aσ(x) : σ ∈ Δ(ϕ)}. Consequently, F , g |= Aϕ.

Hence, F |= Aϕ: a contradiction.

This ends the proof of Theorem 2.

5 Chagrova’s Theorem About Modal Definability

In this section, we give a new proof of Chagrova’s Theorem about modal definability
and we give sketches of proofs of new variants of Chagrova’s Theorem about modal
definability.

5.1 A New Proof of Chagrova’s Theorem About Modal Definability

Firstly, we give a new proof of Chagrova’s Theorem about modal definability. Our stra-
tegy will be as follows:

– remind the reduction of Kalmár [20] of the problem of deciding the validity in Call

of sentences from an arbitrary first-order language to the problem of deciding the
validity in Call of sentences from the first-order language LFOF,

– prove that the problem of deciding the validity in Call of sentences from the first-
order language LFOF is reducible to the problem of deciding the modal definability
with respect to Call.

Proposition 10. The problem of deciding the validity in Call of sentences from an arbi-
trary first-order language is reducible to the problem of deciding the validity in Call of
sentences from the first-order language LFOF.

Proof. See [20].
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Proposition 11. The problem of deciding the validity in Call of sentences from the first-
order language LFOF is reducible to the problem of deciding modal definability with
respect to Call.

Proof. Let C be a sentence from the first-order language LFOF. Let D be the sentence
∃y (∃x y = x ∧ ¬(C)y �=x

x ). We demonstrate Call |= C iff D is modally definable with
respect to Call.
(⇒) Suppose Call |= C. For the sake of the contradiction, suppose D is not modally
definable with respect to Call. We have to consider 2 cases.

1st case: Call |= ¬D. Hence, D corresponds to the modal formula ⊥ with respect to
Call. Thus, D is modally definable with respect to Call: a contradiction.

2nd case: Call |= ¬D. Consequently, there exists a frame F such that F |= ¬D.
Hence, F |= D. Let g be an assignment on F . Since F |= D, F , g |= D. Thus, there
exists a state s in F such that F , gy

s |= ∃x y = x and F , gy
s |= (C)y �=x

x . Consequently,
F possesses a relativized reduct F ′ with respect to y = x, x and gy

s . Hence, by Propo-
sition 5, F , gy

s |= (C)y �=x
x iff F ′, g |= C. Since F , gy

s |= (C)y �=x
x , F ′, g |= C. Thus,

F ′ |= C. Consequently, Call |= C: a contradiction.
(⇐) Suppose D is modally definable with respect to Call. Hence, there exists a modal
formula ϕ such that for all frames G, G |= D iff G |= ϕ. For the sake of the contradic-
tion, suppose Call |= C. Thus, there exists a frame F0 such that F0 |= C. Let g be an
assignment on F0. Since F0 |= C, F0, g |= C. Let F = (W,R) be the frame defined
by W = {s} and R = ∅ where s is a new state. Let F ′ be the disjoint union of F0

and F . Obviously, F0 is the relativized reduct of F ′ with respect to y = x, x and gy
s .

Consequently, by Proposition 5, F ′, gy
s |= (C)y �=x

x iff F0, g |= C. Since F0, g |= C,
F ′, gy

s |= (C)y �=x
x . Since F consists of a single state, F |= D. Since F ′ is the disjoint

union of F0 and F , F ′, gy
s |= ∃x y = x. Since F ′, gy

s |= (C)y �=x
x , F ′, g |= D. Hence,

F ′ |= D. Since for all frames G, G |= D iff G |= ϕ, F ′ |= ϕ. Since F ′ is the disjoint
union of F0 and F , by Proposition 3, F |= ϕ. Since ϕ is a modal definition of D with
respect to Call, F |= D: a contradiction.

This tight relationship between the problem of deciding the validity in Call of sentences
from the first-order language LFOF and the problem of deciding modal definability
with respect to Call constitutes the key result of our method. Notice that there are 2
modal-related constraints in the proof of Proposition 11. The 1st constraint is that the
modal language contains a formula like ⊥ which is valid in no frame. We have used
this constraint at the beginning of the (⇒) part of the proof. The 2nd constraint is that
the modal language does not contain modalities like the universal modality and the
difference modality which prevent from using the Disjoint unions Theorem. We have
used this constraint at the end of the (⇐) part of the proof. Now, we infer the following
result:

Corollary 1 (Chagrova’s Theorem about modal definability). The problem of
deciding modal definability with respect to Call is undecidable.

Proof. By Propositions 10 and 11.
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5.2 Proofs of New Variants of Chagrova’s Theorem About Modal Definability

Secondly, we give sketches of proofs of new variants of Chagrova’s Theorem about
modal definability. In the proof of Proposition 11, the unique occurrences of the sub-
formulas ∃x y = x and ¬(C)y �=x

x in the sentence D associated to the given sentence C
play specific roles. More precisely, in the (⇒) direction of the proof of Proposition 11,
∃x y = x is used to show the existence of some relativized reduct F ′ of F whereas
¬(C)y �=x

x is used to infer that C does not hold in F ′ by means of the Relativization
Theorem between F and F ′. The truth is that in this direction of the proof of Pro-
position 11, the Relativization Theorem is used to infer some information about F ′,
namely F ′, g |= C, from some other information about F , namely F , gy

s |= (C)y �=x
x .

As for the (⇐) direction of the proof of Proposition 11, the Relativization Theorem is
used to infer some information about F ′, namely F ′, gy

s |= (C)y �=x
x , from some other

information about F0, namely F0, g |= C. This use of the Relativization Theorem is
possible and leads to a contradiction with the assumption that D is modally definable
with respect to Call because F ′ has been constructed from F0 in such a way that

– F0 is the relativized reduct of F ′ with respect to appropriate syntactic and semantics
elements,

– F ′ is the disjoint union of F0 and some other frame.

In [3], the above line of reasoning has been generalized to restricted classes of frames
such as the class of all reflexive frames, the class of all symmetric frames, etc. The
common property of these classes of frames is their stability where a class C of frames
is stable if there exists a first-order formula A, there exists an individual variable x and
there exists a sentence B such that

(a) for all frames F in C, for all assignments g on F and for all frames F ′, if F ′ is the
relativized reduct of F with respect to A, x and g then F ′ is in C,

(b) for all frames F0 in C, there exists frames F , F ′ in C and there exists an assignment
g on F such that F0 is the relativized reduct of F with respect to A, x and g,
F |= B, F ′ |= B and F � F ′.

In this case, (A, x,B) is a witness of the stability of C. The following result proved
in [3] states that if C is stable then the problem of deciding the modal definability of
sentences with respect to C is at least as difficult as the problem of deciding the validity
of sentences in C.
Proposition 12. If C is stable then the problem of deciding the validity of sentences
from the first-order language LFOF in C is reducible to the problem of deciding the
modal definability of sentences with respect to C.
As a result, if one wants to show that the problem of deciding the modal definability of
sentences with respect to a class C of frames is undecidable, a possible strategy is the
following:

– prove that the problem of deciding the validity of sentences from the first-order
language LFOF in C is undecidable,
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– find a first-order formula A, an individual variable x and a sentence B such that
(A, x,B) is a witness of the stability of C.

Obviously, if C is the class of all frames satisfying a universal elementary condition then
C satisfies the condition (a) defining stability with respect to any first-order formula A,
any individual variable x and any sentence B. It is quite easy to see why. Suppose C is
the class of all frames satisfying a universal elementary condition. Let F be a frame in
C, g be an assignment on F and F ′ be a frame. Suppose F ′ is the relativized reduct of
F with respect to A, x and g. This means that F ′ is the restriction of F to the set of
all states s in F such that F , gx

s |= A. Since C is the class of all frames satisfying a
universal elementary condition and F is in C, F ′ is in C. In other respect, if C is closed
under taking disjoint unions, generated subframes and bounded morphic images then
C satisfies the condition (b) defining stability with respect to the first-order formula
A := x1 = x, the individual variable x and the sentence B := ∃y∃zy = z. It is quite
easy to see why. Suppose C is closed under taking disjoint unions, generated subframes
and bounded morphic images. Let F0 be a frame in C. We have to consider 2 cases.

1st case: F0 is serial. Let F ′ = (W ′, R′) be the frame defined by W ′ = {s′} and
R′ = {(s′, s′)} where s′ is a new state. Since F0 is serial, obviously, F ′ is a bounded
morphic image of F0. Since C is closed under taking bounded morphic images and F0

is in C, F ′ is in C. Let F be the disjoint union of F0 and F ′. Since C is closed under
taking disjoint unions, F0 is in C and F ′ is in C, F is in C. Since F ′ consists of a single
state, F ′ |= B. Since F is the disjoint union of F0 and F ′, F |= B. Let g be an
assignment on F such that g(x1) = s′. Obviously, F0 is the relativized reduct of F
with respect to A, x and g. Finally, since F is the disjoint union of F0 and F ′, F � F ′.

2nd case: F0 is not serial. Let F ′ = (W ′, R′) be the frame defined by W ′ = {s′} and
R′ = ∅ where s′ is a new state. Since F0 is not serial, obviously, F ′ is isomorphic to a
generated subframe of F0. Since C is closed under taking generated subframes and F0

is in C, F ′ is in C. Let F be the disjoint union of F0 and F ′. Since C is closed under
taking disjoint unions, F0 is in C and F ′ is in C, F is in C. Since F ′ consists of a single
state, F ′ |= B. Since F is the disjoint union of F0 and F ′, F |= B. Let g be an
assignment on F such that g(x1) = s′. Obviously, F0 is the relativized reduct of F
with respect to A, x and g. Finally, since F is the disjoint union of F0 and F ′, F � F ′.

The above remarks immediately show that Call is stable. The truth is that

Proposition 13. The following classes of frames are stable as well: CE , the class of all
reflexive frames, the class of all transitive frames, the class of all reflexive transitive
frames, the class of all strict partial orders, the class of all partial orders, the class of
all lattices, the class of all symmetric frames and the class of all reflexive symmetric
frames.

Proof. See [1,3] for details.

Gathering results from [13,23–25,29], one can prove that

Proposition 14. The validity of sentences from the first-order language LFOF is unde-
cidable in each of the following classes of frames: CE , the class of all reflexive frames,
the class of all transitive frames, the class of all reflexive transitive frames, the class of
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all strict partial orders, the class of all partial orders, the class of all lattices, the class
of all symmetric frames and the class of all reflexive symmetric frames.

Proof. See [1,3] for details.

As a corollary, one obtain the following variants of Chagrova’s Theorem about modal
definability.

Corollary 2 (Variants of Chagrova’s Theorem about modal definability). The pro-
blem of deciding modal definability with respect to the following classes of frames is
undecidable: CE , the class of all reflexive frames, the class of all transitive frames, the
class of all reflexive transitive frames, the class of all strict partial orders, the class
of all partial orders, the class of all lattices, the class of all symmetric frames and the
class of all reflexive symmetric frames.

Proof. By Propositions 13 and 14.

6 Conclusion

The core of this paper has been Chagrova’s Theorems about first-order definability of
given modal formulas and modal definability of given elementary conditions. We have
analyzed Chagrova’s Theorems and we have tried to understand why their proofs cannot
be easily repeated for proving the undecidability of first-order definability and modal
definability with respect to restricted classes of frames. We have considered classes
of frames for which modal definability is decidable, for instance Cpar, CtE and CstE .
We have considered classes of frames for which first-order definability is trivial, for
instance Cpar, CtE and CstE , but also Cω

rtc. Using standard methods in model theory
such as relativization of first-order formulas and reduct of frames, we have given a new
proof of Chagrova’s Theorem about modal definability and we have given sketches of
proofs of new variants of Chagrova’s Theorem about modal definability. Much remains
to be done.

An obvious question is whether there exists other classes of frames for which modal
definability is decidable. Is modal definability with respect to Crtc decidable? What
about first-order definability with respect to Crtc? Another question is whether there
exists other classes of frames for which first-order definability is trivial. It is also of
interest to consider restrictions or extensions of the ordinary language of modal logic.
For example, one can consider the implication restriction of LMF based on the connec-
tives → and � or the tense extension of LMF based on the Boolean connectives and
the modal connectives � and �−1. For such restrictions or extensions of LMF, what
is the computability of first-order definability and modal definability? And in the end,
there is the question whether there exists classes of frames for which modal definability
is decidable and first-order definability is undecidable.
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Abstract. We introduce a multi-agent topological semantics for
evidence-based belief and knowledge, which extends the dense interior
semantics developed in [2]. We provide the complete logic of this multi-
agent framework together with generic models for a fragment of the lan-
guage. We also define a new notion of group knowledge which differs
conceptually from previous approaches.

1 Introduction

A semantic study of epistemic logics, the family of modal logics concerned with
what an epistemic agent believes or knows, has been mostly conducted in the
framework of relational structures (Kripke frames) [13]. These are sets of possible
worlds connected by (epistemic or doxastic) accessibility relations. Knowledge
(K) and belief (B) are thus modal operators which are interpreted via standard
possible worlds semantics.

It is claimed in [13] that the accessibility relation for knowledge must be (min-
imally) reflexive and transitive. On the syntactic level, this demand translates
into the fact that any logic for knowledge based on these frames must contain
the axioms of S4. This, paired with the fact, famously proven by McKinsey and
Tarski [14], that S4 is the logic of topological spaces under the interior semantics
(see [4]), lays the ground for a topological treatment of knowledge. Moreover,
McKinsey and Tarski [14] proved that certain generic spaces, such as the real
line, spaces which intuitively lend themselves to be models for certain situations
of knowledge, have S4 as their logic.

The semantics outlined in [14] treats the “knowledge” modality as the interior
operator, which, if one thinks of the open sets as “pieces of evidence”, adds an
evidential dimension to the notion of knowledge that one could not get within
Kripke frames (see [16] for lengthy discussion on this topic).

Under this interpretation, knowing a proposition amounts to having evidence
for it. This can be an undesirable property, for it constitutes, arguably, an overly
simplistic account of what knowledge is. As Gettier [11] argues, there is more
to knowledge than ‘true and justified belief’. Depending on the properties one
ascribes to knowledge, belief and the relation thereof, one can get different epis-
temic logics, each with their axioms and rules. For certain applications, one
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would want, for instance, to operate within a framework in which misleading
true evidence can lead to false beliefs (see [16,18] for more in-depth discussion).

Inspired by [18] and [6] a new topological semantics was introduced in [2] and
explored in depth in [16]. This semantics allows one to talk about knowledge and
belief, evidence (both “basic” and “combined”) and a notion of justification via
the dense-interior operator. Also an epistemic logic complete with respect to the
proposed semantics has been given in [2] and [16]. The models for this logic based
on the dense-interior semantics in topological spaces are called topo-e-models.

In [1] an analogue of the McKinsey-Tarski theorem was proved for the dense-
interior semantics: the logic of topological evidence models is sound and complete
with respect to any individual topological space (X, τ) which is dense-in-itself,
metrizable, and homeomorphic to the disjoint union (X, τ) ∪ (X, τ).

The framework defined in [2] is single-agent. In this paper, we introduce
a multi-agent topological evidence semantics which generalises the single-agent
case and differs substantially from prior approaches. In this sense, we provide
several logics of multi-agent models and give some conceptual and theoretical
contributions for a notion of group knowledge in this framework.

Outline. In Sect. 2 we present the (one-agent) notion of topological evidence
models introduced in [2] together with some relevant results. In Sect. 3 we intro-
duce and justify our multi-agent setting, we show how it generalises the single-
agent case and we provide the logic for several fragments of the language. In
Sect. 4, we obtain “generic models”, i.e., unique topological spaces whose logic
under the semantics previously introduced is exactly the logic of all topological
spaces. Section 5 discusses a notion of group knowledge in this setting, and gives
a sound a complete logic of distributed knowledge. We conclude in Sect. 6.1

2 Single-Agent Topological Evidence Models

The relation between belief and knowledge has historically been one of the main
focuses of epistemology. One would want to have a formal system that accounts
for knowledge and belief together, which requires careful consideration regarding
the way in which they interact. Canonically, knowledge has been thought of
as “true, justified belief”. However, Gettier’s counterexamples of cases of true,
justified belief which do not amount to knowledge shattered this paradigm [11].

Stalnaker [18] argues that a relational semantics is insufficient to capture
Gettier’s considerations in [11] and, trying to stay close to most of the intuitions
of Hintikka in [13], provides an axiomatisation for a system of knowledge and
belief in which knowledge is an S4.2 modality, belief is a KD45 modality and the
following formulas can be proven: Bφ ↔ ¬K¬Kφ and Bφ ↔ BKφ. “Believing
p” is the same as “not knowing you don’t know p” and belief becomes “subjective
certainty”, in the sense that the agent cannot distinguish whether she believes
or knows p, and believing amounts to believing that one knows.

1 This paper is based on Saúl Fernández González’s Master’s thesis [10].
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A topological semantics in which knowledge is simply the interior modality
(i.e., evaluating formulas on a topological space and setting ‖Kφ‖ = Int ‖φ‖)
proves insufficient to capture these nuances. In [2] a new semantics is intro-
duced, building on the idea of evidence models of [6] which exploits the notion of
evidence-based knowledge allowing to account for notions as diverse as basic evi-
dence versus combined evidence, factual, misleading and nonmisleading evidence,
etc. It is a semantics whose logic maintains a Stalnakerian spirit with regards to
the relation between knowledge and belief, which behaves well dynamically and
which does not confine us to work with “strange” classes of spaces.

This is the dense-interior semantics, defined on topological evidence models.

2.1 The Logic of Topological Evidence Models

We briefly present here the framework introduced in [2], see also [16]. Our lan-
guage is now L∀KB��0 , which includes the modalities K (knowledge), B (belief),
[∀] (infallible knowledge), �0 (basic evidence), � (combined evidence).

Definition 2.1 (The dense interior semantics). We interpret sentences on
topological evidence models (i.e. tuples (X, τ,E0, V ) where (X, τ, V ) is a topo-
logical model and E0 is a subbasis of τ) as follows: x ∈ �Kφ� iff x ∈ Int�φ� and
Int�φ� is dense2; x ∈ �Bφ� iff Int�φ� is dense; x ∈ �[∀]φ� iff �φ� = X; x ∈ ��0φ�
iff there is e ∈ E0 with x ∈ e ⊆ �φ�; x ∈ ��φ� iff x ∈ Int�φ�. Validity is defined
in the standard way.

We see that “knowing” does not equate “having evidence”in this framework,
but it is rather something stronger: in order for the agent to know P , she needs
to have a piece of evidence for P which is dense, i.e., which has nonempty inter-
section with (and thus cannot be contradicted by) any other piece of evidence.

Fragments of the Logic. The following logics are obtained by considering certain
fragments of the language (i.e. certain subsets of the modalities above)3.

“K-only”, LK S4.2.
“Knowledge”, L∀K S5 axioms and rules for [∀], plus S4.2 for K, plus

[∀]φ → Kφ and ¬[∀]¬Kφ → [∀]¬K¬φ.
“Combined evidence”, L∀� S5 for [∀], S4 for �, plus [∀]φ → �φ.
“Evidence”, L∀��0 S5 for [∀], S4 for �, plus the axioms

�0φ → �0�0φ, [∀]φ → �0φ, �0φ → �φ,
(�0φ ∧ [∀]ψ) → �0(φ ∧ [∀]ψ).

2 A set U ⊆ X is dense whenever Cl U = X or equivalently whenever U ∩ V �= ∅ for
all nonempty open sets V .

3 We recall that S4 is the least normal modal logic containing the axioms (T) �φ → φ
and (4) �φ → ��φ; that S5 is S4 plus the axiom (5) ¬�φ → �¬�φ, and that S4.2
is S4 plus the axiom (.2) ♦�φ → �♦φ.
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We will refer to these logics respectively as S4.2K , Logic∀K , Logic∀� and
Logic∀��0

. K and B are definable in the evidence fragments4, thus we can think
of the logic of L∀��0 as the “full logic”.

3 Going Multi-agent

There have been different approaches to a multi-agent logic derived from the
framework introduced in [2]. In [17], a two-agent logic with distributed knowledge
was defined. However, the semantics of this approach seems to come with some
conceptual problems which were discussed in [10]. Another approach, present in
[16], generalises the one-agent case and is devoid of the aforementioned concep-
tual issues, yet it uses the semantics of subset space logic: sentences are evaluated
at a pair (x,U) where x is a world and U is some neighbourhood of x.

The system introduced in the present section and expanded upon in the sub-
sequent ones generalises the one-agent models while maintaining the underlying
ideas to the single-agent case, where sentences are evaluated at worlds. We will
limit ourselves to two agents for simplicity in the exposition. Extending these
results to any finite number of agents is straightforward.

The Problem of Density. A first idea when attempting to incorporate a second
epistemic agent would be to simply add a second topology to the single-agent
framework and read things in the same way. That is, we could interpret sentences
on bitopological spaces (X, τ1, τ2) where τ1 and τ2 are topologies defined on
X, and we say, for i = 1, 2, that x ∈ Kiφ if and only there is a set U ∈
τi which is dense in τi such that x ∈ U ⊆ ‖φ‖. However, this approach is
highly problematic because it requires the extra assumptions that the same set
of worlds is epistemically accessible for both agents, and thus conflates infallible
knowledge. This is discussed in more depth in [10]. Our proposal to eliminate
these complications involves making explicit which worlds are compatible with
an agent’s information at world x. This is done via the use of partitions.

3.1 Topological-Partitional Models

In order to specify which worlds an agent considers possible, we can define the
topologies which encode the evidence of the agents on a common space X, but we
restrict, for each agent and at each world x ∈ X, the set of worlds epistemically
accessible to the agent at x. We can still speak about density, but locally. A
straightforward way to this is through the use of partitions.

Definition 3.1. A topological-partitional model is a tuple

M = (X, τ1, τ2,Π1,Π2, V )

where V is a valuation, τi is a topology defined on X and Πi is a partition of X
with the property that Πi ⊆ τi.
4 Kφ ≡ �φ ∧ [∀]�♦φ and Bφ ≡ ¬K¬Kφ.
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The worlds which are compatible with agent i’s information at x ∈ X are now
precisely the worlds in the unique cell of the partition Πi which includes x. The
concept of justification comes now in the form of a local notion of density:

Definition 3.2. For x ∈ X, let Πi(x) be the unique π ∈ Πi with x ∈ π. For
U ⊆ X, let Πi[U ] = {π ∈ Πi : π ∩ U �= ∅} = {Πi(x) : x ∈ U}.

A set U ⊆ X is locally dense in π ∈ Πi whenever π ⊆ Clτi U or equivalently
when every nonempty open set contained in π has nonempty intersection with
U . We will say that a nonempty set U is locally dense in Πi (or simply locally
dense if there is no ambiguity) if Clτi U =

⋃
Πi[U ]. Equivalently, U is locally

dense if it is locally dense in π for every π ∈ Πi[U ].

With this we can define a semantics for two-agent knowledge:

Definition 3.3 (Two-agent locally-dense-interior semantics). Let

M = (X, τ1, τ2,Π1,Π2, V )

be a topological-partitional model and let x ∈ X. As usual, we have ‖p‖ = V (p),
‖φ ∧ ψ‖ = ‖φ‖ ∩ ‖ψ‖ and ‖¬φ‖ = X\‖φ‖. For i = 1, 2 set:

M, x � Kiφ iff x ∈ Intτi ‖φ‖
& Intτi ‖φ‖is locally dense inΠi(x).

Consider a topological-partitional model (X, τ1, τ2,Π1,Π2, V ) and set

τ∗
i := {U ∈ τi : U is Πi − locally dense} ∪ {∅}.

It is straightforward to check that the following holds:

Lemma 3.4. (X, τ∗
1 , τ∗

2 ) is an extremally disconnected bitopological space and
the locally-dense-interior semantics on (X, τ1, τ2,Π1,Π2, V ) coincides with the
interior semantics on (X, τ∗

1 , τ∗
2 , V ).

In particular, given a topological-partitional model (X, τ1,2,Π1,2, V ) in which
every τi-open set is Πi-locally dense, the locally-dense-interior semantics and the
interior semantics coincide.

One last remark before proceeding with the main results: at first glance demand-
ing each element π ∈ Πi to be open may seem as a very strong condition. For
example, a connected space such as R does not admit any such partition other
than the trivial one Πi = {R}. We could instead do the following:

i. Define topological-partitional models to have arbitrary partitions;
ii. Define U ⊆ X to be locally dense at π ∈ Πi whenever U ∩ π is dense in the

subspace topology τi|π;
iii. Set x ∈ ‖Kiφ‖ if and only if there exists U ∈ τi locally dense in Πi(x) with

x ∈ U ∩ Πi(x) ⊆ ‖φ‖.
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As it turns out, these models can be turned in a truth-preserving manner into
topological-partitional models of the kind defined above. Indeed, let τ̄i be the
topology generated by {U ∩ π : U ∈ τi, π ∈ Πi}. Then clearly Πi ⊆ τ̄i and it is
a straightforward check that (X, τi,Πi), x � φ under this semantics if and only
if (X, τ̄i,Πi), x � φ under the semantics in Definition 3.3.

For this reason, we will limit ourselves to the study of models with open
partitions. Let us now look at an example:

Example 3.5. We have four possible worlds, X = {x11, x01, x10, x00} and two
agents, Alice and Bob, represented by a and b. Let us consider two propositions,
p and q. Let V (p) = P = {x11, x10} and V (q) = {x11, x01}. The actual world is
x11, in which p and q hold.

At q-worlds Alice only considers q-worlds possible, and at ¬q-worlds, she
only considers ¬q-worlds possible. In addition to this, at p-worlds she has fallible
evidence that p. At ¬p-worlds she does not receive this evidence.

The only worlds consistent with Bob’s information are those in which q → p
holds. Moreover, in p-worlds he has fallible evidence for p and in ¬p-worlds he
has it for ¬p.

x11

x01

x10

x00

x11

x01

x10

x00

π1 π2 π4 π3

P P

X\P

Fig. 1. The topology and partition of Alice (left) and Bob (right). The dotted areas
are the proper open subsets of the cell of each partition which includes the actual
world. We can see that x11 is in a π1-locally dense open set contained in P but not in
a π3-locally dense one.

Let π1 = {x11, x01}, π2 = {x01, x00}, π3 = {x11, x10, x00}, π4 = {x01}.
Alice’s and Bob’s partitions are respectively Πa = {π1, π2} and Πb = {π3, π4}.
Their topologies τa and τb are generated respectively by {π1, π2, P} and
{π3, π4, P,X\P} (see Fig. 1).

At the actual world x11, Alice knows p yet Bob does not: indeed, {x11} is a
τa-open set, locally dense in π1 and contained in P , thus Kap holds. And any
τb-open set contained in P is not locally dense, because it has empty intersection
with the open set {x00}, thus ¬Kbp holds at x11.

Certain topological spaces come equipped with open partitions, in the form
of their connected components.
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Definition 3.6. Let (X, τ) be a topological space. A set U ⊆ X is said to be
connected if it does not contain a proper clopen subset.

A connected component of (X, τ) is a maximal connected subset of X.

The following result can be found in any topology textbook (see e.g. [15]):

Lemma 3.7. The connected components of (X, τ) coincide with the equivalence
classes of the relation: x ∼ y if and only if there is a connected subset of X
containing x and y.

The following lemma, whose proof is straightforward, shows that the connected
components of an Alexandroff space are always open:

Lemma 3.8. Let (W,≤) be a preordered set. Then:

i. The connected components on (W,Up(W )) are open and they coincide with
the equivalence classes under the reflexive, transitive and symmetric closure
of ≤, i.e. the following equivalence relation: x ∼ y if and only if there exist
x0, ..., xn ∈ X with x0 = x, xn = y and xk ≤ xk+1 or xk ≥ xk+1 for
0 ≤ k ≤ n − 1.

ii. If (W,≤) is an S4.2 frame (i.e. if ≤ is a weakly directed preorder) we have:
x ∼ y if and only if there exists some z ∈ W such that x ≤ z ≥ y.

iii. If (W,≤) is a forest (i.e. if ≤ is the reflexive and transitive closure of some
relation ≺ such that every element has at most one ≺-predecessor), then
x ∼ y if and only if there exists some z ∈ W such that x ≥ z ≤ y.

Proof. (i). Let us see that [x]∼ is clopen and connected. Clearly it is both upward
and downward closed. Moreover, if ∅ �= U ⊆ [x]∼ is a clopen set, take y ∈ U
and z ∈ [x]∼. Since there is a path of ≤ and ≥ from y to z and U is both an
upset and a downset, we have that z ∈ U , thus [x]∼ is connected.

(ii). Take a path (x0 = x, x1, ..., xn = y) such that xk ≤ xk+1 or xk+1 ≤ xk

for all 0 ≤ k ≤ n − 1, and note that xk−1 ≥ xk ≤ xk+1 implies that there exists
a certain x′

k such that xk−1 ≤ x′
k ≥ xk+1. Applying this successively we reach a

chain x = x′
0 ≤ ... ≤ x′

k ≥ ... ≥ x′
n = y.

(iii). Similar to (ii.), noting that xk−1 ≺ xk � xk+1 implies xk−1 = xk+1.

For x ∈ W , we shall denote ↑x := {z ∈ W : x ≤ z}. Note that item (ii) entails
that each upset in a directed preorder is ∼-locally dense. Indeed, take x and y in
the same equivalence class. Item (ii) gives us that ↑x ∩ ↑y �= ∅, thus every pair
of nonempty upsets contained in the same connected component has nonempty
intersection.

This fact plus the last item in Lemma 3.4 have an immediate consequence:

Corollary 3.9. Let (X,≤1,≤2,∼1,∼2, V ) be a model in which each ≤i is a
weakly directed preorder and ∼i is the equivalence relation given by: x ∼i y if and
only if there exists z ∈ X such that x ≤i z ≥i y. Then the locally-dense-interior
semantics on this model coincide with the Kripke semantics on (X,≤1,≤2, V ).
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As an immediate consequence of this, plus the fact that S4.2K1 + S4.2K2 is
the logic of frames (W,≤1,≤2) where each ≤i is a weakly directed preorder, we
have:

Theorem 3.10. S4.2K1 + S4.2K2 is the logic of topological-partitional models
for two agents.

3.2 Other Fragments

Let us now consider other fragments of the logic. For this we add to our language
the infallible knowledge modalities [∀]i, the evidence modalities �i, and the belief
modalities Bi, for i = 1, 2, and their respective duals [∃]i, ♦i and B̂i. We interpret
these on topological-paritional models (X, τ1,2,Π1,2, V ) as follows:

x ∈ ‖[∀]iφ‖ iff Πi(x) ⊆ ‖φ‖;
x ∈ ‖�iφ‖ iff x ∈ Intτi ‖φ‖;
x ∈ ‖Biφ‖ iff Intτi ‖φ‖ is locally dense in Πi(x).

Analogously to the one-agent case, we can check that the following equalities
hold: ‖Kiφ‖ = ‖�iφ ∧ [∀]i♦i�iφ‖; ‖Biφ‖ = ‖K̂iKiφ‖.

Much like in the one-agent framework, we are interested in looking at
fragments of this logic. We will focus on the knowledge fragment LKi∀i

, the
knowledge-belief fragment LKiBi

, and the factive evidence fragment L�i∀i
.

The factive evidence fragment L�i∀i
. The logic for this fragment is Logic�i∀i

,
which is the least normal modal logic which includes

– the axioms and rules of S4 for �i;
– the axioms and rules of S5 for [∀i];
– the axiom [∀i]φ → �iφ for i = 1, 2.

Soundness for topological-partitional models is a rather simple check: the S4
rules for the topological interior hold, for IntP ⊆ P ∩ Int IntP and so do the
S5 rules for [∀]i, which are defined via equivalence relations. The fact that each
equivalence class is open takes care of the axiom [∀]iφ → �iφ.

For completeness, we can use the Sahlqvist completeness theorem (see [9])
and note that the axioms of Logic�i∀i

are Sahlqvist formulas and thus canonical
and the canonical Kripke model for this logic is of the shape (X,≤1,≤2,∼1,∼2),
where each ≤i is a preorder (due to the S4 axioms) and each ∼i constitutes an
equivalence relation (due to the S5 axioms). Moreover, the axiom [∀i]φ → �iφ
grants us that x ≤i y implies x ∼i y and thus that the ∼i-equivalence classes are
≤i-open sets. In other words, this canonical model is a topological-partitional
model.

Therefore if φ /∈ Logic�i∀i
, then φ will be refuted in the canonical model,

whence we have a topological-partitional model refuting it. And thus, we have
completeness. ��
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The Knowledge Fragment LKi∀i
. The logic of the fragment with all the knowl-

edge modalities, K1,K2, [∀]1 and [∀]2 is LogicKi∀i
, the least logic including the

axioms and rules of S4 for each Ki, S5 for each [∀]i plus the following axioms
for i = 1, 2:

(A) [∀]iφ → Kiφ;
(B) [∃]iKiφ → [∀]iK̂iφ.

Note that the .2 axiom for Ki is derivable from (A) and (B).
Soundness is a routine check, whereas for completeness we can again resort to

the Sahlqvist theorem. The canonical model is of the shape (X,≤1,≤2,∼1,∼2)
where each ≤i is a weakly directed preorder and each ∼i is an equivalence rela-
tion. Moreover the Sahlqvist first order correspondent of axiom (A) gives us that
x ≤i y implies x ∼i y and axiom (B) tells us that, if x ∼i y, then there exists some
z such that x ≤i z ≥i y. These two facts, together with item (ii) of Lemma 3.8,
imply that the ∼i-equivalence classes are exactly the ≤i-connected components.
And thus the Kripke semantics on this model coincide with the locally-dense-
interior semantics on the topological-partitional model (X, τ1, τ2,Π1,Π2) where
τi = Up ≤i(X) and Πi are the ≤i-connected components. Completeness follows.

��

The Knowledge-Belief Fragment LKiBi
. The logic of the knowledge-belief frag-

ment is Stal1 + Stal2 the least normal modal logic including the S4 axioms and
rules for Ki plus the following axioms, for i = 1, 2:

(PIi) Biφ → KiBiφ; (NIi) ¬Biφ → Ki¬Biφ;
(KBi) Kiφ → Biφ; (CBi) Biφ → ¬Bi¬φ;
(FBi) Biφ → BiKiφ.

We have that S4.2K1 +S4.2K2 ∪{Biφ ↔ K̂iKiφ : φ ∈ LKiBi
} ⊆ Stal1 +Stal2

and thus, if a formula φ in the language LKiBi
is not provable in Stal1+Stal2, we

can rewrite it as per into a formula in the language LKi
which is not provable in

S4.2K1 +S4.2K2 . By completeness of the latter, there is a topological-partitional
countermodel for φ, and completeness of Stal1 + Stal2 follows. ��

4 Generic Models for Two Agents

In their famous paper [14], McKinsey and Tarski prove that S4 is not only the
logic of topological spaces when one considers the interior semantics (i.e. when
one reads ‖Kφ‖ = Int ‖φ‖), but that there are single topological spaces, such as
the real line R or the rationals Q, whose logic is precisely S4. In [1], the authors of
this paper have been concerned with finding generic models such as these for the
logic of single-agent topo-e-models. In this section we provide two examples of
generic models for the multi-agent logic, i.e., two topological-partitional spaces
whose logic is precisely S4.2K1 + S4.2K2 .



246 A. Baltag et al.

The Quaternary Tree T2,2. The quaternary tree T2,2 is a full infinite tree with
two relations R1 and R2 such that each node of the tree has exactly four succes-
sors, two of them being R1-successors and the other two being R2-successors, as
it appears in Fig. 2.

By setting T to be the set of points of T2,2 and ≤i to be the reflexive and
transitive closure of Ri for i = 1, 2, we can see T2,2 = (T,≤1,≤2) as a birelational
preordered frame.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

Fig. 2. The quaternary tree T2,2. R1 and R2 are represented respectively by the con-
tinuous and the dashed lines.

It is proven in [5] that the logic of this frame under the usual Kripke semantics
is S4 + S4. This result is a corollary of the following proposition which we will
use in our proof:

Proposition 4.1 ([5]). Given a finite frame F = (W,�1,�2), where �1 and �2

are both preorders, there exists a p-morphism from T2,2 onto F, i.e., a surjective
map p : T2,2 � F such that, for i = 1, 2, (i) x ≤i y implies (px) �i (p y), and
(ii) (px) �i v implies there exists y ∈ T such that x ≤i y and p y = v.

Completeness of T2,2 with respect to S4.2K1 + S4.2K2 . Let us now bring this to
our realm. We want to think of T2,2 as a topological-partitional model. For this,
we turn to its connected components.

As per item (iii) of Lemma 3.8, we know that the connected components are
given by the equivalence relation: x ∼i y if and only if there exists a z such that
x ≥i z ≤i y. Note that for each x ∈ T2,2 and i = 1, 2, the set of ≤i-predecessors
of x forms a finite chain (and in particular, there is a least predecessor x0 of x,
which does not have any ≤i predecessors other than itself). These two facts give
us the following characterisation:

Lemma 4.2. The ≤i-connected components of T2,2 are exactly the upsets of the
form ↑ix0, where x0 does not have any ≤i-predecessors other than itself.

Now, let (W,≤1,≤2, V ) be a finite model whose underlying frame is a rooted
birelational weakly directed preorder. We can define a map p : T2,2 � W and
a valuation V T2,2 as above. Let σi be the topology of ≤i-upsets of W and ≡i

be the equivalence relation determining the connected components. Recall that
W = (W,σ1,2,≡1,2, V ) is a topological-partitional model in which every σi-open
set is ≡i-locally dense. Moreover, we have:
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Lemma 4.3. For x ∈ T2,2, w ∈ W and i = 1, 2, let [x]∼i
and [w]≡i

be the
respective equivalence classes (i.e., the respective connected components contain-
ing x and w). Then the following holds:

i. For any x ∈ T2,2, p[x]∼i
⊆ [px]≡i

.
ii. Let x0 ∈ T2,2 and let U be a (locally dense) σi-open set such that px0 ∈ U ⊆

[px0]≡i
. Then U ′ :=

⋃
{↑ix : x ∼i x0 & px ∈ U} is a locally dense upset such

that x0 ∈ U ′ ⊆ [x0]∼i
.

