
Vincenzo Gervasi
Andreas Vogelsang (Eds.)

LN
CS

 1
32

16 Requirements Engineering:
Foundation
for Software Quality
28th International Working Conference, REFSQ 2022
Birmingham, UK, March 21–24, 2022
Proceedings

Lecture Notes in Computer Science 13216

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693
https://orcid.org/0000-0003-0848-0873

More information about this series at https://link.springer.com/bookseries/558

https://springerlink.bibliotecabuap.elogim.com/bookseries/558

Vincenzo Gervasi · Andreas Vogelsang (Eds.)

Requirements Engineering:
Foundation
for Software Quality
28th International Working Conference, REFSQ 2022
Birmingham, UK, March 21–24, 2022
Proceedings

Editors
Vincenzo Gervasi
University of Pisa
Pisa, Italy

Andreas Vogelsang
University of Cologne
Cologne, Germany

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-98463-2 ISBN 978-3-030-98464-9 (eBook)
https://doi.org/10.1007/978-3-030-98464-9

© Springer Nature Switzerland AG 2022
Chapter “Requirements Engineering in the Market Dialogue Phase of Public Procurement: A Case Study of
an Innovation Partnership for Medical Technology” is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/). For further details see
licence information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0002-8567-9328
https://orcid.org/0000-0003-1041-0815
https://doi.org/10.1007/978-3-030-98464-9
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers presented at REFSQ 2022, the 28th InternationalWork-
ing Conference on Requirements Engineering: Foundation for Software Quality, held
on March 21–24, 2022 in Aston, Birmingham, UK. As we write these lines, it seems
highly likely that REFSQ 2022 will be held in-person as planned, for the first time after a
two-year hiatus forced by the COVID-19 pandemic which has impacted somany aspects
of our lives.

We, on behalf of the entire REFSQ community, would like to take this chance to
thank the many colleagues who, in their various roles, have dedicated their time, energy,
and ingenuity in the last two years to organizing REFSQ 2020 and 2021 in such difficult
conditions and with so much uncertainty.

The REFSQ series was established in 1994, at first as a workshop series, and since
2010 in the “working conference” format, with ample time for presentations and sub-
stantial discussions of each contribution. It is often considered among the major interna-
tional scientific events in Requirements Engineering, and the only one to be permanently
located in Europe, with a special connection to European industry and academia. The
need for ever-increasing levels of quality in requirements has not diminished in the 28
years since the first REFSQ; on the contrary, requirements are pervasive in the design,
implementation, and operation of software systems and related services that impact the
lives of billions.

The special theme for REFSQ 2022 was “Explainability in Requirements Engineer-
ing”. As the impact of decisions taken by software systems increases, so does our duty,
as requirements engineers, to investigate how such systems can be held accountable, and
their operations made understandable to those affected by them, as part of our collective
social responsibility.

The call for papers explicitly solicited contributions on how to elicit, specify and
validate requirements for explainability in (and thus accountability of) software sys-
tem, and how to design and implement systems whose behavior in specific instances is
explainable, back to the requirements whose implementation caused the behavior, to the
stakeholders expressing those requirements, and to their rationale for supporting those
requirements. Among others, the special theme included issues such as:

– What is Explainability and who needs it
– How to elicit and specify Explainability
– How to check/assure Explainability
– Product vs. Process Explainability
– Consequences of low Explainability
– Self-Explainable Systems
– Explainability of Design Decisions

We were very happy to observe that the challenge was promptly taken up by the
research community, with many submissions focusing on exactly those issues. Several

vi Preface

of those contributions were accepted for presentation at the conference, and are now part
of this volume.

In response to the Call for Papers, we received 50 abstracts, which resulted in 48
full papers. Three submissions were withdrawn by the authors prior to review, and each
of the remaining 45 was reviewed by three program committee members, extensively
discussed among the reviewers, and then brought for additional discussion if needed
and final decision at the plenary program committee meeting that was held (online) on
December 16, 2021. Six papers for which no consensus had been reachedwere discussed
in special depth, with two of them accepted on the condition that certain improvements
be made (those underwent an additional check by a PCmember before final acceptance).

Overall, 19 papers were finally accepted for publication, and are now collected in
this volume. In particular, based on paper category, the acceptance ratios are as follows:

– Scientific Evaluation (long): 20 submissions, 10 accepted (50%)
– Technical Design (long): 8 submissions, 2 accepted (25%)
– Vision (short): 5 submissions, 1 accepted (20%)
– Research Preview (short): 12 submissions, 6 accepted (50%)

The overall acceptance rate was thus 42% (19/45), almost identical for long and short
papers.

As in previous years, the conference was organized as a three-day symposium (Tues-
day to Thursday), with one day devoted to industrial presentations (in a single track),
and two days of academic presentations (in two parallel tracks). In addition to paper
presentations and related discussions, the program included keynote talks, a Poster &
Tools sessions, and awards to recognize the best contributions in various categories.
On the Monday before the conference, four co-located events were held: NLP4RE (5th
Workshop on Natural Language Processing for Requirements Engineering) organized
by Fabiano Dalpiaz, Davide Dell’Anna, Sylwia Kopczyńska and Lloyd Montgomery;
RE4AI (3rd International Workshop on Requirements Engineering for Artificial Intel-
ligence) organized by Renata Guizzardi, Jennifer Horkoff, Anna Perini and Angelo
Susi; Design Thinking (International Workshop on Design Thinking, Design Fiction
and Requirements Engineering) organized by AndrewDarby, Peter Sawyer,Wei Liu and
Nelly Bencomo; and the REFSQ Doctoral Symposium, organized by Liliana Pasquale
and Andrea Zisman. The proceedings of co-located events and the Poster & Tools track
are published in a separate volume via CEUR.

We would like to thank all members of the Requirements Engineering commu-
nity who prepared a contribution for REFSQ 2022: there would be no progress in our
discipline without the talent, intelligence, and effort that so many brilliant researchers
dedicated to the field. We would also like to thank members of the Program Committee
and additional reviewers for their invaluable contribution to the selection process.

Special thanks are due to all the colleagues that served in various distinguished
roles in the organization of REFSQ 2022 – your help in assembling a rich program has
been invaluable. The REFSQ Steering Committee has provided excellent support and
guidance throughout the process; we have found our path well marked by previous PC
members who happily shared their experiences. Finally, wewould like to thank the Local
Organizers Nelly Bencomo and Pete Sawyer; the Steering Committee Chair Anna Perini

Preface vii

and Vice-Chair Fabiano Dalpiaz, and the head of the Background Organization, Xavier
Franch, for making our regular organizational meetings so enjoyable that we almost
looked forward to each subsequent one with pleasurable anticipation.

Last but not least, we would like to thank you, the reader. You are the reason for this
volume to exist. We hope you will find its contents interesting, useful, stimulating, and
inspirational.

February 2022 Vincenzo Gervasi
Andreas Vogelsang

REFSQ 2022 Organization

Program Committee Chairs

Vincenzo Gervasi University of Pisa, Italy
Andreas Vogelsang University of Cologne, Germany

Local Organization Chairs

Nelly Bencomo Durham University, UK
Peter Sawyer Aston University, UK

Industry Chairs

Maria Chli Aston University, UK
Amalinda Post Robert Bosch GmbH, Germany

Workshop Chairs

Nelly Condori-Fernández University of A Coruña, Spain/Vrije Universiteit
Amsterdam, The Netherlands

Joerg Doerr Fraunhofer IESE, Germany

Doctoral Symposium Chairs

Liliana Pasquale University College Dublin/Lero, Ireland
Andrea Zisman The Open University, UK

Posters and Tools Chairs

Marcela Ruiz Zurich University of Applied Sciences (ZHAW),
Switzerland

Jan-Philipp Steghöfer Chalmers | University of Gothenburg, Sweden

Satellite Proceedings Chair

Jannik Fischbach Qualicen GmbH/University of Cologne, Germany

Publicity Chair

Oliver Karras TIB - Leibniz Information Centre for Science and
Technology, Germany

x REFSQ 2022 Organization

Student Volunteer Chairs

Sara Hassan Birmingham City University, UK
Huma Samin Aston University, UK

Program Committee

Carina Alves Universidade Federal de Pernambuco, Brazil
Daniel Amyot University of Ottawa, Canada
Fatma Basak Aydemir Boğaziçi University, Turkey
Richard Berntsson Svensson Chalmers | University of Gothenburg, Sweden
Dan Berry University of Waterloo, Canada
Sjaak Brinkkemper Utrecht University, The Netherlands
Nelly Condori-Fernández University of A Coruña, Spain/Vrije Universiteit

Amsterdam, The Netherlands
Fabiano Dalpiaz Utrecht University, The Netherlands
Jörg Dörr Fraunhofer IESE, Germany
Alessio Ferrari ISTI-CNR, Italy
Xavier Franch Universitat Politècnica de Catalunya, Spain
Samuel Fricker Blekinge Institute of Technology, Sweden
Matthias Galster University of Canterbury, UK
Vincenzo Gervasi University of Pisa, Italy
Martin Glinz University of Zurich, Switzerland
Michael Goedicke University of Duisburg-Essen, Germany
Paul Grünbacher Johannes Kepler University Linz, Austria
Renata Guizzardi Universidade Federal do Espirito Santo, Brazil
Andrea Herrmann Free Software Engineering Trainer, Germany
Jennifer Horkoff Chalmers | University of Gothenburg, Sweden
Fuyuki Ishikawa National Institute of Informatics, Japan
Zhi Jin Peking University, China
Erik Kamsties University of Applied Sciences and Arts

Dortmund, Germany
Eric Knauss Chalmers | University of Gothenburg, Sweden
Kim Lauenroth Adesso AG, Germany
Emmanuel Letier University College London, UK
Grischa Liebel Reykjavik University, Iceland
Nazim Madhavji University of Western Ontario, Canada
Daniel Mendez Blekinge Institute of Technology, Sweden, and

fortiss, Germany
Luisa Mich University of Trento, Italy
Gunter Mussbacher McGill University, Canada
John Mylopoulos University of Ottawa, Canada
Nan Niu University of Cincinnati, USA

REFSQ 2022 Organization xi

Andreas Opdahl University of Bergen, Sweden
Barbara Paech Universität Heidelberg, Germany
Elda Paja IT University of Copenhagen, Denmark
Liliana Pasquale University College Dublin, Ireland
Oscar Pastor Universidad Politécnica de Valencia, Spain
Anna Perini Fondazione Bruno Kessler Trento, Italy
Klaus Pohl Paluno, University of Duisburg-Essen, Germany
Björn Regnell Lund University, Sweden
Mehrdad Sabetzadeh University of Luxembourg, Luxembourg
Klaus Schmid University of Hildesheim, Germany
Kurt Schneider Leibniz Universität Hannover, Germany
Laura Semini University of Pisa, Italy
Norbert Seyff FHNW University of Applied Sciences and Arts

Northwestern Switzerland, Switzerland
Paola Spoletini Kennesaw State University, USA
Jan-Philipp Steghöfer Chalmers | University of Gothenburg, Sweden
Angelo Susi Fondazione Bruno Kessler - Irst, Italy
Michael Unterkalmsteiner Blekinge Institute of Technology, Sweden
Michael Vierhauser Johannes Kepler University Linz, Austria
Andreas Vogelsang University of Cologne, Germany
Stefan Wagner University of Stuttgart, Germany
Didar Zowghi University of Technology, Sydney, Australia

Additional Reviewers

Anders, Michael
Habiba, Umm-E
Kobayashi, Tsutomu
Rohmann, Astrid

REFSQ Series Organization

Steering Committee

Anna Perini (Chair) Fondazione Bruno Kessler, Trento, Italy
Fabiano Dalpiaz (Vice-chair) Utrecht University, The Netherlands
Xavier Franch (Head of BO) Universitat Politècnica de Catalunya, Spain
Klaus Pohl University of Duisburg-Essen, Germany
Kurt Schneider Universität Hannover, Germany
Paola Spoletini Kennesaw State University, USA
Nazim Madhavji Western University, Canada
Michael Goedicke University of Duisburg-Essen, Germany
Eric Knauss Chalmers | University of Gothenburg, Sweden
Jennifer Horkoff Chalmers | University of Gothenburg, Sweden

xii REFSQ 2022 Organization

Erik Kamsties University of Applied Sciences and Arts
Dortmund, Germany

Vincenzo Gervasi University of Pisa, Italy
Andreas Vogelsang University of Cologne, Germany
Alessio Ferrari CNR-ISTI, Pisa, Italy
Birgit Penzenstadler Chalmers | University of Gothenburg, Sweden,

and Lappeenranta Lahti University of
Technology, Finland

Background Organization

Xavier Franch (Co-chair) Universitat Politècnica de Catalunya, Spain
Carme Quer (Co-chair) Universitat Politècnica de Catalunya, Spain
Carles Farré (Web Chair) Universitat Politècnica de Catalunya, Spain
Quim Motger Universitat Politècnica de Catalunya, Spain

REFSQ 2022 Organization xiii

Supporting Institutions, Companies and Groups

Organizers

Sponsors

Contents

Artificial Intelligence and Explainability

Transparency and Explainability of AI Systems: Ethical Guidelines
in Practice . 3

Nagadivya Balasubramaniam, Marjo Kauppinen, Kari Hiekkanen,
and Sari Kujala

Requirements Engineering for Artificial Intelligence: What Is
a Requirements Specification for an Artificial Intelligence? 19

Daniel M. Berry

Quo Vadis, Explainability? – A Research Roadmap for Explainability
Engineering . 26

Wasja Brunotte, Larissa Chazette, Verena Klös, and Timo Speith

Machine Learning

How Effective Is Automated Trace Link Recovery in Model-Driven
Development? . 35

Randell Rasiman, Fabiano Dalpiaz, and Sergio España

A Zero-Shot Learning Approach to Classifying Requirements:
A Preliminary Study . 52

Waad Alhoshan, Liping Zhao, Alessio Ferrari, and Keletso J. Letsholo

Natural Language Processing

Abbreviation-Expansion Pair Detection for Glossary Term Extraction 63
Hussein Hasso, Katharina Großer, Iliass Aymaz, Hanna Geppert,
and Jan Jürjens

Towards Explainable Formal Methods: From LTL to Natural Language
with Neural Machine Translation . 79

Himaja Cherukuri, Alessio Ferrari, and Paola Spoletini

Req2Spec: Transforming Software Requirements into Formal
Specifications Using Natural Language Processing . 87

Anmol Nayak, Hari Prasad Timmapathini, Vidhya Murali,
Karthikeyan Ponnalagu, Vijendran Gopalan Venkoparao,
and Amalinda Post

xvi Contents

FRETting About Requirements: Formalised Requirements for an Aircraft
Engine Controller . 96

Marie Farrell, Matt Luckcuck, Oisín Sheridan, and Rosemary Monahan

User Stories

Invest in Splitting: User Story Splitting Within the Software Industry 115
Emanuel Dellsén, Karl Westgårdh, and Jennifer Horkoff

Guided Derivation of Conceptual Models from User Stories: A Controlled
Experiment . 131

Maxim Bragilovski, Fabiano Dalpiaz, and Arnon Sturm

From User Stories to Data Flow Diagrams for Privacy Awareness:
A Research Preview . 148

Guntur Budi Herwanto, Gerald Quirchmayr, and A. Min Tjoa

Business, Markets, and Industrial Practice

Requirements Engineering in the Market Dialogue Phase of Public
Procurement: A Case Study of an Innovation Partnership for Medical
Technology . 159

Gunnar Brataas, Geir Kjetil Hanssen, Xinlu Qiu, and Lisa S. Græslie

A Business Model Construction Kit for Platform Business Models -
Research Preview . 175

Nedo Bartels and Jaap Gordijn

On Testing Security Requirements in Industry – A Survey Study 183
Sylwia Kopczyńska, Daniel Craviee De Abreu Vieira,
and Mirosław Ochodek

Setting AI in Context: A Case Study on Defining the Context
and Operational Design Domain for Automated Driving . 199

Hans-Martin Heyn, Padmini Subbiah, Jennifer Linder, Eric Knauss,
and Olof Eriksson

Cognition and Expression

Requirements Engineering for Software-Enabled Art: Challenges
and Guidelines . 219

Niklas Möller and Jennifer Horkoff

A Study on the Mental Models of Users Concerning Existing Software 235
Michael Anders, Martin Obaidi, Barbara Paech, and Kurt Schneider

Contents xvii

Vision Video Making with Novices: A Research Preview . 251
Melanie Busch, Jianwei Shi, Lukas Nagel, Johann Sell, and Kurt Schneider

Author Index . 259

Artificial Intelligence and Explainability

Transparency and Explainability of AI Systems:
Ethical Guidelines in Practice

Nagadivya Balasubramaniam(B), Marjo Kauppinen, Kari Hiekkanen, and Sari Kujala

Department of Computer Science, Aalto University, Espoo, Finland
{nagadivya.balasubramaniam,marjo.kauppinen,kari.hiekkanen,

sari.kujala}@aalto.fi

Abstract. [Context and Motivation] Recent studies have highlighted
transparency and explainability as important quality requirements of AI systems.
However, there are still relatively few case studies that describe the current state
of defining these quality requirements in practice. [Question] The goal of our
study was to explore what ethical guidelines organizations have defined for the
development of transparent and explainable AI systems. We analyzed the ethical
guidelines in 16 organizations representing different industries and public sector.
[Results] In the ethical guidelines, the importance of transparencywas highlighted
by almost all of the organizations, and explainability was considered as an integral
part of transparency. Building trust in AI systems was one of the key reasons for
developing transparency and explainability, and customers and users were raised
as the main target groups of the explanations. The organizations also mentioned
developers, partners, and stakeholders as important groups needing explanations.
The ethical guidelines contained the following aspects of the AI system that
should be explained: the purpose, role of AI, inputs, behavior, data utilized,
outputs, and limitations. The guidelines also pointed out that transparency and
explainability relate to several other quality requirements, such as trustworthiness,
understandability, traceability, privacy, auditability, and fairness. [Contribution]
For researchers, this paper provides insights into what organizations consider
important in the transparency and, in particular, explainability of AI systems.
For practitioners, this study suggests a structured way to define explainability
requirements of AI systems.

Keywords: Transparency · Explainability · Quality requirements · Ethical
guidelines · AI systems

1 Introduction

The use of artificial intelligence (AI) is changing the world we live in [23]. Algorithmic
decision-making is becoming ubiquitous in daily life. Moreover, machine learning
is utilized in the crucial decision-making process, such as loan processing, criminal
identification, and cancer detection [1, 18]. The number of organizations that are
interested in developing AI systems are increasing. However, the black-box nature of
AI systems has raised several ethical issues [3].

© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 3–18, 2022.
https://doi.org/10.1007/978-3-030-98464-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_1&domain=pdf
https://doi.org/10.1007/978-3-030-98464-9_1

4 N. Balasubramaniam et al.

To handle the ethical issues of AI and to develop responsible AI systems, various
interest groups across the world (e.g., IEEE, ACM) have defined comprehensive ethical
guidelines and principles to ensure responsible AI usage. The ethical guidelines of AI
developed by three established expert groups [16, 20, 25] emphasized transparency and
explainability for developing AI systems. In addition to that, organizations have defined
their own ethical guidelines of AI that encompass the ethical issues which are prominent
to the organization [3].

Organizations utilize different machine learning models and algorithms in the
decision-making processes. Moreover, the outputs and the decisions of AI systems
are usually difficult to understand and lack transparency [8]. Recent studies [6, 8]
highlight explainability as a key requirement of AI systems that improves transparency.
In addition, a study [2] on RE techniques and an industry guideline for building AI
systems emphasized that explanations of AI systems enforced trust and improved the
decision making of users when using AI systems.

Transparency and explainability are identified as key quality requirements of AI
systems [6, 8, 13] and are portrayed as quality requirements that need more focus in
the machine learning context [18]. Explainability can impact user needs, cultural values,
laws, corporate values, and other quality aspects of AI systems [6]. The number of papers
that deal with transparency and explainability requirements have recently increased.
However, studies on how to define explainability and transparency requirements of AI
systems in practice are still rare and at their early stage.

The goal of this study was to explore what ethical guidelines organizations
have defined for the development of transparent and explainable AI systems. In
this study, we analyzed the ethical guidelines of AI published by 16 organizations
to understand what quality requirements these organizations have highlighted in
their ethical guidelines. Then, we performed detailed study focusing especially on
transparency and explainability guidelines to delineate the different components of
explainability requirements of AI systems.

This paper is organized as follows. Section 2 describes the related work on
transparency and explainability as quality requirements of AI systems. In Sect. 3, we
present the research method used in this study. Section 4 describes the results from the
analysis of the ethical guidelines and presents the components of explainability of AI.
We discuss our results and their validity in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Related Work

In what follows, we first emphasize the definition of ethical requirements of AI systems
and the close association of ethical guidelines to requirement definition. Next, we focus
on transparency and explainability which are emerging quality requirements of AI
systems.

2.1 Ethical Requirements of AI Systems

Guizzardi et al. [17] introduced and defined ethical requirements of AI systems as
‘Ethical requirements are requirements for AI systems derived from ethical principles

Transparency and Explainability of AI Systems 5

or ethical codes (norms)’. Besides, the authors highlighted that defining the ethical
requirements at the beginning of AI system development helps in considering the ethical
issues during the early phases of development. Generally, ethical requirements of AI
constitute both functional and quality requirements derived from the stakeholder needs in
accordance with ethical principles [17, 24]. The studies on ethical requirements depicted
the close association of ethical guidelines to requirements definition.

2.2 Transparency as a Quality Requirement

Cysneiros [11] and Leite and Capelli [14]’s studies classified transparency as an
impactful non-functional requirement (NFR) of the software system. Further, the authors
delineated the interrelationship of transparency with other NFRs, such as trust, privacy,
security, accuracy, etc. through softgoal interdependence graphs (SIGs).

In addition, the dependency between transparency and trust is a salient facet that
needs to be considered in system development, such as self-driving cars [5, 13]. Kwan
et al. [21] developed an NFR catalogue for trust, and the study reported that transparency
positively impacted in achieving users’ trust, which was portrayed as the key corporate
social responsibility (CSR) principle.

The recent studies [12, 13, 18, 19] discussed transparency as a key NFR in
machine learning and autonomous systems. Transparency in AI systems was identified
as quintessential, but the black box nature of AI systems makes the definition of
transparency requirements challenging [13, 19]. Horkoff [19] emphasized the real-world
impact of machine learning and the crucial question ‘how these results are derived?’.
Likewise, Chazette et al. [7] highlighted that transparency as an NFR is abstract and
requires better understanding and supporting mechanisms to incorporate them into the
system. Explanations of machine learning and AI results were proposed to mitigate the
issues of transparency [7, 19]. The studies [7, 8] on the relationship between explanations
and transparency of AI systems proposed explainability as an NFR.

Explainability suggested as an NFR had been linked to other NFRs such as
transparency and trust by [6]. As Köhl et al. [22] link explainability to transparency, and
Chazette et al. [7, 8] also report that explainability aims in achieving better transparency.
Moreover, explanations of AI systems had been identified to contribute higher system
transparency. For instance, receiving explanations about a system, its processes and
decisions impact both understandability and transparency NFRs [6].

2.3 Explainability as a Quality Requirement

Köhl et al. [22] addressed the gap in ensuring explainability in system development and
performed a conceptual analysis of systems that needs explanations (e.g., automated
hiring system). The analysis aimed to elicit and specify the explainability requirements
of the system. The authors proposed definitions for three questions: 1) to who are the
‘explanations for’ focusing on understandability, context, and target of the system,
2) when the system is considered explainable, and 3) how to define explainability
requirements.

Köhl et al. [22] and Chazette et al. [6] proposed definitions to help understand what
explainability means from a software engineering perspective (Table 1). The definition
of the explainability requirement byChazette et al. [6] is based on the definition proposed

6 N. Balasubramaniam et al.

by Köhl et al. [22]. Both of these definitions have the following variables: a system, an
addressee (i.e., target group), an aspect, and a context. In addition to these variables,
Chazette et al. [6] have also included an explainer in their definition of explainability.

Table 1. Definitions of explainability requirement and explainability

Chazette et al. [7, 8] discussed explainability as an NFR and interlinked it with
transparency. Further, explainability supports in defining the transparency requirements
which impacts software quality. The authors also identified that end-users are more
interested to get explanations during adverse situations, and they are least interested to
know the innerworking of the system i.e., how the systemworked [7, 8]. In addition, [6, 8,
22] highlighted the tradeoffs between the explainability and other NFRs. Consequently,
[6] indicated thatwhen eliciting the explainability requirements, considerationof positive
and negative impacts of explanations to the users could avoid conflict with transparency
and understandability NFRs.

Subsequently, Chazette et al. [6] featured explainability as an emerging NFR
and evaluated how explainability impacts other NFRs and qualities. Their study
revealed that transparency, reliability, accountability, fairness, trustworthiness, etc. are
positively impacted by explainability. However, the authors acknowledged that studies
on incorporating explainability in the software development process are in its early stage
and need more research [6].

3 Research Method

The goal of this study was to investigate what ethical guidelines organizations have
defined for the development of transparent and explainable AI systems. In the analysis
of the ethical guidelines, we used the following research questions:

• What quality requirements do organizations highlight in their ethical guidelines?
• What components can explainability requirements of AI systems contain?
• How do transparency and explainability relate to other quality requirements?

Our selection criterion was to find organizations that have defined and published
their ethical guidelines for using AI. In late 2018, AI Finland, which is a steering group
in-charge of AI programme, organized the ‘Ethics Challenge’. The challenge invited
enterprises in Finland to develop ethical guidelines of AI as a way to promote the ethical

Transparency and Explainability of AI Systems 7

use of AI. We identified 16 organizations that have published their ethical guidelines.
We gathered the documents from the organizations’ websites and those documents
contained data such as AI ethical guidelines and their explanations as simple texts,
detailed PowerPoint slides set, and videos explaining the guidelines.

First, we classified the organizations that have published the ethical guidelines
of AI into three categories: professional services and software, business-to-consumer
(B2C), and public sector. Table 2 summarizes these categories. Category A includes
seven professional services organizations that provide a broad range of services
from consulting to service design, software development, and AI & analytics.
The two software companies in Category A develop a large range of enterprise
solutions and digital services. The five B2C organizations represent different domains:
two telecommunication companies, a retailer, a banking group, and an electricity
transmission operator. The public sector organizations represent tax administration and
social security services. The six companies of Category A are Finnish and the other three
are global. Furthermore, all the organizations of Category B and C are Finnish.

Table 2. Overview of the organizations of the study

We started the data analysis process by conceptual ordering [10] where the ethical
guidelines of AI in 16 organizations were ordered based on their category name. Then,
the categories which were also quality requirements of AI were identified by line-by-line
coding process [4]. This process was performed by the first author and was reviewed
by the second author. Next, we performed the word-by-word coding technique and we
focused on transparency and explainability guidelines in this step. We used Charmaz’s
[4] grounded theory techniques on coding and code-comparison for the purpose of data
analysis only.

The first two authors of this paper performed separately the initial word-by-word
coding. The analysis was based on the variables used in the definition of explainability
by Chazette et al. [6]. These variables were addressees of explanations, aspects of
explanations, contexts of explanations, and explainers. We also analyzed reasons for
transparency.Discrepancies in the codeswere discussed and resolved during ourmultiple
iterative meetings, and missing codes were added. Table 3 shows examples of ethical
guidelines and codes from the initial word-by-word coding process. Next, in the axial
coding process, the sub-categories from the initial coding process were combined or
added under the relevant high-level categories. The quality requirements that are related
to transparency and explainability were combined and the second author reviewed the
axial coding process.

8 N. Balasubramaniam et al.

Table 3. Example codes of the initial word-by-word coding process

4 Results

This section presents the results from the analysis of ethical AI guidelines of the
sixteen organizations. First, we summarize what quality requirements the organizations
have raised in their ethical guidelines of AI systems. In Sect. 4.2, we report the
results of the analysis of transparency and explainability guidelines and describe the
components for defining explainability requirements. We also propose a template for
representing individual explainability requirements. In Sect. 4.3, we summarize the
quality requirements that relate to transparency and explainability.

4.1 Overview of Ethical Guidelines of AI Systems

This section gives an overview of what quality requirements the organizations refer to in
their ethical guidelines. In Table 4 and 5, we summarize the quality requirements of AI
systems that have been emphasized in the ethical guidelines of the sixteen organizations.

In this study, 14 out of the 16 organizations have defined transparency ethical
guidelines, and all the professional services and software companies have defined the
transparency guidelines for developing AI systems. The key focus on the transparency
guidelines encompassed the utilization of AI i.e., how the AI is used in the organizations
(O2, O5, O6, O13). Moreover, openness or communicating openly (O4, O5, O11, O12,
O14, O15) on how and where the AI is used in the system are indicated in the guidelines.
Interestingly, explainability was always defined as a part of transparency guidelines in
13 out of the 14 organizations. The only exception was the organization O7 that did not
cover explainability in their ethical guidelines of AI systems. A more detailed analysis
of transparency and explainability guidelines is described in the following section.

Privacy ethical guidelines in organizations focused to protect and to avoid unethical
usage of personal and sensitive data (O1, O2, O6). Moreover, compliance with privacy
guidelines and the GDPR were emphasized in the privacy guidelines of the two
organizations (O3, O4). Furthermore, Organization O6 highlighted that it is important
to communicate how, why, when, and where user data is anonymized. Confidentiality of
personal data and privacy of their customers are prioritized (O11, O16) and adherence to

Transparency and Explainability of AI Systems 9

Table 4. Quality requirements in ethical guidelines of Category A

Table 5. Quality requirements in ethical guidelines of Category B and C

data protection practices (O11,O12,O13O14,O15) are covered in the privacy guidelines
of B2C and public sector organizations.

Few of the professional services and software organizations (O1, O5, O6, O9) and
B2C (O11, O13) organizations defined their security and privacy guidelines together.
Ensuring the safety of the AI system and user data by preventing misuse and reducing
risks, and compliance to safety principles were also highlighted in privacy and security
guidelines (O4,O6,O8,O11,O16). The security guidelines portrayed the need to develop
secure AI systems (O5, O6, O8) and to follow data security practices (O1, O10, O11,
O13, O16).

Professional services and software organizations and B2C organizations developed
ethical guidelines for fairness that aim to avoid bias and discrimination. According to the
B2C organizations, AI and machine learning utilization should eliminate discrimination

10 N. Balasubramaniam et al.

and prejudiceswhenmaking decisions and should function equally and fairly to everyone
(O10–O13). In professional services and software organizations, fairness is advocated
by fostering equality, diversity, and inclusiveness. The algorithms and underlying data
should be unbiased and are as representative and inclusive as possible (O1, O4, O6, O8).
From the organizations’ viewpoint, developing unbiased AI contributes to responsible
AI development.

Accountability ethical guidelines focused on assigning humans who will be
responsible for monitoring AI operations, such as AI learning, AI decision-making (O5,
O11,O16). The objective of the organizationswas to assign owners or partieswhowill be
responsible for their AI operations and algorithms. The respective owners or parties will
be contacted when concerns arise in the AI system, such as ethical questions and issues,
harms, and risks (O4, O3, O11, O14, O16). Further, a couple of professional services
organizations recommended establishing audit certifications, humanoversight forums, or
ethics communities to ensure accountabilitymechanisms throughout the system lifecycle
and to support project teams (O7, O9). In organizations, the accountability guidelines
are reckoned to closely relate to responsibility i.e., humans being responsible for the
decisions and operations of the AI system.

Professional services and public sector organizations provide contrasting
perspectives about reliability in AI development. For professional services and software
organizations, reliability is coupled with safety and quality standards that help in
assessing the risks, harms, and purpose of AI before its deployment (O5, O6). Whereas
reliability in the public sector organization centered on the use of reliable data in AI.
When the data or algorithms are unreliable or faulty, the organization corrects them to
match the purpose of the AI system (O16).

4.2 From Ethical Guidelines to Explainability Requirements

In this section, we first report why the organizations emphasized transparency and
explainability in their ethical guidelines. Then, we describe the four components of
explainability we identified from the transparency guidelines of the organizations. These
components are based on the explainability definition proposed by Chazette et al. [6].
Finally, we suggest a template for representing individual explainability requirements.

Reasons to be Transparent: The ethical guidelines of 10 organizations contained
reasons why to incorporate transparency in AI systems. Five organizations (O1, O4,
O5, O6, O11) portrayed building and maintaining users’ trust as a prominent reason.
Moreover, two organizations (O12, O13) highlighted that transparency supports security
inAI systems.OrganizationO2emphasized that being transparent helps in differentiating
the actual AI decisions and AI recommendations. Furthermore, Organization O5
mentioned that transparency paves the way to mitigate unfairness and to gain more
users’ trust. The other reasons to develop transparent AI systems were to assess the
impact of AI systems on society and to make AI systems available for assessment and
scrutiny (O7, O14).

Figure 1 shows the components of explainability that can be used when defining
explainability requirements of AI systems. The purpose of these components is to give
a structured overview of what explainability can mean. The four components can also
be summarized with the following questions:

Transparency and Explainability of AI Systems 11

• Addressees - To whom to explain?
• Aspects - What to explain?
• Contexts - In what kind of situation to explain?
• Explainers - Who explains?

Figure 1 also contains concrete examples what these explainability components can
be in practice. These examples have been identified from the ethical guidelines of the
organizations.

Fig. 1. A model of explainability components

Addressees: The transparency guidelines covered a wide range of addressees to whom
the AI or the different aspects of AI should be explained. Seven organizations (O1,
O2, O6, O7, O13, O14, O15) highlighted that their AI should be explained and clearly
communicated to their customers. Likewise, the explanations ofAI systemswere targeted
to their users in O3, O5, O6, O11. According to the transparency guidelines of the
organization O14, partners and stakeholders are also addressees of their AI systems.
Besides, Organization O1 mentioned employees as their addressees, and Organization
O5 narrowed the addressees down to developers of the AI systems.

12 N. Balasubramaniam et al.

Aspects: The key aspect that needs to be explainable is the purpose of AI systems
(O6, O11). The intended purpose of the system should be communicated to the people
who could be directly or indirectly impacted by the system (O11). Particularly, the
addressee(s) should know how and why the organization is utilizing AI (O5, O13).
Further, the role and capabilities of AI (O2, O3, O6, O11) need to be explained, so that
addressees can see when AI makes the actual decision and when it only supports people
in making decisions with recommendations.

Further, four organizations (O4, O6, O11, O15) mentioned to explain the inputs and
outputs of the systems, such as inputs and outputs of the algorithms, decisions of AI
systems. The organization O5 indicated to explain the behavior of the AI system which
encompasses the working principles of the system (O4). In addition, algorithms and the
inner workings of AI models are explained to the target addressees (O3, O15).

Five organizations (O2, O3, O12, O13, O15) highlighted that it is vital to explain the
data used in AI systems. Specifically, the data used for teaching, developing, and testing
the AI models, and the information about where and how the data is utilized should be
explainable. Nevertheless, the accuracy of the data on which the AI is based should be
included when explaining the data. A couple of organizations (O5, O6) indicated that
the limitations of the AI systems as an aspect that needs to be explained.

Contexts: Apart from what to explain (aspects) and to whom to explain (addressees),
the guidelines also mentioned in what kind of situations to explain i.e., the contexts of
explanations. First, the situation when explanations are needed is when addressees are
using the AI system (O2, O13, O14, O15). Next, developers would need explanations in
the context of building the AI system (O4) and testing the AI system (O15). According
to the organization O4, the situation where the explanations could play a supporting role
is when auditing the AI system.

Explainers: The guidelines of two organizations (O8, O9) referred to the explainer of
the AI systems. Regarding the explainer (i.e., who explains), Organization O8 suggested
developing AI that can explain itself. Moreover, developing explainability tools for
providing explanations of AI systems was proposed by Organization O9. But they did
not mention any concrete definition or examples of explainability tools.

The components of the explainability requirement can also be presented as a simple
sentence (Fig. 2). The purpose of this template is to assist practitioners to represent
individual explainability requirements in a structured and consistent way. This simple
template is based on the template that is used for defining functional requirements as
user stories in agile software development. The template suggested by Cohn [9] is the
following: As a <type of user>, I want <capability> so that <business value>.

As a <type of addressee>, I want to get explanation(s) on
an <aspect> of a <system> from an <explainer> in a <context>.

Fig. 2. A template for representing individual explainability requirements

Transparency and Explainability of AI Systems 13

Herewe give two high-level examples of explainability requirements based on Fig. 2.

• “As a user, I want to get understandable explanation(s) on the behavior of the AI
system from the system, when I’m using it”

• “As a developer, I want to get explanation(s) on the algorithms of the AI system from
an explainability tool, when I’m testing it”

These high-level examples of explainability requirements aim to show that different
addressees may need different types and levels of explanations. For example, when
debugging the system, developers are likely to need more detailed explanations of AI
behavior than users. Users do not necessarily want to understand the exact underlying
algorithm and inner workings of the AI model.

In their conceptual analysis of explainability, Köhl et al. also suggest that different
addressees need different, context-sensitive explanations to be able to understand the
relevant aspects of a particular system [22]. They also remark that an explanation for
an engineer may not explain anything to a user. Furthermore, they mention that the
explainer could be even a human expert.

4.3 Quality Requirements Related to Transparency and Explainability

The analysis of the ethical guidelines exhibited that transparency and explainability
associates to several other quality requirements. Figure 3 presents the nine quality
requirements that are related to transparency and explainability.

Fig. 3. Quality requirements related to transparency and explainability + Helps; – Conflicts

According to the organizations, understandability contributes to the development
of transparency and explainability of AI systems. The transparency guidelines covered
three details when addressing the importance of understandability, they are 1) to assure
that people understand the methods of using AI and the behavior of the AI system (O5,
O12), 2) to communicate in a clear and understandable way on where, why, and how AI
has been utilized (O15), and 3) to ensure people understand the difference between actual

14 N. Balasubramaniam et al.

AI decisions and when AI only supports in making the decisions with recommendations
(O2). Thus, understandability supports explainability and transparency by ensuring the
utilization of AI is conveyed to people clearly and in necessary detail. Traceability in
transparency guidelines accentuates the importance of tracing the decisions of the AI
systems (O2, O12). Organization O12 also mentioned that it is important to trace the
data used in the AI decision-making process to satisfy transparency.

The transparency and explainability of AI systems can also assist in building
trustworthiness (O1, O4, O5, O11). Prioritizing transparency when designing and
building AI systems, and explaining the system to those who are directly or indirectly
affected is crucial in building andmaintaining trust. Furthermore, two organizations (O7,
O13) highlighted privacy in their transparency guidelines. Ensuring transparency can
also raise potential tensionswith privacy (O7).Moreover, auditability in the transparency
guideline suggested that it is vital to build AI systems that are ready for auditing (O4).
Organization O5 indicated that transparency also assists in ensuring fairness in AI
systems. In addition to the relationships shown in Fig. 3, we identified security, integrity,
interpretability, intelligibility, and accuracy in the transparency guidelines, but their
relationship with transparency and explainability is not clearly stated in the guidelines.

5 Discussion

5.1 Transparency and Explainability Guidelines in Practice

Nearly all the organizations of this study pointed out the importance of transparency
and explainability in their ethical guidelines of AI systems. There were only two
organizations out of sixteen that did not emphasize transparency. The results of this
paper support the findings of our previous study that were based on the analysis of
ethical guidelines in three organizations [3]. The findings of our previous analysis were
preliminary and they suggested that transparency, explainability, fairness, and privacy
can be critical requirements of AI systems [3]. Three other papers [6–8] also report
transparency and explainability as the important quality requirements for developing AI
systems.

Thirteen organizations of this study defined explainability as a key part of
transparency in their ethical guidelines. Similarly, the studies of Chazette et al. [7]
and Chazette and Schneider [8] on explainability indicate that integrating explanations
in systems enhances transparency. According to Chazette et al. [7], it can, however,
be difficult to define and understand the quality aspect of transparency [7]. The
analysis of the ethical guidelines also indicates that it can be difficult to make a clear
distinction between transparency and explainability in practice. Nevertheless, providing
explanations of AI systems supports fostering transparency.

The prime goal of the organizations to incorporate transparency and explainability
in AI systems was to build and maintain trustworthiness. Two studies [6, 15] also
report that explainability supports in developing transparent and trustworthy AI
systems. Furthermore, Zieni and Heckel [26] suggest that delineating and implementing
transparency requirements can support in gaining users’ trust. According to the studies
of Cysneiros et al. [13], and Habibullah and Horkoff [18], trust as a quality requirement
plays a vital role in the development of autonomous systems [13] and machine learning
systems [18].

Transparency and Explainability of AI Systems 15

Based on the definition of explainability proposed by Chazette et al. [6] and
the analysis of the ethical guidelines, we suggest four important components to be
covered in explainability requirements. These components of explainability are 1)
to whom to explain (addressee), 2) what to explain (aspect), 3) in what kind of
situation to explain (context), and 4) who explains (explainer). The ethical guidelines
of the organizations included a considerable number of concrete examples what these
components can be in practice.We believe that these components and concrete examples
can support practitioners in understanding how to define explainability requirements in
AI projects. Next, we discuss these concrete examples of addressees, aspects, contexts,
and explainers.

The analysis of the ethical guidelines revealed that the organizations consider
customers and users as key addressees that need explanations. Developers, partners,
and stakeholders were also mentioned as addressees who require explanations of AI
systems. According to Chazette et al. [6], understanding the addressees of the system
was raised as a key factor that impacts the success of explainability.

The ethical guidelines of the organizations contained a rather large number of aspects
that need to be explained to addressees. For example, the explanations should cover role,
capabilities, and behavior of the AI system. In addition, inputs, outputs, algorithms, and
data utilized in the AI system are aspects that need to be explained. Köhl et al. [22] point
out that explaining aspects of AI system are beneficial for their addressees to understand
the system. Subsequently, Chazette et al. [6] highlight aspects that need explanations are
processes of reasoning, behavior, inner logic, decision, and intentions of the AI systems.
Furthermore, the ethical guidelines of the organizations pointed out that it is important
to describe the purpose and limitations of the AI system. It can be possible to identify
positive impacts and negative consequences when explaining the purpose and limitations
of the AI system.

The results show that the different contexts of explanations (i.e., in what kind of
situations to explain) are: when using, building, testing, and auditing the AI system.
Köhl et al. [22] and Chazette et al. [6] highlighted that the context-sensitive explanations
support target groups receive intended explanations. Therefore, the context in which the
explanations are provided can assist delineating what to explain (aspects). In our study,
AI that explains itself was represented as the explainer of the system. Similarly, Chazette
et al. [6] mentioned that explainers could be a system or parts of the system that provide
information to their target groups.

One interesting result from the analysis of the ethical guidelines was the
relationship of transparency and explainability with other quality requirements, such
as understandability, trust, traceability, auditability, and fairness. For instance, the
understandability quality aspect focused on explaining theAI utilization and behavior of
the system transparently to the addressees. The addressees should also understand when
the system makes a decision, and when it provides only recommendations. Chazette
et al. [6] also report understandability as a crucial quality requirement that positively
impacts explainability and transparency and enhances the user experience.

Further, the guidelines exhibited the association to fairness, where ensuring
transparency and explainability helps in mitigating unfairness. Various studies [6, 18,
19] point out fairness as important quality requirement of machine learning [18, 19] and
explainable systems [6]. In our study, interpretability, integrity, and auditability were

16 N. Balasubramaniam et al.

also highlighted in the transparency and explainability guidelines. Similarly, Habibullah
and Horkoff [18] identified interpretability and integrity as popular quality requirements
of AI systems in industries, and Chazette et al. [6] report that explanations support
the auditability requirement of the system. In addition, quality requirements such as,
accuracy, traceability, privacy and security were emphasized in the ethical guidelines.
In the literature [6, 18, 19], all these four quality requirements are considered to be
essential when building AI systems.

5.2 Threats to Validity

Generalizability. Our study focused on the ethical guidelines of AI published by
the 16 organizations. However, the ethical guidelines do not necessarily reflect what
is happening in these organizations. Nevertheless, we think the guidelines contain
important knowledge that should be considered when developing transparent and
explainable AI systems. Therefore, we believe that organizations can utilize the results
of this study to gain an overview and to understand the components that can help defining
explainability in AI systems development.

Majority of the organizations of this study were Finnish or Finland-based
international companies, and only three out of the sixteen organizations were global.
When we compared the ethical guidelines of the global organizations with the ethical
guidelines of the other organizations, therewere no significant differences between them.

Reliability. Researcher bias might have influenced the data analysis process. To avoid
misinterpretation and bias, the coding process was done by two researchers separately.
The high-level categorization of the organizations was also reviewed by a third senior
researcher who is also one of the authors of this paper.

The organizations selection strategy resulted in some limitations. We selected
organizations that have published their ethical guidelines of AI publicly in Finland.
Hence, may be the smaller number of public sector organizations in our study. However,
the focus of our study was on transparency and explainability, so we did not make
conclusions based on the categories of the organizations.

6 Conclusions

The goal of our study was to investigate what ethical guidelines organizations have
defined for the development of transparent and explainable AI systems. Our study shows
that explainability is tightly coupled to transparency and trustworthiness of AI systems.
This leads to the conclusion that the systematic definition of explainability requirements
is a crucial step in the development of transparent and trustworthy AI systems.

In this paper, we propose a model of explainability components that can facilitate to
elicit, negotiate, and validate explainability requirements of AI systems. The purpose of
our model is to assist practitioners to elaborate four important questions 1) to whom to
explain, 2) what to explain, 3) in what kind of situation to explain, and 4) who explains.
The paper also proposes a simple template for representing explainability requirements
in a structured and consistent way.

Transparency and Explainability of AI Systems 17

One important direction in our future research is to performcase studies to understand
how transparency and explainability requirements are defined inAI projects.We also aim
to investigate how practitioners implement ethical guidelines in the development of AI
systems. In addition, we are planning to conduct action research studies to explore how
the model of explainability components and the template for representing explainability
requirements can be applied in AI projects. Our long-term plan is to investigate how
explainability requirements can be used in the testing of AI systems.

References

1. Abdollahi, B., Nasraoui, O.: Transparency in fair machine learning: the case of explainable
recommender systems. In: Zhou, J., Chen, F. (eds.) Human and Machine Learning. HIS,
pp. 21–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90403-0_2

2. Ahmad, K., Bano, M., Abdelrazek, M., Arora, C., Grundy, J.: What’s up with requirements
engineering for artificial intelligent systems? In: International Requirements Engineering
Conference, pp. 1–12 (2021)

3. Balasubramaniam, N., Kauppinen, M., Kujala, S., Hiekkanen, K.: Ethical guidelines for
solving ethical issues and developing AI systems. In:Morisio,M., Torchiano,M., Jedlitschka,
A. (eds.) PROFES 2020. LNCS, vol. 12562, pp. 331–346. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-64148-1_21

4. Charmaz, K.: Constructing Grounded Theory, 2nd edn. SAGE Publications Inc., Thousand
Oaks (2014)

5. Chazette, L.: Mitigating challenges in the elicitation and analysis of transparency
requirements. In: International Requirements Engineering Conference, pp. 470–475 (2019)

6. Chazette, L., Brunotte, W., Speith, T.: Exploring explainability: a definition, a model, and a
knowledge catalogue. In: International Requirements Engineering Conference, pp. 197–208
(2021)

7. Chazette, L., Karras, O., Schneider, K.: Do end-users want explanations? Analyzing the role
of explainability as an emerging aspect of non-functional requirements. In: International
Requirements Engineering Conference, pp. 223–233 (2019)

8. Chazette, L., Schneider, K.: Explainability as a non-functional requirement: challenges and
recommendations. Requirements Eng. 25(4), 493–514 (2020). https://doi.org/10.1007/s00
766-020-00333-1

9. Cohn, M.: Agile Estimating and Planning. Prentice Hall, Upper Saddle River (2006)
10. Corbin, J., Strauss, A.: Basics of Qualitative Research, 4th edn. SAGE, ThousandOaks (2015)
11. Cysneiros, L.M.: Using i* to elicit and model transparency in the presence of other non-

functional requirements: a position paper. In: iStar: Citeseer, pp. 19–24 (2013)
12. Cysneiros, L., do Prado, J.: Non-functional requirements orienting the development of

socially responsible software. In: Nurcan, S., Reinhartz, I., Soffer, P., Zdravkovic, J. (eds.)
BPMDS/EMMSAD - 2020. LNBIP, vol. 387, pp. 335–342. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-49418-6_23

13. Cysneiros, L.M., Raffi, M., Sampaio do Prado Leite, J.C.: Software transparency as a key
requirement for self-driving cars. In: International Requirements Engineering Conference,
pp. 382–387 (2018)

14. do Prado Leite, J.C.S., Cappelli, C.: Software transparency. Business Inf. Syst. Eng. 2(3),
127–139 (2010)

15. Drobotowicz, K., Kauppinen, M., Kujala, S.: Trustworthy AI services in the public sector:
what are citizens saying about it? In: Requirements Engineering: Foundation for Software
Quality, pp. 99–115 (2021)

https://doi.org/10.1007/978-3-319-90403-0_2
https://doi.org/10.1007/978-3-030-64148-1_21
https://doi.org/10.1007/s00766-020-00333-1
https://doi.org/10.1007/978-3-030-49418-6_23

18 N. Balasubramaniam et al.

16. European Commission: Ethics Guidelines for Trustworthy AI. https://ec.europa.eu/futurium/
en/ai-alliance-consultation/guidelines. Accessed 24 Oct 2021

17. Guizzardi, R.,Amaral,G.,Guizzardi,G.,Mylopoulos, J.: Ethical requirements forAI systems.
In: Goutte, C., Zhu, X. (eds.) Canadian AI 2020. LNCS (LNAI), vol. 12109, pp. 251–256.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-47358-7_24

18. Habibullah, K.M., Horkoff, J.: Non-functional requirements for machine learning:
understanding current use and challenges in industry. In: International Requirements
Engineering Conference, pp. 13–23 (2021)

19. Horkoff, J.:Non-functional requirements formachine learning: challenges andnewdirections.
In: International Requirements Engineering Conference, pp. 386–391 (2019)

20. IEEE: Ethically Aligned Design, 1st edn. https://ethicsinaction.ieee.org/. Accessed 24 Oct
2021

21. Kwan, D., Cysneiros, L.M., do Prado Leite, J.C.S.: Towards Achieving Trust Through
Transparency and Ethics (Pre-Print) (2021). http://arxiv.org/abs/2107.02959. Accessed 30
Aug 2021

22. Köhl, M.A., Baum, K., Langer, M., Oster, D., Speith, T., Bohlender, D.: Explainability
as a non-functional requirement. In: International Requirements Engineering Conference,
pp. 363–368 (2019)

23. Lepri, B., Oliver, N., Letouzé, E., Pentland, A., Vinck, P.: Fair, transparent, and accountable
algorithmic decision-making processes. Philos. Technol. 31(4), 611–627 (2018)

24. Paech, B., Schneider, K.: How do users talk about software? Searching for common ground.
In:Workshop onEthics inRequirements EngineeringResearch andPractice, pp. 11–14 (2020)

25. SIIA (Software and Information Industry Association): Ethical Principles for Artificial
Intelligence and Data Analytics, pp. 1–25 (2017)

26. Zieni, B., Heckel, R.: TEM: a transparency engineering methodology enabling users’ trust
judgement. In: International Requirements Engineering Conference, pp. 94–105 (2021)

https://ec.europa.eu/futurium/en/ai-alliance-consultation/guidelines
https://doi.org/10.1007/978-3-030-47358-7_24
https://ethicsinaction.ieee.org/
http://arxiv.org/abs/2107.02959

Requirements Engineering for Artificial
Intelligence: What Is a Requirements

Specification for an Artificial Intelligence?

Daniel M. Berry(B)

Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada
dberry@uwaterloo.ca

https://cs.uwaterloo.ca/∼dberry/

Abstract. Context: This article concerns requirements for an artificial intelli-
gence (AI) that does a non-algorithmic task that requires real intelligence. Prob-
lem: The literature and practice of AI development does not clarify what is a
requirements specification (RS) of an AI that allows determining whether an
implementation of the AI is correct. Principal ideas: This article shows how
(1) measures used to evaluate an AI, (2) criteria for acceptable values of these
measures, and (3) information about the AI’s context that inform the criteria and
tradeoffs in these measures, collectively constitute an RS of the AI. Contribu-
tion: This article shows two related examples of how such an RS can be used and
lists some open questions that will be the subject of future work.

Keywords: Recall and precision · Empirical acceptability criteria · Tradeoff

1 Introduction: Background and Some Related Work

The desire is to develop an artificial intelligence (AI)1 that does a non-algorithmic task
that requires real intelligence (RI), i.e., from a human, e.g., to recognize a stop sign in
an image. In general, a task is to find correct answers in a space of answers, some of
which are correct and the rest of which are incorrect. This AI might be

– a classical AI, which is an algorithmic attempt to simulate a human’s thinking as E2

does the task, perhaps with the help of logic, or
– a learned machine (LM)3, which is the result of an instance of machine learning

(ML) or deep learning, whether the LM is taught, self-taught, or both with relevant
real-world (RW) data.

1 Glossary of Non-Standard Acronyms:
HAP humanly achievable precision RI real intelligence
HAR humanly achievable recall RW real world
LM learned machine ZJVF Zave–Jackson Validation Formula.

2 “E”, “em”, and “er” are gender non-specific third-person singular pronouns in subjective,
objective, and possessive forms, respectively.

3 a.k.a.“ML component (MLC)” [16].

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 19–25, 2022.
https://doi.org/10.1007/978-3-030-98464-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_2&domain=pdf
http://orcid.org/0000-0002-6817-9081
https://doi.org/10.1007/978-3-030-98464-9_2

20 D. M. Berry

This article uses the term “an AI” to mean any of these possibilities.
It has been my observation that no AI worker expects to be able to describe an

AI’s behavior completely, and everyone works around this limitation to describe an
AI’s behavior in imprecise terms, such as “usually”, “probably”, “approximately”, etc.,
giving only empirically determined probabilities. An AI is evaluated with vague4 mea-
sures, such as recall and precision. While there might be a simple specification of a task,
e.g., “Return only images that contain stop signs.”, there is no actionable specification
that identifies all and only images containing stop signs. Thus, there is no possibility of
a formal mathematical specification. And yet, it is desired to be able to say with some
certainty whether an implementation of an AI for a task does indeed do the task, at least
well enough [1,2,8–10,12,15–17,19–21].

Some have asked a key question that seems not to be satisfactorily answered in the
literature [1,11,21].

How does one write a requirements specification (RS), S, for an AI,A, for a task,
T , in a way that S can be used to decide whether A correctly implements T , by
asking whether A satisfies S?

If A is an LM, which is a data-centric system, S includes the RW data with which A
learned to do what it does [1,2,5,9,10].

2 Basic Approach

Fundamentally, an AI for a task must mimic humans who are using their RI to perform
the task [9,19, acknowledged Alessio Ferrari]. Lacking any complete specification of
the task, we accept that what humans do in practice, while trying to avoid bias [13], is
correct. The mimicry will rarely, if ever, be perfect. Thus, an RS for an AI doing the
task must describe this mimicry in a way that allowsmeasuring how well the AI mimics
humans [21]. These measures are vague and whether their values are satisfactory will
not have binary, “yes” or “no”, answers. Thus, the decision about how well the AI
mimics humans will be a matter of judgment. One such set of measures is recall and
precision, measures of the frequency of correctness w.r.t. a human-determined gold set.
See Sect. 7 about other measures.

The measures are not binary, and human performance is part of the decision. Thus,
the truth of the claims that the evaluation criteria are met and, thus, an RS is satisfied, is
not logical, but is empirical, just as with the Zave–Jackson Validation Formula (ZJVF),
which is about systems that interact with the RW [7,22].

As running examples, this article uses two different AIs, A1 and A2, for the task
of finding stop signs in images, in two different contexts that impose different needs on
the measures. Each AI is to classify each input image as to whether or not the image
has at least one stop sign, and is to output only those images that do. The difference
between A1 and A2 is in the way the outputs are used. A1 finds the images that contain

4 I.e., there is little certainty on what values of the vague measure are good and are bad. Even
when there is certainty that some value is good and another value is bad, there is no certainty
about what value in between is the boundary between the good and the bad.

RE for AI: What Is an RS for an AI? 21

stop signs in order to produce a set of images, with which to train A2 to identify stop
signs in real time for an autonomous vehicle (AV). This article describes these two
different AIs with the same base functionality to demonstrate the necessity of including
in an RS for the AI, the context of the AI’s use. The use of the same algorithm and the
same RW training data for these AIs would yield the same recall and precision values,
not distinguishing the AIs. Only the context distinguishes them and allows determining
whether the recall and precision values are acceptable for the AI’s use.

This article tries to show that any set of measures that is used to evaluate an AI in an
attempt to convince the AI’s stakeholders that the AI is what they want can be the basis
of an RS of the AI if added to this basis is all the information from the AI’s context that
the stakeholders need about the meanings of the values of the measures, to be able to
decide whether the AI is satisfactory for their needs.

In the rest of this paper, Sect. 3 reminds the reader about recall, precision, and sum-
marization. Section 4 describes the two AIs, A1 and A2, and how they may be evalu-
ated, allowing Sect. 5 to abstract to a general framework for an RS for an AI. Section 6
summarizes related work, and Sect. 7 points to future work.

3 Recall, Precision, Summarization

In the interest of conserving space in this article, this article merely reminds the reader
of the meanings of recall, precision, and summarization [3]5. For an AI, A

– recall (R): percentage of the correct answers that are returned by A,
– precision (P): percentage of the answers returned by A that are correct, and
– summarization (S): percentage of the input to A that are removed in the output that
A returns, i.e., (100%− (size(output)size(input))) (not the usual AI summarization).

Informally, the output of an AI is correct if it has all and only correct answers. R and P
are the two sides of “all and only”: R measures how close to all correct answers are in
the output. P measures how close to only correct answers are in the output. S measures
how much of the task that the AI is supposed to do is done and is not left to be done by
humans.

To clarify the measures, the importance of context, and the importance of sum-
marization, consider an application of one of the running examples, A1, to a set of
1000 images, of which 200 contain stop signs. Suppose that A1 returns 400 images of
which 190 truly have stop signs. Then, R = 190

200 = 95%, P = 190
400 = 47.5%, and

S = 100%− 400
1000 = 60%. These particular measure values are not bad, particularly if

the average human has poorer than 95% recall in the same task. Because the output of
A1 is being used to train A2, it is essential to get as close as possible to having all and
only images that contain stop signs. Because P = 47.5% means that more than half
of A1’s output is false positives, A1’s output must be manually searched, i.e., vetted,
to find them and remove them. The 60% summarization says that the manual vetting
search of the only 400 images returned by A1 will be considerably faster than a manual
search of the original 1000 images. Thus, the poor precision of 47.5% does not matter

5 It was a total surprise that the cited work was so applicable to RSs for AIs.

22 D. M. Berry

that much, because the tedium of a manual search has been cut by 60%. As observed
by a reviewer, any way of ensuring that vetting is fast is OK, e.g., that a human’s cor-
rectness decision for an item in the AI’s output is considerably faster than for an item
in the AI’s input [3].

4 Evaluation of A1 andA2 with the Measures

If we decide to use recall and precision as the basis for the evaluation and, thus, specifi-
cation of an AI, then the process of determining if an implementation meets the speci-
fication involves (1) evaluating and comparing the recall and precision of the AI and of
humans doing the same task and (2) using the context of the task, which is thus part of
the specification, as the basis for deciding what the comparison means.

For A1 and A2, each AI is evaluated by its R and P , with respect to a manually
developed gold set of classified images. Each human expert in the domain of the AI that
participates in developing the gold set computes er own R and P , and the averages of
their R and P values are

– the humanly achievable recall (HAR) and
– the humanly achievable precision (HAP)

of the stop-sign recognition task. Each of these HAR and HAP is probably about 99%,
a claim that must be verified empirically.

One possibility is to require an AI for a task to at least mimic people doing the same
task. Otherwise, especially for a life-critical task, we’re better off leaving the task to
humans [4]. So, one possibility for an AI for a task is

– for the AI’s R to achieve or beat the task’s HAR and
– for the AI’s P to achieve or beat the task’s HAP.

In the case of A2, achieving or beating HAR and HAP is acceptable; accidents are
inevitable, particularly if humans are doing the task. If A2’s R and P achieve or beat
the task’s HAR and HAP, thenA2will have no more accidents than does a human doing
the task. While no accident is good, society can accept an AI’s doing this task in this
circumstance.

For each of A1 and A2, achieving or beating the task’s HAR is essential. However,
for A1, a low P means that there are lots of false positives among the output of A1.
Fortunately, for A1’s specific context, these false positives are not really dangerous,
because there is plenty of time for vetting to find the false positives and remove them
from the output. However, lots of false positives among the output of A1 can discour-
age the human vetters. If S is high, then the vetters can be reminded that manually
vetting A1’s output is a lot faster than manually searching A1’s entire input. Unless
S is actually zero, A1 does reduce the manual searching that needs to be done. In a
vetting context, the R and P of the AI is determined only after the vetting, because
vetting does generally improve P . In the end, for A1, if the R after vetting beats the
task’s HAR, and the time to vet A1’s output is less than the time to do the classification
task manually, then A1 is considered to meet its requirements. After all, since the task

RE for AI: What Is an RS for an AI? 23

of A1 is essential, the alternative to running A1 is to do the task completely manually
at the cost of a lot more tedious, boring grunt work!

