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Abstract. [Context and motivation] Requirement analysis and Test
specification generation are critical activities in the Software Develop-
ment Life Cycle (SDLC), which if not done correctly can lead to defects
in the software system. Manually performing these tasks on Natural Lan-
guage Requirements (NLR) is time consuming and error prone. [Ques-
tion/problem]The problem is to facilitate the automation of these activ-
ities by transforming the NLR into Formal Specifications. [Principal
ideas/results] In this paper we present Req2Spec, a Natural Language
Processing (NLP) based pipeline that performs syntactic and semantic
analysis on NLR to generate formal specifications that can be readily con-
sumed by HANFOR, an industry scale Requirements analysis and Test
specification generation tool. We considered 222 automotive domain soft-
ware requirements at BOSCH, 71% of which were correctly formalized.
[Contribution] Req2Spec will be an aid to stakeholders of the SDLC as
it seamlessly integrates with HANFOR enabling automation.

Keywords: Requirements formalization · Natural Language
Processing · Requirements analysis · Test specification generation ·
Language model

1 Introduction

Software requirements analysis is one of the initial phases in the SDLC where
requirements are analyzed on several aspects before being passed on to the down-
stream stakeholders for design, implementation and testing of the system. As
there are many stakeholders involved in a software project delivery starting from
the requirements engineer to the software tester, errors in the handling of require-
ments can percolate unnoticed. Getting early insights on the requirements is vital
and recommended as it can reveal issues like inconsistencies, ambiguities, incom-
pleteness [1]. There have been a few works that perform analysis of NLR [2–5],
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however they lack support for integration with HANFOR [6] and have not pro-
vided an end-to-end pipeline utilizing recent advances in NLP techniques for it
to be leveraged across industry scale software projects. Industry scale NLR anal-
ysis tools such as IBM RQA [7] and QRA QVscribe [8] predominantly perform
syntactic analysis (e.g. identifying vague terms, passive voice etc.) and minimal
semantic analysis (e.g. they do not check for properties such as vacuity, consis-
tency etc.). Test specification generation is another important phase in the later
stages of the SDLC where significant amount of time and effort is spent. Some of
the recent works have proposed automatic generation of test specification from
NLR [9–12] using NLP techniques from which we have leveraged some of the
components for syntactic and semantic information extraction.

Requirements formalization aims to transform NLR into pre-defined boiler-
plates having a restricted grammar, enabling large scale automated processing of
requirements for downstream tasks such as requirements analysis and test speci-
fication generation. There have been previous attempts to formalizing NLR [13–
15], however they expect the NLR to follow a restricted template/structure.
Further, automated analysis of formal requirements for properties such as con-
sistency and vacuity have been proposed [16–19], however they need the require-
ments to be already formalized or in the form of mathematical descriptions.
While there exist several methods using formalized requirements, the widespread
adoption in industry is still lacking as the hurdle to manually formalize require-
ments seems to be too high. With our Req2Spec method we want to lower this
hurdle and we believe that it will enable utilization of formalized requirements
even by requirements engineers without a background in formal methods.

We have integrated Req2Spec with HANFOR as it is an industry scale tool
based on the specification pattern system by Konrad et al. [20]. It can also
automatically translate the formal specifications into logics for downstream pro-
cessing. HANFOR currently relies on manually formalized requirements prior
to performing requirements analysis and test specification generation. Our work
attempts to automate this step by using NLP techniques.

2 Background

HANFOR tool [21] consumes formalized NLR defined by an ID, a scope and a
pattern. It supports 5 scopes, 4 regular patterns, 7 order patterns and 12 realtime
patterns. A scope describes the boundary of the requirement. For e.g. a require-
ment with a Globally scope will hold true throughout the system, while a require-
ment with a After EXPR scope will hold true only after the expression (EXPR)
is satisfied. A pattern describes the category of the requirement based on the
pre-conditions, post-conditions, sequence of pre-conditions and post-conditions,
and time duration elements. For example, a requirement with a time duration
element only in the post-condition could have the pattern If EXPR holds, then
EXPR holds for at least DURATION. The scopes and patterns are parameterized
by expressions over system observables and durations. Our proposed pipeline is
shown in Fig. 1. It is demonstrated with 2 scopes (Globally and After EXPR),



Req2Spec: Transforming Software Requirements into Formal Specifications 89

Fig. 1. Req2Spec pipeline.