Proof. (i). Set y ∼i x. Then there is some z such that y ≥i z ≤i x and thus, since
the map p preserves order, we have that p y ≥i p z ≤i px and thus p y ≡i px.

(ii). U ′ is an upset because it is a union of upsets and x0 ∈ U ′ ⊆ [x0]∼i
by

construction. Let us see that it is locally dense. Take some z ∈ T2,2 such that
↑iz ⊆ [x0]∼i

. Now, p(↑iz) is an open set (by opennes of p) and p(↑iz) ⊆ p[x0]∼i
⊆

[px0]≡i
. By local density of U there exists some a ∈ U ∩p(↑iz). That is, for some

z′ ≥i z we have p z′ = a and p z′ ∈ U , thus by construction z′ ∈ ↑iz ∩ U ′ and
thus ↑iz ∩ U ′ �= ∅.

As a consequence:

Proposition 4.4. For any x ∈ T2,2 and any formula φ in the language, T2,2, x �
φ if and only if W, px � φ.

Proof. This is once again an induction on the structure of formulas in which the
only involved case is the induction step corresponding to the Ki modalities.

Suppose x � Kiφ. Then there exists some locally dense open set U with
x ∈ U ⊆ [x]∼i

such that y � φ for all y ∈ U . But then

px ∈ pU ⊆ p[x]∼i
⊆ [px]≡i

,

this last inclusion given by (i) of the previous lemma, and pU is a locally dense
open set in W : it is open because p is an open map and it is locally dense because
every open set in W is locally dense. Moreover, for every p y ∈ pU we have by
induction hypothesis that p y � φ. Thus px � Kiφ.

Conversely, suppose px � Kiφ. Then there exists a (locally dense) σi-open
set U with px ∈ U ⊆ [px]≡i

such that w � φ for all w ∈ U . But then by part
(ii) of the previous lemma U ′ :=

⋃
{↑iz : z ∼i x& p z ∈ U} is a locally dense

upset such that x ∈ U ′ ⊆ [x]∼i
. Now take y ∈ U ′. We have that y ≥i z for some

z ∈ [x]∼i
with p z ∈ U . But since p is order preserving we have that p y ≥i p z

and thus p y ∈ U , which means that p y � φ and thus, by induction hypothesis,
y � φ. This means that U ′ ⊆ ‖φ‖T2,2 and thus x � Kiφ.

Completeness is now an immediate consequence.

Corollary 4.5. S4.2K1 + S4.2K2 is sound and complete with respect to the qua-
ternary tree (T2,2,≤1,≤2,∼1,∼2).
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The Product Q×Q. Let us now show that it is possible to define two topologies
and two equivalence relations on the product space Q × Q which make it into a
generic topological-partitional space for S4.2K1 + S4.2K2 .

These topologies will be the vertical and horizontal topologies, which can be
defined on a product X×Y and, in a way, “lift” the topologies of the components.

Definition 4.6. Let (X, τ) and (Y, σ) be two topological spaces. The horizon-
tal and vertical topologies, τH and τV , are the topologies on X × Y generated,
respectively, by the bases

BH = {U × {y} : U ∈ τ, y ∈ Y } and BV = {{x} × V : x ∈ X,V ∈ σ}.

In particular, if we take both components to be Q with the natural topology, we
obtain our bitopological space (Q × Q, τH , τV ). An important result about this
space is the following:

Theorem 4.7 ([5]). S4 + S4 is the logic of (Q × Q, τH , τV ) under the interior
semantics.

Now we shall show there exists a partition on Q×Q which will give us the desired
completeness result. Note that we cannot shelter ourselves in the connected
components this time, for the connected components in (Q × Q, τH , τV ) are the
singletons, which are not even open sets.

Let (X, τ1, τ2) be a bitopological space and Y = (Y, σ1, σ2,∼1,∼2, V ) be a
topological partitional model. Moreover, let

f : (X, τ1, τ2) � (Y, σ1, σ2)

be a surjective map which is open and continuous in both topologies. We shall
call this an onto interior map. Define two equivalence relations ≡1 and ≡2 on
X by:

x ≡i y if and only if fx ∼i fy.

Define a valuation on X by V f (p) = {x ∈ X : fx ∈ V (p)}. The following holds:

Proposition 4.8. X = (X, τ1, τ2,≡1,≡2, V
f ) is a topological evidence model

and, for every formula φ in the language and every x ∈ X we have that X, x � φ
if and only if Y, fx � φ.

Proof. Checking that X is a topological partitional model amounts to checking
that each equivalence class is an open set. Let [x]≡i

be the equivalence class
under ≡i of some x ∈ X. Note that the image of this class coincides with
the equivalence class of fx, i.e. f [x]≡i

= [fx]∼i
. Indeed, fy ∈ [fx]∼i

implies
y ∈ [x]≡i

, and thus fy ∈ f [x]≡i
; conversely y ∈ f [x]≡i

implies y = fx′ for
some x′ ≡i x and thus y = fx′ ∼i fx. Now, [fx]∼i

is an equivalence class and
thus an open set and, since f is continuous, f−1f [x]≡i

is also an open set. So
it suffices to show that f−1f [x]≡i

= [x]≡i
. And indeed, if z ∈ f−1f [x]≡i

then
fz ∈ f [x]≡i

= [fx]∼i
which means that fz ∼i fx and thus z ≡i x.
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The second result is an induction on formulas. For the propositional variables
and the induction steps corresponding to the Boolean connectives the result is
straightforward. Now suppose that for some φ it is the case that, for all x,
X, x � φ if and only if Y, fx � φ, and let X, x � Kiφ. This means that there
exists some open set U ∈ τi such that x ∈ U ⊆ ‖φ‖X and U is locally dense in
[x]≡i

, i.e., for every nonempty open set V ⊆ [x]≡i
, it is the case that U ∩V �= ∅.

But then we have that fx ∈ f [U ], the set f [U ] is open (by openness of f) which
is contained in f‖φ‖X (and thus, by induction hypothesis, in ‖φ‖Y) and f [U ] is
locally dense in [fx]∼i

. Indeed, suppose V is an open set contained in [fx]∼i
.

then f−1[V ] is an open set contained in f−1[fx]∼i
= [x]≡i

which implies that
there exists some z ∈ f−1[V ] ∩ U and thus some fz ∈ V ∩ f [U ]. Conversely,
suppose Y, fx � Kiφ. There is an open set U ⊆ ‖φ‖Y which includes fx and
which is locally dense on [fx]∼i

. Then f−1[U ] is an open set including x which is
contained in f−1‖φ‖Y = ‖φ‖X and moreover it is locally dense on [x]≡i

: indeed,
if V is an open set contained in [x]≡i

, then f [V ] is an open set contained in
[fx]∼i

and thus there exists some y ∈ f [V ] ∩ [fx]∼i
. But then y = fz for some

z ∈ V and z ∈ V ∩ f−1[fx]∼i
= V ∩ [x]≡i

, whence X, x � Kiφ.

It is proven in [5] that there exists an onto map f : Q × Q → T2,2, open and
continuous in both τH and τV . The previous proposition plus this fact grants us
the existence of a partition which makes Q × Q a generic model for S4.2K1 +
S4.2K2 .

Corollary 4.9. Let f : Q × Q → T2,2 be some onto interior map. Define
(x, y) ≡f

i (x′, y′) iff f(x, y) and f(x′, y′) belong to the same ≤i-connected com-
ponent for i = 1, 2. Then S4.2K1 + S4.2K2 is sound and complete with respect
to

(Q × Q, τH , τV ,≡f
1 ,≡f

2 ).

This existence result is not in itself very satisfactory, and it leads to the
immediate question: what do these partitions look like? One could easily think
of suitable candidates, (such as

≡1= {Q × (π + k, π + k + 1) : k ∈ Z} & ≡2= {(π + k, π + k + 1) × Q : k ∈ Z},

for instance) but none of the ‘obvious’ candidates seem to give us completeness
(in the example above, [∀]1φ → �2φ holds everywhere, while not being a theorem
of the logic). This problem is open for future work.

5 Distributed and Common Knowledge

We have so far a multi-agent framework whose logic simply combines the axioms
of the single-agent logic for each of the agents.

In the present section we consider the notions of distributed and common
knowledge applied to this framework.
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5.1 Distributed Knowledge

We can think of distributed knowledge as whatever the group knows implicitly, or
whatever would become known if all the agents were to share their information.
Not only does the group know φ if one agent in the group knows it, but the
group also knows things that no individual agent knows yet can be derived from
the information of several agents. For example, if agent 1 knows p to be the
case, and agent 2 knows p → q to be the case, then together they know q, even
if individually no one does.

In relational semantics, if A is a finite group of agents and, for each a ∈ A,
Ka is the Kripke modality corresponding to some relation Ra, then we can think
of D as the Kripke modality corresponding to the relation

⋂
a∈A Ra.

Let us remark something here: given two preorders ≤1 and ≤2 defined on a
set X, let τi be the topology of ≤i-upwards closed sets for i = 1, 2. The Kripke
semantics on (X,≤1,≤2) correspond with the interior semantics on (X, τ1, τ2),
and the collection of upwards-closed sets of the relation ≤1 ∩ ≤2 is precisely the
join topology τ1 ∨ τ2, i.e., the least topology containing τ1 ∪ τ2, or, equivalently,
the topology generated by {U1 ∩ U2 : Ui ∈ τi}. We will be using join topologies
in our approach.

A Problematic Approach. What exactly amounts to distributed knowledge
in our framework? A very direct way to translate the ideas presented so far would
be this: we say that Dφ holds at w whenever agent 1 and agent 2 have each a
piece of evidence which, when put together, constitute a justification for φ (i.e.,
a locally dense piece of evidence).

This approach, while intuitive, has two issues. On the one hand, it might be
the case that an agent has a piece of evidence for φ which is dense in her topology
(i.e., she knows φ) yet, when the evidence of both agents is put together, the
corresponding evidence is no longer locally dense in the partition of the join
topology (i.e., the group does not know φ).5 Obviously, this is undesirable.

On the other hand, this notion reflects what the group could come to know
if they put their evidence together and acted, in a way, as a collective agent.
This is more an account of implicit evidence of the group rather than its implicit
knowledge. According to [12],

It is also often desirable to be able to reason about the knowledge that
is distributed in the group, i.e., what someone who could combine the
knowledge of all of the agents in the group would know. Thus, for example,
if Alice knows φ and Bob knows φ ⇒ ψ, then the knowledge of ψ is
distributed among them, even though it might be the case that neither of
them individually knows ψ. (. . . ) [D]istributed knowledge corresponds to
what a (fictitious) ‘wise man’ (one that knows exactly what each individual
agent knows) would know.

5 In [10] this is discussed in more depth and an example is provided.
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The desired interpretation of ‘distributed knowledge’ here is that of a ‘wise man’
who has the information of what each agent knows, as opposed to what evidence
they have. Thus, from this lens, one might want to keep misleading evidence
out of the equation, and consider that this hypothetical ‘wise man’ forms his
knowledge based not on what the agents have evidence for, but rather on what
the agents actually know.

On this account, instead of each agent having a piece of evidence that, when
combined together, constitute a justification for φ, we would want for each to
have a justification which combine into a piece of evidence for φ. (For a more
in-depth argument, see [10]).

There seem to be good reasons to stick to a notion of distributed knowledge
which disregards the idea of ‘putting evidence together’ and which is based
solely on the knowledge of the agents, whose logic would contain axioms like
K1φ → Dφ. In the following we present a way to have such a notion.

Our Proposal: The Semantics. We again have a language with two modal
operators K1 and K2 for the knowledge of each agent plus an operator D for
distributed knowledge.

Definition 5.1 (Semantics for D). Let X = (X, τ1,2,Π1,2, V ) be a topological-
partitional model. We read ‖p‖, ‖φ ∧ ψ‖ ‖¬φ‖ and ‖Kiφ‖ as in Definition. 3.3,
and:

x ∈ ‖Dφ‖ iff there existU1 ∈ τ1, U2 ∈ τ2 such that
Ui isΠi − locally dense and x ∈ U1 ∩ U2 ⊆ ‖φ‖.

While the problematic semantics outlined above amounted to reading distributed
knowledge as the interior in the topology (τ1 ∨ τ2)∗, what we are doing here is
reading it as interior in τ∗

1 ∨ τ∗
2 .

The Logic of Distributed Knowledge. Let LogicKiD be the least set of
formulas containing:

– The S4.2 axioms and rules for K1 and for K2;
– The S4 axioms and rules for D;
– The axioms Kiφ → Dφ for i = 1, 2.

Theorem 5.2. LogicKiD is sound and complete with respect to topological - par-
titional models.

We will dedicate the rest of this subsection to showing this fact.

Soundness. That every topological-partitional model satisfies the S4.2 axioms
for Ki can be proven exactly as in Sect. 3.1. That D satisfies the S4 axioms is
a consequence of D being read as Intτ∗

1 ∨τ∗
2
. And for the two extra axioms, if

x � Kiφ, then there exists Ui ∈ τ∗
i with x ∈ Ui ⊆ ‖φ‖. Let j �= i and, by taking

Uj = X, which is a Πj-locally dense τj-open set, we get x ∈ Ui ∩ Uj ⊆ ‖φ‖ and
thus x � Dφ.
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Completeness. Let X be the set of maximal consistent sets over the language.
We define Ri and RD on X as follows: given T, S ∈ X,

TRiS iff Kiφ ∈ T implies φ ∈ S for all φ in the language;
TRDS iff Dφ ∈ T implies φ ∈ S for all φ in the language.

Note that RD ⊆ Ri for i = 1, 2. Indeed, if TRDS and Kiφ ∈ T , then Dφ ∈ T as
per the axiom Kiφ → Dφ and thus φ ∈ S.

A labelled path over X is a path

α = T0
i1−→ T1

i2−→ ...
in−→ Tn,

where T0, ..., Tn ∈ X and i1, ..., in ∈ {R1, R2, RD}. Given S ∈ X and a path
α = T0

i1−→ T1
i2−→ ...

in−→ Tn, we define

lastα := Tn and α
i−→ S := T0

i1−→ T1
i2−→ ...

in−→ Tn
i−→ S.

Now, let T be the smallest set of labelled paths over X such that: (i.) The
path T0 (of length 0) belongs to T ; (ii.) For i = 1, 2, if α ∈ T and (lastα)RiT ,
then α

Ri−−→ T ∈ T ; (iii.) If α ∈ T and (lastα)RDT , then α
RD−−→ T ∈ T .

For i = 1, 2,D we define: α ≺i β if and only if α = β
Ri−−→ S for some S ∈ X.

We have thus given T the structure of a forest. Indeed, every α ∈ T has at
most one predecessor under ≺1 ∪ ≺2 ∪ ≺D. Now let us define three preorders
on T : for i = 1, 2, let ≤i be the reflexive and transitive closure of ≺i ∪ ≺D and
≤D to be the reflexive and transitive closure of ≺D. Note that by construction
≤D=≤1 ∩ ≤2.

Now let us see what the ≤1- and ≤2-connected components look like. By part
(iii) of Lemma 3.8, we know that the connected components of the topology
of upsets of ≤i (i = 1, 2) are given by the equivalence relation: α ∼i β iff
there exists γ such that α ≥i γ ≤i β. The definition of ≤i plus the fact that
RD ⊆ Ri entail that (last γ)Ri(lastα) and (last γ)Ri(lastβ). Therefore we have
the following result:

Lemma 5.3. If α and β belong to the same ≤i-connected component on T , then
lastα and lastβ belong to the same Ri-connected component in X.

Moreover, there is an alternative characterisation of the connected components,
similar to that in Lemma 4.2, which we will find useful:

Lemma 5.4. The ≤i-connected components correspond to upsets of the form
↑iα0, where α0 has no ≤i-predecessors other than itself.

We have given T the structure of a topological-partitional space and by defining
V T (p) = {α ∈ T : p ∈ lastα} we have a topological-partitional model and we
can prove the following:

Lemma 5.5 (Truth lemma). For every α ∈ T and φ in the language, α � φ
if and only if φ ∈ lastα.
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Proof. This is again an induction on formulas in which the base case for the
propositional variables follows from the definition of V T and the induction steps
for the Boolean connectives are routine.

Now, suppose the result holds for φ and Kiφ ∈ lastα. We need to define a
locally dense open set Ui such that α ∈ Ui ⊆ [α]∼i

and with the property that,
for every β ∈ Ui, φ ∈ lastβ, which will give us, by induction hypothesis, that
Ui ⊆ ‖φ‖. By Lemma 5.4, we have that [α]∼i

= ↑iαi for some αi ∈ T . In other
words, every β ∈ [α]∼i

is of the form

β = αi
Ri orRD−−−−−→ Ti

Ri orRD−−−−−→ ...
Ri orRD−−−−−→ Tn.

Let us now partition [α]∼i
in two sets:

V
[i]
D :={β ∈ [α]∼i

: αi ≤D β};
Vi :={β ∈ [α]∼i

: αi ≤i β &αi �D β}.

Note that the elements in V
[i]
D are of the form β = αi

RD−−→ T1
RD−−→ ...

RD−−→ Tn,
and the elements in Vi are of the form

β = αi
r1−→ T1

r2−→ ...
rn−→ Tn with rk ∈ {Ri, RD} and at least one rk = Ri,

and each element in [α]∼i
is in exactly one of Vi, V

[i]
D . Let us define Ui as follows:

Ui := {β ∈ V
[i]
D : (lastα)RD(lastβ)} ∪ {γ ∈ Vi : (lastα)Ri(last γ)}.

The following holds:

i. α ∈ Ui by construction.
ii. Ui is an upset. Take any β ∈ Ui. If β ≺i γ then γ = β

Ri−−→ S for some S ∈ X
and we clearly have γ ∈ Vi and (lastα)Ri(lastβ)RiS, thus (lastα)RiS. If
β ≺D γ then β = γ

RD−−→ S and, if β ∈ V
[i]
D we then have that γ ∈ V

[i]
D and

(lastα)RD(lastβ)RDS (thus (lastα)RD(last γ)) whereas if β ∈ Vi we have
that γ ∈ Vi and similarly (given that RD ⊆ Ri), (lastα)RiS. In any case
γ ∈ Ui.

iii. Ui is locally dense. Take any β ∈ [α]∼i
. By Lemma 5.3, we have that lastβ

and lastα are in the same Ri-connected component and, since Ri is an S4.2
relation, part (ii) of Lemma 3.8 gives us that there exists some S ∈ X with
(lastα)RiS and (lastβ)RiS and thus we have β

Ri−−→ S ∈ Ui ∩ ↑iβ.
iv. φ ∈ lastβ for every β ∈ Ui (given that Kiφ ∈ lastα and (lastα)Ri(lastβ)).

Thus α � Kiφ, as we intended to prove.
Conversely, if α � Kiφ, there exists some locally dense open set Ui with

α ∈ Ui ⊆ [α]∼i
∩ ‖φ‖. Since Ui is an upset, if (lastα)RiS, we have α

Ri−−→ S ∈ Ui,
which means α

Ri−−→ S ∈ ‖φ‖ and by induction hypothesis φ ∈ S. Every Ri-
successor of lastα includes φ, which gives Kiφ ∈ lastα.
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Now suppose Dφ ∈ lastα. Define U1 and U2 as above. They are locally dense
open sets contained respectively in [α]∼1 and [α]∼2 . Moreover, α ∈ U1 ∩ U2 by
construction. We simply need to see that U1 ∩ U2 ⊆ ‖φ‖. First let us note the
following: if β ∈ [α]∼1 ∩ [α]∼2 = ↑1α1 ∩ ↑2α2, then β is simultaneously of the
form

β = α1
R1 orRD−−−−−−→ T1

R1 orRD−−−−−−→ ...
R1 orRD−−−−−−→ Tn

and of the form

β = α2
R2 orRD−−−−−−→ S1

R2 orRD−−−−−−→ ...
R2 orRD−−−−−−→ Sm.

These can only be true at the same time if β is of the form

β = αj
RD−−→ S1...

RD−−→ Sm with αj = αi
Ri orRD−−−−−−→ T1...

Ri orRD−−−−−→ Tk

for i �= j ∈ {1, 2}. Let us assume w.l.o.g. that i = 1, j = 2. In particular we
have that, if β ∈ U1 ∩ U2, then β ∈ V

[2]
D and hence (lastα)RD(lastβ). Since

Dφ ∈ lastα, this entails that φ ∈ lastβ and thus that β ∈ ‖φ‖, whence α � Dφ.
For the converse, if α � Dφ then α ∈ U1 ∩ U2 ⊆ ‖φ‖ for some ≤i-locally

dense Ui ⊆ [α]∼i
. But then if (lastα)RDS we have α ≤D α

RD−−→ S and since
≤D=≤1 ∩ ≤2 and U1 and U2 are respectively a ≤1 and a ≤2-upset, we have
that α

RD−−→ S ∈ U1 ∩ U2 and thus α
RD−−→ S � φ which by induction hypothesis

gives φ ∈ S. This entails Dφ ∈ lastα.

Completeness follows from this: if φ /∈ LogicKiD, then {¬φ} is consistent and
can be extended as per Lindenbaum’s lemma to some maximal consintent set
T0 ∈ X. We then unravel the tree around T0 as discussed above and we have
ourselves a topological-partitional model rooted in α = T0 with α � φ as per the
truth lemma.

5.2 Common Knowledge

In the context of epistemic logic, one can think of common knowledge as that
which “every fool knows”. This informal definition can be formally cashed out in
several intuitive ways when one is modelling an epistemic situation. [3] compares
the following approaches to common knowledge:

(1) The iterate approach. A fact φ is common knowledge for a group of agents
when φ is true, all agents know that it is true, all agents know that all agents
know that it is true, etc. If Eφ is an abbreviation of K1φ ∧ K2φ, then

Cφ ≡ φ ∧ Eφ ∧ EEφ ∧ EEEφ ∧ ...

(2) The fixed-point approach. This is an approach in which common knowledge
refers back to itself. The idea here is that, if φ is the proposition which
expresses “it is common knowledge for agents a and b that p”, then φ is
equivalent to “a and b know (p and φ)”.
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[3] goes on to argue that, despite the fact that early literature considered
this approach equivalent to the fixed point one, (1) and (2) offer in fact distinct
accounts and the fixed point approach provides “the right theoretical analysis of
the pretheoretic notion of common knowledge”.

Moreover, while (1) and (2) are equivalent in relational semantics, as shown
in [7] this equivalence disappears once we are working in a topological setting.
If one is working topologically, one has to make a choice.

Our proposal amounts to reading the common knowledge modality C as the
interior in the intersection topology τ∗

1 ∩ τ∗
2 . More explicitly:

Definition 5.6 (Common knowledge semantics). Let X = (X, τ1,2,Π1,2, V )
be a topological-partitional model. We read

X, x � Cφ iff there exists U ∈ τ1 ∩ τ2 locally dense in Π1 and in Π2

such that x ∈ U ⊆ ‖φ‖.

This amounts to the following: there is common knowledge of φ at x whenever
there exists a common factive justification for φ.

Much like our account of distributed knowledge, this notion of common
knowledge corresponds directly with the relational definition when we are deal-
ing with a topological-partitional model stemming from two S4.2 relations: if R1

and R2 are S4.2, τi is the topology of Ri-upsets and Πi is the set of Ri-connected
components, then τ∗

1 ∩ τ∗
2 contains exactly the upsets of (R1 ∪ R2)∗.

Another observation is that, in the spirit of [3], this definition is precisely the
fixed point account of common knowledge. As pointed out in [7] and expanded in
[8], the fixed point approach can be expressed in the notation of mu-calculus as

Cφ = νp(φ ∧ Ep),

where p is a propositional variable which does not appear in φ. We read

‖νpψ‖ =
⋃

{U ∈ P(X) : U ⊆ ‖ψ‖V U
p },

where V U
p is the valuation assigning U to p and V (q) to q �= p.

In particular, ‖Cφ‖ =
⋃

{U ∈ P(X) : U ⊆ ‖φ∧Ep‖V U
p }. It is straightforward

to check that this last set equals
⋃

{U ∈ P(X) : U ∈ τ∗
1 ∩ τ∗

2 &U ⊆ ‖φ‖} = Intτ∗
1 ∩τ∗

2
‖φ‖,

which is precisely our account of common knowledge.
Some theorems in the logic of topological-partitional models with common

knowledge are the following:

i. The S4.2 axioms for Ki;
ii. the S4 axioms for C;
iii. the fixed point axiom Cφ → E(Cφ ∧ φ);
iv. the induction axiom C(φ → Eφ) → (Eφ → Cφ).
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Proposition 5.7 (Soundness). All the theorems above are valid on topological-
partitional models with the semantics of Definition 5.6.

Proof. That i., ii. and iii. hold for topological-partitional models is a straightfor-
ward check. Item iv. is more involved. It amounts to checking that, on any such
model, and for any P ⊆ X,

C(¬P ∨ (K1P ∩ K2P )) ∩ P ⊆ CP.

Now, let x ∈ C(¬P ∨ (K1P ∩ K2P )). By the semantics of 5.6 this means that
there exists some U ∈ τ∗

1 ∩ τ∗
2 such that

x ∈ U ⊆ ¬P ∪ (Intτ∗
1

P ∩ Intτ∗
2

P ).

Call V := U ∩ Intτ∗
1
. Now, V is a τ∗

1 -open set. Note that V ⊆ U ∩ Intτ∗
2

and
U ∩ Intτ∗

2
⊆ V and thus V is also a τ∗

2 -open set. Moreover, V includes x and it
is contained in P . Thus there exits some V ∈ τ∗

1 ∩ τ∗
2 with x ∈ V ⊆ P , hence

x ∈ CP .

Whether the preceding list of formulas constitutes a complete axiomatisation of
the logic of common knowledge for topological-partitional models is a question
that remains open.

6 Conclusions and Future Work

This paper presents a multi-agent generalisation for the dense interior semantics
defined on topological evidence models, furthering the results in [2].

This was achieved by introducing a second epistemic agent and a partition-
based semantics. We showed how this semantics generalises the single agent case
and we provided a complete logic for our two-agent models. Moreover, ‘generic
spaces’ were provided with respect to which the logic is sound and complete:
the quaternary tree T2,2 and the rational plane Q × Q. Along with this, a brief
conceptual and theoretical study of notions of “group knowledge” for this group
of agents was developed.

Some questions remain unanswered (and some potentially interesting results
were out of the scope of this investigation). Among these are the following:

– We have proven (Corollary 4.9) that there exist partitions ≡1 and ≡2 making
Q × Q a model for the logic S4.2K1 + S4.2K2 . What would be an example of
such partitions?

– Are T2,2 and Q × Q generic models for any (all) of the fragments of the
language considered in Sect. 3.2? For the distributed knowledge logic defined
in the last section?

– Can we more broadly characterize a class of topological - partitional spaces
which are generic for the logic? For example it is shown in [1] that, for the
one-agent case, any topological space which is dense-in-itself, metrizable and
idempotent is a generic model for the logic. Is a similar result true in the
multi-agent setting?
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– Does the list of theorems presented in Sect. 5.2 constitute a complete axiom-
atization of the logic of common knowledge?
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Abstract. We present a logic for reasoning about higher-order upper
and lower probabilities of justification formulas. We provide sound and
strongly complete axiomatization for the logic. Furthermore, we show
that the introduced logic generalizes the existing probabilistic justifica-
tion logic PPJ.

Keywords: Justifcation logic · Probabilistic logic · Upper and lower
probabilities · Strong completeness

1 Introduction

Since the seminal paper about justification logics was published, [3], a whole
family of justification logics has been established, including logics with uncer-
tain justifications, see [2,4,9,10,12,15,17]. However, justification logics in which
uncertainty originates from incompleteness of information is still not provided.

The main feature of justification logic is that evidence is representable
directly in the object language, i.e. the language of justification logic includes
formulas of the form t : A meaning that t justifies A. In this paper, we distinguish
the following two types of incomplete information within t : A:

1) “t” is incomplete.
A friend tells me that she saw in some weather forecast that tomorrow is
going to rain. I know which are possible forecasts she could have checked.
As a consequence of an incomplete justification t (she read in some weather
forecast and did not specify in which one) and since each forecast provides
a probability for the rain, my degree of belief that “tomorrow is going to
rain” is true lies in an interval [r, s], where r represents the lowest probability
according to the possible forecasts she checked, and s the highest.
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2) “:” is incomplete.
After taking a medication x, a patient gets a symptom S. It is known that
the symptom S is a side effect of the medication x and that there exist old
and new series of the medication x. The chance that the side effect occurs is
smaller when taking medication of the new series.
In this case both t: “the patient took the medication” and A: “the patient
got the symptom” are certain, but we do not know if t is the reason for A
or there exists another reason. Also, we do not know if the patient took the
medication of the old or the new series. In the former case, the chance that x
caused S is bigger than in the later case. Thus, our degree of belief that t : A
lies in some interval.

In this paper we formalize both types of uncertainty illustrated above. To
capture uncertainty about probabilities we use the lower and upper probability
measures. For an arbitrary set of probability measures P , the former assigns to
an event X the infimum of the probabilities assigned to X by the measures from
the set P , while the later returns their supremum.

We provide a new logic, ILUPJ1, as an extension of the justification logic J
with two families of unary operators L≥s and U≥s, for s ∈ Q ∩ [0, 1]. That idea
comes from some of our previous papers, see e.g., [6,18]. The intended meanings
of these operators are that ’the lower (upper) probability is greater or equal to s’.
Therefore, saying that our degree of belief lies in an interval [r, s] is represented
by saying that the lower probability is equal to r and the upper probability is
equal to s.

The first case, when “t” is incomplete and therefore our degree of belief that
A is true belongs to an interval [r, s] we can represent in the logic ILUPJ with

t : L=rA ∧ t : U=sA.

The second case, when “:” is incomplete, i.e., situations in which we are not sure
if t is the justification for A, can be represented by

L=r(t : A) ∧ U=s(t : A).

The corresponding semantics of our logic consists of special types of possible
world models, where every world is equipped with a space that consists of the
non-empty set of accessible worlds, algebra of subsets and a set of probability
measures.

We propose a sound and complete axiomatization of the logic. In order to
prove the strong completeness theorem, which is the main technical result of the
paper, we use a Henkin-like construction modifying our previous techniques for
probabilistic and temporal logic [5,13,14,16]. Also, the proofs in our logic can
be infinite although all the formulas of the logic are finite.

We also compare our logic with the probabilistic justification logic PPJ from
[10], and we prove that ILUPJ properly generalizes it. The logic PPJ is obtained
1 I stands for iterations, LUP for lower and upper probabilities and J for the justifica-
tion logic J.
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by extending the justification logic J by a list of standard unary operators, P≥s,
whose intended meaning is ‘the probability is greater or equal to s’. In that
approach there is no uncertainty about probabilities, and a unique probability
value is assigned to an event. In our example from the first case, this would
correspond to the situation where only one forecast is available. In the general
case, where we consider several forecasts, we need to assign sets of probabilities to
events, which lead to our more general semantics and, consequently, to different
probability operators. Indeed, if r is the lowest probability according to the
possible forecasts, and s the highest, we cannot always assign a truth value to
the sentence “t justifies that our degree of belief that tomorrow will rain with
probability at least �” (in the language of PPJ: t : P≥�A), where � ∈ (r, s) –
according to some forecasts the sentence is true, and according to others it is
false. On the other hand, in ILUPJ we can distinguish two cases: t : L≥�A is false
and t : U≥�A is true.

The content of this paper is as follows. In Sect. 2 we define the basic notions
needed for defining our logic. In Sect. 3 we propose the logic ILUPJ, whereas
in Sect. 4 we prove the soundness and strong completeness theorem. In Sect. 5
we prove that our logic generalizes the logic PPJ and we conclude the paper in
Sect. 6.

2 Preliminaries

We start with preliminary notions that will be used in the definition of the
semantics of the logic ILUPJ.

Definition 1 (Algebra Over a Set). Let W �= ∅ and let ∅ �= H ⊆ P(W ). H
is called algebra over W if:

1) W ∈ H,
2) For X,Y ∈ H, W \ X ∈ H and X ∪ Y ∈ H.

Definition 2 (Finitely Additive Probability Measure). For an algebra H
over W , a function μ : H −→ [0, 1] is called finitely additive probability measure,
if:

1) μ(W ) = 1,
2) For X,Y ∈ H, μ(X ∪ Y ) = μ(X) + μ(Y ), whenever X ∩ Y = ∅.
Definition 3 (Lower and Upper Probability Measures). Let H be an alge-
bra over W and P be a set of finitely additive probability measures defined on
H. For X ∈ H, the lower probability measure P∗ and the upper probability
measure P ∗ are defined as follows:

1) P∗(X) = inf{μ(X) | μ ∈ P},
2) P ∗(X) = sup{μ(X) | μ ∈ P}.
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Now we state three properties which are used in our proof of soundness and
completeness theorem for ILUPJ. The proof of these basic properties of P∗ and
P ∗ follows directly from the properties of infimum and supremum.

1) P∗(X) ≤ P ∗(X),
2) P∗(X) = 1 − P ∗(Xc),
3) P ∗(X ∪ Y ) ≤ P ∗(X) + P ∗(Y ), whenever X ∩ Y = ∅.

Complete characterization of P∗ and P ∗ is needed in order to axiomatize
upper and lower probabilities. We use the characterization used by Anger and
Lembcke [1], which was also used by Halpern and Pucella [8, Theorem 2.3]. For
that characterization we need a notion of (n, k)-cover.

Definition 4 ((n, k)-cover). A set X is covered n times by a multiset

{{X1, . . . , Xm}}

of sets if every element of X appears in at least n sets from X1, . . . , Xm meaning
that for all x ∈ X, there exist i1, . . . , in ∈ {1, . . . , m} such that for all j ≤ n,
x ∈ Xij .

An (n, k)-cover of (X,W ) is a multiset {{X1, . . . , Xm}} that covers the set
W k times and covers the set X n + k times.

With the notion of (n, k)-cover we are ready to define the characterization
theorem:

Theorem 1 (Anger and Lembcke [1]). Let W �= ∅, H an algebra over W ,
and f a function f : H −→ [0, 1]. There exists a set P of probability measures
such that f = P ∗ iff the function f satisfies the following three conditions:

(1) f(∅) = 0,
(2) f(W ) = 1,
(3) for all m,n, k ∈ N and all X,X1, . . . , Xm ∈ H, if {{X1, . . . , Xm}} is an

(n, k)-cover of (X,W ), then

k + nf(X) ≤
m∑

i=1

f(Xi).

3 The logic ILUPJ

In this section we describe the syntax and semantics of the logic ILUPJ and
provide an axiomatization.
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3.1 Syntax

We will use the following notation:

Con = {c0, c1, . . . , cn, . . . } for a countable set of constants,
Var = {x0, x1, . . . , xn, . . . } for a countable set of variables, and
Prop = {p0, p1, . . . , pn, . . . } for a countable set of atomic propositions.

Definition 5 (Justification Terms). Terms are built from the sets Con and
Var with the following grammar:

t ::= c | x | t · t | t + t | !t,

where c ∈ Con and x ∈ Var. The set of all terms will be denoted by Tm.

For a term t and non-negative integer n we use the following notation:

!0t := t and !n+1t :=!(!nt).

Terms represent justifications for an agent’s belief (or knowledge). In the orig-
inal justification logic, the Logic of Proofs [3], terms represent formal proofs in
e.g. Peano arithmetic [11]. In possible world models for justifcation logic, first
developed by Fitting [7], terms may represent arbitrary justifications like direct
observation, public announcements, private communication, and so on.

Let us discuss the role of a given justification term depending on its main
connective [12]:

– Constants are used in situations where the justification is not further ana-
lyzed, e.g. to justify axioms, see rule (IR1).

– Variables are used to represent arbitrary justifications.
– The operation · represents the agent’s ability to reason by modus ponens.

Assume that s justifies the agent’s belief in A and t justifies the agent’s belief
in A → B, then t · s will justify her belief in B, see axiom (Ax2).

– The operation + combines two justifcations to a justification with broader
scope, see axiom (Ax3). Often this is illustrated as follows. Let s and t be
two volumes of an encyclopedia and s + t be the set of those two volumes.
Suppose that one of the volumes, say s, contains justification for a proposition
A. Then also the larger set s + t contains justification for A.

– The operation ! represents the agent’s ability to perform positive introspec-
tion. In our logic ILUPJ, we only include positive introspection for axioms
and iterated belief of axioms, see rule (IR1). Assume an agent believes an
axiom A and c is a justification for that belief. By positive introspection the
agent believes that she believes A and that A is justified by c. The term !c
will justify the result of the positive introspection act.

Definition 6 (Formulas of the Logic ILUPJ). Formulas of the logic ILUPJ
are defined with the following grammar:

For A ::= p | U≥sA | L≥sA | ¬A | A ∧ A | t : A

where p ∈ Prop and s ∈ Q ∩ [0, 1].
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Other connectives, ∨,→,↔, are defined as usual. The following abbreviations
will be used for introducing other types of inequalities:

U<sA ≡ ¬U≥sA

L<sA ≡ ¬L≥sA

U≤sA ≡ L≥1−s¬A

L≤sA ≡ U≥1−s¬A

U=sA ≡ U≤sA ∧ U≥sA

L=sA ≡ L≤sA ∧ L≥sA

U>sA ≡ ¬U≤sA

L>sA ≡ ¬L≤sA.