A2 runs in an AV, making vetting impossible. Therefore, low P means lots of
unnecessary stops by the AV, that could very well lead to dangerous rear-end colli-
sions! Therefore, for A2, low P is definitely not tolerable, and reusing A1 as A2 is not
acceptable. AnotherA2must be found that makes bothR and P high enough to achieve
or beat the task’s HAR and HAP [6].

This example has suggested one particular set of measures,—R, P , and S—and one
particular set of criteria—R’s and P ’s achieving HAR and HAP, possibly with the help
of vetting assisted by a high S. However, any set of measures and any criteria that make
sense to an AI’s stakeholders can be used as the RS for the AI.

5 What an RS for an AI Is

It is now clear that an RS for an AI needs more than just whatever measures M1, . . . ,
and Mn are used in evaluating the AI. The RS needs also criteria for acceptable values
of these measures, e.g.,

– minimum, or maximum, threshold values of M1, . . . , and Mn, which may be the
humanly achievable values of M1, . . . , and Mn for the AI’s task, with which to
compare the AI’sM1, . . . , and Mn values, respectively;

– the relative importance of the individual measuresM1, . . . , andMn to help evaluate
any needed tradeoff between M1, . . . , and Mn [6];

– in a case in which vetting is possible or required, (1) the S of the AI and (2) the
times for a human to decide the correctness of an item in the AI’s input and in the
AI’s output; and

– any data, e.g., training data, that are needed for the AI to function correctly.

Calculating the relative importance of, and thus the tradeoffs between, the measures
M1, . . . , andMn in the context of the AI requires a full understanding of the context in
which the AI is being used, including the cost of achieving a high value in each of the
individual measures M1, . . . , and Mn, in the context [6]. Non-functional requirements
will help define the context and decide the tradeoffs [8,21]. All of this information is
what requirements engineering for an AI must elicit or invent.

Finally, the decision of whether the AI satisfies its RS and meets its requirements
will involve engineering judgement and evaluation of tradeoffs in the AI’s context, and
will not be a simple “yes” versus “no” decision, because of all of the vague elements in
the RS. For examples:

1. What should be done if the value of any measure just misses its threshold while all
the others beat their thresholds?

2. How critical must the task be in order that an acceptable alternative to an AI that
does not satisfy its RS is doing the task manually?

3. How fast must vetting be for vetters to tolerate having to vet?

Questions like these can interact in an engineering way. For example, what should be
done in the situation in which the task is only fairly critical, the AI just misses achieving
the task’s thresholds, and vetting is somewhat slow?

24 D. M. Berry

6 Related Work

Most of the related work is cited at any point in this article where an observation or
contribution made by the work is mentioned.

Salay and Czarnecki observe that the ISO 26262 standard does not prescribe a sin-
gle complete specification for partially or fully autonomous vehicles, describing only
a collection of specifications for development processes and individual properties of
an AV [17]. They address the difficulties, including some mentioned in Sects. 1 and
2 of this article, with these specifications by providing improvements to each of the
specifications of the standard. The RS framework suggested by this article will need to
incorporate their improvements. See Sect. 7.

Kästner observes that the engineering of the RW training data to yield the desired
behavior corresponds to RE rather than implementation of the resulting LM [10].
Checking with the customer that the training data yields the correct behavior is vali-
dation. Thus, these training data end up being part of the specification of the LM.

There are methods to test whether an AI does what it is supposed to do [2,18,23].
Implicitly, whatever the test data test are the requirements of the AI.

There is a lot of somewhat related work in the proceedings of the AIRE Workshops
(https://ieeexplore.ieee.org/xpl/conhome/1803944/all-proceedings) and of the RE4AI
Workshops (http://ceur-ws.org/Vol-2584/, http://ceur-ws.org/Vol-2857/). Papers from
these workshops that address the topic of this article are cited in this article.

7 Future Work

Section 5 shows only a first attempt at abstracting from what was learned from the run-
ning example to a general framework for RSs for AIs. The details of this framework
changed a lot prior to submission of this article and as a result of the reviewers’ com-
ments. It is, thus, clear that the main future research will be to examine more AIs to
understand their measures, criteria, and contexts in the hopes of arriving at a statement
of the framework that works for all AIs. Nevertheless, the basic idea remains: The RS
for an AI consists of a description of all measures and criteria plus all information about
the AI’s context of use that are necessary for the AI’s stakeholders to decide if the AI
meets their needs.

Some specific topics include:

– Are there measures, other than recall and precision, on which an RS for an AI can
be based? Examples include (1) other measures calculable from a confusion matrix
[14] and (2) interrater agreement between the AI and some humans using their RI.

– What is the role in an RS of the representativeness of the data with which an LM is
trained in the RS of the LM [1,2,5,10]?

Acknowledgments. I benefited from voice and text discussions with Krzysztof Czarnecki,
Nancy Day, John DiMatteo, Alessio Ferrari, Vijay Ganesh, Andrea Herrmann, Hans-Martin
Heyn, Jeff Joyce, Davor Svetinovic, John Thistle, Richard Trefler, and Andreas Vogelsang and
his students and post-docs. I thank the anonymous reviewers for their suggestions, only of few of
which could be enacted due to the page limit.

https://ieeexplore.ieee.org/xpl/conhome/1803944/all-proceedings
http://ceur-ws.org/Vol-2584/
http://ceur-ws.org/Vol-2857/

RE for AI: What Is an RS for an AI? 25

References

1. Ahmad, K., et al.: What’s up with requirements engineering for artificial intelligence sys-
tems? In: IEEE 29th RE, pp. 1–12 (2021)

2. Ashmore, R., et al.: Assuring the machine learning lifecycle: desiderata, methods, and chal-
lenges. ACM Comp. Surv. 54(5), 111 (2021)

3. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empir.
Softw. Eng. 26(6), 1–77 (2021). https://doi.org/10.1007/s10664-021-09986-0

4. Berry, D.M., et al.: The case for dumb requirements engineering tools. In: REFSQ, pp. 211–
217 (2012)

5. Chuprina, T., et al.: Towards artefact-based requirements engineering for data-centric sys-
tems. In: REFSQ-JP 2021: RE4AI (2021)

6. DiMatteo, J., et al.: Requirements for monitoring inattention of the responsible human in an
autonomous vehicle: the recall and precision tradeoff. In: REFSQ-JP 2020: RE4AI (2020)

7. Hadar, I., Zamansky, A., Berry, D.M.: The inconsistency between theory and practice in
managing inconsistency in requirements engineering. Empir. Softw. Eng. 24(6), 3972–4005
(2019). https://doi.org/10.1007/s10664-019-09718-5

8. Horkoff, J.: Non-functional requirements for machine learning: challenges and new direc-
tions. In: IEEE 27th RE, pp. 386–391 (2019)

9. Hu, B.C., et al.: Towards requirements specification for machine-learned perception based
on human performance. In: IEEE 7th AIRE, pp. 48–51 (2020)

10. Kästner, C.: Machine learning is requirements engineering (2020). https://medium.com/
analytics-vidhya/machine-learning-is-requirements-engineering-8957aee55ef4

11. Kostova, B., et al.: On the interplay between requirements, engineering, and artificial intelli-
gence. In: REFSQ-JP 2020: RE4AI (2020)

12. Kress-Gazit, H., et al.: Formalizing and guaranteeing human-robot interaction. CACM 64(9),
78–84 (2021)

13. Mehrabi, N., et al.: A survey on bias and fairness in machine learning. ACM Comp. Surv.
54(6), 1–35 (2021)

14. Mishra, A.: Metrics to evaluate your machine learning algorithm (2018). https://towards
datascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234

15. Parnas, D.L.: The real risks of artificial intelligence. CACM 60(10), 27–31 (2017)
16. Rahimi, M., et al.: Toward requirements specification for machine-learned components. In:

IEEE 27th RE Workshops (REW), pp. 241–244 (2019)
17. Salay, R., Czarnecki, K.: Using machine learning safely in automotive software: an assess-

ment and adaption of software process requirements in ISO 26262 (2018). https://arxiv.org/
abs/1808.01614

18. Schmelzer, R.: How do you test AI systems? (2020). https://www.forbes.com/sites/
cognitiveworld/2020/01/03/how-do-you-test-ai-systems/

19. Seshia, S.A., et al.: Towards verified artificial intelligence (2020). https://arxiv.org/abs/1606.
08514v4

20. Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning and Pros-
pering in a Complex World. Basic Books, New York (2013)

21. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspectives from
data scientists. In: IEEE 27th RE Workshops (REW), pp. 245–251 (2019)

22. Zave, P., Jackson, M.: Four dark corners of requirements engineering. TOSEM 6(1), 1–30
(1997)

23. Zhang, J., Li, J.: Testing and verification of neural-network-based safety-critical control soft-
ware: a systematic literature review. IST 123, 106296 (2020)

https://doi.org/10.1007/s10664-021-09986-0
https://doi.org/10.1007/s10664-019-09718-5
https://medium.com/analytics-vidhya/machine-learning-is-requirements-engineering-8957aee55ef4
https://medium.com/analytics-vidhya/machine-learning-is-requirements-engineering-8957aee55ef4
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://towardsdatascience.com/metrics-to-evaluate-your-machine-learning-algorithm-f10ba6e38234
https://arxiv.org/abs/1808.01614
https://arxiv.org/abs/1808.01614
https://www.forbes.com/sites/cognitiveworld/2020/01/03/how-do-you-test-ai-systems/
https://www.forbes.com/sites/cognitiveworld/2020/01/03/how-do-you-test-ai-systems/
https://arxiv.org/abs/1606.08514v4
https://arxiv.org/abs/1606.08514v4

Quo Vadis, Explainability? – A Research
Roadmap for Explainability Engineering

Wasja Brunotte1,2(B), Larissa Chazette1, Verena Klös3, and Timo Speith4

1 Software Engineering Group, Leibniz University Hannover, Hannover, Germany
{wasja.brunotte,larissa.chazette}@inf.uni-hannover.de

2 Cluster of Excellence PhoenixD, Leibniz University Hannover, Hannover, Germany
3 Chair for Software and Embedded Systems Engineering, TU Berlin,

Berlin, Germany
verena.kloes@tu-berlin.de

4 Institute of Philosophy and Department of Computer Science, Saarland University,
Saarbrücken, Germany

timo.speith@uni-saarland.de

Abstract. [Context and motivation] In our modern society, software
systems are highly integrated into our daily life. Quality aspects such as
ethics, fairness, and transparency have been discussed as essential for
trustworthy software systems and explainability has been identified as
a means to achieve all of these three in systems. [Question/problem]
Like other quality aspects, explainability must be discovered and treated
during the design of those systems. Although explainability has become
a hot topic in several communities from different areas of knowledge,
there is only little research on systematic explainability engineering.
Yet, methods and techniques from requirements and software engineer-
ing would add a lot of value to the explainability research. [Principal
ideas/results] As a first step to explore this research landscape, we held
an interdisciplinary workshop to collect ideas from different communities
and to discuss open research questions. In a subsequent working group,
we further analyzed and structured the results of this workshop to iden-
tify the most important research questions. As a result, we now present
a research roadmap for explainable systems. [Contribution] With our
research roadmap we aim to advance the software and requirements engi-
neering methods and techniques for explainable systems and to attract
research on the most urgent open questions.

Keywords: Explainability · Explainability engineering · Explainable
artificial intelligence · Interpretability · Research roadmap · Software
engineering · Requirements engineering · Software transparency

1 Introduction

Modern software systems are becoming increasingly complex, and research con-
cerning them is achieving unprecedented degrees of system autonomy. As the

All authors have contributed equally to this paper and share the first authorship.

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 26–32, 2022.
https://doi.org/10.1007/978-3-030-98464-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-98464-9_3

Quo Vadis, Explainability? 27

number, complexity, and impact of such systems grow, speaking about the fea-
tures required for high software quality standards becomes more and more vital.

Quality aspects such as ethics, fairness, and transparency have been discussed
as essential for building trustworthy systems. Explainability has been identified
as a means to achieve all of these three aspects and as a way to calibrate users’
sentiments of trust in systems [6]. Essentially, explainability is a non-functional
requirement that focuses on disclosing information to a particular audience [8].
An explainable system is capable of providing explanations to an addressee (e.g.,
an end-user) about a specific aspect of the system (e.g., its reasoning process),
helping the addressee understand this aspect [5].

Like other quality aspects, explainability must be discovered and addressed
during system design. As requirements engineers, we “translate” these aspects
into requirements as part of a project. As simple as it sounds, we know that real-
ity proves to be otherwise. Quality requirements are often a challenge for practice,
and explainability is not different [7].

Communities from different areas of knowledge (e.g., machine learning, phi-
losophy, psychology, human-computer interaction, and cyber-physical systems)
have been researching explainability actively. However, the software engineering
(SE) and requirements engineering (RE) communities have not yet developed
specific methods and techniques to elicit, analyze, and document requirements
for explainability, nor to address it in practice [2].

We conducted an interdisciplinary workshop to foster research in this direc-
tion and to collect ideas from different communities, discussing open research
questions (RQs). We analyzed the results of this discussion and created a research
roadmap for explainability engineering. Our goals are to advance SE/RE meth-
ods and techniques for creating explainable systems, and to attract research on
the most pressing open questions. Our vision is to establish explainability as a
core property of future systems, which we believe is an essential requirement
given the increasing autonomy and impact of software systems.

During the workshop, we were able to identify several areas that need further
research. In this short paper, we will describe some of these areas, thus creating
a roadmap that should be followed in the quest for explainable systems.

2 State of the Art

Köhl et al. [8] examined explainability from the perspective of RE. Their core
contributions were to identify explainability as a non-functional requirement
and to propose a first operationalization of explainability in the RE context.
Chazette and Schneider [7] surveyed end-users to understand their requirements
concerning explainability. They identified challenges for explainability during
RE, and proposed recommendations to avoid a negative influence of explanations
on the usability of a system.

Based on these works, input from experts, and a literature survey, Chazette
et al. [6] proposed a more advanced operationalization of explainability. The focus
of their work, however, was to look at the impact of explainability on other qual-
ity aspects in a system. In addition, they framed their results in a model and a

28 W. Brunotte et al.

knowledge catalogue. Focusing on the interplay between explainability and pri-
vacy, Brunotte et al. [5] presented a research agenda to explore how explanations
might support users in understanding aspects of their online privacy.

Arrieta et al. [1] discuss concepts and taxonomies of, as well as opportu-
nities and challenges surrounding, explainable artificial intelligence (XAI). The
authors argue that there is a need for guidelines for implementing XAI sys-
tems and agree that the interaction of associated requirements and constraints
with other NFRs should be carefully analyzed. In this line of thought, Sadeghi
et al. [11] present a taxonomy of different demands for explanations along with
scenarios that describe specific situations in which a software system should pro-
vide an explanation. Their taxonomy can guide the requirements elicitation for
explanation capabilities of interactive intelligent systems.

Blumreiter et al. [2] present the first reference framework for building self-
explainable systems that can provide explanations about the system’s past,
present, and future behavior. Their framework leverages requirements- and
explainability models at run-time. While they present first examples for expla-
nation models, they raise many research questions, such as how to detect expla-
nation needs and how to generate explanations automatically. Ziesche et al.
[13] follow their framework and present some preliminary solutions for detecting
explanation needs. Schwammberger [12] presents an approach to generate expla-
nation models from formal models and proposes to use run-time RE for online
updates of the explanation models.

3 Explainability: Research Directions

To overcome the lack of methods and techniques for eliciting, analyzing, and
documenting explanation needs, as well as for engineering explainable systems,
we held an interdisciplinary workshop at the renowned 2021 IEEE 29th Interna-
tional Requirements Engineering Conference [3]. Together with researchers from
different disciplines, we discussed ideas and open research questions.

3.1 Details on the Workshop and Methodology

The workshop was a mixture of keynote lectures, paper presentations, and col-
laborative activities. With a steady attendance of about 20 participants and
lively discussions, the workshop was very successful. Notably, all participants
agreed that explainability engineering is an urgent topic for future systems.

On the first day of the workshop, we discussed impulses from current research
in an author panel after the first few paper presentations. Subsequently, we
deepened and extended the ideas from this discussion in a brainstorming session
with all workshop participants using a virtual board. The goal was to identify
problems and challenges to advance research in the area of explainability.

On the second day, we had the remaining paper presentations. All partic-
ipants were asked to contribute to the virtual board whenever they had new

Quo Vadis, Explainability? 29

insights. In the end, we discussed the identified research questions in small work-
ing groups. The results were several artifacts (e.g., a mind map, but also loose
notes) outlining research directions for future work on explainability.

After the workshop, the authors of this paper came together in several ses-
sions to further organize the created artifacts. We clustered the research ideas in a
mind map and extracted actionable questions. We further divided the extracted
questions into two broad categories: questions concerning fundamental topics
and those explicitly related to explainability engineering. This division is based
on the idea that some research questions are rather general (fundamental RQs),
while others primarily concern the actual engineering of explainable systems
(explainability engineering). The final mind map, constituting the basis for our
roadmap, can be found in our additional material [4].

3.2 Fundamental Research Questions

We have identified three categories of fundamental research questions: Defin-
ing and Measuring Explainability, Stakeholders and Contexts, and Goals and
Desiderata. We discuss these categories and some of the questions related to
them in the next paragraphs.

Defining and Measuring Explainability. One of the biggest problems related
to explainability is the lack of an actionable definition. While there is a lot of
research on explainability in different research domains, there is no common
definition of what it means to be explainable and how exactly explainability differs
from related concepts such as transparency, explicability, and traceability.

While Chazette et al. [6] and Köhl et al. [8] have taken the first steps in this
direction, we still need a more thorough overview of what types of explanations
exist, and we need to explore which ones are best suited for particular goals.
According to Chazette et al. [6] and Köhl et al. [8], explainability depends on
various factors, such as the explanation’s recipients, the behavior and context
of the system to explain, the entity explaining, and the explanation goal. These
insights indicate that a definition of explainability needs several parameters.

Finally, we need to establish standardized methods for measuring explain-
ability. Finding standards for explainability enables common quality models for
certification or auditing, as proposed by Langer et al. [9]. To achieve a common
understanding across different disciplines, we suggest continuing the discussion
in interdisciplinary workshops, working groups, or even projects.

As suggested above, a parameterized definition or a meta-model of explain-
ability could help define aspects of explainability that can be measured and
evaluated. Similar to the ISO models for safety, we envision a standard for
explainability that specifies ways of ensuring that a system is explainable.

Stakeholders and Contexts. Two major factors that influence the explana-
tions that a system must provide are the stakeholder and the context. For this
reason, it is crucial to know which stakeholders and contexts have to be considered
when designing the explainability faculties of a system.

30 W. Brunotte et al.

For both factors, some underlying questions are the same: which stakeholders
and contexts should be considered for explainability and how to adjust explana-
tions to fit a particular stakeholder and/or context. However, these factors also
interact: when there is time pressure, the explanation should be most likely less
detailed than when there is no time pressure. Consequently, the context deter-
mines the granularity of the explanation needed by a particular stakeholder.
These interactions need to be better explored in the future.

Goals and Desiderata. People want explanations with a particular goal or,
more general, desideratum in mind. A developer, for instance, may want to
receive explanations to debug a system. Since goals and desiderata directly deter-
mine the type and content of an explanation, we need to study how to adjust
explanations to fit certain goals. There are already studies on such goals (see, for
instance, [6] and [10]), but they need to be explored further.

As different goals of stakeholders can conflict, an important question is how
to balance them. Companies, for example, may wish to protect their trade secrets
about how particular systems operate while being legally obligated to disclose
parts of their workings. In this and many other cases, the challenge is finding out
how to design explanations that meet both goals and how to prioritize explana-
tion goals. Solutions to these questions might be context-dependent and, thus,
require dynamic decisions.

3.3 Explainability Engineering

The most prominent topics of discussion during our workshop were SE issues.
More specifically, they were concrete aspects that influence the software process
or the product itself. We grouped “explainability engineering” to highlight that
they require SE and RE knowledge.

Similar to usability engineering, which is a discipline that focuses on improv-
ing the usability of interactive systems, explainability engineering focuses on
improving the explainability of a system. It uses theories from computer science,
psychology, and philosophy to identify comprehension problems and explanation
needs that arise when interacting with a system. Subsequently, it helps mitigate
these problems at various stages of development. Overall, it is concerned with
the requirements related to explanations, design strategies, and testing.

Technical Aspects. Under technical aspects, we grouped research questions
that relate to concrete aspects of creating explanations, for instance, concern-
ing the requirements for explanation models, most urgently which information
should be presented and which information sources to take; but also which kind
of semantics we need and how to arrive at common semantics. Another critical
issue is how to design and implement explanations, whether they are on-demand
or adaptable to specific contexts and individual characteristics of stakeholders.

Technical challenges. were also discussed, such as how to present tailor-fitted
explanations at run-time. Here, we propose cooperating with and learning from
the models-at-run-time and the self-adaptive systems communities.

Quo Vadis, Explainability? 31

Design Process in RE/SE. The design process is also a pivotal aspect that
needs to be better researched. One of the biggest questions is whether the existing
RE and SE activities and methods are sufficient in the case of explainability. In
particular, it is essential to clarify whether we need new methods and activities
to elicit and model explainability requirements or whether we merely need to
enrich existing ones. To design explainable systems, we also need to investigate
how to operationalize explainability requirements.

As a first step, we propose to integrate explainability requirements into existing
RE/SE methods and activities (e.g., requirement models, user stories, design pro-
cesses) and to evaluate them on different case studies. The user-centered method-
ologies of the human-computer interaction community should also be explored,
particularly when it comes to interface-related aspects of explainability.

Quality Aspects and Testing. A crucial aspect of SE is quality assurance.
When designing explainable systems, we need to explore testing and verification
methods for explanations. How do we know that the explanation provided is satis-
factory and meets the specified requirements? Can we prove that the explanation
is helpful and understandable? As is already known, poor explanations can have
a negative impact on the system instead of contributing to the satisfaction of
specific quality requirements such as user satisfaction and usability [7].

For these critical research questions, we first need to define quality metrics
for explanations and then develop methods to evaluate them. Furthermore, we
need to investigate how explanations influence other quality aspects of software
systems, such as safety, security, or user satisfaction.

Costs and Resources. Clearly, the issue of cost (e.g., economic and effort)
needs to be investigated and mitigated, as it is one of the most considerable
constraints in the software industry. Here, we need to find answers to the question
of how difficult it is to deal with explainability requirements in terms of activities
and costs through various studies. Finally, the creation of artifacts was also
identified as a possible line of research. Such artifacts can reach from taxonomies
and catalogs to a database of examples of explanation cases (similar to [11]).

4 Conclusion

Qualities such as ethics, fairness, and transparency play a key role in modern
software systems, translating into an increasing need for the explainability of
systems. Currently, there is little research that addresses explainability engi-
neering systematically. To foster research in this direction, we present a research
roadmap for explainability engineering that highlights where research should
be heading in terms of fundamental research questions as well as more specific
questions concerning this field. With this roadmap paper, we aim to advance
SE/RE methods and techniques for creating explainable systems and to stimu-
late research on the most pressing open questions.

32 W. Brunotte et al.

Acknowledgments. This work was supported by the research initiative Mobilise
between the Technical University of Braunschweig and Leibniz University Hannover,
funded by the Ministry for Science and Culture of Lower Saxony and by the Deutsche
Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excel-
lence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID
390833453). Work on this paper was also funded by the Volkswagen Foundation grant
AZ 98514 “Explainable Intelligent Systems” (EIS) and by the DFG grant 389792660
as part of TRR 248.

References

1. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies,
opportunities and challenges toward responsible AI. Inf. Fusion 58, 82–115 (2020)

2. Blumreiter, M., et al.: Towards self-explainable cyber-physical systems. In:
ACM/IEEE 22nd International Conference on Model Driven Engineering Lan-
guages and Systems Companion (MODELS-C), pp. 543–548. IEEE (2019)

3. Brunotte, W., Chazette, L., Klös, V., Knauss, E., Speith, T., Vogelsang, A.: Wel-
come to the first international workshop on requirements engineering for explain-
able systems (RE4ES). In: IEEE 29th International Requirements Engineering
Conference Workshops (REW), pp. 157–158. IEEE (2021)

4. Brunotte, W., Chazette, L., Klös, V., Speith, T.: Supplementary Material for Vision
Paper “Quo Vadis, Explainability? - A Research Roadmap for Explainability Engi-
neering” (2022). https://doi.org/10.5281/zenodo.5902181

5. Brunotte, W., Chazette, L., Korte, K.: Can explanations support privacy aware-
ness? a research roadmap. In: IEEE 29th International Requirements Engineering
Conference Workshops (REW), pp. 176–180. IEEE (2021)

6. Chazette, L., Brunotte, W., Speith, T.: Exploring explainability: a definition, a
model, and a knowledge catalogue. In: IEEE 29th International Requirements Engi-
neering Conference (RE), pp. 197–208. IEEE (2021)

7. Chazette, L., Schneider, K.: Explainability as a non-functional requirement: chal-
lenges and recommendations. Requirements Eng. 25(4), 493–514 (2020). https://
doi.org/10.1007/s00766-020-00333-1

8. Köhl, M.A., Baum, K., Langer, M., Oster, D., Speith, T., Bohlender, D.: Explain-
ability as a non-functional requirement. In: IEEE 27th International Requirements
Engineering Conference (RE), pp. 363–368. IEEE (2019)

9. Langer, M., Baum, K., Hartmann, K., Hessel, S., Speith, T., Wahl, J.: Explain-
ability auditing for intelligent systems: a rationale for multi-disciplinary perspec-
tives. In: IEEE 29th International Requirements Engineering Conference Work-
shops (REW), pp. 164–168. IEEE (2021)

10. Langer, M., et al.: What do we want from explainable artificial intelligence (XAI)? -
a stakeholder perspective on XAI and a conceptual model guiding interdisciplinary
XAI research. Artif. Intell. 296, 103473 (2021)

11. Sadeghi, M., Klös, V., Vogelsang, A.: Cases for explainable software systems: char-
acteristics and examples. In: IEEE 29th International Requirements Engineering
Conference Workshops (REW), pp. 181–87. IEEE (2021)

12. Schwammberger, M.: A quest of self-explainability: when causal diagrams meet
autonomous urban traffic manoeuvres. In: IEEE 29th International Requirements
Engineering Conference Workshops (REW), pp. 195–199. IEEE (2021)

13. Ziesche, F., Klös, V., Glesner, S.: Anomaly detection and classification to enable
self-explainability of autonomous systems. In: 2021 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 1304–1309. IEEE (2021)

https://explainable-intelligent.systems
https://perspicuous-computing.science
https://doi.org/10.5281/zenodo.5902181
https://doi.org/10.1007/s00766-020-00333-1
https://doi.org/10.1007/s00766-020-00333-1

Machine Learning

How Effective Is Automated Trace Link
Recovery in Model-Driven Development?

Randell Rasiman , Fabiano Dalpiaz(B) , and Sergio España

Utrecht University, Utrecht, The Netherlands
{f.dalpiaz,s.espana}@uu.nl

Abstract. [Context and Motivation] Requirements Traceability (RT) aims to
follow and describe the lifecycle of a requirement. RT is employed either because
it is mandated, or because the product team perceives benefits. [Problem] RT
practices such as the establishment and maintenance of trace links are generally
carried out manually, thereby being prone to mistakes, vulnerable to changes,
time-consuming, and difficult to maintain. Automated tracing tools have been
proposed; yet, their adoption is low, often because of the limited evidence of their
effectiveness. We focus on vertical traceability that links artifacts having differ-
ent levels of abstraction. [Results] We design an automated tool for recovering
traces between JIRA issues (user stories and bugs) and revisions in a model-
driven development (MDD) context. Based on existing literature that uses process
and text-based data, we created 123 features to train a machine learning classi-
fier. This classifier was validated via three MDD industry datasets. For a trace
recommendation scenario, we obtained an average F2-score of 69% with the best
tested configuration. For an automated trace maintenance scenario, we obtained
an F0.5-score of 76%. [Contribution] Our findings provide insights on the effec-
tiveness of state-of-the-art trace link recovery techniques in an MDD context by
using real-world data from a large company in the field of low-code development.

Keywords: Requirement traceability · Trace link recovery · Model-driven
development · Low-code development · Machine learning

1 Introduction

Requirements Trace Link Recovery (RTR) is the process of establishing trace links
between a requirement and another trace artefact [13]. Many techniques for (require-
ments) trace link recovery propose semi-automatic processes that rely on information
retrieval (IR) [2]. The premise of IR-based approaches is that when two artefacts have
high a degree of textual similarity, they should most likely be traced [18]. Commonly
used IR algorithms include Vector Space Models, Latent Semantic Indexing, Jenson-
Shannon Models, and Latent Dirichlet Allocation [2,5].

More recently, developments from Machine Learning (ML) have been employed in
automatic Trace Link Recovery (TLR) [2]. ML approaches treat TLR as a classifica-
tion problem: the Cartesian product of the two trace artefact sets defines the space of
candidate trace links [11,16], a subset of which are valid links (manually defined by

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 35–51, 2022.
https://doi.org/10.1007/978-3-030-98464-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_4&domain=pdf
http://orcid.org/0000-0003-3869-280X
http://orcid.org/0000-0003-4480-3887
http://orcid.org/0000-0001-7343-4270
https://doi.org/10.1007/978-3-030-98464-9_4

36 R. Rasiman et al.

the domain experts). A ML classifier is tasked to build a model for predicting whether
unseen trace links are valid or invalid. This is achieved by representing the trace links as
a vector, derived from features. Most ML TLR approaches use similarity scores of IR-
based methods as features [11,16,23] and outperform IR-based TLR approaches [16].

However, in most of the studies, the classifiers are trained either using open-source
datasets from universities, or proprietary data regarding safety-critical systems, and this
entails an external validity concern [5]. Although using the same datasets is useful for
benchmarking and for comparing methods, it poses the risk that the new traceability
tools are being over-optimised for these specific datasets. To advance the current state-
of-the-art traceability tools, the research community has called for gaining feedback
from additional industrial datasets in a broad range of application domains [2,5].

In this paper, we aim to acquire new insights on automated RTR in a model-driven
development (MDD) context, a domain which has shown potential for RT integra-
tion [27]. Following the Design Science research methodology [26], we conduct a case
study at Mendix, a large-scale MDD-platform producer, and we develop a software tool
for automated RTR that focuses on vertical traceability [21], which allows for the auto-
mated recovery of trace links between artifacts at different abstraction levels. The main
contributions of this research are:

1. We provide new insights on the application of RTR in MDD, narrowing the gap
between academic research and industrial demands, and moving steps toward the
vision of ubiquitous requirements traceability [14].

2. To the best of our knowledge, this is the first study that experiments with the use of
Gradient Boosted Trees for RTR.

3. We evaluate the relative importance of four families of features for establishing trace
links between requirements (represented as JIRA issues) and model changes (com-
mit files generated by the Mendix Studio low-code development platform).

We follow the recommendations of context-driven research [6]: specifying working
assumptions based on a real-world context in order to attain practicality and scalability.
We do so by collaborating with Mendix, which allowed us to use their data and to obtain
rich insights on their development processes and the possible role of traceability.

This paper is structured as follows: Sect. 2 presents the background on requirements
traceability. Section 3 describes how MDD and requirements are supported with the
Mendix Studio platform within the Mendix company. Section 4 presents the construc-
tion of our automated RTR classifier. Section 5 shows the results, while Sect. 6 discusses
the threats to validity. Finally, Sect. 7 concludes and outlines future work.

2 Related Work on Automated RTR

RT practices are mandated by well-known standards such as CMM, ISO 9000, and IEEE
830-1998 [4,9]. Thus, organisations who aim to comply with such standards embrace
RT practices. These are expected to deliver benefits for project management and vis-
ibility, project maintenance, and verification & validation. Despite the clear benefits,
the practice itself is not evident. RT activities are found to be “time-consuming, tedious

How Effective Is Automated Trace Link Recovery in MDD? 37

and fallible” [25]. Even when conducted, manual tracing is favoured, leading to traces
which are error-prone, vulnerable to changes, and hard to maintain.

Information Retrieval. For this reason, a considerable amount of RT research focuses
on automating the task. Many of the proposed IR-based methods employ Vector Space
Models (VSM), which use the cosine distance to measure the semantic similarity
between documents. An alternative is the Jenson-Shannon Models (JSM), which con-
sider documents as a probabilistic distribution [1,8], and the Jenson-Shannon Diver-
gence as a measure of the semantic difference. There are two fundamental problems in
IR-methods. Synonymy refers to using different terms for the same concept (e.g., ‘draw-
ing’ and ‘illustration’), and this decreases the recall. Polysemy refers to using terms that
have multiple meanings (e.g. ‘fall’), and this decreases precision [10]. Latent Semantic
Indexing (LSI) aims to solve this problem by replacing the latent semantics (what terms
actually mean) to an implicit higher-order structure, called latent semantics. This latent
structure can then be used as feature set, which better reflects major associative data
patterns and ignores less important influences. An example of this approach is the work
by Port et al. [19]. Although other approaches have further improved performance, the
performance gain has flattened, and more recent works make use of machine learning.

Machine Learning. Most state-of-the-art techniques for RTR employ ML nowadays,
taking the field to new levels. ML approaches treat the TLR process as a classifica-
tion problem: the Cartesian product of the two trace artefact sets is calculated, and
the resulting elements represent candidate trace links [11,16]. A ML classifier learns
from sample data, which is manually traced, and the classifier is then used to predict
whether unseen couples of artefacts should be traced to one another. Most ML TLR
approaches use the similarity scores from IR-based methods as features [11,16,23],
although other features have been proposed. Besides feature representation, researchers
have also analysed which ML classification algorithms would perform best. Falessi et
al. [12] have compared multiple algorithms: decision trees, random forest, naı̈ve Bayes,
logistic regression, and bagging, with random forests yielding the best results.

Deep Learning. Recent advances in neural networks can also be employed in automated
TLR [15]. Although this an interesting direction with the potential of achieving excel-
lent results, neural networks are only suitable when large datasets are available. This is
not the case in many industrial situations, like the one described in this paper.

3 Case Study at Mendix

We conducted a case study at Mendix, the producer of the Mendix Studio Low-Code
Platform (MLCP). The MLCP employs MDD principles and allows creating software
by defining graphical models for the domain, business logic, and user interface [24]. We
study MLCP developers employed by Mendix, who are building applications with the
MLCP for Mendix itself. These developers follow the SCRUM development process.
Product Owners are responsible for managing and refining requirements, which are doc-
umented as JIRA issues and are added to the product backlog. The issues for the Sprint
Backlog are chosen by the MLCP development team. Each selected item is assigned to
one MCLP developer during a sprint, who is responsible for implementation.

38 R. Rasiman et al.

The implementation is broken down into several activities. First, the MCLP devel-
oper examines the JIRA issue to become familiar with it. Second, the MCLP devel-
oper opens the latest MLCP model, navigates to the relevant modules, and makes the
required changes. These changes are stored in a revision and are committed to the repos-
itory once they to fulfil the JIRA issue’s acceptance criteria. Each revision is supple-
mented with a log message, in which the MCLP developer outlines the changes he or
she made, as well as the JIRA issue ID for traceability purposes.

3.1 Studied Artefacts

We focus on tracing JIRA issues to committed revisions, because manual trace informa-
tion was available from some development teams who followed traceability practices.
Figure 1 shows the relationships among the trace artefacts.

Fig. 1. Model showing the relationships between JIRA issues and revisions

JIRA Issues. Several teams at Mendix use the widespread project management tool
Atlassian JIRA. In JIRA, project members define work items called issues, which
Mendix uses to document requirements. The following attributes are shared by all JIRA
issues: I1) a unique issue key serving as identifier, I2) a summary, used by Mendix to
document a user story written in the Connextra template, I3) a description, which fur-
ther explains the requirements alongside the acceptance criteria, I4) an assignee: the
person who is responsible for implementing the issue. Finally, each issue has three
date/time indicating when the issue was I5) created, I6) last updated, and I7) resolved.

Revisions. The MLCP, like any modern development environment, employs version
control. An adapted version of Apache Subversion is integrated into the MLCP, which
the developer can access through a GUI. Each revision contains: R1) revision-number,
a unique integer, R2) author, the email of the person who committed the revision, R3)
log, an optional field to write text, and R4) date, the date/time when the revision was
committed. Finally, each revision contains the changes made to the units, which are
stored as an element of an array that contains R5) unitID, R6) the status (either added,
deleted, or modified), R7) unitName: the name of that unit, R8) unitType: the category
of the unit (e.g., microflow or form), R9) module, the module where the unit is located.

3.2 Studied Datasets

We acquired data from three internal MLCP projects, produced by two development
teams. We refer to them as i) Service, ii) Data, and iii) Store. For each project, we used
a data export of one JIRA project and one MLCP repository. We analysed the availabil-
ity of manual traces (see Table 1). We distinguished between revisions that trace to a

How Effective Is Automated Trace Link Recovery in MDD? 39

single issue, to two or more issues, and to no issues. A large percentage of revisions is
untraced. This could be because the revision is too generic (e.g., creation of a branch), or
because the developer forgot about tracing. Also, the revisions were not always traced
to issue keys of the JIRA projects we acquired. This happens because multiple teams,
each with their own JIRA project, may operate on the same repository.

Table 1. Summary of the acquired project data

Dataset Service Data Store

Total JIRA issues 173 58 634

Total revisions 2,930 818 713

Revisions traced to 1 issue 1,462 (49.90%) 556 (67.97%) 202 (28.33%)

Revisions traced to 2+ issues 33 (1.13%) 26 (3.18%) 3 (0.42%)

Revisions traced to no issues 1,435 (48.98%) 236 (28.85%) 508 (71.25%)

3.3 Objective and Evaluation Scenarios

Our objective is to automate the MLCP developers’ tracing process, which is currently
manual. We adapt the two scenarios put forward by Rath et al. [23]: Trace Recommen-
dation and Trace Maintenance. Our automated artefact is evaluated for both scenarios
using a common traceability metric, the F-measure, which quantifies the harmonic mean
between precision and recall. However, in line with Berry’s recommendations [3], we
employ adjusted versions of the F-measure, as described below.

Trace Recommendation. MLCP developers use a GUI to commit changes to the remote
repository. When doing this, the developer outlines the changes made and writes an
issue key out of those in JIRA. Integrating a trace recommendation system can improve
this scenario (see Fig. 2): the issues that the developer may choose among can be filtered
based on the likelihood for that issue to be linked to the current revision. Only those
issues above a certain threshold are shown.

The only manual task left for the developer is to vet the trace links. It is cognitively
affordable and relatively fast since developers generally know which specific JIRA issue
they have implemented. This scenario requires a high level of recall, for valid traces
must be present in the list for a developer to vet it. Precision is less important because
developers can ignore invalid traces. Therefore, in this scenario, we evaluate the system
using the F2-measure, an F-measure variant favouring recall above precision.

Trace Maintenance. Not all the revisions are traced to a JIRA issue. As visible in the
last row of Table 1, between 28% and 71% of the revisions were not traced to issues.
Thus, maintenance is needed to recover traces for the untraced revisions, which leads to
the goal of the second scenario: an automated trace maintenance system. Such a system
would periodically recover traces that were forgotten by the developer, ultimately lead-
ing to a higher level of RT. No human intervention is foreseen to correct invalid traces,
so precision needs to be favoured above recall. Thus, we evaluate the system using the
F0.5-measure.

40 R. Rasiman et al.

Fig. 2. Mock-up of a trace recommendation system

4 Requirement Trace Link Classifier

To accommodate both scenarios, we present an ML classifier to classify the validity of
traces, based on the TRAIL framework [16]. Our classifier, which we call LCDTrace,
is publicly available as open source1, and a permanent copy of the version used in this
paper is part of our online appendix [22].

After describing the dataset the data available at Mendix for training, and how we
pre-processed it, we describe the feature engineering process, data rebalancing, and the
employed classification algorithms.

4.1 Data Description and Trace Construction

To train the ML classifier, we used the data from the Service, Data and Store datasets.

Revisions. The data was provided in text-format. We used Regular Expressions to trans-
form the data and to extract the issue key(s) from the log message and store it in a
distinct issue key column. After extraction, the issue key was removed from the log
message, and the log message was pre-processed using common pre-processing steps:
1) all words were lowercased, 2) all the interpunction was removed, 3) all numeric char-
acters were removed, 4) all sentences were tokenised with NLTK, 5) the corpus from
NLTK was used to eliminate all stop words, and 6) all remaining terms were stemmed
using the Porter Stemming Algorithm [20]. These activities resulted in a pre-processed
dataset that consists of (labels were defined in Sect. 3.1): R1 (Revision Number), R2
(Author), R3 (Log), R4 (Date), R7 (Unit Names), R8 (merge of log and unit names),
and associated JIRA key (a reference to I1).

JIRA Issues. The JIRA datasets were provided as delimited text files. Pre-processing
was carried out in the same manner as for the revisions. This led to a dataset that consists
of I1 (Issue key), I2 (Summary), I3 (Description), I4 (Assignee), I5 (Created date),

1 https://github.com/RELabUU/LCDTrace.

https://github.com/RELabUU/LCDTrace

How Effective Is Automated Trace Link Recovery in MDD? 41

I6 (Last updated date), I7 (Resolved date), plus one additional feature: I9 (JIRA All-
Natural Text): the union of I2 and I3.

Trace Link Construction. Because a classifier can only be trained using labelled data,
we discarded data that were not traced to issues. For the remaining data, we calculated
the Cartesian product between the JIRA project dataset and the repository dataset. Each
element is a candidate trace link whose validity was determined by comparing the issue
key to the revision’s related issue key. If the issue key was present, the trace link was
classified as valid; else, the trace link was classified as invalid. Also, we applied causal-
ity filtering to the trace links [23]: when a trace link had revision antecedent to the
creation of an issue, it was deemed invalid due to causality. The result is in Table 2.

Table 2. Valid and invalid traces before and after applying causal filtering to the project data

Dataset Causality filtering Total traces Invalid traces Valid traces

Service Before 258,635 258,215 (99.84%) 420 (0.16%)

After 89,233 88,813 (99.53%) 420 (0.47%)

Data Before 33,756 33,305 (98.66%) 451 (1.34%)

After 27,815 27,364 (98.38%) 451 (1.62%)

Store Before 129,970 129,884 (99.93%) 86 (0.07%)

After 33,627 33,541 (99.74%) 86 (0.26%)

4.2 Feature Engineering

The previously produced candidate trace links were then used for training the classifier.
For this, we had to represent the candidate trace links as a set of features. Based on
literature in the field, we engineered a total of 123 features grouped into four categories:
process-related, document statistics, information retrieval and query quality.

Process-Related. These four features build on Rath et al. [23]. F1, the first feature,
captures stakeholder information by indicating if the assignee of a JIRA issue is the
same person as the author of a revision. The remaining three features capture temporal
information. F2 is the difference between the date of revision (R4) and the date the issue
was created (I5), F3 is the difference between R4 and the date the issue was last updated
(I6), and F4 is the difference between R4 and the date the JIRA issue was resolved (I7).

Document Statistics. These features rely on the work of Mills et al. [16]: they gauge
document relevance and the information contained within the documents. Within this
category, seven metrics (hence, 7 features) are included:

– Total number of terms, calculated for the JIRA issue (F5) and the revision (F6).
– Total number of unique terms for the JIRA issue (F7) and the revision (F8).
– Overlap of terms between the JIRA issue and the revision. To calculate this metric,

the overlap of terms is divided by the set of terms that are compared to. This is done
in three ways, each leading to a feature: F9 divides the overlap of terms by the terms
in the JIRA issue, F10 divides is by the terms in the revision, and F11 divides it by
the union of the terms in the JIRA issue and in the revision.

42 R. Rasiman et al.

Information Retrieval. This feature set captures the semantic similarity between two
trace artefacts. We first apply VSM with TF-IDF weighting to transform the trace arte-
facts to a vector representation. Because we use TF-IDF weighting, the chosen corpus
used for weighting impacts the resulting vector. For instance, the term ‘want’ occurs
commonly in the JIRA summary, for Mendix developers put their user story in there.
However, it might be a rare term when considering all the terms in a JIRA issue. Since
we could not determine which corpus best represents the trace artefact, we opted to
explore multiple representations: we have constructed three issues vector representation
(I2: Summary, I3: Description, I9: Summary & Description) and three representations
for the revisions (R3: log message, R7: unit names, and R8: log & unit names). This
results in 9 distinct pairs for each trace link candidate, as shown in Table 3. The cosine
similarity of each pair was computed and utilised as a feature. Mills and Haiduc [17]
showed that the chosen trace direction (i.e., which artefact in the trace link is used as a
query) affect traceability performance. Thus, we calculated the cosine distance in either
direction, resulting in a total of 18 IR-features (F12–F29) in Table 3. We used Scikit-
learn for TF-IDF weighting and SciPy for calculating the cosine distance.

Table 3. TF-IDF combinations used for VSM

ID Revision artefact Issue artefact Features

1 Log message Summary F12–F13

2 Log message Description F14–F15

3 Log message JIRA all-natural text F16–F17

4 Unit names Summary F18–F19

5 Unit names Description F20–F21

6 Unit names JIRA all-natural text F22–F23

7 Revision all-natural text Summary F24–F25

8 Revision all-natural text Description F26–F27

9 Revision all-natural text JIRA all-natural text F28–F29

Query Quality. The quality of a query determines how well a query is expected to
retrieve relevant documents from a document collection. A high-quality query returns
the relevant document(s) towards the top of the results lists, whereas a low-quality query
returns them near the bottom of the list or not at all. It is important to differentiate
between high- and low-quality queries, when using IR-techniques for TLR. Do two
artefacts have a low cosine similarity because they are actually invalid, or is it because
the similarity was computed using a low-quality query?

Mills and Haiduc [17] devised metrics for measuring query quality (QQ). These QQ
metrics are organised into pre-retrieval and post-retrieval metrics. Pre-retrieval metrics
merely consider the properties of the query, whereas post-retrieval metrics also consider
the information captured by the list returned by the executed query. We focused on
implementing pre-retrieval QQ metrics in this study, evaluating three different aspects:

– Specificity refers the query’s ability to express the relevant documents and to distin-
guish them from irrelevant documents. Highly-specific queries contain terms which

How Effective Is Automated Trace Link Recovery in MDD? 43

are rare in the document collection, while lowly-specific queries contain common
terms. Highly specific queries are desired, for documents can be differentiated based
on the terms.

– Similarity refers to the degree to which the query is similar to the document col-
lection. Queries that are comparable to the collection suggest the existence of many
relevant documents, increasing the possibility that a relevant document is returned.

– Term relatedness refers to how often terms in the query co-occur in the document
collection. If query terms co-occur in the document collection as well, the query is
considered of high quality.

The computation of these metrics was executed for the six corpora mentioned in
the information retrieval paragraph (log message, unit names, revision all-natural text,
summary, description, and JIRA all-natural text), because the outcome of the metrics
depends on the corpus of which the query is a part. This resulted in a total of 102 QQ
features: F30–F131, listed in Table 4.

Table 4. Query quality features from the work by Mills and Haiduc [17]

Family Measure Metric Features

Query: Revision Query: JIRA

Specificity TF-IDF {Avg, Max, Std-Dev} F30–F38 F39–F47

TF-ICTF {Avg, Max, Std-Dev} F48–F56 F57–F65

Entropy {Avg, Med, Max, Std-Dev} F66–F77 F78–F89

Query Scope F90–F92 F93–F95

Kullback-Leiber divergence F96–F98 F99–F101

Similarity SCQ {Avg, Max, Sum} F102–F110 F111–F119

Relatedness PMI {Avg, Max} F120–F125 F126–F131

4.3 Data Rebalancing

In traceability settings, the training data is generally highly imbalanced because only a
few valid links exist [15,23], making classifier training problematic [23]. Table 2 shows
this occurs in our datasets too, with a percentage of valid links between 0.26% and
1.62%. The positive samples that the classifier would view are quite low, compared to
the negative ones. Thus, we applied four rebalancing strategies [16] to the training data:

1. None. There is no rebalancing method applied to the data.
2. Oversampling. The minority class is oversampled until it reaches the size of the

majority class, by applying SMOTE.
3. Undersampling. The majority class is randomly undersampled until it has the same

size as the minority class, by applying the random undersampling technique.
4. 5050. Oversampling via SMOTE is applied to the minority class with a sampling

strategy of 0.5. Then undersampling is applied to the majority class until the sizes
of both classes are equal.

44 R. Rasiman et al.

4.4 Classification Algorithms

We considered two state-of-the-art supervised ML algorithms for classifying trace links
as valid or invalid: Random Forests and Gradient Boosted Decision Trees. While the
former are shown to be the best RTR classifier in earlier research [16,23], Gradient
Boosted Decision Trees outperformed Random Forests in other domains [7,29]. To
implement the Random Forest algorithm, we used the framework of Scikit-learn. To
implement the Gradient Boosted Decision Trees we used two different frameworks:
XGBoost, and LightGBM. These frameworks differ in two major respects. The first
distinction is in the method of splitting. XGBoost splits the tree level-wise rather than
leaf-wise, whereas LightGBM splits the tree leaf-wise. The second difference is how
best split value is determined. XGBoost uses a histogram-based algorithm, which splits
a feature and its data points into discrete bins, which are used to find the best split value.
LightGBM uses a subset of the training data rather than the entire training dataset. Its
sampling technique uses gradients, resulting in significantly faster training times.

5 Results

We performed an evaluation on the different combinations of the rebalancing strategies
of Sect. 4.3 and of the classification algorithms of Sect. 4.4. This evaluation was con-
ducted for each dataset independently by dividing each dataset into a training (80%)
and testing (20%) sets using stratified sampling, so that the two sets have a comparable
proportion of positives and negatives. Due to insufficient memory, we use only 4 out of
the 12 relatedness-based QQ features listed in Table 4, leading to a total of 123 features.

To mitigate randomisation effects, we repeated the evaluation (training-testing set
splitting, classifier training on the 80%, testing on the 20%) for 25 times, then we aver-
aged the outputs, leading to the results we show in Sect. 5.1. In addition to the quanti-
tative results, we discuss the relative importance of the features in Sect. 5.2.

5.1 Quantitative Results

Table 5 shows the precision, the recall, and the F0.5- and F2-measure for the results,
which were obtained using non-normalised data. The table compares the three algo-
rithms (Random Forests, XGBoost, LightGBM) that are visualised as macro-columns;
the results for each project are presented in a different set of rows. Per project, the
results are shown by showing, one per line, the four rebalancing strategies (none, over-
sampling, undersampling, 5050). The results for the normalised data were found to be
slightly worse, and are therefore only included in the online appendix.

For the trace recommendation scenario, XGBoost (x = 56.25) has the highest
mean F2 across all rebalancing strategies. LightGBM follows (x = 55.16), and Ran-
dom Forests are the least effective (x = 42.24). This is interesting, for Random
Forests have consistently been found to be the best performing algorithm in prior RTR
research [16,23]. This finding indicates that, similar to other tasks [7,29], Gradient
Boosted Decision Trees can outperform Random Forests in RTR-tasks too. A similar
result holds for the trace maintenance scenario (F0.5), where XGBoost (x = 55.45) per-
forms best, and LightGBM achieves results that are as low as those of random forests.

How Effective Is Automated Trace Link Recovery in MDD? 45

Table 5. Mean precision, recall, and F0.5- (trace maintenance scenario) and F2-measure (trace
recommendation) across all 3 datasets. The green-coloured cells indicate the best results per each
dataset. For accuracy and readability, the table shows F-scores in percentage.

Proj. Rebal. Random Forests XGBoost LightGBM

Se
rv

ic
e

None 94.96 19.71 53.13 23.37 81.77 48.86 71.89 53.07 64.56 48.62 60.45 51.07

Over 5.90 95.52 7.26 23.61 6.98 96.33 8.56 27.01 6.59 97.62 8.10 25.92

Under 69.12 44.67 62.17 48.01 70.23 60.24 67.89 61.94 60.02 65.71 61.02 64.42

5050 59.59 54.33 58.41 55.27 59.62 69.86 61.37 67.47 53.49 72.10 56.34 67.31

D
at

a

None 90.34 29.78 63.91 34.35 84.87 62.65 79.21 66.09 82.50 61.75 77.24 64.98

Over 16.42 92.04 19.65 47.84 20.28 94.44 24.05 54.50 20.01 94.11 23.74 53.99

Under 75.52 48.33 67.78 52.03 77.08 69.27 75.34 70.68 70.67 69.96 70.47 70.05

5050 62.33 54.51 60.52 55.86 65.96 74.98 67.54 72.94 63.22 76.26 65.42 73.19

St
or

e

None 93.13 42.12 73.66 46.99 86.56 59.06 78.77 62.85 46.78 47.53 45.51 45.27

Over 4.31 90.35 5.32 17.96 2.51 90.35 3.12 11.23 2.98 92.47 3.70 13.17

Under 72.61 44.47 63.21 47.70 70.51 62.59 68.02 63.42 69.43 65.18 68.18 65.67

5050 65.31 52.00 61.58 53.84 58.84 65.88 59.63 63.73 55.34 71.06 57.68 66.89

M
ac

ro
-A

vg

None 92.81 30.54 63.57 34.90 84.40 56.86 76.62 60.67 64.61 52.63 61.07 53.77

Over 8.88 92.64 10.74 29.80 9.92 93.71 11.91 30.91 9.86 94.73 11.85 31.03

Under 72.42 45.82 64.39 49.25 72.61 64.03 70.42 65.35 66.71 66.95 66.56 66.71

5050 62.41 53.61 60.17 54.99 61.47 70.24 62.85 68.05 57.35 73.14 59.81 69.13

Mean 59.13 55.65 49.72 42.24 57.10 71.21 55.45 56.25 49.63 71.86 49.82 55.16

Also, our findings show that the rebalancing strategy has a greater effect than the
classification algorithm. With no rebalancing, we achieve the highest precision in 11/12
combinations (algorithm × dataset), with the only exception of LightGBM on the Store
dataset. So, for the trace maintenance scenario, no oversampling is the best option.

SMOTE oversampling reduces precision and increases recall: in extreme cases
where recall is considerably more important than precision (missing a valid trace is crit-
ical and the cost of vetting many invalid candidates is low), it may be a viable option.
However, for our two scenarios with F0.5 and F2, SMOTE is the worst alternative.

When we use undersampling for rebalancing, we get a better trade-off than when we
use oversampling: the recall increases with respect to no re-balancing, at the expense of
precision. However, the decrease in precision is less substantial than for oversampling.

The 5050 rebalancing strategy improves this balance by trading recall for precision.
As a result, the classifiers using this rebalancing strategy preserve high recall while
offering a more practical precision. The F2-measure quantifies this: 5050 rebalancing is
the best alternative for the trace recommendation scenario.

When taking both the rebalancing and classification algorithm into account, we
achieve highest F2-score by combining LightGBM with 5050 rebalancing (x = 69.13),
making it the best configuration for trace recommendation. The XGBoost/5050 combi-
nation is, however, very close, and slightly outperforms LightGBM/5050 for the Ser-
vice dataset. For the Trace Recommendation scenario, we get the best by combining
XGBoost with no data rebalancing, which achieves a mean F0.5-measure of 76.62.

46 R. Rasiman et al.

5.2 Features Importance

We report on the feature importance to contribute to the model’s explainability. We
consider the average gain of each feature category, as defined in Sect. 4.2, with QQ
broken down into its subcategories due to the many features. The cumulative (total),
max, and average gain is shown in Table 6, while Fig. 3 presents them visually.

Table 6. The total, max, and average gain (in percentage over the total gain given by all features)
per feature category for the trace recommendation and trace maintenance scenarios.

Trace recommendation Trace maintenance

Total Max Avg Total Max Avg

Process-related Service 30.79 26.14 7.70 11.43 4.66 2.86

Data 52.61 32.14 13.15 10.93 3.86 2.73

Store 7.61 4.48 1.19 5.14 1.705 1.29

Information retrieval Service 52.82 49.33 2.94 17.83 3.04 0.99

Data 20.29 15.45 1.12 19.99 2.97 1.11

Store 46.81 42.71 2.60 14.20 2.46 0.79

Document statistics Service 3.20 1.76 0.46 7.60 2.17 1.09

Data 4.08 1.34 0.58 5.06 1.66 0.72

Store 3.67 1.75 0.52 15.66 8.04 2.23

Query quality (Specificity) Service 10.59 2.20 0.15 51.01 1.71 0.71

Data 18.89 4.89 0.26 51.51 5.08 0.72

Store 39.17 19.85 0.54 51.97 2.96 0.72

Query quality (Similarity) Service 2.35 0.45 0.13 9.93 1.59 0.55

Data 3.03 0.59 0.17 10.14 2.35 0.56

Store 2.54 0.59 0.14 11.65 1.94 0.65

Query quality (Term Relatedness) Service 0.25 0.14 0.06 2.20 0.74 0.55

Data 1.09 0.75 0.27 2.37 1.01 0.59

Store 0.20 0.16 0.05 1.38 0.70 0.34

In the Trace Recommendation scenario, we see that process-related feature cate-
gories are important in the Service and Data projects, with gains of 30.79 and 52.61,
respectively. Further investigation reveals that the top two process-related features for
Service and Data are F4: the difference between the date the issue was resolved and the
revision date (18.99 for Data, 26.14 for Service) and F1: whether the issue assignee is
the same person who committed the revision (32.14 for Data, 3.8 for Service).

Process-related features contribute much less for the Store dataset, in both scenar-
ios. One explanation is that Service and Data are produced by a different development
team than Store. Both teams may have a different level of discipline when it comes to
managing JIRA-problems (i.e., promptly updating the status of JIRA issues), resulting
in a different level of importance for this feature category.

How Effective Is Automated Trace Link Recovery in MDD? 47

The Information Retrieval feature category is shown to be important for the Trace
recommendation scenario, with total Gains of 52.82, 20.29, and 46.81. Similar to the
Process-related feature category, the majority of this increase comes from a single fea-
ture, which is the cosine similarity between all-text from a revision and a JIRA-issue
summary, utilising summary as a query (F25) for all three datasets. This means that
a TF-IDF representation of merely the JIRA issues via the summary is better for the
model than a combination of summary and description.

Fig. 3. Average gain per feature family for the trace recommendation scenario (left) and for the
trace maintenance scenario (right). The y-axis uses an exponential scale to improve readability.

Furthermore, we find that this feature category is less important in the trace mainte-
nance scenario, with each unique feature contributing more evenly.

Table 6 also reveals that the Document Statistics feature category have a low total
gain. Figure 3, however, shows that the average gain per feature in this category is rather
significant. Because of this finding, the cost-benefit ratio of implementing this feature
category is favourable due to its relative simplicity of implementation.

Finally, for the QQ feature family, only the Specificity sub-category is frequently
present in the model, with a total gain of 10.59, 18.89, and 19.89 in the Trace Recom-
mendation scenario and 51.01, 51.51, and 51.97 in the Trace Maintenance scenario for
Service, Data, and Store, respectively. It should be emphasised, however, that this sub-
category accounts for 58% (72 out of 123) of the total number of features. In the Trace
Recommendation scenario, we can observe that the maximum value of QQ (Specificity)
for Store is 19.85. Further analysis reveals that this feature is the medium entropy of the
JIRA descriptions as query, which was likewise the top performing for Data and the sec-
ond best for Service in its category. The original intent of the QQ metrics may explain
why Specificity has a greater information gain than the Similarity and Term Related-
ness QQ metrics. In IR, queries are deemed high-quality when the relevant information

48 R. Rasiman et al.

is obtained, independent of the document in which it is stored. Both the Similarity and
Term relatedness metrics assume that a document collection with many relevant doc-
uments is valuable because it raises the likelihood of retrieving a relevant document.
However, for TLR, where there is only one genuine artifact to be identified, this is
irrelevant. Because of this disparity, the Similarity and Term relatedness metrics are
less suited for the TLR task. Specificity can still help since it seeks to differentiate the
relevant document from the irrelevant documents, which is also visible in Table 6.

6 Threats to Validity

We present the threats to validity according to Wohlin’s taxonomy [28].

Conclusion Validity refers to the ability to draw the correct conclusion about relations
between treatment and outcome. In our case, our results have low statistical power since
we analysed only three datasets. To cope with these threats, we carefully word our
conclusions in such a way that the results are not oversold.

Internal Validity regards influences that may affect the independent variable with
respect to causality, without the researchers’ knowledge. The datasets are created by
teams who follow the development method outlined in Sect. 3. While we compared the
common attributes, we excluded those that were used only by certain datasets, e.g.,
JIRA comments. Furthermore, it is possible that certain trace links were incorrect and
some links were missing. However, we picked the original datasets without performing
any attempts to repair the datasets, which could have increased the bias.

Construct Validity concerns generalising the result of the experiment to the underly-
ing concept or theory. The main threat concerns the research design: we approximate
performance in the two scenarios via the F0.5 and F2 metrics. Although our method is
aligned with the state-of-the-art in traceability research, in-vivo studies should be con-
ducted for a more truthful assessment of the effectiveness, e.g., by deploying a system
based on our employed algorithms and measuring the performance in use.

External Validity regards the extent to which we can generalise the results of our experi-
ment to industrial practice. Our claims are limited to the low-code development domain,
and, in particular, to the case of our industrial collaborator: Mendix. Although we col-
lected projects from two separate teams, using more data would be beneficial. Finally,
to minimise overfitting and enhance generalisability, we followed the standard practice
of having a distinct training and test set.

Despite our best efforts to mitigate the threats, not everything can be accounted for.
All the results were obtained from a single organisation, which could lead to a potential
bias. Consequently, we had to be cautious in how we expressed our conclusions. Our
results show promising avenues, but we are not yet in a position to generalise.