1 regular pattern (It is always the case that if EXPR holds, then EXPR holds
as well) and 1 realtime pattern (If EXPR holds, then EXPR holds after at most
DURATION ).

3 Req2Spec Pipeline

3.1 Dataset

NLR dataset consisted of 222 automotive domain requirements corresponding
to the aforementioned chosen scopes and patterns as they cover the most com-
mon types of requirements found at BOSCH. For training and validation of the
various NLP models, automotive software description documents dealing with
functionalities such as cruise control, exhaust system, braking etc., along with
the ground truths of the NLR dataset were annotated by experts.

3.2 Scope and Pattern Classification

Each NLR has to be associated with a scope and pattern to comply with
HANFOR. We trained classification models for scope and pattern identification
respectively using the SciBERT-Base-Scivocab-Uncased encoder [22] (a state-
of-the-art model used in scientific domains) with a sequence classification head.
The encoder and head were kept unfrozen and trained with the Adam [23] opti-
mizer (lr = 1e−5, β1 = 0.9, β2 = 0.999, ε = 1e−7). The following requirements are
illustrative examples adhering to the chosen 2 scopes and 2 patterns:

1. Scope: Globally, Pattern: It is always the case that if EXPR holds, then EXPR
holds as well :- If ignition is on, then fuel indicator is active.

2. Scope: Globally, Pattern: If EXPR holds, then EXPR holds after at most
DURATION :- If ignition is on, then the wiper movement mode is enabled
within 0.2 s.

3. Scope: After EXPR, Pattern: It is always the case that if EXPR holds, then
EXPR holds as well :- Only after the vehicle speed is larger than 60 kmph, If
the cruise control button is pressed, then the cruise control mode is activated.

4. Scope: After EXPR, Pattern: If EXPR holds, then EXPR holds after at most
DURATION :- Only after the vehicle is in reverse gear, If the accelerator is
pressed, then the rear view camera is activated within 2 s.
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3.3 Named Entity Recognition (NER)

NER is the task of identifying and classifying named entities of a domain. We
trained the NER model by using the SciBERT-Base-Scivocab-Uncased encoder
along with a token classification head in the following setting (as described by
a recent work which addresses many of the challenges of NER in the auto-
motive domain [24]): Masked Language Modelling was performed on the pre-
trained SciBERT encoder with automotive domain text using the Adam opti-
mizer (lr = 5e−5, β1 = 0.9, β2 = 0.999, ε = 1e−8). This encoder and the head
were then kept unfrozen for NER training with the Adam optimizer (lr = 1e−5,
β1 = 0.9, β2 = 0.999, ε = 1e−7). The annotation for NER was consisting of 9 auto-
motive specific classes: Other (words outside named entities e.g. the, in), Signal
(variables holding quantities e.g. torque), Value (quantities assigned to signals
e.g. true, false), Action (task performed e.g. activation, maneuvering), Function
(domain specific feature e.g. cruise control), Calibration (user defined setting e.g.
number of gears), Component (physical part e.g. ignition button), State (system
state e.g. cruising state of cruise control) and Math (mathematical or logical
operation e.g. addition).

3.4 Test Intent Extraction

Software requirements describe the expected functionality in terms of test intent
components, namely Pre-conditions and Post-conditions. Pre-conditions are the
conditions which are expected to be satisfied before the Post-conditions can be
achieved. For example in the requirement: If ignition is on, then fuel indicator is
active, the Pre-condition is ignition is on and the Post-condition is fuel indicator
is active. The test intent components are the primary source of information used
to fill the EXPR slots of the scope and pattern. We utilized the Constituency
Parse Tree (CPT) based syntactic test intent extraction algorithm [11] as it
is able to separate dependent clauses (Pre-conditions) and independent clauses
(Post-conditions) using grammar sub-tree structures.