We set A ∧ ¬A ≡ ⊥ and A ∨ ¬A ≡ �.

3.2 Axiomatization

Axioms of the logic ILUPJ:

(Ax1) � A, where A is a propositional tautology
(Ax2) � t : (A → B) → (s : A → (t · s) : B)
(Ax3) � t : A ∨ s : A → (t + s) : A
(Ax4) � U≤1A ∧ L≤1A
(Ax5) � U≤rA → U<sA, s > r
(Ax6) � U<sA → U≤sA
(Ax7) � (U≤r1A1∧· · ·∧U≤rm

Am) → U≤rA, if A → ∨
J⊆{1,...,m},|J|=k+n

∧
j∈J Aj

and
∨

J⊆{1,...,m},|J|=k

∧
j∈J Aj are propositional tautologies, where r =

∑m
i=1 ri−k

n , n �= 0
(Ax8) � ¬(U≤r1A1 ∧ · · · ∧ U≤rm

Am), if
∨

J⊆{1,...,m},|J|=k

∧
j∈J Aj is a proposi-

tional tautology and
∑m

i=1 ri < k
(Ax9) � L=1(A → B) → (U≥sA → U≥sB)

Before we state the inference rules of the ILUPJ logic, we define a constant
specification:

Definition 7 (Constant Specification). Constant specification CS is any set
that satisfies:

CS ⊆ {(c, A) | c is a constant and A is an instance of some axiom of ILUPJ}.
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The constant specification is used to control an agent’s reasoning capabilities,
i.e. to specify which axioms the agent has a justification of. So we can model
agents that are not logically omniscient. Assume that the constant specification
includes (c,A) for some axiom A and some constant c. Then using rule (IR1),
see below, we can infer c : A, i.e. the agent beliefs A and c justifies that belief.
However, if for no constant c we have that (c,A) ∈ CS, then the agent does not
have an atomic justification for A, i.e. she may not have justified belief of the
axiom A.

Inference Rules of the logic ILUPJ:

(IR1) �!nc :!n−1c : · · · :!c : c : A where (c,A) ∈ CS and n ∈ N

(IR2) If T � A and T � A → B then T � B
(IR3) If � A then � L≥1A
(IR4) If T � A → U≥s− 1

k
B, for every k ≥ 1

s and s > 0 then T � A → U≥sB

(IR5) If T � A → L≥s− 1
k
B, for every k ≥ 1

s and s > 0 then T � A → L≥sB

Axioms (Ax7) and (Ax8) together are the logical representation of the third
condition from Theorem 1. Equivalent to saying that {{X1, . . . , Xm}} covers a
set X n times is to say that:

X ⊆
⋃

J⊆{1,...,m},|J|=n

⋂

j∈J

Xj .

Hence, the condition that the formula

A →
∨

J⊆{1,...,m},|J|=k+n

∧

j∈J

Aj

is a tautology states that [A]M,w
2 is covered n + k times by a multiset

{{[A1]M,w, . . . , [Am]M,w}},

while the condition that ∨

J⊆{1,...,m},|J|=k

∧

j∈J

Aj

is a propositional tautology states that the set W is covered k times by a multiset
{{[A1]M,w, . . . , [Am]M,w}}.

Formula A is deducible from a set of formulas T , denoted by T � A, if there
exists at most countable sequence of formulas A0, A1, . . . , A, where every Ai is
an axiom or a formula that belongs to the set T , or is derived from the preceding
formulas by some inference rule (exception is that the Rule (IR3) can be applied
on the theorems only). Formula A is a theorem, denoted by � A, if it can be
deduced from the empty set.

2 [A]M,w represents the set of all worlds from W (w) in a model M where A holds and
will be defined later.
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3.3 Semantics

For sets of formulas X and Y , we will use the following notation:

X · Y := {A | B → A ∈ X and B ∈ Y, for some formula B}.

In order to provide semantics for the logic ILUPJ, we start with the notion
of a basic evaluation.

Definition 8 (Basic Evaluation). Let CS be a constant specification. A basic
CS-evaluation is a function ∗, such that

∗ : Prop → {true, false} and ∗ : Tm → P(For),

and for s, t ∈ Tm, c ∈ Con and A ∈ For we have:

1) s∗ · t∗ ⊆ (s · t)∗

2) s∗ ∪ t∗ ⊆ (s + t)∗

3) if (c,A) ∈ CS then
a) A ∈ c∗

b) !nc :!n−1c : · · · :!c : c : A ∈ (!n+1c)∗, for n ∈ N.

We will write t∗ and p∗ instead of ∗(t) and ∗(p) respectively.

Definition 9 (ILUPJCS-Model). Let CS be any constant specification. An
ILUPJCS-model (or simply model) is a tuple 〈W,LUP, ∗〉, where:

– W is a nonempty set of worlds.
– LUP assigns to every w ∈ W a space, such that LUP (w) = 〈W (w),H(w),

P (w)〉, where:
- ∅ �= W (w) ⊆ W ,
- H(w) is an algebra of subsets of W (w) and
- P (w) is a set of finitely additive probability measures defined on H(w).

– ∗ is a function from W to the set of all basic CS-evaluations, i.e. ∗(w) is a
basic CS-evaluation for each world w ∈ W .

We will denote ∗(w) by ∗w.

Definition 10 (Truth in a Model). Let CS be any constant specification. and
let M = 〈W,LUP, ∗〉 be a model. We define what does it mean for a formula
A ∈ ForILUPJ to hold in M at the world w by:

– M,w |= p iff p∗
w = true, for p ∈ Prop

– M,w |= U≥sA iff P ∗(w)([A]M,w) ≥ s,
– M,w |= L≥sA iff P∗(w)([A]M,w) ≥ s,
– M,w |= ¬A iff M �|= A,
– M,w |= A ∧ B iff M |= A and M |= B,
– M,w |= t : A iff A ∈ t∗w,
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where3 [A]M,w = {u ∈ W (w) | M,u |= A} and W (w) and P (w) are given by
LUP (w). The functions P ∗(w) and P∗(w) are defined as in Definition 3.

Definition 11 (Measurable Model). Let CS be a constant specification and
let M be a model. M is said to be measurable if [A]M,w ∈ H(w) for every A ∈
For. The class of all measurable ILUPJCS-models will be denoted by ILUPJCS,Meas.

For a model M , we write M |= A if for every w ∈ W , M,w |= A. For T ⊆ For,
M |= T means that M |= A for every A ∈ T . Finally, T |= A means that M |= T
implies M |= A.

Definition 12 (Satisfiability). Formula A is satisfiable if there exists a mea-
surable model M and w ∈ W such that M,w |= A. A set of formulas T is
satisfiable if every formula in T is satisfiable.

As usual, we have the deduction theorem.

Theorem 2 (Deduction Theorem). Let A,B ∈ For, T a set of formulas and
CS be any constant specification. Then T ∪ {A} � B iff T � A → B.

Proof The proof is completely standard. We only show the case in the direction
from left to right where the last rule application is an instance of (IR4). In this
case B = C → U≥sB

′. We have:

(1) T,A � C → U≥s− 1
k
B′, for all k ≥ 1

s

(2) T � A → (C → U≥s− 1
k
B′), for all k ≥ 1

s by induction hypothesis
(3) T � (A ∧ C) → U≥s− 1

k
B′, for all k ≥ 1

s

(4) T � (A ∧ C) → U≥sB
′ by (IR4)

(5) T � A → (C → U≥sB
′),

which is T � A → B. ��
We also need the following technical lemma.

Lemma 1

(a) � U≥sA → U>rA, s > r
(b) � U>sA → U≥sA
(c) If � A ↔ B then � U≥sA ↔ U≥sB

Proof From (Ax5) and (Ax6), using contraposition we obtain proofs for (a) and
(b), while (c) is a direct consequence of (IR3) and (Ax9). ��

4 Soundness and Completeness

The soundness theorem can be proved as usual by transfinite induction on the
depth of the derivation T � A.

Theorem 3 (Soundness). Let CS be a constant specification. For T ⊆ For and
A ∈ For we have:

T � A ⇒ T |= A.

3 When M is clear from the context we will write [A]w.



Incomplete Information and Justifications 267

4.1 Completeness

Definition 13 (ILUPJCS-Consistent Set). For an arbitrary constant specifi-
cation CS and T ⊆ For we say that:

(a) T is ILUPJCS-consistent if and only if T �� ⊥. Otherwise, T is ILUPJCS-
inconsistent.

(b) T is maximal if and only if for all A ∈ For, either A ∈ T or ¬A ∈ T .
(c) T is maximal ILUPJCS-consistent if and only if it is maximal and ILUPJCS-

consistent.

Lemma 2. Let CS be an arbitrary constant specification and T an ILUPJCS-
consistent set of formulas.

(1) For any A ∈ For, either T ∪ {A} is ILUPJCS-consistent or T ∪ {¬A} is
ILUPJCS-consistent.

(2) If ¬(A → U≥sB) ∈ T , then there exists some n > 1
s such that

T ∪ {A → ¬U≥s− 1
n
B}

is ILUPJCS-consistent.
(3) If ¬(A → L≥sB) ∈ T , then there exists some n > 1

s such that

T ∪ {A → ¬L≥s− 1
n
B}

is ILUPJCS-consistent.

Proof. (1) Suppose that both T ∪ {A} � ⊥ and T ∪ {¬A} � ⊥ hold. From the
Deduction Theorem, we get T � ¬A and T � A which contradicts the
assumption that the set T is ILUPJCS-consistent.

(2) Assume that for all n > 1
s we have:

T,A → ¬U≥s− 1
n
B � ⊥.

From Deduction Theorem and propositional reasoning, we obtain

T � A → U≥s− 1
n
B,

and from Inference Rulle 4 T � A → U≥sB. Contradiction with the assump-
tion that ¬(A → U≥sB) ∈ T .

(3) Similar to the previous case. ��
Theorem 4 (Lindenbaum). Let CS be an arbitrary constant specification.
Every ILUPJCS-consistent set can be extended to a maximal ILUPJCS-consistent
set.

Proof. Consider a ILUPJCS-consistent set T and let A0, A1, A2, . . . be an enumer-
ation of all the formulas from For. We define a sequence of sets Ti, i = 0, 1, 2, . . .
in the following way:
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(1) T0 = T ,
(2) for every i ≥ 0,

(a) if Ti ∪ {Ai} is ILUPJCS-consistent, then Ti+1 = Ti ∪ {Ai}, otherwise
(b) if Ai is of the form B → U≥sC, then Ti+1 = Ti ∪ {¬Ai, B → ¬U≥s− 1

n
C},

for some n > 0, so that Ti+1 is ILUPJCS-consistent, otherwise
(c) if Ai is of the form B → L≥sC, then Ti+1 = Ti ∪ {¬Ai, B → ¬L≥s− 1

n
C},

for some n > 0, so that Ti+1 is ILUPJCS-consistent, otherwise
(d) Ti+1 = Ti ∪ {¬Ai},

(3) T♠ =
⋃∞

i=0 Ti.

Using induction on i, we prove that for every i ∈ N, Ti is ILUPJCS-consistent.

(i) T0 is ILUPJCS-consistent because T is.
(ii) Suppose that Ti is ILUPJCS-consistent. We prove that also Ti+1 is:

– Ti+1 is constructed using the step (2)(a). Trivially.
– Ti+1 is constructed using the step (2)(b). From Lemma 2((1) and (2)).
– Ti+1 is constructed using the step (2)(c). From Lemma 2((1) and (3)).
– Ti+1 is constructed using the step (2)(d). Since Ti ∪ {Ai} is ILUPJCS-

inconsistent, we know that Ti ∪ {¬Ai} is ILUPJCS-consistent.

Now let us show that T♠ is maximal ILUPJCS-consistent set. From the con-
struction above we know that for any A ∈ For either A ∈ T♠ or ¬A ∈ T♠, i.e.,
T♠ is maximal.

In order to prove that T♠ is ILUPJ-consistent, we prove that:

(i) It does not contain all the formulas from For;
(ii) It is deductively closed.

It is clear from the construction that T♠ does not contain all the formulas from
For, so the only thing left to prove is that T♠ is deductively closed. Assume
T♠ � A. Using transfinite induction on a depth of derivation we prove that
A ∈ T♠.

1) A ∈ T♠. Trivially.
2) A is an instance of some of the axioms (Ax1)–(Ax9). There exists k ∈ N

with A = Ak. Assuming that ¬Ak ∈ Tk+1, we get a contradiction from:

Tk+1 � Ak and Tk+1 � ¬Ak.

3) A is obtained from T♠ by an application of (IR1), i.e.,

A =!nc :!n−1c : · · · :!c : c : B,

for some n ∈ N, axiom B and (c,B) ∈ CS. There exists k such that A = Ak

and if ¬A ∈ Tk+1, then

Tk+1 � A and Tk+1 � ¬A

which gives us a contradiction.
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4) A is obtained from T♠ by an application of (IR2). Induction hypothesis
tells us that there exists l, such that both premises belong to Tl. Since there
exists k such that A = Ak, if ¬A ∈ Tmax(k,l)+1, then

Tmax(k,l)+1 � A and Tmax(k,l)+1 � ¬A

which gives us a contradiction.
5) A is obtained from T♠ by an application of (IR3), i.e., A = L≥1B and � B.

Since there exists some k such that A = Ak, same reasoning as in 2) gives
us the claim.

6) A is obtained from T♠ by an application of (IR4). That means, A = B →
U≥sC and for every k ≥ 1

s ,

T♠ � B → U≥s− 1
k
C.

Assuming that A �∈ T♠, i.e., ¬(B → U≥sC) ∈ T♠, we find a number m,
such that

¬(B → U≥sC) ∈ Tm.

Also, from the construction of T♠ we know that for some l,

¬(B → U≥s− 1
l
C) ∈ Tl.

Further, from inductive hypothesis,

B → U≥s− 1
l
C ∈ T♠.

Hence, there exists m′ with

B → U≥s− 1
l
C ∈ Tm′ .

Contradiction with a consistency of Tmax(l,m′)+1, since both

B → U≥s− 1
l
C ∈ Tmax(l,m′)+1, ¬(B → U≥s− 1

l
C) ∈ Tmax(l,m′)+1.

7) The case when A is obtained from T♠ by an application of (IR5) can be
proved similarly to the previous case.

We conclude that T♠ is deductively closed set which does not contain all formulas
meaning that T♠ is consistent. ��
Definition 14 (Canonical Model). Let CS be an arbitrary constant specifi-
cation. The canonical model is the tuple Mcan = 〈W,LUP, ∗〉 , where:

1) W = {w | w is a maximal ILUPJCS-consistent set of formulas},
2) LUP (w) = 〈W (w),H(w), P (w)〉 is defined as follows:

W (w) = W ,
H(w) = {{u | u ∈ W (w), A ∈ u} | A ∈ For},
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P (w) is any set of probability measures such that

P ∗(w)({u | u ∈ W (w), A ∈ u}) = sup{s | U≥sA ∈ w}.

3) for every world w ∈ W , the basic CS-evaluation is defined with:
1. For p ∈ Prop:

p∗
w =

{
true if p ∈ w
false if ¬p ∈ w

2. For t ∈ Tm:
t∗w = {A | t : A ∈ w}

Lemma 3. Let Mcan = 〈W,LUP, ∗〉 be the canonical model. For every u ∈ W
and every formula A,

{u | u ∈ W,A ∈ u} = [A]Mcan,u.

Proof. We prove the statement by proving that A ∈ u iff u |= A by induction on
the length of A. If A = p the claim follows by definition of the canonical model.
Cases when A = ¬B or A = B ∧ C are trivial.

1. Let A = U≥sB. First, let U≥sB ∈ u. Then

sup{r | U≥rB ∈ u} = P ∗(u){w | w ∈ W,B ∈ w} = P ∗(u)([B]u) ≥ s,

so u |= U≥sB.
Now, suppose that u |= U≥sB, i.e.

P ∗(u)([B]u) = sup{r | U≥rB ∈ u} ≥ s.

If P ∗(u)([B]u) > s, then we have (properties of a supremum and monotonic-
ity) U≥sB ∈ u.
If P ∗(u)([B]u) = s, then as a direct consequence of (IR4), we have that
U≥sB ∈ u.

2. Now, let A = L≥sB or equivalently A = U≤1−s¬B. Suppose U≤1−s¬B ∈ u.
Our goal is to show that

sup{r | U≥r¬B ∈ u} ≤ 1 − s,

hence, suppose towards contradiction that

sup{r | U≥r¬B ∈ u} > 1 − s.

Then, there exists a rational number q ∈ (1 − s, 1 − s + ε], for some ε > 0,
such that U≥q¬B ∈ u. Therefore, U>1−s¬B ∈ u. Contradiction. That means

sup{r | U≥r¬B ∈ u} ≤ 1 − s,

i.e., P ∗(u)([¬B]u) ≤ 1 − s and therefore we obtain u |= L≥sB.
For the other direction, assume that u |= U≤1−s¬B, i.e.

sup{r | U≥r¬B ∈ u} ≤ 1 − s.

We distuingish the following cases:



Incomplete Information and Justifications 271

(1) sup{r | U≥r¬B ∈ u} < 1−s. In this case, if U>1−s¬B ∈ u, we would have
also that U≥1−s¬B ∈ u, so sup{r | U≥r¬B ∈ u} ≥ 1 − s. Contradiction.

(2) sup{r | U≥r¬B ∈ u} = 1 − s. We want to show that then it must hold

inf{r | U≤r¬B ∈ u} = 1 − s.

Suppose first towards contradiction that

inf{r | U≤r¬B ∈ u} < 1 − s.

Then there exists a rational number q1 ∈ [1 − s − ε, 1 − s) such that
U≤q1¬B ∈ u, and so U<1−s¬B ∈ u. Contradiction with U≥1−s¬B ∈ u
(this follows directly from Inference Rule 4). Now, suppose that

inf{r | U≤r¬B ∈ u} > 1 − s,

i.e.,
inf{r | U≤r¬B ∈ u} = 1 − s + ε.

Taking an arbitrary rational number q2 ∈ (1 − s, 1 − s + ε), we obtain
that both

U≤q2¬B ∈ u and U≥q2¬B ∈ u

which contradicts properties of an infimum and supremum. Hence

inf{r | U≤r¬B ∈ u} = 1 − s,

or equivalently
inf{r | L≥1−rB ∈ u} = 1 − s

and as a consequence of an Inference Rule 5, we get L≥sB ∈ u.
3. Finally let A = t : B. Since {u | u ∈ W,u |= t : B} = [A]Mcan,u and

{u | u ∈ W, t : B ∈ u} = {u | u ∈ W,B ∈ t∗u} = {u | u ∈ W,u |= t : B},

the proof is finished. ��
Theorem 5. Let CS be an arbitrary constant specification. Mcan is a
ILUPJCS,Meas-model.

Proof. Since there exists a maximal ILUPJCS-consistent set, we know that W �= ∅
and W (w) �= ∅. Proof that H(w) is an algebra is straightforward. Also note that
for every w ∈ W , ∗w is a basic CS-evaluation by the construction of the canonical
model.

Let us prove the existence of a set of probability measures P (w) claimed in
2) and that P ∗(w) is well defined.

1) There exists a set of finitely additive probability measures P (w) and P ∗(w)
is an upper probability measure for P (w):
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We prove the three conditions from Theorem 1 and since the first two con-
ditions, P ∗(w)(∅) = 0 and P ∗(w)(W ) = 1, are trivial, we prove only the
third, i.e., if

{{[A1], . . . , [Am]}}
is an (n, k)-cover of ([A],W ), then

k + nP ∗(w)([A]) ≤
m∑

i=1

P ∗(w)([Ai]).

Let P ∗(w)([Ai]) = sup{r | U≥rAi ∈ w} = ai, for i = 1, . . . , m. For an
arbitrary fixed ε > 0, there exist rational numbers qi ∈ (ai, ai + ε) with
U≤qiAi ∈ w. If that would not be the case, then U>qiAi ∈ w which contra-
dicts with the fact that ai is supremum. As a consequence we get

w � U≤q1A1 ∧ · · · ∧ U≤qmAm,

and by (Ax7)
w � U≤qA,

where q =
∑m

i=1 qi−k

n , n �= 0. Thus, sup{r | U≥rAi ∈ w} ≤ q or equivalently
P ∗(w)([A]) ≤ q. Thus, we have

P ∗(w)([A]) ≤
∑m

i=1 qi − k

n
=

∑m
i=1 ai + mε − k

n
.

Because this holds for every ε > 0 we obtain k + nP ∗(w)([A]) ≤∑m
i=1 P ∗(w)([Ai]). If n = 0, we have to show that k ≤ ∑m

i=1 P ∗(w)([Ai]).
Reasoning as above, we obtain

w � U≤q1A1 ∧ · · · ∧ U≤qmAm,

for some qi ∈ (ai, ai + ε). From (Ax8), how
∨

J⊆{1,...,m},|J|=k

∧

j∈J

Aj

is a propositional tautology, we have that
∑m

i=1 qi ≥ k. Again, from the fact
that it holds for every ε > 0, we obtain

∑m
i=1 ai ≥ k.

2) P ∗(w) is well defined : that Lemma 1(c) tells us that a value of the supremum
does not depend on a choice of an element from [A]. Hence P ∗(w)([A]) is
well defined.
Finally, note that as a direct consequence of the Lemma 3 we have that this
model is measurable. ��

Theorem 6 (Strong Completeness for ILUPJ). For an arbitrary constant
specification CS, T ⊆ For and A ∈ For we have:

T |= A ⇒ T � A.
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Proof. Suppose that T �� A or equivalently T �� ¬A → ⊥. From Deduction
Theorem we get T,¬A �� ⊥ meaning that the set T ∪{¬A} is ILUPJCS-consistent.
From Theorem 4 we know that there exists a maximal ILUPJCS-consistent set
T♠ with T ∪ {¬A} ⊆ T♠. Finally, since T♠ is a world in the canonical model,
we get Mcan, T♠ |= T and Mcan, T♠ |= ¬A and thus T �|= A. ��

5 ILUPJ as a Generalization of the Logic PPJ

In this section we prove that the logic ILUPJ generalizes the logic PPJ from [10].
The strategy we use relies heavily on the strategy used in [6]. Let us briefly recall
the logic PPJ.

The language of the logic PPJ extends the language of the justification logic
J with the list of operators P≥s, where s is a rational number from the [0, 1]. For
example,

p ∧ P≤ 1
2
(t : q) and P= 1

3
P≥1(s : (p ∨ r))

are well defined formulas. PPJ-models are defined as triples M = 〈W,Prob, ∗〉,
where:

– W is a non empty set of worlds
– Prob is an assignment which assigns to every w ∈ W a probability space,

such that Prob(w) = 〈W (w),H(w), μ(w)〉, where:
W (w) is a non empty subset of W ,
H(w) is an algebra of subsets of W (w) and
μ(w) : H(w) → [0, 1] is a finitely additive probability measure.

– ∗w is a basic CS-evaluation.

Satisfiability of a formula is defined as expected for the justification logic
formulas and

M,w |= P≥sA iff μ(w)({v ∈ W (w) | v |= A}) ≥ s.

Axiomatization of the logic PPJ is the following:

(P1) � A, where A is a propositional tautology
(P2) � t : (A → B) → (s : A → (t · s) : B)
(P3) � t : A ∨ s : A → (t + s) : A
(P4) P≥0A,
(P5) P≤rA → P<sA, s > r,
(P6) P<sA → P≤sA,
(P7) (P≥tA ∧ P≥sB ∧ P≥1(¬A ∨ ¬B)) → P≥min{1,t+s}(A ∨ B),
(P8) (P≤tA ∧ P<sB) → P<t+s(A ∨ B), t + s ≤ 1.

Inference Rules

(1) �!nc :!n−1c : · · · :!c : c : A where (c,A) ∈ CS and n ∈ N

(2) If T � A and T � A → B then T � B
(3) If � A then � P≥1A
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(4) If T � A → P≥s− 1
k
B, for every k ≥ 1

s and s > 0 then T � A → P≥sB

Soundness and strong completeness theorems for the logic PPJ are proved
(see [10], Theorems 11 and 22).

The ILUPJ logic has the similar semantical structure as the logic PPJ. Also,
it is clear that the semantics of the logic ILUPJ is more general, since reasoning
about upper and lower probabilities requires sets of probability measures, while
in the logic PPJ one measure per possible world is sufficient (thus they are
isomorphic to the “sets of” probability measures which are singletons).

However, the axiomatic systems are quite different. We focus on the two proof
theoretical aspects of the generalization:

1. which axioms should be added to the logic ILUPJ to reduce the proposed class
of models to the class of models isomorphic to the models for the logic PPJ

2. how can we use the added axioms to formally obtain the axiomatization of
PPJ.

As already stated, the subclass of the ILUPJ-models that contains only those
structures where the set of probability measures is a singleton set is isomorphic
to the class of PPJ-models. Thus, we add the following axiom which guarantees
that it is the case:

(Ax10) U≥rA → L≥rA. (1)

We will denote ILUPJ+Axiom (Ax10) by ILUPJExt.
It can easily be proved that the following holds (see the proof of Proposition 1

in [18]):

� U≤rA → L≤rA. (2)

From (1) and (2) follows that operators U and L have the same behavior in the
sense that for every formula A and every r ∈ Q ∩ [0, 1]

� U≥rA ↔ L≥rA. (3)

As a consequence we have that in ILUPJExt one type of operators is sufficient,
since changing one type of operator with other will lead to an equivalent formula.
For example, if we replace all the operators for lower probability with the oper-
ators of upper probability in A ≡ L≥ 1

3
U≤ 1

2
L=1(t : p), we will obtain the formula

B equivalent to A B ≡ U≥ 1
3
U≤ 1

2
U=1(t : p). It can be proved in a straightforward

manner by the induction on the complexity of a formula that this holds for any
formula. This fact allows us, without loss of generality, to consider only formulas
with the U operators in ILUPJExt.

Our aim is to prove that the set of theorems of the logic PPJ is a subset of
the set of theorems of the logic ILUPJExt. In order to prove that, we show that
all the axioms and inference rules of the logic PPJ can be inferred in the logic
ILUPJExt, where an operator P is replaced by U .
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First not that the axioms (P1)–(P6) correspond to the axioms (Ax1)–(Ax6)
and inference rules coincide as well. Our goal is to prove that the appropriate
counterparts of the axioms (P7) and (P8), i.e.,

(U7) (U≥tB ∧ U≥sC ∧ U≥1(¬B ∨ ¬C)) → U≥min{1,t+s}(B ∨ C),
(U8) (U≤tB ∧ U<sC) → U<t+s(B ∨ C), t + s ≤ 1,

follow from the axiomatization of ILUPJExt, where in that inference the essen-
tial role is played by the axioms (Ax7) and (Ax8).

In order to prove that we need the following Lemma:

Lemma 4. ILUPJExt � (U≤tB ∧ U≤sC) → U≤t+s(B ∨ C), t + s ≤ 1.

Proof. We will show that the claim can be inferred from the axiom (Ax7). Con-
sider the axiom (Ax7) for:

m = 2; n = 1, k = 0; r1 = t; r2 = s;
A1 = B; A2 = C; A = B ∨ C.

In this case we get r = t + s and therefore the Axiom (Ax7) has exactly the
shape of the required formula. We also have to check whether the formulas

A →
∨

J⊆{1,2},|J|=1

∧

j∈J

Aj

and ∨

J⊆{1,2},|J|=0

∧

j∈J

Aj

are tautologies. The first formula has the form B ∨ C → B ∨ C which is clearly
a tautology, while the second formula has the form

∧
j∈∅ Aj , and

∧
j∈∅ Aj = �

by definition and hence a tautology. ��
Theorem 7. The set of theorems of the logic PPJ is a subset of the set of
theorems of the logic ILUPJExt.

Proof. As already mentioned, we only need to prove that:

(a) ILUPPExt � (U≥tB ∧ U≥sC ∧ U≥1(¬B ∨ ¬C)) → U≥min{1,t+s}(B ∨ C),
(b) ILUPPExt � (U≤tB ∧ U<sC) → U<t+s(B ∨ C), t + s ≤ 1.

Proof of (a). First recall that the formula

(U≥tB ∧ U≥sC ∧ U≥1(¬B ∨ ¬C)) → U≥min{1,t+s}(B ∨ C)

can be written as:

(U≤1−t¬B ∧ U≤1−s¬C ∧ U≤0(B ∧ C)) → U≤1−min{1,t+s}¬(B ∨ C).

Now, consider the axiom (Ax7) for:
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m = 3; n = k = 1; r1 = 1 − t; r2 = 1 − s; r3 = 0;
A1 = ¬B; A2 = ¬C; A3 = B ∧ C; A = ¬(B ∨ C).

We obtain that r = 1 − (t + s).

(i) If t + s > 1 then (Axiom (Ax8),
∑m

i=1 ri < k)

� ¬(U≤1−t¬B ∧ U≤1−s¬C ∧ U≤0(B ∧ C)),

so � (U≤1−t¬B ∧ U≤1−s¬C ∧ U≤0(B ∧ C)) → U≤1−min{1,t+s}¬(B ∨ C)).
(ii) If t+ s ≤ 1, then 1−min{1, t+ s} = 1− (t+ s) = r and it is left to check
if

A →
∨

J⊆{1,2,3},|J|=2

∧

j∈J

Aj

and ∨

J⊆{1,2,3},|J|=1

∧

j∈J

Aj

are tautologies. Namely, in this case, the first formula has the following form:

¬(B ∨ C) → ((¬B ∧ ¬C) ∨ (¬B ∧ B ∧ C) ∨ (¬C ∧ B ∧ C)),

and the second formula:

¬B ∨ ¬C ∨ (B ∧ C).

It is obvious that both of these formulas are tautologies and therefore this
part is proved.

Proof of (b). Let us show equivalently that ILUPJExt � (U≤tB ∧ U≥t+s(B ∨
C)) → U≥sC:

� U≥t+s(B ∨ C) → U>t+s′(B ∨ C), for all s′ < s (contraposition (Ax5))
U≤tB ∧ U≥t+s(B ∨ C) � U≤tB ∧ U>t+s′(B ∨ C), for all s′ < s
U≤tB ∧ U≥t+s(B ∨ C) � U≤tB ∧ U>s′C, for all s′ < s (by Lemma 4)
U≤tB ∧ U≥t+s(B ∨ C) � U≥sC (by (IR4))
� (U≤tB ∧ U≥t+s(B ∨ C)) → U≥sC (by Deduction theorem) ��

6 Conclusion

We present a logic which allows making statements about upper and lower prob-
abilities of the justification formulas. In this framework, we can represent infor-
mation like: “t is justification that probability of A lies in the interval...” and our
formalism, the logic ILUPJ, can be used for reasoning not only about lower and
upper probabilities of a certain justification formula, but also about uncertain
belief about other imprecise probabilities. The language of our logic is modal
language which extends justification logic language with the unary operators
U≥r and L≥r, where r ranges over the unit interval of rational numbers. The
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corresponding semantics consist of the measurable Kripke models with sets of
finitely additive probability measures attached to each possible world, as well
as a function ∗ from the set of worlds to the set of all basic CS-evaluations. We
prove that the proposed axiomatic system is strongly complete with respect to
the class of measurable models.

We also provided an extension of the proposed axiomatization in order to
prove that the logic ILUPJ is a generalization of the logic PPJ for reasoning
about sharp probabilities of justification formulas from [10].

Acknowledgement. We would like to thank the anonymous reviewers whose com-
ments helped to improve the paper substantially.
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Abstract. In this paper we define an unranked nominal language, an
extension of the nominal language with tuple variables and term tuples.
We define the unification problem for unranked nominal terms and
present an algorithm solving the unranked nominal unification problem.

1 Introduction

Solving equations between logic terms is a fundamental problem with many
important applications in mathematics, computer science, and artificial intel-
ligence. It is needed to perform an inference step in reasoning systems and
logic programming, to match a pattern to an expression in rule-based and func-
tional programming, to extract information from a document, to infer types in
programming languages, to compute critical pairs while completing a rewrite
system, to resolve ellipsis in natural language processing, etc. Unification and
matching are well-known techniques used in these tasks.

Unification (as well as matching) is a quite well-studied topic for the case
when the equality between function symbols is precisely defined. This is the
standard setting. There is quite some number of unification algorithms whose
complexities range from exponential [34] to linear [31]. Besides, many extensions
and generalizations have been proposed. Those relevant to our interests are equa-
tional unification (more precisely, associative unification with unit element) (see,
e.g., [7]), word unification [10,17,29], and sequence unification [22,25,26]. There
are some good surveys on unification [8,11,18,19].

Nominal logic [12,33] extends first-order logic with primitives for renaming
via name-swapping, for freshness of names, and for name-binding. Such kind of
constructs are important in meta-programming and meta-deduction. Nominal
logic provides a simple formalism for reasoning about abstract syntax modulo
α-equivalence. A nominal term a.t is an example of abstraction, binding every
occurrence of atom a in t. Term equality (t ≈ t′) in nominal language is con-
sidered modulo renaming of bound variables (atoms), i.e., it is α-equivalence,
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formalized inside the language itself. The α-equivalence is a meta-relation in
first-order syntax, but it is formulated at the object level in nominal languages.
For such formulations it is important to explicitly define which atom can be
considered as a new atom for a given term. This relation (a#t), called freshness
relation, is also formulated on the object level in nominal languages.

Solving equations between nominal terms needs a special unification algo-
rithm [39], which is first-order, but can be also seen from the higher-order per-
spective via mapping from/to higher-order pattern unification [28]. The standard
nominal language contains fixed-arity symbols and one kind of variable, corre-
sponding to individual variables from first-order syntax. In nominal languages, a
unification problem, e.g. a.x ≈? b.y, is solved by a pair 〈{b#x}, {y �→ (a b) · x}〉.
The first component of the solution, the freshness constraint b#x, requires that
b should not occur free in any possible instantiation of x. The second component,
the substitution, tells us that the solution must replace the variable y with the
term (a b) ·x. The latter means that atoms a and b are swapped in every possible
instantiation of x.

As we mentioned above, the constructs provided by nominal logic are impor-
tant for meta-deduction. However, this formalism, as well as many representation
formats for formalized mathematics typically do not provide a structural analog
for ellipses (. . . ) which are commonly used in mathematical texts [14,15]. In the
literature, the latter problem has been addressed by permitting unranked (also
known as variadic, flexary, or flexible arity) symbols in the language, introducing
sequences in the meta-level, and extending the language with sequence variables,
see, e.g., [15,20,21,24].

In this paper we present a combination of these two approaches, extending
nominal languages by unranked symbols and studying the fundamental compu-
tational mechanism for them: unification. However, unlike the above mentioned
unranked languages, where sequences are introduced in the meta-level, nomi-
nal syntax allows us to introduce their analogs in the object level. This is done
by generalizing already existing syntactic constructs, pairs, to arbitrary tuples.
They should be flat, which is achieved by imposing a special α-equivalence rule
for them.

Term pairs, which are a part of nominal syntax in some papers (e.g., [2,39])
have been extended to term tuples in [3,4], but our approach differs in that we
additionally introduce variables that can be instantiated by tuples (tuple vari-
ables, that resemble sequence variables), and the mentioned notion of flatness.

The paper is organized as follows: In Sect. 2, we define the language. The
unification rules and a strategy that guarantees soundness and tries to minimize
redundant computations are discussed in Sect. 3. Some terminating fragments
of unranked nominal unification are introduced in Sect. 4. In Sect. 5, we discuss
related problems and explain our design choices. Section 6 concludes.

2 Unranked Nominal Language

In our signature we have pairwise disjoint sets of atoms (a, b, . . .), function sym-
bols (f, g, . . .), individual variables (x, y, . . .), tuple variables (X,Y, . . .), and the
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tuple constructor 〈〉. Permutations are a finite (possibly empty) sequence of
swappings, which are pairs of atoms (a b). We use π to denote permutations,
write id for the identity (empty) permutation and π1 ◦ π2 for concatenating two
permutations.

An unranked nominal term (t, s, . . ., shortly a term) is either an individual
term r, a tuple variable with a suspended permutation π ·X, or a possibly empty
tuple of terms 〈t1, . . . , tn〉:

t ::= r | π · X | 〈t1, . . . , tn〉, n ≥ 0,

where individual terms are defined by the grammar

r ::= a | a.t | π · x | f〈t1, . . . , tn〉, n ≥ 0.

We will write t : ι to indicate that t is an individual term. The terms π ·x and
π · X are called suspensions. We skip π if π = id . The inverse of a permutation
π, denoted by π−1, is obtained by reversing the list of swappings from π.

Permutation action on terms is defined as follows:

– id · a = a.

– ((a1 a2) ◦ π) · a =

⎧
⎨

⎩

a1, if π · a = a2,
a2, if π · a = a1,
π · a, otherwise.

– π · (a.t) = (π · a).(π · t).
– π · (π′ · x) = (π ◦ π′) · x and π · (π′ · X) = (π ◦ π′) · X.
– π · (f〈t1, . . . , tn〉) = f(π · 〈t1, . . . , tn〉), and
– π · 〈t1, . . . , tn〉 = 〈π · t1, . . . , π · tn〉.

The disagreement set of two permutations π and π′ is defined as ds(π, π′) ::=
{a | π · a 	= π′ · a}. Further, we often omit expressions like a 	= b, assuming that
atoms differ by their names.