7 Conclusion and Future Work

In this study, we have provided initial evidence regarding requirements trace classifi-
cation within an MDD-context. Upon analysing the MDD development process of our

How Effective Is Automated Trace Link Recovery in MDD? 49

research collaborator (Mendix), we identified two scenarios which could benefit from
a requirement trace link classifier: trace recommendation and trace maintenance. These
scenarios require different performance metrics: F2 for the former, F0.5 for the latter.

After examining the three datasets under four rebalancing strategies, we obtained
an average F2-score (for trace recommendation) across the datasets of 69% with the
LightGBM classifier with a mix of under- and oversampling (5050 strategy). For trace
maintenance, we obtained an average F0.5-score of 76% when employing XGBoost as
the ML classifier and with no rebalancing of the training data.

The results are positive when considering that the percentage of traces in our
datasets is low, ranging between 0.26% and 1.62% (see Table 1). This imbalance poses
serious challenges when training a classifier and it represents a key obstacle to its per-
formance.

We have also analysed which feature families from the literature, which we embed-
ded in our tool, lead to the highest information gain. We found that process-related fea-
tures seem to lead to the highest information gain, and that most query-quality features
have a very marginal information gain and can therefore be discarded.

More research is needed about the specific features to include in production envi-
ronments. Indeed, a high number of features may lead to overfitting. Also, we need to
compare our ML-based approach to its deep learning counterparts. Studying additional
dataset is one of our priorities, especially through the collaboration with Mendix. More-
over, analysing the performance of the tool in use is a priority: while we have based our
analysis and discussion in F-measures, only a user study can reveal the actual quality of
the recommended and recovered traces, that is, whether the developers who have to vet
and use the traces find them useful, and whether they actually approve of integrating our
approach into their development environment. Finally, studying horizontal traceability,
i.e., the existence of links between artifacts at the same abstraction level (e.g., between
requirements) is an interesting future direction.

This paper, which takes existing features for ML-based traceability and applies them
to the low-code or model-driven domain, calls for additional studies on the effectiveness
of the existing techniques in novel, emerging domains. We expect that such research will
incrementally contribute to the maturity of the field of requirements traceability.

Acknowledgment. The authors would like to thank Mendix, and especially to Toine Hurkmans,
for the provision of the datasets used in this paper and for giving us access to their development
practices through numerous interviews and meetings.

References

1. Abadi, A., Nisenson, M., Simionovici, Y.: A traceability technique for specifications. In:
Proceedings of ICPC, pp. 103–112 (2008)

2. Aung, T.W.W., Huo, H., Sui, Y.: A literature review of automatic traceability links recovery
for software change impact analysis. In: Proceedings of ICPC, pp. 14–24 (2020)

3. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empir.
Softw. Eng. 26(6), 1–77 (2021). https://doi.org/10.1007/s10664-021-09986-0

4. Blaauboer, F., Sikkel, K., Aydin, M.N.: Deciding to adopt requirements traceability in prac-
tice. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007. LNCS, vol. 4495, pp. 294–
308. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72988-4 21

https://doi.org/10.1007/s10664-021-09986-0
https://doi.org/10.1007/978-3-540-72988-4_21

50 R. Rasiman et al.

5. Borg, M., Runeson, P., Ardö, A.: Recovering from a decade: a systematic mapping of infor-
mation retrieval approaches to software traceability. Empir. Softw. Eng. 19(6), 1565–1616
(2013). https://doi.org/10.1007/s10664-013-9255-y

6. Briand, L., Bianculli, D., Nejati, S., Pastore, F., Sabetzadeh, M.: The case for context-
driven software engineering research: generalizability is overrated. IEEE Softw. 34(5), 72–75
(2017)

7. Callens, A., Morichon, D., Abadie, S., Delpey, M., Liquet, B.: Using Random forest and
Gradient boosting trees to improve wave forecast at a specific location. Appl. Ocean Res.
104, 102339 (2020)

8. Capobianco, G., De Lucia, A., Oliveto, R., Panichella, A., Panichella, S.: On the role of the
nouns in IR-based traceability recovery. In: Proceedings of the ICPC, pp. 148–157, May
2009

9. Cleland-Huang, J., Berenbach, B., Clark, S., Settimi, R., Romanova, E.: Best practices for
automated traceability. Computer 40(6), 27–35 (2007)

10. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by
latent semantic analysis. J. Am. Soc. Inf. Sci. 41(6), 391–407 (1990)

11. Falessi, D., Di Penta, M., Canfora, G., Cantone, G.: Estimating the number of remaining
links in traceability recovery. Empir. Softw. Eng. 22(3), 996–1027 (2016). https://doi.org/10.
1007/s10664-016-9460-6

12. Falessi, D., Roll, J., Guo, J.L.C., Cleland-Huang, J.: Leveraging historical associations
between requirements and source code to identify impacted classes. IEEE Trans. Software
Eng. 46(4), 420–441 (2018)

13. Ghannem, A., Hamdi, M.S., Kessentini, M., Ammar, H.H.: Search-based requirements trace-
ability recovery: a multi-objective approach. In: Proceedings of the CEC, pp. 1183–1190
(2017)

14. Gotel, O., et al.: The grand challenge of traceability (v1.0). In: Cleland-Huang, J., Gotel, O.,
Zisman, A. (eds.) Software and Systems Traceability, pp. 343–409. Springer, London (2012).
https://doi.org/10.1007/978-1-4471-2239-5 16

15. Guo, J., Cheng, J., Cleland-Huang, J.: Semantically enhanced software traceability using
deep learning techniques. In: Proceedings of ICSE, pp. 3–14. IEEE (2017)

16. Mills, C., Escobar-Avila, J., Haiduc, S.: Automatic traceability maintenance via machine
learning classification. In: Proceedings of ICSME, pp. 369–380, July 2018

17. Mills, C., Haiduc, S.: The impact of retrieval direction on IR-based traceability link recovery.
In: Proceedings of ICSE NIER, pp. 51–54 (2017)

18. Oliveto, R., Gethers, M., Poshyvanyk, D., De Lucia, A.: On the equivalence of information
retrieval methods for automated traceability link recovery. In: Proceedings of ICPC, pp. 68–
71 (2010)

19. Port, D., Nikora, A., Hayes, J.H., Huang, L.: Text mining support for software requirements:
traceability assurance. In: Proceedings of HICSS, pp. 1–11. E (2011)

20. Porter, M.F.: An algorithm for suffix stripping. Program (1980)
21. Ramesh, B., Edwards, M.: Issues in the development of a requirements traceability model.

In: Proceedings of ISRE, pp. 256–259 (1993)
22. Rasiman, R., Dalpiaz, F., España, S.: Online appendix: how effective is automated trace

link recovery in model-driven development? January 2022. https://doi.org/10.23644/uu.
19087685.v1

23. Rath, M., Rendall, J., Guo, J.L.C., Cleland-Huang, J., Maeder, P.: Traceability in the wild:
automatically augmenting incomplete trace links. In: Proceedings of ICSE, vol. 834–845
(2018)

https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1007/s10664-016-9460-6
https://doi.org/10.1007/s10664-016-9460-6
https://doi.org/10.1007/978-1-4471-2239-5_16
https://doi.org/10.23644/uu.19087685.v1
https://doi.org/10.23644/uu.19087685.v1

How Effective Is Automated Trace Link Recovery in MDD? 51

24. Umuhoza, E., Brambilla, M.: Model driven development approaches for mobile applications:
a survey. In: Younas, M., Awan, I., Kryvinska, N., Strauss, C., Thanh, D. (eds.) MobiWIS
2016. LNCS, vol. 9847, pp. 93–107. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-44215-0 8

25. Wang, B., Peng, R., Li, Y., Lai, H., Wang, Z.: Requirements traceability technologies and
technology transfer decision support: a systematic review. J. Syst. Softw. 146, 59–79 (2018)

26. Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engi-
neering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

27. Winkler, S., von Pilgrim, J.: A survey of traceability in requirements engineering and model-
driven development. Softw. Syst. Model. 9(4), 529–565 (2010)

28. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experimentation
in software engineering, vol. 9783642290 (2012)

29. Yoon, J.: Forecasting of real GDP growth using machine learning models: gradient boosting
and random forest approach. Comput. Econ. 57(1), 247–265 (2020). https://doi.org/10.1007/
s10614-020-10054-w

https://doi.org/10.1007/978-3-319-44215-0_8
https://doi.org/10.1007/978-3-319-44215-0_8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/s10614-020-10054-w
https://doi.org/10.1007/s10614-020-10054-w

A Zero-Shot Learning Approach to Classifying
Requirements: A Preliminary Study

Waad Alhoshan1(B) , Liping Zhao2(B) , Alessio Ferrari3 ,
and Keletso J. Letsholo4

1 Al-Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
wmaboud@imamu.edu.sa

2 University of Manchester, Manchester, UK
liping.zhao@manchester.ac.uk

3 CNR-ISTI, Pisa, Italy
alessio.ferrari@isti.cnr.it

4 Higher Colleges of Technology, Abu Dhabi, UAE
kletsholo@hct.ac.ae

Abstract. Context and motivation: Advances in Machine Learning (ML) and
Deep Learning (DL) technologies have transformed the field of Natural Language
Processing (NLP), making NLP more practical and accessible. Motivated by
these exciting developments, Requirements Engineering (RE) researchers have
been experimenting ML/DL based approaches for a range of RE tasks, such
as requirements classification, requirements tracing, ambiguity detection, and
modelling. Question/problem: Most of today’s ML/DL approaches are based on
supervised learning techniques, meaning that they need to be trained using anno-
tated datasets to learn how to assign a class label to examples from an application
domain. This requirement poses an enormous challenge to RE researchers, as
the lack of requirements datasets in general and annotated datasets in particular,
makes it difficult for them to fully exploit the benefit of the advanced ML/DL
technologies. Principal ideas/results: To address this challenge, this paper pro-
poses a novel approach that employs the Zero-Shot Learning (ZSL) technique to
perform requirements classification. We build several classification models using
ZSL. We focus on the classification task because many RE tasks can be solved as
classification problems by a large number of available ML/DL methods. In this
preliminary study, we demonstrate our approach by classifying non-functional
requirements (NFRs) into two categories: Usability and Security. ZSL supports
learning without domain-specific training data, thus solving the lack of annotated
datasets typical of RE. The study shows that our approach achieves an average of
82% recall and F-score. Contribution: This study demonstrates the potential of
ZSL for requirements classification. The promising results of this study pave the
way for further investigations and large-scale studies. An important implication
is that it is possible to have very little or no training data to perform require-
ments classification. The proposed approach thus contributes to the solution of
the long-standing problem of data shortage in RE.

Keywords: Requirements Engineering · Zero-Shot Learning ·Machine
Learning · Deep Learning · Transfer Learning · Language models · Natural
Language Processing

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 52–59, 2022.
https://doi.org/10.1007/978-3-030-98464-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_5&domain=pdf
http://orcid.org/0000-0002-3433-4653
http://orcid.org/0000-0001-8556-8655
http://orcid.org/0000-0002-0636-5663
http://orcid.org/0000-0003-4355-7987
https://doi.org/10.1007/978-3-030-98464-9_5

Zero-Shot Learning for RE 53

1 Introduction

Data shortage, particularly lack of annotated task-specific data, has been a major chal-
lenge for requirements engineering (RE) researchers interested in applying natural lan-
guage processing (NLP) and machine learning (ML) techniques to requirements docu-
ments [6,24]. Even for the lively field of app review analysis, Dabrowki et al. [3] has
shown that most studies have not released their annotated dataset. Also when datasets
are available, the annotation process is time consuming and error prone [4], thus calling
for solutions that can work well with limited data. Transfer learning makes it possi-
ble to address this issue, by training language models on largely available NL datasets,
and then fine tuning on a smaller set of domain specific ones [20]. Zero-Shot Learning
(ZSL) further improves the idea by treating sentence classification as a problem of pre-
dicting whether a NL sentence is related to a NL tag or not, by reasoning solely on the
embedding of the sentence and of the tag, and not resorting on pre-annotated classes
for training. In this paper, we perform a preliminary study on using zero-shot learn-
ing for the problem of non-functional requirements (NFRs) classification. Our results
show comparable performances to other supervised approaches that use a considerable
amount of annotated datasets for training or fine-tuning existing models. The afford-
ability of the approach makes it possible to be further investigated and extended. In
the paper, we also discuss our future steps in the application of this solution to other
classification-related tasks in RE.

2 Background: From Transfer Learning to Zero-Shot Learning

Transfer learning refers to the ability of a ML model to recognize and apply knowledge
learned in previous tasks to novel, but related tasks [11]. For example, we can train a
model with a sentiment analysis task and then transfer the model to perform a related
task such as spam detection [20]. The power of transfer learning lies in enabling a
high-performance ML model trained with easily obtained data from one domain to
be ‘transferred’ to a different, but related target domain [11,20]. In so doing, transfer
learning aims to improve the performance of a ML model in the target domain, whilst
avoiding many expensive data-labeling efforts and alleviating the training data shortage
problem [11,17,20].

Transfer learning has become a commonplace in advanced language models (LMs),
which are machine learning frameworks for NLP tasks. These models can be pre-
trained on a data-rich task before being fine-tuned on different downstream tasks [14].
In particular, the LMs such as BERT [5] and GPT [13] allow a model to be pre-trained
using unsupervised learning on unlabeled data and then fine-tuned using supervised
learning on labelled data from the downstream tasks. These approaches have achieved
state-of-the-art results in many of the most common NLP benchmark tasks [5,14].

What makes BERT and GPT so powerful is their underlying transformer archi-
tecture [18], which transforms a given sequence of elements, such as the sequence of
words in a sentence, into another sequence, with the help of an Encoder and a Decoder.
The output sequence can be in another language, symbols, a copy of the input, etc.
Both Encoder and Decoder are composed of modules, which are made of multi-head

54 W. Alhoshan et al.

self-attention functions and feed forward layers. The self-attention mechanism looks
at an input sequence and decides at each step which parts of the sequence are impor-
tant or unimportant; which parts should be remembered or forgotten. As sentences in
natural language are sequence-dependent—that is, the order of the words is crucial for
understanding a sentence—, transformers are particularly useful for NLP tasks, such as
language understanding and machine translation. In addition, transformers are capable
of performing transformation sequentially as well as in parallel, by stacking multiple
self-attention mechanisms on top of each other or by using them side by side. However,
while transformer-based LMs can avoid expensive data-labeling efforts, they are very
expensive to pre-train, as they require a large amount of training data, as well as expen-
sive computational resources. For example, to pre-train a BERTbase model1, it requires
128,000 words × 1,000,000 steps on 4 Cloud TPUs with 16 TPU chips for four days
[5]. Although fine-tuning of these models is relatively less expensive, it still requires
thousands or tens of thousands of labelled task-specific examples [2,5].

Zero-Shot Learning (ZSL) has been originally used in image processing to pre-
dict unseen images [16], and has recently been adapted to text classification to pre-
dict unseen classes [12]. Unlike other text classifiers that learn to classify a given sen-
tence as one of the possible classes, the ZSL models (also called learners) learn to
predict whether the sentence is related to a tag or not. Thus, ZSL treats a classification
task (binary, or multi-class) as a problem of finding relatedness between sentences and
classes [12].

To train a ZSL classifier, we need to add all the tags (labels) to each sentence in
the training set for the model to learn the likelihood of each tag for each sentence.
The learning involves measuring the semantic relatedness of a given input sequence
(e.g., a sentence) to each class or tag and assigning a probabilistic score to the input
in relation to the tag to establish if the input belongs to the corresponding class. After
the assignment of all the tags to the input, the classifier proposes a threshold value to
suggest if the input should be classified into one or more classes represented by the tags.
Effectively, ZSL performs a multi-label classification for each input.

The real potential of ZSL is its partnership with large pre-trained LMs. By pig-
gybacking on such models, the ZSL models can perform competitively on downstream
NLP taskswithout fine-tuning (zero-shot) or with only a handful of labelled task-specific
examples (few-shot), thus removing the burden of expensive data-labeling efforts, the
goal set out by transfer learning. There are two general methods which are available for
training a ZSL model: the embedding-based method and the entailment-based method.
The embedding-based method integrates the text embedding layer with the tag embed-
ding layer, and then measures the probability of their relatedness using some similarity
function [12]. The embeddings are commonly extracted from pre-trained LMs and the
embedding layers could be at the word or sentence level, a word-based embedding
layer aims to learn the probability of words in entire datasets, while a sentence-based
embedding layer aims to contextualize the words at sentence-level, thus exploiting the

1 BERT has two basic models: BERTbase and BERTlarge. BERTbase has 12 encoder layers whereas
BERTlarge has 24. Which BERT model to use depends on the application and BERTbase is
usually sufficient for experiments, as it takes less time and resource to fine-tune comparing to
BERTlarge.

Zero-Shot Learning for RE 55

whole sentence structure and content in the learning process. On the other hand, the
entailment-based method treats an input text sequence as a premise and the candidate
tags as a hypothesis, and then infers if the input text is an entailment of any of the given
tags or not [23]. In this preliminary study, we choose the embedding-based method due
to the widely availability of embedding technologies.

3 Preliminary Study

Dataset In this study we use the popular PROMISE dataset2 to demonstrate the poten-
tial of ZSL for requirements classification. The dataset contains 625 FRs and NFRs
with associated labels, and has frequently been used as a benchmark for requirements
classification [4,7,8]. In our feasibility study, we select only the subset of the dataset
that contains the usability and security requirements. The two classes of requirements
are evenly distributed, with 67 usability and 66 security requirements, labelled as US
and SE respectively. The classification task in our study is to apply different ZSL mod-
els to predict whether a requirement in this dataset is related to a usability tag or not,
or whether a requirement in this dataset is related to a security tag or not.

Setting-up the ZSL Classifiers. We use the embedding-based method to study the ZSL
models and select the following nine pre-trained Transformer models from Hugging
Face models hub [21]:

– BERT family [5]: BERTbase-uncased, BERTbase-cased, BERTlarge-uncased, BERTlarge-cased;
– RoBERTa family [9]: RoBERTbase, XLM-RoBERTbase;
– XLNet family [22]: XLNetbase-cased;
– Sentence-based LMs: Sentence-BERT [15] and MiniLM-L12-v2 [19] which is
fine-tuned by one billion sentence pairs dataset from different online technical feeds
such as Reddit comments.

Based on these nine LMs, we implement nine embedding-based ZSL classifiers by fit-
ting each model to the default ZSL pipeline from the Transformers library [21]. After-
wards we apply each ZSL classifier as follows: 1) We feed each requirement sentence
and its labels to the classifier. 2) The LM within the classifier carries out tokenization
and then creates a sentence embedding and a label embedding layer. 3) The classifier
processes the embedding results by computing the relatedness between the sequences
embedding and the label embeddings using cosine similarity. 4) Finally, the overall sim-
ilarity scores are fed into a classification function, and the probabilities of all labels are
computed to select the maximum score as the most related label to a given requirement.

Evaluation and Results Analysis. We implement the ZSL classifiers on Google Colab
with a standard CPU at 2.30GHz with 12GB of RAM. The entire experiment took
less than 5min (4.39 mis) to run, with 0.77GB of RAM usage. The results are then
exported into structured (.csv) files for further investigation3. We computed the ZSL
classifiers performance in comparison to the original annotated PROMISE dataset. For
performance evaluation, we use precision (P), recall (R), F1, weighted F-score (w.F),
and accuracy (A). Results are shown in Table 1.
2 https://doi.org/10.5281/zenodo.268542.
3 The results are available at: https://github.com/waadalhoshan/ZSL4REQ.

https://doi.org/10.5281/zenodo.268542
https://github.com/waadalhoshan/ZSL4REQ

56 W. Alhoshan et al.

Table 1. The experiment results. The bold font indicates the best results obtained from the ZSL-
based experiments, and the underlined scores refer to the best results reported in the related work
[8] and [7].

Classification approach Usability (US) Security (SE) A w.F

P R F1 P R F1

[8] Supervisedmulit (w/o feature sel.) 0.65 0.82 0.70 0.81 0.77 0.74 0.76 0.73

[8] Supervisedmulit (500 best features) 0.70 0.66 0.64 0.64 0.53 0.56 0.61 0.6

[7] NoRBERTbasemulti (ep. = 50) 0.78 0.85 0.81 0.78 0.92 0.85 0.85 0.83

[7] NoRBERTlargemulti (ep. = 50) 0.83 0.88 0.86 0.90 0.92 0.91 0.87 0.86

ZSL BERTbase-uncased 0.83 0.52 0.64 0.65 0.90 0.75 0.71 0.70

ZSL BERTbase-cased 0.83 0.58 0.68 0.68 0.88 0.77 0.73 0.73

ZSL BERTlarge-uncased 0.83 0.15 0.26 0.54 0.97 0.69 0.56 0.48

ZSL BERTlarge-cased 0.52 0.18 0.27 0.51 0.84 0.63 0.51 0.45

ZSL RoBERTabase 0.00 0.00 0.00 0.50 1.00 0.67 0.50 0.34

ZSL XLM-RoBERTabase 0.49 1.00 0.66 0.00 0.00 0.00 0.50 0.33

ZSL XLNetbase-cased 0.47 0.68 0.56 0.45 0.25 0.32 0.47 0.44

ZSL sentence BERT 0.71 0.80 0.76 0.78 0.69 0.73 0.74 0.75

ZSL MiniLM-L12-v2 0.73 1.00 0.85 1.00 0.64 0.78 0.82 0.82

Considering that our ZSL classification models have not been trained on any sample
requirements from the dataset, in contrast to fully supervised or fine-tuned classifica-
tion approaches, the reported results from some of the used LMs are considered to be
encouraging for further investigation. In particular, we notice that recall (R) is equal
to 100% for some of the LM, as recommended by Berry [1]. We compared the perfor-
mance of ZSL classifiers with existing work ([8] and [7]) which used the same NFR
dataset. The results provided by fine-tuned BERTlarge model namely NoRBERT [7] has
still the highest performance rates in terms of precision rates and F1 scores. However,
one of the ZSL classifiers, which applied Sentence-based (MiniLM-L12-v2 LM [19],
has a comparable performance of a weighted F-score of 82% comparing to 86% pro-
vided by NoRBERTlarge model. In addition, two of the ZSL classifier models which
are based on sentence embeddings (Sentence BERT and MiniLM-L12-v2) have out-
performed the fully-supervised learning approaches by Kurtanovic and Maalej [8] with
more than 75% of weighted F-scores. Example requirements with their similarity scores
according to the given labels set and based on Sentence-based embedding are shown in
Table 2. However, we noticed that word-based LMs can be biased towards a specific
label. For example, both RoBERTa models (i.e., RoBERTabase and XLM-RoBERTa)
are word-based and have the tendency to label all the requirements as Security only or
Usability only, as shown in the recall and F1-score results in Table 1. This is predictable
with any pre-trained LMs as those models are trained on general-domain datasets, mak-
ing them less accurate when working with domain-specific data. Therefore, what we
regard as a Security requirements (as requirement engineers) could be classified by

Zero-Shot Learning for RE 57

those general models into more general categories not related to the security aspects of
a software.

Overall, the sentence-based LM with ZSL classifier have provided almost best
results in our initial experiments comparing to other word-based LM (e.g., BERT,
RoBERTa, and XLNet). This observation suggests that sentence-based LMs are to
be preferred over word-based LMs as methods for generating requirement and label
embedding. As a next step of this research, we will fine-tune an existing sentence-based
LM (e.g., Sentence BERT) for specific RE tasks. In the following section, we will briefly
outline our future research plan.

Table 2. Requirement examples with their associated similarity scores using the ZSL classifier
which is based on the sentence-based embedding. The strike (*) refers to a mislabeling.

Requirement text Label Sentence-BERT Sentence-transformers

The website will provide a help section with
answers and solutions to common problems

US Usability: 0.26 Usability: 0.14

Data integrity scripts will be run on a weekly
basis to verify the integrity of the database

SE Security: 0.18 Security: 0.20

The product should be able to be used b 90%
of novice users on the internet

US *Security: 0.17 Usability: 0.25

The product shall conform to the Americans
with disabilities Act

US Usability: 0.37 *Security: 0.19

4 Conclusion and Future Plan

The promising performance of ZSL observed in our study indicates its potential for
requirements classification. We plan to expand this study to conduct further experi-
ments. First, we will extend the current approach to the entire PROMISE dataset, to
consider more fine-grained semantic categories, similar to the work of Hey et al. [7].
To this end, we plan to experiment different deep learning architectures for implement-
ing the ZSL requirements classifier, as described by Pushp and Srivastava [12], and
then apply different fine-tuning techniques to the LMs with promising performances,
such as the Sentence-BERT model [15]. For example, by training the high-level layer
of the pre-trained LM and freeze the low-level layers, and then fine-tuning by freez-
ing the entire LM and train additional layers on the top. In addition, we will expand
the fine-tuning and training of the LMs to different requirement datasets and different
classification taxonomies. Second, we will extend the ZSL approach to few-shot learn-
ing (FSL) by using one shot (one labelled task-specific requirement) and a few shot (a
handful of labelled requirements) to fine-tune the LMs to see if the performance of ZSL
can be improved. According to the study carried out by OpenAI [2], even using just one
labelled example can substantially improve the classifier performance.

Finally, we will apply ZSL/FSL to other classification related tasks in RE such
as those identified in our recent mapping study [24], including Detection (detecting
linguistic issues in requirements documents) and Extraction (identifying key domain

58 W. Alhoshan et al.

abstractions and concepts). We will also repeat our study on the app review classifica-
tion problem, addressed, e.g., by [10], to see if the models we developed for require-
ments classification can be transferred to the app review classification task.

References

1. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empir.
Softw. Eng. 26(6), 1–77 (2021). https://doi.org/10.1007/s10664-021-09986-0

2. Brown, T.B., et al.: Language models are few-shot learners. arXiv preprint arXiv:2005.14165
(2020)

3. Dabrowski, J., Letier, E., Perini, A., Susi, A.: App review analysis for software engineering:
a systematic literature review. University College London, Technical report (2020)

4. Dalpiaz, F., Dell’Anna, D., Aydemir, F.B., Çevikol, S.: Requirements classification with
interpretable machine learning and dependency parsing. In: RE 2019, pp. 142–152. IEEE
(2019)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional
transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

6. Ferrari, A., Dell’Orletta, F., Esuli, A., Gervasi, V., Gnesi, S.: Natural language requirements
processing: a 4d vision. IEEE Softw. 34(6), 28–35 (2017)

7. Hey, T., Keim, J., Koziolek, A., Tichy, W.F.: NoRBERT: transfer learning for requirements
classification. In: RE 2020, pp. 169–179. IEEE (2020)

8. Kurtanović, Z., Maalej, W.: Automatically classifying functional and non-functional require-
ments using supervised machine learning. In: RE 2017, pp. 490–495. IEEE (2017)

9. Liu, Y., et al.: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692 (2019)

10. Maalej, W., Kurtanović, Z., Nabil, H., Stanik, C.: On the automatic classification of app
reviews. Requirements Eng. 21(3), 311–331 (2016). https://doi.org/10.1007/s00766-016-
0251-9

11. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10),
1345–1359 (2009)

12. Pushp, P.K., Srivastava, M.M.: Train once, test anywhere: zero-shot learning for text classi-
fication. arXiv preprint arXiv:1712.05972 (2017)

13. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.: Improving language understanding
by generative pre-training. Technical report, OpenAI (2018)

14. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683 (2019)

15. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-
networks. arXiv preprint arXiv:1908.10084 (2019)

16. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In:
ICML 2015, pp. 2152–2161 (2015)

17. Ruder, S., Peters, M.E., Swayamdipta, S., Wolf, T.: Transfer learning in natural language
processing. In: NACL 2019, pp. 15–18 (2019)

18. Vaswani, A., et al.: Attention is all you need. In: NeurIPS 2017, pp. 5998–6008 (2017)
19. Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., Zhou, M.: MiniLM: deep self-attention

distillation for task-agnostic compression of pre-trained transformers. arXiv preprint
arXiv:2002.10957 (2020)

20. Weiss, K., Khoshgoftaar, T.M., Wang, D.D.: A survey of transfer learning. J. Big Data 3(1),
1–40 (2016). https://doi.org/10.1186/s40537-016-0043-6

https://doi.org/10.1007/s10664-021-09986-0
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1907.11692
https://doi.org/10.1007/s00766-016-0251-9
https://doi.org/10.1007/s00766-016-0251-9
http://arxiv.org/abs/1712.05972
http://arxiv.org/abs/1910.10683
http://arxiv.org/abs/1908.10084
http://arxiv.org/abs/2002.10957
https://doi.org/10.1186/s40537-016-0043-6

Zero-Shot Learning for RE 59

21. Wolf, T., Debut, L., Sanh, V., et al.: Transformers: state-of-the-art natural language process-
ing. In: EMNLP 2020, pp. 38–45 (2020)

22. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized
autoregressive pretraining for language understanding. In: NeurIPS 2019, vol. 32 (2019)

23. Yin, W., Hay, J., Roth, D.: Benchmarking zero-shot text classification: datasets, evaluation
and entailment approach. CoRR abs/1909.00161 (2019)

24. Zhao, L., et al.: Natural language processing for requirements engineering: a systematic map-
ping study. ACM Comput. Surv. 54(3), 55:1–55:41 (2021)

Natural Language Processing

Abbreviation-Expansion Pair Detection
for Glossary Term Extraction

Hussein Hasso1(B), Katharina Großer2 , Iliass Aymaz1, Hanna Geppert1,
and Jan Jürjens2,3

1 Fraunhofer FKIE, 53343 Wachtberg (Bonn), Germany
{hussein.hasso,iliass.aymaz,hanna.geppert}@fkie.fraunhofer.de

2 University of Koblenz-Landau, 56070 Koblenz, Germany
{grosser,juerjens}@uni-koblenz.de

3 Fraunhofer ISST, 44227 Dortmund, Germany

Abstract. Context and motivation: Providing precise definitions of all
project specific terms is a crucial task in requirements engineering. In
order to support the glossary building process, many previous tools
rely on the assumption that the requirements set has a certain level
of quality. Question/problem: Yet, the parallel detection and correction
of quality weaknesses in the context of glossary terms is beneficial to
requirements definition. In this paper, we focus on detection of uncon-
trolled usage of abbreviations by identification of abbreviation-expansion
pair (AEP) candidates. Principal ideas/results: We compare our feature-
based approach (ILLOD) to other similarity measures to detect AEPs.
It shows that feature-based methods are more accurate than syntac-
tic and semantic similarity measures. The goal is to extend the glossary
term extraction (GTE) and synonym clustering with AEP-specific meth-
ods. First experiments with a PROMISE data-set extended with uncon-
trolled abbreviations show that ILLOD is able to extract abbreviations
as well as match their expansions viably in a real-world setting and is
well suited to augment previous term clusters with clusters that combine
AEP candidates. Contribution: In this paper, we present ILLOD, a novel
feature-based approach to AEP detection and propose a workflow for its
integration to clustering of glossary term candidates.

Keywords: Requirements engineering · Glossary term extraction ·
Abbreviation-expansion pair detection · Synonym detection

1 Introduction

One of the goals in requirements engineering is to improve an opaque system
comprehension into a complete system specification [28]. Activities related to
glossary building support that goal, since glossaries serve to improve the accuracy
and understandability of requirements written in natural language [3].

Second author supported by European Space Agency’s (ESA) NPI program under NPI
No. 4000118174/16/NL/MH/GM.

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 63–78, 2022.
https://doi.org/10.1007/978-3-030-98464-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_6&domain=pdf
http://orcid.org/0000-0003-4532-0270
http://orcid.org/0000-0002-8938-0470
https://doi.org/10.1007/978-3-030-98464-9_6

64 H. Hasso et al.

According to the International Requirements Engineering Board (IREB) [12],
a glossary is a collection of definitions of terms that are relevant in a specific
domain. In addition, a glossary frequently contains cross-references, synonyms,
homonyms, and abbreviations [12]. Glossaries serve to enrich the requirement
texts with additional important information, which ensures that technical terms
are used and understood correctly, and supports communication among project
participants [19]. The consequent use of a complete and accurate glossary leads to
a more consistent language, resulting in coherent structures for the requirements,
which in turn enhances automatic analysability [8,26]. Finally, a glossary can
be reused for future projects within the same application domain to facilitate
requirements elicitation and analysis [18].

In order to obtain the mentioned benefits, a glossary should be developed
during the requirements elicitation phase, which is also compliant to best prac-
tices [19,27]. For various reasons, many projects tend to build their glossary
after the requirements elicitation phase [1,2,11]. However, this complicates the
task, since requirements written without the use of a glossary are more likely
to contain imprecise or ambiguous wordings. When multiple terms are used to
refer to the same meaning (synonyms), denote specializations (hyponyms), or
terms have multiple meanings (homonyms), this presents a major challenge for
the identification of glossary terms. Therefore, beforehand, the analyst has to
ensure that the terminology is used consistently, e.g. through syntactic or seman-
tic adjustments. This task affects various inter-requirement relations in parallel.

With this paper, we present an approach that encourages the analyst to start
with the glossary building, even when the requirements quality still shows weak-
nesses, and contributes to resolve two tasks in parallel: (1) quality improvement
through reduction of lexical variation and (2) glossary term identification. In
particular, we integrate the detection of abbreviations and their expansions.

2 Problem Definition

We briefly focus on the main problems to be solved by an automated tool for
the identification of glossary terms (GTE) [3,8,11].

First, since 99% of glossary entries are noun phrases (NPs) [14,17]:

(A) A GTE tool needs to have an accurate noun phrase detection.

Second, as glossaries deal with domain specific terms and omit duplicates:

(B) A GTE tool needs to filter detected NPs to glossary term candidates.

Considering (A), Natural Language Processing (NLP) pipelines for noun
phrase detection, e.g., through chunking approaches, are shown to be effec-
tive [1,2]. As such, in this paper we focus on devising an effective technique
for (B). Here, statistical filters composed of specificity and relevance measures,
as presented by Gemkow et al. [11], could be used, in which beforehand identifi-
cation of homonyms, synonyms, and different spelling variants among detected
noun phrases is expected to have a positive effect on accuracy. Since we explicitly
consider requirement sets with such quality weaknesses, we first focus on:

AEP-Detection for GTE 65

(B1) A GTE tool needs to identify and/or merge homonyms, synonyms,
hyponyms and different spelling variants among detected noun phrases.

To detect such relations among domain terms is also beneficial for the build-
ing of initial domain models. In order to check whether a given pair of terms is
synonymous, homonymous, or hypernymous, the underlying concepts themselves
must be disambiguated [14], which requires good knowledge about the relevant
domain. Therefore, candidate term pairs still have to be confirmed or rejected by
the analyst. To keep the manual effort low, term clusters are a suitable method
of representation [2]. A cluster of size n can combine (n(n − 1))/2 term pairs.
For example, the REGICE tool [2] follows a synonym clustering approach. Yet,
only context-based (semantic) and text-based (syntactic) similarity [34] are con-
sidered and abbreviations must have been cleaned up and defined beforehand.
Homonyms and hyponyms are not explicitly addressed. Yet, they can be spotted
as bycatch. However, for homonyms this is only the case for non-disjoint clusters.

For higher recall in synonym detection, additionally pattern-based similar-
ity [34] for controlled abbreviations can be applied. It refers to clauses where
abbreviations are defined by their corresponding expansions using parentheses
or keywords such as “also known as”, “abbreviated” and “a.k.a.”, e.g.,

– Common Business Oriented Language abbreviated COBOL
– AES (Advanced Encryption Standard)
– Compression/Decompression, also known as Codec

More interesting, however, is an algorithm that also supports to resolve
uncontrolled abbreviations, which are not defined in place when they are used.
Uncontrolled abbreviations in requirements are rather common, especially when
requirements elicitation is carried out by different persons (in different organi-
zations) and when guidelines for the use of abbreviations are missing or not
followed. Abbreviations can be homonymous by having multiple possible expan-
sions within the same requirements set, as they are predominantly used in a
project- or domain-specific context, and new projects regularly come up with
new word creations. Thus, simple look-up techniques on predefined lists are not
sufficient. This leads us to the next problem statement:

(B1.1) A GTE tool needs to exploratorily resolve hitherto unknown abbrevia-
tions in comparison to other terms present in the given text.

Since the abbreviation list is part of the glossary, both should be built in par-
allel. The goal is to enable a specific synonym detection optimized for matching
of abbreviations with their expansions, which can be integrated to the cluster-
ing in glossary term extraction (GTE) tools. For that, we first compare the
accuracy of syntactic and semantic similarity measures with feature-based clas-
sification approaches applied to abbreviation-expansion pairs (AEPs). Further,
we introduce ILLOD, a binary classifier extending the algorithm of Schwartz and
Hearst [31]. It checks Initial Letters, term Lengths, Order, and Distribution of
characters. Finally, we propose how tools like ILLOD can be integrated into the
clustering of glossary term candidates.

66 H. Hasso et al.

3 Related Work

For glossary term extraction (GTE), Gemkow et al. [11] showed how to reduce
the number of glossary term candidates by using relevance and specificity fil-
ters. Improving the precision of glossary term extraction like this is important
especially for large data-sets. Yet, they do not regulate the possible presence of
synonyms and homonyms when determining term frequencies.

Arora et al. [2] argue that clustering of glossary term candidates has the
advantage to better mitigate false positives from noun phrase detection (A) and
to support candidate filtering (B). In addition, their approach provides guidelines
on how to tune clustering for a given requirements set, to detect synonyms with
high accuracy. They conclude that disjoint clusters should be produced in order
to keep the workload for term identification low. In Sect. 6 of this paper, we look
at this from a new perspective.

There are various approaches for the extraction and recognition of abbreviati-
on-expansion pairs (AEPs). In addition to statistical [24,36] and rule-based
methods [29,32], there are also machine learning methods [35]. Many publi-
cations deal with biomedical texts and a few, like Park et al. [25], with the field
of computer science. Most work assumes that AEPs are predefined in the text
via certain patterns and focus their analyses on the surrounding context of the
detected abbreviations, which is also the case for Schwartz and Hearst [31]. In
our work, we extend the algorithm findBestLongForm presented by Schwartz and
Hearst [31] to make it applicable for cross-comparisons where an abbreviation
and its expansion may occur in different sentences/requirements and are dis-
tributed over the given text. We also show that this extension—ILLOD—can be
used beneficially in extraction and identification of requirements glossary terms.

4 Abbreviation Detection

The first step to AEP-matching is the identification of abbreviations. Since “[t]he
styling of abbreviations is inconsistent and arbitrary and includes many possible
variations” [21], abbreviation extraction is usually achieved by finding single
words that are relatively short and have several capital letters [20,31,33]. This
way, not only acronyms are addressed, but also other forms of abbreviations.

For this task, we implement a simple detection algorithm. It returns “true”
for a given word w, if the capital letter portion and the word length exceed
respectively fall below specified parameter values, otherwise it returns “false”.
We test this method on a cleaned list of 1786 abbreviation-expansion pairs known
from the field of information technology [7]1 with abbreviations of different styles.
We reference this list with L, all abbreviations a ∈ L with A, and all expansions
e ∈ L with E. To identify suitable parameters for word length and the proportion
of capital letters, we perform F1-optimisation through an exhaustive search on
all possible combinations of the two parameters. The search is conducted in the
range from 0.01 to 1.0 (in 1/100 steps) for the capital letter portion parameter
1 For reproduction purposes, this list is also included in the supplemental material [13].

AEP-Detection for GTE 67

and from 1 to 20 for the word length parameter. The algorithm is once tested
on all a ∈ A and once on all e ∈ E to obtain false negative and false positive
assignments respectively.

After optimization, with word-length <= 13 and proportion of capital
letters >= 0.29 we achieve Precision = 0.922, Recall = 0.923, and F1 = 0.922.
On full written text, to keep such high accuracy, we apply an additional stop
word filter sorting out words whose lower case matches a stop word and which
only have one uppercase letter, as first letter, e.g. “The”, “Any”, or “If”.

5 Detection of AEP Candidates

For AEP detection, different types of similarity measures are eligible. In a nut-
shell, words are semantically similar if they have the same meaning and syntac-
tically similar if they have a similar character sequence [10]. Semantic measures
rely on data from large corpora or semantic nets—models of terms and their
relations, whereas “syntactic measures operate on given words and their charac-
ters without any assumption of the language or the meaning of the content” [10].
Finally, feature-based similarity rates features that are common to a given pair of
words, e.g. the order of certain letters. Below, we compare three different types
of classifiers for AEP detection based on these three types of similarity measures.

5.1 AEP Detection with Semantic Similarity Measures

Most methods to semantic similarity need to know queried terms in advance.
This applies to knowledge-based methods that rely on lexical databases such
as WordNet [23] and corpus-based methods such as Word2vec [22]. As a result,
these methods are not suitable to solve (B1.1). Thus, we chose FastText (FT) [4]
as a generic approach and state-of-the-practice technique to assess the suitability
of semantic similarity methods for AEP detection. To assign an abbreviation a to
a potential expansion t in the upcoming evaluation, our simple semantic classifier
returns whether

cosine similarity(embedFT (a), embedFT (t)) ≥ threshold,

where the cosine similarity for two vectors x and y is defined as xT y
‖x‖‖y‖ , and

embedFT stands for embedding with FastText.

5.2 AEP Detection with Syntactic Similarity Measures

The second type of classifier uses syntactic similarity measures between a and
t. For this, several measures, as summarized by Gali et al. [10], can be used,
like Levenshtein-Distance (LD)2, Jaro-Winkler-Similarity (JWS), an extension

2 We do not choose the extended Damerau-Levenshtein-Distance as it considers trans-
positions and LD is therefore more sensitive to changes in the sequence of letters.

68 H. Hasso et al.

of Jaro-Similarity, and the Dice-Coefficient (DC). However, the use of syntactic
similarity measures to detect AEPs is limited. Typically, abbreviations contain
only a small proportion of the letters of their respective extensions. E.g., the pair
(“ISO”, “International Organization for Standardization”) has only a share of
3/14 common characters compared in lower case. This is also reflected in Table 1,
where the similarities between randomly selected pairs from L are rather low.

Table 1. Syntactic and semantic similarities between randomly chosen AEPs (a, e) ∈ L
*Distance measures d normalized to similarity in [0, 1] by 1−(d(a, e)/max(|a|, |e|)) [10]

Abbreviation-expansion pair (a, e) LD* JWS DC FT

(LED monitor, Light-emitting diode) 0.15 0.435 0.818 0.30

(Int, integer) 0.286 0.651 0.667 0.20

(PS/2, Personal System/2) 0.235 0.436 0.444 0.19

(IANA, Internet Assigned Numbers Authority) 0.114 0.612 0.316 0.093

(SMM, System Management Mode) 0.136 0.586 0.307 0.142

(U/L, upload) 0.0 0.0 0.444 0.025

(IAP, Internet access provider) 0.042 0.458 0.375 0.06

(CLNS, connectionless network service) 0.0 0.0 0.471 0.076

(MMC, MultiMediaCard) 0.214 0.603 0.333 0.533

(I/O, input/output) 0.083 0.472 0.6 0.147

Table 2. Average syntactic similarities for all (a, e) ∈ L and (a, â) with â = potAbb(e)
*Distance measures d normalized to similarity in [0, 1] by 1−(d(a, x)/max(|a|, |x|)) [10]

Compared pairs LD* JWS DC With pre-processing

(a, e) 0.092 0.309 0.419 No

0.183 0.637 0.422 Yes

(a, â) 0.361 0.422 0.861 No

0.797 0.896 0.865 Yes

To overcome this difficulties, the matching between an abbreviation a and
some possible expansion t can be estimated by creating a potential abbreviation
â = potAbb(t) out of the initial letters of the single tokens of t. Similarity is
then measured between a and â. This contraction allows to compare a and t on
a homogeneous representation level. Table 2 summarizes the average values of
the syntactic comparisons between (a, e) as well as (a, â) for all pairs (a, e) ∈ L,
where â = potAbb(e) following the just mentioned contraction approach.

Further, we apply pre-processing by converting the string into lower case let-
ters, removing punctuation marks and the stop words “for”, “and”, “of”, “in”,

AEP-Detection for GTE 69

“via” and “be”. Table 2 shows, that pre-processing and contraction have a pos-
itive effect for all three examined measures. For (a, e), the average (normalized)
Levenshtein-Distance improves by 0.705, average Jaro-Winkler-Similarity by
0.587, and the average Dice Coefficient by 0.446. Thus, with ac = preprocess(a)
and tc = preprocess(t), the second type of classifiers returns whether

syntacticSimilarityMeasure(ac, potAbb(tc)) ≥ threshold.

Although abbreviations usually have short length—in our dataset the average
after pre-processing is 3.55—it can be assumed that â and a still differ in many
cases despite pre-processing. For the Levenshtein-Distance, there is a relative
difference of 20.3% in average between â and a even after pre-processing, which
shows that, as assumed [21], the formation and use of abbreviations in computer
science is not subject to fixed guidelines/regulations in practice. Even though
the average Jaro-Winkler-Similarity and the average Dice-Coefficient-Similarity
are close to their ideal value of 1.0, they are potentially prone to many false
positive assignments. We address this assumption in Sect. 5.4.

5.3 AEP Detection with Feature-Based Similarity Measures

The third type of classifier is represented by ILLOD, an extension of the algo-
rithm findBestLongForm [31] that we implemented in Python. Whether (a, t) is
a candidate AEP is decided by ILLOD solely on the basis of features of a and
the words in t. Thus, it is a feature-based approach, although each feature is
identified using conditional rules. Algorithm1 specifies ILLOD in pseudo-code:

Algorithm 1: ILLOD
1 ac = preprocess(a); tc = preprocess(t);
2 if check initial letters(a, t) then
3 return True ;
4 else if check initial letters(ac, tc) then
5 return True ;
6 else if check order(ac, tc) and compare lengths(ac, tc) and

check distribution(ac, tc) then
7 return True ;
8 else
9 return False ;

The method check initial letters(a, t) examines for all letters in a whether
they correspond to the initial letters of the words in t. Thus, the calls in lines 2
and 4 check intuitively if the expansion fits the abbreviation, but have difficul-
ties with pairs like (“QnA”, “Questions and Answers”). To solve this, in line 6
additional features are evaluated:

check order(a, t) examines if the order of the letters in a can also be found
in t and if the initial letters of a and t correspond. Based on Schwartz and

70 H. Hasso et al.

Hearst [31], we compare the letters in backward reading direction to favour
an even distribution of the letters over the words of the expansion.

compare lengths(a, t) checks whether the length (count of letters) of a is ≥ the
number of words in t. This sorts out pairs like (“A”, “Advanced Configuration
and Power Interface”), based on the assumption that a should reference as
many words in t as possible.

check distribution(a, t) tests if the letters from a, if present in t, are uniformly
distributed over the words in t, to sort out pairs like (“SMS”, “Systems Net-
work Architecture”) or (“PaaS”, “Palo Alto Research Center”).

5.4 Evaluation of the Approaches on a Synthesized Data-Set

To estimate the accuracy of AEP detection approaches, a data-set D is needed
that contains incorrect and correct AEPs. For this purpose, we compiled D as
D = L∪S, where L corresponds to the list from Sect. 4 and S consists of the pairs
(a, e) in which a random element e from E was assigned to a given abbreviation
a, not matching the real abbreviation of e. To be more formal, the set S can be
described as S = {(a, e) | a ∈ A, e ∈ E, (a, e) /∈ L}.

While |L| = 1786, S grows to |S| = 2710 125. S could be reduced by filtering
to pairs with identical initial letter. However, since L contains AEPs in which the
initial letters differ, this option is discarded. Since we aim to test on a balanced
data-set, where the proportion of abbreviations among all terms approximately
corresponds to that in requirement texts, we test the presented approaches on
different Dα = L∪Sα, where Sα ⊂ S is randomly chosen from S each time, under
the condition that |Sα| = α∗|L|. To obtain an estimate for α, we extract 3195 NPs
from 1102 requirements from ten projects of the PURE data-set [9]. To increase
the recall, all words (not only words in NPs) are checked by our extraction
rules from Sect. 4. In total, we extract 138 abbreviations and therefore estimate
α = 3195/138 = 23.152. Since requirement sets vary in use of abbreviations,
several values for α (8, 16, 24, 48, 72) are considered. To avoid disadvantages
for classifiers based on syntactic and semantic similarity, threshold values are
F1-optimized for all α, given as thold in Table 3.

Table 3. F1 performance of AEP detection for different α. Sem (FT) corresponds
to the semantic classifier in Sect. 5.1, Syn corresponds to the different variants of the
syntactic classifier in Sect. 5.2 and Feat (ILLOD) corresponds to the feature-based
classifier in Sect. 5.3. Best thresholds are given in the thold columns. *Normalised LD:
LD∗(a, t) = 1 − (LD(ac, potAbb(tc))/max(|ac|, |potAbb(tc)|)) [10]

Classifier α = 8 α = 16 α = 24 α = 48 α = 72

F1 thold F1 thold F1 thold F1 thold F1 thold

Sem FT 0.287 0.13 0.191 0.13 0.146 0.16 0.088 0.16 0.064 0.18

Syn LD* 0.861 0.55 0.841 0.54 0.825 0.52 0.780 0.70 0.776 0.68

JWS 0.874 0.73 0.849 0.79 0.831 0.79 0.800 0.79 0.778 0.84

DC 0.841 0.75 0.811 0.79 0.789 0.77 0.746 0.82 0.723 0.85

Feat ILLOD 0.948 – 0.942 – 0.937 – 0.917 – 0.900 –

AEP-Detection for GTE 71

The results in F1-scores summarized in Table 3 show that the FastText-based
classifier performs poorly. This might be because a word embedding obtained
from FastText can only inaccurately represent a certain word sense if the cor-
responding abbreviation has multiple expansions with heterogeneous meanings.
Classifiers based on syntactic similarity measures have F1-scores between 72 and
87%—on average 80%, but are outperformed by ILLOD, which has between 90
and 94%. In the majority of cases, ILLOD achieves higher precision and recall
at the same time. With increasingly larger α (= 48, 72), a weakening of the pre-
cision for ILLOD becomes apparent. Here, it is surpassed by the LD classifier.
However, ILLOD is able to retain the best F1-score across all α thanks to its
consistently high recall in particular. While Table 3 only states F1-scores, these
more detailed results can be obtained within supplemental material [13].

5.5 Evaluation of the Approaches on a Requirements Data-Set

We evaluate the practicability of ILLOD for the intended use case with require-
ments from 15 projects comprised in a PROMISE [30] data-set [5,37]. In order
to simulate their uncontrolled usage, 30 undefined abbreviations are inserted as
replacements for written-out terms into various requirements. Only terms that
appear in at least two requirements are abbreviated in at most one of those.
No further guidelines for abbreviation are followed and different styles, not only
acronyms, are used. This is performed by an independent person, not involved
in this work and without the knowledge of the authors.

We read in the modified data-set as CSV-file. In independent runs, first
abbreviations, as described in Sect. 4, and then ordinary terms without undefined
abbreviations (OT), obtained through noun-chunk extraction [2], are gathered.
In the next step, ILLOD is used to determine AEP-candidates by pairwise com-
parison of the abbreviations with the ordinary terms. The pairs created this way
are then merged to AEP groups—clusters of exactly one abbreviation and all
its potential expansions. For the modified PROMISE data-set, ILLOD creates
115 term tuples, combined to 51 AEP groups. Subsequently, this list of all deter-
mined AEP candidates is compared with the actual replacements. As a result,
the extraction approach detects 29 of 30 inserted abbreviations and ILLOD is
able to indicate the correct expansions for 25 of them.

We performed the same experiment with the semantic and syntactic clas-
sifiers. The results show that the other classifiers generate more than twice as
many term tuples (AEP candidates) compared to ILLOD in order to indicate
the correct expansion for fewer abbreviations—at maximum 22. Detailed results
can be found again in the supplemental material [13].

6 Integration into Clustering Workflow

On the lines of Wang et al. [34], the preceding results confirm that different
types of synonyms require different adapted approaches to calculating similarity,
in particular for AEP-detection. Before we describe how AEP-specific methods

72 H. Hasso et al.

like ILLOD can be integrated into clustering of GTE tools, it is necessary to
discuss how to ensure that the clusters created are meaningful and useful.

Arora et al. [2] create an ideal cluster solution from a given domain model
against which the clusters obtained by different clustering algorithms have to
be measured/compared/evaluated. We adopt this guiding principle in order to
find a good strategy for the integration of ILLOD. We do not intend to evaluate
different clustering algorithms, but rather to show how two already optimized
clustering results—one for ordinary terms according to Arora et al. [2] and one
for AEP groups—can be merged. To do so, some theoretical considerations on
how ideal clusters can be constructed for this are required.

6.1 Ideal Clustering Solution

Arora et al. [2] create ideal clusters around a single concept c from the domain
model, where the clusters also contain variants of terms that are conceptually
equivalent to c and terms that are related to c according to the domain model.

Terms within individual AEP groups have a different relation to each other—
indicating that two terms can be used as an expansion/definition for the same,
as yet undefined, abbreviation. Thus, AEP groups differ in type from the ideal
clusters of Arora et al. [2]. As AEP groups are designed to indicate probable
ambiguities, they should not be separated in an ideal cluster solution.

As the ordinary terms within the individual AEP groups do not have to
be conceptually related to each other according to the domain model, we must
assume that they are distributed over the different clusters of the ideal clusters.

AR

audit
report adjuster

role

adjuster

available part

available online time

audit

appearance

appearance
of product

availability schedule

Recycled part audit

total score
of audit

corporate online
availability schedule

corporate color
scheme

Fig. 1. Glossary term clusters of ordinary terms (grey) and overlay cluster for abbre-
viation “AR” and its possible expansions (blue) for a “vehicle parts finder system”.
(Color figure online)

AEP-Detection for GTE 73

This leads to the conclusion that AEP groups in an ideal cluster solution
must be considered as so-called overlay clusters, which implies that the AEP
groups are included as additional clusters. Figure 1 shows an example for this,
based on the requirements from a “Vehicle Parts Finder System” part of the
PROMISE data-set [5] as project #5.

6.2 GTE Processing Steps

Considerations from the previous section lead us to propose the approach for
the integration of ILLOD into a given GTE tool, as outlined in Fig. 2.

First, abbreviations are extracted from the given text, as described in Sect. 4
and then reduced to only consider yet undefined ones. Further, general glossary
term candidates are extracted, e.g., through noun-chunking, and then cleaned
from the abbreviations to a set of ordinary terms. ILLOD is then used to cluster
abbreviations with their potential expansions into AEP groups, while a general
synonym clustering approach, such as presented by Arora et al. [2], is used to
cluster the ordinary terms.

As AEP groups are added into the final cluster solution in the last step,
this will produce overlapping clusters. To evaluate the solutions generated by
this approach, in addition to an ideal cluster solution, a metric is required to
determine the score of agreement between an overlapping clustering solution and
an overlapping ground truth—the ideal cluster solution. The OMEGA-Index Ω,
a metric based on pair counts, introduced by Collins et al. [6], can achieve this.

Another argument for generating disjoint clusters of ordinary terms in the
second-last step, besides the ones given by Arora et al. [2], is indicated by Ω. It
shows the difficulty of making overlapping cluster solutions more similar to the
ground truth clustering. For calculation, Ω uses the contingency table C. The
entries ci,j ∈ C indicate the number of all pairs that appear in exactly i clusters in
the solution and in exactly j clusters in the ground truth. A necessary condition
to increase Ω between a generated cluster solution and a given ground truth is to
modify the cluster solution so, that their agreement (sum of all diagonal values in
C) is increased and their disagreement (sum of all values outside the diagonal)
is decreased. Finally, an enlargement of the matrix would cause only a linear
increase in the number of agreement fields, while the number of disagreement
fields increases quadratically. Therefore, we propose the combination of disjoint
clustering with separately calculated AEP group overlay clusters as introduced
in Sect. 6.1.

7 Discussion

In the following, we discuss limitations and potential threats to validity [15] of
our ILLOD approach to AEP detection, its evaluation, as well as considerations
on its strengths and its integration to glossary term candidate clustering.

Repeatability. We provide our source code and data-sets, as well as additional
evaluation data [13] for replication.

74 H. Hasso et al.

Fig. 2. Proposed workflow for the integration of ILLOD into a given GTE tool

Construct Validity. Regarding (B1.1) threats are neglectable, as we directly work
on extracted terms obtained via well known and reliable NLP techniques, and
parameters for the identification of abbreviations are retrieved from real world
examples and can be adjusted to fit domain specific peculiarities. Towards the
more general (B1), homonyms and hyponyms are not detected explicitly. Yet, the
analyst might be enabled to spot some during manual inspection of the clusters,
although in general this problem needs to be addressed in a separate solution.
However, focus of this work is on abbreviations, as defined in (B1.1).

AEP-Detection for GTE 75

Internal Validity. To minimize the risk of threats, we tested the similarity mea-
sures and classifiers with the same cleaned list of defined abbreviations and under
several portions α of abbreviations within the text. Semantic and syntactic sim-
ilarity measures, are tested with different thresholds.

External Validity. Parameters and features for abbreviation detection might be
context and language specific. E.g., two examples from the German armed forces
to abbreviate a unit of organization and an employment title exceed the limits of
our detection: First, (“SABCAbwGSchAufg”, “Schule ABC-Abwehr und Gesetz-
liche Schutzaufgaben”) is with 15 letters longer than our limit of 13. Second,
(“Schirrmstr”, “Schirrmeister”) has with 0.1 a too low portion of capital letters—
this is presumably typical for simply truncated words. It shows that parameters
need to be adjusted or some specific rules have to be added for domains with
notably different guidelines. The list we used [7] is open community built without
guidelines and thus heterogeneous abbreviation styles not limited to acronyms.
Yet, it is domain specific. Further, we only used English terms. Parameters and
accuracy might vary for other languages, e.g. in German rules for noun-splitting
differ. However, parameters can be easily adapted through optimization on other
data-sets. Similar, features evaluated by ILLOD can be easily adapted to domain
specific patterns. Yet, the tests on the PROMISE data-set with requirements
from 15 projects from different domains, indicate some general applicability. We
plan to verify our approach on further data-sets in future research.

Conclusion Validity. To mitigate threats, the modifications to the PROMISE
data-set as well as the evaluation of detection results is conducted by an external
independent person without exposure of details to the authors.

The considerations on cluster integration are based on related work [2] and
initial experiments on optimization of different clustering algorithms with the
OMEGA-Index. However, we plan to substantiate this in future experiments.
Based on our findings, the proposed workflow has the following advantages:

(1) By using AEP groups, we avoid to decide which pair of terms belong together
automatically, which is a challenging problem according to Jiang et al. [16].

(2) AEP groups have ergonomic as well as procedural advantages:
(a) The analyst is motivated to build the list of abbreviations in parallel.
(b) The analyst has direct insight into how an abbreviation could be

expanded alternatively, as alternative expansions are likely to be
encountered in the same cluster, and thus the analyst gets another
opportunity to reduce ambiguities.

(3) Since the AEP groups are added to the generated cluster of ordinary terms
in a post-processing step from a clustering point of view, the AEP groups
ensure that unknown abbreviations and proposed expansions are placed in
the same cluster, regardless of the clustering algorithm.

(4) Adding additional AEP groups lead to a final result with overlapping clus-
ters, but mitigates the disadvantages of such, as these additional clusters
are of different type than those of the ordinary terms.

(5) Using a feature-based approach to AEP detection, as ILLOD, provides high
flexibility to adjust to domain specific rules, as new rules can easily be added.

76 H. Hasso et al.

We further conducted preliminary experiments with hybrid approaches to
AEP detection, combining different types of classifiers. For example, to check the
initial letter equivalence rule contained in ILLOD in a pre-processing step for all
syntactic measures. This leads to increased accuracy for this type of classifier, as
can be learned from the detailed evaluation data [13]. However, due to the nature
of feature-based approaches of combining and potentially weighting different
rules/features, it appears to be more plausible, to potentially integrate syntactic
measures as additional rules here, rather than to outsource other features to
excessive pre-processing.

8 Conclusions

Early glossary building and synonym detection is relevant to reduce ambiguity in
requirements sets, e.g. through definition of preferred terms [14]. We demonstrate
that different types of synonyms [14] need different treatments in detection. In
particular, classical syntactic and semantic similarity measures perform poorly
on abbreviations, as we show with our experiments in Sect. 5. With our ILLOD
tool, we present a new feature-based approach to AEP detection, which outper-
forms those classic approaches. It is also more flexible, as rule sets can be easily
adapted to context specific characteristics, e.g., guidelines or other languages.
Initial experiments indicate that investigation of hybrid approaches might be
promising, though. We further propose how to integrate groups of abbreviations
and their potential expansions to clusters of ordinary glossary term candidates
as additional separate type of clusters.

This enables analysts to build the abbreviation list in parallel to the glossary
and start this process early already on preliminary requirements. Further, we
assume our approach not only to be relevant for early harmonization of require-
ments document terminology, but also if glossary and abbreviation list have to be
built over several documents spanning multiple project phases and/or involved
organizations and domains. In addition, different clusters for different synonym
types can support the building of synonym groups for glossaries or thesauri with
cross references [14] and context specific grouping as well as domain models.