3.5 Triplet Extraction

The test intent components have to be converted into expressions before being
filled into the EXPR slots of the scope and patterns. For this we first con-
vert each test intent component into a Subject-Verb-Object (SVO) triplet. Since
traditional triplet extraction algorithms such as OpenIE [25] and ClausIE [26]
have been designed from open source text (similar to Wikipedia articles), the
quality of the extracted triples is hampered when applied to software engineer-
ing domain corpus which contains lexica and sentence structure that is niche.
Hence, we have designed the following CPT based triplet extraction algorithm
in our pipeline:

1. CPT is constructed using the Stanford CoreNLP [27] library for the condition
and recursively traversed.
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2. Subject is the sub-string until a Verb Phrase (VP) is encountered. Verb is
the sub-string from the beginning of the VP until a Noun Phrase (NP) or
Adjective (JJ) is encountered. Object is the sub-string from NP/JJ to the
end of the condition. If a Infinitival to (TO)/VP is encountered in the Object,
then the words occurring until (including) the TO/VP are concatenated to
the Verb string of the triplet and the remaining sub-string is the Object.

3. This step is triggered if Step 2 resulted in a triplet with no Verb and Object
strings: Subject is the sub-string until a TO/Preposition (IN) is encountered.
Verb is the sub-string corresponding to TO/IN. Object is the sub-string after
the TO/IN sub-string. If a TO is encountered in the Object, then the words
until (including) the TO are concatenated to the Verb string of the triplet
and the remaining sub-string is kept as the Object.

4. This step is triggered if Step 3 resulted in a triplet with no Object
string: Subject is the sub-string until a VP/TO is encountered. Verb is
the sub-string from the beginning of the VP/TO until any VB (all verb
forms)/RB (Adverb)/IN is encountered. Object is the sub-string beginning
from VB/RB/IN until the end of the condition.

3.6 Expression (EXPR) Generation

The natural language SVO triplets have to be rewritten into an equation format
where natural language aliases are resolved. The Subject and Object are mapped
to system observables (can be thought of as variables used in software code
development) and the Verb is mapped to an operator. For example, ignition (S)
- is (V) - on (O) will be mapped to ig st = on. A system observables (variables)
dictionary is used for mapping the Subject and Object, whose keys are natural
language descriptions of the variables and the values are the variables. Similarly,
the Verb is mapped to operators using an operator dictionary, whose keys are
natural language descriptions of the operators and the values are the operators.
This mapping happens in 4 steps:

1. The triplet is tagged with the NER model.
2. A vector representation is created for the Subject, Verb and Object of the

triplet using a pre-trained Sentence-BERT (SBERT) [28] model.
3. Subject is mapped to the variable whose vector representation of its natural

language description was closest based on cosine similarity. Similarly, the Verb
is mapped to the closest matching operator in the operator dictionary.

4. Object mapping follows the above process only if it does not contain a Value
named entity, otherwise the Value named entity is retained as the Object.

3.7 HANFOR Formal Specifications (FS)

As the final step the EXPR and DURATION slots of the scope and pattern
corresponding to the requirement have to be filled. Once filled, the scope and
pattern are tied together resulting in the formal specification. Table 1 shows the
intermediate outputs generated during the formalization of an illustrative sample
NLR. The scope EXPR slot filling happens as follows:
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– If the scope is Globally, then there is no EXPR slot to fill.
– If the scope is After EXPR, then each pre-condition whose Subject contains

temporal prepositions indicating time following such as after, beyond, subse-
quent to, following etc., its expression will be filled in this EXPR slot.

– In case there exist multiple such pre-conditions, their expressions are then
tied together with AND and OR operators appropriately.