Substitution is a mapping from individual variables to individual terms and
from tuple variables to tuples such that all but finitely many individual vari-
ables are mapped to themselves, and all but finitely many tuple variables are
mapped to singleton tuples consisting of that variable only (i.e., mapping X to
〈X〉). They are usually written as finite sets, e.g., [x1 �→ t1, . . . , xn �→ tn,X1 �→
〈t11, . . . , t1n1〉, . . . , Xm �→ 〈tm1, . . . , tmnm

〉]. We use the letter σ for substitutions
in general and ε for the identity substitution, i.e., ε(x) = x and ε(X) = 〈X〉 for
all individual and tuple variables x and X.

Application of a substitution σ to a term t is defined as follows:

– aσ = a.
– (a.t)σ = a.tσ.
– (f〈t1, . . . , tn〉)σ = f〈t1, . . . , tn〉σ.
– 〈t1, . . . , tn〉σ = 〈t1σ, . . . , tnσ〉, where nested tuples are flattened.
– (π · x)σ = π · σ(x) and (π · X)σ = π · σ(X), where π acts on σ(x) and σ(X)

as permutation action.
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For instance, for a substitution

σ = [x �→ f〈b.b〉, X �→ 〈a, f〈c.c, (a c) · Z〉〉, Y �→ 〈〉]

we have

a.f〈(a b) · x, (a b) · X, (a b) · Y 〉σ = a.f〈f〈a.a〉, b, f〈c.c, (a b)(a c) · Z〉〉.

A freshness environment (denoted by ∇) is a list of freshness constraints
a#x and a#X, meaning that the instantiations of x and X cannot contain free
occurrences of a. The flatness property of tuples is formalized by the axiom
≈ -flat. (where n ≥ 0, k ≥ 0,m ≥ 0).

The equivalence (≈) is defined by the following rules:

≈ -unit∇ � 〈〉 ≈ 〈〉 ≈ -atom∇ � a ≈ a

≈ -flat∇ � 〈t1, . . . , tn, 〈t′1, . . . , t′k〉, t′′1 , . . . , t′′m〉 ≈ 〈t1, . . . , tn, t′1, . . . , t
′
k, t′′1 , . . . , t′′m〉

∇ � t1 ≈ t′1 . . . ∇ � tn ≈ t′n ≈ -tuple∇ � 〈t1, . . . , tn〉 ≈ 〈t′1, . . . , t′n〉
∇ � 〈t1, . . . , tn〉 ≈ 〈t′1, . . . , t′n〉 ≈ -application∇ � f〈t1, . . . , tn〉 ≈ f〈t′1, . . . , t′n〉

t ≈ t′ ≈ -abst.1∇ � a.t ≈ a.t′
∇ � t ≈ (a b) · t′ ∇ � a#t′ ≈ -abst.2∇ � a.t ≈ b.t′

a#x ∈ ∇ for all a ∈ ds(π, π′) ≈ -susp.1∇ � π · x ≈ π′ · x

a#X ∈ ∇ for all a ∈ ds(π, π′) ≈ -susp.2∇ � π · X ≈ π′ · X

and the freshness predicate (#) is defined by:

#-unit∇ � a#〈〉
∇ � a#t1 . . . ∇ � a#tn #-tuple∇ � a#〈t1, . . . , tn〉

#-atom∇ � a#b
∇ � a#〈t1, . . . , tn〉

#-application∇ � a#f〈t1, . . . , tn〉

#-abst.1∇ � a#a.t
∇ � a#t

#-abst.2∇ � a#b.t

(π−1 · a#x) ∈ ∇
#-susp.1∇ � a#π · x

(π−1 · a#X) ∈ ∇
#-susp.2∇ � a#π · X

Proposition 1. Given a freshness context ∇, a permutation π, an atom a and
a term t, we have:
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(1) If ∇ � a#π · t then ∇ � π−1 · a#t.
(2) If ∇ � π · a#t then ∇ � a#π−1 · t.
(3) If ∇ � a#t then ∇ � π · a#π · t.

Proof. Using induction on the structure of t and the fact that π · a = b iff
a = π−1 · b. The last statement is the consequence of (2) and the fact that
permutations are bijections on atoms. �

The size of a term t, denoted by |t|, is defined by:

|π · x| = |π · X| = |a| = |〈〉| = 1, |a.t| = 1 + |t|,
|f〈t1, . . . , tn〉| = 1 + |〈t1, . . . , tn〉|, |〈t1, . . . , tn〉| = 1 + |t1| + . . . + |tn|.

Further, we define the size of an equation as |t ≈ t′| = |t| + |t′| and the size of a
freshness constraint as |a#t| = |t|.
Theorem 1. ≈ is an equivalence relation.

Proof. Similar to the corresponding results from [5,39].

– Reflexivity is by a simple induction on the structure of terms.
– Transitivity is by an induction on the size of terms using the properties:

• permutations can be moved from one side of the freshness relation to the
other by forming the inverse permutation (Proposition 1).

• the freshness relation is preserved under ≈ and permutation actions.
– Symmetry is by a simple induction on the structure of terms using the Propo-

sition 1 and preservation of freshness under alpha-equivalence.
�

3 Unification

An unranked nominal unification problem P is a finite set of equational t ≈? t′ or
freshness problems a#?t. Tuples occurring in the unification problem are always
flattened (e.g. after substitution application, etc.). A solution for P is a pair
(∇, σ) such that for all problems t ≈? t′ in P we have ∇ � σ(t) ≈ σ(t′) and for
all problems a#?t in P we have ∇ � a#σ(t).

To describe the unification algorithm we use so called labeled transformation
of unification problems: P

σ=⇒ P ′ and P
∇=⇒ P ′ which are given below (note

that if in ≈-susp.1,2 π = π′, then ds(π, π′) and thus {a#?x,X | a ∈ ds(π, π′)}
is empty; V (t) denotes the set of variables occurring in t):

(≈? -atom) {a ≈? a} ∪ P
ε=⇒ P.

(≈? -unit) {〈〉 ≈? 〈〉} ∪ P
ε=⇒ P.

(≈? -function) {f〈t1, . . . , tn〉 ≈? f〈t′1, . . . , t′m〉} ∪ P
ε=⇒

{〈t1, . . . , tn〉 ≈? 〈t′1, . . . , t′m〉} ∪ P.
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(≈? -abst.1) {a.t ≈? a.t′} ∪ P
ε=⇒ {t ≈? t′} ∪ P.

(≈? -abst.2) {a.t ≈? b.t′} ∪ P
ε=⇒ {t ≈? (a b) · t′, a#?t′} ∪ P.

(≈? -susp.1) {π · x ≈? π′ · x} ∪ P
ε=⇒ {a#?x | a ∈ ds(π, π′)} ∪ P.

(≈? -susp.2) {π · X ≈? π′ · X} ∪ P
ε=⇒ {a#?X | a ∈ ds(π, π′)} ∪ P.

(≈? -tuple) {〈t, t1, . . . , tn〉 ≈? 〈t′, t′1, . . . , t′m〉} ∪ P
ε=⇒

{t ≈ t′, 〈t1, . . . , tn〉 ≈? 〈t′1, . . . , t′m〉} ∪ P,

where t and t′ are not tuple variables.

(≈? -proj.1) {〈π · X, t1, . . . , tn〉 ≈? 〈t′1, . . . , t′m〉} ∪ P
σ=⇒

{〈t1σ, . . . , tnσ〉 ≈? 〈t′1σ, . . . , t′mσ〉} ∪ Pσ,

where σ = [X �→ 〈〉].
(≈? -proj.2) {〈t1, . . . , tn〉 ≈? 〈π · X, t′1, . . . , t

′
m〉} ∪ P

σ=⇒
{〈t1σ, . . . , tnσ〉 ≈? 〈t′1σ, . . . , t′mσ〉} ∪ Pσ,

where σ = [X �→ 〈〉].
(≈? -widen.1) {〈π · X, t1, . . . , tn〉 ≈? 〈t, t′1, . . . , t′m〉} ∪ P

σ=⇒
{〈X ′, t1σ, . . . , tnσ〉 ≈? 〈t′1σ, . . . , t′mσ〉} ∪ Pσ,

where σ = [X �→ π−1 · 〈t,X ′〉],X 	∈ V (t).

(≈? -widen.2) {〈t, t1, . . . , tn〉 ≈? 〈π · X, t′1, . . . , t
′
m〉} ∪ P

σ=⇒
{〈t1σ, . . . , tnσ〉 ≈? 〈X ′, t′1σ, . . . , t′mσ〉} ∪ Pσ,

where σ = [X �→ π−1 · 〈t,X ′〉],X 	∈ V (t).

(≈? -var.1) {π · x ≈? t : ι} ∪ P
σ=⇒ Pσ,

where σ = [x �→ π−1 · t], x 	∈ V (t).

(≈? -var.2) {t : ι ≈? π · x} ∪ P
σ=⇒ Pσ,

where σ = [x �→ π−1 · t], x 	∈ V (t).

(≈? -var.3) {π · X ≈? t} ∪ P
σ=⇒ Pσ,

where σ = [X �→ 〈π−1 · t〉],X 	∈ V (t).

(≈? -var.4) {t ≈? π · X} ∪ P
σ=⇒ Pσ,

where σ = [X �→ 〈π−1 · t〉],X 	∈ V (t).

(#?-atom) {a#?b} ∪ P
∅=⇒ P.

(#?-unit) {a#?〈〉} ∪ P
∅=⇒ P.
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(#?-tuple) {a#?〈t1, . . . , tn〉} ∪ P
∅=⇒ {a#?t1, . . . , a#?tn} ∪ P.

(#?-function) {a#?f〈t1, . . . , tn〉} ∪ P
∅=⇒ {a#?〈t1, . . . , tn〉} ∪ P.

(#?-abst.1) {a#?a.t} ∪ P
∅=⇒ P.

(#?-abst.2) {a#?b.t} ∪ P
∅=⇒ {a#?t} ∪ P.

(#?-susp.1) {a#?π · x} ∪ P
∇=⇒ P, where ∇ = {π−1 · a#x}.

(#?-susp.2) {a#?π · X} ∪ P
∇=⇒ P, where ∇ = {π−1 · a#X}.

The naive algorithm, as presented in [28], is divided into two phases: first
apply as many σ=⇒ transformations as possible. It might cause branching due
to tuple variables. On some branches, there might be no equational problems
left. We expand them by ∇=⇒ transformations as long as possible. If we do not
end up with the empty problem, then halt with failure, otherwise from the
sequence of transformations P

σ1=⇒ · · · σn=⇒ P ′ ∇1=⇒ · · · ∇m=⇒ ∅ construct the
solution (∇1 ∪ · · · ∪ ∇m, σn ◦ · · · ◦ σ1). Some branches might directly lead to
failure after application of σ=⇒ rules. Some branches might cause more and more
branching, leading to infinite sets of solutions. Employing some fair strategy of
search tree development, we can have a complete method to enumerate them.

Example 1. We give examples of some unification problems and their solutions:

– Problem: {f〈a.〈X,x, Y 〉〉 ≈? f〈b.〈f〈X〉, x, b, c〉〉}.
Solution: (∅, [X �→ 〈〉, x �→ f〈〉, Y �→ 〈f〈〉, a, c〉]).

– Problem: {a.b.f〈X, b〉 ≈? b.a.f〈a,X〉}.
Solution: (∅, [X �→ 〈〉]).

– Problem: {f〈X, a〉 ≈? f〈a, Y 〉}.
Solutions: (∅, [X �→ 〈〉, Y �→ 〈〉]) and (∅, [X �→ 〈a, Z〉, Y �→ 〈Z, a〉]).
If instead of Y we had X, then there would be infinitely many solutions:
(∅, [X �→ 〈〉]), (∅, [X �→ 〈a〉]), (∅, [X �→ 〈a, a〉]), . . ..

– Problem: {a.f〈X, a〉 ≈? b.f〈b,X〉}.
Solution: (∅, [X �→ 〈〉]).

– Problem: {a.f〈X, a〉 ≈? b.f〈b, Y 〉}.
Solutions: (∅, [X �→ 〈〉,Y �→ 〈〉]) and ({b#Z}, [X �→ 〈a, Z〉, Y �→ 〈(a b)·Z, b〉]).

– Problem: {a.f〈X, c〉 ≈? b.f〈c, Y 〉}.
Solutions: (∅, [X �→ 〈〉, Y �→ 〈〉]) and ({b#Z}, [X �→ 〈c, Z〉, Y �→ 〈(a b)·Z, c〉]).

– Problem: {f〈X,Y 〉 ≈? f〈a, b,X〉, b#X}.
Solutions: (∅, [X �→ 〈〉, Y �→ 〈a, b〉]) and (∅, [X �→ 〈a〉, Y �→ 〈b, a〉]).
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Without b#X, the problem {f〈X,Y 〉 ≈? f〈a, b,X〉} has infinitely many solu-
tions: (∅, [X �→ 〈〉, Y �→ 〈a, b〉]), (∅, [X �→ 〈a〉, Y �→ 〈b, a〉]), (∅, [X �→ 〈a, b〉,
Y �→ 〈a, b〉]), (∅, [X �→ 〈a, b, a〉, Y �→ 〈b, a〉]), (∅, [X �→ 〈a, b, a, b〉, Y �→ 〈a, b〉]),
(∅, [X �→ 〈a, b, a, b, a〉, Y �→ 〈b, a〉]), . . ..
The naive algorithm, described above, can be non-terminating even when

there is a finite number of solutions. This is illustrated by the following example.

Example 2. Let us consider the following unification problem:

{a.f〈X, a〉 ≈? b.f〈b,X〉} =⇒≈?-abst.2

{f〈X, a〉 ≈? f〈a, (a b) · X〉, a#?f〈b,X〉} =⇒≈?-function

{〈X, a〉 ≈? 〈a, (a b) · X〉, a#?f〈b,X〉}

Now, we can apply ≈? -proj.1 rule (followed by ≈? -atom and several ∇=⇒ trans-
formations) to obtain a solution (∅, [X �→ 〈〉]).

When we apply ≈? -widen.1 rules, we get non-terminating branch:

{〈X, a〉 ≈? 〈a, (a b) · X〉, a#?f〈b,X〉} [X �→〈a,X1〉]
=⇒

{〈X1, a〉 ≈? 〈b, (a b) · X1〉, a#?f〈b, a,X1〉} [X1 �→〈b,X2〉]
=⇒

{〈X2, a〉 ≈? 〈a, (a b) · X2〉, a#?f〈b, a, b,X2〉} =⇒ · · ·

But we could apply ∇=⇒ transformations on a subset {a#?f〈b, a,X1〉}, obtain
{a#?a, a#?X1} and stop with failure since a#?a has no solution.

An obvious attempt to fix the problem for such cases would be to delay appli-
cation of the ≈? -widen.1 and ≈? -widen.2 rules until all possible ∇=⇒ transforma-
tions are applied. But we should be careful not to remove freshness constraints
from the problems too early.

Consider the following example: {a ≈? x, a#?x}. If we apply the #?-susp.1
rule first and then ≈? -var.2, we will obtain a wrong solution ({a#x}, [x �→ a]).
Thus, we should delay application of the #?-susp.1 and #?-susp.2 rules until all
possible σ=⇒ transformations are applied.

The discussion above leads to the following strategy S:

– first apply as many σ=⇒ transformations as possible except the ≈? -proj.1, 2
and ≈? -widen.1, 2 rules.

– if no other σ=⇒ transformation is possible, ≈? -proj.1, 2 and ≈? -widen.1, 2 rules
can be applied in parallel. However, before the ≈? -widen.1 and ≈? -widen.2
rules, one should apply as many ∇=⇒ transformations as possible except the
#?-susp.1 and #?-susp.2 rules.

– use #?-susp.1 and #?-susp.2 rules if no other rules are applicable.
– If there is at least one equational problem in P such that no transformation

rule is applicable on it, immediately halt the development of that branch with
failure.
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Theorem 2. Given a unification problem P , if the unranked unification algo-
rithm with the strategy S fails on P , then P has no solution; and if it succeeds
on P , then the result is a unifier.

Proof. The idea is that mixing equational and freshness rules except #?-susp.1, 2
does not cause soundness problems, since those freshness rules do not affect
variables. Parallel application of widening and projection rules together with
the iteration of the strategy make sure that no solution is lost (cf. Theorem 51
in [22]).

For a unification problem P , the strategy S fails on P if there is at least one
of the following pairs a ≈? b, b ≈? a, a ≈? 〈〉, 〈〉 ≈? a, a#?a in P ′, obtained
by applying simplification rules to P , or there is an occurs check violation in
≈? -var rules. Clearly, P has no solution in these cases.

If the strategy S succeeds on P , then we get a result (∇1 ∪ · · · ∪∇n, σ1 ◦ · · · ◦
σm). The proof continues by simple induction on transitions with the following
induction hypothesis:

– If P
σ=⇒ P ′ and (∇, σ′) is a unifier for P ′, then (∇, σ ◦ σ′) is a unifier for P .

– If P
∇=⇒ P ′ and (∇′, σ) is a unifier for P ′, then (∇ ∪ ∇′, σ) is a unifier for P .

�
Example 3. We demonstrate how the strategy works on a unification problem.

{a.f〈X,x, Y, f〈y, x〉〉 ≈? b.f〈g〈X〉, x, b, Z, f〈g〈X〉, y〉〉} =⇒≈?-abst.2

{f〈X,x, Y, f〈y, x〉〉 ≈?

f〈g〈(a b) · X〉, (a b) · x, a, (a b) · Z, f〈g〈(a b) · X〉, (a b) · y〉〉,
a#?f〈g〈X〉, x, b, Z, f〈g〈X〉, y〉〉} =⇒≈?-function

{〈X,x, Y, f〈y, x〉〉 ≈?

〈g〈(a b) · X〉, (a b) · x, a, (a b) · Z, f〈g〈(a b) · X〉, (a b) · y〉〉,
a#?f〈g〈X〉, x, b, Z, f〈g〈X〉, y〉〉} [X �→〈〉]

=⇒≈?-proj.1

Note, that at this point ≈? -widen.1 is not applicable because of occurs check:
X ∈ V (g〈(a b) · X〉).

{〈x, Y, f〈y, x〉〉 ≈? 〈g〈〉, (a b) · x, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?f〈g〈〉, x, b, Z, f〈g〈〉, y〉〉} =⇒≈?-tuple

{x ≈? g〈〉, 〈Y, f〈y, x〉〉 ≈? 〈(a b) · x, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?f〈g〈〉, x, b, Z, f〈g〈〉, y〉〉} [x�→g〈〉]

=⇒≈?-var.1

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?f〈g〈〉, g〈〉, b, Z, f〈g〈〉, y〉〉}.
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Now, we have two branches: (a) continue again with ≈? -proj.1, followed by
≈? -tuple and several ∇=⇒ transformations (given also below), leading to the
failure; and (b) continue with the ∇=⇒ transformations followed by ≈? -widen.1:

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?f〈g〈〉, g〈〉, b, Z, f〈g〈〉, y〉〉} =⇒#?-function

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?〈g〈〉, g〈〉, b, Z, f〈g〈〉, y〉〉} =⇒#?-tuple

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?g〈〉, a#?b, a#?Z, a#?f〈g〈〉, y〉} =⇒#?-function,tuple

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?g〈〉, a#?b, a#?Z, a#?y} =⇒#?-function,unit,atom

{〈Y, f〈y, g〈〉〉〉 ≈? 〈g〈〉, a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?Z, a#?y} [Y �→〈g〈〉,Y1〉]

=⇒≈?-widen.1

{〈Y1, f〈y, g〈〉〉〉 ≈? 〈a, (a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?Z, a#?y} [Y1 �→〈a,Y2〉]

=⇒≈?-widen.1

{〈Y2, f〈y, g〈〉〉〉 ≈? 〈(a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?Z, a#?y}.

Note that before the last ≈? -widen.1 rule application we should have the
≈? -proj.1 branch again leading to the failure.

Now, at this point we have several options:
(1) apply ≈? -proj.1 rule

{〈Y2, f〈y, g〈〉〉〉 ≈? 〈(a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?Z, a#?y} [Y2 �→〈〉]

=⇒≈?-proj.1

{〈f〈y, g〈〉〉〉 ≈? 〈(a b) · Z, f〈g〈〉, (a b) · y〉〉, a#?Z, a#?y} [Z �→〈〉]
=⇒≈?-proj.2

{〈f〈y, g〈〉〉〉 ≈? 〈f〈g〈〉, (a b) · y〉〉, a#?〈〉, a#?y} =⇒≈?-tuple,function

{〈y, g〈〉〉 ≈? 〈g〈〉, (a b) · y〉, a#?〈〉, a#?y} =⇒≈?-tuple

{y ≈? g〈〉, g〈〉 ≈? (a b) · y, 〈〉 ≈? 〈〉, a#?〈〉, a#?y} [y �→g〈〉]
=⇒≈?-var.1

{g〈〉 ≈? g〈〉, 〈〉 ≈? 〈〉, a#?〈〉, a#?g〈〉} =⇒≈?-function,unit

{a#?〈〉, a#?g〈〉} =⇒#?-function,unit

∅.
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and we obtain the solution (∅, [X �→ 〈〉, x �→ g〈〉, Y �→ 〈g〈〉, a〉, Z �→ 〈〉, y �→ g〈〉]).
Note, that application of ≈? -widen.2 instead of ≈? -proj.2 rule in this branch
will lead to failure.

(2) applying ≈? -proj.2 rule first is similar to (1), obtaining the same solution.
(3) apply ≈? -widen.1 rule

{〈Y2, f〈y, g〈〉〉〉 ≈? 〈(a b) · Z, f〈g〈〉, (a b) · y〉〉,
a#?Z, a#?y} [Y2 �→〈(a b)·Z,Y3〉]

=⇒≈?-widen.1

{〈Y3, f〈y, g〈〉〉〉 ≈? 〈f〈g〈〉, (a b) · y〉〉, a#?Z, a#?y} [Y3 �→〈〉]
=⇒≈?-proj.1

{〈f〈y, g〈〉〉〉 ≈? 〈f〈g〈〉, (a b) · y〉〉, a#?Z, a#?y} =⇒≈?-tuple,function

{y ≈? g〈〉, g〈〉 ≈? (a b) · y, 〈〉 ≈? 〈〉, a#?Z, a#?y} [y �→g〈〉]
=⇒≈?-var.1

{g〈〉 ≈? g〈〉, 〈〉 ≈? 〈〉, a#?Z, a#?g〈〉} =⇒≈?-function,unit

{a#?Z, a#?g〈〉} =⇒#?-function,unit

{a#?Z} {a#Z}
=⇒#?-susp.2

∅

and we obtain the solution ({a#Z}, [X �→ 〈〉, x �→ g〈〉, Y �→ 〈g〈〉, a,
(a b) · Z〉, y �→ g〈〉]). Note, that application of ≈? -widen.1 again instead of
≈? -sfproj.1 rule in this branch will lead to failure.

(4) applying ≈? -widen.2 rule first is similar to (3), obtaining the equivalent
solution ({a#Y2}, [X �→ 〈〉, x �→ g〈〉, Y �→ 〈g〈〉, a, Y2〉, Z �→ (a b) · Y2, y �→ g〈〉])
(up to renaming of the variables).

It is clear from the example above that our algorithm is not minimal in the
sense that it computes the same or equivalent solutions several times. Finding
restrictions to achieve minimality is a topic for further research.

4 Terminating Fragments

Strategy S helps to detect failures early, trying to avoid redundant computations.
However, it can not guarantee termination, even when the solution set is finite.
It is not surprising, since the strategy does not provide the decision algorithm
for unranked nominal unification.

In this section we consider three special cases for which the strategy termi-
nates. They originate from (non-nominal) unranked unification problems with
finite sets of most general unifiers [27] and, hence, keep the same property for
nominal unranked unification. Characterizations of termination based on fresh-
ness constraints require further investigation.
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The KIF Fragment. In this fragment, every occurrence of tuple variables is in
the last argument of a tuple. The name originates from Knowledge Interchange
Format (KIF), a language designed for representing and sharing information
between disparate computer systems [13]. In KIF, the variables that correspond
to our tuple variables are allowed to occur only as the last arguments in terms.
This is a so-called unitary fragment: solvable unification problems have a single
most general unifier. This property makes it suitable for reasoning, see, e.g.,
[16,20,30]. We can simplify the widening rules for this fragment. Instead of
stepwise computation of the substitution, we can at once replace a tuple variable
with the entire tuple in the other side of the equation:

(≈? -widen.KIF.1) {〈π · X〉 ≈? 〈t′1, . . . , t′m〉} ∪ P
σ=⇒ Pσ, where m ≥ 0,

σ = [X �→ π−1 · 〈t′1, . . . , t′m〉], and X 	∈ V (〈t′1, . . . , t′m〉).
The second widening rule is adapted analogously, and the projection rules can
be dropped as they are subsumed with these KIF-specific widening rules.

Example 4. We illustrate how the KIF-adapted rules are used to solve a unifi-
cation problem in this fragment.

{f〈a.f〈a,X〉, g〈x, y,X〉, Y 〉 ≈?

f〈b.f〈b, x, Y 〉, g〈b, Z〉, U〉} =⇒≈?-function,tuple

{a.f〈a,X〉 ≈? b.f〈b, x, Y 〉,
〈g〈x, y,X〉, Y 〉 ≈? 〈g〈b, Z〉, U〉} =⇒≈?-abst.2,tuple

{f〈a,X〉 ≈? f〈a, (a b) · x, (a b) · Y 〉, 〈Y 〉 ≈? 〈U〉,
g〈x, y,X〉 ≈? g〈b, Z〉, a#?f〈b, x, Y 〉} =⇒≈?-function,tuple,atom

{〈X〉 ≈? 〈(a b) · x, (a b) · Y 〉, g〈x, y,X〉 ≈? g〈b, Z〉,
〈Y 〉 ≈? 〈U〉, a#?f〈b, x, Y 〉} =⇒≈?-function,tuple

{〈X〉 ≈? 〈(a b) · x, (a b) · Y 〉, x ≈? b, 〈y,X〉 ≈? 〈Z〉,

〈Y 〉 ≈? 〈U〉, a#?f〈b, x, Y 〉} [x �→b]
=⇒≈?-var.1

{〈X〉 ≈? 〈a, (a b) · Y 〉, 〈y,X〉 ≈? 〈Z〉, 〈Y 〉 ≈? 〈U〉,
a#?f〈b, b, Y 〉} =⇒#?-function,tuple,atom

{〈X〉 ≈? 〈a, (a b) · Y 〉, 〈y,X〉 ≈? 〈Z〉, 〈Y 〉 ≈? 〈U〉,

a#?Y } [X �→〈a,(a b)·Y 〉]
=⇒≈?-widen.KIF.1

{〈y, a, (a b) · Y 〉 ≈? 〈Z〉, 〈Y 〉 ≈? 〈U〉, a#?Y } [Z �→〈y,a,(a b)·Y 〉]
=⇒≈?-widen.KIF.2

{〈Y 〉 ≈? 〈U〉, a#?Y } [Y �→〈U〉]
=⇒≈?-widen.KIF.1

{a#?U} {a#U}
=⇒≈?-susp.2

∅.
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Hence, the algorithm returns a most general unifier

({a#U}, [X �→ 〈a, (a b) · U〉, x �→ b, Z �→ 〈y, a, (a b) · U〉, Y �→ 〈U〉]).

Linear Fragment. Unification problems in which no variable occurs more than
once are called linear. Unlike the KIF fragment, here there are unification prob-
lems that have more than one, but still finitely many solutions. For the linear
fragment we can simplify the unification rules. For instance, in the rules that
eliminate variables (proj, widen, var), the substitution σ does not have to apply
to the whole P , because the eliminated variable can not have any other occur-
rence in the remaining unification equations. It may occur only in the freshness
constraints and it is sufficient to apply σ only to them. Besides, the occurrence
check does not have to be performed. The ≈? -susp.1 and ≈? -susp.2 rules never
apply. The following is an example of linear unranked nominal unification.

Example 5. Let the unification problem be {a.f〈X, a〉 ≈? b.f〈b, Y 〉}. Then we
have two derivations. The first one is:

{a.f〈X, a〉 ≈? b.f〈b, Y 〉} =⇒≈?-abst.2,function

{〈X, a〉 ≈? 〈a, (a b) · Y 〉, a#?f〈b, Y 〉} =⇒#?-function,tuple,atom

{〈X, a〉 ≈? 〈a, (a b) · Y 〉, a#?Y } [X �→〈〉]
=⇒≈?-proj.1

{〈a〉 ≈? 〈a, (a b) · Y 〉, a#?Y } =⇒≈?-tuple,atom

{〈〉 ≈? 〈(a b) · Y 〉, a#?Y } [Y �→〈〉]
=⇒≈?-proj.2,unit

{a#?〈〉} =⇒#?-unit

∅.

It leads to the solution (∅, [X �→ 〈〉, Y �→ 〈〉]).
The second derivation is

{a.f〈X, a〉 ≈? b.f〈b, Y 〉} =⇒≈?-abst.2,function

{〈X, a〉 ≈? 〈a, (a b) · Y 〉, a#?f〈b, Y 〉} =⇒#?-function,tuple,atom

{〈X, a〉 ≈? 〈a, (a b) · Y 〉, a#?Y } [X �→〈a,X1〉]
=⇒≈?-widen.1

{〈X1, a〉 ≈? 〈(a b) · Y 〉, a#?Y } [Y �→〈(a b)·X1,(a b)·Y1〉]
=⇒≈?-widen.2

{〈a〉 ≈? 〈Y1〉, a#?〈(a b) · X1, (a b) · Y1〉} =⇒#?-tuple

{〈a〉 ≈? 〈Y1〉, a#?(a b) · X1, a#
?(a b) · Y1} [Y1 �→〈a,Y2〉]

=⇒≈?-widen.2

{〈〉 ≈? 〈Y2〉, a#?(a b) · X1, a#
?〈b, (a b) · Y2〉} [Y2 �→〈〉]

=⇒≈?-proj.2,unit

{a#?(a b) · X1, a#
?〈b〉} {b#X1}

=⇒#?-susp.2,tuple,atom

∅.
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From this derivation, we get the second unifier ({b#X1}, {X �→ 〈a,X1〉,
Y �→ 〈(a b) · X1, b〉}).

Matching Fragment. Matching equations are those in which variables may occur
only in one side, e.g., left. In this case, we can skip the occurrence check in
variable elimination rules. The ≈? -susp.1, 2 and ≈? -susp.2 rules never apply. If
the given problem does not contain freshness constraints, they will not appear
in the result either.

Example 6. The matching problem {f〈X,x, Y, (c d)·x,Z〉 ≈? f〈a, b.b, c, a.a, b, d〉}
has two solutions (∅, {X �→ 〈a〉, x �→ b.b, Y �→ 〈c〉, Z �→ 〈b, d〉}) and (∅, {X �→
〈a, b.b〉, x �→ c, Y �→ 〈a.a, b〉, Z �→ 〈〉}).

Theorem 3. The strategy S for unranked unification algorithm is terminating
in the KIF, linear, and matching fragments.

Proof. For a unification problem P , the measure of the size of P is a tuple of
natural numbers (nx, nX , n≈, n#), where nx is the number of different individual
variables occurring in P , nX is the number of different tuple variables occurring
in P , n≈ is the total size of all equational problems in P and n# is the total size
of all freshness problems in P .

nx and nX values are decreased by the ≈? -var rules and all ∇=⇒ transfor-
mations are decreasing n#. Analogously, in general, all σ=⇒ transformations are
decreasing n≈, except the ≈? -tuple, ≈? -widen.1 and ≈? -widen.2 rules. Clearly,
≈? -tuple can be applied only finitely many times, since tuples are finite. Next,
it is easy to see that in the specific cases ≈? -widen.1 and ≈? -widen.2 rules are
also decreasing n≈:

– if P is a unification problem from KIF-fragment, then ≈? -widen.1, 2 and
≈? -proj.1, 2 rules are replaced by ≈? -widen.KIF.1, 2 which are decreasing n≈
(and nX as well).

– if P is a unification problem from linear fragment, then every tuple variable
occurs only once in P , thus ≈? -widen.1, 2 rules are decreasing n≈.

– if P is a matching problem, then there is no tuple variables on the other side,
thus ≈? -widen.1, 2 rules are decreasing n≈ in this case as well.

�

5 Discussion

Both nominal and unran4ked languages are important for formalizing informal
mathematical practice. In nominal languages, one can represent and reason with
syntax involving explicitly named bound variables. In unranked languages, one
can express and formalize variadic operators and ellipsis that are ubiquitous
in mathematical practice. By bringing these two formalisms together, one can
get the best of both worlds, aiming at a combination of nominal and unranked
logical frameworks. Methods for solving term equations, such as unification and
matching, are the core computational mechanism for deduction, rewriting, and
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programming in such frameworks. Our work makes a step in this direction,
providing a procedure that combines nominal and unranked features.

Unranked function symbols look similar to associative function symbols with
unit element (A1 symbols). The associativity axiom (for a symbol f) can be
expressed as f〈f〈x, y〉, z〉 ≈ f〈x, f〈y, z〉〉 and that e is the unit element of f can
be written as f〈x, e〉 ≈ x and f〈e, x〉 ≈ x. Then terms with nested associative
symbols can be flattened, writing, e.g., f〈x, y, z〉 for f〈f〈x, y〉, z〉. However, in
equation solving, unranked and A1 symbols behave differently. Even without
nominal binders and freshness atoms, unranked unification and A1-unification
are different problems, which can be illustrated with the following example:

Example 7. If f and g are unranked symbols and X is a tuple variable, then
the unranked unification problem f〈X, g〈X, c〉〉 ≈? f〈a, b, g〈a, b, c〉〉 is solved by
{X �→ 〈a, b〉}. (In this language, tuples are flat.) If we assume that f and g are
A1 symbols and X is an individual variable (in A1 unification problems, tuple
variables do not occur), then the same problem does not have a solution: for
the left hand side, {X �→ f〈a, b〉} gives f〈a, b, g〈f〈a, b〉, c〉〉, while {X �→ g〈a, b〉}
leads to f〈g〈a, b〉, g〈a, b, c〉〉. None of them is equal to the right hand side. Even
if we assume that 〈a, b〉 is a term of this language and X can be instantiated
with it, we get f〈〈a, b〉, g〈〈a, b〉, c〉〉 as the instance of the left hand side, which is
different from f〈a, b, g〈a, b, c〉〉, since tuples are not flat in these theories.

In recent years, equational nominal unification has been investigated e.g., in
[1,3,6,36,37], but associative and associative-unit theories were not among the
studied ones, although α-equivalence modulo associativity has been introduced
and formalized in [2] and A-matching rules were given in [9]. One can encode
flat tuples via an A1 constructor in a two-sorted language as it was shown, e.g.,
in [22]. Combining it with nominal techniques, we would get a nominal A1-
unification problem of a special kind. However, as we have already mentioned,
nominal associative unification has not been investigated so far and we would
still have to develop a dedicated solving procedure for this problem. (It would
look very similar to our unranked nominal unification algorithm and can be eas-
ily reconstructed along the lines of the latter.) We chose not to follow that path
and, instead, stick to the unranked setting. The same approach is taken, e.g., in
[15], where the authors bring various reasons in favor of the unranked (thereby
called flexary) representation, among them the fact that unranked representa-
tion is often more natural for implementation. As an example, they mention
implementations of type theory (e.g., the Twelf logical framework [32]), where
unranked representation is preferred over associative representations both inter-
nally and at the user level. Our own experience with implementing a combination
of permissive nominal unification and a restricted version of sequence unification
in a mathematical assistant system [23] confirms this observation.
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Nominal unification problems have been extended with context variables in
[38]. Relation between context and sequence unification (without nominal terms)
has been studied in [25,26]. It would be interesting to find a similar connection
between our work and nominal context unification from [38], but it goes beyond
the scope of this paper and can be left for future investigations.

6 Conclusion

We presented an unranked nominal language as an extension of the nominal
language with tuple variables and term tuples. We developed a unification pro-
cedure for solving equality and freshness problems for unranked nominal terms
and proved its soundness and completeness. The soundness property is guaran-
teed by a specific strategy the procedure is based on. At the same time, the
strategy tries to minimize redundant computations.

Some unranked nominal unification problems have an infinite set of solutions.
Our procedure, as a complete method, does not terminate for them. It may
also run forever for some problems with finite set of solutions, which is not
surprising since the strategy is not a decision algorithm. To address this problem,
we identified three practically important finitary fragments of unranked nominal
unification and proved that our procedure terminates for them.

Acknowledgements. We would like to thank the anonymous referees for their useful
comments that helped us to improve our work.
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32. Pfenning, Frank, Schürmann, Carsten: System description: Twelf — a meta-logical
framework for deductive systems. In: CADE 1999. LNCS (LNAI), vol. 1632, pp.
202–206. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 14

33. Pitts, A.M.: Nominal logic, a first order theory of names and binding. Inf. Comput.
186(2), 165–193 (2003)

34. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

35. Robinson, J.A., Voronkov, A., (eds.) Handbook of Automated Reasoning (in 2
volumes). Elsevier and MIT Press (2001)

36. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M.: Nominal unification of
higher order expressions with recursive let. In: Hermenegildo, M.V., Lopez-Garcia,
P. (eds.) LOPSTR 2016. LNCS, vol. 10184, pp. 328–344. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63139-4 19

37. Schmidt-Schauß, M., Kutsia, T., Levy, J., Villaret, M., Kutz, Y.: Nominal unifi-
cation of higher order expressions with recursive let. Frank report 62, Institut für
Informatik, Goethe-Universität Frankfurt am Main, October 2019

38. Schmidt-Schauß, M., Sabel, D.: Nominal unification with atom and context vari-
ables. In: Kirchner, H., (ed.), 3rd International Conference on Formal Structures
for Computation and Deduction, FSCD 2018, 9–12 July 2018, Oxford, UK, vol.
108, LIPIcs, pp. 28:1–28:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2018)

39. Urban, C., Pitts, A.M., Gabbay, M.: Nominal unification. Theor. Comput. Sci.
323(1–3), 473–497 (2004)

https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/978-3-319-63139-4_19


Lattices of Intermediate Theories
via Ruitenburg’s Theorem

Gianluca Grilletti1 and Davide Emilio Quadrellaro2(B)

1 Munich Centre for Mathematical Philosophy (MCMP), Ludwig Maximillian
University, Munich, Germany

G.Grilletti@lmu.de
2 Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland

davide.quadrellaro@helsinki.fi

Abstract. For every univariate formula χ (i.e., containing at most one
atomic proposition) we introduce a lattice of intermediate theories: the
lattice of χ-logics. The key idea to define χ-logics is to interpret atomic
propositions as fixpoints of the formula χ2, which can be characterised
syntactically using Ruitenburg’s theorem. We show that χ-logics form
a lattice, dually isomorphic to a special class of varieties of Heyting
algebras. This approach allows us to build and describe five distinct
lattices—corresponding to the possible fixpoints of univariate formulas—
among which the lattice of negative variants of intermediate logics.