References

1. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated checking of confor-
mance to requirements templates using natural language processing. IEEE Trans.
Softw. Eng. 41(10), 944–968 (2015). https://doi.org/10.1109/TSE.2015.2428709

2. Arora, C., Sabetzadeh, M., Briand, L., Zimmer, F.: Automated extraction and
clustering of requirements glossary terms. IEEE Trans. Softw. Eng. 43(10), 918–
945 (2017). https://doi.org/10.1109/TSE.2016.2635134

3. Bhatia, K., Mishra, S., Sharma, A.: Clustering glossary terms extracted from large-
sized software requirements using FastText. In: 13th Innovations in Software Engi-
neering Conference, Formerly Known as India Software Engineering Conference
(ISEC 2020), pp. 1–11 (2020). https://doi.org/10.1145/3385032.3385039

https://doi.org/10.1109/TSE.2015.2428709
https://doi.org/10.1109/TSE.2016.2635134
https://doi.org/10.1145/3385032.3385039

AEP-Detection for GTE 77

4. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with
subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017). https://
doi.org/10.1162/tacl a 00051

5. Cleland-Huang, J., Settimi, R., Zou, X., Solc, P.: Automated classi-
fication of non-functional requirements. Requirements Eng. 12(2), 103–
120 (2007). https://doi.org/10.1007/s00766-007-0045-1. http://ctp.di.fct.unl.pt/
RE2017//downloads/datasets/nfr.arff

6. Collins, L.M., Dent, C.W.: Omega: a general formulation of the rand index of
cluster recovery suitable for non-disjoint solutions. Multivar. Behav. Res. 23(2),
231–242 (1988). https://doi.org/10.1207/s15327906mbr2302 6

7. Computer Hope: computer acronyms and abbreviations. https://www.
computerhope.com/jargon/acronyms.htm. Accessed 16 Oct 2021

8. Dwarakanath, A., Ramnani, R.R., Sengupta, S.: Automatic extraction of glossary
terms from natural language requirements. In: 21st IEEE International Require-
ments Engineering Conference (RE 2013), pp. 314–319. IEEE (2013). https://doi.
org/10.1109/RE.2013.6636736

9. Ferrari, A., Spagnolo, G.O., Gnesi, S.: PURE: a dataset of public requirements
documents. In: 25th IEEE International Requirements Engineering Conference (RE
2017), pp. 502–505 (2017). https://doi.org/10.1109/RE.2017.29

10. Gali, N., Mariescu-Istodor, R., Hostettler, D., Fränti, P.: Framework for syntactic
string similarity measures. Expert Syst. Appl. 129, 169–185 (2019). https://doi.
org/10.1016/j.eswa.2019.03.048

11. Gemkow, T., Conzelmann, M., Hartig, K., Vogelsang, A.: Automatic glossary term
extraction from large-scale requirements specifications. In: 26th IEEE Interna-
tional Requirements Engineering Conference (RE 2018), pp. 412–417. IEEE (2018).
https://doi.org/10.1109/RE.2018.00052

12. Glinz, M.: A glossary of requirements engineering terminology. Technical report,
International Requirements Engineering Board IREB e.V., May 2014

13. Hasso, H., Großer, K., Aymaz, I., Geppert, H., Jürjens, J.: AEPForGTE/ILLOD:
Supplemental Material v(1.5). https://doi.org/10.5281/zenodo.5914038

14. ISO: 25964-1: information and documentation—thesauri and interoperability with
other vocabularies—part 1: thesauri for information retrieval. ISO (2011)

15. Jedlitschka, A., Ciolkowski, M., Pfahl, D.: Reporting experiments in software engi-
neering. In: Shull, F., Singer, J., Sjøberg, D.I.K. (eds.) Guide to Advanced Empir-
ical Software Engineering, pp. 201–228. Springer, London (2008). https://doi.org/
10.1007/978-1-84800-044-5 8

16. Jiang, Y., Liu, H., Jin, J., Zhang, L.: Automated expansion of abbreviations based
on semantic relation and transfer expansion. IEEE Trans. Softw. Eng. (2020).
https://doi.org/10.1109/TSE.2020.2995736

17. Justeson, J.S., Katz, S.M.: Technical terminology: some linguistic properties and
an algorithm for identification in text. Nat. Lang. Eng. 1(1), 9–27 (1995). https://
doi.org/10.1017/S1351324900000048

18. Kiyavitskaya, N., Zeni, N., Mich, L., Berry, D.M.: Requirements for tools for ambi-
guity identification and measurement in natural language requirements specifica-
tions. Requirements Eng. 13(3), 207–239 (2008). https://doi.org/10.1007/s00766-
008-0063-7

19. van Lamsweerde, A.: Requirements Engineering. Wiley, Hoboken (2009)
20. Larkey, L.S., Ogilvie, P., Price, M.A., Tamilio, B.: Acrophile: an automated

acronym extractor and server. In: 5th ACM Conference on Digital Libraries, pp.
205–214 (2000). https://doi.org/10.1145/336597.336664

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1007/s00766-007-0045-1
http://ctp.di.fct.unl.pt/RE2017//downloads/datasets/nfr.arff
http://ctp.di.fct.unl.pt/RE2017//downloads/datasets/nfr.arff
https://doi.org/10.1207/s15327906mbr2302_6
https://www.computerhope.com/jargon/acronyms.htm
https://www.computerhope.com/jargon/acronyms.htm
https://doi.org/10.1109/RE.2013.6636736
https://doi.org/10.1109/RE.2013.6636736
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1016/j.eswa.2019.03.048
https://doi.org/10.1016/j.eswa.2019.03.048
https://doi.org/10.1109/RE.2018.00052
https://doi.org/10.5281/zenodo.5914038
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1007/978-1-84800-044-5_8
https://doi.org/10.1109/TSE.2020.2995736
https://doi.org/10.1017/S1351324900000048
https://doi.org/10.1017/S1351324900000048
https://doi.org/10.1007/s00766-008-0063-7
https://doi.org/10.1007/s00766-008-0063-7
https://doi.org/10.1145/336597.336664

78 H. Hasso et al.

21. Merriam-Webster: what is an abbreviation? https://www.merriam-webster.com/
dictionary/abbreviation. Accessed 17 Oct 2021

22. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

23. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11),
39–41 (1995). https://doi.org/10.1145/219717.219748

24. Okazaki, N., Ananiadou, S.: A term recognition approach to acronym recogni-
tion. In: COLING/ACL 2006 Main Conference Poster Sessions, pp. 643–650. ACM
(2006)

25. Park, Y., Byrd, R.J.: Hybrid text mining for finding abbreviations and their def-
initions. In: Conference on Empirical Methods in Natural Language Processing
(2001)

26. Park, Y., Byrd, R.J., Boguraev, B.K.: Automatic glossary extraction: beyond ter-
minology identification. In: 19th International Conference on Computational Lin-
guistics (COLING 2002), vol. 1, pp. 1–7 (2002). https://doi.org/10.3115/1072228.
1072370

27. Pohl, K.: Requirements Engineering. Springer, Heidelberg (2010)
28. Pohl, K.: The three dimensions of requirements engineering. In: Rolland, C.,

Bodart, F., Cauvet, C. (eds.) CAiSE 1993. LNCS, vol. 685, pp. 63–80. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36926-1 5

29. Pustejovsky, J., Castano, J., Cochran, B., Kotecki, M., Morrell, M.: Automatic
extraction of acronym-meaning pairs from MEDLINE databases. In: MEDINFO
2001, pp. 371–375. IOS Press (2001). https://doi.org/10.3233/978-1-60750-928-8-
371

30. Sayyad Shirabad, J., Menzies, T.: PROMISE software engineering repository.
School of Information Technology and Engineering, University of Ottawa, Canada
(2005). http://promise.site.uottawa.ca/SERepository/

31. Schwartz, A.S., Hearst, M.A.: A simple algorithm for identifying abbreviation def-
initions in biomedical text. In: Biocomputing 2003, pp. 451–462. World Scientific
(2002). https://doi.org/10.1142/9789812776303 0042

32. Sohn, S., Comeau, D.C., Kim, W., Wilbur, W.J.: Abbreviation definition identi-
fication based on automatic precision estimates. BMC Bioinform. 9(1), 402–412
(2008). https://doi.org/10.1186/1471-2105-9-402

33. Song, M., Chang, P.: Automatic extraction of abbreviation for emergency manage-
ment websites. In: 5th International Conference on Information Systems for Crisis
Response and Management (ISCRAM), pp. 93–100 (2008)

34. Wang, Y., Manotas Gutièrrez, I.L., Winbladh, K., Fang, H.: Automatic detection
of ambiguous terminology for software requirements. In: Métais, E., Meziane, F.,
Saraee, M., Sugumaran, V., Vadera, S. (eds.) NLDB 2013. LNCS, vol. 7934, pp.
25–37. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38824-8 3

35. Yeganova, L., Comeau, D.C., Wilbur, W.J.: Identifying abbreviation definitions
machine learning with naturally labeled data. In: 9th International Conference on
Machine Learning and Applications, pp. 499–505. IEEE (2010). https://doi.org/
10.1109/ICMLA.2010.166

36. Zhou, W., Torvik, V.I., Smalheiser, N.R.: ADAM: another database of abbrevia-
tions in MEDLINE. Bioinformatics 22(22), 2813–2818 (2006). https://doi.org/10.
1093/bioinformatics/btl480

37. Zou, X., Settimi, R., Cleland-Huang, J.: Improving automated requirements trace
retrieval: a study of term-based enhancement methods. Empir. Softw. Eng. 15(2),
119–146 (2009). https://doi.org/10.1007/s10664-009-9114-z. http://ctp.di.fct.unl.
pt/RE2017//downloads/datasets/nfr.arff

https://www.merriam-webster.com/dictionary/abbreviation
https://www.merriam-webster.com/dictionary/abbreviation
http://arxiv.org/abs/1301.3781
https://doi.org/10.1145/219717.219748
https://doi.org/10.3115/1072228.1072370
https://doi.org/10.3115/1072228.1072370
https://doi.org/10.1007/978-3-642-36926-1_5
https://doi.org/10.3233/978-1-60750-928-8-371
https://doi.org/10.3233/978-1-60750-928-8-371
http://promise.site.uottawa.ca/SERepository/
https://doi.org/10.1142/9789812776303_0042
https://doi.org/10.1186/1471-2105-9-402
https://doi.org/10.1007/978-3-642-38824-8_3
https://doi.org/10.1109/ICMLA.2010.166
https://doi.org/10.1109/ICMLA.2010.166
https://doi.org/10.1093/bioinformatics/btl480
https://doi.org/10.1093/bioinformatics/btl480
https://doi.org/10.1007/s10664-009-9114-z
http://ctp.di.fct.unl.pt/RE2017//downloads/datasets/nfr.arff
http://ctp.di.fct.unl.pt/RE2017//downloads/datasets/nfr.arff

Towards Explainable Formal Methods: From
LTL to Natural Language with Neural Machine

Translation

Himaja Cherukuri1, Alessio Ferrari2(B) , and Paola Spoletini1

1 Kennesaw State University, Atlanta, GA, USA
pspoleti@kennesaw.edu

2 CNR-ISTI, Pisa, Italy
alessio.ferrari@isti.cnr.it

Abstract. [Context andmotivation]Requirements formalisation facilitates rea-
soning about inconsistencies, detection of ambiguities, and identification crit-
ical issues in system models. Temporal logic formulae are the natural choice
when it comes to formalise requirements associated to desired system behaviours.
[Question/problem] Understanding and mastering temporal logic requires a for-
mal background. Means are therefore needed to make temporal logic formulae
interpretable by engineers, domain experts and other stakeholders involved in
the development process. [Principal ideas/results] In this paper, we propose to
use a neural machine translation tool, named OPENNMT, to translate Linear
Temporal Logic (LTL) formulae into corresponding natural language descrip-
tions. Our results show that the translation system achieves an average BLEU
(BiLingual Evaluation Understudy) score of 93.53%, which corresponds to high-
quality translations. [Contribution] Our neural model can be applied to assess if
requirements have been correctly formalised. This can be useful to requirements
analysts, who may have limited confidence with LTL, and to other stakeholders
involved in the requirements verification process. Overall, our research preview
contributes to bridging the gap between formal methods and requirements engi-
neering, and opens to further research in explainable formal methods.

Keywords: Requirements engineering · Formal methods ·Machine
translation · Neural networks · Temporal logic · LTL · Natural language
processing · NLP

1 Introduction

Temporal logic enables the expression of time-related system requirements and has
widely been used in requirements and software engineering research [5,21]. Linear
temporal logic (LTL) is a well-known type of temporal logic that treats time as a linear
sequence of states. In LTL, each state has only one possible future, and an LTL for-
mula describes the behavior of a single computation of a program. With LTL, system
engineers can formalize temporal properties that express the absence, universality, exis-
tence, precedence, and the response of predicates about observable system variables.

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 79–86, 2022.
https://doi.org/10.1007/978-3-030-98464-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_7&domain=pdf
http://orcid.org/0000-0002-0636-5663
http://orcid.org/0000-0001-7922-4936
https://doi.org/10.1007/978-3-030-98464-9_7

80 H. Cherukuri et al.

LTL has been used in requirements engineering (RE) for several tasks, including the for-
malization of goals in goal-oriented requirements engineering (GORE) [15], the expres-
sion of desired properties for run-time verification [3], and model checking [6]. The
correct specification and interpretation of LTL formulae requires a strong mathematical
background and can hardly be done by domain experts [5,7]. Therefore, researchers
have dedicated efforts to translate natural language (NL) requirements into temporal
logic formulae [5,10,11,18] to support domain experts in the formalization of require-
ments. However, these approaches still require domain experts to have an understanding
of the produced formulae, so to make sure that the translation is correctly preserving the
meaning of the original requirement. To support them in this task, we propose to pro-
vide a way to translate LTL formulae into their NL explanation. To address this goal,
we plan to exploit the potential of neural machine translation platforms, and in partic-
ular the open-source framework OpenNMT (https://opennmt.net). Indeed, though the
goal of translating LTL into corresponding explanations can in principle be addressed
by means of a rule-based or heuristic approach, a neural machine translation strategy
is more flexible, as it can facilitate language simplification and transformations—i.e.,
summaries and paraphrases [2,13,20], without requiring the maintenance of a com-
plex rule-based system. In addition, it can better support the readability of the expres-
sions [2], while ensuring the correctness of the translation. As LTL formulae can often
be better understood when associated with visual representations [1], we also plan to
augment the translation with a graphical representation that could help clarifying pos-
sible ambiguities introduced by the NL translation. At the current stage, we have per-
formed a feasibility study, in which we trained an LTSTM encoder-decoder architecture,
implemented in the OpenNMT framework, with a set of manually defined examples. In
the next steps, we will consolidate the approach, we will develop the visual part of our
idea, and we will validate the resulting prototype with potential users.

2 Towards Explainable LTL Requirements

The overall goal of our research is to facilitate the correct understanding of requirements
expressed in LTL by subjects who have a limited expertise in formal logic. To this end,
we plan to implement a system that translates LTL formulae into corresponding NL
explanations, augmented by visual diagrams with annotations. We will also empirically
evaluate the approach, first by ensuring that the automatic translation is actually correct,
and then by evaluating to what extent the translation facilitates the understanding of LTL
requirements. More specifically, our research questions (RQs) are the following:

– RQ1: To what extent can neural machine translation be used to translate LTL for-
mulae into NL explanations?

– RQ2: How can NL explanations of LTL formulae be augmented with visual repre-
sentations?

– RQ3: Does the automatic explanation of LTL formulae help users in understanding
them?

To answer RQ1, we first perform a feasibility study, reported in this paper (cf.
Sect. 2.1), and then we consolidate the approach by (a) ensuring that the approach does

https://opennmt.net

LTL to Natural Language 81

not introduce errors in the translation, and (b) ensuring that the readability of the for-
mulae is acceptable, according to standard metrics and through human assessment. To
answer RQ2, we plan to devise solutions by combining visual representation of for-
mulae and annotation of traces. Finally, RQ3 will be addressed through an empirical
evaluation with students. RQ3 will consider NL explanations alone and also augmented
with visual representations.

2.1 RQ1: From LTL to NL with Neural Machine Translation

Dataset Definition. To assess the feasibility of using neural machine translation for pro-
viding explanation of LTL formulae, the 3rd author defined 54 unique formulae includ-
ing Boolean operators (!, |,&,=>) and temporal operators (X—next,G—always, F—
eventually, U—until), with associated NL translations. The 2nd author independently
checked the correctness of the translation. For simplicity, the dataset considers only
formulae with no nested temporal operators and the expressions are edited according to
the typical LTL patterns as defined by Dwyer et al. [8], so as to provide representative
LTL requirements that could occur in real-world projects. This initial dataset is com-
posed of domain-agnostic requirements, in which variables were expressed as alpha-
betic letters, e.g. G(a => b), translated as In every moment of the system execution,
if a holds, b should hold (a does not need to hold for the formula to be true). In pro-
viding the translations, the 3rd author made an effort to be consistent across formulae,
using always the same terminology, and the same structure. However, no translation
rule was established beforehand. The repetitiveness of terminology and structure aims
to facilitate learning of the neural model, while the absence of specific rules decided
beforehand enables flexibility. As the set of examples would be too limited for success-
fully training a neural network, the dataset was clerically augmented, by repeating the
same formulae—and associated translations—with combinations of 26 different alpha-
betic letters. The resulting dataset is composed of 12,192 LTL formulae and associated
translations. At this exploratory stage, our goal is not to translate unseen syntactic pat-
tern, but to check whether the unwritten rules adopted for translation can be successfully
learned. Therefore, we feed the network with similar examples that differ solely for the
variable names. The idea is to enable the network to distinguish between operators and
variables, “learn” the LTL syntax for these simple cases, and translate accordingly.

Training and Evaluation. To experiment with our dataset, we selected the OpenNMT
framework for machine translation [14]. This is a widely used platform, supporting dif-
ferent translation tasks, including summarization, image to text, speech-to-text, seque-
nce-to-sequence (our case), and offering two implementations, OpenNMT-py, based on
PyTorch, and OpenNMT-tf, based on TensorFlow. In our case, we selected OpenNMT-
py, as it is claimed by the developers to be more user-friendly, and thus we consider it
more appropriate for the exploratory nature of our study. The architecture adopted for
the task is a 2-layer Long short-term memory (LSTM) neural network with 500 hidden
units on both the encoder and decoder. This is a recurrent neural network (RNN) often
used for sequence-to-sequence learning. We use the default settings of OpenNMT at
this stage, given the exploratory nature of the study.

82 H. Cherukuri et al.

To avoid oversimplifying the problem, we built the training set by first eliminating
the formulae with only one variable from the dataset and then randomly selecting 19%
(of the size of the original dataset) formulae for a total of 2,308. The remaining for-
mulae were randomly split into training (8,048 items, 66% of the total) and validation
(1,836, 15%). The validation set is used to evaluate the convergence of the training. The
model that achieves the lowest perplexity value on this dataset is considered the best
and selected for evaluation in the test set. The whole training activity lasted 7.8 h on a
common laptop.

We evaluate the results on the test set by means of different metrics to check the
quality of the translation. Evaluation is carried out by means of the Tilde MT online tool
(https://www.letsmt.eu/Bleu.aspx). The readability of the resulting formulae is assessed
with the BLEU score (BiLingual Evaluation Understudy) [19]. The BLEU score takes
into account both the difference in lengths of the sentences it compares (automatic trans-
lation and expected one), and their compositions. It is computed as the product of the
brevity penalty and the N Gram overlap. Roughly speaking, the former assigns a penal-
ization to translations that are too short compared to the closest reference length with
an exponential decay, while the latter counts how many single worlds, pairs, triplets,
and quadruples of words match their counterpart in the expected translations.

The visual representation provided by Tilde MT is used to identify translations with
BLEU score lower than 100%—suggesting incorrect translations—and manually assess
them. Indeed, here we want to ensure that the translation is actually 100% correct, and
while a high BLEU score between expected and translated sentence could indicate high
similarity, the actual difference (e.g., in terms of variable names, or in case a negation
is missing) could be crucial for the correctness of the translation.

The BLEU score is 93.53%, indicating high-quality translations, thus suggesting
that the translation of LTL formulae with neural machine translation is feasible. It is
worth noting that issues are known with the usage of automatic scores in machine trans-
lation applied to software engineering problems [12], and further studies with human
subjects need to be performed to actually assess the quality of the translation.

Looking at single cases with lower BLEU score, we see that while the syntax is
somehow correct, there are some difficulties with the U operator. For example, the for-
mula (c & q) U o is translated as There has to be a moment (the current one or in the
future) in which u holds, and, if it is not the current one, from the current moment to
that moment both c and q have to hold, BLEU = 94%. The translator introduces the
spurious u variable, possibly confused by the letter U of the operator. Similar situations
however occur also with other letters. Low BLEU scores are obtained also for complex
expressions such as (c U q) & (o U q), in which only the initial part of the formula
is translated, while the second part is entirely missing: There has to be a moment (the
current one or in the future) in which q holds, and, if it is not the current one, from the
current moment to that moment c has to hold, BLEU = 35.9%. The first issue could
be addressed by using specific keywords or characters for the operators, or experiment-
ing with longer translation units (i.e., words). The second problem could be solved by
segmenting the formula beforehand with rule-based approaches before feeding it to the
translator.

https://www.letsmt.eu/Bleu.aspx

LTL to Natural Language 83

Consolidation. The preliminary evaluation carried out suggests that the project idea
is feasible with currently available technologies. Further work is required, however, to
provide empirically sound evidence to answer RQ1. In particular, besides replicating
the current experiments with different neural network architectures, the next steps of
our research will address the issue of correctness, by studying the possible problems
leading to inaccuracy, and providing solutions towards the goal of 100% correctness [4].
Furthermore, we will extend the evaluation to nested operators, so that full coverage of
LTL formulae is possible.

Concerning readability of the translations, we plan to work in three directions. The
first one consists in assessing the readability of the translations in the context of the
experiments with human subjects carried out in relation to RQ3 (cf. Sect. 2.2). The
second direction aims to enhance the approach with automatic text simplification tech-
niques [2], which can be particularly useful in case of lengthy and hard-to-process trans-
lations. Finally, to be able to consider more complex variables, we will analyze the pos-
sibility of having a pre-processing system to simplify the formulae before translating
them, and a post-processing to integrate the original variables into the translation.

2.2 RQ2, RQ3: Visual Representations and Empirical Evaluation

The research activities related to RQ2 and RQ3 will be carried out in parallel with the
consolidation of the results of RQ1.

In relation to RQ2, we will first investigate possible solutions to augment LTL
explanations with visual information. This investigation will consider both the graphi-
cal representation of the formulae, in line with e.g., Ahmed et al. [1], the representation
of the associated traces as done by the LTL Visualiser tool (https://quickstrom.github.
io/ltl-visualizer/), and the annotation of traces with NL text generated from the formu-
lae. To select the appropriate means for graphical representation of formulae, we will
follow a design science approach [22]. Stemming from the literature, we will design an
innovative prototypical solution, and we will perform iterations to refine and validate it.
Differently from the deep learning-based translation of LTL formulae, the graphical rep-
resentation is expected to leverage a rule-based algorithm. Therefore, its correctness is
to be ensured by construction—provided that systematic tests against the requirements
are carried out.

To answer RQ3, we will conduct a controlled experiment to measure if the gener-
ated explanations improve the understandability of LTL formulae. We will consider NL
explanations alone, and also in conjunction with the graphical representations devel-
oped according to RQ2. The experiment will be run with senior undergraduate students
and graduate students attending an RE course covering temporal logic. Participants of
control group and experimental one will be given a set of LTL formulae. For each for-
mula, they will be also given a set of traces, and their task will be to select all the traces
that satisfy the given formula—this exercise is regarded as a way to assess their correct
understanding of the formula. In addition to the formulae, the experimental group will
also be given as input the automatically generated textual explanation, also aided by
the graphical representation, for each of the formulae. Checking the performance of the
two groups will allow us to measure the quality of the support provided by our solution
in this activity. The experiment will be designed to evaluate the different contributions

https://quickstrom.github.io/ltl-visualizer/
https://quickstrom.github.io/ltl-visualizer/

84 H. Cherukuri et al.

given by the NL explanations, and by the graphical representations. After the activity,
participants will be asked to fill out a questionnaire to gather their perceptions about the
task and, for the experimental group, the support obtained by the explanation. To sup-
port evaluation of readability, we plan to also repeat the experiment with eye-tracking
devices. As an additional assessment, we will design an experiment specifically targeted
to understand if the explanations can be useful to check the correctness of the formal-
ization of the requirements. In this case, students in the control group will receive a
set of requirements, each one associated with a supposedly matching LTL formula, and
will need to check whether the formula is correct. The experimental group will have
to do the same, but will also receive the automatically generated NL translation of the
LTL formulae, augmented with visual information.

3 Conclusion and Future Works

This paper presents a research preview on providing means to make requirements
expressed through LTL understandable to subjects with limited expertise in formal
logic. The proposed approach exploits state-of-the-art natural language processing
(NLP) techniques for machine translation to produce NL explanations of LTL formulae.
Our usage of machine translation is innovative with respect to previous literature in NLP
applied to RE [23], which focused more on translating NL into logic formulae or mod-
els, rather than providing textual explanations. As part of our approach, we also plan to
combine NL explanations with visual representations to improve understandability.

The proposed approach has the potential to be a useful tool to support students and
practitioners in learning LTL, but can also have applications in practice. For example, it
can facilitate mutual understanding in those industry-academia collaborations in which
practitioners provide the informal system specification, and formal methods experts
provide formal designs, as common, e.g. in the railway domain [9]. Furthermore, the
approach can be used to support verification via model checking of incomplete systems,
which is needed when a software is developed incrementally or through decomposition.
Existing solutions to this problem (e.g., Menghi et al. [17]) rely on the generation of
LTL constraints to be satisfied by novel components to be developed. In these contexts,
NL explanations can be particularly useful to requirements analysts and developers in
the design of the novel components.

Future works will address the RQs of this research preview, with the development
of appropriate visual representations, and with extensive empirical evaluations. At this
stage, to have a preliminary assessment of the feasibility of our idea, we focused only
on simple structures and we built the dataset using single letter variables, and providing
very “mechanical” translations. In the next steps of our work, we will enrich our dataset
to include more flexibility, and improve the naturalness of the translations. To extend
the applicability of our idea, we will also explore how to translate LTL statements into
structured NL requirements, for example in EARS [16] or FRETISH [11]. Using con-
sistent sentence structures improves readability and understandability. This approach
would help towards your goal of making LTL formulae easier to understand.

LTL to Natural Language 85

References

1. Ahmed, Z., et al.: Bringing LTL model checking to biologists. In: Bouajjani, A., Monniaux,
D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 1–13. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-52234-0 1

2. Al-Thanyyan, S.S., Azmi, A.M.: Automated text simplification: a survey. ACM Comput.
Surv. (CSUR) 54(2), 1–36 (2021)

3. Bauer, A., Leucker, M., Schallhart, C.: Runtime verification for LTL and TLTL. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 20(4), 1–64 (2011)

4. Berry, D.M.: Empirical evaluation of tools for hairy requirements engineering tasks. Empir-
ical Softw. Eng. 26(6) (2021). Article number: 111. https://doi.org/10.1007/s10664-021-
09986-0

5. Brunello, A., Montanari, A., Reynolds, M.: Synthesis of LTL formulas from natural language
texts: state of the art and research directions. In: 26th International Symposium on Temporal
Representation and Reasoning (TIME 2019) (2019)

6. Clarke, E., Grumberg, O., Kroening, D., Peled, D., Veith, H.: Model Checking. Cyber Phys-
ical Systems Series. MIT Press, Cambridge (2018)

7. Czepa, C., Zdun, U.: On the understandability of temporal properties formalized in linear
temporal logic, property specification patterns and event processing language. IEEE Trans.
Softw. Eng. 46(1), 100–112 (2018)

8. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE 1999, pp. 411–420 (1999)

9. Ferrari, A., ter Beek, M.H.: Formal methods in railways: a systematic mapping study. ACM
Comput. Surv. (2022). https://doi.org/10.1145/3520480

10. Ghosh, S., Elenius, D., Li, W., Lincoln, P., Shankar, N., Steiner, W.: ARSENAL: automatic
requirements specification extraction from natural language. In: Rayadurgam, S., Tkachuk,
O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 41–46. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-40648-0 4

11. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated formalization
of structured natural language requirements. IST 137, 106590 (2021)

12. Gros, D., Sezhiyan, H., Devanbu, P., Yu, Z.: Code to comment “translation”: data, metrics,
baselining & evaluation. In: ASE 2020, pp. 746–757. IEEE (2020)

13. Gupta, A., Agarwal, A., Singh, P., Rai, P.: A deep generative framework for paraphrase gen-
eration. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

14. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.: OpenNMT: open-source toolkit for
neural machine translation. In: ACL 2017, pp. 67–72 (2017)

15. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition systems from
goal-oriented requirements models. Autom. Softw. Eng. 15(2), 175–206 (2008). https://doi.
org/10.1007/s10515-008-0027-7

16. Mavin, A., Wilkinson, P., Harwood, A., Novak, M.: Easy approach to requirements syntax
(EARS). In: 2009 17th IEEE International Requirements Engineering Conference, pp. 317–
322. IEEE (2009)

17. Menghi, C., Spoletini, P., Chechik, M., Ghezzi, C.: Supporting verification-driven incremen-
tal distributed design of components. In: Russo, A., Schürr, A. (eds.) FASE 2018. LNCS,
vol. 10802, pp. 169–188. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89363-
1 10

18. Nikora, A.P., Balcom, G.: Automated identification of LTL patterns in natural language
requirements. In: ISSRE 2009, pp. 185–194. IEEE (2009)

19. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of
machine translation. In: ACL 2002, pp. 311–318 (2002)

https://doi.org/10.1007/978-3-319-52234-0_1
https://doi.org/10.1007/978-3-319-52234-0_1
https://doi.org/10.1007/s10664-021-09986-0
https://doi.org/10.1007/s10664-021-09986-0
https://doi.org/10.1145/3520480
https://doi.org/10.1007/978-3-319-40648-0_4
https://doi.org/10.1007/978-3-319-40648-0_4
https://doi.org/10.1007/s10515-008-0027-7
https://doi.org/10.1007/s10515-008-0027-7
https://doi.org/10.1007/978-3-319-89363-1_10
https://doi.org/10.1007/978-3-319-89363-1_10

86 H. Cherukuri et al.

20. Siddharthan, A.: A survey of research on text simplification. ITL-Int. J. Appl. Linguist.
165(2), 259–298 (2014)

21. Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements engineer-
ing. IEEE Trans. Softw. Eng. 26(10), 978–1005 (2000)

22. Wieringa, R.J.: Design Science Methodology for Information Systems and Software Engi-
neering. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43839-8

23. Zhao, L., et al.: Natural language processing for requirements engineering: a systematic map-
ping study. ACM Comput. Surv. (CSUR) 54(3), 1–41 (2021)

https://doi.org/10.1007/978-3-662-43839-8

Req2Spec: Transforming Software
Requirements into Formal Specifications

Using Natural Language Processing

Anmol Nayak1(B), Hari Prasad Timmapathini1, Vidhya Murali1,
Karthikeyan Ponnalagu1, Vijendran Gopalan Venkoparao1,

and Amalinda Post2

1 ARiSE Labs at Bosch, Bengaluru, India
{Anmol.Nayak,Hariprasad.Timmapathini,Vidhya.Murali,

Karthikeyan.Ponnalagu,GopalanVijendran.Venkoparao}@in.bosch.com
2 Robert Bosch GmbH, Stuttgart, Germany

Amalinda.Post@de.bosch.com

Abstract. [Context and motivation] Requirement analysis and Test
specification generation are critical activities in the Software Develop-
ment Life Cycle (SDLC), which if not done correctly can lead to defects
in the software system. Manually performing these tasks on Natural Lan-
guage Requirements (NLR) is time consuming and error prone. [Ques-
tion/problem]The problem is to facilitate the automation of these activ-
ities by transforming the NLR into Formal Specifications. [Principal
ideas/results] In this paper we present Req2Spec, a Natural Language
Processing (NLP) based pipeline that performs syntactic and semantic
analysis on NLR to generate formal specifications that can be readily con-
sumed by HANFOR, an industry scale Requirements analysis and Test
specification generation tool. We considered 222 automotive domain soft-
ware requirements at BOSCH, 71% of which were correctly formalized.
[Contribution] Req2Spec will be an aid to stakeholders of the SDLC as
it seamlessly integrates with HANFOR enabling automation.

Keywords: Requirements formalization · Natural Language
Processing · Requirements analysis · Test specification generation ·
Language model

1 Introduction

Software requirements analysis is one of the initial phases in the SDLC where
requirements are analyzed on several aspects before being passed on to the down-
stream stakeholders for design, implementation and testing of the system. As
there are many stakeholders involved in a software project delivery starting from
the requirements engineer to the software tester, errors in the handling of require-
ments can percolate unnoticed. Getting early insights on the requirements is vital
and recommended as it can reveal issues like inconsistencies, ambiguities, incom-
pleteness [1]. There have been a few works that perform analysis of NLR [2–5],
c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 87–95, 2022.
https://doi.org/10.1007/978-3-030-98464-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_8&domain=pdf
https://doi.org/10.1007/978-3-030-98464-9_8

88 A. Nayak et al.

however they lack support for integration with HANFOR [6] and have not pro-
vided an end-to-end pipeline utilizing recent advances in NLP techniques for it
to be leveraged across industry scale software projects. Industry scale NLR anal-
ysis tools such as IBM RQA [7] and QRA QVscribe [8] predominantly perform
syntactic analysis (e.g. identifying vague terms, passive voice etc.) and minimal
semantic analysis (e.g. they do not check for properties such as vacuity, consis-
tency etc.). Test specification generation is another important phase in the later
stages of the SDLC where significant amount of time and effort is spent. Some of
the recent works have proposed automatic generation of test specification from
NLR [9–12] using NLP techniques from which we have leveraged some of the
components for syntactic and semantic information extraction.

Requirements formalization aims to transform NLR into pre-defined boiler-
plates having a restricted grammar, enabling large scale automated processing of
requirements for downstream tasks such as requirements analysis and test speci-
fication generation. There have been previous attempts to formalizing NLR [13–
15], however they expect the NLR to follow a restricted template/structure.
Further, automated analysis of formal requirements for properties such as con-
sistency and vacuity have been proposed [16–19], however they need the require-
ments to be already formalized or in the form of mathematical descriptions.
While there exist several methods using formalized requirements, the widespread
adoption in industry is still lacking as the hurdle to manually formalize require-
ments seems to be too high. With our Req2Spec method we want to lower this
hurdle and we believe that it will enable utilization of formalized requirements
even by requirements engineers without a background in formal methods.

We have integrated Req2Spec with HANFOR as it is an industry scale tool
based on the specification pattern system by Konrad et al. [20]. It can also
automatically translate the formal specifications into logics for downstream pro-
cessing. HANFOR currently relies on manually formalized requirements prior
to performing requirements analysis and test specification generation. Our work
attempts to automate this step by using NLP techniques.

2 Background

HANFOR tool [21] consumes formalized NLR defined by an ID, a scope and a
pattern. It supports 5 scopes, 4 regular patterns, 7 order patterns and 12 realtime
patterns. A scope describes the boundary of the requirement. For e.g. a require-
ment with a Globally scope will hold true throughout the system, while a require-
ment with a After EXPR scope will hold true only after the expression (EXPR)
is satisfied. A pattern describes the category of the requirement based on the
pre-conditions, post-conditions, sequence of pre-conditions and post-conditions,
and time duration elements. For example, a requirement with a time duration
element only in the post-condition could have the pattern If EXPR holds, then
EXPR holds for at least DURATION. The scopes and patterns are parameterized
by expressions over system observables and durations. Our proposed pipeline is
shown in Fig. 1. It is demonstrated with 2 scopes (Globally and After EXPR),

Req2Spec: Transforming Software Requirements into Formal Specifications 89

Fig. 1. Req2Spec pipeline.

1 regular pattern (It is always the case that if EXPR holds, then EXPR holds
as well) and 1 realtime pattern (If EXPR holds, then EXPR holds after at most
DURATION).

3 Req2Spec Pipeline

3.1 Dataset

NLR dataset consisted of 222 automotive domain requirements corresponding
to the aforementioned chosen scopes and patterns as they cover the most com-
mon types of requirements found at BOSCH. For training and validation of the
various NLP models, automotive software description documents dealing with
functionalities such as cruise control, exhaust system, braking etc., along with
the ground truths of the NLR dataset were annotated by experts.

3.2 Scope and Pattern Classification

Each NLR has to be associated with a scope and pattern to comply with
HANFOR. We trained classification models for scope and pattern identification
respectively using the SciBERT-Base-Scivocab-Uncased encoder [22] (a state-
of-the-art model used in scientific domains) with a sequence classification head.
The encoder and head were kept unfrozen and trained with the Adam [23] opti-
mizer (lr = 1e−5, β1 = 0.9, β2 = 0.999, ε = 1e−7). The following requirements are
illustrative examples adhering to the chosen 2 scopes and 2 patterns:

1. Scope: Globally, Pattern: It is always the case that if EXPR holds, then EXPR
holds as well :- If ignition is on, then fuel indicator is active.

2. Scope: Globally, Pattern: If EXPR holds, then EXPR holds after at most
DURATION :- If ignition is on, then the wiper movement mode is enabled
within 0.2 s.

3. Scope: After EXPR, Pattern: It is always the case that if EXPR holds, then
EXPR holds as well :- Only after the vehicle speed is larger than 60 kmph, If
the cruise control button is pressed, then the cruise control mode is activated.

4. Scope: After EXPR, Pattern: If EXPR holds, then EXPR holds after at most
DURATION :- Only after the vehicle is in reverse gear, If the accelerator is
pressed, then the rear view camera is activated within 2 s.

90 A. Nayak et al.

3.3 Named Entity Recognition (NER)

NER is the task of identifying and classifying named entities of a domain. We
trained the NER model by using the SciBERT-Base-Scivocab-Uncased encoder
along with a token classification head in the following setting (as described by
a recent work which addresses many of the challenges of NER in the auto-
motive domain [24]): Masked Language Modelling was performed on the pre-
trained SciBERT encoder with automotive domain text using the Adam opti-
mizer (lr = 5e−5, β1 = 0.9, β2 = 0.999, ε = 1e−8). This encoder and the head
were then kept unfrozen for NER training with the Adam optimizer (lr = 1e−5,
β1 = 0.9, β2 = 0.999, ε = 1e−7). The annotation for NER was consisting of 9 auto-
motive specific classes: Other (words outside named entities e.g. the, in), Signal
(variables holding quantities e.g. torque), Value (quantities assigned to signals
e.g. true, false), Action (task performed e.g. activation, maneuvering), Function
(domain specific feature e.g. cruise control), Calibration (user defined setting e.g.
number of gears), Component (physical part e.g. ignition button), State (system
state e.g. cruising state of cruise control) and Math (mathematical or logical
operation e.g. addition).

3.4 Test Intent Extraction

Software requirements describe the expected functionality in terms of test intent
components, namely Pre-conditions and Post-conditions. Pre-conditions are the
conditions which are expected to be satisfied before the Post-conditions can be
achieved. For example in the requirement: If ignition is on, then fuel indicator is
active, the Pre-condition is ignition is on and the Post-condition is fuel indicator
is active. The test intent components are the primary source of information used
to fill the EXPR slots of the scope and pattern. We utilized the Constituency
Parse Tree (CPT) based syntactic test intent extraction algorithm [11] as it
is able to separate dependent clauses (Pre-conditions) and independent clauses
(Post-conditions) using grammar sub-tree structures.

3.5 Triplet Extraction

The test intent components have to be converted into expressions before being
filled into the EXPR slots of the scope and patterns. For this we first con-
vert each test intent component into a Subject-Verb-Object (SVO) triplet. Since
traditional triplet extraction algorithms such as OpenIE [25] and ClausIE [26]
have been designed from open source text (similar to Wikipedia articles), the
quality of the extracted triples is hampered when applied to software engineer-
ing domain corpus which contains lexica and sentence structure that is niche.
Hence, we have designed the following CPT based triplet extraction algorithm
in our pipeline:

1. CPT is constructed using the Stanford CoreNLP [27] library for the condition
and recursively traversed.

Req2Spec: Transforming Software Requirements into Formal Specifications 91

2. Subject is the sub-string until a Verb Phrase (VP) is encountered. Verb is
the sub-string from the beginning of the VP until a Noun Phrase (NP) or
Adjective (JJ) is encountered. Object is the sub-string from NP/JJ to the
end of the condition. If a Infinitival to (TO)/VP is encountered in the Object,
then the words occurring until (including) the TO/VP are concatenated to
the Verb string of the triplet and the remaining sub-string is the Object.

3. This step is triggered if Step 2 resulted in a triplet with no Verb and Object
strings: Subject is the sub-string until a TO/Preposition (IN) is encountered.
Verb is the sub-string corresponding to TO/IN. Object is the sub-string after
the TO/IN sub-string. If a TO is encountered in the Object, then the words
until (including) the TO are concatenated to the Verb string of the triplet
and the remaining sub-string is kept as the Object.

4. This step is triggered if Step 3 resulted in a triplet with no Object
string: Subject is the sub-string until a VP/TO is encountered. Verb is
the sub-string from the beginning of the VP/TO until any VB (all verb
forms)/RB (Adverb)/IN is encountered. Object is the sub-string beginning
from VB/RB/IN until the end of the condition.

3.6 Expression (EXPR) Generation

The natural language SVO triplets have to be rewritten into an equation format
where natural language aliases are resolved. The Subject and Object are mapped
to system observables (can be thought of as variables used in software code
development) and the Verb is mapped to an operator. For example, ignition (S)
- is (V) - on (O) will be mapped to ig st = on. A system observables (variables)
dictionary is used for mapping the Subject and Object, whose keys are natural
language descriptions of the variables and the values are the variables. Similarly,
the Verb is mapped to operators using an operator dictionary, whose keys are
natural language descriptions of the operators and the values are the operators.
This mapping happens in 4 steps:

1. The triplet is tagged with the NER model.
2. A vector representation is created for the Subject, Verb and Object of the

triplet using a pre-trained Sentence-BERT (SBERT) [28] model.
3. Subject is mapped to the variable whose vector representation of its natural

language description was closest based on cosine similarity. Similarly, the Verb
is mapped to the closest matching operator in the operator dictionary.

4. Object mapping follows the above process only if it does not contain a Value
named entity, otherwise the Value named entity is retained as the Object.

3.7 HANFOR Formal Specifications (FS)

As the final step the EXPR and DURATION slots of the scope and pattern
corresponding to the requirement have to be filled. Once filled, the scope and
pattern are tied together resulting in the formal specification. Table 1 shows the
intermediate outputs generated during the formalization of an illustrative sample
NLR. The scope EXPR slot filling happens as follows:

92 A. Nayak et al.

– If the scope is Globally, then there is no EXPR slot to fill.
– If the scope is After EXPR, then each pre-condition whose Subject contains

temporal prepositions indicating time following such as after, beyond, subse-
quent to, following etc., its expression will be filled in this EXPR slot.

– In case there exist multiple such pre-conditions, their expressions are then
tied together with AND and OR operators appropriately.

The pattern DURATION slot filling happens as follows:

– If the pattern is It is always the case that if EXPR holds, then EXPR holds
as well, then there is not DURATION to fill.

– If the pattern is If EXPR holds, then EXPR holds after at most DURATION,
then the Regular Expression \d+[.]?\d+? ?(?:seconds|minutes|hours|time
units’) is checked against each post-condition to extract any time duration
element. As this pattern applies a single DURATION element across all the
post-conditions, the sub-string returned from the Regular Expression will be
stripped from the post-conditions and filled in the DURATION slot.

The pattern EXPR slot filling happens as follows:

– In case there are multiple pre-conditions and post-conditions, their expres-
sions are then tied together with AND and OR operators appropriately.

– For both the selected patterns, the pre-condition expressions are filled in the
EXPR slot attached to the If clause, and the post-conditions expressions are
filled in the EXPR slot attached to the then clause.

Table 1. End-to-end flow of a sample requirement through the Req2Spec pipeline.

Component Output

NLR If ignition is on, then fuel indicator is active

Scope Globally

Pattern It is always the case that if EXPR holds, then EXPR holds as well

NER Signal: ignition; Component: fuel indicator; Value: on, active

Test intent extraction Pre-cond: ignition is on, Post-cond: fuel indicator is active

Triplet extraction Pre-cond: ignition-is-on, Post-cond: fuel indicator-is-active

Expression generation Pre-cond: ig st = on, Post-cond: fuel ind = active

Formal specification Globally, It is always the case that if ig st = on holds, then
fuel ind = active holds as well

4 Results

Table 2 summarizes the performance of the different NLP components in the
pipeline. 71% of the NLR requirements were successfully formalized by the

Req2Spec: Transforming Software Requirements into Formal Specifications 93

Req2Spec pipeline, leading to significant decrease in the time spent on man-
ual formalization. Further, we believe that even though 29% of the requirements
had formalization errors, they still provide a head start to the engineer who
can make minor edits before feeding them to HANFOR. The error rate can be
attributed to the following reasons:

1. Irreducible errors of the machine learning models.
2. Syntactic components of the pipeline such as Test Intent Extraction and

Triplet Extraction are impacted by the quality of grammatical correctness
and ambiguities in the requirements. For example, consider the requirement:
When cruise control is activated and speed is above 60 kmph or wiper is acti-
vated then lamp turns on. It is unclear which of the following Test Intent
pre-conditions combination is valid:

– (cruise control is activated AND speed is above 60 kmph) OR (wiper is
activated)

– (cruise control is activated) AND (speed is above 60 kmph OR wiper is
activated)

3. As the pipeline is linear, the failure of even a single component causes the error
to cascade till the end, thereby leading to an incorrect formal specification.

Table 2. Performance (%) of the Syntactic (Syn) and Semantic (Sem) NLP components
used in Req2Spec pipeline.

Component Algorithm Type Precision Recall F-1 Accuracy

Scope classification SciBERT Syn+Sem 93 93 93 98

Pattern classification SciBERT Syn+Sem 95 96 96 96

Named entity recognition SciBERT Syn+Sem 83 83 83 88

Test intent extraction CPT Syn – – – 79.27

Triplet extraction CPT Syn – – – 88.73

Expression generation SBERT Sem – – – 93.24

Formal specifications – – – – – 71.61

5 Conclusion and Future Work

In this paper we have proposed Req2Spec, a NLP based pipeline that performs
syntactic and semantic analysis to formalize software requirements into HAN-
FOR compliant formal specifications, which can then be used to perform tasks
like requirements analysis and test specification generation. We demonstrated
our pipeline on 4 different types of requirements (2 scopes and 2 patterns), out
of which 71% of the requirements resulted in the correct formal specifications,
giving strong confidence on the feasibility of the pipeline. We believe that this
can lead to productivity gains for the various stakeholders of the SDLC and
overall improve the software quality, as the manual interventions required will
decrease significantly. Our future work will focus on including datasets beyond
the automotive domain and also extending the pipeline to handle additional
scopes and patterns to increase coverage on different types of requirements.

94 A. Nayak et al.

References

1. IEEE: IEEE Recommended Practice for Software Requirements Specifications.
IEEE Std 830-1998, pp. 1–40 (1998). https://doi.org/10.1109/IEEESTD.1998.
88286

2. Fatwanto, A.: Software requirements specification analysis using natural language
processing technique. In: 2013 International Conference on QiR, pp. 105–110. IEEE
(2013)

3. Dalpiaz, F., van der Schalk, I., Lucassen, G.: Pinpointing ambiguity and incom-
pleteness in requirements engineering via information visualization and NLP. In:
Kamsties, E., Horkoff, J., Dalpiaz, F. (eds.) REFSQ 2018. LNCS, vol. 10753, pp.
119–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77243-1 8

4. Zhao, L., et al.: Natural language processing (NLP) for requirements engineering:
a systematic mapping study. arXiv preprint arXiv:2004.01099 (2020)

5. Gervasi, V., Riccobene, E.: From English to ASM: on the process of deriving a
formal specification from a natural language one. Integration of Tools for Rigorous
Software Construction and Analysis, p. 85 (2014)

6. Becker, S., et al.: Hanfor: semantic requirements review at scale. In: REFSQ Work-
shops (2021)

7. IBM Engineering Requirements Quality Assistant tool. https://www.ibm.com/in-
en/products/requirements-quality-assistant. Accessed 13 Oct 2021

8. QRA QVscribe tool. https://qracorp.com/qvscribe/. Accessed 13 Oct 2021
9. Dwarakanath, A., Sengupta, S.: Litmus: generation of test cases from functional

requirements in natural language. In: Bouma, G., Ittoo, A., Métais, E., Wortmann,
H. (eds.) NLDB 2012. LNCS, vol. 7337, pp. 58–69. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31178-9 6

10. Nayak, A., et al.: Knowledge graph from informal text: architecture, components,
algorithms and applications. In: Johri, P., Verma, J.K., Paul, S. (eds.) Applications
of Machine Learning. AIS, pp. 75–90. Springer, Singapore (2020). https://doi.org/
10.1007/978-981-15-3357-0 6

11. Nayak, A., Kesri, V., Dubey, R.K.: Knowledge graph based automated generation
of test cases in software engineering. In: Proceedings of the 7th ACM IKDD CoDS
and 25th COMAD, pp. 289–295 (2020)

12. Kesri, V., Nayak, A., Ponnalagu, K.: AutoKG-an automotive domain knowledge
graph for software testing: a position paper. In: 2021 IEEE International Confer-
ence on Software Testing, Verification and Validation Workshops (ICSTW), pp.
234–238. IEEE (2021)

13. Böschen, M., Bogusch, R., Fraga, A., Rudat, C.: Bridging the gap between natural
language requirements and formal specifications. In: REFSQ Workshops (2016)

14. Fatwanto, A.: Translating software requirements from natural language to formal
specification. In: 2012 IEEE International Conference on Computational Intelli-
gence and Cybernetics (CyberneticsCom), pp. 148–152. IEEE (2012)

15. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Generation of
formal requirements from structured natural language. In: Madhavji, N., Pasquale,
L., Ferrari, A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 19–35. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44429-7 2

16. Langenfeld, V., Dietsch, D., Westphal, B., Hoenicke, J., Post, A.: Scalable analysis
of real-time requirements. In: 2019 IEEE 27th International Requirements Engi-
neering Conference (RE), pp. 234–244. IEEE (2019)

https://doi.org/10.1109/IEEESTD.1998.88286
https://doi.org/10.1109/IEEESTD.1998.88286
https://doi.org/10.1007/978-3-319-77243-1_8
http://arxiv.org/abs/2004.01099
https://www.ibm.com/in-en/products/requirements-quality-assistant
https://www.ibm.com/in-en/products/requirements-quality-assistant
https://qracorp.com/qvscribe/
https://doi.org/10.1007/978-3-642-31178-9_6
https://doi.org/10.1007/978-981-15-3357-0_6
https://doi.org/10.1007/978-981-15-3357-0_6
https://doi.org/10.1007/978-3-030-44429-7_2

Req2Spec: Transforming Software Requirements into Formal Specifications 95

17. Moitra, A., et al.: Towards development of complete and conflict-free requirements.
In: 2018 IEEE 26th International Requirements Engineering Conference (RE), pp.
286–296. IEEE (2018)

18. Fifarek, A.W., Wagner, L.G., Hoffman, J.A., Rodes, B.D., Aiello, M.A., Davis,
J.A.: SpeAR v2.0: formalized past LTL specification and analysis of requirements.
In: Barrett, C., Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp.
420–426. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 30

19. Post, A., Hoenicke, J.: Formalization and analysis of real-time requirements: a
feasibility study at BOSCH. In: Joshi, R., Müller, P., Podelski, A. (eds.) VSTTE
2012. LNCS, vol. 7152, pp. 225–240. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-27705-4 18

20. Konrad, S., Cheng, B.H.: Real-time specification patterns. In: Proceedings of the
27th International Conference on Software Engineering, pp. 372–381 (2005)

21. HANFOR tool. https://ultimate-pa.github.io/hanfor/. Accessed 13 Oct 2021
22. Beltagy, I., Lo, K., Cohan, A.: SciBERT: a pretrained language model for scientific

text. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 3615–3620 (2019)

23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

24. Nayak, A., Timmapathini, H.P.: Wiki to automotive: understanding the dis-
tribution shift and its impact on named entity recognition. arXiv preprint
arXiv:2112.00283 (2021)

25. Angeli, G., Premkumar, M.J.J., Manning, C.D.: Leveraging linguistic structure for
open domain information extraction. In: Proceedings of the 53rd Annual Meeting
of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pp. 344–354
(2015)

26. Del Corro, L., Gemulla, R.: ClausIE: clause-based open information extraction.
In: Proceedings of the 22nd International Conference on World Wide Web, pp.
355–366 (2013)

27. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.:
The Stanford CoreNLP natural language processing toolkit. In: Proceedings of
52nd Annual Meeting of the Association for Computational Linguistics: System
Demonstrations, pp. 55–60 (2014)

28. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using siamese
BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

https://doi.org/10.1007/978-3-319-57288-8_30
https://doi.org/10.1007/978-3-642-27705-4_18
https://doi.org/10.1007/978-3-642-27705-4_18
https://ultimate-pa.github.io/hanfor/
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2112.00283
http://arxiv.org/abs/1908.10084

FRETting About Requirements:
Formalised Requirements for an Aircraft

Engine Controller

Marie Farrell(B), Matt Luckcuck(B), Oiśın Sheridan, and Rosemary Monahan

Maynooth University, Maynooth, Ireland
valu3s@mu.ie

Abstract. [Context & motivation] Eliciting requirements that are
detailed and logical enough to be amenable to formal verification is a
difficult task. Multiple tools exist for requirements elicitation and some
of these also support formalisation of requirements in a way that is use-
ful for formal methods. [Question/problem] This paper reports on our
experience of using the Formal Requirements Elicitation Tool (FRET)
alongside our industrial partner. The use case that we investigate is an
aircraft engine controller. In this context, we evaluate the use of FRET
to bridge the communication gap between formal methods experts and
aerospace industry specialists. [Principal ideas/results] We describe
our journey from ambiguous, natural-language requirements to concise,
formalised FRET requirements. We include our analysis of the formalised
requirements from the perspective of patterns, translation into other for-
mal methods and the relationship between parent-child requirements in
this set. We also provide insight into lessons learned throughout this pro-
cess and identify future improvements to FRET. [Contribution] Pre-
vious experience reports have been published by the FRET team, but
this is the first such report of an industrial use case that was written by
researchers that have not been involved FRET’s development.

Keywords: Formal requirements · FRET · Traceability

1 Introduction

Formal verification uses mathematically-based techniques to guarantee that a
system obeys certain properties, which is particularly useful when developing
safety-critical systems like those used in the aerospace domain. Developing a
correct set of requirements necessitates discussion with people who have expertise
in the system under development, who may not have skills in formal methods.

The authors thank Georgios Giantamidis, Stylianos Basagiannis, and Vassilios A. Tsa-
chouridis (UTRC, Ireland) for their help in requirements elicitation; and Anastasia
Mavridou (NASA Ames Research Center, USA) for her help with FRET. This research
was funded by the European Union’s Horizon 2020 research and innovation programme
under the VALU3S project (grant No. 876852), and by Enterprise Ireland (grant No.
IR20200054). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 96–111, 2022.
https://doi.org/10.1007/978-3-030-98464-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_9&domain=pdf
https://doi.org/10.1007/978-3-030-98464-9_9

FRETting About Requirements 97

In which case, it can be beneficial to the requirements elicitation process to
write the requirements in an intermediate language. Tools like NASA’s Formal
Requirements Elicitation Tool (FRET) provide a gateway for developing formal
requirements with developers who are not familiar with formal languages [7].

In this paper, we examine how FRET can be used in an industrial case study
of an aircraft engine controller that has been supplied by our industrial part-
ner, United Technologies Research Center (Ireland). FRET has previously been
used to formalise the requirements for the 10 Lockheed Martin Cyber-Physical
Challenges [11]. However, to the best of our knowledge this paper provides the
first experience report on FRET’s use on an industrial case study, by a team not
involved in FRET’s development.

Our approach provides external and internal traceability. Using a tool like
FRET to develop the requirements provides a link between natural-language
requirements and formally verified artefacts. FRET also enables the user to
describe a link between requirements at different levels of abstraction,whichmeans
that this traceability is maintained within the developing set of requirements. We
also use FRET to collect information about the rationale behind a requirement,
further improving the traceability; either back to a natural-language requirement,
or forward to a more concrete requirement. These traceability features encour-
age better explainability of a requirement’s source, and the intermediate language
improves the explainability of the requirements themselves.

The rest of the paper is laid out as follows. Sect. 2 outlines the relevant
background material pertaining to FRET and the aircraft engine controller use
case. Then, we describe our requirements elicitation process and present detailed
requirements in Sect. 3. These requirements are analysed in Sect. 4. We discuss
the lessons that were learned through this work in Sect. 5 and Sect. 6 concludes.
We also make an extended version of this paper available that contains a detailed
appendix showing the full set of requirements, test cases, Simulink model and
fretish requirements1.

2 Background

This section provides an overview of FRET and the aircraft engine controller
use case for which we were developing requirements.

FRET: is an open-source tool that enables developers to write and formalise
system requirements [7]. FRET accepts requirements written in a structured
natural-language called fretish, in which requirements take the form:

scope condition component shall timing response

The condition, component, and response fields are mandatory; scope and timing

are optional fields. This allows responses that are tied to a scope, are triggered
by conditions, relate to a system component, and may have timing constraints.

The underlying semantics of a fretish requirement is determined by the
scope, condition, timing, and response fields. There is a template for each possible
1 This Paper Extended Version: https://arxiv.org/abs/2112.04251.

https://arxiv.org/abs/2112.04251

98 M. Farrell et al.

combination of a requirement’s fields, currently FRET provides 160 such tem-
plates [8]. The selected template is used to generate formalisations of the associ-
ated requirement in both past- and future-time metric Linear-time Temporal Logic
(LTL). FRET displays a diagramatic semantics for each requirement, which shows:
the time interval where it should hold, and its triggering and stopping conditions
(if they exist). Both versions of the requirements are helpful for sanity-checking
what has been written in fretish.

The user must give each fretish requirement an ID, which can be used to
create a many-to-many, hierarchical link between requirements: a parent require-
ment may have many child requirements, and one child may have many par-
ents. While this link facilitates traceability, FRET does not define this relation-
ship (formally or otherwise). For example, a child requirement does not inherit
definitions from its parent. We discuss possible improvements to this link in
Sect. 4.2. FRET also allows the user to enter ‘Rationale’ and ‘Comments’ for a
requirement, which further supports traceability and encourages explainability
of requirements.

FRET can automatically translate requirements into contracts for a Simulink
diagram, written in CoCoSpec, which are checked during Simulink simulations
by the CoCoSim tool, using the Kind2 model checker [4]. FRET can also generate
runtime monitors for the Copilot framework [6].

Aircraft Engine Controller: Our use case is a software controller for a high-
bypass civilian aircraft turbofan engine, provided by our industrial partner on
the VALU3S [2] project, based on existing controller designs [13,14]. It is an
example of a Full Authority Digital Engine Control (FADEC) system, which
monitors and controls everything about the engine, using input from a variety
of sensors. The engine itself contains two compressors (high-pressure and low-
pressure) turning a central spool, which drives the engine.

As described in our prior work [9], the controller’s high-level objectives are
to manage the engine thrust, regulate the compressor pressure and speeds, and
limit engine parameters to safe values. It should continue to operate, keeping
settling time, overshoot, and steady state errors within acceptable limits, while
respecting the engine’s operating limits (e.g. the spool’s speed limit), in the
presence of:

– sensor faults (a sensor value deviating too far from its nominal value, or being
unavailable),

– perturbation of system parameters (a system parameter deviating too far
from its nominal value), and

– other low-probability hazards (e.g. abrupt changes in outside air pressure).

The controller is also required to detect engine surge or stall and change mode
to prevent these hazardous situations.

Our industrial partner has supplied us with 14 English-language require-
ments (Table 1) and 20 abstract test cases, which provide more detail about the
controller’s required behaviour. The naming convention for requirements is:

<use case id> R <parent requirement id>.<child requirement id>

FRETting About Requirements 99

For example, because this is Use Case 5 in the VALU3S project2, requirement one
is named UC5 R 1. Note, we use a similar naming convention for test cases. Table 2
shows the abstract test cases for UC5 R 1. Our industrial partner also designed the
controller in Simulink3, shown in the extended version of this paper4.

For our Use Case, we collaborated with scientists in the System Analysis and
Assurance division of an aerospace systems company. The hour-long requirements
elicitation meetings were held monthly, over a period of 10 months, with additional
meetings as needed. In these meetings, our collaborators reviewed the fretish
versions of their natural-language requirements, validating our formalisation and
clarifying ambiguities for us. Since our collaborators were already familiar with
other formal tools we were able to introduce them to FRET quite quickly. However,
we produced a training video for other members of the project consortium5.

3 Our Requirements Elicitation Process Using FRET

In this section we describe our requirements elicitation process. We begin by
outlining how this fits into our larger approach to verification for the aircraft
engine controller use case. We then describe our journey from natural-language
requirements to formalised fretish requirements.

3.1 Requirements-Driven Methodology

As part of the three-phase verification methodology outlined in our prior work [9],
we used FRET to elicit and formalise requirements for the aircraft engine con-
troller. Focussing on Phase 1, this paper includes the full set of fretish require-
ments and presents lessons learnt, which were not discussed in [9]. Figure 1 shows
a high-level flowchart of our methodology, with an exploded view of the rela-
tionship between the artefacts involved in Phase 1. The methodology takes the
natural-language requirements (Table 1), test cases, and Simulink diagram of the
engine controller as input, and enables the formal verification of the system’s
design against the requirements.