The pattern DURATION slot filling happens as follows:

– If the pattern is It is always the case that if EXPR holds, then EXPR holds
as well, then there is not DURATION to fill.

– If the pattern is If EXPR holds, then EXPR holds after at most DURATION,
then the Regular Expression \d+[.]?\d+? ?(?:seconds|minutes|hours|time
units’) is checked against each post-condition to extract any time duration
element. As this pattern applies a single DURATION element across all the
post-conditions, the sub-string returned from the Regular Expression will be
stripped from the post-conditions and filled in the DURATION slot.

The pattern EXPR slot filling happens as follows:

– In case there are multiple pre-conditions and post-conditions, their expres-
sions are then tied together with AND and OR operators appropriately.

– For both the selected patterns, the pre-condition expressions are filled in the
EXPR slot attached to the If clause, and the post-conditions expressions are
filled in the EXPR slot attached to the then clause.

Table 1. End-to-end flow of a sample requirement through the Req2Spec pipeline.

Component Output

NLR If ignition is on, then fuel indicator is active

Scope Globally

Pattern It is always the case that if EXPR holds, then EXPR holds as well

NER Signal: ignition; Component: fuel indicator; Value: on, active

Test intent extraction Pre-cond: ignition is on, Post-cond: fuel indicator is active

Triplet extraction Pre-cond: ignition-is-on, Post-cond: fuel indicator-is-active

Expression generation Pre-cond: ig st = on, Post-cond: fuel ind = active

Formal specification Globally, It is always the case that if ig st = on holds, then
fuel ind = active holds as well

4 Results

Table 2 summarizes the performance of the different NLP components in the
pipeline. 71% of the NLR requirements were successfully formalized by the
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Req2Spec pipeline, leading to significant decrease in the time spent on man-
ual formalization. Further, we believe that even though 29% of the requirements
had formalization errors, they still provide a head start to the engineer who
can make minor edits before feeding them to HANFOR. The error rate can be
attributed to the following reasons:

1. Irreducible errors of the machine learning models.
2. Syntactic components of the pipeline such as Test Intent Extraction and

Triplet Extraction are impacted by the quality of grammatical correctness
and ambiguities in the requirements. For example, consider the requirement:
When cruise control is activated and speed is above 60 kmph or wiper is acti-
vated then lamp turns on. It is unclear which of the following Test Intent
pre-conditions combination is valid:

– (cruise control is activated AND speed is above 60 kmph) OR (wiper is
activated)

– (cruise control is activated) AND (speed is above 60 kmph OR wiper is
activated)

3. As the pipeline is linear, the failure of even a single component causes the error
to cascade till the end, thereby leading to an incorrect formal specification.

Table 2. Performance (%) of the Syntactic (Syn) and Semantic (Sem) NLP components
used in Req2Spec pipeline.

Component Algorithm Type Precision Recall F-1 Accuracy

Scope classification SciBERT Syn+Sem 93 93 93 98

Pattern classification SciBERT Syn+Sem 95 96 96 96

Named entity recognition SciBERT Syn+Sem 83 83 83 88

Test intent extraction CPT Syn – – – 79.27

Triplet extraction CPT Syn – – – 88.73

Expression generation SBERT Sem – – – 93.24

Formal specifications – – – – – 71.61

5 Conclusion and Future Work

In this paper we have proposed Req2Spec, a NLP based pipeline that performs
syntactic and semantic analysis to formalize software requirements into HAN-
FOR compliant formal specifications, which can then be used to perform tasks
like requirements analysis and test specification generation. We demonstrated
our pipeline on 4 different types of requirements (2 scopes and 2 patterns), out
of which 71% of the requirements resulted in the correct formal specifications,
giving strong confidence on the feasibility of the pipeline. We believe that this
can lead to productivity gains for the various stakeholders of the SDLC and
overall improve the software quality, as the manual interventions required will
decrease significantly. Our future work will focus on including datasets beyond
the automotive domain and also extending the pipeline to handle additional
scopes and patterns to increase coverage on different types of requirements.
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