1 Introduction

This paper introduces a family of lattices of intermediate theories, building on
three results from the literature: the dual isomorphism between intermediate
logics and varieties of Heyting algebras, a novel algebraic semantics for inquisitive
logic and negative variants, and Ruitenburg’s theorem.

Intermediate logics [7,14] are classes of formulas closed under uniform substi-
tution and modus ponens, lying between the intuitionistic propositional calculus
IPC and the classical propositional calculus CPC. This family of logics has been
studied using several semantics, as for example Kripke semantics, Beth seman-
tics, topological semantics and algebraic semantics (for an overview see [2]).
Among these, the algebraic semantics based on Heyting algebras plays a special
role: every intermediate logic is sound and complete with respect to some class
of Heyting algebras.1

1 Kripke semantics is known to be incomplete for some intermediate logics, and it is
still an open problem whether Beth and topological semantics are complete [2,19].
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This connection between intermediate logics and Heyting algebras has been
studied using tools from universal algebra. As a consequence of Birkhoff’s
Theorem [5], the lattice of varieties of Heyting algebras HA is dually isomorphic
to the lattice of intermediate logics IL. This result makes it possible to charac-
terise properties of intermediate logics in terms of properties of the corresponding
variety, and vice versa.

Inquisitive logic InqB [9–11,25] is an extension of classical logic that encom-
passes logical relation between questions in addition to statements. The logic was
originally defined through the support semantics, a generalisation of the stan-
dard truth-based semantics of CPC. Ciardelli et al. gave an axiomatisation of the
logic, showing that it lies between IPC and CPC, and highlighting connections
with other intermediate logics such as Maksimova’s logic ND, Kreisel-Putnam
logic KP and Medvedev’s logic ML [8]. However, InqB itself is not an intermediate
logic, since it is not closed under uniform substitution.

An algebraic semantics for InqB has been defined in [3], based on the corre-
sponding algebraic semantics for intermediate logics. The key idea of this work
is to restrict the interpretation of atomic propositions to range over regular ele-
ments of a Heyting algebra, that is, over fixpoints of the operator ¬¬. This
restriction allows to have a sound and complete algebraic semantics, despite the
failure of the uniform substitution principle. As shown in [22], this approach
can be extended to the class of DNA-logics, also known as negative variants of
intermediate logics [16,20]. Moreover, this leads naturally to a dual isomorphism
between DNA-logics and a special class of varieties, analogous to the one for inter-
mediate logics.

Ruitenburg’s theorem [26] concerns sequences of formulas of the form:

α0 := p αn+1 := α[αn
/p].

where α is a formula and p is a fixed atomic proposition. In particular, the
theorem states that this sequence is ultimately periodic with period 2—modulo
logical equivalence. For example, if we take α := ¬p we can see that ¬p ≡ ¬¬¬p,
showing that ¬p is a fixpoint of the operator ¬¬. Ghilardi and Santocanale gave
an alternative proof of this result in [27], studying endomorphisms of finitely gen-
erated Heyting algebras. This proof makes use of the dual isomorphism intro-
duced above and it highlights the relevance of the algebraic interpretation of
Ruitenburg’s theorem.

In this paper we use Ruitenburg’s theorem and its algebraic interpretation to
define a lattice of intermediate theories in the same spirit as the negative variants.
For a fixed a univariate formula χ (i.e., a formula containing at most one atomic
proposition), we define an algebraic semantics by restricting valuations to range
over fixpoints of the formula χ2—which can be characterised using Ruitenburg’s
theorem. This allows us to build the lattice of χ-logics, intermediate theories
characterised in terms of the fixpoint-axiom χ2(p) ↔ p. We show that the alge-
braic semantics is sound and complete for these logics by introducing a lattice
of special varieties of Heyting algebras—the χ-varieties—dually isomorphic to
the lattice of χ-logics. We also show that there are only six possible fixpoints for
univariate formulas: �, p,¬p,¬¬p, p ∨ ¬p,⊥. This allows us to characterise and
describe all the possible lattices of χ-logics built using this approach.
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In Sect. 2 we introduce some preliminary notions on intermediate logics
and their algebraic semantics, the dual isomorphism between these logics and
varieties, and Ruitenburg’s theorem. In Sect. 3 we define χ-logics and give a brief
overview of their main properties that can be derived in purely syntactic terms.
In Sect. 4, fixed a formula χ, we introduce a novel algebraic semantics for χ-logics
based on Ruitenburg’s theorem and we define a notion of χ-variety of Heyting
algebras suitable to study χ-logics. In Sect. 5 we study the connection between
χ-logics and χ-varieties, showing that the dual isomorphism result presented in
Sect. 2 can be transferred to this setting. Finally, in Sect. 6 we show there are
only 5 distinct lattices of χ-logics for any univariate formula χ, we describe their
properties in more detail and we study the relations between them. Conclusions
and possible directions for future work are presented in Sect. 7.

2 Preliminaries

In this section we summarise the main notions from the literature employed in
this manuscript.

Algebraic Semantics for Intermediate Logics
Fix a countable set AT of atomic propositions and consider the set of formulas
L generated by the following grammar:

φ ::= p | ⊥ | φ ∧ φ | φ ∨ φ | φ → φ.

where p ∈ AT. As usual, we introduce the shorthands φ ↔ ψ := (φ → ψ) ∧ (ψ →
φ), ¬φ := φ → ⊥ for negation and � := ¬⊥. Henceforth we leave the sets AT
and L implicit, referring to atomic propositions from AT and to formulas from
L simply as atomic propositions and formulas respectively. To indicate a tuple
of propositions 〈p1, . . . , pn〉 we often use the notation p, and similarly for tuples
of formulas (φ = 〈φ1, . . . , φn〉) and tuples of other objects.

Consider formulas φ, ψ and an atomic proposition p. We indicate with φ [ψ/p]
the formula obtained by substituting every occurrence of p in φ with the for-
mula ψ. More in general, given ψ = 〈ψ1, . . . , ψn〉 a tuple of formulas and
p = 〈p1, . . . , pn〉 a tuple of distinct atomic propositions, we indicate with φ [ψ/p]
the formula obtained by substituting simultaneously each pi with ψi. With abuse
of notation, when we take a univariate formula χ—that is, a formula with only
one free variable—we indicate the tuple 〈χ(p1), . . . , χ(pn)〉 with the notation
χ(p); for example, the notations φ[¬p/p] and φ[ 〈¬p1, . . . , ¬pn〉/〈p1, . . . , pn〉] indicate
the same formula.

We refer to the intuitionistic propositional calculus as IPC [7,14]. With slight
abuse of notation, we write IPC also to refer to the set of validities of this calculus.
We use the notation φ ≡IPC ψ to indicate that φ ↔ ψ ∈ IPC. An intermediate
logic [7,14] is a set of formulas L with the following properties:

1. IPC ⊆ L ⊆ CPC;
2. L is closed under modus ponens: If φ ∈ L and φ → ψ ∈ L, then ψ ∈ L;
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3. L is closed under uniform substitution: If φ ∈ L and ψ is a tuple of formulas,
then φ [ψ/p] ∈ L.

Given Γ a set of formulas, we indicate with MP(Γ ) the smallest set of formulas
extending Γ and closed under modus ponens; and with US(Γ ) the smallest set
of formulas extending Γ and closed under uniform substitution. It is immediate
to prove that such sets always exist and that, if Γ ⊆ CPC, then MP(US(IPC∪Γ ))
is the smallest intermediate logic extending Γ : we call it the intermediate logic
generated by Γ and we indicate it with IPC + Γ .

Intermediate logics ordered by set-theoretic inclusion form a frame, that is,
a complete lattice [7, Theorem 4.2] satisfying the infinitary distributivity law
L ∧ (

∨
i∈I Li) =

∨
i∈I(L ∧ Li) [7, Theorem 4.6]. In particular, the (infinitary)

meet and join operations are
∧

i∈I Li :=
⋂

i∈I Li and
∨

i∈I Li := MP(
⋃

i∈I Li),
and IPC and CPC are respectively the minimum and maximum of this lattice.
We refer to this lattice with the notation IL.

In the literature, several semantics have been proposed to study intermediate
logics: Kripke semantics, Beth semantics and topological semantics are some
famous examples (see [2] for an overview of some well-known semantics). In this
paper we focus on the algebraic semantics based on Heyting algebras.

Definition 1 (Heyting algebra [23, Section 1.12]). A Heyting algebra is a
tuple (H, 0H ,∧H ,∨H ,→H) such that (H,∧H ,∨H) is a bounded distributive lat-
tice with least element 0H , and →H is a binary operation on H such that:2

∀a, b, c ∈ H. (c ≤ a →H b iff a ∧ c ≤ b) .

0

a b

s

1

Fig. 1. An example
of Heyting algebra,
represented as the
Hasse diagram of ≤.

A simple example of Heyting algebra is presented in Fig. 1.
We refer to the class of all Heyting algebras as HA. There
is a natural way to interpret formulas in L as elements of
a Heyting algebra H: given a function V : AT → H—which
we refer to as a valuation—we define recursively by the
following clauses the interpretation �φ�H

V of a formula φ in
H under V :

�p�H
V = V (p) �⊥�H

V = 0H

�φ ∧ ψ�H
V = �φ�H

V ∧H �ψ�H
V �φ ∨ ψ�H

V = �φ�H
V ∨H �ψ�H

V

�φ → ψ�H
V = �φ�H

V →H �ψ�H
V .

We say that φ is true in H under V and we write (H,V ) � φ if �φ�H
V = 1H .

We say that φ is valid in H and we write H � φ if it is true in H under any
valuation V . A first reason why this algebraic semantics is employed to study
intuitionistic logic is that it provides a correct and complete semantics for IPC:
φ ∈ IPC iff φ is valid in every Heyting algebra [23, Chapter 9, Sections 2 and 3].

2 We indicate with ≤ the standard ordering induced by the lattice operations, that is,
a ≤ b iff a ∧H b = a.
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As a shorthand, we indicate with [p1 �→ a1, . . . , pn �→ an] an arbitrary val-
uation V such that V (pi) = ai—without specifying its value on the atomic
formulas different from p1, . . . , pn. A function f : Hn → H is a polynomial if
it is obtained by composing the functions 1H , 0H ,∧H ,∨H and →H (where we
identify the constants 1H and 0H with the corresponding 0-ary functions). Given
a formula φ(p1, . . . , pn), we can associate to it the polynomial φ (indicated with
the bold font) defined as:

φ : Hn → H
a �→ �φ�H

[p1 �→a1,...,pn �→an]

Moreover, it is immediate to show that, for every polynomial f , there exists a
(non-unique) formula φ such that f = φ.

Varieties and Dual Isomorphism
Given H,A Heyting algebras, we indicate with H � A that H is a subalgebra of
A, and with A � H that H is a homomorphic image of A (see, e.g., [7, Sec. 7]).

Varieties are a fundamental concept which generalizes the connection
between Heyting algebras and IPC to arbitrary intermediate logics. We call a
class V ⊆ HA a variety if V is closed under the operations H,S,P defined over
subclasses of HA as follows:

H(C) := { H ∈ HA | ∃A ∈ C. A � H } (homomorphic images)
S(C) := { H ∈ HA | ∃A ∈ C.H � A } (subalgebras)

P(C) :=

{
∏

i∈I

Ai ∈ HA

∣
∣
∣
∣
∣
∀i ∈ I.Ai ∈ C

}

(products)

The following are some classical results in universal algebra about algebraic
varieties, which we state with reference to varieties of Heyting algebras only.

Theorem 2 (Tarski’s theorem [28] and [6, Theorem 9.5]). Given C ⊆ HA a
class of algebras, HSP(C) is the smallest variety containing C.

In light of this result, we call V(C) := HSP(C) the variety generated by C.

Theorem 3 (Birkhoff’s theorem [5] and [6, Theorem 11.9]). A class of
algebras C ⊆ HA is a variety iff it is equationally definable, that is, there exists
a set of formulas F ⊆ L such that C = { H ∈ HA | ∀φ ∈ F.H � φ }.
The family of varieties of Heyting algebras has also a rather interesting structure:
they form a frame, which we refer to as HA. In particular, the (infinitary) meet
and join operations of this lattice are

∧
i∈I Vi :=

⋂
i∈I Vi and

∨
i∈I Vi := V(

⋃ Vi).
Notice the difference between HA (the class of all Heyting algebras) and HA (the
lattice of varieties of Heyting algebras). In particular HA ∈ HA.

The properties of this lattice can be derived as a direct consequence of the
following theorem, showing the deep connection between intermediate logics and
varieties of Heyting algebras.
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Theorem 4 (Dual isomorphism [7, Theorem 7.54]). The lattice of interme-
diate logics is dually isomorphic to the lattice of varieties of Heyting algebras,
that is, IL ∼=op HA. In particular, Var : IL → HA and Log : HA → IL defined
below are isomorphisms, one inverse of the other:

Var(L) := {H ∈ HA | ∀φ ∈ L.H � φ} Log(V) := {φ ∈ L | ∀H ∈ V.H � φ}.

We call Var(L) the variety generated by L and Log(V) the logic of V.3

Ruitenburg’s Theorem
For the remainder of this section, we indicate with p a fixed atomic proposition.
Let φ(p, q) be a formula, where p, q contain all the atomic propositions appearing
in φ. A folklore result says that the formulas

φ(p, q) φ3(p, q) := φ(φ(φ(p, q), q), q)

are equivalent in classical logic. Surprisingly, this result generalizes to intuition-
istic logic, as Ruitenburg showed in [26].

Definition 5. Given φ(p, q) a formula, define the formulas {φn(p, q)}n∈N recur-
sively as follows:

φ0(p, q) := p φn(p, q) := φ(φn−1(p, q), q )

That is, φn is obtained by substituting φn−1 for p in φ.

Theorem 6 (Ruitenburg’s theorem [26]). For every formula φ(p, q), the
sequence φ0, φ1, φ2, . . . is—modulo logical equivalence—ultimately periodic with
period 2. That is, there exists a natural number n such that:

φn ≡IPC φn+2 (1)

We call the smallest n for which Condition 1 holds the Ruitenburg index (or
simply the index ) of φ. Moreover, we call φn the Ruitenburg fixpoint (or simply
the fixpoint) of the formula φ. For example the formula ¬p is intuitionistically
equivalent to the formula ¬¬¬p = (¬p)3, so in this case the index is 1 and
the fixpoint is ¬p. Another example is the formula p ∨ ¬p, for which we have
(p ∨ ¬p)2 = (p ∨ ¬p) ∨ ¬(p ∨ ¬p) ≡IPC p ∨ ¬p, so also in this case the index is 1
and the fixpoint is p ∨ ¬p.

We can see Ruitenburg’s result also as an algebraic fixpoint theorem. Let A
be a Heyting algebra, a a tuple of elements in A and f(x, y) a polynomial. Then a

3 Admittedly, we are using an improper terminology (also adopted, e.g., in [7, Sec.
7]): varieties are proper classes, hence we cannot talk about the set of all varieties
nor about the lattice of all varieties. A way to dispense of this problem is to instead
consider a lattice consisting of equational theories, that is, sets of algebraic identities
defined by a class of algebras (see, e.g., [6, Section 14] for an overview of this account).
To simplify our presentation we abstract away from these issues and we maintain
the terminology “lattice of varieties”.
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consequence of Ruitenburg’s theorem is that the operator f2(x, a) = f(f(x, a), a)
admits a fixpoint. And indeed, this is an equivalent formulation of Theorem 6,
as can be easily shown by applying it to the Lindenbaum-Tarski algebra of IPC.

As proven by Ruitenburg (Example 2.5 in [26]), there is no uniform bound
for the indexes of all formulas φ, but each formula admits an index. However,
for some classes of formulas we can find a uniform bound:

Lemma 7 ([26, Proposition 2.3]). If χ(p) is a univariate formula, then χ2 ↔
χ4 ∈ IPC. Moreover, the fixpoint of χ(p) is equivalent to one of the following
formulas: ⊥, p, ¬p, ¬¬p, p ∨ ¬p, �.

We give an elementary proof of this result in Appendix A, different from the
original one given by Ruitenburg in [26].

3 χ-logics

In the usual presentation of logics, there is an asymmetry between the syntac-
tical and the semantical treatment of atomic propositions. On the one hand,
atomic propositions are the basic building blocks used to construct the syn-
tax of every formula. On the other hand, atomic propositions play the role of
arbitrary formulas—which translates to the validity of the principle of uniform
substitution for the logic.

However, there are several exceptions to this pattern, i.e., logics where atomic
propositions are not treated as arbitrary formulas, but rather as semantical
objects satisfying certain properties. For example, in inquisitive logic [10,11]
atomic propositions are interpreted as natural language statements, while com-
plex formulas are interpreted as natural language sentences, possibly questions.
Another example is dependence logic [29], where atomic propositions are inter-
preted as properties of truth-assignments, while arbitrary formulas are inter-
preted as more general relational dependencies between truth-assignments. As it
could be expected, in these logics the principle of uniform substitution fails.

Building on this general idea, we define a class of logics where atomic propo-
sitions play the special role of fixpoints of definable operators: the χ-logics.

Definition 8 (χ-logic). Let χ(p) be a univariate formula and Γ a set of for-
mulas. We define the χ-logic generated by Γ as the smallest set of formulas Γχ

with the following properties:

1. IPC ⊆ Γχ;
2. If φ ∈ Γ and σ is a substitution, then φ[σ] ∈ Γχ;
3. χ2(p) ↔ p ∈ Γχ for every atomic proposition p;
4. Γχ is closed under modus ponens: if φ ∈ Γχ and φ → ψ ∈ Γχ, then ψ ∈ Γχ.

Condition 3 requires atoms to behave like fixpoints of the operator χ2, but we do
not require this to hold for arbitrary formulas. And indeed, in general χ2(φ) ↔
φ is not a valid principle, which also implies failure of uniform substitution.
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An elucidating example is IPC�: in this case the fixpoint axiom becomes � ↔ p,
and so we have IPC� = MP(IPC ∪ {� ↔ q | q atomic proposition}). In Sect. 6
we will give an alternative characterization of IPC� that will make the following
a trivial observation, but for now we leave as an exercise to the reader to show
that � ↔ ¬p /∈ IPC�.

We could drop the requirement of χ being univariate. There are two main rea-
sons why we adopt this additional restriction. Firstly, the presence of additional
atoms requires a generalisation of the results presented in Sect. 2 to Heyting
algebras with constants, which is left for future work. And secondly, although
the main features of these logics can be showcased in this restricted setting,
considering only univariate formulas allows us to characterize all the families of
χ-logics generated as a function of χ—which are finitely many in this case, as
we will prove.

Observe that we can interpret Γχ as the set of valid formulas of an Hilbert-
style deduction system: Conditions 1 and 2 define the underlying schematic
principles, Condition 4 specifies modus ponens as the only rule of the system, and
Condition 3 imposes the fixpoint condition over atomic propositions—although it
does not introduce a schematic principle. This suggests the following alternative
characterisation of χ-logics.

Lemma 9. Let L be the intermediate logic generated by Γ . Then Γχ = Lχ.

Proof. The left-to-right containment is immediate, since the operator (−)χ is
monotone. As for the other containment, notice that Conditions 1, 2 and 4
impose that L ⊆ Γχ, from which the result follows. ��
Given an intermediate logic L we call Lχ the χ-variant of L. Notice that a direct
consequence of Lemma 9 is that any χ-logic is the χ-variant of some intermediate
logic L, so we can restrict ourselves to work with intermediate logics instead of
arbitrary sets of formulas. And, in fact, we can show that for a fixed χ the
family of χ-logics form a complete lattice, as it is the case for intermediate
logics. In particular, as it is proved by the following lemma, the infinitary meet
and join operations are given by set-theoretic intersection and by the closure
under modus ponens of the union respectively—in complete analogy with the
case of intermediate logics.

Lemma 10. Given χ a univariate formula and {Li|i ∈ I} a family of interme-
diate logics we have:

∧

i∈I

Lχ
i =

⋂

i∈I

Lχ
i =

(
∧

i∈I

Li

)χ
∨

i∈I

Lχ
i = MP

(
⋃

i∈I

Lχ
i

)

=

(
∨

i∈I

Li

)χ

Proof. We consider only the second pair of identities, as the proof can be eas-
ily adapted to the first set. Firstly, notice that Lχ

i ⊆ (
∨

i∈I Li)χ. Moreover,
since Li ⊆ Lχ

i , for every χ-logic Λ such that Lχ
i ⊆ Λ for every i ∈ I it

holds
⋃

i∈I Li ⊆ Λ; and since χ-logics are closed under modus ponens it holds∨
i∈I Li = MP(

⋃
i∈I Li) ⊆ Λ. So in particular (

∨
i∈I Li)χ ⊆ Λ. This implies
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that (
∨

i∈I Li)χ is the least upper bound of the family {Lχ
i |i ∈ I}, that is,∨

i∈I Lχ
i = (

∨
i∈I Li)χ.

Secondly, notice that MP(
⋃

i∈I Lχ
i ) is the χ-logic generated by the set of

formulas
⋃

i∈I Lχ
i . So in particular, since Lχ

i ⊆ MP(
⋃

i∈I Lχ
i ), we also have∨

i∈I Lχ
i ⊆ MP(

⋃
i∈I Lχ

i ). Moreover, since (
∨

i∈I Li)χ is closed under modus
ponens and

⋃
i∈I Lχ

i ⊆ (
∨

i∈I Li)χ, it follows MP(
⋃

i∈I Lχ
i ) ⊆ (

∨
i∈I Li)χ =∨

i∈I Lχ
i . From this we conclude that

∨
i∈I Lχ

i = MP(
⋃

i∈I Lχ
i ), as wanted. ��

We indicate with ILχ the lattice of χ-logics. Notice that the previous proof shows
that the mapping L �→ Lχ is a complete lattice homomorphism, and so χ-variants
form a frame.

In the next sections we study the structure of these lattices for different for-
mulas χ by employing tools from algebraic semantics. The following alternative
characterization of χ-variants based on Theorem 6 will help us with our task.

Lemma 11. Let χ(p) be a univariate formula and n be its index. Given L an
intermediate logic, we have Lχ = { φ(p) | φ[χn(p)/p] ∈ L }.
Proof. Call the set on the right-hand side M . Firstly, we will show that M
satisfies the conditions in Definition 8. Since L contains IPC and it is closed under
modus ponens and uniform substitution, we easily obtain Conditions 1, 2 and
4. As for Condition 3, since n is the index of χ, we have χn+2(p) ↔ χn(p) ∈ L,
from which it follows χ2(p) ↔ p ∈ M for every atomic proposition p.

Secondly, we need to show that M is the smallest set satisfying these condi-
tions, so consider a set X satisfying the conditions of Definition 8 for Γ = L. We
will make extensive use of the fact that IPC proves the principle of substitution of
equivalents (SoE for short): given formulas α = 〈α1, . . . , αl〉 , β = 〈β1, . . . , βl〉 , γ
formulas and distinct atomic propositions q = 〈q1, . . . , ql〉, we have

∧

i≤l

(αi ↔ βi) → (γ[α/q] ↔ γ[β/q]) ∈ IPC ⊆ X. (2)

As an instance of this condition, we have (χ2(q) ↔ q) → (χ4(q) ↔ χ2(q)) ∈ X.
Since χ2(q) ↔ q ∈ X and X is closed under modus ponens (Conditions 3 and 4
of Definition 8), we also have χ4(q) ↔ χ2(q) ∈ X. Moreover, since

(α ↔ β) → ( (β ↔ γ) → (α ↔ γ) ) ∈ IPC ⊆ X

with a similar argument we obtain χ4(q) ↔ q ∈ X. Iterating this reasoning, we
obtain that χn(q) ↔ q ∈ X for every q or χn+1(q) ↔ q for every q—depending
on the parity of n. Assume the former is the case; the treatment of the other
case is analogous.

Consider now an arbitrary formula φ(p) with p = 〈p1, . . . , pl〉. Combining the
previous facts we get:

χn(pi) ↔ pi ∈ X for every i ≤ l
and

∧
i≤l( χn(pi) ↔ pi ) → ( φ[χn(p)/p] ↔ φ(p) ) ∈ X

implies φ[χn(p)/p] ↔ φ(p) ∈ X.
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From this we can conclude that, if φ[χn(p)/p] ∈ L then φ(p) ∈ X. As φ was
arbitrary, we have M ⊆ X and so M is the smallest set satisfying the Conditions
in Definition 8, as wanted. ��
Lemma 11 is especially useful to compute the χ-variant of a given intermediate
logic. For example, consider the ¬p-variant of the logic of weak excluded middle
WEM := IPC + {¬p ∨ ¬¬p}. By Lemma 11, we have q ∨ ¬q ∈ WEM¬p for every
atomic proposition q. So, by a folklore result, we have

MP(IPC ∪ {q ∨ ¬q | q atomic proposition}) = CPC ⊆ WEM¬p.

Finally, notice that all ¬p-logics are contained in CPC (in this particular case,
the fixpoint axiom ¬¬p ↔ p is a classical tautology), and so WEM¬p = CPC.

Surprisingly, these lattices are fewer than one could expect: by Lemma 11
we have that Lχ = Lχn

, meaning that formulas with the same Ruitenburg
fixpoint determine the same lattice. By Lemma 7 there are only a finite amount
of fixpoints, thus there are only finitely many lattices of χ-variants. Notice also
that by Lemma 11, together with the fact that ¬¬¬p ≡IPC ¬p, we have:

L¬p = { φ(q) | φ[¬q/q] ∈ L } = { φ(q) | φ[¬¬q/q] ∈ L } = L¬¬p;

which implies that IL¬p = IL¬¬p. Therefore, we are working with 5 lattices in
total. In Sect. 6 we will see that these are indeed distinct lattices:

IL⊥ ILp = IL IL¬p = IL¬¬p ILp∨¬p IL�.

4 Algebraic Semantics

As mentioned in the previous section, χ-logics treat atomic propositions as fix-
points of the operator χ2. This intuition can be exploited to develop a sound and
complete algebraic semantics by restricting the set of admissible valuations. This
general idea has already been employed in [3] to define an algebraic semantics for
inquisitive logic (see also [22] for an in-depth study of this semantics), and more
recently in [15] to define a nuclear semantics for a novel class of inquisitive logics
over an intuitionistic basis. This section adapts the methodologies employed in
[22] for the class of DNA-logics—de facto, the family of ¬p-logics—to the more
general setting of χ-logics.

H
χ[H ]

· · ·

χn[H ]

In the case of χ-logics, the key to
define an algebraic semantics based on
Heyting algebras lies in an algebraic
interpretation of Ruitenburg’s theo-
rem. In this section we will fix a uni-
variate formula χ with index n. As
noted in Sect. 2, given a Heyting alge-
bra H we can define a polynomial cor-
responding to χ:

χ : H → H

a �→ �χ(p)�[p�→a]
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0

a b

s

1

Fig. 2. An example of χ-
core for χ = p ∨ ¬p. In
this case χn(x) = x ∨ ¬x.
The dotted arrows repre-
sent the function χn and
the circles indicate the
elements of the core.

Ruitenburg’s theorem tells us that the sequence
H,χ[H],χ2[H] := χ[χ[H]], . . . is ultimately constant;
and that the polynomial χ restricted to the set χn[H]
is an involution, i.e. χ2 is the identity over χn[H].
Henceforth we will call the set Hχ := χn[H] the χ-
core (or simply core when χ is clear from the context)
of H. Notice that the χ-core consists exactly of the
fixpoints of χ2:

Lemma 12. Hχ is the set of fixpoints of χ2.

Proof. By Theorem 6, we have that χn ≡ χn+2. Con-
sider an element a ∈ Hχ, that is, an element of the
form a = χn(b) for some b ∈ H. It follows that
χ2(a) = χ2(χn(b)) = χn+2(b) = χn(b) = a, show-
ing that a is a fixpoint of χ2. Conversely, let a be
a fixpoint for χ2. Then it follows that a = χ2(a) =
χ2(χ2(a)) = χ4(a) = · · · = χ2n(a) = χnχn(a) ∈ Hχ.

For instance, when χ(p) = ¬p the core H¬p of H consists of the regular elements
of the algebra H, that is, fixpoints of the operator ¬¬. In Fig. 2 we can also see
an example of (p ∨ ¬p)-core.

To obtain an adequate semantics for a χ-logic, we restrict the valuations
of atomic propositions to the core Hχ. Let AT be an arbitrary set of atomic
propositions. We say that a valuation σ : AT → H is a χ-valuation if σ[AT] ⊆ Hχ.
A χ-valuation over H thus sends every atomic proposition to some element of
the χ-core of H. Algebraic models of χ-logics are then defined as follows.

Definition 13 (χ-Model). A χ-model is a pair M = (H,σ) such that H is a
Heyting algebra and σ is a χ-valuation.

The interpretation of a formula φ ∈ L in the χ-model M = (H,σ)—in symbols
�φ�H

σ —is defined recursively exactly as in the standard algebraic semantics for
intuitionistic logic. The key difference between the two semantics is that for
atomic propositions we have �p�H

σ = σ(p) ∈ Hχ, that is, atomic proposition are
interpreted as fixpoints for χ2. As in the standard algebraic semantics, we say
that φ is true in H under σand we write (H,σ) �χ φ if �φ�H

σ = 1H . We say that
φ is χ-valid in H and we write H �χ φ if it is true in H under any χ-valuation
σ. In general, we refer to this semantics as χ-semantics to distinguish it from
the standard algebraic semantics.

Remark 14. Notice that the semantic approach we adopted reminds of the
nuclear semantics for inquisitive intuitionistic logic employed in [15] (originally
introduced for intuitionistic logic in [1]): a nuclear algebra is defined as a pair
(H, j), where j : H → H is a nucleus, that is, an increasing (a ≤ ja), idempotent
(jja = ja) and multiplicative (j(a ∧ b) = ja ∧ jb) map; and the corresponding
semantics restricts the valuation of atomic propositions to range over fixpoints
of the nucleus. Although the two semantics show a striking resemblance, they
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differ in at least two fundamental aspects. Firstly, not all the maps χ2 are nuclei,
so the fixpoint operators employed by the two logics are different. For example,
this is not the case for χ = p∨¬p, as shown in Fig. 2.4 Secondly, in every Heyting
algebra H the map χ2 is uniquely defined by the formula χ2, while the same does
not apply in nuclear semantics. This definability condition is quite restrictive,
but it allows us (as we will see in the next section) to easily transfer many results
from the theory of intermediate logic to the setting of χ-logics, as for example
the dual isomorphism presented in Theorem 4.

However, notice that ¬p-logics are examples of inquisitive intuitionistic logics
([15, Definition 3.1] with ∨ treated as a shorthand) and that ¬p-models are
essentially nuclear models, so the two frameworks seem to be compatible and
closely related. A comparison of the two approaches would prove to be quite
fruitful and could lead to interesting results. However, in the current manuscript
we will primarily focus on laying the foundations of the theory of χ-logics and
we leave a thorough comparison for future works.

The interpretations under different valuations of the formula χn(p) range over
all and only the elements of the core. This suggests the following definition: for
every valuation V : AT → H its χ-variant V χ is the χ-valuation V χ : AT → Hχ

such that V χ(p) = χn(V (p)). The function V �→ V χ maps each valuation to a
χ-valuation such that �φ�H

V χ = �φ [χn(p)/p]�H
V . Moreover, this map is surjective:

given σ a χ-valuation, since σ(p) ∈ Hχ = χn[H], for any valuation V such that
V (p) ∈ (χn)−1(σ(p)) we have V χ(p) = χn(V (p)) = σ(p). The next proposition
follows directly from these observations.

Proposition 15. For any Heyting algebra H, H �χ φ iff H � φ [χn(p)/p].

Corollary 16. Let H be a Heyting algebra and L an intermediate logic, if H � L
then H �χ Lχ.

Proof. Direct consequence of Lemma 11 and Proposition 15. ��
The converse of Corollary 16 does not hold in general, as a formula might be true
in a Heyting algebra under all χ-valuations but not under all valuations. We can
however define a class of algebras for which the converse hold: let 〈Hχ〉 be the
subalgebra of H generated by the χ-core Hχ; we say that H is core generated if
H = 〈Hχ〉.
Lemma 17. Let H be a Heyting algebra, H �χ φ if and only if 〈Hχ〉 �χ φ.

Proof. The algebras H and 〈Hχ〉 share the same χ-valuations, and for any such
χ-valuation σ we have �φ�

〈Hχ〉
σ = �φ�H

σ . From this the result follows trivially. ��

4 As a consequence of Lemma 7, in the current setting this is essentially the only case
for which the map χ2 is not a nucleus. We can find other counterexamples if we lift
the restriction of χ being univariate.
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Proposition 18. Let H be a Heyting algebra and L an intermediate logic. Then
we have that H �χ Lχ entails 〈Hχ〉 � L.

Proof. By contraposition, suppose that (〈Hχ〉, V ) � φ for some valuation V and
formula φ ∈ L. Since 〈Hχ〉 is the subalgebra generated by Hχ, we can express
every element x ∈ 〈Hχ〉 as a polynomial x = η(y) where each yi is an element of
Hχ. Let p = 〈p1, . . . , pn〉 be the variables contained in φ and define δi(y) = V (pi)
for every i = 1, . . . , n (without loss of generality, we can assume that y is the
same tuple of elements for every i). Writing δ(y) for the tuple 〈δ1(y), . . . , δn(y)〉,
we have φ(δ(y)) = �φ(p)�〈Hχ〉

V �= 1H .5

Since all the elements y are elements of Hχ, we can define a χ-valuation
σ such that σ(qi) = yi for every i ≤ n. In particular, for this choice of σ we
have �φ[δ(q)/p] �H

σ = φ(δ(y)) �= 1H where δ(q) indicates the tuple of formulas
〈δ1(q), . . . , δn(q)〉. In particular, since σ is a χ-valuation we have H �

χ φ[δ(q)/p].
Since L is closed under uniform substitution and φ ∈ L, we then have φ[δ(q)/p] ∈
L ⊆ Lχ and so H �

χ Lχ. ��
As Lemma 17 and Proposition 18 show, the subalgebra generated by the χ-core
〈Hχ〉 already contains all the semantic information about H when it comes to
the novel semantics. This suggests the following definition: we say that a Heyting
algebra H is a core superalgebra of K if Kχ = Hχ and K � H. In particular,
by Lemma 17, an algebra and its core superalgebras validate the same formulas
under the χ-semantics.

In turns, the last observation leads naturally to shift our attention to varieties
of Heyting algebras and to the following definition: given V a variety of Heyting
algebras, its χ-closure is the class:

Vχ = { H ∈ HA | ∃K ∈ V. H is a core superalgebra of K }
= { H ∈ HA | ∃K ∈ V. Kχ = Hχ and K � H }
= { H ∈ HA | 〈Hχ〉 ∈ V }.

We call varieties of this kind χ-varieties. The following theorem gives an alter-
native characterization of χ-varieties, more in line with the standard definition
of variety.

Theorem 19. A class of Heyting algebras C is a χ-variety if and only if it is
closed under subalgebras, homomorphic images, products and core superalgebras.

Proof. (⇐) Suppose C is closed under subalgebras, homomorphic images, prod-
ucts and core superalgebras. C is a variety and for any Heyting algebra H such
that there is some K ∈ C with Hχ = Kχ and K � H, it follows by closure under
core superalgebra that H ∈ C. Therefore C = Cχ, hence C is a χ-variety.

(⇒) Suppose C is a χ-variety, i.e. C = Vχ for some variety V. We need to show
that C is closed under subalgebras, products and homomorphic images—closure
under core superalgebras follows by definition of Vχ.
5 We are omitting the line on top of δ in favor of readability.
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– Subalgebras. Suppose H ∈ C and K � H. Notice that Kχ ⊆ Hχ, and con-
sequently 〈Kχ〉 � 〈Hχ〉. Moreover, since C = Vχ we have 〈Hχ〉 ∈ V and
so, since varieties are closed under subalgebras, 〈Kχ〉 ∈ V. It follows that
K ∈ Vχ = C.

– Homomorphic images. Consider an algebra H ∈ C and a surjective homo-
morphism f : H � K. We firstly prove that f |Hχ is surjective over Kχ.
Consider an element k ∈ Kχ and notice that, by Lemma 12, this amounts
to χ2(k) = k. Since f is surjective, there exists an element h ∈ H such that
f(h) = k (notice that h is not necessarily an element of Hχ, since nothing
ensures that χ2(h) = h). Consider now the index n of χ and assume it is odd
(the case n even is treated in a similar fashion). We then have that:

χ2(χn+1(h)) = χn+3(h) = χn+1(h) ∈ Hχ

f(χn+1(h)) = χn+1(f(h)) = χn+1(k) = χn−1(k) = χn−3(k) = · · · = k.