Phase 1 of our methodology involves formalising natural-language require-
ments using FRET, eliciting further detail as we progress. Phase 2 consists of
two, potentially parallel, phases. Phase 2A uses FRET’s built-in support for
generating CoCoSpec contracts that can be incorporated into a Simulink dia-
gram for verification with the Kind2 model-checker. In Phase 2B, the formalised
requirements drive a (manual) translation into other formal methods, as chosen
by the verifier. These tools typically require the construction of a formal model
of the system, which is verified against the translated requirements. This step
2 The VALU3S project: https://valu3s.eu/.
3 Simulink: https://mathworks.com/products/simulink.html.
4 This Paper Extended Version: https://arxiv.org/abs/2112.04251.
5 “Formalising Verifiable Requirements” Presentation: https://www.youtube.com/

watch?v=FQGKbYCbxPY&list=PLGtGM9euw6A66ceQbywXGjVoTKEhP-Of7&
index=9.

https://valu3s.eu/
https://mathworks.com/products/simulink.html
https://arxiv.org/abs/2112.04251
https://www.youtube.com/watch?v=FQGKbYCbxPY&list=PLGtGM9euw6A66ceQbywXGjVoTKEhP-Of7&index=9
https://www.youtube.com/watch?v=FQGKbYCbxPY&list=PLGtGM9euw6A66ceQbywXGjVoTKEhP-Of7&index=9
https://www.youtube.com/watch?v=FQGKbYCbxPY&list=PLGtGM9euw6A66ceQbywXGjVoTKEhP-Of7&index=9

100 M. Farrell et al.

Fig. 1. Flowchart of our three-phase requirements-driven verification methodology [9]
(left) with an exploded view of Phase 1’s artefacts (right). The solid lines and arrowheads
show direct information flow between artefacts (and back into Phase 2A and 2B), the
dashed lines and open arrowheads show an artefact being implemented by another.

requires translation of the fretish requirements into the formalism of the cho-
sen verification tool. Finally, Phase 3 produces a report collecting the verification
results and other useful artefacts, such as formal models, Simulink diagrams, var-
ious versions of the requirements, counter-examples, proofs, etc. This supports
tracing the requirements through the system’s development lifecycle.

The following subsections describe the requirements elicitation process
(Phase 1) in more detail. Figure 1’s exploded view, shows how natural-language
requirements are translated into fretish parent requirements (solid arrow), and
the test cases are translated into child requirements. Since we view the test cases
as implementations of the natural-language requirements (dashed arrow), the
child requirements are similarly viewed as implementations of their correspond-
ing parent requirements. The left-hand side of Fig. 1 shows how the work in this
paper fits within our development and verification methodology; the solid arrows
from the fretish parent and child requirements, to Phases 2A and 2B, show
how the output of this work is consumed by the next phase.

3.2 Speaking FRETISH: Parent Requirements

The inputs to our requirements elicitation process were the Simulink diagram,
14 natural-language requirements (Table 1), and 20 abstract test cases that were
supplied by our industrial partner. We elicited further information about the
requirements through regular team discussions with our industrial partner.

We started by translating the natural-language requirements into fretish,
producing the set of 14 fretish requirements in Table 3. The correspondence

FRETting About Requirements 101

Table 1. Natural-language requirements for the aircraft engine controller as produced
by the aerospace use case in the VALU3S project. These 14 requirements are mainly
concerned with continued operation of the controller in the presence of sensor faults
(UC5 R 1–UC5 R 4), perturbation of system parameters (UC5 R 5–UC5 R 8) and low
probability hazards (UC5 R 9–UC5 R 12). There are also requirements for switching
between modes if engine surge/stall is detected (UC5 R 13–UC5 R 14).

ID Description

UC5 R 1 Under sensor faults, while tracking pilot commands, control objectives
shall be satisfied (e.g., settling time, overshoot, and steady state error
will be within predefined, acceptable limits)

UC5 R 2 Under sensor faults, during regulation of nominal system operation (no
change in pilot input), control objectives shall be satisfied (e.g., settling
time, overshoot, and steady state error will be within predefined,
acceptable limits)

UC5 R 3 Under sensor faults, while tracking pilot commands, operating limit
objectives shall be satisfied (e.g., respecting upper limit in shaft speed)

UC5 R 4 Under sensor faults, during regulation of nominal system operation (no
change in pilot input), operating limit objectives shall be satisfied (e.g.,
respecting upper limit in shaft speed)

UC5 R 5 Under mechanical fatigue conditions, while tracking pilot commands,
control objectives shall be satisfied (e.g., settling time, overshoot, and
steady state error will be within predefined, acceptable limits)

UC5 R 6 Under mechanical fatigue conditions, during regulation of nominal system
operation (no change in pilot input), control objectives shall be satisfied
(e.g., settling time, overshoot, and steady state error will be within
predefined, acceptable limits)

UC5 R 7 Under mechanical fatigue conditions, while tracking pilot commands,
operating limit objectives shall be satisfied (e.g., respecting upper limit in
shaft speed)

UC5 R 8 Under mechanical fatigue conditions, during regulation of nominal system
operation (no change in pilot input), operating limit objectives shall be
satisfied (e.g., respecting upper limit in shaft speed)

UC5 R 9 Under low probability hazardous events, while tracking pilot commands,
control objectives shall be satisfied (e.g., settling time, overshoot, and
steady state error will be within predefined, acceptable limits)

UC5 R 10 Under low probability hazardous events, during regulation of nominal
system operation (no change in pilot input), control objectives shall be
satisfied (e.g., settling time, overshoot, and steady state error will be
within predefined, acceptable limits)

UC5 R 11 Under low probability hazardous events, while tracking pilot commands,
operating limit objectives shall be satisfied (e.g., respecting upper limit in
shaft speed)

UC5 R 12 Under low probability hazardous events, during regulation of nominal
system operation (no change in pilot input), operating limit objectives
shall be satisfied (e.g., respecting upper limit in shaft speed)

UC5 R 13 While tracking pilot commands, controller operating mode shall
appropriately switch between nominal and surge / stall prevention
operating state

UC5 R 14 During regulation of nominal system operation (no change in pilot
input), controller operating mode shall appropriately switch between
nominal and surge/stall prevention operating state

102 M. Farrell et al.

Table 2. Abstract test cases corresponding to requirement UC5 R 1. Each specifies
the preconditions for the test case, the input conditions/steps and the expected results.

Test Case ID Requirement

ID

Description

UC5 TC 1 UC5 R 1 Preconditions: Aircraft is in operating mode M and sensor S value

deviates at most +/- R % from nominal value

Input conditions/steps: Observed aircraft thrust is at value V1 and

pilot input changes from A1 to A2

Expected results: Observed aircraft thrust changes and settles to

value V2, respecting control objectives (settling time, overshoot,

steady state error)

UC5 TC 2 UC5 R 1 Preconditions: Aircraft is in operating mode M and sensor S value is

not available (sensor is out of order)

Input conditions/steps: Observed aircraft thrust is at value V1 and

pilot input changes from A1 to A2

Expected results: Observed aircraft thrust changes and settles to

value V2, respecting control objectives (settling time, overshoot,

steady state error)

between the fretish requirements and their natural-language counterparts is
clear. For example, requirement UC5 R 1 states that:

Under sensor faults, while tracking pilot commands, control objectives shall
be satisfied (e.g., settling time, overshoot, and steady state error will be within
predefined, acceptable limits).

This became the corresponding fretish requirement:

if ((sensorfaults) & (trackingPilotCommands)) Controller shall
satisfy (controlObjectives)

Producing this initial set of requirements enabled us to identify the ambiguous
parts of the natural-language requirements. For example, the phrase “sensor
faults” simply becomes a boolean in our fretish requirements, highlighting
that we need to elicit more details. We captured these additional details as child
requirements, as described in Sect. 3.3.

3.3 Adding Detail: Child Requirements

Once the fretish parent requirements (Table 3) were complete, we added more
detail to make the requirements set more concrete. We paid particular atten-
tion to ambiguous phrases translated from the natural-language requirements.
These extra details were drawn from the abstract test cases and from detailed
discussions with our industrial collaborators, who clarified specific ambiguities.

We captured the extra details in 28 child requirements. As mentioned in
Sect. 2, a child requirement does not inherit definitions from its parent(s). How-
ever, we use this hierarchical link to group the detail in the child requirements
under a common parent, which enables the detailed child requirements to be
traced back to the more abstract parent requirements.

For example, UC5 R 1 was distilled into three requirements (UC5 R 1.1,
UC5 R 1.2 and UC5 R 1.3), shown in Table 4. These three child requirements each

FRETting About Requirements 103

Table 3. fretish parent requirements corresponding to the natural-language require-
ments outlined in Table 1. The correspondance is clear to see and we have used booleans
to represent the ambiguous terms from the natural-language requirements.

ID FRETISH

UC5 R 1 if ((sensorfaults) & (trackingPilotCommands)) Controller shall
satisfy (controlObjectives)

UC5 R 2 if ((sensorfaults) & (!trackingPilotCommands)) Controller shall
satisfy (controlObjectives)

UC5 R 3 if ((sensorfaults) & (trackingPilotCommands)) Controller shall
satisfy (operatingLimitObjectives)

UC5 R 4 if ((sensorfaults) & (!trackingPilotCommands)) Controller shall
satisfy (operatingLimitObjectives)

UC5 R 5 if ((mechanicalFatigue) & (trackingPilotCommands)) Controller

shall satisfy (controlObjectives)

UC5 R 6 if ((mechanicalFatigue) & (!trackingPilotCommands)) Controller

shall satisfy (controlObjectives)

UC5 R 7 if ((mechanicalFatigue) & (trackingPilotCommands)) Controller

shall satisfy (operatingLimitObjectives)

UC5 R 8 if ((mechanicalFatigue) & (!trackingPilotCommands)) Controller

shall satisfy (operatingLimitObjectives)

UC5 R 9 if ((lowProbabilityHazardousEvents) & (trackingPilotCommands))

Controller shall satisfy (controlObjectives)

UC5 R 10 if ((lowProbabilityHazardousEvents) & (!trackingPilotCommands))

Controller shall satisfy (controlObjectives)

UC5 R 11 if ((lowProbabilityHazardousEvents) & (trackingPilotCommands))

Controller shall satisfy (operatingLimitObjectives)

UC5 R 12 if ((lowProbabilityHazardousEvents) & (!trackingPilotCommands))

Controller shall satisfy (operatingLimitObjectives)

UC5 R 13 if (trackingPilotCommands) Controller shall satisfy
(changeMode(nominal)) | (changeMode(surgeStallPrevention))

UC5 R 14 if (!trackingPilotCommands) Controller shall satisfy
(changeMode(nominal)) | (changeMode(surgeStallPrevention))

have the same condition and component, but differ in their responses. Each child
requirement specifies one of the “control objectives” (settling time, overshoot and
steady state error) mentioned in the natural-language version of UC5 R 1. Dur-
ing elicitation discussions, it was revealed that these were actually the only control
objectives that were of concern for this use case. Here, using FRET encouraged us
to question exactly what the phrase “control objectives” meant.

Each of these requirements includes the condition when (diff(r(i),y(i)) >

E) and the timing constraint until (diff(r(i),y(i)) < e), which were initially
overlooked in the natural-language requirements but revealed during elicitation
discussions with our industrial partner. The response must hold when the differ-
ence between the reference sensor value, r(i), and the observed sensor value, y(i),

104 M. Farrell et al.

falls between specific bounds (E and e). This important detail was missing from
the parent requirement but was uncovered during our requirements elicitation.

The “Preconditions” of test cases UC5 TC 1 and UC5 TC 2 (Table 2)
showed us that the phrase “Under sensor faults” meant a period where a sen-
sor value deviates by ±R% from its nominal value or returns a null value. To
represent this, the child requirements use the function sensorValue(S) where S

is a parameter representing each of the 4 sensors for the engine controller. These
requirements are thus applied to all of the sensors in the model.

In UC5 TC 1 and UC5 TC 2, the “Input conditions/steps” refer to the
aircraft thrust and a change in the pilot’s input. We encoded this as the condi-
tion and response pair (pilotInput => setThrust = V2) & (observedThrust =

V1) and satisfy (observedThrust = V2), where V1 and V2 are thrust variables and
=> is logical implication. During elicitation discussions we found that this pair
corresponds to the condition, trackingPilotCommands. This was a particularly
important clarification because trackingPilotCommands models the phrase “while
tracking pilot commands”, which the natural-language requirements use exten-
sively. This underlines that it is possible for an ambiguous statement to have a
very precise meaning that was lost while drafting the requirements.

The thrust variables V1 and V2 in our fretish requirements correspond to vari-
ables V1, V2, A1, and A2 in the test cases. During elicitation discussions, we found
that V1 and V2 alone were sufficient to capture the requirement. V1 and A1 are
used interchangeably as the initial thrust value, which we label V1. Similarly, V2
and A2 refer to the updated thrust value, which we label V2 for consistency. This is
another ambiguity that our translation from natural-language to fretish helped
to clarify.

Our industrial partner checked the child requirements to ensure that there were
no errors or omissions. The intuitive meaning of fretish constructs simplified this
check, and features like the requirements’ diagramatic semantics provided quick
feedbackwhenwe edited the requirements during elicitation discussions. The act of
formalising the requirements helped us to identify ambiguities in the requirements,
prompting elicitation of further detail from our industrial partner.

4 An Analysis of Elicited Requirements

This section provides an analysis of the fretish requirements that we produced
for the aircraft engine controller use case. We note that the requirements only
refer to one component, the Controller, but this could be decomposed to refer
to specific blocks in the use case Simulink design.

4.1 Requirement Templates

Each of the 14 fretish parent requirements (Table 3) uses the same pattern:
condition component shall response. As described in Sect. 2, FRET maps each
requirement into a semantic template so that it can generate the associated LTL

FRETting About Requirements 105

Table 4. We have three distinct child requirements for UC5 R 1 that capture the
correct behaviour concerning each of settling time, overshoot and steady state error.

ID Parent FRETISH

UC5 R 1.1 UC5 R 1 when (diff(r(i),y(i)) > E) if((sensorValue(S) >
nominalValue + R) | (sensorValue(S) < nominalValue - R)

| (sensorValue(S) = null) & (pilotInput => setThrust

= V2) & (observedThrust = V1)) Controller shall until

(diff(r(i),y(i)) < e) satisfy (settlingTime >= 0) &

(settlingTime <= settlingTimeMax) & (observedThrust =

V2)

UC5 R 1.2 UC5 R 1 when (diff(r(i),y(i)) > E) if((sensorValue(S) >
nominalValue + R) | (sensorValue(S) < nominalValue -

R) | (sensorValue(S) = null)& (pilotInput => setThrust

= V2) & (observedThrust = V1)) Controller shall until

(diff(r(i),y(i)) < e) satisfy (overshoot >= 0) &

(overshoot <= overshootMax) & (observedThrust = V2)

UC5 R 1.3 UC5 R 1 when (diff(r(i),y(i)) > E) if((sensorValue(S) >
nominalValue + R) | (sensorValue(S) < nominalValue -

R) | (sensorValue(S) = null)& (pilotInput => setThrust

= V2)& (observedThrust = V1)) Controller shall until

(diff(r(i),y(i)) < e) satisfy (steadyStateError >=
0) & (steadyStateError <= steadyStateErrorMax) &

(observedThrust = V2)

specification. Our parent requirements all correspond to the template [null, reg-
ular, eventually], which specifies the scope-option, condition-option and timing-
option, respectively (if the timing-option is omitted, then eventually is the
default). Specific details about templates in FRET are given in [8].

We introduced until clauses into all of the 28 child requirements, although
with different timing constraints. The introduction of the until clauses was
identified through a combination of the information in the test cases and from
extensive discussions with our industrial parter. However, the specific timing
constraints required in-depth discussion with our industrial partner to identify.
Most of the child requirements correspond to the template [null, regular, until].
However, some child requirements differed slightly as outlined below.

UC5 R 13 and UC5 R 14 generated a lot of discussion, because they differ so
much from the other requirements; here, the system changes between modes of
operation, so we use the scope clause. This produced the child requirements shown
in Table 5. The when and until clauses differ from the other requirements, because
here the mode change is triggered by comparing the set value of the low-pressure
compressor’s spool speed (setNL) to the value produced by the sensor (observedNL).
It is necessary to differentiate between the cause of the difference, i.e. whether it
was directly caused by pilotInput or by external factors (!pilotInput). In either
case the system must change modes, but our industrial partner felt that it was
important that the requirements distinguish the difference.

106 M. Farrell et al.

Table 5. Child requirements corresponding to UC5 R 13 and UC5 R 14. These differ
from the previous requirements because we use the scope field to assert which mode
of operation the controller is in.

ID Parent FRETISH

UC5 R 13.1 UC5 R 13 in nominal mode when (diff(setNL, observedNL) >
NLmax) if (pilotInput => surgeStallAvoidance)

Controller shall until (diff(setNL, observedNL) <
NLmin) satisfy (changeMode(surgeStallPrevention))

UC5 R 13.2 UC5 R 13 in surgeStallPrevention mode when (diff(setNL,

observedNL) < NLmax) if (pilotInput =>
!surgeStallAvoidance) Controller shall until

(diff(setNL, observedNL) > NLmin) satisfy
(changeMode(nominal))

UC5 R 14.1 UC5 R 14 in nominal mode when (diff(setNL, observedNL) >
NLmax) if (!pilotInput => surgeStallAvoidance)

Controller shall until (diff(setNL, observedNL) <
NLmin) satisfy (changeMode(surgeStallPrevention))

UC5 R 14.2 UC5 R 14 in surgeStallPrevention mode when (diff(setNL,

observedNL) < NLmax) if (!pilotInput =>
!surgeStallAvoidance) Controller shall until

(diff(setNL, observedNL) > NLmin) satisfy
(changeMode(nominal))

Figure 2 contains the semantics diagram produced by FRET for UC5 R 14.2.
The semantic template that was used is [in, regular, until]. In a recent study
using FRET to formalise the 10 Lockheed Martin Cyber Physical Challenge
problems, the most commonly used semantic template was [null, null, always]
[11]. Of these 10 problems, the autopilot system is the closest to our case study,
and it was the only requirement set to use the in scope-option. The timing-
option in their requirements was different to ours; but we use until, which was
introduced into fretish after that study.

We used all of the fields available in fretish in our use case, although a lot
of our individual requirements used a subset of them. We only used scope in the
four child requirements of UC5 R 13 and UC5 R 14. FRET provides many ways
of specifying modes, but we only used in mode for this; there are many ways to
specify a condition, but we only used when and if. There are also multiple ways
to specify timing, but in this case study we only used until clauses.

Despite until providing timing constraints, we did not use explicit times
(e.g. ticks/timesteps/seconds) in our requirements. This is because the natural-
language requirements (Table 1) do not mention timing, and our introduction
of timing constraints came from elicitation discussions. However, time points
are implicit in some of the child requirements, e.g. comparing r(i) and y(i)

in the child requirements of UC5 R 1(Table 4), or the T1 and T2 variables in
UC5 R 11.1 (Table 6). The timing clause was not intentionally avoided, but we
felt that the implicit time constraints better suited the requirements and was
closer to the description agreed with our industrial partner.

FRETting About Requirements 107

Fig. 2. fretish and semantics diagram generated for UC5 R 14.2. Here, ‘M’ indicates
the mode, ‘TC’ the triggering condition, and ‘SC’ the stopping condition.

Table 6. Child requirement of UC5 R 11 which has timing implicit through the use
of the timestamp variables T1 and T2.

ID Parent FRETISH

UC5 R 11.1 UC5 R 11 when (diff(r(i),y(i)) > E) if

(outsideAirPressure(T1) != outsideAirPressure(T2) &

(diff(t2,t1) < threshold) &(abs(outsideAirPressure

(T1) - outsideAirPressure(T2)) > pressureThreshold)

&(observedThrust = V1) &(pilotInput => setThrust

= V2)) Controller shall until (diff(r(i),y(i)) <
e) satisfy (shaftSpeed >= operatingLowerBound)

& (shaftSpeed <= operatingUpperBound) &

(observedThrust = V2)

4.2 Parent-Child Relationship in Our Use Case

As previously mentioned, FRET allows a requirement to be related to another
as a ‘parent’ or a ‘child’, but this relationship is not well defined, formally or
otherwise. The parent-child relationship in FRET could be viewed as formal
refinement [1]: a concept supported by a variety of formal methods that enable
formal specifications to be gradually made more concrete, while proving that
they still obey a more abstract version of the specification. Similar approaches
exist in the literature on refactoring goal-driven requirements [5,15].

If viewed through the lens of refinement, we would need to introduce abstrac-
tion invariants to relate the abstract and concrete specifications. These invari-
ants facilitate the proof that the concrete specification does not permit any
behaviours that the abstract specification forbids.

Here, we investigate whether FRET’s parent-child relationship can be
expressed as formal refinement. In particular, it is possible to formalise the fol-
lowing abstraction invariant in relation to sensorfaults:

108 M. Farrell et al.

sensorfaults ⇐⇒ (sensorValue(S) > nominalValue + R) | (sensorValue(S)

< nominalValue - R) | (sensorValue(S) = null)

Intuitively this means that the boolean sensorfaults (from the parent require-
ment) corresponds to the condition on the right of the ‘⇐⇒ ’ (from the child
requirement). This kind of refinement is referred to as data refinement.

Similarly, the abstraction invariant between trackingPilotCommands and the
condition and response pair (pilotInput => setThrust = V2) & (observedThrust =

V1) and satisfy (observedThrust = V2) could be specified as:

trackingPilotCommands ⇐⇒ pilotInput

The remainder of the condition-response pair above is then treated as super-
position refinement, which adds detail during refinement. This approach is used
because of the update of the observedThrust variable which is difficult to
express in an abstraction invariant because it provides a behavioural update
rather than a simple match between booleans. The additional when and until

clauses in the child requirement are also superposition refinements.
The parent-child relationship in FRET appears to us to be formal refinement,

at least for our set of requirements. In which case UC5 R 1 is refined by its three
child requirements (UC5 R 1.1, UC5 R 1.2, UC5 R 1.3). We will examine this
further in future work, where we will seek to translate these requirements into a
formalism that supports refinement, and then examine whether the appropriate
proof obligations can be discharged by theorem provers.

4.3 Translatable Requirements

As mentioned in Sect. 1, our aim is to formally verify the aircraft engine controller
system described in Sect. 2. It is often difficult to identify what properties a
system should obey, for example what does it mean for the system to operate
‘correctly’. Identifying the properties to verify often causes difficulties for non-
domain experts. FRET helped to guide conversations with the domain experts
to facilitate the formalisation of the requirements.

FRET currently supports translation to the CoCoSim [4] and Copilot [12]
verification tools. We are particularly interested in using CoCoSim since it works
directly on Simulink diagrams. Thus, we have started to generate CoCoSim con-
tracts for these requirements automatically using FRET [10]. This is described
in [9] and corresponds to Phase 2A of the methodology outlined in Fig. 1.

As described in Sect. 4.1, we didn’t rely heavily on timing constraints that
specified specific time steps, rather we used until constraints that could poten-
tially be translated into boolean flags in other formalisms. As such, we believe
that the vast majority of the requirements that we formalised in FRET could be
used by other formal methods. For example, we may need to model the aircraft
engine controller in an alternative formalism if some of these properties fail to
verify using CoCoSim due to the state space explosion. This approach has been
taken, manually, in previous work [3].

FRETting About Requirements 109

5 Lessons Learnt and Future Improvements

This section summarises some of the lessons that we learnt from this case study.

Communication Barrier: We found that FRET and fretish provided a use-
ful conduit for conversation with our industrial partner. Formalising natural-
language requirements is often time-consuming because of contradictions and
ambiguities. fretish provides a stepping-stone between readable natural-
language requirements and their fully-formal counterparts, and helped us to
step-wise reduce ambiguity. This process produced requirements that are easier
to read than if they had been fully-formal, but which FRET can still automati-
cally formalise.

We used FRET during elicitation discussions to explain and update our
requirements, alongside our industrial partner. The diagramatic semantics gave
a useful visualisation of the requirements, helping both us and our industrial
partner to sanity-check updates. FRET also enabled our documentation of infor-
mation for each natural-language requirement, recording the reasoning for any
changes, alongside each fretish requirement, thus facilitating requirements
explainability.

Parent-Child Relationship: While not a formal relationship, the link between par-
ent and child requirements enabled us to gradually make the requirements more
concrete, by adding details and removing ambiguities. For example, the term
sensorfaults in UC5 R 1 was replaced with (sensorValue(S) > nominalValue

+ R) | (sensorValue(S) < nominalValue - R) | (sensorValue(S) = null) in its
child requirements (Table 4). Documenting these links, via the ‘Parent ID’ and
‘Rationale’ fields in FRET, provides a structuring mechanism that enables trace-
ability within the requirement set. However, a more concrete definition of this
link would be beneficial. We have suggested a definition using formal refinement,
but an object-oriented inheritance relationship could also provide structure here.

Limitations of FRETISH: While a useful language, we note some limitations of
fretish. Logical quantifiers (∀,∃) would be a welcome addition to fretish. For
example, in UC5 R 1.1, we used sensorValue(S), where the parameter S indicates
that this condition applies to all sensors. This is slight abuse of notation, it would
have been more accurate to use a ∀ quantifier.

We also suggest that highlighting assignments to variables (which hold after
the requirement is triggered) would be beneficial. For example, in UC5 R 1.1 we
use the observedThrust variable in both the condition and the response. We
expect that observedThrust has been updated by the response but this is not
obvious, and may have implications when translating to other verification tools.
An Industrial Perspective: Our industrial partner had not used FRET before,
so we asked them about their experience with it. They felt that the fretish
requirements were ‘much more clear ’ than the natural-language requirements,
and that using a ‘controlled-natural language with precise semantics is always
better than natural-language’. When asked if FRET was difficult to use or under-
stand they said that FRET was ‘very easy to use; interface is intuitive; formal

110 M. Farrell et al.

language is adequately documented inside the tool (along with usage examples)’.
Overall, they found that FRET was useful ‘because it forces you to think about
the actual meaning behind the natural-language requirements’.

Having installed FRET, our industrial partner found some usability improve-
ments that could be made. Some were problems with the GUI, which have a low
impact but happen very frequently. Other issues related to fretish; for exam-
ple, they would like to be able to add user-defined templates and patterns, such
as specifying timing within the condition component. Finally, to aid interoper-
ability they ‘would like to be able to export to a format where the formalised
requirements are machine readable (e.g. parse tree)’.

Impact: Formalising the requirements made them more detailed and less ambigu-
ous; crucially much of the detail came from elicitation discussions, not from exist-
ing documents. FRET captures the links between requirements, and explanations
of their intent (which was often more detailed than what already existed). These
two things mean that the FRET requirements are a valuable development arte-
fact. We are currently pursuing Phase 2 of our methodology (Fig. 1), in which
we will assess the impact of the fretish requirements on verification.

We believe that FRET can scale to larger requirements sets, with the parent-
child relationship providing a grouping function. However, for large sets of
requirements it might be necessary to modularise or refactor the requirements
so that they are easier to maintain. We are currently examining how fretish
requirements can be refactored for our use case.

6 Conclusions and Future Work

This paper provides an experience report of requirements elicitation and formal-
isation of an aircraft engine controller in FRET. Our industrial partner provided
a set of natural-language requirements, test cases, and a Simulink diagram. In
close collaboration with our industrial partner, we clarified ambiguous text in the
requirements and test cases. This was essential, as we had originally misunder-
stood some of the text. This iterative process produced a set of detailed fretish
requirements that we, and our industrial partner, are confident correspond to
the intent of the natural-language requirements. The fretish requirements are
now ready for use in formal verification activities.

During this work we identified improvements that could be made to FRET,
which we plan to investigate in future work. First, our fretish requirements con-
tain quite a lot of repetition, so if changes were needed we often had to make the
change manually in several places. This was very time-consuming, so we propose
adding automatic requirement refactoring. Second, we plan to investigate how to
introduce globally-declared variable types. This would improve the readability
of requirements; clarifying what operations are valid for a particular variable,
while encapsulating definitions that might change in the future. This could be
made optional, to retain the ability to write very abstract initial requirements.
Finally, we would like to improve the interoperability of FRET with other formal
verification tools. For example, adding a translator to the input language of a

FRETting About Requirements 111

theorem prover to avoid the state-explosion faced by model checkers (like Kind2,
which is used to verify CoCoSpec contracts); or outputting the requirement to
a parse tree, as suggested by our industrial partner.

References

1. Back, R.J., Wright, J.: Refinement Calculus: A Systematic Introduction. Springer,
Cham (1998)

2. Barbosa, R., et al.: The VALU3S ECSEL project: verification and validation of
automated systems safety and security. In: Euromicro Conference on Digital Sys-
tem Design, pp. 352–359. IEEE (2020)

3. Bourbouh, H., et al.: Integrating formal verification and assurance: an inspection
rover case study. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I.
(eds.) NFM 2021. LNCS, vol. 12673, pp. 53–71. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-76384-8 4

4. Bourbouh, H., Garoche, P.L., Loquen, T., Noulard, É., Pagetti, C.: CoCoSim,
a code generation framework for control/command applications An overview of
CoCoSim for multi-periodic discrete Simulink models. In: European Congress on
Embedded Real Time Software and Systems (2020)

5. Darimont, R., Van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. ACM SIGSOFT Softw. Eng. Notes 21(6), 179–190
(1996)

6. Dutle, A., et al.: From requirements to autonomous flight: an overview of the
monitoring ICAROUS project. In: Workshop on Formal Methods for Autonomous
Systems, pp. 23–30. EPTCS (2020)

7. Giannakopoulou, D., Mavridou, A., Rhein, J., Pressburger, T., Schumann, J., Shi,
N.: Formal requirements elicitation with FRET. In: International Conference on
Requirements Engineering: Foundation for Software Quality (2020)

8. Giannakopoulou, D., Pressburger, T., Mavridou, A., Schumann, J.: Automated for-
malization of structured natural language requirements. Information and Software
Technology 137, 106590 (2021)

9. Luckcuck, M., Farrell, M., Sheridan, O., Monahan, R.: A methodology for devel-
oping a verifiable aircraft engine controller from formal requirements. In: IEEE
Aerospace Conference (2022)

10. Mavridou, A., Bourbouh, H., Garoche, P.L., Giannakopoulou, D., Pessburger, T.,
Schumann, J.: Bridging the gap between requirements and simulink model anal-
ysis. In: International Conference on Requirements Engineering: Foundation for
Software Quality (2020)

11. Mavridou, A., et al.: The ten lockheed martin cyber-physical challenges: formalized,
analyzed, and explained. In: International Requirements Engineering Conference,
pp. 300–310. IEEE (2020)

12. Perez, I., Dedden, F. and Goodloe, A.: Copilot 3. Technical report, NASA/TM-
2020-220587, National Aeronautics and Space Administration (2020)

13. Postlethwaite, I., Samar, R., Choi, B.W., Gu, D.W.: A digital multimode H∞
controller for the Spey Turbofan engine. In: European Control Conference (1995)

14. Samar, R., Postlethwaite, I.: Design and implementation of a digital multimode
H∞ controller for the Spey Turbofan engine. J. Dyn. Syst. Measur. Control 132(1),
011010 (2010)

15. Zave, P., Jackson, M.: Four dark corners of requirements engineering. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 6(1), 1–30 (1997)

https://doi.org/10.1007/978-3-030-76384-8_4
https://doi.org/10.1007/978-3-030-76384-8_4

User Stories

Invest in Splitting: User Story Splitting
Within the Software Industry

Emanuel Dellsén1 , Karl Westg̊ardh1 , and Jennifer Horkoff1,2(B)

1 University of Gothenburg, Gothenburg, Sweden
jennifer.horkoff@gu.se

2 Chalmers, University of Gothenburg, Gothenburg, Sweden

Abstract. Context and Motivation: Requirements as captured in
user stories often must be split to facilitate further work. There are many
different theoretical descriptions on how user story splitting should be
conducted in agile software development. However, current research does
not give insight into how teams and team members conduct user story
splitting in practice. Question/problem: Our research aims to decrease
the gap between the theory and the practice by exploring why, how, and
what the impact is of user story splitting for the participants within
the context. Principal ideas/results: Through interviews and obser-
vations, we see indications of purposes which the majority of the partic-
ipants have in common. Their practices are similar to those found in the
literature but not specifically prescribed from any specific source. As a
result of their practices, many participants describe that they receive an
understanding that they previously did not have. The participants are
also able to deliver results incrementally and estimate their work with
higher precision. Contribution: We use our results to provide guidelines
on user story splitting and to guide further research on the topic.

Keywords: User story splitting · Requirements decomposition · Work
item breakdown · Vertical split · Agile methodology

1 Introduction

Agile is a term used for a set of practices and ceremonies widely used within
today’s software development teams and companies. Some of these ceremonies
involve user story splitting, which is described as the process “of breaking up
one user story into smaller ones while preserving the property that each user
story separately has measurable business value” [1].

In the context of this research paper, whenever we mention “User story split-
ting” we do not exclusively refer to the splitting of User stories with the familiar
format, As a <role>, I want <goal>, [so that <benefit>] [2]. Many agile teams
define their user stories in terms of a hierarchy containing different user stories
or work items. There can be epics, features, user stories, and tasks, and many
other options in a hierarchy [3]. We are instead referring to the process of split-
ting or breaking down any large item into smaller pieces within agile software
c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 115–130, 2022.
https://doi.org/10.1007/978-3-030-98464-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_10&domain=pdf
http://orcid.org/0000-0002-1959-1918
http://orcid.org/0000-0001-6245-0929
http://orcid.org/0000-0002-2019-5277
https://doi.org/10.1007/978-3-030-98464-9_10

116 E. Dellsén et al.

development. Examples of names for the practice of user story splitting found
in the literature are “user story decomposition” and “user story breakdown”.
Variations also exist of what type of work item is the focus of the practice, such
as “feature splitting” or “epic splitting”.

There are several purposes described for the practice of user story splitting.
Cohn describes the need of splitting user stories that are too large (for example,
epics) so that the user story can fit into an iteration (a work period) of a software
development team [4], also mentioned in [5]. As described in [5], when splitting
user stories, it is still required to consider that the user story in itself should also
have value, which implies that there could be user stories that are too small and
are not valuable by themselves. Other purposes for user story splitting are to
make user stories more understandable as well as estimatable [5], and to make
them easier to work with [6].

Multiple techniques and practices for user story splitting exist. Visual
Paradigm describes both horizontal and vertical splitting [7]. The horizontal
technique splits large user stories into smaller ones by separating the architec-
tural layers (e.g., one user story for UI, one for backend, and one for persistent
storage). Vertical splitting focuses on one function that uses each of these parts
and thereby provides value in itself. There is also a user story estimation tech-
nique, “Expected Implementation Duration” (EID) [5]. EID is used to validate
split user stories to see whether a user story is correctly sized.

However, the literature does not reveal how participants in the industry
implement user story splitting nor the reasons and impacts of said practice.
This research is important to provide insight and decrease the gap between the-
oretical information and practical adaptation regarding user story splitting as a
practice.

The purpose of this case study is to explore why, how, and what the impact
is of user story splitting for the participants of agile software development teams.
This helps us to produce recommendations for better splitting practices grounded
in empirical findings. The study was conducted by interviewing members of
agile software development teams and observations of meetings where user story
splitting took place. We interviewed 12 participants in various roles across five
companies and performed three observations.

We have selected the following research questions to guide our study:
RQ1: What is the purpose of user story splitting for the participants?
RQ2: How is user story splitting conducted by the participants?
RQ3: What is the impact of user story splitting for the participants?
With these questions, we aim to understand user story splitting in practice,

improve current practices by providing guidelines, and to direct further research.
The paper is structured as follows: Sect. 2 describes related work. We describe

the research methodology in Sect. 3, and present our findings related to the
research questions in Sect. 4. Sect. 5, discusses our findings and future work. We
conclude our study in Sect. 6.

Invest in Splitting: User Story Splitting Within the Software Industry 117

2 Related Work

User Stories: The User Story is an artifact used in agile methodology. This
artifact can both represent the functionality and requirements of the system [8].
A user story often follows a particular format, As a <role>, I want <goal>,
[so that <benefit>], to capture and represent requirements of a system, from a
user or customer perspective [6]. Even though the agile methodology focuses on
individuals and interactions over processes and comprehensive documentation
[9], requirements engineering and specification through documentation still play
a significant part in agile development [10]. According to [11], 90% of compa-
nies claim to use user stories to capture requirements, but only 70% follow the
specific template found in [12]. This claim implies that there could be different
implementations within different companies.

Techniques for Splitting: User story splitting is not a single specific approach.
There exist multiple techniques and practices for splitting user stories. In agile
environments, one of the most frequently mentioned techniques is vertical split-
ting or slicing [13,14]. Vertical splitting produces work items or user stories that
“include changes to each architectural layer sufficient to deliver an increment of
value” [15]. A vertical slice is a user story that contains work on all layers, the
user interface, the API, and the database as an example. In contrast to verti-
cal splitting, horizontal splitting also exists. Horizontal splitting means working
with an entire layer, for example, the entire user interface. Therefore, several
layers must be completed to deliver value to a user or customer.

Many other variations of vertical splitting are available in internet articles,
such as splitting by user personas, by capabilities offered, by acceptance criteria,
by CRUD (CREATE, READ, UPDATE, DELETE) operations and by business
rules [16–18] among many others. Lawrence and Green provide a story splitting
flowchart to determine which technique to use when [15].

Benefits of User Story Splitting: To split a user story into smaller pieces has,
according to the literature, practical benefit and positive impact(s). Moreover,
there are also defined purposes behind this approach, e.g., one user story should
be split so that it can fit into one iteration [4]. This approach is echoed in
[5] where the author(s) mention the importance of having one user story be
complete within one iteration of a software development team. It is important
not to split them too much so that each smaller part still provides business
value [5]. Lucassen et al. also highlights that a split user story can become more
understandable and estimable. Additionally, splitting user stories can improve
the agile workflow since they become more manageable and easier to work with
[6].

In terms of impact, a user story with the “incorrect” granularity can affect the
quality features, such as having acceptance tests, of the user story. The quality
is affected regardless of the user stories being too fine or too coarse [5]. Liskin et
al. suggest that user story splitting can improve clarity, but more research into
the subject is required to validate this suggestion.

118 E. Dellsén et al.

The INVEST (Independent, Negotiable, Valuable, Estimable, Small,
Testable) criteria address user story quality and are frequently mentioned in
different sources, in literature, research papers, and internet articles. INVEST
relates to both stories in general and specifically to user story splitting, espe-
cially considering the S, which stands for “Small”, as in user story size. Related
initially to XP (Extreme programming) [19], the INVEST criteria are frequently
in use in agile environments. Application of the INVEST criteria is presented
in [20] for improving the measurement technique of User Stories. When a user
story in this application is either revealed as not independent from another user
story, this could indicate that the user story should be split into smaller parts. If
the user story does not provide any value, this could suggest that it is now too
fine in terms of granularity. Therefore, the INVEST criteria can measure user
stories and act as a general guideline in creating good user stories [21].

Requirements Refinement. Another line of work explores the refinement of
requirements, e.g., [22]. However, most such approaches focus on refinement into
formal representations, with different aims from user story splitting in agile.

3 Research Methodology

To study user story splitting in the software development industry, we chose to
conduct an exploratory case study. We made this choice considering that this
methodology is used “to study complex phenomena within their contexts”[23].
We chose to conduct qualitative interviews and observations with the partici-
pants to answer our research questions. We have followed the guidelines from
the paper ACM SIGSOFT Empirical Standard for the interviews [24].

Participants: Our participants were selected depending on whether they and
their teams perform some kind of user story splitting in their development pro-
cess. We have not compared how one team treats user stories to one another in
order to make sure that they are comparable. The sampling method is conve-
nience sampling. We contacted the participants by e-mail with a general descrip-
tion of the topic of our study and a description of how we would like them to
participate in the study. Some participants only took part in interviews, and
some participating teams invited us for observations. We interviewed a total
of 12 participants from five different companies and performed three observa-
tions where some of the interviewees also were participatants. The participants
worked in both large and small companies a variety of domains. The interviewees
were mainly from teams based in Sweden, even though two of the interviewees
themselves were located in Latvia.

Data Collection: In order to achieve data triangulation and broaden our under-
standing of the topic, we performed data collection using both interviews and
observations [25]. Interviews: The data was mainly collected through the use of
semi-structured interviews. The interviews were done with one team member at
a time from each team. The interviews took between 30 to 50 min and were con-
ducted online between March and April of 2021 over Zoom. We recorded audio

Invest in Splitting: User Story Splitting Within the Software Industry 119

Table 1. Interview participants

ID Experience Role Company Company information Team Team age Team size

1 20+ years Product

manager

1 American company, data

analysis software, 4000+

employees

1 5+ years 4–6 persons

2 40+ years Software

developer

2 Swedish company,

tourism and hospitality

software, 10+ employees

1 2+ years 4–6 persons

3 3+ years Requirement

analyst

3 Nordic company, financial

industry, 5000+

employees

1 3+ years 7–10 persons

4 15+ years Software

developer

2 Swedish company,

tourism and hospitality

software, 10+ employees

2 2+ years 4–6 persons

5 10+ years Product

owner

3 Nordic company, financial

industry, 5000+

employees

2 4+ years 7–10 persons

6 3+ years Product

owner

2 Swedish company,

tourism and hospitality

software, 10+ employees

2 2+ years 4–6 persons

7 10+ years Scrum

master

3 Nordic company, financial

industry, 5000+

employees

2 4+ years 7–10 persons

8 5+ years Scrum

master

4 Swedish company, IT

subcontractor, 20+

employees

1 2+ years 4–6 persons

9 3+ years Product

owner

3 Nordic company, financial

industry, 5000+

employees

3 2+ years 7–10 persons

10 5+ years Software

developer

4 Swedish company, IT

subcontractor, 20+

employees

1 2+ years 4–6 persons

11 5+ years Quality

assurance

engineer

2 Nordic company, financial

industry, 5000+

employees

3 2+ years 7–10 persons

12 10+ years Software

realization

manager

5 European company,

logistics solutions, 2000+

employees

1 5+ years 7–10 persons

of all the interview sessions with the permission of the interviewees. We con-
ducted the interviews in English regardless of the participant’s native language.
The questions asked during the interviews can be found in our online repository
https://github.com/Synoecism/user-story-splitting.

We performed one interview pre-test with an individual at a company in
Gothenburg, Sweden, in a similar role to that of our interviewees and adjusted
the protocol based on feedback. The audio files of the interviews were transcribed
using a digital tool (www.rev.ai). The quality of the transcription was good but
we had to compare the transcription to the audio recording and correct mistakes
made by the tool. After the interviews, the transcript was sent to the respective
participant for member-checking to receive additional feedback and allow the
participant to remove any information they wished to remove.

Observations: We observed two sprint planning sessions and one epic refine-
ment meeting. All of the observations were performed in the same team in one

https://github.com/Synoecism/user-story-splitting
www.rev.ai

120 E. Dellsén et al.

Table 2. Conducted observations

Observation Company/Team Performed Type of meeting Roles involved Length

1 C1/T1 Early March 2021 Sprint planning Product Owner,

Scrum Master,

Developers (3)

45+ min

2 C1/T1 Mid March 2021 Epic refinement Scrum Master,

Developers (2)

60+ min

3 C1/T1 Early April 2021 Sprint planning Product Owner,

Scrum Master,

Developers (3),

Support

technician

45+ min

company. All of the observations were performed in a passive manner where
we did not interact with anyone and/or interrupt the natural flow of the meet-
ing/sessions. The reasoning behind this being that we did not want to influence
the data. We did this to observe the interaction of the team members in their
natural state and increase the number of data sources for the research. The data
collection was made through taking notes, these notes was later analyzed which
is described further in the next section.

Data Analysis: We analyzed the data using inductive and deductive thematic
coding [26], suitable for an exploratory case study with initial research questions.
The first two authors coded the transcripts and notes from the interviews and
the observations individually, then discussed these codes with the third author.
Based on these initial codes, the first two authors derived a list of sub-themes
together to align our view of the sub-themes. Then we separately applied the
sub-themes to the codes. Whenever a sub-theme was missing or a sub-theme
from the list could not be applied to the code, we constructed new ones for that
specific code. We then compared the choices of sub-themes, and we discussed
each selection before settling on one sub-theme for each code. For example, the
sub-theme “Team” comes from the codes “Team culture” and “Defined by the
team leader”.

The sub-themes were then grouped into themes related to the research ques-
tions. Similar to the previous step, the first two authors did so separately and
then discussed our individual choices. In the end, we selected one theme for
each sub-theme based on each code. Codes that had no occurrences or a single
occurrence were dismissed.

4 Results

We start by describing the work environment of the interviewees and their teams’
way of working. We also cover the hierarchy of the teams’ backlog board. The
remaining results section is separated into themes and sub-themes derived from
the codes of the interviews and observations. The sub-themes are presented in
order of the most frequently occurring codes, we have chosen to present sub-
themes with more codes occurring more than five times. An overview of the
sub-themes connected to the themes can be seen in Fig. 1.

Invest in Splitting: User Story Splitting Within the Software Industry 121

A complete overview of the codes and sub-themes per theme can be found
in the tables available in our online repository (https://github.com/Synoecism/
user-story-splitting). Sub-themes are found to the far left of the tables, followed
by the codes and the sum of the occurrences of that specific code from the
observations and the interviews. With “O1”, we refer to Observation 1, and
with “I1”, we refer to Interview 1. The tables include the frequencies of a specific
code in a specific interview or observation. Throughout the rest of this section,
there will be text highlighted in italics and bold, where italics reflects to the
sub-themes (see Fig. 1) and bold text reflects the codes under the sub-theme.

Work Environment: All participants worked in an agile environment but used
different ceremonies such as Sprints, Sprint Planning, and backlog grooming.
The teams used a combination of practices from agile methodology, kanban, and
scrum to structure their development and way of working.

RQs /
Themes

RQ2.
Methodology

Experience

Approach

Prescriptive
Team

Event

RQ1.
Purpose

Insight

Technical

Overview

Resource
management

Value

Dependencies

RQ3.
Impact

TechnicalProcess

Management

Understandability

Fig. 1. Themes and sub-themes

We found that all participants use a digital tool to assist their work board and
user story splitting. One of the teams used “Jira”1, but other work board prod-
ucts were also used by the other teams such as “Trello”2 or “Azure DevOps”3.
One of the main purposes of tool use was to trace tasks to user stories.
1 https://www.atlassian.com/software/jira.
2 https://trello.com/en.
3 https://azure.microsoft.com/en-us/services/devops.

https://github.com/Synoecism/user-story-splitting
https://github.com/Synoecism/user-story-splitting
https://www.atlassian.com/software/jira
https://trello.com/en
https://azure.microsoft.com/en-us/services/devops

122 E. Dellsén et al.

RQ1: What is the purpose of user story splitting for the participants?

Insight: The majority of the interviewees describe how their development process
would encounter more problems if they did not split large items into smaller
ones. They mention how the process of user story splitting forces them to think
and reason about what to include in the scope of a user story and therefore
reveal the scope. Apart from revealing a scope for different tasks, there is also
an explicit idea to promote understandability for everyone involved in the
process. In terms of one purpose of splitting user stories taken from interview 7:

“I think my colleagues appreciate things being split into smaller tasks,
because it reduces the uncertainty for everybody”

Another mentioned purpose of user story splitting is to identify depen-
dencies. By identifying these dependencies, the teams say how they can more
clearly see how a new implementation affects other parts of the system. As a
result, they can choose to adapt and change certain implementations.

Overview: An ambition of several of the participants to perform user story split-
ting to get an overview of the epics or projects they were working with and to
be able to prioritize them. This ambition could not be met without splitting user
stories into smaller ones. Another frequently occurring purpose was to get dif-
ferent perspectives on the user stories by splitting them by involving different
roles in the practice.

Value: Delivering value is a key aspect of working agile and based on our inter-
views, it seems to be an important purpose behind the process of splitting user
stories as well. The majority of the interviewees point to how customer value
is an important purpose but also business- and user value. Moreover, intervie-
wees mention that they perform splitting to gauge which tasks deliver the most
value. They also aim to enable fast delivery of smaller pieces both to deliver
value as fast as possible and receive fast feedback from different stakeholders
and act upon that feedback if need be. Taken from interview 3 (a feature is a
result of splitting an epic):

“we tried to set up features with something valuable either for business or
for ourselves technical wise, that is deliverable as soon as possible”

Technical: The most noteworthy aspect of this sub-theme is how most intervie-
wees mention that one of many purposes behind their splitting process is to have
their products testable. Interview 4 describes:

“if we can split it into smaller parts, then that is much better than to have
like two big tests”.

The quote highlights how having smaller parts makes testing less complicated
than writing more extensive but fewer tests. From one interview, we could derive
the conscious purpose of having reusability in mind. This purpose stemmed
from actively delivering products that are reusable by other users.

Invest in Splitting: User Story Splitting Within the Software Industry 123

Resource Management: The participants that worked in teams that used sprints
to structure their way of working mentioned that they used user story splitting
to split their stories to fit into the sprint. Projects or larger tasks could rarely
fit directly into a sprint, and therefore splitting was necessary to achieve this.
It was also mentioned several times that user story splitting was conducted to
distribute workload and for resource management. This was especially
apparent for developers because working with smaller stories made them both
more focused on the task at hand, and it was easier to divide tasks between
them within the teams.

Dependencies: We discussed identifying dependencies in the sub-theme
“Insight”. Some interviewees point out that they make a conscious effort to split
their user stories to reduce dependencies found. The majority of the intervie-
wees who mention this as a purpose have a managerial role. Apart from reducing
dependencies, we had one interviewee who noted that they aim to reduce stake-
holders. The number of dialogues necessary to have if more stakeholders are
involved in each task could be reduced and hopefully increase productivity.

RQ2: How is user story splitting conducted by the participants?

Team: All participants mentioned that it was natural and important to have dif-
ferent roles involved in user story splitting. During the observations, it was
apparent where many different roles were involved during both sprint planning
and the product meeting. Every role ranging from product owners to scrum mas-
ters, to UX designers, to support staff, and last but not least, developers, were
involved in the process. Even though different roles involved, scrum masters,
product owners, and team lead were more responsible for user story splitting
within the participating teams. There were also different roles involved depend-
ing on when user story splitting was performed. In interview 9, the interviewee
described that developers were not involved in the pre-planning stage:

“I guess we don’t have the time when we are kind of in those kinds of
pre-planning phases, to drill down on all the technical details.”

Team culture played a large part in how the teams conducted user story
splitting. It was described several times as a team effort, and the involvement
of all team members was an important factor in the success of splitting. The
participants also favored dialogue over documentation and emphasize the
importance of involvement and commitment to the practice. Several partic-
ipants mentioned that the way of working was defined by the team lead.

Event: Some of the interviewees point out that they have specific times where
they perform user story splitting, some of them being that they split at start of
Epic, split at sprint planning, etc. Moreover, the most frequently mentioned
event is to split when necessary which seems to highlight that this process
is not always a ceremony like a “sprint planning”, but more when they find the
need. One example of such a necessity is when a developer, while developing a
task, reveals some aspect previously unknown, such as a need to evaluate what
the next step should be. Interview 5 said:

124 E. Dellsén et al.

“... it’s the expectation, but now we see that it’s really hard to do this, or
it requires a lot of effort to do it. Then we need to evaluate, should we
exclude it, or find another solution or how to treat it.”

Experience: The participants had mostly a rather nonprescriptive approach
to how they conducted user story splitting. In general, they used experience
from earlier assignments or previous teams they belonged to alongside fragments
of specific approaches to splitting. Several interviewees placed a great deal in
the experience of especially scrum masters and product owners, for successful
splitting. Some of them also mentioned that they performed user story splitting
according to industry knowledge without being able to derive where they’ve
learned a specific way of working or technique.

Approach: Even though the participants said they relied heavily on experience
and team dialogue in conducting user story splitting, the participants mentioned
specific techniques. Vertical splitting was the most frequent one, and there
were also mentions of variations of vertical splitting such as splitting by feature,
component, and functionality. Some teams also performed horizontal splitting,
but the interviewees of those teams said it was rather because of an old way of
working than a preferred technique. Another non-voluntary way of splitting was
splitting by expertise and by department. They used this approach because
some developers were much more experienced than others and that some parts
of the user stories could only be completed by them. Splitting by size or story
points were in use in some teams.

Prescriptive: The concept of this sub-theme is to address the ideas and concepts
adopted from outside of the team, it could be literature, courses, etc. Some of the
interviewees mention how their team has an approach to only produce items that
are small based on criteria such as “smallest possible but still deliver value”. Two
interviewees described how they had been part of agile educational course(s)
through their companies which prescribes how specific processes “should” be
which have influenced their way of working. One of the interviewees who attended
an agile course describes how she always keeps the INVEST-criteria to a user
story in mind when she does her splitting. We will further discuss the INVEST
criteria in Sect. 5.

RQ3: What is the impact of user story splitting for the participants?

Understandability: The difference between “understandability” as a purpose and
an impact is whether the participant aims to achieve understandability or as a
consequence of user story splitting. In eight of the interviews, we were told that
splitting large items into smaller, a project scope became revealed. Some of
the teams noticed that even non-coding tasks were revealed, for example,
documentation tasks or contacting a customer. Additionally, eight interviewees
described that when they previously did not split user stories, they overlooked
things that needed to be done. Several participants also mentioned that the lack
of a process of user story splitting would have resulted in a lack of overview
of a project, and a lack of understandability of what needed to be done.

Invest in Splitting: User Story Splitting Within the Software Industry 125

Process: As an impact of user story splitting, the participants said that it enabled
or enhanced their ability to have incremental deliveries of features and stories.
Interview 7 shows this:

“...user stories split the data in a, in a chunk that can be easily, for exam-
ple, deployable, it can be, it has a life of itself.”

According to some interviewees, user story splitting also made it easier to
work with changes to requirements, thereby promoting their adaptability. By
working with smaller stories, changes in requirements could be isolated and
mapped to specific stories rather than large epics. For two interviewees, the user
story splitting process increased their ability to promote correct delivery since
they could with less difficulty visualize what to deliver.

Management: Estimation is the most frequently occurring code in this sub-
theme. This code describes that splitting user stories is a positive impact because
the team members can estimate how long time certain tasks will take, which
management valued. Some interviewees mention how this is possible because
they know what is included in a certain task with a higher certainty. Another
impact mentioned was that user story splitting enabled comparability between
user stories. Large user stories were described as difficult to compare to other
stories, but smaller ones, easier to compare to one another. Comparability also
played a part in estimation. Two interviewees mentioned that it became easier
to manage risk due to the continuous delivery of smaller stories.

Technical: The practice of user story splitting had some impact on technical
issues. By splitting stories into smaller pieces, it increased testability since
it was easier to test them as small individual pieces instead of one big block.
Two interviewees said that code reviewing was done more easily since it was
easier to understand code about the stories when the stories were smaller. Two
interviewees told us that user story spitting resulted in increased code quality
because it was easier to write good code for a small story than a large one.
Additionally, these two interviewees said one of the reasons behind increased
code quality was that it reduced the complexity of the resulting code.

5 Discussion

We see that user story splitting is an integral part of the agile development team’s
way of working. There are different but logical reasons why certain interviewees
split stories in a certain way and, to them, both known and unknown impacts of
user story splitting. In terms of the user story splitting literature, our study has
verified some of our initial assumptions, but we also found aspects that point to
things previously unknown to us.

INVEST: What we have found seems to indicate that several of the qualities
prescribed by the INVEST [20] acronym are interwoven in the practice of user
story splitting for the participants. Only one participant specifically mentioned

126 E. Dellsén et al.

INVEST during the interview, but several other participants mentioned qual-
ities from INVEST without directly connecting to that concept. For example,
producing testable items independent of each other and small in size to deliver
value faster. Estimation is one key aspect of INVEST, and we have found that
this is a positive impact of user story splitting, based on several interviews.

In [20], the authors present the INVEST grid, which is a practical template
for evaluating user stories in terms of INVEST criteria. We believe that a study
into how teams could apply the INVEST grid in practice, both considering [20],
and our findings related to the qualities of INVEST, would be interesting.

Vertical Splitting: The results we have presented indicate that most of the
participants use vertical splitting. However, some of the participants are only
using horizontal splitting, and some horizontal splitting in addition to vertical
splitting. Vertical splitting is a more commonly discussed topic in the literature
and articles [15],[18] while splitting horizontally is a less favored approach in an
agile environment [27], as it does not focus on the user or customer value but
rather on the technical or architectural solution. Vertical splitting seems to be a
good approach when you want to focus on delivering user functionality indepen-
dently. In contrast, based on our impression from several interviews, horizontal
splitting seem to result in both longer development time before delivery and
potentially developing things that might be unused. Further research to validate
efficiency of vertical splitting over horizontal splitting would be valuable.

Work Split: Some of the teams mentioned that they split user stories an addi-
tional time both for distribution of workload and depending on expertise. An
example of this additional split was when a user story was split into one for
frontend work and one for backend work. With this additional split, the new
parts lacked independent value and needed to be delivered together, but the
two developers were able to separate their work. Three of the developers we
interviewed mentioned a different kind of additional split, in order to create a
checklist for themselves, which they used to ensure that nothing was forgotten.
The same developers did not find it necessary to have these individual check-
lists connected to the workboard of the team. This might be connected to the
idea mentioned by another interviewee, a scrum master, that it is important
to trust the developers within his team to do their job. It would be interesting
to further explore why these additional splits occur and to see if there are any
consequences.

Insight and Overview: All of the participants mentioned that gaining insight
and getting an overview of what they were working with was a significant part
of the goal of user story splitting. Insight and overview were also mentioned
as an impact of the process and understanding the project’s scope. There was
an indication of this as well in [5], and further strengthened by our findings.
Through the process of splitting, the teams are presented with more concrete
items. These items could consist of aspects that have been previously unknown
but are now known. Moreover, the impression we have got is that the participants

Invest in Splitting: User Story Splitting Within the Software Industry 127

find it easier to see dependencies between tasks more clearly, but this impression
is worth further investigating in future research.

Another positive impact of user story splitting is that it reveals tasks that
are not directly related to producing code. The interviewees that describe this
indicate the importance of deriving such tasks. This can be tasks related to
understanding other parts of the business, or, for example, contacting a customer
and discussing a suggested way to implement one of their requirements.

Different Roles Involved: We find that different roles were involved in various
stages and differed significantly between teams, specifically at what granularity
level the team was currently splitting. Some teams involved only the product
owner or the scrum master when working with epics, and some only involved
developers when splitting user stories.

Our findings seem to indicate that it is beneficial for user story splitting to
involve many different roles in the process, as each of the different roles provides
unique perspectives, which decreases the risk of encountering later problems.
Involving more than one type of role is supported by [28], who says that user
story splitting should not be the sole responsibility of the product owner, and
neither be left completely alone to the development team.

Another aspect of this relates to both gaining insight and overview as well
as conducting vertical splitting. Two participants said that the problem with
vertical splitting is that an architectural overview might get lost when using
horizontal splitting. Involving the architect in the splitting process seems to
mitigate this issue while still working with vertical splits.

Recommendations: We believe that our findings suggest a set of recommen-
dations for new teams and practitioners aiming to perform user story splitting
or improve their current practice.

– Involve different team roles when splitting, to get different perspectives.
– Split vertically, to focus on delivering value.
– Use the INVEST criteria as a guideline to increase the quality of splitting.
– Actively evaluate the user story splitting practice retrospectively to suit your

teams way of working.
– Focus on discussing and splitting epics rather than detailing them upfront.
– Use a digital workboard to support traceability between user stories.

Although these recommendations are in line with many recommendations in
the literature, we believe is it helpful to conduct studies such as ours to report
evidence which confirms these practices. A future study could further evaluate
these recommendations by following teams that apply them to their practice.

Threats to Validity: We discuss the validity threats for an exploratory case
study and our data collection techniques. Construct. At the beginning of each
interview, we made sure to explain our interpretation of terminologies such as
“user story splitting”, this was necessary given that similar practices do not share
the same name. After the interviews, we performed member checking, which
helped shed light on confusing comments. On occasions where interviewee(s)

128 E. Dellsén et al.

have misunderstood our questions or confused user story splitting with agile
methodology in general, we have tried to guide them back to the topic at hand.
This process also allowed the interviewee(s) to add information to clarify things
they read in the transcript and apply corrections to their statements.

Internal. Observing people’s work always risks them acting in a way that deviates
from how they usually act. Performing the observations through digital tools such
as Zoom and turning off our cameras and microphones was a way for us to try
and reduce this internal threat. The research should also be seen in the light of
the COVID-19 situation occuring during the interviews and observations. Some
interview answers may have been affected or not representative of the typical
situation due to the work situation during the pandemic.

External. The goal of this research is not to generalize our findings. However,
we generate themes derived from the interviews and observations conducted
with several teams within different companies, we can point towards a similarity
between the various sources. There is also a chance that our findings apply in
other contexts since we interviewed and observed teams from different compa-
nies and, therefore, different contexts. To validate the claim, more research is
necessary.

6 Conclusions

In this paper, we have performed interviews and observations to find what pur-
pose(s) the participants have for user story splitting, how they conduct this
process, and its impact. We found that even though there are many strategies
and techniques available in the literature, the participants did not base their
practice of user story splitting on any specific source or technique. However, the
participants did use practices that were similar and shared properties of practices
found in the literature. To reveal the scope of a project was both mentioned as a
purpose and impact of user story splitting. The other most frequently mentioned
reasons were to understand what needed to be done to complete a story to get
an overview of the work that needed to be done. We also found that an impact of
user story splitting is that it makes it easier to deliver user stories incrementally.
We have produced a set of recommendations for the practice of user story split-
ting based on our findings, and these recommendations can be used by teams
and team members to assist or improve their practice. This research can be used
as a foundation for further studies into the topic of user story splitting.

Acknowledgement. We express their sincere gratitude and appreciation to: the par-
ticipating companies and participants, and Abdul Bari, for the mathematical explana-
tions.

References

1. Wirfs-Brock, R.: What is user story splitting? Alliance, A., Ed. (2021).https://
www.agilealliance.org/glossary/split/

https://www.agilealliance.org/glossary/split/
https://www.agilealliance.org/glossary/split/

Invest in Splitting: User Story Splitting Within the Software Industry 129

2. Patton, J.: User story mapping: discover the whole story, build the right product.
O’Reilly (2014)

3. Rehkopf, M.: Epics, stories, themes, and initiatives. Atlassian, Ed. (2021). https://
www.atlassian.com/agile/project-management/epics-stories-theme

4. Cohn, M.: User stories applied: For agile software development. Addison- Wesley
(2004)

5. Liskin, O., Pham, R., Kiesling, S., Schneider, K.: Why we need a granularity con-
cept for user stories. In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179,
pp. 110–125. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06862-6 8

6. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M., Brinkkemper, S.: The use and effec-
tiveness of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016.
LNCS, vol. 9619, pp. 205–222. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30282-9 14

7. Visual Paradigm. User story splitting - vertical slice vs horizontal slice, (2021).
https://www.visual-paradigm.com/scrum/user-story-splitting-vertical-slice-vs-
horizontal-slice/

8. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story
models. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C., Manolopoulos, Y.,
Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484, pp. 211–225.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07881-6 15

9. Beck, K., et al.: Manifesto for agile software development (2001).https://
agilemanifesto.org/

10. Wang, X., Zhao, L., Wang, Y., Sun, J.: The role of requirements engineering prac-
tices in agile development: an empirical study. In: Zowghi, D., Jin, Z. (eds.) Require-
ments Engineering. CCIS, vol. 432, pp. 195–209. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43610-3 15

11. Dalpiaz, F., Brinkkemper, S.: Agile requirements engineering with user stories. In:
2018 IEEE 26th International Requirements Engineering Conference, pp. 506–507.
IEEE (2018)

12. Cohn, M.: User stories. Software, M.G., Ed. (2020). https://www.
mountaingoatsoftware.com/agile/user-stories

13. Ratner, I.M., Harvey, J.: Vertical slicing: smaller is better. In: 2011 Agile Confer-
ence, pp. 240–245(2011). https://doi.org/10.1109/AGILE.2011.46

14. Lowe, D.: Slicing stories vertically. Kanban, S., Ed. (2013). https://
scrumandkanban.co.uk/slicing-stories-vertically/

15. Lawrence, R., Green, P.: The humanizing work guide to splitting user stories.
H. Work, Ed. (2020).https://www.humanizingwork.com/the-humanizing-work-
guide-to-splitting-user-stories/

16. Balbes, M.J.: A practical guide to user story splitting for agile teams. Beacon, T.,
Ed. (2021). https://techbeacon.com/app-dev-testing/practical-guide-user-story-
splitting-agile-teams

17. Poole, D.: User stories and story splitting. Group, E., Ed. (2015). https://raleigh.
iiba.org/sites/raleigh/files/userstoryminibook.pdf

18. Leffingwell, D.: “A user story primer” Tech. Rep. (2009)
19. Wake, B.: Invest in good stories, and smart tasks - xp123 (2003). https://xp123.

com/articles/invest-in-good-stories-and-smart-tasks/
20. Buglione, L., Abran, A.: Improving the user story agile technique using the invest

criteria. In: Proceedings of the 8th International Conference on Software Process
and Product Measurement, pp. 49–53. IEEE (2013)

21. Hartmann, B.: New to agile? invest in good user stories [agile for all] (2009).
https://agileforall.com/new-to-agile-invest-in-good-user-stories/

https://www.atlassian.com/agile/project-management/epics-stories-theme
https://www.atlassian.com/agile/project-management/epics-stories-theme
https://doi.org/10.1007/978-3-319-06862-6_8
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-30282-9_14
https://www.visual-paradigm.com/scrum/user-story-splitting-vertical-slice-vs-horizontal-slice/
https://www.visual-paradigm.com/scrum/user-story-splitting-vertical-slice-vs-horizontal-slice/
https://doi.org/10.1007/978-3-319-07881-6_15
https://agilemanifesto.org/
https://agilemanifesto.org/
https://doi.org/10.1007/978-3-662-43610-3_15
https://www.mountaingoatsoftware.com/agile/user-stories
https://www.mountaingoatsoftware.com/agile/user-stories
https://doi.org/10.1109/AGILE.2011.46
https://scrumandkanban.co.uk/slicing-stories-vertically/
https://scrumandkanban.co.uk/slicing-stories-vertically/
https://www.humanizingwork.com/the-humanizing-work-guide-to-splitting-user-stories/
https://www.humanizingwork.com/the-humanizing-work-guide-to-splitting-user-stories/
https://techbeacon.com/app-dev-testing/practical-guide-user-story-splitting-agile-teams
https://techbeacon.com/app-dev-testing/practical-guide-user-story-splitting-agile-teams
https://raleigh.iiba.org/sites/raleigh/files/userstoryminibook.pdf
https://raleigh.iiba.org/sites/raleigh/files/userstoryminibook.pdf
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://xp123.com/articles/invest-in-good-stories-and-smart-tasks/
https://agileforall.com/new-to-agile-invest-in-good-user-stories/

130 E. Dellsén et al.

22. Darimont, R., Van Lamsweerde, A.: Formal refinement patterns for goal-driven
requirements elaboration. ACM SIGSOFT Softw. Eng. Notes 21(6), 179–190
(1996)

23. Baxter, P., Jack, S.: Qualitative case study methodology: study design and imple-
mentation for novice researchers. Qual. Rep. 13(4) (2008)

24. Ralph, P.: ACM SIGSOFT empirical standards released. ACM SIGSOFT Softw.
Eng. Notes 46(1), 19–19 (2021)

25. Carter, N., et al.: The use of triangulation in qualitative research. In: Oncol Nurs
Forum, p. 545 (2014)

26. Soiferman, L.K.: Compare and contrast inductive and deductive research
approaches. In: ERIC (2010)

27. Ramirez, R.: Advantages of vertical slice over horizontal slice in ag- ile soft-
ware development. T. Technologies, Ed. (2018). https://www.teravisiontech.com/
advantages-vertical-slice-horizontal-slice-agile-software-development/

28. Cohn, M.: Five story-splitting mistakes and how to stop making them. M.
G. Software, Ed. (2017).https://www.mountaingoatsoftware.com/blog/five-story-
splitting-mistakes-and-how-to-stop-making-them

https://www.teravisiontech.com/advantages-vertical-slice-horizontal-slice-agile-software-development/
https://www.teravisiontech.com/advantages-vertical-slice-horizontal-slice-agile-software-development/
https://www.mountaingoatsoftware.com/blog/five-story-splitting-mistakes-and-how-to-stop-making-them
https://www.mountaingoatsoftware.com/blog/five-story-splitting-mistakes-and-how-to-stop-making-them

Guided Derivation of Conceptual Models
from User Stories: A Controlled Experiment

Maxim Bragilovski1(B) , Fabiano Dalpiaz2 , and Arnon Sturm1

1 Ben-Gurion University of the Negev, Beer Sheva, Israel
maximbr@post.bgu.ac.il, sturm@bgu.ac.il

2 Utrecht University, Utrecht, The Netherlands
f.dalpiaz@uu.nl

Abstract. [Context andMotivation]User stories are a popular notation for rep-
resenting requirements, especially in agile development. Although they represent
a cornerstone for developing systems, limited research exists on how user stories
are refined into conceptual design. [Question/Problem] We study the process of
deriving conceptual models from user stories, which is at the basis of information
systems development. We focus our attention on the derivation of a holistic view
of structural and interaction aspects, represented via class diagrams and use case
diagrams, respectively. In this paper, we examine whether providing guidelines
has an effect on the ability of humans to derive complete and valid conceptual
models. [Principal Ideas/Results] We design example-based guidelines for the
derivation of class and use case diagrams from user stories. Then, we conduct a
two-factor, two-treatment controlled experiment with 77 undergraduate students
serving as subjects. The results indicate that the guidelines improve the com-
pleteness and validity of the conceptual models in cases of medium complexity,
although the subjects were neutral on the usefulness of the guidelines. [Con-
tribution] The guidelines may assist analysts in the refinement of user stories.
Our initial evidence, besides showing how the guidelines can help junior analysts
derive high-quality conceptual models, opens the doors for further studies on the
refinement of user stories, and to the investigation of alternative guidelines.

Keywords: Requirements engineering · Conceptual modeling · Use cases ·
Derivation process · Guidelines · Class diagram · User stories · Controlled
experiment

1 Introduction

User stories are a popular technique for expressing requirements from a user perspec-
tive [8]. Through their simple notation, they represent who expresses a need, what fea-
ture is requested, and the rationale behind the feature. The so-called Connextra nota-
tion [8] “As a 〈role〉 I want to 〈feature〉 so that 〈benefit〉” is widely used for the repre-
sentation of the elicited requirements in agile development projects [16,21].

User stories are a central artifact for the subsequent stages of software develop-
ment [2,26]. In particular, user stories may be refined into lower-level specifications.

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 131–147, 2022.
https://doi.org/10.1007/978-3-030-98464-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_11&domain=pdf
http://orcid.org/0000-0002-4778-7897
http://orcid.org/0000-0003-4480-3887
http://orcid.org/0000-0002-4021-7752
https://doi.org/10.1007/978-3-030-98464-9_11

132 M. Bragilovski et al.

One way to do so is to derive conceptual models; this is at the basis of model-driven
engineering [5] and, in general, of information systems development.

Conceptual models may represent system functionality; for example, use case dia-
grams [6] define the roles and the functionality they expect when interacting with the
system. Conceptual models can also depict structural aspects by summarizing the major
entities and relationships that are referred to in the high-level requirements [15,25,34].
In addition to their use in model-driven engineering [19], conceptual models have been
employed in requirements engineering to provide a holistic overview of the product
domain and functionality [1,23], for the identification of potential ambiguity [11], and
for analyzing quality aspects such as security and privacy [24].

In previous research, we have conducted empirical studies in which we compared
user stories and use cases as a starting point for the derivation of structural conceptual
models [10,12]. Our results revealed that user stories are better in time-constrained
settings [12], while in absence of time constraints, the notations are equivalent and
other factors have shown to have a large(r) impact [10], including the complexity of the
domain and the use of a systematic derivation process.

Based on these premises, we investigate whether a human analyst’s ability to derive
conceptual models is influenced by guidelines that illustrate how to construct such mod-
els from user stories. While following a systematic derivation process was an emerging
factor in previous research [10], here we foster such a systematic approach by providing
guidelines. Like in previous research, we study the derivation of a functional concep-
tual model (use case diagram) and of a structural conceptual model (class diagram).
Our research question is as follows: MRQ. How does the provisioning of guidelines to
information systems developers affect the quality of the derived conceptual models?

In particular, we are going to investigate guidelines that are expressed in the form
of examples [14]. Also, we use information systems developers as a general term for
system analysts, designers and programmers. To measure the quality, we used the pre-
viously adopted metrics of model validity and completeness [10,13].

We answer the MRQ via a controlled experiment in which senior undergrad students
were asked to derive conceptual models starting from the user stories for two systems.
Half students were provided with the guidelines, half were not. These students serve as a
proxy for our target population, which consists of analysts, designers, and developers of
information systems. As already mentioned, we assess model quality by measuring the
validity and completeness of the models [10,13]. To enable that, the researchers built
gold standard conceptual models prior to the experiment’s conduction. Furthermore, we
assess the students’ opinion on the usefulness of and need for guidelines. The results
show that the guidelines lead to improved results in terms of validity and completeness,
although this is mainly visible in the more complex specification.

Thus, this paper makes two contributions to the literature: (i) we propose example-
based guidelines for the derivation of structural and functional conceptual models from
user stories; and (ii) we assess the effectiveness and perceived appreciation of the guide-
lines through an experiment that compares to a baseline group without guidelines.

Organization. In Sect. 2, we set the background for this research and we review
related studies. In Sect. 3, we present our devised guidelines. In Sect. 4, we describe the
design of our experiment. In Sect. 5, we elaborate on the experiment results whereas

Guided Derivation of Conceptual Models from User Stories 133

in Sect. 6 we interpret and discuss those results. In Sect. 7, we evaluate the threats to
validity. We conclude and set plans for future research in Sect. 8.

2 Background and Related Work

User stories are a widespread notation for expressing requirements [16,21], especially
in agile development projects [8]. They are simple descriptions of a feature written
from the perspective of the stakeholder who wants such a feature. Multiple templates
exist for representing user stories [31], among which the Connextra format is the most
common [21]: As a 〈role〉, I want 〈action〉, so that 〈benefit〉. For example, a user story
for a learning management system could be “As an enrolled student, I want to access
the grading rubrics, so that I know how my assignments will be evaluated”. The ‘so
that’ part, despite its importance in providing the rationale for a user story [20], is often
omitted in practice. We consider user stories that are formulated using the Connextra
template, and we group related user stories into epics.

Just a few methods exist that derive conceptual models from user stories. Lucassen
et al. [23] propose an automated approach, based on the Visual Narrator tool, for
extracting structural conceptual models (i.e., class diagrams) from a set of user stories.
Their work relies on and adapts natural language processing heuristics from the litera-
ture. The approach is able to achieve good precision and recall, also thanks to the syn-
tactic constraints imposed by user stories, although perfect accuracy is not possible due
to the large variety of linguistic patterns that natural language allows for. Furthermore,
the Visual Narrator is limited to the identified lexicon and, unlike humans, is unable to
perform the abstraction process that is a key issue in conceptual modeling [27].

Wautelet et al. [30] introduce a process for transforming a set of user stories into
a holistic use case diagram, which integrates the user stories by using the granularity
information obtained through tagging the user stories. Their work focuses on the joint
use of two notations, one textual and one diagrammatic.

The same research group [32] proposed one of the few studies on the construction
of diagrams from user stories. In particular, they investigate the construction of a goal-
oriented model (a rationale tree) that links the who, what, and why dimensions of a user
story. Their research shows differences depending on the modeler’s background and
other factors. While their work is highly related, we focus on a different task, which
concerns the derivation of structural and functional conceptual models.

The extraction of conceptual models from natural language description require-
ments is one of the four types of NLP tools described by Berry et al. [3] and a long-
standing research thread. We refer the reader to a recent literature review [35] for a
comprehensive view; our focus is on humans’ ability to derive models, rather than on
automated techniques, without over-constraining the humans in the way they specify
their requirements or by imposing computer-alike rules for the derivation process.

Very few attempts that test human’s ability to extract conceptual models exist.
España and colleagues [13] studied the derivation of UML class diagrams from either
textual requirements or a requirements model; unlike them, we fix our notation and
only study user stories. Some studies compare the effectiveness of automated tools with
that of humans. Sagar et al. [28] propose a tool that outperforms novice human model-
ers in generating conceptual models from natural language requirements. This result is

134 M. Bragilovski et al.

achieved thanks to the notational constraints that facilitate the tool; we do not set such
constraints in this research.

3 Guidelines for Deriving Models from User Stories

In our earlier experiments on the derivation of conceptual models from requirements
(both user stories and use cases) [10,12], we gave limited guidance to the human partici-
pants regarding the way conceptual models should be generated from user requirements.
The obtained and compared results, therefore, could have been affected by different
interpretations of the derivation task. In earlier work [10], we found out that following
a systematic derivation process (self-defined by the subjects) results in higher-quality
models. To better control the derivation process, in this work, we set off to define a set
of guidelines, with the aim of investigating their effect on the derivation process.

First, we dealt with the issue of what should be the form of the guidelines. We started
with a set of linguistic rules, so that one can apply the rules easily by just following
them. Our initial aim was to identify effective rules that could later be embedded into an
algorithm that could automate their application. This approach was inspired by previous
research on the automated derivation of conceptual models, especially the work on the
Visual Narrator [23], which employs and adapts NLP heuristics from the conceptual
modeling literature in order to derive domain models from user stories. For example, a
rule to identify a class diagram entity was “As a ROLE, I want to ACTION on NOUN”,
where the NOUN would define an entity.

However, after applying the guidelines to some datasets, we encountered several
cases in which the rules could not be applied correctly, due to the linguistic variety of
natural text. For example, the rule “As a ROLE, I want to ACTION on NOUN” is hard
to apply to a user story such as “As a teacher, I want to have an overview of the grades”:
the verb “to have” does not really represent an action. One could introduce an increasing
number of rules, but then the guidelines would become impractical. Furthermore, we
realized that applying linguistic rules requires major cognitive efforts.

Therefore, we looked for an alternative way to present the guidelines that will
cover many cases, offer flexibility, and require minimal cognitive efforts. We opted
for an example-based learning approach [14], which requires less cognitive effort and
increases learning outcomes in less time. Such an approach best fits domains in which
the tasks are highly structured [14] (such as the task of model derivation), and some
background knowledge is required for making learning-by-examples effective. This is
also the case we are dealing with, as the guidelines are aimed at developers who are
familiar with all artifacts. We built on the principles for designing examples [14], which
include focused attention, redundancy avoidance, planning the sub goals, and including
a high-level explanation. For more complex cases, for instance, we split the example to
have focused rules, with minor repetitions, and with some explanations.

Table 1 presents a few examples of such guidelines, both for use case diagrams and
for class diagrams. For example, the first example shows how the role of the user story
becomes an actor in a use case diagram, but also that some entity in the rest of the user
story can be an actor; here, “researcher”. The entire set of guidelines, which consists of
9 examples for use case diagrams and 13 examples for class diagrams, can be found in
the experiment forms in the online appendix [4].

Guided Derivation of Conceptual Models from User Stories 135

Table 1. Some of our example-based guidelines for the derivation of use case diagrams and class
diagrams from user stories. The complete guidelines are online [4].

Use Case Diagrams

Example Outcome Remarks

As an administrator, I want to have
researchers reset their own passwords, so
that I don’t have to send passwords in
cleartext.

Actors: administrator, researcher
“researcher” is an actor, although
not the role of the user story

As an assistant archivist, I want to upload
and tag staff generated working papers,
so that staff and researchers are able to
easily access them.

UCs: (1) upload staff generated
working papers; (2) tag staff gen-
erated working papers

Two desired actions in the I want
part. The so that part does not lead
to a use case, as it represents a non-
functional property (easily access)

Class Diagrams

Example Outcome Remarks

As an archivist, I want to apply a license
or rights statement, so that I know what I
can do with a file.

Class: License, Rights statement,
File

There may be multiple classes in
one user story, also in the so that
part

As a researcher, I want to check whether
a document has a citation information, so
that I can cite accurately in a publication.

Class: Document, Citation
Association: Document, Cita-
tion.

The “has” verb denotes the associa-
tion

Note that, for class diagrams, we did not provide guidelines for fine-grained aspects
such as multiplicity, association types, and navigation, because we are primarily inter-
ested in the derivation of high-level models rather than low-level data models.

4 Experiment Design

We investigate how user stories can be translated into conceptual models with and with-
out providing guidelines. We refer to the manual/human derivation of two types of con-
ceptual models: use case diagrams and class diagrams.

Hypotheses. To compare the differences among the two experimental conditions (i.e.,
with and without provided guidelines), we measure validity and completeness [13,18]
with respect to gold standard solutions. Furthermore, we collect and compare the per-
ceptions of the subjects with respect to the guidelines (desired or missing).

Although working with guidelines is expected to be easier than using linguistic
rules based, e.g., on part-of-speech tags (as per the Visual Narrator heuristics [23]), our
example-based guidelines cannot cover all cases: they are incomplete and the analysts
using them will have to decide how to adapt them to unseen cases. These observations
lead us to the following hypotheses:

– Deriving a use case diagram from user stories with and without guidelines results in
equal diagram completeness (HUC-Completeness

0) and validity (HUC-Validity
0)

– Deriving a class diagram from user stories with and without guidelines results in
equal diagram completeness (HCD-Completeness

0) and validity (HCD-Validity
0)

136 M. Bragilovski et al.

Independent Variables. The first variable indicates whether the guidelines were pro-
vided (IV1). The second independent variable is the case used (IV2). It has two possible
values: Data Hub (DH) and Planning Poker (PP). These cases are obtained from a pub-
licly available dataset of user story requirements [9]. DH is the specification for the web
interface of a platform for collecting, organizing, sharing, and finding data sets. PP are
the requirements for the first version of the planningpoker.com website, an online plat-
form for estimating user stories using the Planning Poker technique. Table 2 presents a
few metrics that characterize the size of the cases.

Table 2.Metrics concerning the user stories and the models.

Data hub Planning Poker

User stories Number of user stories 22 20

Class diagram Number of entities 15 9

Number of relationships 16 13

Use case diagram Number of actors 3 2

Number of use cases 24 20

Number of use case relationships 24 22

Dependent Variables. There are two dependent variables, taken from conceptual mod-
eling research [13,18], that we use for measuring the quality of a generated conceptual
model. These variables are specified by comparing the elements in the subject solution
(the conceptual model derived by a subject) against the gold standard solution:

– Validity (DV1): the ratio between the number of elements in the subject solution that
are in the gold standard (true positives) and the true positives plus the number of
elements in the subject’s solution that do not exist within the gold standard solu-
tion (false positives). In information retrieval terms, validity equates to precision.
Formally, Validity = |TP |/(|TP | + |FP |).

– Completeness (DV2): the ratio between the number of elements in the subject solu-
tion that also exist in the gold standard (true positives) and the number of elements
in the gold standard (true positives + false negatives). In information retrieval terms,
completeness is recall. Formally, Completeness = |TP |/(|TP | + |FN |).

To measure completeness and validity, we use various ways of counting the elements
of a model. For the use case diagram, we count the number of use cases and actors, and
we ignore the number of relationships. For the class diagram, we first count only the
number of classes. Next, we count the classes and the attributes. In all these metrics, we
consider the importance of the appearance of each element equally to avoid bias: we
did not favor a class or an attribute. Since relationships can only be identified when the
connected entities are identified, we use an adjusted version of validity and complete-
ness for the relationships [10], which calculates them with respect to those relationships
in the gold standard among the entities that the subject has identified.

Guided Derivation of Conceptual Models from User Stories 137

Subjects. In an optimal setting, we would have used experienced analysts, design-
ers, and developers of information systems as subjects. However, this is a practically
challenging task. Thus, we followed convenience sampling and we involved third-year
undergraduate students taking a project workshop that follows a course on Object-
Oriented Analysis and Design at Ben-Gurion University of the Negev. The course
teaches how to analyze, design, and implement information systems based on the
object-oriented paradigm. In the course, the students-subjects were taught about mod-
eling techniques, including class and use case diagrams. The instructor of the course
was the third author of this paper. The students learned user stories and use cases
for specifying requirements as part of the development process. They also practiced
class diagrams, use cases, and user stories through homework assignments, in which
they achieved good results, indicating that they understood the concepts well. All sub-
jects were taught the same material and the guidelines were not included as part of the
course. Recruiting the subjects was done on a volunteering basis. Nevertheless, they
were encouraged to participate in the experiment by providing them with additional
bonus points to the course grade based on their performance. Before recruiting the sub-
jects, the research design was submitted to and approved by the department’s ethics
committee.

Task. We designed the experiment so that each subject would experience the deriva-
tion of the two conceptual models following one case (either with or without provided
guidelines). For that purpose, we designed four forms (available online [4]), in which
we alternate the treatment and the case.

The form has three parts: (1) a pre-task questionnaire that checks the subjects’ back-
ground and knowledge; (2) the task, in which subjects receive the user stories of one
application (DH or PP), with or without the guidelines and were asked to derive the
conceptual models - one class diagram and one use case diagram for the entire set; We
asked the subjects to derive a use case diagram and a class diagram that would serve as
the backbone of the system to be developed, as taught in the course. (3) questions about
the subjects’ perception regarding the task they performed.

To create the gold standard (in the online appendix), the second and third authors
applied the guidelines and independently created four conceptual models: a class dia-
gram and a use case diagram for either case. Then, these authors compared the models
and produced the reconciled versions, involving the first author for a final check.

Execution. The experiment took place in a dedicated time slot and lasted approxi-
mately 1 hour, although we did not set a time limit for the subjects. The assignment of
the groups (i.e., the forms) to subjects was done randomly. The distribution of groups
was as follows: (i) DH, guided: 19 students; (ii) DH, not-guided: 18 students; (iii) PP,
guided: 21 students; and (iv) PP, not-guided: 19 students. Note that the students that
were provided with the guidelines have seen them for the first time in the experiment.

Analysis. The paper forms delivered by the students were checked against the gold
standard by one researcher who was unaware of the purpose of the experiment, so
to avoid confirmation bias. When checking the forms we were flexible regarding the
alignment with the gold standard. In essence, the gold standard served as a proxy for

138 M. Bragilovski et al.

the examination. For example, we allowed for synonyms and related concepts. This led
to the spreadsheet in our online appendix; there, each row denotes one subject, while
each column indicate elements in the gold standard; we also count how many additional
elements were identified by the subjects. The statistical analysis was conducted mostly
using Python, while the effect size was calculated using an online service at https://www.
socscistatistics.com/effectsize/default3.aspx.

5 Experiment Results

We present the results by comparing the groups through their responses in the back-
ground questionnaire in Sect. 5.1. We statistically analyze the validity and complete-
ness of the models in Sect. 5.2, then present the students’ opinion in Sect. 5.3. Finally,
in Sect. 5.4, we provide additional qualitative insights by reviewing in depth the results.

5.1 Background Questionnaire

We run a series of analyses over the results (all materials are available online [4]). In
order to determine whether the groups are balanced, we compare their background.
Table 3 compares the groups according to four criteria. For each criterion, it presents
the arithmetic mean (x), the standard deviation (σ), the number of participants (N) that
responded to the pre-questionnaire, and whether the groups are significantly different.
We adopt this structure also for all the following tables. In some rows, the number
of participants differs from what was listed earlier because some participants did not
complete all the tasks in the experiment. With respect to the background questionnaire,
all the responses were self-reported. Familiarity questions were ranked using a 5-point
Likert-type scale (1 indicates low familiarity and 5 indicates high familiarity), while
the (up to date) GPA is on a scale from 0 to 100. For the familiarity criteria, since they
deviate from the normal distribution (following Kolmogorov-Smirnov test), we perform
the Mann-Whitney test while for the GPA we perform the T-Test.

Table 3. Pre-questionnaire results: mean, standard deviation, significance.

PP DH

GUIDED !GUIDED Sig. GUIDED !GUIDED Sig.

x σ N x σ N x σ N x σ N

CD Familiarity 2.15 0.67 21 2.26 0.65 19 0.926 2.44 0.62 18 2.17 0.62 18 0.177

UCD familiarity 2.75 0.72 21 3.00 0.67 19 0.203 2.89 0.76 18 3.06 0.94 18 0.530

US familiarity 2.80 0.52 21 2.53 0.77 19 0.144 2.74 0.73 19 2.33 0.69 18 0.100

GPA 82.30 5.05 21 82.63 3.98 19 0.759 83.00 4.88 19 80.00 3.74 16 0.052

The results of the statistical tests evidence that the random assignment of the sub-
jects to the four groups, as explained in Sect. 4, does not yield any statistically signifi-
cant difference that may influence the validity of the results.

https://www.socscistatistics.com/effectsize/default3.aspx
https://www.socscistatistics.com/effectsize/default3.aspx

Guided Derivation of Conceptual Models from User Stories 139

5.2 Completeness and Validity of the Derived Models

We analyze the completeness and validity of the conceptual models derived by the stu-
dents. To do so, we perform the analysis for each case separately due to the different
complexity of the domains and of the conceptual models. Table 4 and Table 5 present
the results of the DH and PP cases, respectively. For each group, we report the mean,
the standard deviation, and the number of responses for the related metric. Bold num-
bers indicate the best results for a given metric. We also report statistical significance
(applying T-Test) and denote statistically significant results (with p < 0.05) via gray
rows. Finally, we report effect size using Hedges’ g. For the qualitative interpretation,
we refer to Cohen [7]: small effect when g > 0.2, medium effect when g > 0.5, large
effect when g > 0.8.

Table 4. Data hub results.

GUIDED !GUIDED sig.

x σ N x σ N

Effect size

(Hedges’ g)

UC Completeness 0.76 0.14 19 0.58 0.14 16 p<0.001 1.296

UC Validity 0.89 0.08 19 0.87 0.09 16 0.473 0.250

CD Class Completeness 0.37 0.12 18 0.36 0.09 18 0.917 0.038

CD Class Validity 0.67 0.18 18 0.62 0.19 18 0.454 0.253

CD Class+Att Completeness 0.31 0.16 18 0.29 0.09 18 0.698 0.131

CD Class+Att Validity 0.58 0.18 18 0.44 0.15 18 0.012 0.880

CD Class+Att+relationships Completeness 0.36 0.13 18 0.33 0.10 18 0.425 0.272

CD Class+Att+relationships Validity 0.50 0.12 18 0.37 0.12 18 0.002 1.083

Table 5. Planning poker results.

GUIDED !GUIDED sig. Effect size
(Hedges’ g)

x σ N x σ N

UC Completeness 0.64 0.21 21 0.53 0.23 18 0.132 0.494

UC Validity 0.84 0.12 21 0.87 0.14 18 0.524 0.208

CD Class Completeness 0.53 0.15 20 0.57 0.19 19 0.480 0.226

CD Class Validity 0.78 0.14 20 0.74 0.11 19 0.279 0.357

CD Class+Att Completeness 0.49 0.13 20 0.51 0.19 19 0.622 0.161

CD Class+Att Validity 0.60 0.12 20 0.53 0.12 19 0.073 0.585

CD Class+Att+relationships Completeness 0.57 0.13 20 0.59 0.18 19 0.695 0.129

CD Class+Att+relationships Validity 0.59 0.12 20 0.56 0.10 19 0.435 0.251

For the DH case (Table 4), the conceptual models derived by the subjects who
had the guidelines outperformed those derived by those subjects who did not have the
guidelines, for all metrics. The difference was statistically significant in the case of UC
completeness and in the cases of class diagrams validity including also attributes and

140 M. Bragilovski et al.

relationships. Furthermore, the effect sizes for DH statistically significant differences
indicate a large effect [7].

For the PP case (Table 5), the results are mixed and statistical significance is never
achieved. Therefore, we cannot reject HUC-Completeness

0 nor HCD-Validity
0 . While the guided

subjects outperformed the non-guided ones for UC completeness, the non-guided ones
had higher validity for the use case diagrams. The opposite situation occurs for class
diagrams: completeness is higher for the non-guided ones, validity is higher for the
guided subjects.

Based on the results, we can conclude that for the Data Hub case we can reject
HUC-Completeness

0 and HCD-Validity
0 hypotheses on the equality of having guidelines or not

for deriving conceptual modes for the metrics defined above (the grey rows in Table 4).
In that case, introducing the guidelines resulted in better conceptual models. For the
other metrics, we accept the H0 hypotheses and can infer that no difference exists when
providing the guidelines or not for deriving conceptual models.

5.3 Subjects’ Opinion

Table 6 presents the participants’ opinions on the performed task, which we collected
via a post-questionnaire. The participants were asked to use a 5-Likert scale to rank their
agreement with the various statements. With respect to deriving the conceptual model
elements, no statistically significant differences were found (applying T-Test) between
the guided and the non-guided groups in most cases. For PP, which has simpler models,
the provided guidelines did not contribute and even blurred the process. In the case of
DH, with a more complex model, the guidelines are perceived as supportive, to some

Table 6. Post-questionnaire results: mean, standard deviation, significance. We use the following
abbreviations: Der. for Deriving, Guid. for Guidelines

PP DH

GUIDED !GUIDED Sig. GUIDED !GUIDED Sig.

x σ N x σ N x σ N x σ N

Der. UC is easy 2.95 0.76 20 3.00 0.77 18 0.851 2.95 1.03 19 2.94 0.87 18 0.987

Der. actors is easy 1.65 0.93 20 1.72 0.67 18 0.429 1.68 0.67 19 1.89 0.96 18 0.678

Der. classes is easy 2.26 0.65 19 2.72 0.57 18 0.021 3.11 0.57 19 2.78 0.65 18 0.131

Der. class att. is easy 2.75 0.79 20 3.00 0.91 18 0.334 3.47 0.84 19 3.39 0.92 18 0.923

Der. relationships is easy 3.40 0.94 20 3.11 0.68 18 0.381 3.44 0.86 18 3.17 0.99 18 0.390

Guid. for UC are required 1.83 0.62 18 2.72 1.02 18

Guid. for actors are required 2.83 1.15 18 3.17 1.34 18

Guid. for classes are required 2.94 1.00 18 2.71 0.85 17

Guid. for class att. are required 2.89 1.08 18 2.56 1.20 18

Guid. for relationships are required 2.00 0.69 18 2.33 0.97 18

Guid.for UC were useful 2.00 0.92 20 2.32 0.95 19

Guid. for actors were useful 2.75 1.12 20 2.00 0.82 19

Guid. for classes were useful 2.65 0.81 20 2.58 1.02 19

Guid. for class att.were useful 2.40 1.14 20 3.00 1.05 19

Guid. for relationships were useful 2.40 1.19 20 3.16 1.07 19

Guided Derivation of Conceptual Models from User Stories 141

extent, for the derivation process. As for the usefulness of the guidelines (lines 11–15 in
the table), the subjects indicate limited satisfaction (ranging from 2–3.16 out of 5) and
the subjects who did not get the guidelines (lines 6-10 in the table) thought that these
are of limited importance (ranging from 1.83–3.17 out of 5)

5.4 Qualitative Insights

We provide qualitative observations by drilling down into the derived conceptual mod-
els and by analyzing the alignment of the individual elements (each use case, class,
relationship, attribute) with the gold standard solution. To do so, we used the spread-
sheet in our online appendix that reports on the alignment of individual elements.

Data Hub. For this first case, with respect to the system functionality via the use case
diagram, we observe the following:

1. As expected, all subjects were able to identify all actors in both groups.
2. It seems that the subjects who received the guidelines were able to better identify

the use cases. This might be because the guidelines demonstrate the derivation of
use cases from the so that part. See, e.g., user story E2.5: “so that I can validate
the data I am about to publish”. Another contribution of the guidelines is that it
explicates the important role of the I want part. This allows to systematically analyze
the user stories without judging their perceived importance; for example, see E3.1:
“see real examples of published packages” where the average completeness of the
group provided with the guidelines was 0.632 whereas for the other group it was
0.125 or E3.4: “download the data package in one file” the average completeness of
the group provided with the guidelines was 1 and for the other group it was 0.75.

With respect to the system structure via the class diagram:

1. The classes Site, Pricing plan, Account, Consumer, Data Package, and Publisher
were identified by both groups to a medium-to-large extent (44%–94%). These are
core classes in the domain, which are easy to identify even without guidelines.

2. The classes Site Deployment, Key Metric, Billing System, and Configuration Parame-
ter were identified to a limited extent both by the subjects who received the guide-
lines and those who did not (0–22.2%). Our conjecture is that the subjects considered
them to be technical issues; also, they appear only in epic 4.

3. The classes Data, Tag, Single download file, Example, and Published Data Package
were also identified to a limited extent by both groups (0–28%). Here again, it seems
that the subjects found those classes of limited importance to the domain.

4. With respect to the identification of attributes, completeness was limited in both
groups. This is probably due to the fact that the subjects consider those of limited
importance, focusing on giving a higher-level overview of the domain.

5. With respect to relationships, it seems that the students who received the guidelines
were able to better identify the relationships between the classes when referring to
the classes that were identified. This might be attributed to the provided guidelines.

142 M. Bragilovski et al.

Planning Poker. For the PP case, with respect to the use case diagram:

1. All the actors were identified by all subjects in both groups.
2. Use cases were identified to a satisfactory level. The subjects using the guidelines

better identified use cases that appear in the so that part. For example, this hap-
pened for the user stories, and corresponding use cases, regarding starting the game.
Another difference between the groups concerns the user stories that refer to pre-
senting information, e.g., “show all estimates”(the completeness of the group that
was provided with the guidelines was 0.571 and for the other group it was 0.157)
or “accept the average of all estimates” (the completeness of the group that was
provided with the guidelines was 0.619 and for the other group it was 0.389).

With respect to the system structure via the class diagram:

1. The subjects in both groups were able to identify important classes such as Game,
Estimator, and Item.

2. For some reason, the class Round was not always identified (∼80%), although it
appears five times in the user stories.

3. The Policy class (referring to the estimation policy) and its sub-classes defining spe-
cific policies were identified to a very limited extent, probably as they were not
explicated in the user stories and appeared only once.

4. The class Estimate was less frequently identified by the subjects that received the
guidelines. This may have happened since, although a concept, the user stories were
often referring to this notion using the verb to estimate, rather than a noun.

5. Attributes were derived to a certain extent, but only limited.
6. Relationships were identified to a satisfactory level. No significant differences can

be observed between the two groups.

6 Discussion

The results indicate that the guidelines support the derivation process only to some
extent. It seems that, as the complexity of the derived models increases (because of
their size, or because of specificity of the domain), the guidelines further improve the
validity and completeness of the models.

The guidelines seem to lead to increased validity and completeness for more com-
plex domains, while they do not seem effective for more straightforward domains.

Finding 1Finding 1

As partially highlighted in Table 2, the DH models were more complex than those
of the PP case. For DH, the complexity emerges due to various factors: the number
of entities, the number of relationships, the introduction of an external system (for
billing) with which the system under design interacts, the multiple interactions among
the roles/actors, and the existence of several related roles/actors with similar names. In
the DH case, in all metrics, the subjects who got the guidelines achieved better results
than those who did not get the guidelines. Although only some of the results are of

Guided Derivation of Conceptual Models from User Stories 143

statistical significance, the trend is clear. In the PP case, those who received the guide-
lines delivered better models, but the difference was of lower magnitude. These results
are in line with our previous experiments [10], in which we found complexity to be a
more significant factor than the notation used as a starting point for the derivation of a
conceptual model. Also, our previous research [10] pointed out how the students who
followed a systematic derivation process obtained better results; here, we fostered (but
could not enforce) the adoption of such a process by providing guidelines.

Despite leading to better results in more complex settings, the guidelines are not
perceived as useful by the subjects.

Finding 2Finding 2

The derivation of a conceptual model requires mental effort. While the guidelines
create awareness about the expected output, the participants may see the guidelines
as a constraining mechanism that limits their ability to analyze the requirements, to
identify the relevant concepts, and to assemble those concepts into a model. In addition,
the subjects were introduced to the guidelines for the first time during the experiment.
They could have ignored some of these while focusing on the actual task based on their
own skills. Nevertheless, the example-based guidelines shed light on parts of the user
stories that might be neglected by just reading them. For example, the guidelines point
to several possibilities: a role can appear in the 〈action〉 part, multiple functions may be
present in the 〈action〉 part, a function can emerge from the 〈so that〉 part, consider a
generalization of several user stories, multiple entities may exist in one user story, etc.

The inclusion of a type of concept/element in a conceptualmodel does not depend
only on the guidelines, but also on its perceived importance for the model.

Finding 3Finding 3

Our guidelines included references to all major concepts: use cases, actors, and
associations for the use case diagram, and classes, attributes, and relationships for the
class diagram. However, attributes were included only to a limited extent both in the
PP and in the DH cases, with or without guidelines. Since the subjects were already
filtering the concepts based on the perceived importance, they have probably ranked the
attributes as less important than the classes, and, therefore, they could be excluded. The
inclusion or exclusion of attributes depends on the task at hand: if we had specified that
the class diagram would be used as a blueprint for detailed design (e.g., data structures
or a database schema), perhaps they would have paid attention to attributes too. Alter-
natively, we could have used specific guidelines which could convey the importance of
certain concept types, rather than leaving the choice to the subject’s perception.

7 Threats to Validity

Our results need to be considered in view of threats to validity. We follow Wohlin et
al.’s classification [33]: construct, internal, conclusion, and external validity.

144 M. Bragilovski et al.

Construct validity concerns the relationships between theory and observation and
these threats are mainly due to the method used to assess the outcomes of the tasks. We
examined if the use of guidelines improves conceptual model derivation. The domains
selection may affect the results; our choice is justified by our attempt to provide domains
that would be easy to understand. Also, in the experiment, we adopt a fixed set of
guidelines. Other sets of guidelines may lead to different results. The subjects have seen
the guidelines for the first time during the experiment. Thus, it might be that they were
able to absorb the guidelines only to a limited extent, and the positive effect that we
identified in the experiment could be larger if the guidelines were learned beforehand.
Finally, for practical reasons, we purposefully selected a small set of user stories to be
analyzed by the subjects: this may not be representative of real-world tasks. Yet, earlier
research has shown that generating conceptual models from many user stories may just
transfer the cognitive complexity from text to models [22]. Thus, the manual derivation
of such models is better suited for relatively small, cohesive collections of requirements.

Internal validity threats, which concern external factors that might affect the depen-
dent variables, may be due to individual factors, such as familiarity with the domain, the
degree of commitment by the subjects, and the training level the subjects underwent.
These effects are mitigated by our experiment design. It is unlikely that the subjects
were already familiar with the two chosen domains (although they were familiar with
the notion of agile development, they were not taught the planning poker procedure).
The random assignment that was adopted should eliminate various kinds of external
factors. Although the experiment was done on a voluntary basis, the subjects were told
that they would earn bonus points based on their performance, and thus we increased
the motivation and commitment of the subjects, which could have led them to increase
the time on task. Eventually, all subjects received the entire bonus points based on their
participation (this was approved by the ethics committee).

Conclusion validity concerns the relationship between the treatment (the notation)
and the outcome. We followed the various assumptions of the statistical tests (such as
normal distribution of the data and data independence) when analyzing the results. In
addition, we used a predefined solution, which was established before the experiment,
for grading the subjects’ answers; thus, only limited human judgment was required. In
addition, as we allow flexibility with respect to the gold standard, it might be that further
subjectivity was involved. Another matter the requires attention is that an alternative
gold standard could be presented. To mitigate that threat, we discussed the used gold
standard among the research team.

External validity concerns the generalizability of the results. The main threats are
the choice of subjects and the use of simple experimental tasks. The subjects were
undergraduate students with little experience in software engineering, in general, and in
modeling in particular. Kitchenham et al. argue that using students as subjects instead of
software engineers is not a major issue as long as the research questions are not specifi-
cally focused on experts [17]. Our main research question studies a task (the derivation
of conceptual models) that is part of the educational path of students, and we, therefore,
consider the students as an appropriate proxy. Nevertheless, experiments with expe-
rienced developers should be conducted to test our assumption. In addition, the pre-
sentation of the guidelines may have affected the results (for example, presenting the

Guided Derivation of Conceptual Models from User Stories 145

guidelines as a list and not as a table, maybe also with different examples). Generaliza-
tion should be taken with care, as our cases are small and might differ from specifica-
tions in industry settings.

8 Summary

We provided initial evidence on the effect of providing guidelines for deriving concep-
tual models from (user story) requirements. This is an important task in information
systems development, and we expect the task’s importance to grow with the increasing
interest in low-code development platforms that embrace the model-driven development
of information systems.

We conducted a controlled experiment with 77 undergraduate students as part of
a third-year course. The results indicate that the provision of example-based guide-
lines may increase validity and completeness in the case of non-trivial specifications,
although the subjects were rather neutral on the perceived usefulness of the guidelines.

This work calls for further experimentation that analyzes the effect of domain com-
plexity, involves experienced developers, considers other forms of guidelines (such as
explicit rules, other examples), and offers comprehensive training before conducting
the experiment. It would be important to investigate the use of refined user stories
(e.g., via acceptance criteria) as a basis for the derivation process. Moreover, interactive
approaches that combine the automated derivation of a model with human refinement
should be considered (for example, see Saini et al. [29]). Finally, our research so far
has relied on an assessment of a model against a gold standard; future research could
consider alternative evaluation methods that measure the quality-in-use of the generated
conceptual models.

References

1. Arora, C., Sabetzadeh, M., Nejati, S., Briand, L.: An Active learning approach for improving
the accuracy of automated domain model extraction. ACM Trans. Softw. Eng. Methodol.
28(1), 1–24 (2019)

2. Berends, J., Dalpiaz, F.: Refining user stories via example mapping: an empirical investiga-
tion. In: Proceedings of RE, Industrial Innovation Track (2021)

3. Berry, D., Gacitua, R., Sawyer, P., Tjong, S.: The case for dumb requirements engineering
tools. In: Proceedings of REFSQ, pp. 211–217 (2012)

4. Bragilovski, M., Dalpiaz, F., Sturm, A.: Guided derivation of conceptual models from user
stories. Online Appendix (2021). https://doi.org/10.5281/zenodo.5905846

5. Brambilla, M., Cabot, J., Wimmer, M.: Model-Driven Software Engineering in Practice, 2
edn. Morgan & Claypool Publishers, San Rafael (2017)

6. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley Professional, Boston (2000)
7. Cohen, J.: Statist. Power Anal. Current directions in psychological science 1(3), 98–101

(1992)
8. Cohn, M.: User Stories Applied: for Agile Software Development. Addison Wesley, Boston

(2004)
9. Dalpiaz, F.: Requirements Data Sets (User Stories) (2018), Mendeley Data, v1. https://doi.

org/10.17632/7zbk8zsd8y.1

https://doi.org/10.5281/zenodo.5905846
https://doi.org/10.17632/7zbk8zsd8y.1
https://doi.org/10.17632/7zbk8zsd8y.1

146 M. Bragilovski et al.

10. Dalpiaz, F., Gieske, P., Sturm, A.: On deriving conceptual models from user requirements:
an empirical study. Inf. Softw. Technol. 131, 106484 (2021)

11. Dalpiaz, F., van der Schalk, I., Brinkkemper, S., Aydemir, F.B., Lucassen, G.: Detecting Ter-
minological Ambiguity in User Stories: Tool and Experimentation. Inform, Software Tech
(2019)

12. Dalpiaz, F., Sturm, A.: Conceptualizing requirements using user stories and use cases: a
controlled experiment. In: Proceedings of REFSQ, pp. 221–238 (2020)

13. España, S., Ruiz, M., González, A.: Systematic derivation of conceptual models from
requirements models: a controlled experiment. In: Proceedings of RCIS, pp. 1–12. IEEE
(2012)

14. van Gog, T., Rummel, N.: Example-based learning: integrating cognitive and social-
cognitive research perspectives. Educ. Psychol. Rev. 22(2), 155–174 (2010)

15. Insfran, E., Pastor, O., Wieringa, R.: Requirements Engineering-based conceptual modelling.
Req. Eng. 7(2), 61–72 (2002)

16. Kassab, M.: An empirical study on the requirements engineering practices for agile software
development. In: Proceedings of EUROMICRO SEAA, pp. 254–261 (2014)

17. Kitchenham, B.A., et al.: Preliminary guidelines for empirical research in software engineer-
ing. IEEE Trans. Softw. Eng. 28(8), 721–734 (2002)

18. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling.
IEEE Softw. 11(2), 42–49 (1994)

19. Loniewski, G., Insfran, E., Abrahão, S.: A Systematic Review of the Use of Requirements
Engineering Techniques in Model-driven Development. In: Proceedings of MODELS, pp.
213–227 (2010)

20. Lucassen, G., Dalpiaz, F., van der Werf, J., Brinkkemper, S.: Improving agile requirements:
the quality user story framework and Tool. Requir. Eng. 21(3), 383–403 (2016)

21. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M., Brinkkemper, S.: The use and effectiveness of
user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016. LNCS, vol. 9619, pp.
205–222. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30282-9 14

22. Lucassen, G., Dalpiaz, F., van der Werf, J.M.E.M., Brinkkemper, S.: Visualizing User story
requirements at multiple granularity levels via semantic relatedness. In: Comyn-Wattiau, I.,
Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp.
463–478. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46397-1 35

23. Lucassen, G., Robeer, M., Dalpiaz, F., van der Werf, J.M.E., Brinkkemper, S.: Extracting
conceptual models from user stories with visual narrator. Requir. Eng. 22(3), 339–358 (2017)

24. Mai, P.X., Goknil, A., Shar, L.K., Pastore, F., Briand, L.C., Shaame, S.: Modeling security
and privacy requirements: a Use case-driven approach. Inform. Softw. Tech. 100, 165–182
(2018)

25. Maiden, N.A.M., Jones, S.V., Manning, S., Greenwood, J., Renou, L.: Model-driven require-
ments engineering: synchronising models in an air traffic management case study. In: Pro-
ceedings of CAiSE, pp. 368–383 (2004)

26. Müter, L., Deoskar, T., Mathijssen, M., Brinkkemper, S., Dalpiaz, F.: Refinement of user
stories into backlog items: linguistic structure and action verbs. In: Proceedings of REFSQ,
pp. 109–116 (2019)

27. Parsons, J., Wand, Y.: Choosing classes in conceptual modeling. Commun. ACM 40(6), 63–
69 (1997)

28. Sagar, V.B.R.V., Abirami, S.: Conceptual modeling of natural language functional require-
ments. J. Syst. Softw. 88, 25–41 (2014)

29. Saini, R., Mussbacher, G., Guo, J.L., Kienzle, J.: Automated traceability for domain mod-
elling decisions empowered by artificial intelligence. In: Proceedings of RE, pp. 173–184.
IEEE (2021)

https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-46397-1_35

Guided Derivation of Conceptual Models from User Stories 147

30. Wautelet, Y., Heng, S., Hintea, D., Kolp, M., Poelmans, S.: Bridging user story sets with the
use case model. In: Link, S., Trujillo, J.C. (eds.) ER 2016. LNCS, vol. 9975, pp. 127–138.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47717-6 11

31. Wautelet, Y., Heng, S., Kolp, M., Mirbel, I.: Unifying and extending user story models. In:
Proceedings of CAiSE, pp. 211–225 (2014)

32. Wautelet, Y., Velghe, M., Heng, S., Poelmans, S., Kolp, M.: On modelers ability to build a
visual diagram from a user story set: A goal-oriented approach. In: Proceedings of REFSQ,
pp. 209–226 (2018)

33. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Experiment-
ation in Software Engineering. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-
29044-2

34. Yue, T., Briand, L.C., Labiche, Y.: A systematic review of transformation approaches
between user requirements and analysis models. Requir. Eng. 16(2), 75–99 (2011)

35. Zhao, L., Alhoshan, W., Ferrari, A., Letsholo, K.J., Ajagbe, M.A., Chioasca, E.V., Batista-
Navarro, R.T.: Natural language processing for requirements engineering: a systematic map-
ping study. ACM Comput. Surv. (CSUR) 54(3), 1–41 (2021)

https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

From User Stories to Data Flow
Diagrams for Privacy Awareness:

A Research Preview

Guntur Budi Herwanto1,2(B), Gerald Quirchmayr1, and A. Min Tjoa1,3

1 Faculty of Computer Science, University of Vienna, Vienna, Austria
gerald.quirchmayr@univie.ac.at

2 Universitas Gadjah Mada, Yogyakarta, Indonesia
gunturbudi@ugm.ac.id

3 Vienna University of Technology, Vienna, Austria
a.tjoa@tuwien.ac.at

Abstract. [Context and otivation] The well-established Data Flow
Diagrams (DFDs) have proven their value in the field of security and
privacy for the realization of processes in models. However, the time
and resources required to model the system with DFD, could slow down
security and privacy threat analysis. [Question/problem] Despite the
fact that information required for drawing DFD is available in the tex-
tual requirement such as user stories, the current approach to modeling
the system using DFD is still done by form/questionnaires or manually
drawing the diagram. [Principal ideas/results] This study proposes
a natural language processing (NLP) model that generates DFD auto-
matically from well-formed user stories. We also detect the presence of
personal data in user stories by employing Named Entity Recognition,
which allows the personal data to be highlighted in DFD. Our prelim-
inary results show that our model can automatically generate a DFD
that highlights the presence of personal data. Finally, the DFD could be
expanded to a Privacy-Aware DFD, which incorporates privacy checks
into the DFD. [Contribution] This is the first attempt at automati-
cally transforming user stories into DFD using an NLP approach. The
automatic approach may alleviate the burden placed on privacy analysts
during the initial stages of threat modeling or eliciting privacy require-
ments.

Keywords: Data flow diagram · User stories · Natural language
processing · Privacy threat modeling

1 Introduction

Data Flow Diagrams (DFD) are used to visualize the system’s process model
and data flow. DFD is simple yet expressive enough to be used as a modeling
system in the context of security and privacy threat analysis. Identifying threats
is an essential step in determining the impact of the system under development.
c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 148–155, 2022.
https://doi.org/10.1007/978-3-030-98464-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_12&domain=pdf
https://doi.org/10.1007/978-3-030-98464-9_12

From User Stories to Data Flow Diagrams 149

Threat modeling, such as LINDDUN, aims to provide a framework to assist in
meeting privacy requirements [14]. The first step of LINDDUN is to model the
system with DFD. Risk areas or hotspots can then be identified by examining the
DFD elements. Modeling the system, on the other hand, imposes a significant
burden on the use of threat modeling [14]. When it comes to threat modeling,
DFD is still a popular choice for agile teams [4]. Some agile teams spent more
than ten hours designing the DFD, which they believed had a negative effect on
productivity [4].

The user’s requirements serve as the foundation for modeling the DFD. In
ASD, user stories are the primary method of capturing user requirements. User
story usually divided into three-part. Lucassen et al. [12], refer to the first part
of a user story as the role, the second part as the means, and the third part
as the end. For example, “As a parent (role), I want to be able to message
my child’s counselors (means), so that I can voice my concerns or check on my
child’s progress (end)”. According to recent research, the main limitation for
integrating privacy in agile teams is identifying privacy criteria in user stories
[5].

Based on the situation we described above, we propose a model that auto-
matically transforms user stories into DFD. We use natural language processing
(NLP) to extract privacy-related entities and their relationships. To the best of
our knowledge, our work is the first attempt at using NLP to transform user
stories into DFD automatically.

2 Related Work

Significant research has been carried out to transform user stories into visual
representations. Robeer et al. [13] transform user stories to conceptual diagrams
that emphasize the relation between concepts. Elallaoui et al. [7], and Kochpati
et al. [11] developed a model that automatically converts user stories to UML
use case diagrams. The first three research efforts mentioned above use Part
of Speech (POS) and heuristics to determine the actors and their relationship.
Gilson et al. [8] built a model to transform user stories to robustness diagrams.
Gilson et al. [8] add a dependency tree parser in conjunction with rule-based
transformation to accurately predict both the elements and relationships. All
of the works mentioned above are aimed at general requirements and are not
concerned with representing privacy issues.

Several studies have looked into the use of DFD to represent privacy issues.
Antignac et al. [3] expand the standard notation of DFD into PA-DFD, which
includes the privacy awareness notation. Alshareef [1] provide the tools to
automatically transform the standard DFD (Business-oriented DFD) into the
Privacy-Aware Data Flow Diagram (PA-DFD). However, the focus of the afore-
mentioned work is not on generating the DFD from textual requirements.

Our contribution aims to bridge the gap between the textual requirement
and PA-DFD. To achieve this, we reuse the work from Gilson et al. [8] to obtain
the elements and relationships necessary to construct our DFD. We also make
our DFD compatible with the PA-DFD from Alshareef [1].

150 G. B. Herwanto et al.

3 The Proposed Approach

As our goal is to generate a privacy-aware DFD, we can filter out user stories
that do not contain privacy entities. This is achieved by applying Privacy Named
Entity Recognition (NER) model [10] that is able to identify the privacy-related
entities, which are: (1) data subject, (2) processing, and (3) personal data. We
used the best model that is available on the repository1 The NER model was
trained on a batch of human-labeled user stories data following annotation cri-
teria in [10].

Then we generate unified elements and relationships based on the work by
Gilson [8]. We exclude the user story that does not contain one of those enti-
ties. In addition, we discuss how to incorporate the end part of the user story
(reason/value part) into the generated elements. Finally, we will go over the pro-
cess of diagram creation in Sect. 3.2. Our work is compatible with Alshareef’s
[1] work, which adds privacy checks to the DFD in the so-called PA-DFD. The
implementation of the model, as well as our preliminary result, is available on
our repository2 Figure 1 depicts the overall DFD generation process.

Fig. 1. The workflow of our model to transform user stories into a Data Flow Diagram

3.1 Generating Elements and Relationships from User Stories

To obtain the essential element and relationship from the user stories, we refer to
the work from Gilson et al. [8]. The model from Gilson et al. originally intended
to generate use case scenarios from user stories. These use case scenarios are
depicted in the robustness diagram (RD). The objects in the RD are classified
as actor, boundary, control, entity, and property. This preliminary work is critical

1 https://doi.org/10.5281/zenodo.5801370.
2 https://doi.org/10.5281/zenodo.5801351.

https://doi.org/10.5281/zenodo.5801370
https://doi.org/10.5281/zenodo.5801351

From User Stories to Data Flow Diagrams 151

for understanding the entity dependency used in our DFD. However, Gilson’s
work [8] omits the end part of the user story. According to our observations, the
end part of our user story data set may contain valuable privacy entities such as
personal data and processing that should be considered during threat modeling
analysis. When our NER model identifies the existence of verbs or processing
entity in the end part of a user story, it is highly likely to be included as a
functional requirement. Thus, we build a rule-based transformation for the end
part of the user story. We will include it in our DFD whenever the end part
starts with verbs and targets personal data. Our model will then integrate these
results with the element and relationship produced by Gilson’s [8] approach.

3.2 Generating Data Flow Diagrams

Given the similarities between the elements of the RD and the DFD, we provide
a simple mapping that can be used to map the entities and relationships from
the RD to the DFD. Figure 2 illustrates the mapping.

Fig. 2. Element mapping between Robustness Diagram and Data Flow Diagrams

To map the relation between external entity to process in DFD, we use bound-
ary from RD, which bridge actor and control. The relationship between control-
to-control and control-to-entity is directly mapped into DFD. However, due to
the restriction of the rule in DFD, the relation between entity-to-entity in RD
cannot be directly mapped. To resolve this, we use string matching to locate
the control that refers to the entity which then can be mapped as process-to-
data store relation in DFD. Lastly, because our entity contains NER prediction
about personal data, we perform simple string matching from the NER predic-
tion with the data store element to highlight its presence in our DFD. Emphasiz-
ing can be accomplished in various ways, such as by introducing a new element,
as in Antignac [3]. We chose to simply change the color of a data store element
to red.

The DFD is generated graphically using Graphiz and in editable XML for-
mat. The XML format is compatible with the diagramming software draw.io. By
enabling the DFD generation in draw.io format, our output can be extended to
the Privacy-Aware Data Flow Diagram (PA-DFD), which adds privacy checks
[1] directly into the DFD.

152 G. B. Herwanto et al.

4 Case Study

We evaluate our model to a set of user stories that we consider privacy-sensitive
[10]. In this preliminary evaluation, we chose the camperplus project. Camper-
Plus is an Application developed for camp directors and parents who manage
camps and monitor their children. The original data of the user stories can be
obtained from Dalpiaz [6].

Firstly, we run the NER model to determine the privacy entities in the user
stories. Then, we can eliminate the user stories with no privacy entities. Since
the Camperplus is a privacy-sensitive project, our NER model able to identify
privacy entities in each user story. Based on the ground truth of our previous
research [10], these entities can be considered False Positives (FP). In terms of
privacy detection, FP is preferable to False Negative (FN) to prevent missing
out on the important entities. At the later stage of our approach, the analyst
can rule out this FP. For example, in Fig. 3, if analysts consider “Camp” is not
personal data, they can change back the color to black.

The NER process can also be used to group the DFD generation based on
data subjects. After lemmatization, there are a total of eight data subjects.
Several data subjects, such as child, manager, and staff member, appear in the
means of user stories rather than the role. Here are two user stories involving
data subjects who were identified as a child: (1) “As a parent, I want to be able
to message my child’s counselors, so that I can voice my concerns or check on my
child’s progress”. (2) “As a parent, I want to be able to track my child’s activity
and schedule at camp, so that I can have peace of mind”. As can be seen, the
primary role in both of those stories is the parent, not the child. The grouping
of data subjects enables the analyst to conduct a threat analysis posed by each
data subject, not just by the primary actor.

The grouped user stories are fed into Gilson’s module [8], to be transformed
into RD. Then, the RD will be transformed into DFD by the mapping explained
in Sect. 3.2. At the same time, we process the end part (reason/value) of user sto-
ries based on our rule-based algorithm described in Sect. 3.1. Then we integrate
both of the elements to be generated in one final DFD.

Figure 3 depicts the DFD generated by our model. The red color of the
data store indicates it will likely store personal data. As a result, further threat
analysis should be conducted on those data stores. The DFD also demonstrates
the model’s ability to include and exclude the end part of user stories. The end
part of the first user story is likely to become a functional requirement, whereas
the end part of the second user story only contains human values of the main
functional requirement, which are not suitable with DFD.

From User Stories to Data Flow Diagrams 153

Fig. 3. Data flow diagram that involves child as data subject

5 Preliminary Evaluation

To validate our generated DFD, we manually assess the syntactic correctness
based on the rules described in [2]. Additionally, we assess whether the labeling
inside the element is semantically correct. The semantically correct is an assess-
ment of whether the entity’s label and relationship accurately describe the user
story’s process. This means that we can understand the meaning of each label
[9], and the interaction between the entity, process, and data store.