And so k is the image of an element in Hχ, namely χn+1(h). Since k was
arbitrary, this shows that f |Hχ is surjective, as desired.
We now show that K ∈ C. Since C = Vχ and H ∈ C we have 〈Hχ〉 ∈ V. As we
showed, f |Hχ is surjective over Kχ, which in turns implies that f |〈Hχ〉 is a
surjective homomorphism over 〈Kχ〉. So, since V is closed under homomorphic
images, then 〈Kχ〉 ∈ V and so K ∈ X = C.

– Products. Consider algebras {Hi|i ∈ I} ⊆ C. Since C = Vχ, it follows
{〈Hχ

i 〉|i ∈ I} ⊆ V. By properties of the product we have that
∏

i∈I〈Hχ
i 〉 =

〈(∏i∈I Hi)χ〉 � ∏
i∈I Hi, and since V is a variety 〈(∏i∈I Hi)χ〉 ∈ V. Thus we

conclude that
∏

i∈I Hi ∈ X = C.

This concludes the proof. ��
A straightforward consequence of Theorem 19 is that the intersection of an
arbitrary set of χ-varieties is again a χ-variety, which means that χ-varieties
form a complete sublattice of HA: we denote by HAχ this lattice. If we denote
by X (C) the smallest χ-variety containing C, then the operations of this lattice
are:

∧

i∈I

Xi =
⋂

i∈I

Xi

∨

i∈I

Xi = X
(

⋃

i∈I

Xi

)

.

Together with the results of the previous sections, we have thus obtained a lattice
ILχ of χ-variants of intermediate logics, and a lattice HAχ of χ-varieties. In the
next section we shall see how to relate these two structures in order to prove the
completeness of the algebraic semantics we introduced.

5 Dual Isomorphism

In this section we show that the lattice of χ-logics ILχ and the lattice of χ-
varieties HAχ are dually isomorphic. The underlying idea behind the proof is
that the isomorphisms Log and Var between the lattices IL and HA can be trans-
ported along the maps (−)χ (L �→ Lχ and V �→ Vχ), obtaining corresponding
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isomorphisms Logχ and Varχ between the lattices ILχ and HAχ. Our starting
point is to define explicitly the maps Logχ and Varχ: given Γ a set of formulas
and given C a class of Heyting algebra, define6

Varχ : Γ �→ { H ∈ HA | H �χ Γ } Logχ : C �→ { φ ∈ L | C �χ φ }.

We say that a class C of Heyting algebras is χ-definable if there is a set Γ of
formulas such that C = Varχ(Γ ), and we say that a χ-logic Λ is χ-complete with
respect to a class of Heyting algebras C if Λ = Logχ(C). Before proceeding with
the proof that Varχ and Logχ induce a dual isomorphism between the lattices ILχ

and HAχ, we first need to make sure that they are well-defined maps between
the two lattices. We firstly show that Varχ(Γ ) is a χ-variety, and to do so we
need the following technical results.

Proposition 20. χ-validities are preserved by taking subalgebras, products,
homomorphic images and core superalgebras.

Proof. Validity is preserved by taking subalgebras, products and homomorphic
images, so by Proposition 15 also χ-validity is preserved. It remains to show that
χ-validity is preserved by taking core superalgebras.

Let K be a core superalgebra of H, that is, let Kχ = Hχ and H � K.
Consider φ a formula χ-valid on H and assume towards a contradiction that, for
some χ-valuation σ, we have (K,σ) �

χ φ. Since Hχ = Kχ, σ is also a χ-valuation
over H. And since H � K we have �φ�H

σ = �φ�K
σ �= 1. But this contradicts our

assumptions on φ. ��
By the previous proposition we obtain the following corollary.

Corollary 21. For every set of formulas Γ , the class of Heyting algebras
Varχ(Γ ) is a χ-variety.

Now we focus on the map Logχ: we want to show that, for every class C of Heyting
algebras, the set Logχ(C) is a χ-logic. We show a slightly stronger result.

Proposition 22. For every set of algebras C, the class of formulas Logχ(C) is
the χ-variant of Log(C).

Proof. We have:

φ /∈ Logχ(C) ⇐⇒ ∃H ∈ C such that H �
χ φ

⇐⇒ ∃H ∈ C such that H � φ[χn
(p)/p] (by Proposition 15)

⇐⇒ φ[χn
(p)/p] /∈ Log(C)

⇐⇒ φ /∈ (Log(C))χ.

Hence Logχ(C) is the χ-variant of Log(C). ��
6 To lighten the notation, we use the symbol Varχ instead of Varχ|ILχ for the function

obtained by restricting the domain, omitting the explicit restriction of the domain.
The same applies for the notation Logχ, used instead of Logχ|HAχ .
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These two results ensure that Logχ : HAχ → ILχ and Varχ : ILχ → HAχ are
well-defined maps. We now formalize—in Propositions 23 and 24—the intuition
presented at the start of this section: Logχ and Varχ are obtained by transporting
Log and Var respectively along the maps (−)χ.

Proposition 23. For every intermediate logic L, Varχ(Lχ) = Var(L)χ.

IL ILχ

HA HAχ

Var

(−)χ

Varχ

(−)χ

Proof. (⊆) Consider any Heyting algebra H ∈ Varχ(Lχ). Then we have H �χ Lχ

and by Proposition 18 it follows 〈Hχ〉 � L. So we clearly have that 〈Hχ〉 ∈ Var(L)
and since 〈Hχ〉χ = Hχ and 〈Hχ〉 � H also H ∈ Var(L)χ. (⊇) Consider any
Heyting algebra H ∈ Var(L)χ, then there is some K ∈ Var(L) such that K � H
and Hχ = Kχ. Then we have that K � L, so by Corollary 16 above K �χ Lχ

which entails K ∈ Varχ(Lχ). Finally, since χ-varieties are closed under core
superalgebras, it follows that H ∈ Varχ(Lχ). ��
Proposition 24. For every variety V of Heyting algebras Logχ(Vχ) = Log(V)χ.

IL ILχ

HA HAχ

(−)χ

(−)χ

Log Logχ

Proof. We prove both inclusions by contraposition. (⊆) Suppose φ /∈ Log(V)χ,
then φ[χn(p)/p] /∈ Log(V) and hence there is some H ∈ V such that H � φ[χn(p)/p].
By Proposition 15 H �

χ φ, hence φ /∈ Logχ(Vχ). (⊇) Suppose φ /∈ Logχ(Vχ).
It follows that there is some H ∈ Vχ such that H �

χ φ, hence by Lemma 17
〈Hχ〉 �

χ φ. It thus follows by Proposition 15 that 〈Hχ〉 � φ[χn(p)/p]. Now, since
H ∈ Vχ, we have for some K ∈ V that K � H and Kχ = Hχ. Thus it follows
that 〈Hχ〉 � K and therefore 〈Hχ〉 ∈ V. Finally, since 〈Hχ〉 � φ[χn(p)/p] we get
that φ[χn(p)/p] /∈ Log(V) and hence φ /∈ Log(V)χ. ��
Building on the previous results, we can finally prove a definability theorem and
a completeness theorem for χ-logics and χ-varieties.

Theorem 25 (Definability Theorem). χ-varieties are defined by their set of
χ-validities: H ∈ X if and only if H �χ Logχ(X ).
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Proof. For any χ-variety Vχ we have:

Varχ(Logχ(Vχ)) = Varχ(Log(V)χ) (by Proposition 24)
= Var(Log(V))χ (by Proposition 23)
= Vχ. (by Theorem 4)

Hence Varχ ◦ Logχ = 1HAχ , which proves our claim. ��
Theorem 26 (Completeness Theorem). χ-logics are complete with respect
to their corresponding χ-variety: φ ∈ Λ if and only if Varχ(Λ) �χ φ.

Proof. For any χ-logic Lχ we have:

Logχ(Varχ(Lχ)) = Logχ(Var(L)χ) (by Proposition 23)
= Log(Var(L))χ (by Proposition 24)
= Lχ. (by Theorem 4)

Hence Logχ ◦ Varχ = 1ILχ , which proves our claim. ��
Theorem 26 shows that the novel algebraic semantics is expressive enough to
study the whole family of χ-logics. Similarly, the definability theorem for χ-
varieties allows us to give a first external7 characterisation of χ-varieties: they
are exactly the χ-definable classes of Heyting algebras. By combining the results
obtained so far, we can finally prove that the lattices ILχ and HAχ are dually
isomorphic.

Theorem 27 (Dual Isomorphism). The lattice of χ-logics is dually isomor-
phic to the lattice of χ-varieties of Heyting algebras, i.e. ILχ ∼=op HAχ. In
particular, Varχ and Logχ are isomorphisms, one the inverse of the other.

In addition to the external characterisation presented, we can also give internal
characterisations of χ-varieties, employing the operations H, S and P introduced
in Sect. 2 together with the novel χ-closure operation. Indeed, the first charac-
terisation we present follows directly from the definition of χ-closure. We denote
by XCG the subclass of core generated Heyting algebras of a χ-variety X . The
following proposition is an immediate corollary of Theorem 19.

Proposition 28. Every χ-variety is generated by its collection of core generated
elements, i.e. X = X (XCG).

So now we know that every χ-variety is generated by its subdirectly irreducible
elements ([6, Theorem 9.6], using that χ-varieties are also standard varieties),
and by the previous proposition it is also generated by its core generated ele-
ments. We can improve this characterization result by showing that we only need
7 We borrow this terminology from [7, Sec. 7.8]: an external characterization of a

χ-variety X means a representation of X by means of equations, as opposed to
an internal characterizations which “does not involve identities, [. . . ] but uses only
purely algebraic tools such as various kinds of operations on algebras”.
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the intersection of these two classes of generators, obtaining an analogue of [6,
Theorem 9.7] for χ-varieties

To show this, we start by adapting Theorem 2 to the setting of χ-varieties.
Recall that, given C a class of Heyting algebras, we indicate with X (C) the least
χ-variety containing C and with V(C) the least variety containing C.

Theorem 29. Let C be a class of Heyting algebras, then X (C) = (HSP(C) )χ.

Proof. By definition X (C) = V(C)χ and, by Theorem 2, V(C) = HSP(C). ��
The following proposition follows from the previous theorem.

Proposition 30. Let X be a χ-variety, then X = X (C) iff Logχ(X ) = Logχ(C).

Proof. (⇒) Since C ⊆ X , the inclusion from left to right is straightforward.
Suppose now that X �

χ φ then there is some H ∈ X such that H �
χ φ. Then

since X = X (C), it follows by Theorem 29 that H ∈ HSP(C)χ. By Proposition 20,
it follows that for some A ∈ C we have A �

χ φ. Hence φ /∈ Logχ(C).
(⇐) Suppose Logχ(X ) = Logχ(C). It follows that Varχ(Logχ(X )) =

Varχ(Logχ(C)), hence by the Duality Theorem 27, we have X = Varχ(Logχ(C)).
Finally, since Logχ(C) = Logχ(X (C)) by Proposition 20 and Theorem 29,
we have Varχ(Logχ(C)) = Varχ(Logχ(X (C)). Finally, by Theorem 27 we have
Varχ(Logχ(X (C)) = X (C), and so it follows that X = X (C). ��
We can now prove a version of Theorem 3 for χ-varieties. If X is a χ-variety, let
XCGSI be the subclass of core generated subdirectly irreducible Heyting algebras.

Theorem 31. Every χ-variety is generated by its collection of core generated
subdirectly irreducible elements: X = X (XCGSI).

Proof. By Theorem 27 it suffices to show that Logχ(X ) = Logχ(X (XCGSI)).
By Proposition 30 this is equivalent to Logχ(X ) = Logχ(XCGSI). The direction
Logχ(X ) ⊆ Logχ(XCGSI) follows from the inclusion XCGSI ⊆ X . So it remains
to show that Logχ(XCGSI) ⊆ Logχ(X ). To this end, we employ a classical result
originally proved by Wronski [30]: For every Heyting algebra B and x ∈ B\{1B},
there exists a subdirectly irreducible algebra C and a surjective homomorphism
h : B � C such that f(b) �= 1C .

Suppose by contraposition that φ /∈ Logχ(X ). Then for some H ∈ X and
some χ-valuation σ we have that (H,σ) �

χ φ, and so by Lemma 17 we have
that (〈Hχ〉, σ) �

χ φ. Since �φ�
〈Hχ〉
σ �= 1H , by Wronski’s result there exists a

subdirectly irreducible algebra C and surjective homomorphism h : 〈Hχ〉 � C

such that h(�φ�
〈Hχ〉
σ ) �= 1C . Consider now the valuation τ = h ◦ σ. Since h

is a homomorphism, τ is again a χ-valuation—fixpoints of χ2 are mapped on
fixpoints of χ2—and we have that �φ�C

τ = h( �φ�
〈Hχ〉
σ ) �= 1C . In particular φ is

not χ-valid on C.
Since H ∈ X we have that 〈Hχ〉 ∈ X , and since h : 〈Hχ〉 � C we also have

that C ∈ X . Moreover, since C = h[〈Hχ〉], C is core generated, which means
that C ∈ XCGSI , showing that φ /∈ Logχ(XCGSI). Since φ was an arbitrary
formula, this proves our claim. ��
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6 The Lattices of χ-logics

In this section we examine each of the lattices of χ-logics for a univariate formula
χ. Recall that in Lemma 7 we have shown that there are only 6 fixpoints of
intuitionistic univariate formulas: ⊥, p,¬p,¬¬p, p∨¬p,�. Moreover, as noted at
the end of Sect. 3, L¬ = L¬¬ for every intermediate logic L, so there are at most
five distinct lattices of χ-logics. We shall now briefly consider each of them.

p-logics: Firstly, the lattice of p-logics ILp actually coincides with the lattice of
intermediate logics IL, since in this case χ2(p) = p and so Lp = L. From the
algebraic perspective, this means that for any Heyting algebra H its p-core is
Hp = H, thus we are not imposing any restriction on our valuations.

�-logics and ⊥-logics: The two “limit” cases IL⊥ and IL� are more inter-
esting. Notice that H⊥ = {0H} and H� = {1H}, and so under the algebraic
semantics that we have introduced ⊥-models allow only the constant valuation
with image 0H and �-models allow only the constant valuation with image 1H .
Interestingly, this means that the notion of core superalgebra collapses in both
cases to that of superalgebra, as we have 〈H⊥〉 = 〈H�〉 = {0H , 1H}, which is a
subalgebra of every Heyting algebra.

Thus there is only one ⊥-variety and only one �-variety, in both cases the
variety of all Heyting algebras. By Theorem 27 this means there are exactly one
⊥-logic (IPC⊥) and one �-logic (IPC�), which are respectively the ⊥-variant and
�-variant of every intermediate logic. These two logics are characterised by the
following properties:

φ(p1, . . . , pn) ∈ IPC⊥ iff φ(⊥, . . . ,⊥) ∈ IPC iff φ(⊥, . . . ,⊥) ∈ CPC
φ(p1, . . . , pn) ∈ IPC� iff φ(�, . . . ,�) ∈ IPC iff φ(�, . . . ,�) ∈ CPC

Notice in particular that, although they correspond to the same variety, the two
logics are distinct.

¬p-logics: Apart from IL, the lattice IL¬p is the only lattice of χ-logics that
has already been studied in the literature, although under a different guise. In
fact ¬p-logics have already been introduced in the literature as negative variants
of intermediate logics [8,16,20] and they have been studied from an algebraic
perspective in [4,22] under the name of DNA-logics. A well-known example of ¬p-
logic is inquisitive logic InqB, which is the ¬p-variant of the intermediate logics
KP, ND and ML—as shown in Theorem 3.4.9 of [8]. This algebraic approach to
study DNA-logics has proved to be particularly useful: for instance, [22] shows that
the lattice of extensions of InqB is dually isomorphic to ω + 1, and also provides
an axiomatisation of all such extensions by a generalisation of the method of
Jankov formulas [17,18].
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¬p-logics have a particularly interesting feature: as mentioned before, the ¬p-
core of a Heyting algebra is the set of its regular elements, which is a Boolean
algebra in the signature {1, 0,∧,→}. This easily entails the following corollary:
Given an intermediate logic L and a ∨-free formula φ, φ ∈ L¬p iff φ is a classical
tautology (Theorem 2.5.2 in [9]). That is, ¬p-logics are logics whose {1, 0,∧,→}-
fragment behaves classically, and which present an intuitionistic behaviour once
formulas containing disjunctions are concerned. Such intuitionistic behaviour
disappears once also disjunction is forced to be classical, as the following propo-
sition shows:

Proposition 32. Let L be an intermediate logic. Then L¬p = CPC iff L extends
the logic of weak excluded middle WEM := IPC + (¬p ∨ ¬¬p).

The original proof of this result is given in [8, Proposition 5.2.22]. Here we present
an alternative proof using the machinery developed in the previous sections.

Proof. We start by claiming that L¬p = CPC iff q ∨ ¬q ∈ L¬p for all q ∈ AT.
The left-to-right implication is trivial. As for the other implication, suppose
q ∨ ¬q ∈ L¬p and take an arbitrary algebra H ∈ Varχ(L¬p). Firstly notice that
for an arbitrary element c the condition c ∨ ¬c = 1 implies that c is regular:

c ∨ ¬c = 1 =⇒ (c ∨ ¬c) ∧ ¬¬c = ¬¬c =⇒ c ∧ ¬¬c = ¬¬c =⇒ c = ¬¬c

Since the H¬p is the set of the regular elements of H, for two regular elements
a and b we have:

(a ∨ b) ∨ ¬(a ∨ b) = a ∨ b ∨ (¬a ∧ ¬b) = (a ∨ ¬a ∨ b) ∧ (b ∨ ¬b ∨ a) = 1 ∧ 1 = 1

Thus regular elements in H¬p are closed under the operations ∧, → and ∨ as
well. It follows that H¬p is a Boolean algebra. Hence by Proposition 28 and
Theorem 26, it easily follows that L¬p = CPC.

To conclude, notice that by Lemma 11, q ∨¬q ∈ L¬q iff ¬q ∨¬¬q ∈ L, which
in turn is equivalent to WEM ⊆ L. ��
We refer the reader to [22] for more information on ¬p-logics and ¬p-varieties.

(p∨¬p)-logics: Finally, let us consider the lattice ILp∨¬p. The next proposition
gives a characterisation of the (p ∨ ¬p)-core of any Heyting algebra H. We refer
the reader to [23, Ch. 4 Sec. 5] for the proof of the following result.
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Proposition 33 (Rasiowa-Sikorski). Let H be a Heyting algebra and let x ∈
H. The following are equivalent:

1. x = y ∨ ¬y for some y ∈ H;
2. ¬x = 0;
3. for every y ∈ H, if x ∧ y = 0, then y = 0.

0

a b

s

1

Fig. 3. The algebra H
above is a member of
V arp∨¬p(LCp∨¬p) but
not of V ar(LCp∨¬p).
The circles indicate the
elements of 〈Hp∨¬p〉:
notice that a and b are
not in this subalgebra, so
H is not core-generated.

The elements satisfying properties 1, 2 and 3 above are
called dense elements. Notice that property 1 is exactly
the condition defining the elements of the (p∨¬p)-core
of H, thus Hp∨¬p consists of all and only the dense
elements of H.

Now, it is easy to see that the dense elements of a
Heyting algebra form a filter and that they are closed
under the operations ∧,∨,→ and 1. [23, Ch. 4 Sec. 5]
As a simple consequence of this, we have that for any
Heyting algebra H its core subalgebra is 〈Hp∨¬p〉 =
Hp∨¬p ∪ {0}. Therefore, the core generated algebras—
which by Theorem 31 suffice to generate all the (p ∨
¬p)-varieties—are exactly the algebras containing only
dense elements apart from 0.

We obtain an interesting example of (p ∨ ¬p)-logic by taking the (p ∨ ¬p)-
variant of Gödel-Dummett logic LC. Recall that LC is the intermediate logic
extending IPC with the axiom (p → q) ∨ (q → p). It can be also characterised as
the logic of linear Heyting algebras [7, Example 4.15]. In the same way, the logic
LCp∨¬p forces a similar linearity condition, but now limited to the dense elements
of a Heyting algebras. Notice that by Proposition 22, the variety Varp∨¬p(LCp∨¬p)
is still generated by the class of linear Heyting algebras. However, the closure
under core-superalgebras leads to a variety properly extending Var(LC), as shown
in Fig. 3. Moreover, notice that linear algebras are core-generated since ¬x = 0
for every non-zero element x. Thus we found a class of core-generated algebras
which generate the whole (p ∨ ¬p)-variety.

Finally, we have seen in Proposition 32 that the intermediate logics whose
¬p-variant is CPC are exactly the extensions of WEM. So a natural question to
ask is what intermediate logics have CPC as their (p ∨ ¬p)-variant. The next
proposition establishes that no intermediate logic has this property.

Proposition 34. CPC is not the (p ∨ ¬p)-variant of any intermediate logic.

Proof. Suppose towards a contradiction that Lp∨¬p = CPC for some intermediate
logic L. By Condition 3 of Definition 8, it follows that (p ∨ ¬p)2 ↔ p ∈ CPC.
But since (p ∨ ¬p)2 ≡IPC p ∨ ¬p ∈ CPC, it follows that p ∈ CPC, which is a
contradiction. ��

Now that we have described the five lattices of χ-logic more in detail, we
are ready to show they are distinct. However, we need to clarify what we mean
by distinct lattices: as we have already seen, IL� and IL⊥ both contain only
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one logic, so these lattices are isomorphic; but we also observed that the logics
IPC� and IPC⊥ are different, and we want to consider these lattices distinct on
the base of that. In general, we say that ILχ and ILθ are the same or equal iff
for every intermediate logic L we have Lχ = Lθ—as in the case of IL¬p and
IL¬¬p—and we say the lattices are distinct otherwise.

This suggests to study the relation between these lattices in a more system-
atic way: define the pointwise extension relation ILχ � ILθ to hold if for every
intermediate logic L we have Lχ ⊆ Lθ. The relation � is a partial order between
the lattices of χ-logics. In particular, ILχ � ILθ � ILχ if and only if the two lat-
tices ILχ and ILθ are equal. The following theorem characterises the properties
of this relation.

Theorem 35. Let χ and θ be univariate formulas. Then the following are equiv-
alent:

1. ILχ � ILθ;
2. IPCχ ⊆ IPCθ;
3. (θ2(p) ↔ p) → (χ2(p) ↔ p) ∈ IPC;
4. For every Heyting algebra H, Hθ ⊆ Hχ.

Proof. (1 ⇒ 2) It follows from the definition of �. (2 ⇒ 3) Since IPCχ ⊆ IPCθ,
we have in particular that χ2(p) ↔ p ∈ IPCθ. This means that IPC + (θ2(p) ↔
p) � χ2(p) ↔ p; and so by the deduction theorem of IPC we have (θ2(p) ↔ p) →
(χ2(p) ↔ p) ∈ IPC. (3 ⇒ 4) We prove the contrapositive of the implication:
suppose that Hθ

� Hχ for some Heyting algebra H. Consider an element a ∈
Hθ \ Hχ. By Lemma 12 we have θ2(a) ↔ a = 1H and χ2(a) ↔ a �= 1H . So in
particular H � (θ2(p) ↔ p) → (χ2(p) ↔ p), showing that this is not a theorem
of IPC. (4 ⇒ 1) Consider an intermediate logic L and take an arbitrary formula
φ /∈ Lθ. By Proposition 22, Lθ = Logθ(Var(L)), and so there exists an algebra
H ∈ Var(L) and a θ-valuation σ such that (H,σ) � φ. Since Hθ ⊆ Hχ by
hypothesis, it follows that σ is a χ-valuation, hence φ /∈ Logχ(Var(L)) either.
Again by Proposition 22, Lχ = Logχ(Var(L)), and thus φ /∈ Lχ. Since φ was
arbitrary, it follows that Lχ ⊆ Lθ, as wanted. ��

ILp = IL

IL¬¬p ILp∨¬p

IL⊥ IL

Fig. 4. The Hasse diagram
of the 5 lattices of χ-logics,
ordered under the relation
�. The diagram is computed
using Theorem 35.

Corollary 36. There are exactly 5 lattices of χ-
logics, for χ a univariate formula:

ILp = IL, IL¬p = IL¬¬p,

IL⊥, ILp∨¬p, IL�.

Proof. What remains to be shown is that the lat-
tices are distinct. By Theorem 35, we can do this
by exhibiting a Heyting algebra H for which the χ-
cores are all distinct. Indeed, the algebra in Fig. 3
is an example of such an algebra:
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H⊥ = {0} H� = {1}
H¬p = {0, a, b, 1} Hp∨¬p = {0, s, 1}
Hp = H ��

In Fig. 4 we give a compact representation of the results in Theorem 35 and
Corollary 36.

7 Conclusion

In this article we introduced χ-logics and a sound and complete algebraic seman-
tics for them, based on Ruitenburg’s theorem. In Sect. 3 we defined the notion
of χ-logics and studied them from a syntactical perspective, showing that for
a fixed χ they form a complete distributive lattice, and that we have only 5
such lattices. In Sect. 4 we defined an algebraic semantics for χ-logics, by relying
on an algebraic interpretation of Ruitenburg’s theorem originally described in
[27], and we introduced χ-varieties as the semantic counterpart of χ-logics. In
Sect. 5 we initiated a more systematic study of χ-varieties providing external
and internal characterisations: we showed that the lattice of χ-logics and the
lattice of χ-varieties are dually isomorphic, and we showed that each χ-variety
is generated by its core generated subdirectly irreducible members. Finally, in
Sect. 6, we have looked more in detail at each of the 5 lattices of χ-logics and
characterised explicitly the pointwise extension relation � between the lattices.

The results of this article provide a first approach to generate and study
new logics and corresponding algebraic semantics in a systematic fashion. We
adapted the approach and technical machinery of universal algebra to investigate
the novel class of χ-logics. In particular, we believe this is particular interesting
as it provides an algebraic perspective on a class of logics that is essentially
non-standard – as χ-logics are not closed under uniform substitutions.

This work can be extended in several directions: Firstly, we limited ourselves
to univariate formulas but the approach based on Ruitenburg’s theorem can
be generalised to the lattice produced by an arbitrary intuitionistic formula—
although this would require slightly more complex algebraic structures than
Heyting algebras. Secondly, even in this more general setting cores are still
required to be definable, but it seems natural to consider more general notions
of core (i.e., more generic fixpoint operators) and their corresponding logics.
This idea was recently employed in [15] by focusing on fixpoints of nuclei over
Heyting algebras: this naturally led to define the class of inquisitive intuition-
istic logics and to provide a natural algebraic semantics for them. It would be
of interest to develop similar techniques also for other classes of fixpoint oper-
ators. Another interesting direction of work would be to interpret the results
presented in this paper in terms of topological duality, that is, Esakia duality for
Heyting algebras [12]. Giving a topological interpretation to the results and con-
structions presented (such as the core-superalgebra operation) would give novel
tools to study the structure of the lattices of χ-logics. Finally, we think that
the approach of core semantics that we adopted in this work could be extended
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to provide an algebraic semantics to other logics without uniform substitution.
In particular, we think it could be fruitfully applied to logics based on team-
semantics, such as dependence logic, team logic, etc. We believe this would both
provide an interesting point of study to these logics and also outline a possible
generalisation of the framework of abstract algebraic logic [13], which is generally
concerned with logics satisfying the principle of uniform substitution.

A Proof of Lemma 7

Proof (Proof of Lemma 7). As shown in [21,24], the following is a presentation
of all the non-constant univariate intuitiornistic formulas modulo logical equiv-
alence:

β1 := p βn+1 := αn ∨ βn α1 := ¬p αn+1 := αn → βn.

We consider the following two properties for a univariate formula φ:

1. ¬¬φ ≡ �.
2. If ψ has property 1, then φ[ψ/p] ≡ �.

In particular, if φ has both properties then φ2 ≡ �, that is, the fix-point of φ is
�.

Firstly notice that

α5 = ((¬¬p) → p ∨ ¬p) → (¬p ∨ ¬¬p) β5 = ((¬¬p) → p ∨ ¬p) → (¬¬p → p)

have both properties.
α5 has property 1:

¬¬α5 ≡ ¬¬(((¬¬p→p)→p∨¬p)→(¬p∨¬¬p))

≡ ¬¬((¬¬p→p)→p∨¬p)→¬¬(¬p∨¬¬p)

≡ ¬¬((¬¬p→p)→p∨¬p)→�
≡ �

β5 has property 1:

¬¬β5 ≡ ¬¬(((¬¬p→p)→p∨¬p)∨(¬¬p→p))

≡ ¬¬(¬¬((¬¬p→p)→p∨¬p)∨¬¬(¬¬p→p))

≡ ¬¬(¬¬((¬¬p→p)→p∨¬p)∨�)

≡ ¬¬�
≡ �

α5 has property 2: for φ with prop-
erty 1,

α5(φ) ≡ ((¬¬φ→φ)→φ∨¬φ)→(¬φ∨¬¬φ)

≡ ((¬¬φ→φ)→φ∨¬φ)→(⊥∨�)

≡ ((¬¬φ→φ)→φ∨¬φ)→�
≡ �

β5 has property 2: for φ with prop-
erty 1,

β5(φ) ≡ ((¬¬φ→φ)→φ∨¬φ)∨(¬¬φ→φ)

≡ ((�→φ)→φ∨⊥)∨(¬¬φ→φ)

≡ (φ→φ)∨(¬¬φ→φ)

≡ �∨(¬¬φ→φ)

≡ �
Moreover, we can show that, if αn and βn have both properties, then this holds
for αn+1 and βn+1 too.
αn+1 has property 1:

¬¬αn+1 ≡ ¬¬(αn→βn)

≡ ¬¬αn→¬¬βn

≡ ¬¬αn→�
≡ �

βn+1 has property 1:

¬¬βn+1 ≡ ¬¬(αn∨βn)

≡ ¬¬(¬¬αn∨¬¬βn)

≡ ¬¬(�∨�)

≡ �
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αn+1 has property 2: for φ with prop-
erty 1,

αn+1(φ) ≡ αn(φ)→βn(φ)

≡ αn(φ)→�
≡ �

βn+1 has property 2: for φ with prop-
erty 1,

βn+1(φ) ≡ βn(φ)∨αn(φ)

≡ �∨�
≡ �

So, by induction all the formulas αn, βn with n ≥ 5 have index at most 2 and
fixpoint �. As for the remaining formulas, one can easily show their fix-points
are as follows:

β2
1 = (p)2 ≡ p =⇒ (β2

1)
0 ≡ (β2

1)
1

β2
2 = (p ∨ ¬p)2 ≡ p ∨ ¬p =⇒ (β2

2)
1 ≡ (β2

2)
3

β2
3 ≡ (¬p ∨ ¬¬p)2 ≡ � =⇒ (β2

3)
2 ≡ (β2

3)
4

β2
4 ≡ (¬¬p ∨ (¬¬p → p))2 ≡ � =⇒ (β2

4)
2 ≡ (β2

4)
4

α2
3 ≡ (¬¬p → p)2 ≡ ¬¬p → p =⇒ (α2

3)
1 ≡ (α2

3)
2

α2
2 = (¬¬p)2 ≡ ¬¬p =⇒ (α2

2)
1 ≡ (α2

2)
2

α3
1 = (¬p)3 ≡ ¬p =⇒ (α3

1)
1 ≡ (α3

1)
3

α2
4 ≡ ((¬¬p → p) → p ∨ ¬p)2 ≡ � =⇒ (α2

4)
2 ≡ (α2

4)
4.

This concludes the proof. ��

References

1. Bezhanishvili, G., Holliday, W.H.: Locales, nuclei, and dragalin frames. In: Bek-
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Matching and Generalization Modulo
Proximity and Tolerance Relations
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Abstract. Proximity relations are fuzzy binary relations satisfying
reflexivity and symmetry properties. Tolerance, which is a reflexive and
symmetric (and not necessarily transitive) relation, can be also seen as
a crisp version of proximity. We discuss two fundamental symbolic com-
putation problems for proximity and tolerance relations: matching and
anti-unification, present algorithms for solving them, and study proper-
ties of those algorithms.

Keywords: Fuzzy proximity relations · Matching · Anti-unification

1 Introduction

Proximity relations are reflexive and symmetric fuzzy binary relations. They
generalize similarity relations, which are a fuzzy version of equivalences. Prox-
imity relations help to represent fuzzy information in situations where similarity
is not adequate.

The crisp counterpart of proximity is tolerance, which generalizes the stan-
dard equivalence relation by dropping the transitivity property. In the literature,
tolerance appears under other names as well, e.g., compatibility, similarity, or
proximity relation. The term ‘tolerance relation’ is attributed to Zeeman [17].

A tolerance relation can be expressed as an undirected graph. The vertices
of the graph form the set on which the relation is defined, and two elements
are related if and only if there is an edge in the graph connecting them. A sim-
ilar graph but with weighted edges can be associated to a proximity relation.
This graph-based view helps to easily explain two important notions related
to proximity and tolerance relations: proximity/tolerance blocks and proxim-
ity/tolerance classes (of a node). Blocks correspond to maximal cliques in the
graph and the class of a node corresponds to its set of adjacent nodes, together
with the node itself (see, e.g., [5,8]).

Unification and anti-unification are two fundamental operations for many
areas of symbolic computation. Unification aims at computing a most specific
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N32 and by the strategic program “Innovatives OÖ 2020” by the Upper Austrian
Government.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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common instance of given logical expressions, while anti-unification, a technique
dual to unification, computes their least general generalization. Both techniques
have been studied for equivalence relations both in crisp and fuzzy settings.
Syntactic and equational unification is surveyed, e.g., in [4], for syntactic and
equational anti-unification see, e.g., [2,6,14,15]. Unification and anti-unification
modulo similarity have been investigated, e.g., in [1,16].

On the other hand, there are very few works on unification and anti-unifi-
cation modulo proximity and tolerance. In [8], the authors introduced the notion
of proximity-based unification (improved later in [9]) and used it in fuzzy logic
programming. It can be characterized as a block-based approach, because two
terms are treated as approximate in one computation when they have the same
set of positions, symbols in their corresponding positions belong to the same
block, and a certain symbol is always assigned to the same block. This approach
imposes the restriction that the same symbol can not be close to two symbols
at the same time, when those symbols are not close to each other. One of them
should be chosen as the proximal candidate to the given symbol. For matching,
it means that f(x, x) does not match to f(a, c) when a and c are not close to
each other, even if there exists a b close both to a and c. In [11,12], we reported
the first results related to block-based anti-unification with proximity relations.

In this paper, we consider the class-based notion of approximation for proxim-
ity (and tolerance) relations, which helps relax the mentioned restriction. Under
this approach, f(x, x) matches f(a, c), when there is a b that is close to both
a and c, even if a and c are not close to each other. It is justified by the fact
that f(b, b) and f(a, c) belong to the same proximity/tolerance class, and it has
a natural interpretation, e.g.: for two distant points a and c on a plane, find a
point x that is close to each of them. As we have already shown in [13], it is
nontrivial to solve proximity constraints in this setting. Here we develop a ded-
icated algorithm for matching. In general, matching problems with proximity
or tolerance relations might have finitely many incomparable solutions, but one
can represent them in a more compact way. We show that for each matching
problem there is a single answer in such a compact form, and investigate time
and space complexity to compute it.

We also study class-based anti-unification for proximity/tolerance relations.
This problem is closely related to matching, as generalizations (whose compu-
tation is the goal of anti-unification) are supposed to match the original terms.
Also here, we aim at computing a compact representation of the solution, but
unlike matching, for anti-unification there can be finitely many different solu-
tions in compact form. If we are interested in linear generalizations (i.e., those
which do not contain multiple occurrences of the same variable) then the prob-
lem has a unique compact solution. A potential application of these techniques
includes, e.g., an extension of software code clone detection methods by treating
certain mismatches as approximations.

The paper is organized as follows. In Sect. 2, we introduce the basic notions.
The problem statement can be found in Sect. 3. In Sect. 4, we develop our
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matching algorithm and study its properties. Section 5 is about anti-unification.
Section 6 contains concluding remarks.

2 Preliminaries

Proximity and Tolerance Relations
We define basic notions about proximity relations following [8].

A binary fuzzy relation on a set S is a mapping from S × S to the real
interval [0, 1]. If R is a fuzzy relation on S and λ is a number 0 < λ ≤ 1 (called
cut value), then the λ-cut of R on S, denoted Rλ, is an ordinary (crisp) relation
on S defined as Rλ := {(s1, s2) | R(s1, s1) ≥ λ}.

Each fuzzy relation is characterized by a finite set of cut values, which we
call approximation levels of the relation.

A fuzzy relation R on a set S is called a proximity relation on S iff it is
reflexive (R(s, s) = 1 for all s ∈ S) and symmetric (R(s1, s2) = R(s2, s1) for
all s1, s2 ∈ S). Tolerance relations are crisp reflexive and symmetric binary
relations. A λ-cut of a proximity relation on S is a tolerance relation on S.

The proximity class of level λ ∈ (0, 1] of s ∈ S with respect to a proximity
relation R (an (R, λ)-class of s) is the set pc(s,R, λ) := {s′ | R(s, s′) ≥ λ}.

A triangular norm (T-norm) ∧ in [0, 1] is a binary operation ∧ : [0; 1] ×
[0, 1] → [0, 1], which is associative, commutative, nondecreasing in both argu-
ments, and satisfying x ∧ 1 = 1 ∧ x = x for any x ∈ [0, 1]. T-norms have been
studied in detail in [10]. In this paper we assume that the t-norm is minimum.