The evaluation conducted on 54 user stories in the camperplus project shows
that 53 are syntactically correct, resulting in 98% accuracy. Meanwhile, the
semantic correctness is 78%, with 12 determined as incorrect. Most of the seman-
tic incorrectness happens in the process element of DFD. The example of seman-
tic incorrectness includes an incomplete sentence, failure to capture the negation,
and the user story that does not follow the best practice of user story quality
criteria such as QUS [12]. This limitation is aligned with the findings in Gilson
[8] since our generated element depends on their modules. Nevertheless, the
improvement is possible since the project is open source.

We have run our model across all of the Dalpiaz datasets [6]. The complete
output is available in our repository (see the output folder). To assure the sound-
ness of the approach, we plan to conduct a more comprehensive evaluation in
the near future. In addition, we intend to conduct an expert evaluation on the
value of highlighting personal data to raise awareness of privacy within DFD.

6 Conclusion and Future Work

This paper presents a technique for automatically transforming user stories into
privacy-aware DFD. Our primary motivation is to accelerate the adoption of
privacy threat modeling in the ASD environment. Nevertheless, our model can
also be applied to the general purpose of software engineering that requires DFD
generation during the requirement or design life cycle. On the other hand, our
approach is limited to one DFD level and does not perform the granularity of
leveling that is typically enabled when drawn manually.

In the future, we aim for a more comprehensive evaluation in other projects
[6]. We also intend to include more privacy-related indicators in the DFD, such

154 G. B. Herwanto et al.

as data subject, which does not directly perform the functionality. This adds
another layer of complexity to the semantic definition of privacy-aware DFD,
which further needs to be defined [9]. We also intend to put our DFD to the test
in the privacy threat modeling process, such as by automatically eliciting privacy
threats. By enabling automation, we hope to reduce the burden of drawing DFD
from scratch, especially in the threat modeling session.

Acknowledgment. The authors acknowledge the scholarship granted by the Indone-
sia Endowment Fund for Education (IEFE/LPDP), Ministry of Finance, Republic of
Indonesia, and the support received from the University of Vienna, Faculty of Com-
puter Science.

References

1. Alshareef, H., Stucki, S., Schneider, G.: Transforming Data Flow Diagrams for
Privacy Compliance (Long Version). arXiv preprint arXiv:2011.12028 (2020)

2. Ambler, S.W.: The Object Primer: Agile Model-Driven Development with UML
2.0. Cambridge University Press, New York (2004)

3. Antignac, T., Scandariato, R., Schneider, G.: Privacy compliance via model trans-
formations. In: 2018 IEEE European Symposium on Security and Privacy Work-
shops (EuroS&PW), pp. 120–126. IEEE (2018)

4. Bernsmed, K., Cruzes, D.S., Jaatun, M.G., Iovan, M.: Adopting threat mod-
elling in agile software development projects. J. Syst. Softw. 183, 111090
(2022). https://doi.org/10.1016/j.jss.2021.111090, https://www.sciencedirect.
com/science/article/pii/S0164121221001874

5. Canedo, E.D., C.A.e.a.: A named entity recognition based approach for privacy
requirements engineering. Unpublished Manuscript, presented. In: The 29th IEEE
International Requirement Engineering Conference (2021)

6. Dalpiaz, F.: Requirements Data Sets (User Stories). Mendeley Data, V1 (2018)
7. Elallaoui, M., Nafil, K., Touahni, R.: Automatic transformation of user stories into

uml use case diagrams using nlp techniques. Procedia Comput. Sci. 130, 42–49
(2018)

8. Gilson, F., Galster, M., Georis, F.: Generating use case scenarios from user stories.
In: Proceedings of the International Conference on Software and System Processes.
pp. 31–40. ICSSP 2020, Association for Computing Machinery, New York (2020)

9. Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

10. Herwanto, G.B., Quirchmayr, G., Tjoa, A.M.: A named entity recognition based
approach for privacy requirements engineering. In: 2021 IEEE 29th International
Requirements Engineering Conference Workshops (REW), pp. 406–411 (2021).
https://doi.org/10.1109/REW53955.2021.00072

11. Kochbati, T., Li, S., Gérard, S., Mraidha, C.: From user stories to models: a
machine learning empowered automation. In: Hammoudi, S., Pires, L.F., Seidewitz,
E., Soley, R. (eds.) Proceedings of the 9th International Conference on Model-
Driven Engineering and Software Development, MODELSWARD 2021, Online
Streaming, February 8–10, 2021. pp. 28–40. SCITEPRESS (2021)

12. Lucassen, G., Dalpiaz, F., Van Der Werf, J.M.E., Brinkkemper, S.: Visualizing
user story requirements at multiple granularity levels via semantic relatedness.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics) pp. 463–478 (2016)

http://arxiv.org/abs/2011.12028
https://doi.org/10.1016/j.jss.2021.111090
https://www.sciencedirect.com/science/article/pii/S0164121221001874
https://www.sciencedirect.com/science/article/pii/S0164121221001874
https://doi.org/10.1109/REW53955.2021.00072

From User Stories to Data Flow Diagrams 155

13. Robeer, M., Lucassen, G., Van Der Werf, J.M.E., Dalpiaz, F., Brinkkemper, S.:
Automated extraction of conceptual models from user stories via NLP. In: Pro-
ceedings - 2016 IEEE 24th International Requirements Engineering Conference,
RE 2016 (November 2018), pp. 196–205 (2016)

14. Wuyts, K., Sion, L., Joosen, W.: LINDDUN GO: a lightweight approach to privacy
threat modeling. In: Proceedings - 5th IEEE European Symposium on Security and
Privacy Workshops, Euro S and PW 2020, pp. 302–309 (2020)

Business, Markets, and Industrial
Practice

Requirements Engineering
in the Market Dialogue Phase of Public Procurement:

A Case Study of an Innovation Partnership for
Medical Technology

Gunnar Brataas1(B), Geir Kjetil Hanssen1, Xinlu Qiu2, and Lisa S. Græslie1

1 SINTEF Digital, Trondheim, Norway
{gunnar.brataas,geir.k.hanssen,lisa.graslie}@sintef.no

2 NTNU, Trondheim, Norway
xinlu.qiu@ntnu.no

Abstract. Context and Motivation: In 2016, the European Union introduced
‘innovation partnerships’ to facilitate innovative development of the EU through
public procurement. Requirements engineering is one of the main challenges in
the public procurement of innovative products. Nevertheless, there is little empir-
ical research on public procurement, particularly managing requirements in the
pre-tender dialogue phase between potential suppliers and problem owners.

Question/Problem: This paper investigates the market dialogue phase of an
innovation partnership project in Norway. We aim to understand critical factors
of the dialogue phase that clarify and focus needs and requirements. This leads to
the research question: How can we clarify and focus needs and requirements for
a new solution in the market dialogue phase?

Principal Ideas/Results: We have conducted a case study at a major Norwe-
gian hospital. The objective of this innovation partnership is to make the emer-
gency room in a Norwegian hospital more efficient. The case study illustrates how
requirements have been developed by the joint effort of the procurement team,
the active engagement of potential suppliers, and the learning and mutual trust
between them. By discussing the vision and getting feedback on opportunities
and limitations in existing and projected technologies, the procurement team has
refined their ambition and focused on the core of the innovation.

Contribution: This paper contributes to the literature on requirement engi-
neering in public procurement by describing how requirements are focused during
the dialogue phase of an innovation partnership facilitated by a cross-functional
procurement team with sufficient competencies, resources, and trust.

Keywords: Requirements · Needs · Requirements engineering · Public
procurement · Innovation partnership · Innovation · Case study ·Market dialogue

© The Author(s) 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 159–174, 2022.
https://doi.org/10.1007/978-3-030-98464-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_13&domain=pdf
https://doi.org/10.1007/978-3-030-98464-9_13

160 G. Brataas et al.

1 Introduction

Specifying the needs and requirements is the starting point for a procurement project,
which is especially challenging for complex and innovative procurements [1, 2]. Even
though the agile paradigm with emphasis on incremental requirements management has
led to substantial savings and risk reduction in software engineering, the procurement
process has been “(o)ne of the most difficult areas to renew.” In contrast, requirements
must be fixed before the tendering for procurement [1]. Therefore, previous literature
on requirements engineering (RE) in procurement calls for dialogues with the vendors
to clarify the requirements before tendering [3].

From the procurement management perspective, the literature on RE in public pro-
curement also advocates a pre-tendering dialogue, especially for innovative solutions.
Recent studies encourage the public buyers to utilize early-phase market dialogue [4,
5]. Specification of needs and requirements is one of the main challenges in the public
procurement of innovation, and suppliers are reluctant to provide innovative solutions
with overly rigid requirement specifications [6]. More critically, the procurement enti-
ties need to articulate their demands and transform them into requirements, and those
requirements must also be matched with supply possibilities within time and budget
limits [7]. However, the pre-tender dialogue has attracted very little academic attention
[4, 8] and even less for RE during this dialogue. We aim to understand critical factors
of the dialogue phase that clarify and focus needs and requirements. Consequently, our
research question is: How can we clarify and focus needs and requirements for a new
solution in the market dialogue phase?

Asour case study,weuse thedialoguephase before the call for tender in theAutoscore
project at St. Olavs Hospital, one of Norway’s most prominent hospitals. The objective
of theAutoscore project is to procure an innovative solution for contactlessmeasurement
of vital signs to simplify the activities in the emergency room (ER).

2 Background

2.1 Innovative Partnership and Market Dialogue

In 2016, the EU introduced innovation partnerships to simplify the innovative devel-
opment of the EU through public procurement. The public authorities in the EU spend
around 14% of GDP (approximately e2 trillion per year) on procurement – where
software-intensive solutions are a significant part. As stated in the EU directive [9],
“public authorities should make the best strategic use of public procurement to spur
innovation.” The directive “allows contracting authorities to establish a long-term inno-
vation partnership for the development and subsequent purchase of a new, innovative
product, service or works provided that such innovative product or service or innovative
works can be delivered to agreed performance levels and costs, without the need for a
separate procurement procedure for the purchase.”

Unlike traditional public procurement, which is strictly regulated by national and
international regulations with a strong focus on transparency, fairness, and competi-
tion, innovation partnerships allow more interaction between the public purchasers and
vendors [5]. Negotiation between the public and private parties during the procurement

Requirements Engineering in the Market Dialogue Phase 161

process enables the public buyers to procure complex contracts with innovative solutions
tailored to buyers’ specific needs [10].

As exact requirements of the innovative solutions are usually not known by the public
buyers, market dialogue is encouraged at the pre-tender stage [11]. This is not unique
for the innovation partnership but is recommended for all innovative procurements. The
market dialogue is a two-way interaction between suppliers and the public buyers to map
needs and improve the requirements specifications prior to a tendering phase, including
earlymarket consultation and technical dialogue [8, 12]. This pre-tendermarket dialogue
encourages the purchasers “to write more realistic and ‘inspiring,’ innovation-driven
specifications” [5]. Moreover, market dialogue is an excellent way to interact with the
suppliers and inform the market about forthcoming needs [12]. By conducting market
dialogues with potential suppliers, the procurers can avoid risks, such as by emphasizing
price rather than quality, formulating overly rigid specifications, and specifying without
sufficient competencies and knowledge of the innovation solution [12].

2.2 Procurement and Requirements Engineering

The search for literature on experiences with innovation partnerships in RE retrieved no
relevant articles. This is not surprisingbecause theEU introduced innovationpartnerships
in 2016, and only a few empirical studies investigate this new procedure. However, we
have found relevant articles on RE in procurement and innovation and outline some key
points. Messina and Rogers [1] describe two obstacles to innovation in the procurement
process in software engineering. The first obstacle concerns public procurement rules:
“(b)ureaucracies, rigidly structured organizations, and formal administrative processes
do not like innovation. They kill it.” The second obstacle is inadequate commitment:
“Leaders and top managers play one of the most relevant roles in introducing innovation
by expressing willingness to accept the associated risk and to support and reward inno-
vative ideas and approaches.” Similar obstacles are also discussed in [13] by Moe et al.
They address the dilemma that public sectors should follow strict procurement regula-
tions while at the same time specifying complex requirements to procure information
systems. It is challenging to clarify requirements before talking to vendors [2].

The following literature mentions some proposals to improve the requirements of
procurement. Hiisilä et al. [3] describe an iterative process for improving requirements
during the procurement phase of acquiring software for a Finnish pension insurance
company. As a result of interviews, they present prioritized lessons learned, where this
lesson was one of the most important: “Requirements should be discussed with the sup-
plier and refined during the procurement phase.” They also explained that “requirements
should be improved based on the solutions available on the market. New requirements
may also emerge after demonstrations or analyses of the bids.”

Moe et al. [14] describe the dilemma when a public entity procures an information
system. Procuring an information system requires lengthy dialogues with the vendors
to clarify the specification, whereas strict public procurement regulation restricts such
dialogues. This article discussed that even though the newly introduced innovation part-
nership procedure allows more interaction between the public entities and the vendors,
this dilemma still exists because the public entities are under strict regulations to limit

162 G. Brataas et al.

interaction. Similarly,Moe andNewman show the importance of dialoguemeetings with
potential vendors to shape the requirement before the tendering phase [15].

3 The Autoscore Case

The Autoscore project started Medio 2020 to simplify the collection of vital signs from
patients in the ER at St. Olavs university hospital, as well as other locations where mon-
itoring is essential. Today, monitoring is a time-consuming task for health care workers,
connecting sensors and cables to patients, which have little freedomofmovement. Health
care workers also have a significant cognitive load from working with multiple data
sources in a hectic work environment. Consequently, the idea for this innovation part-
nership was shaped after talks with one vendor with visionary technology for contactless
monitoring of vital signs.

The vision for the Autoscore project is to create a solution for contactless measure-
ment of vital signs with no cables and preferably no sensors attached to the patient and
where information is well integrated into the health care workers’ information systems.
The vital signs are related to the National Early Warning Score (NEWS), including res-
piration rate, oxygen saturation, blood pressure, pulse rate, level of consciousness and
awareness, and temperature. Because no medically approved contactless solutions exist,
this innovation partnership project was initiated with financial support from Innovation
Norway, a state-owned company that stimulates entrepreneurship in Norway.

As described in Fig. 1, Autoscore has five phases: 1)Mapping of needs, user involve-
ment, and planning, 2) Market dialogue with suppliers and experts, 3) Tender compe-
tition, 4) Innovation partnership (where the technology is developed jointly), and 5)
Distribution and procurement.

Phase Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3

1 Mapping of needs, user
involvment, planning

2 Market dialogue with
suppliers and experts

3 Tender competition

4 Innovation partnership

5 Distribution and
procurement

2020 2021 2022 2023

Fig. 1. Case-study timeline.

The focus of our study is phase 2 – the market dialogue. The natural endpoint of this
phase is when the needs and requirements in the call for tender are specified.

Requirements Engineering in the Market Dialogue Phase 163

4 Method

4.1 Research Method

We carried out this research in the form of a case study, collecting information and
data about and from the Autoscore case in the market dialogue phase of the innovation
partnership process. As a research methodology, the case study can be characterized by
at least five aspects commonly mentioned in the literature, e.g., Wohlin, 2021 [16]. Our
study relates to these five aspects as follows:

• Being an empirical inquiry or investigation. We collected data about the process,
covering the entire timespan, including data prior to the process, e.g., plans and data
such as observations throughout the process.

• Studying a contemporary phenomenon: The case was investigated as it unfolded,
e.g., collecting data by observing essential meetings. Collected information was used
to identify new observation points, e.g., new meetings. We also collected evolving
versions of vital documentation to track developments.

• Within its real-life context:Data were collected within the same context as the process
we studied. All meetings were online video meetings due to Corona restrictions.

• Using multiple sources: We collected both documentation and observations.
• The boundary between phenomenon and context is unclear: the focus of our study
was to understand the dialogue process, but contextual information was essential to
understand the workings of the process, although vague where the boundary was.

4.2 Data Points

Our data points were documentation, observations, and a continuous dialogue with the
project manager:

• Documentation was retrieved from the project’s public website and shared by the
project manager.

(2020 Q4) “Measurement of Vital Signs in the Emergency Department an Overview
of Needs:” a comprehensive slide-set presenting the vision, high-level needs, and
relevant context. This document resulted from a needs-mapping process prior to the
dialogue phase andmay be perceived as initial needs and requirements. This document
was openly shared and presented at a dialogue conference in March 20211.
(2021 Q1) “Q&As from the Dialogue conference:” an openly shared document col-
lecting all questions from potential vendors at the dialogue conference and the imme-
diate responses from the Autoscore project group. This document ensures insight and
transparency for potential vendors that did not participate in the conference.
(2021 Q3) The tender documentation: the formal documentation defining require-
ments that are issued in the request for tenders. A preliminary version was released
openly in July for commenting and in the final version in September. We collected
different versions throughout the process.

1 Accessed online 31 January 2022: https://bit.ly/3rDFhou.

https://bit.ly/3rDFhou

164 G. Brataas et al.

• Observations of the procurement team’s sessions were made by either one or two
researchers (first& second author).Noteswere taken, aswell as screenshots of relevant
presentations. Notes transcribed the progress and dialogue of the meetings, including
the researcher’s evaluation of potentially interesting aspects.

(2021 Q2) Nineteen one-to-one vendor meetings (five one-hour meetings for three
days and four one-hour meetings the final day).
(2021 Q2–Q3) Seven project group meetings.
(2021 Q2–Q3) Two steering group meetings.

• Continuous feedback and correspondence between the researchers (first, second, and
third author) and the Autoscore project manager (fourth author).

• The three researchers observed but did not influence the procurement process, except
that they advised the project manager to discuss the relevant risks with the steering
group after making the decision on the requirements.

4.3 Data Analysis

The observation notes and screenshots from the one-to-one, project group, and steering
group meetings were coded in 80 nodes in NVivo. To ensure good coverage, codes were
not defined up-front but identified by reading the text in multiple passes. Typically, we
coded statements, feedback, or discussions related to themes such as requirements or
needs, how the team evaluated vendors and reflections of the dialogue process itself.
An example of a single code that was applied to several data points is ‘Critical view on
the project’s ambition’ – where vendors express doubt or critique (e.g., that the level of
ambition is too high). The collected documents were not coded but used to verify notes
and provide context for the analysis. After grouping these nodes, three main themes
emerged. Sub-themes and representative statements are explored below:

• Maturing the vision and the requirements:

– Trust or doubts both from the vendors and among the procurement team in the
overall contactless vision, e.g., one vendor stated, “Itwill take at least five years until
contactless sensors are mature… In the meantime, … use available technology.”
One project team member stated, “If we shall cover all the requirements (for six
NEWS parameters), we need both contactless and wireless sensors.”

– Sharpening the requirements, e.g., less than six NEWS parameters.
– Risks, e.g., the accuracy of contactless measurements, where one vendor stated that
they would not be reliable.

– “Non-functional” requirements, e.g., integration with other hospital IT systems,
certification of sensors, and the need for medical competency by vendors.

• Reflections on negative and positive aspects of the procurement process:

– Negative evaluation from researchers: sometimes, the project meetings were
unstructured because key personnel had to focus on their medical work.

Requirements Engineering in the Market Dialogue Phase 165

– Positive evaluation from the project owner to the steering group 28 May 2021: “I
am pleased with the project team … Those who participate have ownership of the
project … Get the ambassadors involved from the start, and it will be easier to
get the system up and running.” Question from the head of the steering group and
hospital assistant CEO in the same steering group meeting: “How does the rest of
the world compare to this (contactless vision)?…This has great potential.” Answer
from project manager “A lot happens on the wireless, but we focus on contactless.”
Replay from assistant CEO: “We do not need to implement what others are doing.”

• Assessments of the vendors, e.g., the hospital has good or bad experiences with a
given vendor earlier and the willingness of vendors to share future plans (trust).

5 Findings

Based on the data analysis described in Sect. 4.3, this section details how the needs and
requirements are managed in the market dialogue phase of an innovation partnership.
Market dialogues with different types of vendors are critical to sharpening the require-
ment, to identify, reduce, and accept the potential risks, and to build trust between the
procurer and vendors. A cross-functional procurement team with a safe and inclusive
team atmosphere is also fundamental.

5.1 Focusing Requirements Through Vendor Dialogue Meetings

After the dialogue conference, vendors shared input notes that shaped the one-to-one dia-
loguemeetings.Nineteen vendors requested a one-to-onemeetingwith the project group.
During these meetings, the procurement team and the vendor presented themselves, and
the vendor presented content from their input notes or suggested solutions for solving
the needs. The procurement team had prepared points for dialogue which was shared
with the vendor in advance: (1) Necessary competencies, including existing competen-
cies, the need for external competencies or desire for matchmaking with other vendors,
and what competencies the vendor needed from the hospital or the procurement team.
(2) Technology, including what needs to be developed and what existing technology or
infrastructure was thought to be used (or was thought to be lacking). (3) Modularity with
other instruments, sensors, and systems. (4) Experience with the development of medi-
cal technology. Furthermore, the procurement team requested information on challenges
for developing the solution and the solution itself, and they also wanted the vendor to
present their future ambitions.

The 19 one-hour dialogue meetings were an efficient learning arena for the project
team. By discussing the vision and getting feedback on the opportunities and limitations
of existing and projected technologies, the procurement team focused on the kernel of
the innovation. In other words, the requirements were focused on the part of the vision
that is realizable within time and budget limits. This meant that the ambitious target of
contactless monitoring of all six vital signs was reduced to contactless monitoring of
the two most critical vital signs—respiration and pulse. Below, we present a variation in
how the vendors approached the dialogue meetings in terms of their degree of alignment
with the vision:

166 G. Brataas et al.

Vendors Aligned with the Vision: These partners reassured the procurement team of
the viability of the bold vision on contactless measurements. However, it became clear
that asking for six vital signs as a minimum requirement would not return any ten-
ders because current technology could not reliably measure them all. Accordingly, they
focused on two vital signs – respiration rate and pulse rate. Moreover, subsequent dia-
logues with hospital IT platform representatives revealed that it could cover several
aspects of integration and presentation. Finally, the requirement for certification as med-
ical equipment is a complex and time-consuming processwith a low probability of reach-
ing full certification within the project period. Hence, a clear strategy for certification
became the requirement.

This sharpening of requirements was a significant strategic move to maximize the
chances of achieving the core part of the vision, which they learned was very ambitious
in this 10 MNOK innovation partnership (approximately 1 millione). The procurement
team realized that patient identification was an onerous requirement. This becomes
critical with the movement of patients and medical personnel, e.g., patients walking
between a bed and a chair or when a nurse bends over a patient in a bed.

Vendors with More Conservative Solutions: These solutions require physical inter-
vention with the patient or restrict their movement. Some of these vendors expressed
criticism and argued that the vision was overly ambitious, advising the team to lower the
level of ambition to fit their more mature but also more conservative solutions. However,
this made it even more apparent to the team that the role of the innovation process was
to identify the limits of the technology and not play safe with known solutions requiring
tedious cleaning or maintenance tasks.

The interdisciplinary procurement team concluded that the more conservative solu-
tions would not sufficiently increase value compared to today’s solutions and would not
lead to a contactless future anytime soon. Accordingly, because some of these vendors
allowed themselves to understand “contactless” as “wireless,” the procurement team
clearly defined the term “contactless” in the call for tender as not requiring contact with
the patient and as monitoring continuously while moving between furniture.

Vendors with Complementary Offerings: These vendors could complement more
innovative vendors so that they together could deliver a more “complete” solution, e.g.,
by (1) supporting more vital signs with more conservative technology or (2) by offering
integration with the hospital IT infrastructure, or (3) with a meaningful presentation of
measurements. The initial signal from the project was that either the project or the ven-
dors could propose two or more matching vendors. However, in line with the sharpening
of the vision, the procurement team decided on skipping matchmaking altogether.

To summarize, we see that the team made informed decisions in sharpening the
vision, the needs, and the requirements as an effect of the dialogues with a large and
varied group of vendors, representing an overview of existing technologies, near future
innovation opportunities, and limitations of both technologies and project resources.

Requirements Engineering in the Market Dialogue Phase 167

5.2 Risk Management

The procurement team gradually clarified, understood, accepted, and reduced the
project’s potential risk by jointly focusing on the requirements while formulating the
final needs in the call for the tender. The original vision of the solution requiring all six
vital signs would involve high risks in terms of potential loss of time and money by not
being able to realize any solution in time. Moreover, in a hospital context, the primary
risk is patient harm. Hence, the risks involved in demanding a radical technology were
not perceived as high by the clinicians in the procurement team (i.e., the project owner)
or the steering group because the solution will not immediately replace existingmonitor-
ing technology. On the contrary, not being able to explore the possibilities of contactless
technology was perceived as a risk by the procurement team because the potential added
value would then not be identified. The support from Innovation Norway mitigates the
financial risk, and it may be possible to apply for more funding later. Lastly, the innova-
tion partnership procurement instrument aims to co-create innovative solutions instead
of a more traditional procurement.

5.3 A Cross-Functional Procurement Team

The cross-functional team was created from the beginning of this innovation procure-
ment project because the project owners recognized that involving ambassadors earlywas
essential for successful change processes. We observed the procurement team through
all 19 dialogue meetings, including short recap discussions and several internal meet-
ings. The members of this cross-functional team had complementary competencies and
resources relevant to the vision of contactless measurements of vital signs:

• Top-level management: the steering group, led by the hospital assistant CEO, sup-
ported the team with the commitment to the sharpened vision and hence supported its
risk-taking in focusing on contactless and not wireless technology.

• Medium-level management: Being also the assistant head of the ER, the project owner
gave the team members flexibility with their regular work obligations to attend dia-
logue meetings. The head nurse also contributed to increased commitment among the
nurses by being a regular procurement team member.

• End-user level: represented by ER nurses and a patient representative.
• A medical technology and information security expert with deep knowledge of the
technological state of the art served as a semantic broker for technology to the rest of
the team.

• A procurement expert who understood the innovation partnership instrument.
• Project manager with expertise in innovation and knowledge management (and the
fourth author of this paper).

The team atmosphere was safe and inclusive, indicating psychological safety. Experts
with natural authority invited other roles with less authority, e.g., the senior medical
doctor actively seeking the viewpoints from the patient representative. The team envi-
ronment enabled discussions on conflicting viewswithout creating conflicts, and varying
viewpoints were discussed openly in the team. We observed several cases where, e.g.,

168 G. Brataas et al.

the medical experts expressed enthusiasm about technologies presented in the dialogue
meetings, but the medical expert was able to correct and balance the view based on tech-
nical experience and expertise. Thus, the members showed high mutual trust by sharing
their knowledge and acknowledging each other’s views and knowledge related to differ-
ent types of requirements. Themembers had a stronger voice for requirements associated
with their competencies, where health care workers were more active in discussions on
using the suggested technology andhad the lastwordon focusing such requirements. This
was not only with the other members’ blessing but by direct encouragement. Therefore,
the team was successfully united in the sharpening of the vision.

The bold vision gave a robust commitment to the team. Key members even stated
that they would not have participated in the procurement with a less ambitious objective.
The team members were all highly engaged throughout the dialogue meetings and able
to find time in busy schedules. However, we observed a shift in the engagement when the
writing of the call for tender started, and it became harder to involve the team members
and verify parts of the documentation. The project manager was the critical author but
highly reliant on input and verification of the content by the rest of the team. Hence
the writing process became cumbersome but eventually resulted in a complete call for
tender. In severalminormeetings, the projectmanager struggled to engage teammembers
with clinical commitments. However, the procurement team often expressed confidence
in the shared vision based on the thorough dialogue and inclusive dialogue meetings
and argued that they trust the project manager to realize this in written format. In this
process, the project manager needed to know “who knows what” to get the correct input
and verification during finalization. The procurement expert was also a fundamental part
of this process with knowledge about the procurement documents and process, ensuring
compliance with the formal procedure and contents.

5.4 Trust from Vendors

Trust between procurer and vendor is vital as an innovation partnership will be an
intense R&D cooperation for at least 18 months if both parties agree to continue the
collaboration. During the market dialogue phase, the hospital knows that an innovation
partnership requires time from critical resources to educate the vendors and to provide
access to facilities and users during the development phase. Moreover, because the con-
tract only ensures a purchase option, the vendor can refuse to sell the developed solution.
Correspondingly, vendors may have to invest their resources to mature the result, e.g.,
from a proof of concept to a ready product. The willingness of both the hospital and ven-
dors to commit time and resources shows that their level of trust surpasses the threshold
of perceived risk, and they are willing to engage in the relationship [17]. Meanwhile,
sensitive information on limitations and plans for future technology development shared
by vendors also indicated a high level of trust. To ensure that the market dialogue is
an effective and safe process to interact and exchange information, an essential pre-
requisite for this trust was that the procurement team and the researchers had signed a
non-disclosure agreement before the dialogue meetings and reassured the vendors about
this before every dialogue meeting.

Requirements Engineering in the Market Dialogue Phase 169

6 Discussion

Our overall objective was to understand howwe can clarify and focus needs and require-
ments for a new solution in the market dialogue phase. We will discuss how this was
achieved below.

6.1 Clarifying and Focusing Needs and Requirements

It was valuable with broad inclusion of vendors spanning from those that propose rel-
atively mature technologies to those willing to discuss innovation and development
opportunities. Conservative vendors were eager to discuss technology limitations with
contactless sensors, while innovative vendors discussed their opportunities. Suppliers
were willing to share ideas and knowledge, including limitations and development chal-
lenges. This is in line with Uyarra et al. [6], who found that overly rigid requirements
hinder innovative solutions.

An inclusive dialogue phase took time for valuable human resources. However, it
has been a vital learning process enabling the team to refine and focus on the vision
and clarify and justify requirements. The initial vision was ambitious but open to create
interest, and the final sharpened vision was innovative and realistic with acceptable risk,
e.g., requiring two vital signs instead of the initial six, with the remaining four signs
optional. Other vital requirements were adjusted. For example, the team learned that
the user interface would be developed through the planned improvement of existing
infrastructure systems – leaving more room to focus on the core part of the vision.
Learning points came from the dialogue with a great variety of vendors; some large with
experience in medical equipment certification that smaller vendors do not have, some
small vendors with specific technologies, and existing hospital’s IT system vendors. This
sharpening of the needs and requirements is required because the innovation partnership
instrument requires the initial specifications of a purchasable solution.

6.2 Understanding of the Innovation Partnership Instrument Among Vendors

The understanding of the innovation partnership instrument varied amongst the vendors.
Vendors are accustomed to traditional procurement processes where requirements are
specified in detail, and the relationship between the customer and vendor is transactional.
In an innovation partnership, the relationship is based on collaboration and co-creation
during an innovation process but with a higher risk of not fulfilling the vision [5]. We
observed that several vendors took a traditional approach of presenting existing products
with less focus on their potential role as an innovation partner. This puzzled us as we
expected vendors to more actively describe their potential partner role and abilities to
collaborate, e.g., experience in co-creation processes and user involvement. The reason
may be that this process is new, unknown, and complex and that the dialogue does not
follow established patterns from traditional procurement [1].

Some vendors discussed the innovation potential and their role more as a future
development partner than a traditional supplier. Although with a few cases, we suspect
there is a sweet spot for good vendors: those with a high level of technological know-how
but without being locked by existing products. We believe the intention of the innovation

170 G. Brataas et al.

partnership instrument should be clarified and that vendors should be challenged to
describe their role as development partners explicitly in the dialogue meetings.

6.3 Vendor Matching

Before the dialogue meetings, the initial ambition was to have an open approach to
the potential matching of vendors; both vendors and the project team could propose
matching to cover thewidth and complexity of the requirements. Throughout the process,
it became clear that the best strategy was to focus on the core of the vision and reduce
the need for complementary competencies, covering initial broader requirements like
integration, user interface, and certification. Hence, with learning-based justification,
they were looking for one vendor with a focused innovation process for contactless
measurement of vital signs.

6.4 A Well-Aligned Cross-Functional Procurement Team

We see that a well-aligned cross-functional procurement team has been a critical factor
with the following characteristics:

– Cross-functionality: The cross-functional team represented all stakeholders affected
by the innovation process and the envisioned outcome and those with knowledge of
innovative procurement processes. This helped to adjust each members’ impression
from the meetings. In particular, the medical technology expert could inform the
doctors and nurses about the realism and technical limitations of a solution that at first
glance looked promising.

– Resources: The team members had sufficient resources for participation in addition
to a hectic schedule. The associate chief of the ER (i.e., the project owner) considered
the project and the dialogue process to be of great importance and allowed his medical
staff to prioritize the project (at the cost of their regular tasks).

– Motivation: The team had a considerable task with a potentially significant impact
on the ER and its patients. This ambitious task caused motivation and enthusiasm,
compared to the traditional procurement of more conservative technology.

– Formal procurement competency: In the dialogue and teammeetings, the team was
supported by a procurement expert, ensuring compliance with formal procurement
routines. This role was crucial for increasing the team members’ understanding of
what requirements were allowed and what were not (and when), which was a repeated
topic during project team meetings and dialogue meetings; and when writing the call
for tender. This expertise created safety and order for the project manager and the
team.

– Trustful team dynamics: Although the team members had varying formal power
at the hospital and the ER, the associate chief of the ER and the project manager
deliberately sought the viewpoints from all members during the dialogue meetings,
especially in the team-internal evaluation at the end of each dialogue meetings.

– Commitment from top-level management: The steering group supported the
strategic decision to focus on contactless measurement of vital signs.

Requirements Engineering in the Market Dialogue Phase 171

6.5 Summary of Discussion

In sum, the procurement team has succeeded in using the dialogue phase as intended:

– Limitations and opportunities of the technology have been explored by seeing avail-
able technology and getting insight into some vendors’ plans and strategies, including
R&D.

– The new knowledge of vendors and possible solutions have enabled the team to adjust
requirements with confidence (a balance between realism and risk).

– New insight enabled the team to identify the critical risk factor in this case, the
risk of not exploring the core of the vision instead of the risk of not getting a fully
functional system. The innovations’ improvement potential to healthcare workers is
too promising not to pursue fully.

From this analysis, we see two main components that have affected the process of
prioritizing the core requirement of the vision and adjusting additional requirements:
first, a well-functioning learning process, and second, a sufficient level of trust in the
team, internally, within the hospital, and towards vendors. This is illustrated in Fig. 2.

Focusing requirements

A learning process:
• Knowledge sharing between vendors and the procurement team
• Better understanding of market and technology
• Learning within a cross-disciplinary procurement team

Building trust:
• Inclusive atmosphere in the procurement team
• Aligned commitments from all members of the procurement team and steering group
• Adequate level of ambition to procure an innovative product
• Risk management

Initial needs and requirements:
• Fully contactless measurements
• 6 parameters of vital signs
• User Interaction component required
• Mandatory health standards compliance
• Matchmaking

Focused requirements:
• Fully contactless measurements (unchanged)
• 2 parameters of vital signs (4 optional)
• User interaction component not required
• Health standardization strategy
• Matchmaking optional

Fig. 2. The requirements funnel

7 Threats to Validity

Being a study of a single case, our findings have explorative and explanatory value [18].
We provide insight into a new phenomenon with no previous research available (the
dialogue phase in innovation partnerships) by openly collecting and analyzing nearly all
available data within the study period. We indicate potential explanations of influencing
factors through a thematic analysis (summarized in Fig. 2). However, the study is subject
to a set of threats to its validity [18]:

– Construct validity (whether we studied the right phenomenon – the dialogue phase):
We have sought to ensure construct validity by collecting data through observations

172 G. Brataas et al.

of the phenomena itself (dialogue meetings, project group, and steering group meet-
ings), as well as input and output documentation (the vision document, and the result-
ing request for tender specification). Other potentially influencing sources have been
avoided.

– Internal validity (whether we have understood casual effects correctly): There is
obviously a threat to internal validity with only a single case and no reference cases
in the literature. We have, however, sought compensation in building support for
claims, combining different aspects in the analysis by openly coding the material
(using Nvivo), e.g., several factors explaining the team.

– External validity (whether our findings are valid to other cases): This needs to be
investigated in other studies, but we have set a restricted scope for the study – the
dialogue phase, which is part of a well-defined process, meaning that our findings
should have relevance to other cases that are restricted by the same type of process.

– Reliability (whether other researchers would reach the same conclusions): This is hard
to evaluate, but we have provided a rich insight into findings and how we interpret
the findings (discussion). This should enable the reader to assess the reliability of our
interpretations.

The project manager of the Autoscore project is the fourth author of this paper,
which may create bias and influence validity. This is compensated for by defining that
member’s role to only cover correction of facts about the innovation partnership process
and not the design and implementation of the study.

8 Conclusions

Our research question was: “How can we clarify and focus needs and requirements for a
new solution in the market dialogue phase?” The case study shows that the procurement
instrument, an innovation partnership, has worked according to its intention. Dialogues
with a broader group of suppliers contributed to learning, addressing both the envisioned
innovation and the innovation process. New knowledge of opportunities and limitations
has helped the procurement team focus their vision and requirements with confidence.
Although a costly process, our analysis shows that building an excellent cross-functional
team with a high level of trust is a valuable investment.

We believe insights into theAutoscore case are of value both to practice and research,
especially as an innovation partnership is a new instrument with sparse empirical
experience. This case study has implications for practice and further research:

• Implications for practice: (1) A wide range of vendors is valuable for clarifying and
focusing initial needs and requirements. Therefore, the initial vision and the initial
description of needs and requirements should be so broad that it attracts interest from
a variety of vendors. (2) The dialogue phase of the innovation partnership process
can benefit from making the vendors’ potential role as an innovation partner more
explicit, both in the initial description of needs and requirements and as a discussion
point in the dialogue meetings. (3) Reducing the team’s competency and capacity,
e.g., to save time for critical stakeholders, pose a significant risk.

Requirements Engineering in the Market Dialogue Phase 173

• Implications for research (further work): (1) The dialogue phase in this case study
may be streamlined based on more experience, finding a sweet spot between the qual-
ity of the dialogue phase and its cost. This is important since market dialogues are
recommended for all public procurements [12]. (2) Apart from observing a procure-
ment team and their interactions with vendors, it would be interesting also to observe
vendors and their internal prioritizations and evaluations prior to and after the dialogue
meetings. This would give a more complete picture.

Looking into the near future for the Autoscore project, we may ask: how should the
innovation partnership phase build on the promising results from the dialogue phase?
Based on our experience with innovative software engineering processes, we believe
that an agile approach would be fruitful. Iterations and increments simplify develop-
ment and synchronous clarification of functional and commonly under-focused quality
requirements, e.g., as addressed by Brataas et al. [19].

Acknowledgment. The research leading to these results has received funding from the Research
Council of Norway in the project SMED: Smarter Innovation with Digital Transformation of
Innovative Procurement (grant #285542). We thank St. Olavs university hospital for making this
case study possible through access to the Autoscore project.

References

1. Messina, A., Rogers, A.: Using the “Agile” paradigm to support innovation in large orga-
nizations. In: Ciancarini, P., Litvinov, S., Messina, A., Sillitti, A., Succi, G. (eds.) SEDA
2016. AISC, vol. 717, pp. 191–203. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-70578-1_18

2. Moe, C.E., Päivärinta, T.: Challenges in information systems procurement in the Norwegian
public sector. In: Janssen, M., Scholl, H.J., Wimmer, M.A., Tan, Y. (eds.) EGOV 2011.
LNCS, vol. 6846, pp. 404–417. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22878-0_34

3. Hiisilä, H., Kauppinen, M., Kujala, S.: An iterative process to connect business and IT devel-
opment: Lessons learned. In: 2016 IEEE 18th Conference on Business Informatics (CBI).
IEEE (2016)

4. Holma, A.M., et al. Service specification in pre-tender phase of public procurement-A triadic
model of meaningful involvement. J. Purch. Supply Manag. 26(1), 100580 (2020)

5. Torvatn, T., De Boer, L.: Public procurement reform in the EU: start of a new era? IMP J.
11(3), 431–451 (2017)

6. Uyarra, E., et al.: Barriers to innovation through public procurement: a supplier perspective.
Technovation 34(10), 631–645 (2014)

7. Edler, J., Uyarra, E.: Public procurement of innovation. In: Handbook of Innovation in Public
Services. Edward Elgar Publishing, Cheltenham (2013)

8. Hamdan, H.A., De Boer, L.: Innovative public procurement (IPP)–Implications and poten-
tial for zero-emission neighborhood (ZEN) projects? In: IOP Conference Series: Earth and
Environmental Science. IOP Publishing, Bristol (2019)

9. EU, On public procurement and repealing (Directive 2014/24/EU). European Parliament
(2014)

https://doi.org/10.1007/978-3-319-70578-1_18
https://doi.org/10.1007/978-3-642-22878-0_34

174 G. Brataas et al.

10. Iossa, E., Biagi, F., Valbonesi, P.: Pre-commercial procurement, procurement of innovative
solutions and innovation partnerships in the EU: rationale and strategy. Econ. Innov. New
Technol. 27(8), 730–749 (2018)

11. Godlewska, M.: Innovation partnership in the European union–a chance for successful
competition with the USA. Rev. Euro. Aff. 1, 89–102 (2017)

12. Alhola, K., Salo, M., Antikainen, R., Berg, A.: Promoting public procurement of sustainable
innovations: approaches for effective market dialogue. In: Thai, K.V. (ed.) Global Public
Procurement Theories and Practices. PAGG, vol. 18, pp. 59–82. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-49280-3_4

13. Moe, C.E., Risvand, A.C., Sein, M.K.: Limits of public procurement: information systems
acquisition. In: Wimmer, M.A., Scholl, H.J., Grönlund, Å., Andersen, K.V. (eds.) Electronic
Government. EGOV 2006. Lecture Notes in Computer Science, vol. 4084. Springer, Berlin,
Heidelberg (2006). https://doi.org/10.1007/11823100_25

14. Moe, C.E., Newman, M., Sein, M.K.: The public procurement of information systems:
dialectics in requirements specification. Eur. J. Inf. Syst. 26(2), 143–163 (2017)

15. Moe, C.E., Newman,M.: The public procurement of IS--a process view. In: 2014 47th Hawaii
International Conference on System Sciences. IEEE (2014)

16. Wohlin, C.: Case study research in software engineering—it is a case, and it is a study, but is
it a case study? Inf. Softw. Technol. 133, 106514 (2021)

17. Mayer, R.C., Davis, J.H., Schoorman, F.D.: An integrative model of organizational trust.
Acad. Manag. Rev. 20(3), 709–734 (1995)

18. Runesson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

19. Brataas, G., et al.: Agile elicitation of scalability requirements for open systems: A case study.
J. Syst. Softw. 182, 111064 (2021)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1007/978-3-319-49280-3_4
https://doi.org/10.1007/11823100_25
http://creativecommons.org/licenses/by/4.0/

A Business Model Construction Kit
for Platform Business Models - Research

Preview

Nedo Bartels1(B) and Jaap Gordijn2

1 Fraunhofer IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
nedo.bartels@iese.fraunhofer.de

2 Vrije Universiteit Amsterdam, De Boelelaan 1105,
1081 HV Amsterdam, The Netherlands

j.gordijn@vu.nl

Abstract. [Context and motivation] In recent years, the Internet has
led to new ways of doing business and has spawned new, platform-based
business models. For example, Uber and Airbnb offer platforms that
enable broker/mediation services between parties organized in two-sided
markets. [Question/problem] To be financially sustainable, platform-
specific revenue models are needed to generate cash flows from these
intermediation services. Moreover, these revenue models should be revis-
ited over and over again, due to continuous changes in a competitive envi-
ronment. To a large extent, it is unknown how to continuously (re)design
revenue models for platforms efficiently. [Principal ideas/results] We
propose three research streams with outcomes that should support con-
tinuous and efficient platform design: (1) formalization of known plat-
form revenue models, (2) the organization of known platform revenue
models into design patterns such that existing knowledge can be reused
efficiently, and (3) support for the dynamics of these models, e.g., how
they evolve over time. [Contribution] In the long term, we propose a
novel and tractable approach called the Business Model Construction
Kit for the continuous and efficient design of platform business models,
including the selection of appropriate revenue model(s). The kit will pro-
vide a variety of methodologically well-integrated design-oriented tools
and accepted knowledge to quickly (re)design a platform business model
with a focus on revenue models. The result is a method aimed at helping
practitioners design platform business models.

Keywords: Platform business models · Revenue model · Construction
kit · Digital platform

1 Introduction

In this research preview, we consider the problem of how to efficiently and continu-
ously (re)design revenuemodels for IT-enabled platforms in a dynamic, and chang-
ing business environment. We view the design of revenue models as a form of early
requirements engineering, e.g., regarding the elicitation of business requirements,
c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 175–182, 2022.
https://doi.org/10.1007/978-3-030-98464-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_14&domain=pdf
http://orcid.org/0000-0002-2540-6264
http://orcid.org/0000-0002-6401-3850
https://doi.org/10.1007/978-3-030-98464-9_14

176 N. Bartels and J. Gordijn

and similar to other contextual RE-methods such as i* [23] and e3value [11]. We
argue that for platforms with IT as an intrinsic part of their value proposition, it
is important to have an inclusive requirements engineering process, that is, not
restricted to information system requirements only, but also taking into account
business, financial and market requirements. Platforms such as those offered by
Uber, Spotify, Airbnb etc. are more than just IT systems and are able to create
digital markets for various stakeholders in dynamic business contexts. As a con-
sequence of this observation, understanding the business context is a prerequisite
for finding requirements of the information system that will enable the platform,
which should therefore be part of the overall requirements engineering process.

The business context is expressed by means of a business model, which
explains what kind of value is offered, how this offered value is created, and
how the created value is captured through a revenue model. According to [18],
a revenue model is part of a business model and describes the mechanism by
which a company makes a profit from its value-creating activities. A business
model represents the underlying logic of a business, with a focus on how eco-
nomic value is created, distributed, and consumed in a network of actors that are
(non-for-profit) organizations. When a business model bundles several actors via
a platform, we consider this kind of a business model a platform business model.
A platform business model enables and supports transactions between supply-
and demand-side participants [21]. We advocate the logic that, e.g., Uber Ride
(platform provider) brokers rides (assets) provided by drivers (provider-side) for
passengers (consumer-side) on its platform [22]. Here, the revenue model must
clarify which monetization mechanisms are used to generate revenue from the
platform’s mediation activities. In addition to Uber, there are a number of other
platform business models that are established in different domains, including
the business models of eBay Marketplace, Spotify Music, or Airbnb Lodging. As
each of these platform business models creates value differently, various revenue
models are needed to capture value. A revenue model should define appropri-
ate revenue sources and revenue streams to transform the value delivered [21].
Finding a suitable revenue model that contains ideal revenue mechanisms is chal-
lenging, as each platform business model deals with its own requirements. Based
on this, our research preview is motivated by answering the following questions:

RQ1 : How can we formalize and transfer knowledge about the revenue mod-
els of existing platform business models?, RQ2 : How can we formalize accepted,
well-known design knowledge with respect to platform business models as pat-
terns, so that they can be used by practitioners in the field?, RQ3 : How can we
provide support for the inherent dynamic nature of business models?.

This paper does not yet present any findings regarding these three research
topics; rather, it provides a research preview and lays our plans with respect to
these topics. In brief, we plan to develop a Business Model Construction Kit for
platform business model that addresses the three above-mentioned directions.
This paper is structured as follows. In Sect. 2, we introduce platform business
models and describe the linkage to revenue models. This is followed by a dis-
cussion in Sect. 3 about the challenges posed by business model dynamics and

Business Model Construction Kit - A Research Preview 177

their significance for platform business models. Section 4 outlines our proposed
approach and the importance of design patterns for our Business Model Con-
struction Kit. Our next steps are presented through a roadmap in Sect. 5. Based
on this, Sect. 6 summarizes our concluding remarks.

2 Revenue Model as a Part of a Platform Business Model

A shared understanding and consent are argued by [13] regarding three core
business model dimensions: value creation, value delivery, and value capture. A
revenue model is a part of the business model’s value capture, and therefore it
illustrates how (economic) value is generated. We consider revenue models for
platforms as a concept that shows the monetization mechanisms used to capture
value from the platform’s mediation activities between its two-sided markets.
A digital platform is able to connect the supply side and the demand side of
a market through an intermediary called the platform provider, which enables
the brokering of the core asset under consideration [21,22]. Consequently, the
composition of the revenue streams between (1) platform provider, (2) asset
providers, and (3) asset consumers is highly important for shaping a compre-
hensive revenue model. A platform can be monetized focusing on supply-side
participants, demand-side participants, third parties [21], or both market sides.
In addition, [5] formulates two monetization references that can be used to place
payments: (1) platform participants have to pay fees for participating in a plat-
form or (2) platform participants have to pay fees per transaction. As shown in
Table 1 different variants can be used to shape a platform revenue model.

Table 1. Descriptions of revenue models for selected platform business models

Platform business model Used revenue mechanisms

Uber Ride
(brokers rides between
drivers and passengers)

Uber generates revenue by charging drivers a 20–25%
fee on the total price for each trip performed
(monetization of supply-side participants)

eBay Marketplace
(brokers items between
sellers and buyers)

eBay generates revenue by charging the sellers a
2–13% fee on the total price for each item sold
(monetization of supply-side participants)

Spotify Music
(brokers music songs
between artists and
listeners)

Spotify generates revenue by offering an
advertising-free platform access for a monthly
subscription of $4–11 (monetization of demand-side
participants)

Airbnb Lodging
(brokers accommodations
between hosts and
travellers)

Airbnb combines a transaction-based fee and
charges, guests a service fee of 5–15%, and hosts a
commission fee of 3–5% of the total price for each
reservation (monetization of both market-sides)

These different types of revenue models lead to the assumption that moneti-
zation mechanisms could be combined to formalize business model patterns. To

178 N. Bartels and J. Gordijn

pursue this, we will conduct a first SLR regarding the notation of ‘platform busi-
ness models’ and a second SLR regarding revenue models that currently exist
for platforms. Using the SLRs and a series of workshops to be held with parties
developing and maintaining platform business models, we will draft a Business
Model Construction Kit (a preliminary version for non-platform based business
models already exists: see [4]).

3 Dynamics of Evolving Platform Business Models

In recent years, we have seen an increase in the number of digital platforms, e.g.,
Salesforce AppExchange (marketplace for B2B applications) as a redesign and
expansion of an already existing service, while others create new platforms by
disrupting existing markets (e.g., Spotify or Airbnb). These evolutions and inno-
vations towards platform-oriented business models can be considered as business
model dynamics, which show the firms’ adaptation to a turbulent and changing
environment [20]. However, many studies and development approaches look at
business models from a static perspective, as snapshots in time [19], and ignore
the dynamic evolution of business models [7].

We consider a business model not as a static construct, but as a dynamic
concept that evolves over time. For example, as a matching service, Uber initially
heavily subsidized taxi rides to create the market, both from a customer and a
supplier perspective [8]. Moreover, we argue that we can also take a design
perspective on the evolution of the business model itself ; we can think about
how to launch a particular business platform and what that business model
should look like a few years after the initial deployment. In fact, this is precisely
what Uber (and other platform providers) did to overcome the problem also
known as the chicken-egg problem. The provider platform must therefore think
about how to address both market sides and how to reach a critical mass when
setting up a platform business model [17].

Another example of business model dynamics can be seen in the revenue
model of Airbnb. Listing a room on Airbnb is free. When a guest rents a room,
that person then pays the renter through Airbnb, which takes a fee from both
sides [8]. This revenue model has been implemented since August 2008, fol-
lowing the launch of Airbnb’s own payment infrastructure [2]. Before that, when
Airbnb was called AirBed&Breakfast and fees were only charged if a host charged
more than $300/night, a $30 fee was charged by AirBed&Breakfast to list the
accommodation [1]. This led to a different revenue stream, without involving the
consumer side (or travelers), and thus to a different revenue model.

These dynamics between business model changes should be understood to
provide a starting point to raise business model requirements. Designing business
models is a continuous task, in the same sense as in agile software development
and continuous delivery and integration of software. We argue that this is not
only the case for software development, but also for the business models of
platforms enabled by such software. Based on the assumption that platform
business models and their revenue models can be formalized systematically in

Business Model Construction Kit - A Research Preview 179

patterns, we try to understand business model dynamics by the change from
one pattern to another pattern (e.g., the change of AirBed&Breakfast’s revenue
model to today’s Airbnb revenue model). Therefore, our proposed construction
kit could be used to analyze the intersection between different patterns and their
dynamics and changes.

4 Organizing Revenue Models into Patterns

As argued by Jackson in his book ‘Problem Frames’ [12], most problems that
designers have to solve have been solved before, and often many times. In Infor-
mation Systems and Software Engineering, the approach of patterns for present-
ing accepted design knowledge is quite popular. Initiated in the area of building
construction [3], patterns are often used in Requirements Engineering and Soft-
ware Design (see, e.g., the Gang of Four book [9], and Interaction Design [6]).
Briefly speaking, a pattern comprises proven and accepted solutions for recurring
problems in a particular context. The selection of a particular solution may be
subject to forces. The keyword is ‘proven’; the solution should be known to be
successful. Previously, we successfully defined patterns for interorganizational
controls in networks of enterprises [14]. We intend to use a similar approach
in terms of best-practice elicitation and use e3value as (part of) the pattern
description language. Our patterns follow a predefined structure and rules. For
this reason, the process can be called a language because, like a natural lan-
guage, it contains elements, namely patterns and rules of application [16]. The
55 business model patterns identified by [10] are universally applicable business
model strategies based on a comprehensive company analysis performed by the
authors. Unfortunately, these patterns are poorly formalized (e.g., in terms of
conceptual modeling) which may lead to ambiguity, subjective interpretation
and hence confusion. However, we will use these patterns as a point of depar-
ture to arrive at a more model-based library of patterns specifically for platform
business models. The patterns found will be integrated into our Business Model
Construction Kit, as introduced in Sect. 2. As for our Business Model Con-
struction Kit, the identified business model dynamics will result in an ongoing,
continuous process with respect to business model development. We see that too
often, a business model development project is a single-shot effort, whereas it
should be a continuous and ongoing process.

5 Roadmap

The next steps in our roadmap towards developing the Business Model Con-
struction Kit are described in the following.

Conducting an SLR. Existing literature about revenue models for platform
business models will be systematically reviewed to identify mechanisms for mone-
tizing platform business models (e.g. Subscription, Pay per Use etc.), and revenue
streams between platform provider, asset providers and asset consumers.

180 N. Bartels and J. Gordijn

Formalizing Platform Revenue Model Patterns. The collected knowledge
about revenue models for platform business models will be aggregated and for-
malized as generic patterns to ensure reusability. Each formalized pattern will
contain a textual description and a model-based component. The model-based
component will be enabled with e3value , because it has already been used suc-
cessfully, as shown in [15] for the formalization of ‘control patterns’. With the
formalization we will address RQ1.

Developing a Pattern-Based Approach for Platform Business Models.
The formalized patterns will first be applied to a sample of existing platform
business models in order to check their applicability and, if necessary, make
adjustments and extensions. Afterwards, the patterns will be used in various
research projects dealing with the development of platform business models.
Based on individual interviews and group workshops with industry partners, the
formalized patterns will be prioritized and a selection will be made to derive
insights into, what requirements need to be met in order to run certain plat-
form business models successfully (e.g., what are the requirements for running
a pay-per-use revenue model?). Here, we will address RQ2, and prove which
requirements have to be fulfilled in order to use specific revenue model patterns
for certain value propositions and platform’ value creation. The findings will be
finalized in our Business Model Construction Kit.

Evaluating the Pattern-Based Approach. The evaluation will test whether
control groups are able to develop appropriate revenue models for platform busi-
ness models. To quantify the results for RQ3, if the Business Model Construction
Kit supports the development of resilient platform business models, our results
will be compared to existing approaches such as the Business Model Canvas.

6 Conclusion

This research preview presented the current challenges of business model design
and its revenue models for platform business models. We outlined a pattern-
based Business Model Construction Kit for platform business models to be
implemented as a quantification framework in the e3value business modeling
methodology. The aim of this research is to develop a supporting tool, as kind of
a software-based and model-based pattern library for platform business models
and their dynamics. We believe that with the proposed framework, we can pro-
vide an approach that allows systematic and transparent development of novel
platform business models.

References

1. Help: Is it free to list? https://web.archive.org/web/20090824205042/http://www.
airbnb.com/help/question/33. Accessed 24 Oct 2021

2. News: The airbnb story. https://news.airbnb.com/about-us/. Accessed 24 Oct
2021

https://web.archive.org/web/20090824205042/http://www.airbnb.com/help/question/33
https://web.archive.org/web/20090824205042/http://www.airbnb.com/help/question/33
https://news.airbnb.com/about-us/

Business Model Construction Kit - A Research Preview 181

3. A Pattern Language: Towns, Buildings, Construction. Oxford University Press,
New York, August 1977

4. Bartels, N.: The business model matrix: a kit for designing and innovating business
models. J. Bus. Models 9(3), 14–23 (2021)

5. Becker, F., Gedenk, K.: Optimale nichtlineare tarife auf zweiseitigen medien-
märkten. Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung 72(4),
423–445 (2020)

6. Borchers, J.O.: A Pattern Approach to Interactive Design. John Wiley Sons Ltd.,
Chichester (2001)

7. Chen, J., Tang, Y., Yang, J.: A survey of system dynamics in B2C e-commerce
business model. Mod. Econ. 9(4), 830–852 (2018)

8. Cusumano, M.A.: The sharing economy meets reality. Commun. ACM 61(1), 26–28
(2018)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.M.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Professional, Boston (1994)

10. Gassmann, O., Frankenberger, K., Csik, M.: The Business Model Navigator. Pear-
son PLC, London (2014)

11. Gordijn, J., Wieringa, R.: E3value User Guide - Designing Your Ecosystem in a
Digital World. The Value Engineers, 1st edn. (2021)

12. Jackson, M.: Problem Frames: Analyzing and Structuring Software Development
Problems. Addison-Wesley Longman Publishing Co. Inc., Boston (2000)

13. Jensen, A.B.: Do we need one business model definition? J. Bus. Models 1(1),
61–84 (2013)

14. Kartseva, V., Hulstijn, J., Tan, Y., Gordijn, J.: Towards value-based design pat-
terns for inter-organizational control. In: K. Bogataj (ed.) Proceedings of the 19th
Bled Electronic Commerce Conference, eValues. University of Maribor (2006)

15. Kartseva, V., Hulstijn, J., Gordijn, J., Tan, Y.H.: Control patterns in a health
care network. In: Boella, G., van der Torre, L., Verhagen, H. (eds.) Normative
Multi-agent Systems. No. 07122 in Dagstuhl Seminar Proceedings, Internationales
Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Ger-
many, Dagstuhl, Germany (2007). http://drops.dagstuhl.de/opus/volltexte/2007/
915

16. Khambete, P.: A pattern language for touch point ecosystem user experience: a
proposal. In: IndiaHCI 2011, Association for Computing Machinery, New York,
NY, USA, pp. 68–74 (2011). https://doi.org/10.1145/2407796.2407805

17. Navidi, Z., Nagel, K., Winter, S.: Toward identifying the critical mass in spa-
tial twosided markets. Environ. Plann. B Urban Anal. City Sci. 47(9), 1704–1724
(2019)

18. Osterwalder, A.: The Business Model Ontology. University of Lausanne, Switzer-
land (2004)

19. de Reuver, M., Bouwman, H., MacInnes, I.: Business model dynamics: a case sur-
vey. J. Theoret. Appl. Electron. Commer. Res. 4(1), 1–11 (2009)

20. Saebi, T.: Business model evolution, adaptation or innovation? A contingency
framework on business model dynamics, environmental change and dynamic capa-
bilities. In: Foss, N.J., Saebi, T. (eds.) Business Model Innovation: The Organiza-
tional Dimension. Oxford University Press (2014)

21. Täuscher, K., Laudien, S.M.: Understanding platform business models: a mixed
methods study of marketplaces. Eur. Manage. J. 36(3), 319–329 (2017)

http://drops.dagstuhl.de/opus/volltexte/2007/915
http://drops.dagstuhl.de/opus/volltexte/2007/915
https://doi.org/10.1145/2407796.2407805

182 N. Bartels and J. Gordijn

22. Trapp, M., Naab, M., Rost, D., Nass, C., Koch, M., Rauch, B.: Digitale Ökosysteme
und plattformökonomie Was ist das und was sind die chancen? (2021). https://
www.informatik-aktuell.de/management-und-recht/digitalisierung/digitale-
oekosysteme-und-plattformoekonomie.html

23. Yu, E.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proceedings of ISRE 1997: 3rd IEEE International Symposium
on Requirements Engineering, pp. 226–235 (1997). https://doi.org/10.1109/ISRE.
1997.566873

https://www.informatik-aktuell.de/management-und-recht/digitalisierung/digitale-oekosysteme-und-plattformoekonomie.html
https://www.informatik-aktuell.de/management-und-recht/digitalisierung/digitale-oekosysteme-und-plattformoekonomie.html
https://www.informatik-aktuell.de/management-und-recht/digitalisierung/digitale-oekosysteme-und-plattformoekonomie.html
https://doi.org/10.1109/ISRE.1997.566873
https://doi.org/10.1109/ISRE.1997.566873

On Testing Security Requirements
in Industry – A Survey Study

Sylwia Kopczyńska(B) , Daniel Craviee De Abreu Vieira,
and Miros�law Ochodek

Poznan University of Technology, Poznan, Poland
{skopczynska,mochodek}@cs.put.poznan.pl, craviee@pm.me

Abstract. [Context and motivation] Among all categories of non-
functional requirements, requirements concerning security are those that
are specified frequently and tackled with care. [Question/problem]
Constant changes in technologies used to develop software products drive
to new and changing security requirements, which requires adapting of
the approaches used to investigate if the security requirements are sat-
isfied. And, thus, the question arises if and how security requirements
are tested. [Principal ideas/results] We conducted an online sur-
vey among software development practitioners. 190 respondents from
a wide variety of countries shared with us their experience concerning
testing security requirements. [Contribution] We learned that security
requirements are tested in the majority of surveyed projects. However,
in some having high impact (economic, human health, environment) the
dedicated effort is small or none. There are different techniques used
from automated ones like static code analysis, to manual ones like code
reviews. Most developers, QAs and DevOps are testing security. The
greatest challenges concern culture, knowledge, and difficulty in specify-
ing tests.