Terms and Extended Terms
Given disjoint sets of variables V and fixed arity function symbols F , terms over
F and V are defined as usual, by the grammar t := x | f(t1, . . . , tn), where x ∈ V
and f ∈ F is n-ary. The set of terms over V and F is denoted by T (F ,V). We
denote variables by x, y, z, arbitrary function symbols by f, g, h, constants by
a, b, c, and terms by s, t, r.

Below we will need a notation for finite sets of function symbols, whose all
elements have the same arity. They will be denoted by lower case bold face
letters: f ,g,h. When we talk about finite sets of constants, we use a,b, and c.

Extended terms or, shortly, X-terms over F and V are defined by the grammar
t := x | f(t1, . . . , tn), where f �= ∅ contains finitely many function symbols
of arity n. Hence, X-terms differ from the standard ones by permitting finite
non-empty sets of n-ary function symbols in place of n-ary function symbols.
Variables in X-terms are used in the standard terms. We denote the set of X-
terms over F and V by Text(F ,V), and use also bold face letters for its elements.

The set of variables for a term t and for an X-term t is denoted by V(t) and
V(t), respectively. A term (resp. X-term) is called linear if every variable occurs
in it at most once. The head of a term and an X-term is defined as

head(x) := x, head(f(t1, . . . , tn)) := f, head(f(t1, . . . , tn)) := f .



326 T. Kutsia and C. Pau

The set of terms represented by an X-term t, denoted by τ(t), is defined as

τ(x) := {x}, τ(f(t1, . . . , tn)) := {f(t1, . . . , tn) | f ∈ f , ti ∈ τ(ti), 1 ≤ i ≤ n}.

We also define the intersection operation for X-terms, denoted by t 	 s:

– x 	 x = x for all x ∈ V.
– t 	 s = (f ∩ g)(t1 	 s1, . . . , tn 	 sn), n ≥ 0, if f ∩ g �= ∅ and ti 	 si �= ∅ for all

1 ≤ i ≤ n, where t = f(t1, . . . , tn) and t = g(s1, . . . , sn).
– t 	 s = ∅ in all other cases.

Positions in terms are defined with respect to their tree representation in
the standard way, as string of integers, where the empty string is denoted by ε.
We will need another standard notion, the subterm of t at position p, denoted
by t|p. (See, e.g., [3] for details.) These notions straightforwardly extend to X-
terms. For instance, for an X-term t = {f}({g, h}(x, {a, b, c}), {b, c, d}), the set
of positions is {ε, 1, 1.1, 1.2, 2} and we have the X-subterms of t at those position
t|ε = t, t|1 = {g, h}(x, {a, b, c}), t|1.1 = x, t|1.2 = {a, b, c}, and t|2 = {b, c, d}.

Substitutions and Extended Substitutions
Substitutions over T (F ,V) (resp. over Text(F ,V) are mappings from variables to
terms (resp. to X-terms), where all but finitely many variables are mapped to
themselves. The symbols σ, ϑ, ϕ are used for term substitutions, and σ,ϑ, ϕ for
X-term substitutions. The identity substitution is denoted by Id .

The domain of a substitution σ is defined as dom(σ) = {x | σ(x) �= x}.
We use the usual set notation for substitutions, writing, e.g., σ as σ = {x �→
σ(x) | x ∈ dom(σ)}. Substitution application to terms is written in the postfix
notation such as tσ and is defined recursively as xσ = σ(x) and f(t1, . . . , tn)σ =
f(t1σ, . . . , tnσ). In the same way, one can define the domain of an X-substitution
and application of an X-substitution to an X-term.1

The set of substitutions represented by an X-term substitution σ is the set
τ(σ) := {σ | σ(x) ∈ τ(σ(x)) for all x ∈ V}.

Relations over Terms and Substitutions
Each proximity relation R we consider in this paper is defined on F so that
for all f, g ∈ F , we have R(f, g) = 0 if arity(f) �= arity(g). We extend such a
relation R from F to F ∪ T (F ,V):

– For function symbols R is already defined.
– For variables: R(x, x) = 1.
– For nonvariable terms:

R(f(t1, . . . , tn), g(s1, . . . , sn)) = R(f, g) ∧ R(t1, s1) ∧ · · · ∧ R(tn, sn),

when f and g are both n-ary.

1 Note that notions of application of a substitution to an X-term and application of
an X-substitution to a term are not defined.
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– In all other cases, R(T1, T2) = 0 for T1, T2 ∈ F ∪ T (F ,V).

Two terms t and s are (R, λ)-close to each other, written t R,λ s, if R(t, s) ≥ λ.

Definition 1 (Relations �R,λ and �). The relations �R,λ and � and the
corresponding notions are defined as follows:

�R,λ: A term t is (R, λ)-more general than s (or t is (R, λ)-generalization of s,
or s is an (R, λ)-instance of t), written t �R,λ s, if there exists a substitution
σ such that tσ R,λ s. We say that σ is an (R, λ)-matcher of t to s.

�: A term t is syntactically more general than s (or t is a syntactic generali-
zation of s, or s is a syntactic instance of t), written t � s, if there exists a
σ such that tσ = s. We say that σ is a syntactic matcher of t to s.

An X-term t is an (R, λ)-X-generalization of a term s, if every t ∈ τ(t) is
an (R, λ)-generalization of s.

An X-substitution σ is an (R, λ)-X-matcher of t to s, if every σ ∈ τ(σ) is an
(R, λ)-matcher of t to s.

A substitution σ that matches t to s is called a relevant (R, λ)-matcher (resp.
relevant syntactic matcher) of t to s if dom(σ) ⊆ V(t). A relevant (R, λ)-X-
matcher is defined analogously.

The strict part of �R,λ and � are denoted respectively by ≺R,λ and <.

The relation �R,λ is not transitive. If a R,λ b, b R,λ c, and a �R,λ c,
then we have a �R,λ b, b �R,λ c, and a ��R,λ c. Unlike �R,λ, � is transitive.
(In fact, � is a quasi-ordering, called instantiation quasi-ordering.) We also have
� ⊆ �R,λ for any R and λ.

Definition 2 ((R, λ)-lgg). A term r is called an (R, λ)-least general general-
ization (an (R, λ)-lgg) of t and s iff

– r is (R, λ)-more general than both t and s, i.e., r �R,λ t and r �R,λ s, and
– there is no r′ such that r ≺R,λ r′, r′ �R,λ t, and r′ �R,λ s.

An X-term r is an (R, λ)-X-lgg of t and s, if every r ∈ τ(r) is an (R, λ)-lgg of
t and s.

Theorem 1. If r is an (R, λ)-generalization of t, then any syntactic general-
ization of r is also an (R, λ)-generalization of t.

Proof. From r �R,λ t, by definition of �R,λ, there exists ϑ such that rϑ R,λ t.
From r′ � r, by definition of �, there exists ϕ such that r′ϕ = r. Then we have
r′ϕϑ = rϑ R,λ t, which implies r′ �R,λ t. 	�

Corollary 1. Any syntactic generalization of an (R, λ)-lgg of t and s is an
(R, λ)-generalization of both t and s.

The notion of syntactic lgg can be defined analogously to (R, λ)-lgg, using the
relation �. The syntactic lgg of two terms is unique modulo variable renaming,
see, e.g., [14,15]. In general, it is not difficult to show that for any terms t and
s, if r and r′ are their syntactic lgg and (R, λ)-lgg, respectively, then r � r′.
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Example 1. Let R and λ be such that a R,λ b, b R,λ c, and a �R,λ c. Then
(R, λ)-lgg of a and c is b, while their syntactic lgg is x.

Given a term t, a proximity relation R, and a cut value λ, the (R, λ)-proximity
class of t is an X-term pc(t,R, λ), defined as

pc(x,R, λ) := {x},

pc(f(t1, . . . , tn),R, λ) := pc(f,R, λ)(pc(t1,R, λ), . . . ,pc(tn,R, λ)).

Theorem 2. Given a proximity relation R, a cut value λ, and two terms t and
s, each r ∈ pc(t,R, λ) 	 pc(s,R, λ) is (R, λ)-close both to t and to s.

Proof. Follows directly from the definition of proximity class of a term. 	�

The examples below illustrate some of the notions introduced in this section.

Example 2. Let the proximity relation R be defined as

R(g1, g2) = R(a1, a2) = 0.5, R(g1, h1) = R(g2, h1) = 0.6,

R(g1, h2) = R(a1, b) = 0.7, R(g2, h2) = R(a2, b) = 0.8.

The set of approximation levels of R is {0.5, 0.6, 0.7, 0.8}.
Let t be the term f(g1(a1), g2(a2)). Then the proximity class pc(t,R, λ) for

different values of λ is:

0 < λ ≤ 0.5 : {f}({g1, g2, h1, h2}({a1, a2, b}), {g1, g2, h1, h2}({a1, a2, b})).
0.5 < λ ≤ 0.6 : {f}({g1, h1, h2}({a1, b}), {g2, h1, h2}({a2, b})).
0.6 < λ ≤ 0.7 : {f}({g1, h2}({a1, b}), {g2, h2}({a2, b})).
0.7 < λ ≤ 0.8 : {f}({g1}({a1}), {g2, h2}({a2, b})).

0.8 < λ ≤ 1 : {f}({g1}({a1}), {g2}({a2})).

Example 3. Let R be defined as in Example 2. Let t = f(x, x) and s = f(g1(a1),
g2(a2)). Then for each of the following X-substitution σ, the set τ(σ) contains
all relevant (R, λ)-matchers of t to s for different values of λ:

0 < λ ≤ 0.5 : σ = {x �→ {g1, g2, h1, h2}({a1, a2, b})}.

τ(σ) contains 12 substitutions.
0.5 < λ ≤ 0.6 : σ = {x �→ {h1, h2}({b})}.

τ(σ) = {{x �→ h1(b)}, {x �→ h2(b)}}.

0.6 < λ ≤ 0.7 : σ = {x �→ {h2}({b})}. τ(σ) = {{x �→ h2(b)}}.

0.7 < λ ≤ 1 : No substitution matches t to s.

Example 4. Let R be a proximity relation defined as

R(a1, a) = R(a2, a) = R(b1, b) = R(b2, b) = 0.5,

R(a2, a
′) = R(a3, a

′) = R(b2, b′) = R(b3, b′) = 0.6, R(f, g) = 0.7.
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Its set of approximation levels is {0.5, 0.6, 0.7}.
Let t = f(a1, a2, a3) and s = g(b1, b2, b3). Then x is the syntactic lgg of t

and s. As for proximity-based generalizations, for each of the following X-term
r, the set τ(r) contains all (R, λ)-lggs of t and s for different values of λ:

0 < λ ≤ 0.5 :
r1 = {f, g}(x1, x1, x3). τ(r1) = {f(x1, x1, x3), g(x1, x1, x3)}.

r2 = {f, g}(x1, x2, x2). τ(r2) = {f(x1, x2, x2), g(x1, x2, x2)}.

0.5 < λ ≤ 0.6 :
r = {f, g}(x1, x2, x2). τ(r) = {f(x1, x2, x2), g(x1, x2, x2)}.

0.6 < λ ≤ 0.7 :
r = {f, g}(x1, x2, x3). τ(r) = {f(x1, x2, x3), g(x1, x2, x3)}.

0.7 < λ ≤ 1 : r = x. τ(r) = {x}.

If we are interested only in linear generalizations, we will get a single X-term
(R, λ)-lgg for each fixed λ:

0 < λ ≤ 0.7 : r = {f, g}(x1, x2, x3). τ(r) = {f(x1, x2, x3), g(x1, x2, x3)}.

0.7 < λ ≤ 1 : r = x. τ(r) = {x}.

3 Matching and Anti-unification: Problem Statement

Matching and anti-unification problems for terms are formulated as follows:
Given a proximity relation R, a cut value λ, and two terms t and s, find

– an (R, λ)-matcher of t to s (the matching problem) or
– an (R, λ)-lgg of t and s (the anti-unification problem).

Below we develop algorithms to solve these problems. as we will see, each
of them has finitely many solutions. It is important to mention that instead
of computing all the solutions to the problems, we will be aiming at comput-
ing their compact representations in the form of X-substitutions (for matching)
and X-terms (for generalization). Hence, our algorithms will solve the following
reformulated version of the problems:

Matching problem
Given: a proximity relation R, a cut value λ, and two terms t and s.
Find: an X-substitution σ s.t. each σ ∈ τ(σ) is an (R, λ)-matcher of t to s.

Anti-unification problem
Given: a proximity relation R, a cut value λ, and two terms t and s.
Find: an X-term r such that each r ∈ τ(r) is an (R, λ)-lgg of t and s.

Such a reformulation will help us compute a single X-substitution instead of
multiple matchers, and fewer X-lggs than lggs. Moreover, if we restrict ourselves
to linear lggs (i.e., those with a single occurrence of generalization variables),
then also here we get a single answer.
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4 Matching

Given R, λ, t, and s (where s does not contain variables), to solve an (R, λ)-
matching problem t � s, we create the initial pair {t � s}; ∅ and apply the rules
given below. They work on pairs M ;S, where M is a set of matching problems,
and S is the set of equations of the form x ≈ s. The rules are as follows (� stands
for disjoint union):

Dec-M: Decomposition

{f(t1, . . . , tn) � g(s1, . . . , sn)} � M ;S =⇒ M ∪ {ti � si | 1 ≤ i ≤ n};S,

if n ≥ 0, R(f, g) ≥ λ.

VE-M: Variable elimination

{x � s} � M ; S =⇒ M ; S ∪ {x ≈ pc(s,R, λ)}.

Mer-M: Merging

M ; {x ≈ s1, x ≈ s2} � S =⇒ M ; S ∪ {x ≈ s1 	 s2}, if s1 	 s2 �= ∅.

Cla-M: Clash

{f(t1, . . . , tn) � g(s1, . . . , sm)} � M ; S =⇒ ⊥, where R(f, g) < λ.

Inc-M: Inconsistency

M ; {x ≈ s1, x ≈ s2} � S =⇒ ⊥, if s1 	 s2 = ∅.

The matching algorithm M uses the rules to transform pairs as long as possi-
ble, returning either ⊥ (indicating failure), or the pair ∅;S (indicating success).
In the latter case, each variable occurs in S at most once and from S one can
obtain an X-substitution {x �→ s | x ≈ s ∈ S}. We call it the computed X-
substitution.

We call a substitution σ an (R, λ)-solution of an M ;S pair, iff σ is an (R, λ)-
matcher of M and for all x ≈ t ∈ S, we have xσ ∈ τ(t). We also assume that ⊥
has no solution.

Lemma 1. If M1;S1 =⇒ M2;S2 is a step made by M, then σ is an (R, λ)-
solution of M1;S1 iff it is an (R, λ)-solution of M2;S2.

Proof. For the rules Dec-M and Cla-M, the lemma follows by definition of
matcher. For Mer-M and Inc-M it is implied by definition of 	. For VE-M, by
definition of pc, we have xσ ∈ pc(s,R, λ) iff R(xσ, s) ≥ λ, which is equivalent
to the fact that σ is an (R, λ)-matcher of x � s. 	�

In the theorems below the size of a syntactic object (term, matching problem,
set of matching problems, a set of equations) is the number of alphabet symbols
in it: size(x) = 1, size(f(t1, . . . , tn)) = 1 +

∑n
i=1 size(ti), size(t � s) = size(t ≈

s) = size(t) + size(s), and size(S) =
∑

p∈S size(p), where S is a set of matching
problems or equations.
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Theorem 3. Given an (R, λ)-matching problem t � s, the matching algorithm
M terminates and computes an X-substitution σ such that τ(σ) consists of all
relevant (R, λ)-matchers of t to s.

Proof. The theorem consists of three parts: termination, soundness, and com-
pleteness. We prove each of them separately.

Termination. The rules Dec-M and VE-M strictly reduce the number of
symbols in M . The rule Mer-M does the same for S, without changing M .
Cla-M and Inc-M stop the algorithm immediately. Hence, the algorithm
strictly reduces the lexicographic combination 〈size(M), size(S)〉 of sizes of
M and S, which implies termination.

Soundness. If σ ∈ τ(σ), then σ is a relevant (R, λ)-matcher of t to s.
Let {t � s}; ∅ =⇒+ ∅;S be the derivation in M that computes σ. By def-
inition of computed X-substitution, we can conclude that σ ∈ τ(σ) iff σ is
a solution of ∅;S. By induction on the length of the given derivation, using
Lemma 1, we can prove that σ is an (R, λ)-matcher of t to s. In M, no new
variables are created and put in S. All variables there come from the original
problem. It implies that σ is a relevant matcher of t to s.

Completeness. If σ is a relevant (R, λ)-matcher of t to s, then σ ∈ τ(σ).
Since t � s is solvable, we can construct a derivation {t � s}; ∅ =⇒+ ∅;S
in M. This follows from the fact that for each form of matching equation we
have a rule in M, and if we have two equations with the same variable in S we
can also transform it. Moreover, by Lemma 1, we would never apply Cla-M
and Inc-M rules, because it would contradict the solvability of t � s. Hence,
we can construct the mentioned derivation, for which, again by Lemma 1,
we have that σ is a (R, λ)-solution of ∅;S. By definitions of computed X-
substitution σ and τ, it implies that σ ∈ τ(σ). 	�

Hence, M computes all relevant (R, λ)-X-matchers for matching problems.

Example 5. We illustrate the steps of the algorithm M for the matching problem
in Example 3 for λ = 0.6 and λ = 0.8.

λ = 0.6 :
{f(x, x) � f(g1(a1), g2(a2))}; ∅ =⇒Dec-M

{x � g1(a1), x � g2(a2)}; ∅ =⇒VE-M

{x � g2(a2)}; {x ≈ {g1, h1, h2}({a1, b})} =⇒VE-M

∅; {x ≈ {g1, h1, h2}({a1, b}), x ≈ {g2, h1, h2}({a2, b})} =⇒Mer-M

∅; {x ≈ {h1, h2}({b})}.

λ = 0.8 :
{f(x, x) � f(g1(a1), g2(a2))}; ∅ =⇒Dec-M

{x � g1(a1), x � g2(a2)}; ∅ =⇒VE-M

{x � g2(a2)}; {x ≈ {g1}({a1})}; =⇒VE-M

∅; {x ≈ {g1}({a1}), x ≈ {g2, h2}({a2, b})} =⇒Inc-M ⊥.



332 T. Kutsia and C. Pau

The proximity relation R can be represented as a weighted undirected graph,
whose vertices form a (finite) subset of F and if R(f, g) = d > 0 for two vertices
f and g, then there is an edge of weight d between them. When we consider R as
a graph, we represent it as a pair (VR, ER) of the sets of vertices VR and edges
ER. We denote by |S| the number of elements in the (finite) set S.

Graphs induced by proximity relations are sparse, since symbols of different
arities are not close to each other. Therefore, in the proofs of complexity results
below, we choose to represent the graphs by adjacency lists rather than by
adjacency matrices.

Theorem 4. Let R = (VR, ER) be a proximity relation and M be a matching
problem with size(M) = n. Then the algorithm M needs O(n|VR| + n|ER|) time
and O(n|VR| + |ER|) space to compute the (R, λ)-solution to M for a given λ.

Proof. We represent the graph for R as adjacency lists, in which proximity
degrees are weights of edges. Such a weight of an edge (v1, v2) is stored at
the vertex v2 in the adjacency list of v1 and vice versa [7]. Further, from the
given matching problem t � s we can construct its directed acyclic graph (dag)
representation with shared variables (see, e.g., [4]). At each node g of s, we add
a pointer to the entry in the adjacency list of R for the symbol g. The nodes in
the representation of t are labeled by function symbols and variables occurring
in t. In fact, we have a graph representation dag(t) of t and a tree representation
tree(s) of s, since there are no variables to share in s.

During the run of the algorithm, we follow the structures top-down both in
dag(t) and tree(s), comparing the node labels pairwise. Assume the label of a
nonvariable node f in dag(t) is an element of the adjacency list of a node g in
tree(s), and d ≥ λ for the degree d stored together with f in the adjacency list.
Then the Dec-M rule is applied and we proceed to the successor nodes of f and
g (pairwise), as usual. Otherwise we stop (Cla-M rule).

When we reach a variable node x in dag(t) and a node g in tree(s), we check
whether there already exists a pointer from x to the root h of some tree treeh. If
not, we make a copy treeg of the subtree subtree(s, g) of tree(s) rooted at g. It
means that the adjacency lists of the nodes of this subtree are also copied, not
shared. We call the copies of those lists the class labels. After that, we make a
pointer from x to g in treeg, and continue with the next unvisited node-pairs in
dag(t) and tree(s) (VE-M rule). If treeh to which x points already exists, we go
top-down to the trees treeh and subtree(s, g), updating the class label at each
node of treeh: if the class label at some node in this tree is L1, and the adjacency
list of the corresponding node in subtree(s, g) is L2, we replace L1 in treeh by
L1 ∩ L2, provided that L1 ∩ L2 �= ∅, and continue with the next unvisited node-
pair. This process corresponds to the Mer-M rule, eagerly applied immediately
after VE-M. If either the intersection is empty, or one tree is deeper than the
other, then we stop with failure (the Inc-M rule).

First we make the space analysis. The adjacency list representation of R
needs O(|VR| + |ER|) space [7]. The graph/tree representation of the matching
problem requires O(n) space. All the copies of trees generated by the VE-M rule
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may contain in total at most n nodes, each labeled with at most |VR| symbols,
i.e., to store them we need O(n|VR|) space. Hence, the total amount of required
memory is O(n|VR| + |ER|).

For the runtime complexity, constructing the adjacency list needs O(|VR| +
|ER|) time. Construction of the dag/tree representation of the matching prob-
lem can be done in O(n) time [4]. Each node in dag(t) and tree(s) is visited
once. Hence, the structure traversal is done in linear time with respect to n.
Checking the membership of some vertex f from dag(t) in the adjacency list
of some vertex g in tree(s), needed in the Dec-M rule, requires O(degree(g))
time. Since this check is performed O(n) times, and a (rough) upper bound for
vertex degrees is |ER|, we can say that the total time needed for the adjacency
list membership operation during the run of M is O(n|ER|). Creating the copies
of trees by the VE-M rule is constant for each symbol, thus needing O(n|VR|)
time. Computation of intersections between two proximity classes needs O(|VR|)
time. We may need to perform O(n) such intersections, hence for them we need
O(n|VR|) time. It implies that the runtime complexity of the matching algorithm
is O(n|VR| + n|ER|). 	�

4.1 Computing Approximation Degrees for Matching

The algorithm above does not compute approximation degrees for the returned
matchers. We can add this feature with a small modification of the notions.

A graded set of function symbols is a finite set of pairs {〈f1, α1〉, . . . , 〈fn, αn〉},
where αi ∈ (0, 1] and all fi’s have the same arity. Graded X-terms are constructed
from graded function symbol sets and variables in the same way X-terms were
constructed from non-graded symbol sets and variables. We reuse the bold face
letters f ,a, t, etc. that denote the non-graded counterparts of these notions.

The intersection of graded function symbol sets is defined as f1 ∩ f2 :=
{〈f, α1∧α2〉 | 〈f, α1〉 ∈ f1, 〈f, α2〉 ∈ f2}. Then the intersection of graded X-terms
t1 	 t2 is defined as it was done for non-graded X-terms, using the intersection
of graded sets of functions symbols.

The graded (R, λ)-proximity class for a symbol f is a set {〈g, α〉 | R(f, g) =
α ≥ λ}. Also here, we reuse the notation from its non-graded version: pc(f,R, λ).
The proximity class for a term is defined and denoted similarly.

Example 6. Let R be the proximity relation defined in Example 2.
Let t be the term f(g1(a1), g2(a2)). Then the graded proximity class for it,

pc(t,R, λ), for different values of λ is:

0 < λ ≤ 0.5 :
{〈f, 1〉}({〈g1, 1〉, 〈g2, 0.5〉, 〈h1, 0.6〉, 〈h2, 0.7〉}({〈a1, 1〉, 〈a2, 0.5〉, 〈b, 0.7〉}),

{〈g1, 0.5〉, 〈g2, 1〉, 〈h1, 0.6〉, 〈h2, 0.8〉}({〈a1, 0.5〉, 〈a2, 1〉, 〈b, 0.8〉})).

0.5 < λ ≤ 0.6 : {〈f, 1〉}({〈g1, 1〉, 〈h1, 0.6〉, 〈h2, 0.7〉}({〈a1, 1〉, 〈b, 0.7〉}),
{〈g2, 1〉, 〈h1, 0.6〉, 〈h2, 0.8〉}({〈a2, 1〉, 〈b, 0.8〉})).

0.6 < λ ≤ 0.7 : {〈f, 1〉}({〈g1, 1〉, 〈h2, 0.7〉}({〈a1, 1〉, 〈b, 0.7〉}),
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{〈g2, 1〉, 〈h2, 0.8〉}({〈a2, 1〉, 〈b, 0.8〉})).

0.7 < λ ≤ 0.8 : {〈f, 1〉}({〈g1, 1〉}({〈a1, 1〉}),
{〈g2, 1〉, 〈h2, 0.8〉}({〈a2, 1〉, 〈b, 0.8〉})).

0.8 < λ ≤ 1 : {〈f, 1〉}({〈g1, 1〉}({〈a1, 1〉}), {〈g2, 1〉}({〈a2, 1〉})).

The modified version of the matching algorithm works on triples M ;S;α,
where S is a set of equations between variables and graded X-terms, and α
is the approximation degree between function symbols, initialized with 1. The
only rule we need to change is Dec-M, which should update the approximation
degree α:

Dec-M: Decomposition

{f(t1, . . . , tn) � g(s1, . . . , sn)} � M ; S; α =⇒
M ∪ {ti � si | 1 ≤ i ≤ n}; S; α ∧ R(f, g),

if n ≥ 0, R(f, g) ≥ λ.

The graded counterpart of τ, denoted by τgr, takes a graded X-term and
returns a set of pairs 〈t, α〉 where t is a term and α ∈ (0, 1]. It is defined as

τgr(x) := {〈x, 1〉},

τgr(f(t1, . . . , tn) := {〈f(t1, . . . , tn), α〉 | 〈f, α0〉 ∈ f , 〈ti, αi〉 ∈ τgr(ti),
1 ≤ i ≤ n, α = α0 ∧ · · · ∧ αn}.

Similarly, we define τgr for graded X-substitutions: τgr(σ) is a set of pairs
〈σ, α〉, where σ is a substitution and α ∈ (0, 1], defined as

τgr({x1 �→ t1, . . . , xn �→ tn}) :=
{〈{x1 �→ t1, . . . , xn �→ tn}, α1 ∧ · · · ∧ αn〉 | 〈ti, αi〉 ∈ τgr(ti), 1 ≤ i ≤ n}.

When it succeeds, the matching algorithm stops with the triple of the form
∅; {x1 ≈ s1, . . . , xn ≈ sn}; α. From this representation, we take σ = {x1 �→ s1,
. . . , xn �→ sn} as the computed graded X-substitution and α as the upper bound
of approximation degrees of all matchers. We can use σ and α as the basis from
which various concrete matchers of the original (R, λ)-matching problem M and
their approximation degrees can be obtained. For instance:

– Extract each solution and its approximation degree from τgr(σ): For each
〈σ, ασ〉 ∈ τgr(σ) we get 〈σ, ασ ∧ α〉.

– If we are interested only in matchers with the maximal approximation degree,
we select 〈σ, ασ〉 ∈ τgr(σ) so that ασ ∧ α is maximal (there can be several of
them), without unpacking the whole set of solutions.

Example 7. Let the proximity relation R be obtained by adding R(f1, f2) = 0.8
to the one defined in Example 2. Let t = f1(x, x) and s = f2(g1(a1), g2(a2)).
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We illustrate the steps of the algorithm M for the matching problem f1(x, x) �
f2(g1(a1), g2(a2)) for λ = 0.6.

{f1(x, x) � f2(g1(a1), g2(a2))}; ∅; 1 =⇒Dec-M

{x � g1(a1), x � g2(a2)}; ∅; 0.8 =⇒VE-M

{x � g2(a2)}; {x ≈ {〈g1, 1〉, 〈h1, 0.6〉, 〈h2, 0.7〉}({〈a1, 1〉, 〈b, 0.7〉})}; 0.8
=⇒VE-M

∅; {x ≈ {〈g1, 1〉, 〈h1, 0.6〉, 〈h2, 0.7〉}({〈a1, 1〉, 〈b, 0.7〉}),
x ≈ {〈g2, 1〉, 〈h1, 0.6〉, 〈h2, 0.8〉}({〈a2, 1〉, 〈b, 0.8〉})}; 0.8 =⇒Mer-M

∅; {x ≈ {〈h1, 0.6〉, 〈h2, 0.7〉}({〈b, 0.7〉})}; 0.8.

If we want to extract all (R, λ)-matchers, we would return 〈{x �→ h1(b)}, 0.6〉
and 〈{x �→ h2(b)}, 0.7〉. The maximal solution would be only 〈{x �→ h2(b)}, 0.7〉.

If we had R(f1, f2) = 0.6, then the sets of all (R, λ)-matchers and all maximal
(R, λ)-matchers would coincide. They both would be {〈{x �→ h1(b)}, 0.6〉, 〈{x �→
h2(b)}, 0.6〉}.

5 Anti-unification

Given R and λ, for solving an (R, λ)-anti-unification problem between two terms
t and s, we create the anti-unification triple (AUT) x : pc(t,R, λ) � pc(s,R, λ)
where x is a fresh variable. Then we put it in the initial tuple {x : pc(t,R, λ) �
pc(s,R, λ)}; ∅;x, and apply the rules given below. They work on tuples A;S; r,
where A is a set of AUTs to be solved (called the AU-problem set), S is the set
consisting of AUTs already solved (called the store), and r is the generalization
X-term computed so far. The rules transform such tuples in all possible ways as
long as possible, returning ∅;S; r. In this case, we call r the computed X-term.
We denote the algorithm by G. The rules are as follows:

Dec-AU: Decomposition

{x : f(t1, . . . , tn) � g(s1, . . . , sn)} � A; S; r =⇒
{y1 : t1 � s1, . . . , yn : tn � sn} ∪ A; S; r{x �→ (f ∩ g)(y1, . . . , yn)},

where n ≥ 0, f ∩ g �= ∅.

Sol-AU: Solving

{x : t � s} � A; S; r =⇒ A; {x : t � s} ∪ S; r,

if head(t) ∩ head(s) = ∅.

Mer-AU: Merging

∅; {x1 : t1 � s1, x2 : t2 � s2} � S; r =⇒ ∅; {x1 : t � s} ∪ S; r{x2 �→ x1},

if t = t1 	 t2 �= ∅ and s = s1 	 s2 �= ∅.

Mer-AU can be applied in different ways, which might lead to multiple X-
lggs. One may notice that we do not have a rule for AUTs containing variables.
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This is because one can treat the input variables as constants. Then AUTs such
as x : y � y are dealt by the Dec-AU rule, and AUTs of the form x : y � z
with y �= z are processed by Sol-AU.

Theorem 5. Given a proximity relation R, a cut value λ, and two terms t and
s, the anti-unification algorithm G terminates and computes X-terms r1, . . . , rn,
n ≥ 1, such that ∪n

i=1τ(ri) contains all (R, λ)-least general generalizations of t
and s (modulo variable renaming).

Proof. Like Theorem 3, here also we have three parts: termination, soundness
and completeness.

Termination. The algorithm obviously terminates, since the rules Dec-AU
and Sol-AU strictly reduce the number of symbols in the AU-problem set
A, and Mer-AU strictly reduces the number of symbols in the store S.

Soundness. We will prove that if r ∈ ∪n
i=1τ(ri), then r is an (R, λ)-generali-

zation of t and s.
If r ∈ ∪n

i=1τ(ri), then r ∈ τ(rj) for some 1 ≤ j ≤ n. It means that there exists
a derivation

{x : pc(t,R, λ) � pc(s,R, λ)}; ∅;xϑ0 =⇒k ∅;S;xϑ0ϑ1 · · · ϑk, (1)

where ϑ0 = Id , k ≥ 1 and rj = xϑ0ϑ1 · · · ϑk. For the reference, we denote the
tuple at step l in this derivation by Al;Sl; rl. Observe that:

– by Dec-AU rule, whenever an AUT x′ : t′ � s′ appears in some Al in this
derivation (0 ≤ l ≤ k), then we have x′ ∈ V(xϑ0 · · · ϑl), t′ = pc(t,R, λ)|p′

for some position p′ in pc(t,R, λ), and s′ = pc(s,R, λ)|p′ for the same
position p′ in pc(s,R, λ);

– by Sol-AU rule, the same is true for any x′ : t′ � s′, which appears in
some Sl in this derivation (0 ≤ l ≤ k) with Al �= ∅;

– by Mer-AU rule, for any AUT x′ : t′ � s′, which appears in some Sl

in this derivation (0 ≤ l ≤ k) with Al = ∅, we have x′ ∈ V(xϑ0 · · · ϑl),
τ(t′) ⊆ τ(pc(t,R, λ)|p′) for some position p′ in pc(t,R, λ), and τ(s′) ⊆
τ(pc(s,R, λ)|p′) for the same position p′ in pc(s,R, λ).

Coming back to the derivation in (1), we prove that for all 0 ≤ i < k, if
xϑ0ϑ1 · · · ϑi is an (R, λ)-X-generalization of t and s, then xϑ0ϑ1 · · · ϑi+1 is an
(R, λ)-X-generalization of t and s. For i = 0 it is obvious. We assume that
this statement is true for some 0 ≤ i < k and show it for i + 1. We should
look at all possible ways to make the step

Ai;Si;xϑ0ϑ1 · · · ϑi =⇒ Ai+1;Si+1;xϑ0ϑ1 · · · ϑi+1.

– The step is made by Dec-AU. It means that the problem set Ai contains
an AUT of the form xi : fi(ti1 , . . . , tini

) � gi(si1 , . . . , sini
) with fi∩gi �= ∅,

which is replaced in Ai+1 by new AUTs y1 : ti1 � si1 , . . . , yni
: tini

� sini
,

and ϑi+1 = {xi �→ (fi ∩ gi)(y1, . . . , yni
)}. There is a position p in

both pc(t,R, λ) and pc(s,R, λ) such that pc(t,R, λ)|p = fi(ti1 , . . . , tini
)
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and pc(s,R, λ)|p = gi(si1 , . . . , sini
). In the same position p in t and

s, we have respectively tp = fi(ti1 , . . . , tini
) ∈ τ(fi(ti1 , . . . , tini

)) and
sp = gi(si1 , . . . , sini

) ∈ τ(si(si1 , . . . , sini
)). Moreover, in the same p in the

X-term xϑ0ϑ1 · · · ϑi we have xi and we know (by the assumption) that
xϑ0ϑ1 · · · ϑi is an (R, λ)-generalization of t and s. Besides, by definition
of X-generalization, its is obvious that xiϑi+1 = (fi ∩gi)(y1, . . . , yni

) is an
(R, λ)-generalization of fi(ti1 , . . . , tini

) and gi(si1 , . . . , sini
). By replacing

xi with xiϑi+1, we obtain that xϑ0ϑ1 · · · ϑiϑi+1 is an (R, λ)-generalization
of t and s.

– The step is made by Sol-AU. In this case, xϑ0ϑ1 · · · ϑi+1 = xϑ0ϑ1 · · · ϑi

and the statement holds.
– The step is made by Mer-AU. In this case, Si contains two AUTs

xi1 : ti1 � si1 , xi2 : ti2 � si2 with ti1 	 ti2 �= ∅ and si1 	 si2 �= ∅. In Si+1

these AUTs are replaced by a single AUT xi1 : ti1 	 ti2 � si1 	 si2 , and
ϑi+1 = {xi2 �→ xi1}. There are two positions p1 and p2 in pc(t,R, λ) such
that τ(tij ) ⊆ τ(pc(t,R, λ)|pj

), j = 1, 2. From ti1 	ti2 �= ∅ we have τ(ti1)∩
τ(ti2) �= ∅ and, as a consequence, τ(pc(t,R, λ)|p1)∩τ(pc(t,R, λ)|p2) �= ∅.
Similarly, we get τ(si1) ∩ τ(si2) �= ∅.
Since xϑ0ϑ1 · · · ϑi is an (R, λ)-X-generalization of t and s, for any q ∈
τ(xϑ0ϑ1 · · · ϑi) there exist substitutions σt and σs such that qσt R,λ t
and qσs R,λ s. For σt, we have xi1σt R,λ t|p1 and xi2σt R,λ t|p2 . For
σs, we have xi1σs R,λ s|p1 and xi2σs R,λ s|p2 .
In xϑ0ϑ1 · · · ϑi+1, we have xi1 both in position p1 and in position
p2. Let ϕt be a substitution such that dom(ϕt) = dom(σt) \ {xi2},
xi1ϕt ∈ τ(pc(t,R, λ)|p1) ∩ τ(pc(t,R, λ)|p2), and yϕt = yσt for all
y ∈ dom(ϕt) \ {xi1}. Such a ϕt exists, since we have shown that
τ(pc(t,R, λ)|p1) ∩ τ(pc(t,R, λ)|p2) �= ∅. By definition, we know that
every element of the set τ(pc(t,R, λ)|p1) ∩ τ(pc(t,R, λ)|p2) is (R, λ)-
close to both t|p1 and t|p2 . Hence, xi1ϕt R,λ t|p1 and xi1ϕt R,λ t|p2 .
We can define ϕs analogously, and by a similar reasoning conclude that
xi1ϕs R,λ s|p1 and xi1ϕs R,λ s|p2 . For every position other than
those where xi2 appeared in xϑ0ϑ1 · · · ϑi, the X-terms xϑ0ϑ1 · · · ϑi+1

and xϑ0ϑ1 · · · ϑi coincide. Hence, for every q ∈ τ(xϑ0ϑ1 · · · ϑi+1), we get
qϕt R,λ t and qϕs R,λ s, implying that xϑ0ϑ1 · · · ϑi+1 is an (R, λ)-X-
generalization of t and s.

Hence, we proved that in derivation (1), xϑ0ϑ1 · · · ϑk is an (R, λ)-X-generali-
zation of t and s. Since xϑ0ϑ1 · · · ϑk = rj with r ∈ τ(rj), we get that r is an
(R, λ)-generalization of t and s, which proves soundness.

Completeness. If r is an (R, λ)-lgg of t and s, then there exists r′ ∈ ∪n
i=1τ(ri)

such that r and r′ are equal modulo variable renaming.
We prove completeness by structural induction on r. First, assume r is a
variable. Since it is an (R, λ)-lgg of t and s, we have τ(head(pc(t,R, λ))) ∩
τ(head(pc(s,R, λ))) = ∅. But in this case we apply the rule Sol-AU and get
also a variable as a computed X-generalization, which may differ from r only
by the name.
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Now assume r = h(r1, . . . , rm). Then we have that t = f(t1, . . . , tm),
s = g(s1, . . . , sm), and h ∈ f ∩ g, where f = pc(f,R, λ) and g = pc(g,R, λ).
We apply the rule Dec-AU to x : pc(t,R, λ) � pc(s,R, λ) and obtain new
AUTs yk : pc(tk,R, λ) � pc(sk,R, λ), 1 ≤ k ≤ m. Note that each rk,
1 ≤ k ≤ m, is an (R, λ)-lgg of tk and sk. Then by the induction hypothesis,
for each 1 ≤ k ≤ m we compute r′

k so that there exists r′
k ∈ τ(r′

k) which is
a renamed copy of rk. We combine the initial step Dec-AU with the deriva-
tions that compute r′

i to obtain a derivation computing (f ∩ g)(r′
1, . . . , r

′
m).

However, this does not yet guarantee that (f ∩ g)(r′
1, . . . , r

′
m) contains a

renamed copy of r, since by being an (R, λ)-lgg, r might contain the same
variable in multiple positions (in different ri and rj), which we have not
captured yet. Let pi and pj be such positions in r, containing the same
variable y, but having different variables yi and yj in (f ∩ g)(r′

1, . . . , r
′
m).

Since r is a generalization of t and s, having the same variable in pi and pj

implies that τ(pc(t,R, λ)|pi
)∩τ(pc(t,R, λ)|pj

) �= ∅. Therefore, pc(t,R, λ)|pi
	

pc(t,R, λ)|pj
�= ∅. Similarly, we have pc(s,R, λ)|pi

	pc(s,R, λ)|pj
�= ∅. Hav-

ing different yi and yj in positions pi and pj in (f ∩ g)(r′
1, . . . , r

′
m) implies

that we have yi : pc(t,R, λ)|pi
� pc(s,R, λ)|pi

and yj : pc(t,R, λ)|pj
�

pc(s,R, λ)|pj
in the store in the derivation we just constructed. But then we

can extend this derivation by applying Mer-AU rule for yi and yj obtain-
ing (f ∩ g)(r′

1, . . . , r
′
i, . . . , r

′′
j , . . . , r′

m) which reduces the difference with r in
distinct variables. We can repeat these steps as long as there are positions
which contain different variables in the generalization computed by us, and
the same variable in r. In this way, we obtain an X-generalization r′ of t and
s such that there exists r′ ∈ τ(r′) which is a renamed copy of r. 	�

Hence, the algorithm computes (R, λ)-X-lggs of the given terms. To compute
linear generalizations, we do not need the Mer-AU rule. In this case the anti-
unification algorithm returns a single X-term r such that τ(r) contains all linear
lggs of s and t (modulo variable renaming).

Example 8. Let R be a proximity relation defined as

R(a1, a) = R(a2, a) = R(b1, b) = R(b2, b) = 0.5,

R(a2, a
′) = R(a3, a

′) = R(b2, b′) = R(b3, b′) = 0.6, R(f, g) = 0.7.

Let t = f(a1, a2, a3) and s = g(b1, b2, b3). Then the anti-unification algorithm
run ends with the following pairs consisting of the store and an (R, λ)-lgg, for
different values of λ:

0 < λ ≤ 0.5 : store1 = {x1 : {a} � {b}, x3 : {a3, a
′} � {b3, b

′}},

X-lgg1 = {f, g}(x1, x1, x3).

store2 = {x1 : {a1, a} � {b1, b}, x2 : {a′} � {b′}},

X-lgg2 = {f, g}(x1, x2, x2).

0.5 < λ ≤ 0.6 : store = {x1 : {a1} � {b1}, x2 : {a′} � {b′}},

X-lgg = {f, g}(x1, x2, x2).
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0.6 < λ ≤ 0.7 : store = {x1 : {a1} � {b1}, x2 : {a2} � {b2},

x3 : {a3} � {b3}},

X-lgg = {f, g}(x1, x2, x3).

0.7 < λ ≤ 1 : store = {x : {f(a1, a2, a3)} � g(b1, b2, b3)}, X-lgg = x.

The store shows how to obtain terms which are (R, λ)-close to the original
terms. For instance, when 0 < λ ≤ 0.5, store1 tells us that for any substitution σ
from the set τ({x1 �→ {a}, x3 �→ {a3, a

′}}), the instances of the generalizations,
f(x1, x1, x3)σ and g(x1, x1, x3)σ are (R, λ)-close to the original term t. We have
two such σ’s, σ1 = {x1 �→ a, x3 �→ a3} and σ2 = {x1 �→ a, x3 �→ a′}. They give,
respectively, f(x1, x1, x3)σ1 = f(a, a, a3) R,λ f(a1, a2, a3), g(x1, x1, x3)σ1 =
g(a, a, a3) R,λ f(a1, a2, a3), and f(x1, x1, x3)σ2 = f(a, a, a′) R,λ f(a1, a2, a3),
g(x1, x1, x3)σ2 = g(a, a, a′) R,λ f(a1, a2, a3).

Similarly, for any substitution ϑ from the set τ({x1 �→ {b}, x3 �→ {b3, b
′}})

(which is also extracted from store1), the instances of the generalizations f(x1,
x1, x3)ϑ and g(x1, x1, x3)ϑ are (R, λ)-close to the original term s.

Now we illustrate how the first two X-lggs have been computed. Let λ = 0.5.
For the initial problem we take pc(t,R, λ) = {f, g}({a1, a}, {a2, a, a′}, {a3, a

′})
and pc(s,R, λ) = {g, f}({b1, b}, {b2, b, b

′}, {b3, b
′}) and proceed as follows:

{x : {f, g}({a1, a}, {a2, a, a′}, {a3, a
′}) � {g, f}({b1, b}, {b2, b, b

′}, {b3, b
′})};

∅;x =⇒Dec-AU

{x1 : {a1, a} � {b1, b}, x2 : {a2, a, a′} � {b2, b, b
′}, x3 : {a3, a

′} � {b3, b
′}};

∅; {f, g}(x1, x2, x3) =⇒Sol-AU×3

∅; {x1 : {a1, a} � {b1, b}, x2 : {a2, a, a′} � {b2, b, b
′}, x3 : {a3, a

′} � {b3, b
′}};

{f, g}(x1, x2, x3).

Now there are two alternatives: to merge x1 and x2, or x2 and x3. They give:

∅; {x1 : {a} � {b}, x3 : {a3, a
′} � {b3, b

′}}; {f, g}(x1, x1, x3), or

∅; {x1 : {a1, a} � {b1, b}, x2 : {a′} � {b′}}; {f, g}(x1, x2, x2).

These are exactly the stores and X-lggs we saw at the beginning of this example.

Example 9. Consider again the proximity relation and the terms from Exam-
ple 8, but this times assume we are interested in linear generalizations. Then the
stores and X-lggs are the following:

0 < λ ≤ 0.5 :

store = {x1 : {a1, a} � {b1, b}, x2 : {a2, a, a′} � {b2, b, b
′},

x3 : {a3, a
′} � {b3, b

′}}.

X-lgg = {f, g}(x1, x2, x3).

0.5 < λ ≤ 0.6 :



340 T. Kutsia and C. Pau

store = {x1 : {a1} � {b1}, x2 : {a2, a
′} � {b2, b

′},

x3 : {a3, a
′} � {b3, b

′}}.

X-lgg = {f, g}(x1, x2, x3).

0.6 < λ ≤ 0.7 :

store = {x1 : {a1} � {b1}, x2 : {a2} � {b2}, x3 : {a3} � {b3}}.

X-lgg = {f, g}(x1, x2, x3).

0.7 < λ ≤ 1 : store = {x : {f(a1, a2, a3)} � g(b1, b2, b3)}. X-lgg = x.

Theorem 6. Let R = (VR, ER) be a proximity relation and λ be a cut value.
Assume t and s are terms with size(s) + size(t) = n. Then

– G needs O(n2|VR|+|ER|) time and O(n|VR|+|ER|) space to compute a single
(R, λ)-X-lgg of t and s;

– G needs O(n|VR| + |ER|) time and space to compute a linear (R, λ)-X-lgg of
t and s.

Proof. To represent the relation R, we use adjacency lists in the same way as we
did for the matching algorithm (see the proof of Theorem 4). For adjacency lists,
the required amount of memory is O(|VR|+ |ER|). The input can be represented
as trees in O(n) space. The same amount is needed for the store. The general-
ization X-term contains O(n) nodes, each labeled with at most |VR| symbols.
Hence, the total space requirement is O(n|VR| + |ER|), and it is independent
whether we compute a single (R, λ)-X-lgg or a linear (R, λ)-X-lgg.

As for the runtime complexity, constructing the adjacency list representa-
tion is done in O(|VR| + |ER|) time. Besides, whenever Dec-AU or Sol-AU is
applied, we need to compute the intersection between proximity classes of two
function symbols, which needs O(|VR|) time. Hence, applying these two rules as
long as possible requires O(n|VR|) time. It implies that the runtime complexity
for computing linear (R, λ)-X-lgg of t and s is O(n|VR| + |ER|).

To compute an unrestricted (R, λ)-X-lgg, we should further apply Mer-AU
as long as possible. This may require O(n2) steps. At each step we perform
the intersection of proximity classes which is done in O(|VR|) time. Therefore,
exhaustive application of Mer-AU for computing one (R, λ)-X-lgg of t and
s needs O(n2|VR|). Together with the complexity of maximal applications of
the Dec-AU or Sol-AU rules considered above, it gives the O(n2|VR| + |ER|)
runtime bound for computing a single (R, λ)-X-lgg of t and s. 	�

5.1 Computing Approximation Degrees for Anti-unification

We can incorporate the approximation degree computation in anti-unification
easier than we did for matching. To (R, λ)-anti-unify t and s, we just take their
graded proximity classes pc(t,R, λ) and pc(s,R, λ) and run the algorithm as
described above. The operations ∩ and 	 will be performed on graded sets of
functions symbols and graded X-terms, respectively.
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Example 10. Let R be a proximity relation from Example 8 with R(f, g) = 0.7
replaced by R(f, h) = 0.7 and R(h, g) = 0.8. Let t = f(a1, a2, a3) and s =
g(b1, b2, b3). Then for 0 < λ ≤ 0.5 we get

store1 = {x1 : {〈a, 0.5〉} � {〈b, 0.5〉},

x3 : {〈a3, 1〉, 〈a′, 0.6〉} � {〈b3, 1〉, 〈b′, 0.6〉}},

X-lgg1 = {〈h, 0.7〉}(x1, x1, x3).

store2 = {x1 : {〈a1, 1〉, 〈a, 0.5〉} � {〈b1, 1〉, 〈b, 0.5〉},

x2 : {〈a′, 0.6〉} � {〈b′, 0.6〉}},

X-lgg2 = {〈h, 0.7〉}(x1, x2, x2).

From the X-lgg’s we get the actual generalizations. For instance, X-lgg2 gives
r = h(x1, x2, x2). From the generalizations, we can “get close” to the original
terms by applying the substitutions composed from the store: R(r{x1 �→ a1,
x2 �→ a′}, t) = R(h(a1, a

′, a′), t) = 0.6 and R(r{x1 �→ b1, x2 �→ b′}, s) =
R(h(b1, b′, b′), s) = 0.6. Another instance would be R(r{x1 �→ a, x2 �→ a′}, t) =
R(h(a, a′, a′), t) = 0.5 and R(r{x1 �→ b, x2 �→ b′}, s) = R(h(b, b′, b′), s) = 0.5.

6 Conclusion

In this paper, we investigated two fundamental matching and anti-unification
problems with fuzzy proximity relations. Fuzzy proximity (and its crisp coun-
terpart, tolerance) is not a transitive relation, which makes these problems chal-
lenging. In general, there is no single solution to them.

We developed algorithms that solve the mentioned problems, aiming at com-
puting a compact representation of solution sets. We use extended terms (X-
terms) to represent term sets. In X-terms, instead of function symbols, finite sets
of function symbols are permitted. X-substitutions map variables to X-terms.

Our matching algorithm computes a single X-substitution solution for solv-
able proximity (and tolerance) matching problems. We prove that it is sound and
complete: every standard substitution obtained from the computed X-matcher
is a matcher, and any relevant solution of the matching problem is contained in
the set of substitutions induced by the computed X-matcher. Time and space
complexities of the algorithm are analyzed.

Unlike matching, proximity/tolerance anti-unification problems, in general,
do not have a single solution even if we restrict computed least-general general-
izations to X-terms. Our anti-unification algorithm computes a finite complete
set of X-lggs. If we consider the linear variant (i.e., if generalizations are not
permitted to contain more than one occurrence of each generalization variable),
then there exists a single linear X-lgg (which still represents a finite set of lggs
as standard terms), and our algorithm computes it. We also analyze time and
space complexities of our anti-unification algorithm and its linear variant.
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From Paradox to Truth

An Introduction to Self-reference in Formal Language
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Abstract. We present a short introduction to the logical analysis of
truth and related concepts. We examine which assumptions are implicit
in the paradoxes of truth and self-reference, and present some of the
important formal theories of truth that have arisen out of these consid-
erations.

Keywords: Paradox · Truth · Self-reference · First-order logic

1 Introduction

Consider the following statement which we name *.

If the sentence named ∗ is true then all Georgians drink chacha.(*)

We give a short argument about the sentence:

1. a. Assume the statement named * is true.
b. That is, if the statement named * is true then all Georgians drink chacha.
c. Combining a and b, we conclude all Georgians drink chacha.

2. So, if the statement named * is true then all Georgians drink chacha.
3. That is, the statement named * is true.
4. By 2 and 3 we conclude all Georgians drink chacha.

There is something puzzling about the above argument. It claims to establish as
fact a statement (‘all Georgians drink chacha’) without depending in any way on
what the statement asserts. As such, we could replace throughout the argument
this statement by any other statement, for example ‘no Georgian drinks chacha’,
and the argument is as valid as before. This is an example of a logical paradox:
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a sequence of apparently unproblematic steps in logical reasoning resulting in an
absurd conclusion. The particular argument above (for an arbitrary conclusion)
is known as Curry’s paradox.

The analysis of paradoxes arising from self-referential statements has a long
history. Variants of the liar paradox ‘this statement is false’ have been examined
since at least the 4th century bce. But it is only relatively recently that the
paradoxes have been given formal treatment using the techniques and systems
of mathematical logic. The idea of such an analysis is to isolate the logical
and ontological assumptions necessary and sufficient for the paradoxes, and to
develop formal (and consistent) theories of complex concepts such as truth.

This survey is organised as follows. In the next section we present a for-
mal version of Curry’s paradox and identify the basic assumptions about truth
and syntax on which it depends. Section 3 applies these ideas to paradoxes aris-
ing from other truth-theoretic assumptions. In Sect. 4 we present some natural
collections of truth assumptions which we can show are consistent. The article
concludes with further philosophical and mathematical considerations.

2 Formalising Paradox

We present a more formal account of the paradoxical argument above using the
framework of first-order logic.1 In what follows, given a set U , a U-expression
means a finite string of non-zero length of elements of U .

Let L be a formal language which we assume to consist of (at least) the
logical connectives implication → and conjunction ∧, a unary predicate T(·) and
a constant symbol e for every L -expression e. Symbols of the final kind provide
names for L -expressions and are called quotation constants. We will say e
names the L -expression e, or that e is the quotation of e. For example, ∧ is
the quotation of the symbol ∧ whereas →∧ is the quotation of the two-symbol
expression →∧. Notice that quotation constants are symbols of L , so →∧ is
itself an L -expression of length 1 but names an L -expression of length 2.

The role of the unary predicate symbol T(·) is to render references to truth
in the informal argument. Thus, the phrase the sentence (named by) x is true
is represented as the L -formula T(x). The direct translation of our sentence
* is therefore the L -formula T(α) → β where β expresses all Georgians drink
chacha and α is the constant naming this very sentence. But it is easily verified
that a quotation constant can never occur within the L -expression it names, so
there can be no such α. Fortunately, such a strong assumption on self-reference is
unnecessary, and it suffices to determine a formula α which is merely equivalent
to T(α) → β. It remains to explain how such sentences can be constructed in a
formal language, but first let us confirm that the informal argument from before
can be given formal treatment. Thus, let β be any formula and suppose we have
to hand a theory S such that

S � α ↔ (T(α) → β)(†)
1 Throughout this article we assume familiarity with the basic concepts of first-order
logic, such as in [6].
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where α1 ↔ α2 abbreviates (α1 → α2) ∧ (α2 → α1) and S � γ expresses that γ
is a theorem of S.

We can now carry out the paradoxical argument within the theory S. As we
do, we can isolate the specific additional assumptions required for the argument
to go through.

1. a. Assume T(α)
b. α if S � T(α) → α
c. T(α) → β b and †
d. β a and c

2. So T(α) → β from 1(a–d)
3. α 2 and †
4. T(α) if S � α → T(α)
5. β 2 and 4

In other words, we have established the following theorem.

Theorem 1. Suppose S is a first-order theory in the language L . If S satisfies
the following two requirements, then S is inconsistent.2

1. For every choice of β a formula α can be found such that † holds.
2. S � γ ↔ T(γ) for every γ.

Condition 2 of Theorem 1 states that S believes, for each sentence α, that α is
true iff α. The theorem was proved by Alfred Tarski in 1935 [15], who considered
a formal counterpart to the infamous liar sentence, this sentence is not true:

S � λ ↔ ¬T(λ).(λ)

The proof we outlined earlier is due to Haskell Curry [2] and generalises Tarski’s
result by requiring only that S has a logical connective for material implication.

As it stands, however, Theorem 1 is not particularly informative because we
have not yet shown the existence of any theory S satisfying condition †. Our
next task, therefore, is to present natural examples of such theories. In fact, it
turns out that † must hold for any theory in which the following three basic
operations on L -expressions are available:

Concatenation Given two L -expressions a, b we can form the expression ab.
Substitution Given expressions a and b, and a symbol u, we can form the result

of substituting throughout a every occurrence of u by b.
Quotation Given an L -expression a we can form its quotation, the symbol a.

In what follows, we assume, in addition to the requirements laid out at the
start of the section, that L contains function symbols corresponding to these
three operations: a binary function symbol ∗ expressing concatenation (written
as s ∗ t), a ternary function symbol sub for substitution, and a unary function

2 For the present work we consider a theory S to be inconsistent if every formula of
the language is derivable in S.
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symbol quot for quotation. Moreover, L should contain sufficient symbols to
formulate classical first-order logic: a binary predicate symbol =, connectives ∧,
→, and a quantifier ∀. Other standard connectives are assumed defined. Note
that L may contain other function, constant or predicate symbols beyond the
ones listed above. Henceforth, L ∗ denotes the set of L -expressions.

Definition. A syntax theory is any theory in the language L in which the
following three formulas are derivable for all a, b, c ∈ L ∗ and u ∈ L .

S1 a ∗ b = ab.
S2 sub(a, u, b) = c if c is the result of substituting b for the symbol u in a.
S3 quot(a) = a.

The minimal syntax theory, Smin, is the theory axiomatised by all instances
of the above formulas only.

To better separate our logical and meta-logical vocabulary we introduce a rela-
tion .= for expressing identity between L -expressions. Thus, a

.= b holds iff a and
b are identical L -expressions. In contrast, a = b represents the L -expression
which happens to be a formula if a and b are two L -terms. In particular, writing
α

.= T(x) → β means that α is the formula T(x) → β.
It is important to confirm the axioms outlined above are not contradictory.

We do this by presenting a model of the minimal syntax theory. Let E = (L ∗, I)
be an interpretation of the language L where L ∗ is the domain of the interpre-
tation and I interprets the symbols of L as follows.

1. The function symbols ∗, quot and sub of L are interpreted as the functions
concatenation, quotation and substitution on L ∗ respectively. For example,
quot is interpreted as the function quotI : L ∗ → L ∗ given by quotI(e) .= e.

2. The quotation constant e is interpreted as the L ∗-expression eI .= e ∈ L ∗.
3. The interpretation of other predicate and function symbols of L is arbitrary.

An interpretation of the kind above is called a standard model. Note, E is
not uniquely determined since the interpretation of not all function and relation
symbols (for instance T(·)) was specified. We leave it to the reader to verify that
every standard model validates the axioms of the minimal syntax theory Smin.

It turns out that the self-referential formulas required by Theorem1 can be
constructed in any syntax theory. This is the task of the diagonal lemma.

Diagonal Lemma. For every formula β(v0) there exists a term t such that
S � t = β(t) and a sentence α such that S � α ↔ β(α).

The second claim is what we require. The first claim is a stronger, more explicit,
form of diagonalisation that also holds in any syntax theory. That the first claim
implies the second is immediate when we consider the sentence α

.= β(t).

Proof. Fix β(v0). Renaming bound variables if necessary, we may assume v0 does
not occur bound in β. Consider the term d(v0)

.= sub(v0, v0, quot(v0)). Since v0 is



From Paradox to Truth 347

a constant symbol, given any term s we have d(s) .= sub(s, v0, quot(s)). Writing
s for the term β(d(v0)), the following equations are derivable in S.

S � d(s) = sub(s, v0, s ) (axiom S3)

= β(d(s)) (axiom S2)

Selecting t
.= d(s), we have S � t = β(t) as desired. 	


3 Paradoxes

The diagonal lemma confirms that every syntax theory satisfies the first condi-
tion of Theorem 1. Hence no consistent extension of the minimal syntax theory
Smin can prove the truth bi-conditional α ↔ T(α) for every L -formula α. We
have seen that only a few logical and syntactic assumptions are required to
derive the paradoxes. In the present section we observe that even under weaker
truth-theoretic assumptions paradoxes arise.

One natural weakening of the truth bi-conditionals is to conceive them as
rules instead of implications:

Necessitation (NEC): If S � α then S � T(α)
Co-Necessitation (CoNEC): If S � T(α) then S � α

The first rule, necessitation, is the predicate logic formulation of the inference
rule from modal logic bearing the same name; the latter states the converse
direction. It is immediately clear that the two rules are weakened forms of the
two implications making up the truth bi-conditional α ↔ T(α). That they are
strictly weaker than the corresponding implications will follow from later obser-
vations. For now, we simply observe that from the implication α → T(α) the
‘contraposition’ ¬T(α) → ¬α immediately follows, yet necessitation need not
entail the rule ‘if S � ¬T(α) then S � ¬α’.

The first strengthening of Theorem 1 we present is due to Richard Mon-
tague and concerns the use of necessitation in place of one direction of the
bi-conditional.

Theorem 2 (Montague’s Paradox). Suppose S � T(α) → α for every sen-
tence α, and S satisfies the rule of necessitation. Then S is inconsistent.

Proof. The theorem results from a closer inspection of Curry’s paradox. Steps
1–3 of the argument still hold because S � T(α) → α. So S � α. If S contains
NEC, this leads to S � T(α) and so S � β. As β was arbitrary we are done.

Montague’s theorem appears to lay the blame on the implication T(α) → α since
the other direction of the equivalence can be weakened and the paradox remains.
However, the same can be said for the converse implication α → T(α):

Theorem 3. Suppose S � α → T(α) for all α. Then

1. if S satisfies the rule of co-necessitation, S is inconsistent.
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2. if S � T(α → β) ∧ T(α) → T(β) for every α and β then S � T(⊥).

Proof. We consider the liar sentence λ for both parts. The diagonal lemma gives
S � λ → ¬T(λ) whereas it is also the case that S � λ → T(λ) by assumption. So
S � ¬λ and, because S � T(λ) → λ, we deduce S � T(λ). So S � T(λ) ∧ T(¬λ).
From this final observation, both parts of the theorem are immediate. 	

Part 2 of this theorem, although not deriving an inconsistency, is also para-
doxical. It concludes that two natural assumptions about truth, the implication
α → T(α) and that truth is closed under basic logical reasoning, trivialise truth.

We conclude this section with one more ‘paradox’ of truth, due to Vann
McGee [13]. Unlike the previous examples, the undesirability of this set of truth
assumptions is more subtle. It states that working with the minimal syntax
theory Smin (which, recall, is true in all standard models) and adding three
natural principles of truth yields a theory which, although perhaps consistent,
admits no standard model.

In order to state McGee’s theorem it is necessary to introduce some notation.
Let y(x. ) abbreviate the term sub(y, v0, quot(x)) which represents the result of
substituting, in place of the variable v0 in the expression y, the quotation of x.
When utilising this notation in the form α(x. ) we assume v0 does not occur bound
in α. We must also assume a syntax theory S that derives a further property of
L -expressions, namely that every L -expression has a unique decomposition as
a sequence of L -symbols.

Theorem 4 (McGee’s Theorem). Suppose S satisfies the following: i) NEC;
ii) S � T(α → β)∧T(α) → T(β) and S � T(¬α) → ¬T(α) for every of α and β;
and iii) S � ∀xT(α(x. )) → T(∀v0α ) for every α. Then S has no standard model.

Assumption (iii) of the theorem states that a formula ∀v0α(v0) is true if every
instantiation α(e) is true. The proof, which we omit due to limitations of space,
analyses a formula γ, constructed by the diagonal lemma, expressing for some
natural number, that many iterations of truth over γ is not true.3

4 Models of Truth

In the previous section we saw that even assumptions strictly weaker than the
truth bi-conditionals give rise to undesirable, or inconsistent, notions of truth.
We now turn to the task of identifying consistent collections of principles, starting
with the observation that the paradoxes depend on self-reference.

Definition (Typed Truth). Let L0 = L \ {T} be the sub-language of L in
which the predicate T has been removed. Let TB be the expansion of the minimal
syntax theory Smin by the collection of sentences

T(α) ↔ α for α a sentence of L0(TB)

3 For a proof of McGee’s theorem in the context of syntax theories, including clarifi-
cation of additional syntactic assumptions, we refer the reader to [10].
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The notation TB stands for typed bi-conditionals. For example, the equivalence
T(∧ = ∧) ↔ ∧ = ∧ is an instance of TB, but T(λ) ↔ λ, where λ is the liar
sentence, is not because λ is not in the language L0. This theory was introduced
by Tarski [15] in his seminal work on formal truth.

Theorem 5. TB is consistent.

We introduce some notation useful for this and later proofs. Given a standard
model E and a set T ⊆ L ∗ of L -expressions, ET denotes the standard model
which agrees with E in all respects except that it interprets the predicate T by
the set T . That is,

ET |= T(e) ⇐⇒ e ∈ T

Observe that if α does not contain the predicate T then ET |= α iff E |= α.

Proof. Fix a standard model E and consider the standard model ET where T =
{α | E |= α} is the set of sentences validated by E. Then, for α in L0, we have
ET |= α iff ET |= T(α). 	

The model ET constructed in the proof satisfies more than just the typed truth
bi-conditionals. It also validates the bi-conditionals

∀x(α(x) ↔ T(α(x. )))

for α(v0) in L0 with at most v0 free, as well as its generalisation to more than one
free variable. This schema is known as the uniform (typed) bi-conditionals.
Notice that by the definition of the set T , a conjunction α∧β ∈ T iff both α ∈ T
and β ∈ T , and a quantified formula ∀xγ(x) ∈ T iff for every e ∈ L ∗, γ(e) ∈ T .
From these observations it immediately follows that

ET |= ∀x∀y
(
T(x∧. y) ↔ (T(x) ∧ T(y))

)
ET |= ∀x

(
T(∀v0x) ↔ ∀z T(x(z. ))

)

where x∧. y .= (∗x∗∧∗y ∗ ) is the term forming a conjunction out of x and y, and
x(z. ) is the abbreviation for substitution introduced earlier. Equivalences for the
other connectives and quantifiers hold also. These principles, combined with the
uniform bi-conditionals for atomic formulas from L0, are collectively known as
the compositional clauses; the theory axiomatised by the clauses is denoted
CT for compositional truth and is also consistent by our model ET .

The consistency of TB (indeed CT) confirms the suspicion that it is self-
application of truth, i.e. the truth predicate applied to formulas that refer to
truth, which is to blame for the paradoxes. The result invites us to explore
whether there are natural classes of untyped bi-conditionals which are still con-
sistent. Such sets clearly cannot contain the liar sentence, yet there are untyped
formulas that are not inherently paradoxical, such as T(¬T(∧ = ∨)) or even the
truth-teller, the diagonal formula τ ↔ T(τ) expressing this sentence is true.
Judging collections of truth bi-conditionals on the basis of consistency alone is
not possible however, due to another negative result by McGee who showed there
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are as many consistent sets of bi-conditionals as there are consistent extensions
of Smin (i.e., uncountably many) [14]. Instead, when designing interesting and
consistent theories of truth we should look for new methods of model construc-
tion or for collections of truth principles that express some ‘natural’ conception
of truth. In the following we consider examples of both kind.

The first construction we present is Saul Kripke’s semantic theory of truth
introduced in [11]. The underlying motivation is that statements whose truth or
falsity can be inferred ultimately from truth-free statements, so-called ‘grounded’
statements, are unproblematic. Formulas T(v0 = v1) and T(¬T(v0 = v1)) are
grounded in the truth-value of the truth-free statement v0 = v1. The liar and
truth-teller are examples of ungrounded statements: repeatedly stripping away
the truth predicate will never result in a truth-free statement.

To present Kripke’s model it is necessary to examine a non-classical con-
ception of truth. Let E be a standard model (in the usual sense) and suppose
T, F ⊆ L ∗ are two sets of L -expressions. By ET,F we denote the partial model
which agrees with E on the interpretation of all symbols in L0 = L \ {T}, but
makes true the formula T(e) if e ∈ T and makes ¬T(e) true if e ∈ F . Thus, T
collects the sentences marked as true by the model ET,F and F the sentences
marked as false. The classical models hitherto considered are simply partial mod-
els where F = L ∗\T . But if α �∈ T ∪F then T(α)∨¬T(α) does not hold in ET,F ,
whereas T(α) ∧ ¬T(α) holds if α ∈ T ∩ F . So some formulas, for example the
liar sentence, may be designated as neither true nor false or both true and false,
which is impossible for classical models. Rules for connectives and quantifiers
are the same as before but we assume negation appears only in front of atomic
formulas. Partial models provide a natural semantics for the non-classical logic
known as Strong Kleene logic.

We begin the construction at the trivial model E∅,∅ in which neither formula
T(·) nor ¬T(·) is assumed to hold. Setting T0 = F0 = ∅ to name the first
approximations to the two concepts, we now construct a transfinite hierarchy of
refinements. Given Tκ and Fκ have been defined, set

Tκ+1 = {α | ETκ,Fκ
|= α} Fκ+1 = {α | ETκ,Fκ

|= ¬α}
For a limit ordinal κ, define Tκ =

⋃
κ0<κ Tκ0 and Fκ similarly. By induction

along ordinals, if κ0 < κ1 then Tκ0 ⊆ Tκ1 and Fκ0 ⊆ Fκ1 . Cardinality consider-
ations show these hierarchies stabilise, i.e., there exists an ordinal κ such that
(Tκ+1, Fκ+1) = (Tκ, Fκ). Considering the partial model ETκ,Fκ

we observe

ETκ,Fκ
|= α ⇐⇒ α ∈ Tκ+1 ⇐⇒ α ∈ Tκ ⇐⇒ ETκ,Fκ

|= T(α).

This model can be used to show that a certain collection of untyped truth
bi-conditionals is consistent over classical logic. Let us call a formula α positive
if every occurrence of the predicate T in α is under the scope of an even number
of negation symbols.

Theorem 6. The extension of Smin by the collection of truth bi-conditionals for
positive formulas is a consistent theory.
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Proof. We form a classical model E∗ from the partial model by setting E∗ = ETκ
.

For α a positive formula we have E∗ |= α iff ETκ,Fκ
|= α. Thus it follows that

positive bi-conditionals are validated in E∗. 	

Like our model of TB, the compositional axioms for connectives ∧,∨ and two
quantifiers are also validated in E∗. Note though that the clause for negation,
T(¬α) ↔ ¬T(α), does not hold in E∗ except if α ∈ L ∗

0. Instead, we observe

E∗ |= ∀x∀y
(
T(¬(x∧. y)) ↔ T(¬x) ∨ T(¬y)

)

expressing that a conjunction is false if, and only if, at least one of the conjuncts
is false, as well as analogous versions of the other clauses.

Selecting the above compositional clauses as axioms together with the pos-
itive bi-conditionals yields an expressive theory of truth and falsity known as
the Kripke–Feferman theory KF.4 This theory was introduced and analysed
by Solomon Feferman [3] as an axiomatic counterpart to Kripke’s semantic the-
ory. Both the axiomatic and semantic theories are attractive theories of truth
because they validate a large class of untyped truth bi-conditionals as well as
satisfying many untyped compositional clauses. However, the theories represent
conceptions of truth that do not validate classical reasoning. If α is liar sentence
or truth teller (or one many other ungrounded sentences) then T(α ∨ ¬α) does
not hold in E∗.

The next, and final, theory we present is based on a thoroughly classical
conception of truth. It shifts the attention away from truth bi-conditionals to
extensions of the compositional axioms. The theory was proposed by Harvey
Friedman and Michael Sheard [5] and commonly denoted FS.

Definition. FS is the axiomatic theory extending the compositional theory of
truth CT by the two rules NEC and CoNEC.

In particular, FS � ∀x(T(¬x) ↔ ¬T(x)). By necessitation, also FS � T(α ∨ ¬α)
for every α and indeed FS � T(∀x(T(¬x) ↔ ¬T(x)) ). Neither formula holds in
Kripke’s model E∗. On the other hand, E∗ validates the implication T(α) → α
which cannot, by Montague’s theorem, be consistently added to FS. Consistency
of FS is deduced using a different construction, known as revision semantics.

Theorem 7. FS is consistent.

We utilise a construction due to Anil Gupta and Nuel Belnap [1] which, like
Kripke’s model, builds a hierarchy of ‘approximations’ to truth Rn. Unlike the
construction of E∗ though, the interpretation of truth at each level will remove,
as well as add, statements from the previous. Moreover, the hierarchy can begin
from any starting assignment. Thus, let R0 = E be any standard model. Assum-
ing the model Rn = ERn

has been defined, set

Rn+1 = ERn+1 where Rn+1 = {α | Rn |= α}.

4 As with CT, our definition of KF brushes over some important details. We refer the
interested reader to [9] for an axiomatisation of KF and other theories of truth; the
monograph [7] provides a detailed introduction to axiomatic theories of truth.
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This hierarchy is not increasing, for λ ∈ Rn iff λ �∈ Rn+1. For the consistency of
FS it is not necessary to extend the construction into the transfinite. Instead we
observe that the theorems of FS hold co-finally in the hierarchy.

Proof. By induction on the length of derivations in FS, it can be shown that if
FS � α then for some positive n and every k ≥ n, Rk |= α. 	

As a theory of truth, FS has one significant drawback compared to, say, Kripke–
Feferman truth. Given that it contains the compositional clauses and is closed
under NEC, by McGee’s paradox (Theorem 4) the theory has no standard model.
Even so, some authors have argued that FS provides an acceptable formal theory
of truth, since it embodies a notion of truth that respects classical reasoning and
the symmetry of truth creation (NEC) and truth destruction (CoNEC).

5 Conclusion

We surveyed some common paradoxes of self-reference and natural (and consis-
tent) theories of truth. What we presented is far from exhaustive. Much more
can be said about the interplay of logic, language and truth. So we conclude this
article by pointing to some important considerations glossed over in our account.

The starting point of our analysis was the simple syntax theory Smin. Almost
any formal theory which can encode its own syntax and meta-theory will suffice
in place of Smin. Common choices are theories of arithmetic or set theory. For
most purposes, the choice of background theory is immaterial because, as we
have seen, mild syntactic assumptions are sufficient to present both theories of
truth and the paradoxes. Nevertheless, alternative background theories provide
different frameworks for analysing the interplay of truth and (formal) language,
and can alter the deductive strength of theories of truth.

A second point to be elaborated is our logical assumptions concerning truth.
We assumed classical logic throughout and placed fault on our truth-theoretic
assumptions. Some authors have argued in the other direction, that the bi-
conditional α ↔ T(α) is not, inherently, at fault, but rather the assumption
that truth respects classical reasoning. This naturally leads to considering non-
classical logics, for instance intuitionistic [12], partial [8], and even paraconsistent
logics [4].

Finally, even within the informal constraints of this article, there are naturally
arising theories of truth which we did not present. The Gupta–Belnap revision
hierarchy can be extended into the transfinite providing more refined notions
of stable truth. Another prominent ‘classical’ theory of truth appeals to van
Fraassen’s supervaluation schema. The interested reader can consult [7,9] for
more details and references.
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Ognjanović, Zoran 258
Onea, Edgar 173

Padó, Sebastian 113
Pau, Cleo 323
Petersen, Wiebke 79

Quadrellaro, Davide Emilio 297

Rukhaia, Mikheil 279
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