Keywords: Security · Security requirements · Survey · Testing

1 Introduction

Numerous cases of software development projects and products provide evidence
of how important software requirements are, both functional and non-functional
ones. For example, according to the Standish Group [14] among the top fac-
tors that make projects successful one concerns requirements [15]. Interestingly,
although a great majority of practitioners consider non-functional requirements
(NFRs) as critical for their projects [8], NFRs are often neglected or inappro-
priately managed, which often is traced as one of the root causes of projects’
failure (e.g., [13]).

One of the five top-most frequently considered types of NFRs for software
systems are security-related requirements [9]. Unfortunately, each year numerous
security vulnerabilities are reported [4,12]. Some authors claim that one of the
c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 183–198, 2022.
https://doi.org/10.1007/978-3-030-98464-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_15&domain=pdf
http://orcid.org/0000-0002-9550-3334
http://orcid.org/0000-0002-9103-717X
https://doi.org/10.1007/978-3-030-98464-9_15

184 S. Kopczyńska et al.

reasons behind this situation is inadequate security testing [11]. However, little
is known about how security-related NFRs are really tested in the industry.
Therefore, in this study, we embark on a research project to investigate how
practitioners test security requirements in their software projects and product
teams. In particular, we would like to provide an up-to-date overview of the
state-of-practice of security requirements testing and challenges related to this
process so that both researchers and practitioners can benefit in their future
work in this area.

To achieve our goal, we conducted an online survey among 190 practitioners
from all over the world. The main contributions of our study are as follows:

– we investigated what is the effort and perceived value of testing security
requirements,

– we studied the approaches used by practitioners focusing on the level of
automation, the tools, the roles, and when testing is performed,

– finally, we identified the challenges concerning security testing.

The rest of the paper is organized as follows. In Sect. 2 we discuss the related
studies. Next, in Sect. 3, we describe the design of the survey and discuss the
validity threats. The results of the survey are presented and discussed in Sect. 4.
Section 5 concludes our findings.

2 Related Work

There is a scarcity of information on testing security requirements that provides
a general overview of the state of practice. One of the most famous reports that is
based on the experience of practitioners is the TOP 10 Web Application Security
Risk report [12]. It describes and ranks application vulnerabilities and provides
some guidelines on how to protect against them, including testing of security
requirements.

Next, in 2014, SANS Institute conducted a survey on application security
programs and practices among a large group of respondents (488) that provided
some insights in the area [1]. It concerned a broader area—application security
programs themselves (including training, challenges to implement an effective
program). The respondents were asked about a few details of the security test-
ing practice, i.e., how helpful are several practices like penetration testing, threat
modeling, etc.; how frequently security testing is performed, and about the fre-
quency of vulnerability breaches. Neither the work by OWASP nor the survey
by SANS Institute provides an overall picture of how security requirements are
tested in practice with specific techniques, tools, etc.

The experience of 20 participants of agile software development projects
about security and performance requirements testing can be found in the work
by Camacho et al. [2]. They conducted semi-structured interviews that identi-
fied seven main factors influencing testing of the two categories of non-functional
requirements. Since the focus of that study was on exploring these factors, the

On Testing Security Requirements in Industry – A Survey Study 185

scope of the study is limited and does not allow understanding of how security
requirements are tested (e.g., level of automation, level of testing).

Fedeler et al. [4] provided an overview of security testing techniques based
on a thorough analysis of the state-of-art and the industry experience reported
in papers and books; both up to 2016. Their focus was to describe and explain
the terms, methods, techniques, and the role of security testing in the software
development life-cycle.

An overall overview of testing practices could be drawn from the surveys
conducted among the respondents from different countries, e.g., Kassab et al. [7]
or focusing on certain regions, e.g., Garousi et al. [5]. These studies inspired us
while formulating questions for our survey. However, in contrast to our study,
the authors of these studies did not investigate testing from the perspective of
security requirements.

3 Research Methodology

Our goal is to investigate the practice of testing security requirements in software
development projects and product teams (we will refer to them as projects). To
achieve the goal, we formulate four research questions:

– RQ1. Are security requirements tested?
– RQ2. How valuable to the project is testing security requirements?
– RQ3. What are the challenges of testing security requirements?
– RQ4. What are the approaches and tools used to test security requirements?

These questions could be simplified to three simple questions: if and how
security requirements are tested in projects and if it is valuable? In particular, by
answering RQ1, we will learn how common the practice of testing security-related
NFRs in software development projects. The second research question (RQ2)
complements RQ1 by revealing the rationale for spending time and resources
on testing such requirements. Finally, the two remaining questions (RQ3 and
RQ4) regard the process of testing security requirements by looking at potential
difficulties and state-of-the-practice tools and methods.

Research Method. Our research method of choice is questionnaire-based Sur-
vey Research. Since the method allows for collecting and analyzing large samples
of projects in a cost-effective way, it gave us the possibility to draw an overall
picture of testing security requirements. We designed our study by following the
guidelines provided by Wohlin et al. [17] and by Molléri et al. [10]. The ques-
tionnaire and collected data are available on the website of the research study1.

Population and Sample Representatives. We define the target population
as participants of software development projects and product teams who have
experience in testing security. We assume that a representative sample of the
target population shall include software-development practitioners and projects
that were conducted in recent years in different contexts (country, domain, etc.).
1 https://github.com/skopczynska/securitytesting.

https://github.com/skopczynska/securitytesting

186 S. Kopczyńska et al.

Survey Instrument. We designed an online questionnaire divided into four
parts and implemented it using the Survey Monkey platform. The first part
consisted of three pages: a welcome page (presenting the goal of the survey, esti-
mated time, and providing the contact information to the researchers conducting
the study), a page explaining what non-functional requirements are, including
security, and a page asking a respondent to focus on one of their projects or
product teams. Also, we asked about the date of the last participation in the
project. The second part contained twelve demographic questions asking about
organizations, projects, and respondents themselves. The third part regarded
the practice of testing non-functional requirements. In this paper, we report
the results regarding testing security-related NFRs, however, the survey con-
tained questions regarding other categories of NFRs. First, respondents were
asked whether security requirements are tested in their project. If the answer
was negative, they were asked about the reasons for such situations. Otherwise,
they were asked about the value of testing security and the challenges concerning
this practice. More in-depth questions followed, including tools, techniques, and
types of tests. The fourth part asked about remarks and comments. Also, every
respondent might have provided an e-mail address to get the summary of the
results after the survey is completed.

Survey Instrument Validation and Evolution. The prepared questionnaire
underwent multiple internal and external reviews. First, it was examined by the
authors of this paper and the initial version was subjected to a pilot study
with 19 participants (three members of our research group, and IT professionals
with experience in testing greater than 5 years—10 people and lower than 5
years—6 people). The feedback from 12 of them allowed us to introduce minor
improvements into two demographic questions. The questionnaire was not fur-
ther modified during the study.

Ethical Considerations. While designing our study, we have considered a
series of ethical considerations, especially those discussed by Vinson and Singer
[16]. Participation in the study was voluntary (informed consent). The invitation
letter and the introduction page of the questionnaire form informed potential
participants about the goal of the study, the research group conducting the
study, the research procedure, the benefits of participating, the estimated time
to complete the survey, and the contact e-mail addresses of the research team
members. Participation in the study was anonymous (anonymity). We did not
ask about any personal information or the names of the companies. However,
the participants could provide us with their e-mail addresses that might contain
their names or surnames. Therefore, we excluded these data from the further
analyses. A direct benefit of participating in our study was the early access
to the results of the survey before they are officially published (beneficence).
The online survey was conducted using the Survey Monkey platform, which we
consider to be a secured service (confidentiality).

Data Collection. We decided to target the respondents using Internet-based
channels since no single ‘place’ provides access to the representatives of the popu-
lation. Our survey had a form of invitation-based online survey. We sent messages

On Testing Security Requirements in Industry – A Survey Study 187

to people we knew to have experience in testing, we posted the request to par-
ticipate in the survey in social network groups related to testing on LinkedIn
and Facebook. We also sent invitations to speakers of testing conferences and
those who on GitHub had provided their position as related to testing. The data
collection took place between July 17, 2020, and November 21, 2020. The exact
response rate cannot be calculated due to the usage of public invitations, but
given that we collected 380 responses, the response rate can be interpreted as
low, which is typical for online surveys.

We collected 180 complete and 200 incomplete responses plus 11 responses
from the pilot study. We decided to include pilot responses as well since there
were no important flaws identified during the pilot study that could affect the
responses to the main questions. One of the complete responses regarded a
project conducted in the year 2000, therefore, the response was rejected as the
project did not meet the criteria for sample representativeness. Consequently,
190 complete responses were included in the analysis

The respondents spent on average ca. 27 min (median) to complete the whole
survey (also including other categories of non-functional requirements). The
majority of incomplete respondents 52% (100) answered just the first question
that is to provide the year of the project and devoted to the survey ca. 1 min
(median). Other 16% (30) of incomplete respondents spent ca. 3 min (median)
and answered the demographic questions. Finally, 32% (62) of incomplete respon-
dents dedicated ca. 5 min to the survey and left it after sharing their opinion
on whether security was tested or not in their projects. Thus, it seems that the
major issues that could discourage our respondents were either (1) the topic of
the survey that after reading the introduction was not compelling enough to
continue, or they did not have experience in the area, (2) answering questions
about demographic questions was too exhausting.

Data Analysis Methods. We used frequency analysis for the multi-choice
questions and the grounded theory techniques of coding (open and axial coding)
and constant comparison as recommended by Charmaz [3] to analyze responses
to the open-text questions.

Validity Threats. The analysis of validity threats is based on the guidelines
provided by Wohlin et al. [17].

Construct Validity. The first threat relates to the understanding of the term
“security” by the respondents. To mitigate this threat, we provided a definition
of security in the questionnaire to ensure a common understanding of that term.
Since there are numerous tools to test security requirements we asked partici-
pants to provide the names of the tools they used to test security requirements
in form of an open question. It might have led to not providing all tools as
some names might have not come to mind of a respondent at the time of fill-
ing the questionnaire in. Also, we made sure that the participants understood
the goal of the study by clarifying the goal at the beginning of the question-
naire, so they were motivated to provide comprehensive and true answers to the
questions. Next, there is no single accepted list of challenges nor of techniques
that we could use in the survey. Our lists come from literature review, and our

188 S. Kopczyńska et al.

own experience. We allowed for the option “Other” to let respondents add, if
missing, their proposals. Finally, we decided to run the survey anonymously to
mitigate the evaluation apprehension threat. Only after respondents completed
all the research-related questions they were asked to voluntarily provide their
email address to receive a report of the results (still it gave the possibility to
stay anonymous).

Content Validity. To mitigate the risk that the questions are not representative
of what they aim to measure, we asked our experts (mixture of researchers,
senior and junior experts in testing) in the pilot study if they see any necessary
changes to introduce to achieve the goals of our study. We need also to accept
that we could have added some more questions to the questionnaire.

Internal Validity. Although we did not seek to establish causal relationships, we
believe that there are some threats that we can classify as belonging to inter-
nal validity. First of all, we partially relied on inviting the members of agile
social networks (LinkedIn, Facebook) to participate in our survey. As a result, it
limited our control over the response-collection process. Consequently, we were
not able to determine neither the response rate nor who received our invitation.
Also, there is a question about the trustworthiness of the respondents. However,
we cannot identify the reasons to intentionally provide false responses. Also,
informing the participants about the results of the study was the only incentive
we offered for participating in the study. It could have a double-edged impact on
the responses we collected. The use of monetary incentives could have increased
the response rate, however, it could also harm the quality of the responses since
some of the respondents might have been interested in completing the survey to
be rewarded rather than motivated by the will of sharing their opinions with the
community. Another threat concerns the skills required to fill in the question-
naire. We assumed that the respondents would not have problems in responding
to an online survey which is created using one of the most popular survey tools
(Survey Monkey) and consisting of a commonly-used type of questions. More-
over, we assumed that they are fluent enough in English to understand the
questions. We conducted a pilot study to ensure that the questionnaire is easy
to understand. We continuously monitored the process of filling in the survey
(using quick analysis of the answers in the survey tool) and, especially, the time
that the respondents spent on answering the questions. We did not observe any
disturbing cases and it took ca. 27 min (median) to complete the survey, which
seems to be a reasonable duration for this kind of survey (we informed the par-
ticipants on the first page of the questionnaire about the estimated time – ca.
30 min). We also monitored those who dropped out. Since a significant propor-
tion of respondents left the survey after the first question (see the analysis in
Sect. 3) it seems that either the topic was not interesting or providing demo-
graphic information was too overwhelming. Thus, we might suspect that those
who provided complete answers were those most interested in the topic.

External Validity. The main threat concerns the representatives of the respon-
dents and their projects. As it follows from our study design and the analysis of
the demographic data (see Sect. 4) the respondents represent the diverse profiles

On Testing Security Requirements in Industry – A Survey Study 189

of software project participants (i.e., they have different experience, work in var-
ious industry sectors, projects were developed in different countries, etc.), which
is essential to mitigate the risk of skewing the observations towards some partic-
ular context. The sample seems appropriate for the goal of our study, which was
to get a general overview of testing security requirements. However, a side effect
of surveying such a broad population is that we were not able to relate certain
characteristics to specific context factors in the projects. Therefore, based on our
results, we cannot tell which testing approach one should expect to see in their
particular project.

Conclusion Validity. We allowed for providing open-text answers or stating “I
don’t know”/“Other” to avoid biasing the results by forcing the respondents to
answer about the provided sets. We employed a qualitative coding technique
to analyze open-text responses. Although two authors of the paper performed
a multi-step process of analyzing the responses, such an approach might have
introduced some bias to the conclusions.

4 Results and Discussion

4.1 Demographic Information

The 190 survey participants performed a large variety of project roles. The
largest group of respondents were involved in testing-related tasks: testers/test
engineers/QA engineers (75), test managers (32), QA representatives (23). Many
of them were also involved in the design and/or implementation: develop-
ers/software engineers (60) and architects (37). The less frequently performed
roles related to project management/coaching (Scrum Master (14), coach (12),
middle management (15), executive management (6)) or requirements elicitation
and management (Product Owner (12), business/requirements analyst (10)).

More than 76% of the participants had 5 or more years of experience and only
2% of them were working in IT for less than a year. Also, 56% of the participants
had 5 or more years of experience in testing while 12% of them were involved in
testing for less than a year.

The respondents referred to their recent projects since 95% of them were
developed within the last three years (83% in 2020, 11% in 2019, and 2% in
2018). Figure 1 presents the countries in which the respondents’ projects were
developed. The most dominating areas were North America, Europe, India. The
most underrepresented region was Central Africa while Central Europe could be
over-represented for the Europe region.

As it is presented in Table 1, the projects were developed for different industry
sectors, with banking/finance/insurance, information technology, and medical
& health care, and Telecommunication as dominating domains. Also, the three
most frequently developed types of applications were web applications, services,
and mobile applications. We could also see that the responses covered most of
the application types. The observed distribution of industry sectors is similar to
the one reported by Hill [6] for the ISBSG database.

190 S. Kopczyńska et al.

Fig. 1. Geographic locations of the respondents’ projects.

Table 1. Industry sectors in which the respondents’ projects were conducted and
application types that were developed.

Industry sector Resp. % Application type Resp. %

Finance/Banking/Insurance 39 21% Web application 87 46%

Information technology 24 13% Web Services/SOA 37 19%

Medical & health care 15 8% Mobile Application 14 7%

Telecommunication 14 7% Desktop client-server 10 5%

Government 12 6% Desktop standalone 8 4%

Traveling 9 5% IoT system 5 3%

Aviation 6 3% Embedded 5 3%

Education 6 3% Library 3 2%

Transportation 6 3% Database 2 1%

Sales, retail & business development 5 3% Other 19 10%

Electronics & computer 4 2%

Energy 4 2%

Gas and oil 4 2%

Media, publishing 4 2%

Security and protective services 4 2%

Automotive 3 2%

Entertainment 3 2%

Gaming 3 2%

Utilities 3 2%

Aerospace 2 1%

Human resources/Payroll 2 1%

Pharmaceuticals 2 1%

Services 2 1%

Manufacturing 1 1%

Marketing 1 1%

Sales, retail & business development 1 1%

Other 11 6%

On Testing Security Requirements in Industry – A Survey Study 191

The large majority of the project teams worked according to one (or many)
agile methods, e.g., Scrum (145), Kanban (55), XP (15), or SAFe (4). There were
also 22 respondents whose projects were based on the waterfall process. Finally,
there were a few project that followed other project management methodologies
such as PRINCE2 (3), RUP (3), PSP (1), or some other/custom methods (20).

The majority of the respondents’ projects were developed by large or medium
organizations (62%), however, there were also 15% of projects developed by micro
organizations (see Table 2). Also, the largest number of project teams consisted
between 3–9 people, which is convergent with the fact that most of them were
developed according to the agile methods that promote small teams. Most of
the teams (75%) worked from different sites or remotely. Finally, we asked about
the project duration at the moment a given respondent participated in it for the
last time. As it can be seen in Table 2, the sample contains a mix of projects at
different stages of their development.

Based on the presented analysis of the demographic information we did not
find strong evidence against the sample representatives of the target population
(see Sect. 3). However, we can see that our sample of projects developed in
Europe could be slightly skewed towards Central Europe.

Table 2. Duration and team/organization sizes of the respondents’ projects.

Duration Resp. % Team size Resp. % Organization size Resp. %

0–3 months 44 23% Up to 3 7 4% Micro (1–10 persons) 29 15%

3–6 months 28 19% 3–9 90 47% Small (11–50 persons) 43 23%

6–12 months 30 15% 10–18 46 24% Medium (51–250 persons) 49 26%

1–2 years 37 15% 19–27 16 8% Large (250+ persons) 69 36%

2–5 years 28 12% Over 27 31 16%

5+ years 23 16%

4.2 RQ1. Are Security Requirements Tested?

According to our respondents, security requirements were tested in 91% of
projects (see Fig. 2). The intensity of testing differ between the projects. In 43%
of the projects the effort invested in this activity was indicated as definitely high
or rather high while in 27% of them it was evaluated by participants as rather low
or definitely low. Only 9% (18) of the respondents stated that testing of security
requirements was not performed in their projects. The most frequently reported
reason for that was lack of security requirements in projects (12). Unfortunately,
we were not able to determine whether the lack of security requirements resulted
from, e.g., insufficient requirements analysis, the fact that security concerns were
irrelevant for the product being developed. Other reasons for omitting this task
mentioned by at least two participants were lack of security testing culture (3)
or management decision (3).

Unfortunately, as it is presented in Fig. 3, in many projects developing prod-
ucts that could have severe negative consequences on human lives, environment,
or cause economic loss in case of their failure testing security requirements is
either not performed or performed in a minimal way.

192 S. Kopczyńska et al.

Fig. 2. Effort dedicated to testing security requirements.

Fig. 3. Sankey diagram presenting the relationship between the potential harmful con-
sequences resulting from the failure of systems, i.e., human life endangered, environ-
ment is harmed, economic loss (left) and effort of testing security requirements (right).
The width of the arrows are proportional to the number of observations.

4.3 RQ2. How Valuable to the Project Is Testing Security
Requirements?

The practice of testing security requirements was perceived as valuable by 72%
of the respondents while 15% of them indicated it as not bringing value to their
projects. However, as it can be seen in Fig. 5, the benefits come with price. In
overall the more effort is invested in the process of testing security requirement,
the more visible are the benefits. Still, the figure shows some examples when low
investment in security testing brought visible benefits to the project.

4.4 RQ3. What Are the Challenges of Testing Security
Requirements?

In ca. one-third of the projects testing security requirements was perceived to
rise the following challenges: C1. Lack of security testing culture (47%), C2.
Lack of knowledge (34%), C3. Lack of priority, and C4. Difficulties in specifying

On Testing Security Requirements in Industry – A Survey Study 193

Fig. 4. Benefits from testing security requirements.

Fig. 5. Sankey diagram presenting the relationship between the effort (left) and value
(right) of testing security requirements.

tests (29%) (see Table 3). Challenges C2 to C4 are especially important for the
Requirements Engineering (RE) community since their presence might mean
that there is a need for education on how to verify security requirements, the
need for developing methods of requirements prioritization (some respondents
commented that functional requirements were given priority but “when though
the impact of the latter was much higher” and that “Low priority except a few
req.”) and the need of developing methods that would help in generating or
recommending tests for certain requirements. Interestingly, a low percentage of
participants identified the existing tools as an obstacle (C9) (only 13%). Other
challenges raised by the respondents concerned communication with the testing
team, lack of overall strategy, understanding the need for security testing, and the
fact that it is a shared responsibility across multiple stakeholders. Finally, 10%
of the respondents did not find any challenges in testing security requirements
(Fig. 4).

194 S. Kopczyńska et al.

Table 3. Challenges in testing security requirements.

ID Challenge Responses

Num. %

C1 Lack of security testing culture 80 47

C2 Lack of knowledge 58 34

C3 Lack of priority 52 30

C4 Difficulty in specifying tests 50 29

C5 Long time needed for testing 45 26

C6 Difficulty in specifying quantifiable requirements 44 26

C7 Conflict between requirements 42 24

C8 High cost 34 20

C9 Available tools did not suit our needs 22 13

None 18 10

Other 9 5

4.5 RQ4. What Are the Approaches and Tools Used to Test
Security Requirements?

Phases. Security requirements were tested throughout the project life-cycle, but
the most intensively during implementation (in 62% of projects) and acceptance
(in 50%) of projects outcomes (see Table 4).

Techniques. The three most frequently employed techniques of testing security
requirements were code reviews, architecture reviews, and vulnerability scanning
(see Table 4) used in 72%, 59%, and 59% of projects, respectively. Also, in over
50% of projects, penetration testing and automated static code analysis were
used. It follows from the results that the human factor is still of high value and
indispensable. Since the respondents mentioned that security requirements are
tested during the requirements specification phases and study design phases in
more than one-third of projects, it seems that those human-intensive techniques
are then employed.

Level of Tests. Security requirements are tested at different levels, mostly at
the acceptance level 26% (see Fig. 6B). Only in 17% of the projects, there was
security testing performed at the unit level.

Automation. A low percentage of respondents claimed that the testing was
performed fully automatically (see Fig. 6A). Over half of respondents employed
a manual approach to a large extent (fully manually or more manually less
automated). It shows that either the automated techniques are still far from
being perfect or are costly. Also, taking into account that the majority of the
tests are acceptance tests (see Fig. 6A), it might suggest the existence of the gap
in the methods and tools for security testing at that level.

On Testing Security Requirements in Industry – A Survey Study 195

Table 4. Description of testing security requirements from the perspectives of tech-
niques, planning, roles responsible, phases of project, and planning approaches.

Techniques Roles responsible

Responses Responses

Num. % Num. %

Code reviews 123 72 Developers 98 57

Architecture reviews 101 59 Internal QA/Testing team 67 39

Vulnerability scanning 101 59 External QA/Testing team 55 32

Penetration testing 93 54 Separate testers in the team 33 19

Automated static analysis 88 51 DevOps 28 16

Risk analysis 83 48 Client 20 12

Source and binary code fault
injection

29 17 Other 19 11

Binary code analysis 26 15 User(s) 8 5

Fuzz testing 21 12

Phases Planning

Responses Responses

Num. [%] Num. [%]

Study and Concept 33 19 Together with other activities
in the total package

67 39

Requirements Specification 58 34 Not planned 29 17

System Design 68 40 For performing QA as a whole 28 16

Implementation 107 62 I don’t know 27 16

Acceptance 86 50 For individual QA measures 13 8

Maintenance 51 30 For each req. separately 7 4

Other 7 4 Other 1 1

Acceptance;
88; 26%

System;
87; 26%

Integra�on;
84; 25%

Unit; 57;
17%

I don't know;
20; 6%

Fully Automated;
10; 6%

Less Manually
More

Automated;
31; 18%

50% Manually /
50% Automated;

44; 25%

More Manually
less Automated;

46; 27%

Fully
Manual;
41; 24%

(a) (b)

Fig. 6. Automation level (A) and Level of tests (B) in testing security requirements.

196 S. Kopczyńska et al.

Tools. There were 90 different tools named by the respondents that are used to
test security requirements. The top three most frequently mentioned are Sonar-
Qube (20 respondents), Burp Suite (12), and OWASP ZAP (10). 6 practitioners
claimed that they use custom, in-house developed tools, while another 4 respon-
dents claimed that they applied static code analysis tools but could not recall
the names of the tools.

The tools used can be divided into several categories: Measurement tools
(e.g., Sonar), App Scanners detecting vulnerabilities (e.g., OWASP ZAP, SQL
Map, Acunetix), Static code analyzers (e.g., linters, Visual studio, Fortify),
Tools to automate the execution of test cases (e.g., Selenium, Apache JMeter),
Tools to investigate communication over a network (e.g., Wireshark), API test
helpers (e.g., Postman), Repositories and Addons (e.g., Git, GitHub, BitBucket),
Tools to document test cases (e.g., Excel), Task management tools (e.g., Azure
DevOps).

Roles Responsible. In ca. 57% of projects Developers were those who test
security requirements (see Table 4). In 67% projects, there were separated people
responsible for this task, in particular, internal QA team (39%), external QA
team (32%), or separate testers within the teams (19%). Interestingly, there are
also projects in which the client or user(s) tested security requirements. Some
respondents mentioned also that Architect (3 projects) or dedicated security
teams– Internal (4) or External (3) were responsible for testing.

Planning. In nearly 40% of projects testing security requirements was planned
together with other activities without isolating specific tasks (see Table 4). From
the RE point of view, it is interesting that rarely the effort is estimated for
each security requirement separately (only in 4% of projects) and quite often it
is not planned at all (17%). Also, taking into account there were difficulties in
specifying quantifiable requirements (C4) present in nearly one-third of projects
(see Table 3), the question “how to support specification, documentation, anal-
ysis of security requirements to increase their predictability?” might need to be
answered in the future.

5 Conclusions

We conducted an online survey among software development practitioners on
how security requirements are tested in the industry. 190 respondents from a
wide variety of countries shared with us their experience. It follows from the
gathered responses that, first, testing security requirements is a very common
practice. In nearly half of the projects, the effort spent on testing is significant
in the eyes of the team members. However, in some projects investing even small
effort in this activity can bring value to the project (also to the projects that
could have a high impact on the environment, human health, or economic aspects
in case of their failure).

Second, the projects and product teams struggle with several challenges.
The challenges concern lack of testing security requirements culture, lack of

On Testing Security Requirements in Industry – A Survey Study 197

knowledge on how to test those requirements, and difficulty in specifying tests.
Moreover, some respondents raised the issues concerning prioritization, e.g., it
appears that testing security requirements has low priority compared to testing
functional requirements, or that only when the security-related risks materialize
the priorities increase.

Third, there are different techniques used to test security requirements.
Mostly, they are tested during the implementation and acceptance phases, and
on the acceptance and system levels. The testing is performed mostly manually.
Additionally, we identified that the respondents find specifying tests challenging.
Thus, it seems that the methods and techniques that support automation—from
requirements to test cases—in the area of security would be valuable. Also, the
results of our survey raise another question—why effort needed to test security
requirements is rarely planned for each requirement or sometimes not planned
at all.

The three discussed groups of findings open new directions for future research
to investigate the reasons behind them. It would be interesting to conduct more
in-depth studies like case study in different organizations to better understand
the identified issues.

Moreover, our survey delivers some insights that might be useful for practi-
tioners to compare the practices and tools used for testing security requirements
in their organizations and their potential competitors to seek ways for improve-
ment.

Acknowledgments. We thank the participants of the survey for sharing their expe-
rience with us.

References

1. Bird, J., Kim, F.: SANS survey on application security programs and prac-
tices (2014). https://www.qualys.com/docs/sans-enterprise-application-security-
policy-survey-report.pdf. Accessed 21 Oct 2021

2. Camacho, C.R., Marczak, S., Cruzes, D.S.: Agile team members perceptions on
non-functional testing: influencing factors from an empirical study. In: 2016 11th
International Conference on Availability, Reliability and Security (ARES) (2016)

3. Charmaz, K.: Constructing Grounded Theory: A Practical Guide Through Quali-
tative Analysis. Sage, London (2006)

4. Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A.:
Security testing: a survey. In: Advances in Computers, vol. 101. Elsevier (2016)

5. Garousi, V., Varma, T.: A replicated survey of software testing practices in the
Canadian Province of Alberta: what has changed from 2004 to 2009? J. Syst.
Softw. 83(11), 2251–2262 (2010)

6. Hill, P.R.: Practical Software Project Estimation: A Toolkit for Estimating Soft-
ware Development Effort & Duration. McGraw-Hill Education, New York (2011)

7. Kassab, M., DeFranco, J.F., Laplante, P.A.: Software testing: the state of the
practice. IEEE Softw. 34(5), 46–52 (2017)

https://www.qualys.com/docs/sans-enterprise-application-security-policy-survey-report.pdf
https://www.qualys.com/docs/sans-enterprise-application-security-policy-survey-report.pdf

198 S. Kopczyńska et al.

8. Kopczyńska, S., Ochodek, M., Nawrocki, J.: On importance of non-functional
requirements in agile software projects—a survey. In: Jarzabek, S., Poniszewska-
Marańda, A., Madeyski, L. (eds.) Integrating Research and Practice in Software
Engineering. SCI, vol. 851, pp. 145–158. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-26574-8 11

9. Mairiza, D., Zowghi, D., Nurmuliani, N.: An investigation into the notion of non-
functional requirements. In: Proceedings of the 2010 ACM Symposium on Applied
Computing, pp. 311–317 (2010)

10. Molléri, J.S., Petersen, K., Mendes, E.: An empirically evaluated checklist for sur-
veys in software engineering. Inf. Softw. Technol. 119, 106240 (2020)

11. NIST: The economic impacts of inadequate infrastructure for software testing
(2002). www.nist.gov/director/planning/upload/report02-3.pdf. Accessed 31 Oct
2021

12. OWASP: OWASP top 10 (2021). https://owasp.org/www-project-top-ten/.
Accessed 31 Oct 2021

13. Piechowiak, A.: Archiwum dokumentów elektronicznych(ADE) (EN: Archives
of electronic documents) (2009). http://www.i3conference.net/online/2009/
prezentacje/Archiwum Dokumentow Elektronicznych.pdf. Accessed 29 Jan 2022

14. Standish Group: Chaos Report (1995). https://www.standishgroup.com/.
Accessed 13 Jan 2022

15. Standish Group: Chaos Report (2001). https://www.standishgroup.com/.
Accessed 13 Jan 2022

16. Vinson, N.G., Singer, J.: A practical guide to ethical research involving humans. In:
Shull, F., Singer, J., Sjoberg, D.I.K. (eds.) Guide to Advanced Empirical Software
Engineering, pp. 229–256. Springer, London (2008). https://doi.org/10.1007/978-
1-84800-044-5 9

17. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-030-26574-8_11
https://doi.org/10.1007/978-3-030-26574-8_11
www.nist.gov/director/planning/upload/report02-3.pdf
https://owasp.org/www-project-top-ten/
http://www.i3conference.net/online/2009/prezentacje/Archiwum_Dokumentow_Elektronicznych.pdf
http://www.i3conference.net/online/2009/prezentacje/Archiwum_Dokumentow_Elektronicznych.pdf
https://www.standishgroup.com/
https://www.standishgroup.com/
https://doi.org/10.1007/978-1-84800-044-5_9
https://doi.org/10.1007/978-1-84800-044-5_9
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Setting AI in Context: A Case Study
on Defining the Context and Operational
Design Domain for Automated Driving

Hans-Martin Heyn1,2(B) , Padmini Subbiah1, Jennifer Linder1,
Eric Knauss1,2 , and Olof Eriksson3

1 Chalmers University of Technology, 412 96 Gothenburg, Sweden
hans-martin.heyn@gu.se

2 University of Gothenburg, 405 30 Gothenburg, Sweden
3 Veoneer Sweden AB, 103 02 Stockholm, Sweden

Abstract. [Context andmotivation] For automated driving systems,
the operational context needs to be known in order to state guarantees
on performance and safety. The operational design domain (ODD) is an
abstraction of the operational context, and its definition is an integral
part of the system development process. [Question/problem] There are
still major uncertainties in how to clearly define and document the opera-
tional context in a diverse and distributed development environment such
as the automotive industry. This case study investigates the challenges
with context definitions for the development of perception functions that
use machine learning for automated driving. [Principal ideas/results]
Based on qualitative analysis of data from semi-structured interviews, the
case study shows that there is a lack of standardisation for context defini-
tions across the industry, ambiguities in the processes that lead to deriving
the ODD, missing documentation of assumptions about the operational
context, and a lack of involvement of function developers in the context
definition. [Contribution] The results outline challenges experienced by
an automotive supplier company when defining the operational context for
systems using machine learning. Furthermore, the study collected ideas for
potential solutions from the perspective of practitioners.

Keywords: Artificial intelligence · Context · Machine learning ·
Operational design domain · Requirements engineering · Systems
engineering

1 Introduction

Automated driving systems (ADS) rely on machine learning (ML) especially for
cognition tasks and sensor fusion. Machine learning, as part of artificial intelligence
(AI), experiences an advent of methods, tools, and applications, especially due to
breakthroughs in applying deep neural networks to machine learning problems.

This project has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreement No 957197.

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 199–215, 2022.
https://doi.org/10.1007/978-3-030-98464-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_16&domain=pdf
http://orcid.org/0000-0002-2427-6875
http://orcid.org/0000-0002-6631-872X
https://doi.org/10.1007/978-3-030-98464-9_16

200 H.-M. Heyn et al.

The growing interest in the development of systems that can take control of
driving is accompanied by concerns regarding safety, i.e., assuring that the ADS is
able to operate safely and as expected in the desired operational context [23,27].

At present, an answer to the safety concern is to keep the context for auto-
mated driving very limited, for example to factory sites, harbours, or mining
operations. By developing ADS for many different, limited, contexts, the hope is
to take the experiences and lessons learned from these limited contexts and apply
them to a wider context, such as automated driving on highways. The challenge
is, that a wider context will cause a formidable grow in possible scenarios and
situations. With the current processes and methods that were developed (or nat-
urally grown) for limited contexts, it will be difficult to capture and describe all
the possible scenarios that the vehicle can encounter in a wider context. Another
challenge is owed to the way of working in the automotive industry. Much of the
product development is done either solely by a supplier company, or in cooper-
ation with the original equipment manufacturer (OEM). This requires efficient
and correct processes for communication of information regarding the system
context between the customers, the OEM, and the supplier companies.

This case study investigates qualitatively the current challenges and solution
ideas of a Tier 1 supplier1 regarding the definition of context and operational
design domain from use cases for systems of automated driving that incorporate
machine learning. Interviews with employees in a variety of different positions
at the supplier company are the main source of data for this study in addition
to data collected at different OEMs and partner companies. The findings were
triangulated with background literature and a focus group validated the findings
from the interview study. The study finds deficits in the standardisation of con-
text definitions and ODDs, uncertainty and lack of transparency in processes for
context definitions, insufficient documentation of context assumptions, and too
little participation of function developers in use case interpretation and context
definitions.

Section 2 of this paper describes the background and briefly the history
of context definitions for computer systems and provides a problem definition
and research questions. Section 3 explains the applied methodology. Section 4
presents the validated findings of the study. Section 5 includes the triangulation
of findings to the background literature, a summary, and a discussion of the main
findings.

2 Background

A system’s desired behaviour and responsibilities are often described through
textual use cases. They state how a system reacts to different situations with
as little text as possible, but also clearly convey the reactions to these situa-
tions [3]. The task of a requirement engineer is to translate the use cases into
requirements for the system. Different requirements concern different parts of
the system: Examples of these are functional requirements, quality requirements,
1 a Tier 1 supplier develops and sells products and solutions directly to an OEM.

Setting AI in Context 201

safety requirements, etc. However, some of the requirements are linked to a spe-
cific context in which they are valid in [16]. At design time, contextual attributes
that can change at run time need to be identified in order to avoid uncertain or
even undesired behaviour of the system at run time. A contextual requirement
then forms a tuple of desired behaviour (requirement) and the required state of
the contextual attributes [15]. However, considering every contextual attributes
and their changes at design time requires a complete understanding of the oper-
ational environment which is not feasible for complex or even chaotic behaving
environments [22]. What does it mean to talk about the “context of a system”?
The Oxford Learner’s Dictionary defines “context” as:

“[Context is] the situation in which something happens and that helps you to
understand it” [30].

For computer systems, Dey provided a more specific definition of context:

“Context is any information that can be used to characterise the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves” [14, p. 4].

Researchers in systems engineering extended the definition of context of a system
by including the environment in which the system shall operate [1,10]. Chen et al.
further extended the definition of context by adding system capabilities and the
situational roles, beliefs, and intentions of people engaged with the system to
the definition of context:

“[Context is] information about a location, its environmental attributes (e.g.,
noise level, light intensity, temperature, and motion) and the people, devices,
objects and software agents it contains. Context may also include system capa-
bilities, services offered and sought, the activities and tasks in which people
and computing entities are engaged, and their situational roles, beliefs, and
intentions” [2, p. 1–2].

Nemoto et al. introduces “spatial-temporal elements”, and thus adds a temporal
dimension to the context [18]. The development in vehicle automation increased
the discussion around context definition for computer systems. Because of the tem-
poral dimension, the context is highly dynamic, and it is important to find a sys-
tematic way to describe and confine the context of a vehicle automation system
[28]. Traditionally, scenarios are created with the aim to represent typical driving
situations in a given context. Damak argues that it is difficult to capture all rele-
vant contextual elements in a scenario-based approach. He therefore proposed to
build the scenarios in discrete stages based on different context elements, such as
use case, environment, road infrastructure, and traffic objects [8].

202 H.-M. Heyn et al.

Besides context definition, the term “operational design domain” (ODD) has
become popular when discussing capabilities and limitations of vehicle automa-
tion systems. The SAE standard J3016 [24] introduced a widely adopted clas-
sification of driving automation into six levels: Level 0 indicates no automation
at all, and thus an ODD is not applicable. Level 1 to 4 indicate different levels
of automation, from merely driver assistance (Level 1) to full automation in a
predefined environment (Level 4). On the highest level of automation (Level 5),
the ODD is “unlimited”. The standard defines the ODD as:

“[The ODD describes the] operating conditions under which a given system
for driving automation or feature thereof is specifically designed to function,
including, but not limited to, environmental, geographical, and time-of-day
restrictions, and/or the requisite presence or absence of certain traffic or road-
way characteristics” [24, p. 14].

This definition leaves much room for interpretation of what constitutes an ODD
and how to argue for completeness. Many proposals for what constitutes an ODD
have been put forward in recent years (for example a discrete list of ODD items
[19], a detailed ontology of road structures [7], runtime monitoring requirements
[4], another categorised list of ODD items [17], or internal system capabilities
[9]). Still, there is a lack of a common definition for the ODD, which creates
challenges in communication and collaboration between the stakeholders of the
system [29].

Problem Definition: A use case assumes a context, and the resulting require-
ments will only be valid in that assumed context. For safety relevant systems,
the dependencies of the requirements on the context is specifically obvious: A
specific level of safety is only guaranteed in a clearly specified and tested ODD.
Outside of the ODD, the behaviour of the system cannot be guaranteed to any
safety level. The problem is, that there is neither a clear understanding of how to
define the context in which a system shall operate, nor is there a common defini-
tion for an ODD. Ideally, the use cases for a system should include information
about the context in which it shall operate within. However, use cases are often
quite broad and non-specific, which requires the practitioners to interpret how
the context for the requirements needs to be defined from the use case. Espe-
cially for adaptive systems, it is important to relate requirements to a specific
context, because the context might change while the system is active [15].

2.1 Research Design

The problem of unclear context definitions is especially problematic for the devel-
opment of functions for automated driving that use some form of AI: Without a
clearly outlined context of the desired use case, it will be impossible to refine a
testable operational design domain in which performance and safety aspects can
be guaranteed or to find the right data sets for training and validation of the AI.

Setting AI in Context 203

This study investigates and explores the current status, challenges, and possi-
ble improvements for deriving context definitions from use cases for automated
driving and advanced driver assistance systems. The study is carried out as a
case study at a Tier 1 automotive supplier that develops and provides sensor
systems for automated driving systems.

The aim of this study is to provide views and information on challenges
with deriving context definitions and ODDs from use cases, in the setting of a
Tier 1 supplier providing machine learning supported sensor systems for auto-
mated driving. This empirical study does not provide a set of solutions for the
challenges.

Research Questions: Following the research approach for empirical case stud-
ies outlined in [6], the research questions that guide this study are formulated
as open-ended questions. They focus on the previously described central phe-
nomenon of deriving context definitions and ODDs from use cases.

Research Question 1 (RQ1): What is the current understanding of context
definitions?

Research Question 2 (RQ2): What are the challenges with deriving context
definitions from use cases?

Research Question 3 (RQ3): Which support would be appropriate for deriv-
ing context definitions from use cases?

3 Methodology

Figure 1 gives an overview of the applied methodology, which consists of four
steps: Preparation of interviews, data collection through interviews, data analy-
sis, and result validation.

3.1 Preparation of Interviews

The aim of the data collection was to illuminate the situation and challenges
with context definitions as they are experienced primarily from the perspective
of a Tier 1 supplier. The reason behind choosing a Tier 1 supplier as site of
the investigation is that automated driving functions are part of highly complex

Preparation of
interviews

Data collection
through

interviews

Data analysis
with external

theme validation

Result validation
through focus

group

Fig. 1. Overview of the applied methodology

204 H.-M. Heyn et al.

systems that are primarily developed in cooperation between an OEM and its
Tier 1 suppliers [21]. Because of the cooperation with OEMs, public authori-
ties and other research organisations in the development of automated driving
functions, we chose to collect some of the data from OEMs, a public traffic reg-
ulation authority and a research company. All of these parties have worked in
collaboration with the Tier 1 supplier in the past on automatic driving projects.

Sampling Strategy: This empirical study follows a maximum variation strat-
egy for sampling [6]. The participants were chosen purposefully to represent a
wide variety of experiences and positions involved in the development of auto-
mated driving functions that use machine learning [20]. To simplify the filtering
of suitable candidates, we defined four position groups:

Positions with a High Level Perspective: system managers, system engi-
neers, system architects, and system designers;

Positions Dealing Primarily with Requirements: requirements engineers
and (public) policy makers;

Positions with a Customers/End-User Focus: product owners and function
owners;

Positions with a Clear Focus on Development: function developers and
system developers which develop the function/system based on given specifica-
tions.

The aim of the sampling strategy was to have representation of each of these
groups to ensure a view on the entire system development chain. Seven par-
ticipants from two Tier 1 supplier companies located in the United States and
Sweden were interviewed. To add the OEM’s perspective to the sampling data,
we also interviewed four participants from three different OEMs (one OEM each
from Sweden, China, and Japan). In order to increase diversity among the par-
ticipants and to reduce company induced bias in the results, one additional
person could be interviewed from a Japanese automotive technology research
company, and one person participated from the Swedish Transport Administra-
tion (Trafikverket). Altogether 13 interviewees participated in this study. A full
list of participants and their respective roles is given in Table 12.

3.2 Data Collection Through Interviews

The interview questions, collected in an interview guide only available to the
interviewers, were formulated based on the a-priori formulated research ques-
tions. It was divided into three sections: The first section aimed at identifying
the participant’s current role and experience. The second section established
some ground concepts with the interviewee. This was done to avoid misunder-
standings, for example due to different definition of terms. For example, the
interviewees were given the SAE’s description of the operational design domain
2 Note that due to privacy concern, we intentionally chose not to reveal the respective

company.

Setting AI in Context 205

Table 1. Participants of the case study

Interviewee Role Experience

A Group manager ADAS features and collision avoidance features

B Functional developer ADAS features

C System engineer Planning and control for safety critical issues

D Researcher Innovation for sensors and systems

E Developer Algorithms for obstacle detection

F Functional developer and
functional safety engineer

ADAS feature development

G Project manager ADAS vehicles

H Researcher Data management and computer vision

I Product owner Ground truth systems

J Technical lead AI and machine learning projects

K Technical specialist adaptive
cruise control

Blind spot detection, lane changing, adaptive
cruise control, collision avoidance

L Functional safety manager Functional safety work and documentation

M Researcher Standardisation of safety methodologies

and providing examples for different context definitions. For each of these exam-
ples, the interviewees were asked to provide their opinion on applicability and
problems with the provided examples. The third section explored the process of
deriving context definitions from use cases. The aim was to investigate the mul-
tiple facets of the process, including identifying the main concerns, describing of
what works well in the process, and registering possible improvements. In some
interviews some additional follow-up questions were included. The interviews
were conducted individually with each participant for about one hour remotely
via Microsoft Teams or Zoom. One interviewer asked the questions, while the
second interviewer observed and took notes. Each interview started by presenting
information about the study’s objective.

3.3 Data Analysis

Except for one interview, all the interviews were recorded and transcribed. For
one interview, both the interviewer and an observer took notes. The data anal-
ysis consisted of the three steps illustrated in Fig. 2. The coding strategy was
determined through pilot coding, conducted by two researchers independently
and the results evaluated and discussed with all authors.

First Cycle Coding: The first cycle coding consisted of three steps: With
attribute coding, meta information such as the role of the interviewees and work
experiences were recorded. Descriptive coding allowed for developing codes that
represent different topics of the statements given by the interviewees. Finally,
initial coding, as suggested by Saldaña, was used to highlight and understand
the interviewees’ thoughts [25].

206 H.-M. Heyn et al.

Second Cycle Coding: With focused coding, the initial codes from the first
cycle were divided into broad categories. These broad categories were further
split into subcategories. Afterwards, pattern coding was used to find emerging
themes among the subcategories. Finally, each statement from the interviews
were assigned to one of the created subcategories. A second independent group
of three researchers validated the found themes and the assignment of both
challenges and potential solutions mentioned by the interviewees to the themes.
With this step, it was tried to reduce bias in the selection of the themes.

Validation of Findings: This study uses the “member checking” validation
strategy as described in [5, ch. 9] to assess the validity and accuracy of the results.
For this purpose, a focus group with four interviewees from the data collection
phase was conducted. The session was conducted remotely using Mentimeter, a
web-tool that allows for interactive questioning of the participants. The questions
for the focus group were prepared a-priori. The themes related to the challenges
were presented to the focus group, and the participants were asked to either
agree or disagree with the challenges. Furthermore, the participants were asked
to discuss the themes related to the proposed solutions of the challenges, and
they were asked to rank the themes according to the participant’s opinion on
how important the solution of a particular challenge is.

4 Results

This section presents the results based on the data obtained through the inter-
view sessions. The section is divided into subsections presenting each research
questions individually because the research questions built upon each other.

4.1 RQ1: What Is the Current Understanding of Context
Definitions?

The first 15 min of the interviews were used to establish an overview of the
interviewee’s understanding of the terms context and ODD.

What is Context? The interviewees were asked to elaborate on their under-
standing of what is meant by context definition in relation to automated driving.
All interviewees were not entirely sure what context definition describes in rela-
tion to automated driving systems. Two interviewees considered the context

First cycle Second cycle Review
Attribute coding

Descriptive coding
Initial coding

Focused coding
Pattern coding Data interpretation

Initial codes Categories and
themes

Validation and
challenges

Fig. 2. Steps of the data analysis

Setting AI in Context 207

definition and ODD to be identical in that they both describe environmental
conditions in which the system is designed to operate:

“[...] it’s kind of the same things as the ODD is describing but context contains
all the possible combinations, if you like, of where this is going to operate.”

However, the majority of interviewees did not see context and ODD as identical
definitions. Instead, they stated that the ODD is a form of representation of the
context.

What Entails the Context? All interviewees describe the context as a
dynamic, and rather wide entity, that should include situations, scenarios, and
the environments in which a system operates.

“But it is a way to define a situation, or define a system, or defining [...] a
scenario, or an environment [...]. So that is what I would call a context.”

One interviewee includes also the functional state of the vehicle in the context.
All interviewees stated that knowledge and a clear description about the context
is important for validation, safety, and security of the system. If assumptions
about the context of a system are made, they need to be clearly communicated
as assumptions, which is according to the interviewees not always the case.

What is the ODD? All interviewees agreed with the SAE J3016 definition of
the ODD [24, Page 14]. Although SAE J3016 provides a definition of the ODD,
all interviewees mention that there is lack of standardisation of the format of an
ODD. A majority of interviewees added that a description of a design domain
beyond the actual ODD, in which the system’s performance is degraded but
still safe, is necessary in addition to the ODD. As an example, interviewee F
described the process in place for deriving the ODD: After the use case is defined,
an exploratory search starts to identify the context in which “the use case is
actually happening”. Once they established an understanding of the context,
the internal conditions of the vehicle and the external environment are analysed
for the given context. The information about internal conditions of the vehicle
and external environment states are what defines the ODD. In this process,
the ODD is derived from the use cases via an exploratory search of the context.
Interviewee K however describes the process for defining the ODD different: After
an initial ODD is defined, the ODD is analysed and use cases and requirements
are derived based on the initial ODD. An iterative process is started to adjust
ODD and use cases “back and forth” until ODD and use cases comply with each
other. This is done by first reducing the number of use cases to the most relevant
ones that fit into the initial ODD. Then, they try to get a better understanding
of the capabilities of the system, which allows them to widen the initial ODD
and to take up more use cases gradually. In contrast to the process described by
interviewee F, here they start with the ODD and derive the use cases based on
the targeted ODD.

208 H.-M. Heyn et al.

“[...] in the ODD you have to describe it as sort of a graceful degradation of
the system when you go outside it’s never included”.

What Entails the ODD? A majority of interviewees claimed that the SAE
definition is incomplete. A major missing aspect that was mentioned is the inter-
nal state of the vehicle, i.e., capability of sensors and actors. Furthermore, the
drivers’ behaviour in and around the vehicle should be described in the ODD
(e.g. can the system operate with an intoxicated or distracted driver?). Ten
interviewees reminded that the road and lane conditions should explicitly be
highlighted in the ODD, as they play a major role in the correct function of
automated driving systems.

What is the Difference Between Context and ODD? All interviewees asso-
ciate the ODD with safety and performance guarantees. The context is associated
with validity of requirements derived froma given use case.An interpretation of the
interviewees’ answers can be, that the ODD is an abstraction, or mode, of the con-
text. Similar to the World-Machine Model described by Jackson in [13], the ODD
can be interpreted as an abstraction of the context in which a given system can
testable operate with desired characteristics, such as safety, reliability, and per-
formance. And in some cases, as described by two of the interviewees, the ODD
as abstraction and the context itself, seem identical for a given use case. This can
occur, for example, if the the context derived from the use case is limited enough
such that the ODD can completely embrace the operational context.

4.2 RQ2: What Are the Challenges with Deriving Context
Definitions from Use Cases?

This section describes the major challenges through themes identified from the
interviews. Three areas of challenges illustrated were identified from the inter-
view sessions and validated by the focus group. They are “deriving context def-
initions”, “process and communication of context definition”, and “deriving the
ODD from context definition”. For each area of challenge, only the themes val-
idated with a simple majority by the focus group members are presented in
Table 2. A full list of themes can be made available upon request.

Table 2. Themes relates to challenges with deriving context definitions.

Theme Description

Deriving context definitions

Difficult to
describe
context

There is a lack of terminology for describing non-numeric parameters within the
context, like the weather: It is for example not clear what “in good weather
conditions” actually means. Therefore, non-numeric parameters are difficult to
compare between different context descriptions. Furthermore, the environment is often
dynamic and containing unknown unknowns, which can change the context of a
system unpredictably

(continued)

Setting AI in Context 209

Table 2. (continued)

Theme Description

Lack of
standard

A common language for context definitions is lacking, which makes it difficult to work
on a system or product in different countries, companies, or even teams. Unlike
requirement specification, there is no correspondent context specification, which
results in ambiguities in the context in which requirements are valid

Lack of
transparency

A lack of transparency in use case creation and requirement negotiation leads to
challenges when defining the desired and feasible context of the system. It is seen as
important that the function developers obtain more knowledge about the use case in
order to understand the necessary context in which a function/system shall operate.
Furthermore, it was stated that there is no good practise in determining if a system
still operates within its designated context

Defining ODDs

Lack of
arguments
for
completeness

It is difficult to know when an ODD captures all relevant scenarios and elements,
mainly because there is no standardised method or template for determining if the
ODD is complete

Difficult to
capture all
scenarios in
ODD

To enumerate all possible scenarios in the ODD is impossible. It is difficult to
determine, which scenarios the ODD should entail, and which scenarios are not
required to be captured by the ODD. Especially “edge case” scenarios are difficult to
describe in the ODD, because many assumptions are necessary in these scenarios,
which are often not well documented in the context description

Hard to
understand
context
definitions

Function developers are not always involved in defining the context definitions, which
makes it difficult for them to develop an ODD that fits the desired context

Lack of
standard for
ODD

ODD tends to mean different things, which makes it difficult to understand what an
ODD shall entail. Different OEMs, and even different teams within an OEM, have
different approaches to define the ODD, which creates confusion for Tier 1 suppliers.
The lack of a standardisation has been mentioned by all interviewees as a major
obstacle

Overly
cautious

A consequence of not knowing the right context of the system is that the ODD will be
overly cautious. Developers will start with a too strict and too limited ODD, and only
expand it once safety has been proven within small extensions. This can lead to
unnecessary long developing and testing times, or overly cautious systems

Process and communication

Assumption
not
documented

A concern mentioned was that assumptions about the context and in the requirements
are not being properly documented as such. In many cases it is necessary to make
assumptions, but they must be clearly documented as such. A typical context
assumption for a function is to assume a linear behaviour of some measured dynamic

Insufficient
involvement
of function
developers

Function developers are detached from the overall picture, because they are not
involved enough in defining requirements and context definitions. This makes it hard
for them to understand the context in which the system is supposed to function

Lack of
feedback

Sometimes changes in the context, and even requirements, of a system are only
discovered during the development. A feedback loop is often missing to verify if these
changes in context are acceptable

Misinter-
pretation of
requirements

Textual requirements and context definitions can be misinterpreted by different
peoples with different views on the system. Often, the person writing the requirements
and context definitions has no direct contact to the person implementing them

Too difficult
process

The process of deriving contextual information and requirements from use cases was
described as being “blurry and unsharp by nature”. It was also mentioned, that a
common structured process is either missing or too complex for deriving both
requirements and context definitions

210 H.-M. Heyn et al.

4.3 RQ3: Which Support Would Be Appropriate for Deriving
Context Definitions from Use Cases?

For each of the three areas of challenges described in Sect. 4.2 the interviewees
were asked to suggest improvements. Out of the interviews, themes were identi-
fied and presented to the focus group for validation. All themes that achieved a
simple majority vote in the focus group are presented in Table 3.

Table 3. Themes related to improvement ideas for deriving context definitions.

Theme Description

Improvement ideas for deriving context definitions

More diverse
data

According to one interviewee, a more diverse set of sensor data of the environment
allows for easier interpretation and limitation of the context in which the system
operates

Standardised
approach

All interviewees suggested to standardised context definition to ease cooperation
between different teams and companies

Improvement ideas for defining the ODD

Automatic
tool for
deriving ODD

The described improvement would encompass a tool that can take as input the
context, requirements based on the context and test cases. It would then propose an
appropriate ODD, that is valid in the desired context, entails all requirements, and is
verified through test cases

Complete-ness
criteria for
ODD

One interviewee suggested that an explicit method and criteria are needed to proof
that the ODD is complete and correct

Information
should be
described
clearly

The ODD should contain more information about the context of the system.
According to one interviewee, this would improve identifying wrong assumptions
about the context early

Measure of
exposure to a
safety event

One interviewee explained that the hazard and risk assessment to evaluate the
dimensions of the ODD from a safety viewpoint. The HARA includes assumptions
about the context, and especially the exposure to a hazardous context can then be
used to decide on the ODD

Standardised
process

All interviewees suggested to improve the standardisation of processes for defining the
ODD

Improvement ideas for the process and communication

Better
continuous
improvement

Automated driving is a new technology, which needs to evolve continuously. The
processes for deriving relevant artefacts, such as the context definition and ODD need
to evolve together with the technology

Faster
feedback

One suggested improvement was to derive requirements faster, and creating faster
feedback loops between the stakeholders. This expedites also the definition of the
context, because assumptions can be made and verified faster

Improved
leveraging
from other
contexts

Typically, automated driving systems are developed for and tested in confined areas,
such as factory areas or harbours. Lessons are learnt in these confined contexts, and it
is important to be able to leverage the knowledge from these confined contexts into
new contexts

Improved
integration
into SAFe
setup

It is perceived that requirement engineering is not well integrated in scaled agile
frameworks (SAFe), which hinders an efficient development and handling of
requirements, and consequently context definitions

Involvement of
function
developers

Function developers should be more involved in the requirement engineering process,
including context definition and deriving the ODD. On one hand, the function
developers would get a better understanding of the requirements and context. On the
other hand, they can contribute with deep knowledge about the used technologies,
which eases the understanding of the technology’s capability for desired contexts

Setting AI in Context 211

5 Discussion

5.1 Triangulation with Background Literature

Already in 2001, Dey described that for computing environments there is only
“an impoverished understanding of what context is and how it can be used” [14].
The results from the interviews show that although the understanding about
context definitions have increased over 20 years, it is still difficult to use context
definitions in practise. A main reason for this seems to be lack of standardisation
and processes when dealing with context definitions, and ODDs as abstraction
thereof. Some attempts for standardisation of an ODD taxonomy have been
attempted recently, such as described in [12,26] or through pending standards
such as ISO/TR 4804:2020 [11]. This lack of standardisation in regards to ODDs
(as abstraction of context definitions) has also been described by Gyllenhammar
et al. [9]. The difficulty to capture all scenarios in an ODD has also been described
in [17] and arguing for completeness has been discussed in [10]. A theme men-
tioned by all interviewees was that the process for deriving context definitions
is difficult in the sense that it contains too many uncertainties. Damak et al.
identified this difficulty as well, and developed a method to adopt architectural
decisions for automated driving systems to the operational context [8]. Thron
et al. observed challenges in the communication of ODDs between stakeholders
of a system [29]. A majority of interviewees, including all function developers,
described a lack of transparency in requirement negotiations (and context def-
inition) for desired use cases, which indicates that the communication problem
is not solved.

5.2 Discussion and Main Findings

Keeping the background literature in mind, we argue for four main findings
that can trigger future investigations: Firstly, we identified confusion in the def-
initions of context, and operational design domain. The connection between the
context definition and operational design domain is ambivalent and requires more
clarification, for example through standardisation. Furthermore, we identified a
lack of clear processes leading to context definitions and ODDs. Although many
attempts of creating some form of standard or template process exist, especially
for the case of ODD, there is no clear picture in our case. Major problems are
arguing for completeness and lack of stakeholder involvement. Also, we noticed
problems when defining and documenting assumption about the context. Inter-
viewees reported that assumptions about the context are not documented as
such, and therefore it is difficult to differentiate assumptions about the context
from facts during function development. Lastly, we observed a disconnection of
the function developers from the requirement engineering, which also includes
the context definition from use cases. Especially with the introduction of more
agile frameworks, it is beneficial to move parts of the requirement engineering
towards the function developers, including defining context from use cases and

212 H.-M. Heyn et al.

deriving of ODDs. Applying machine learning in systems for automated driv-
ing systems requires that the context of the systems can be clearly defined and
described in well working processes. Machine learning is a key technology for per-
ception systems in automated driving. Often implicitly, by selecting data sets
for training and validation, machine learning models are limited to the context
represented in these data sets. Specifically, a machine learning system requires
not only an understanding of the desired behaviour (given through use cases,
and functional requirements), but also of the context in which the system oper-
ates. The context is important, because it defines both the necessary training
and necessary testing scenarios of the system. The training scenarios, and in
most learning scenarios the training dataset, define the final behaviour of the
machine learning system. Desired behaviour and context are therefore closely
intertwined, and that might be a reason for the difficulties observed in defining
the context and consequently the ODD for a machine learning system. Should
the desired behaviour in form of use cases be defined first, or should the desired
context be first? We saw in the answers that there is no clear picture on the order
and the processes of defining use cases, context and ODD. This interlacement of
use case and context, and the lack of established processes, could be the reason
for the overly cautious definitions of ODDs that was reported in the interviews.
We argue that a better understanding is needed how the context influences the
desired behaviour of a system with machine learning components. This relation
between desired behaviour and context needs to be made explicit, in order to
understand the consequences on the desired behaviour of context changes. Based
on the explicit definition of the context and its relation to the desired behaviour
of the system, data requirements for training and validation data can be derived
(see also [31]).

5.3 Threats to Validity

The study focused on context definitions for the development of automated driv-
ing systems that use machine learning for the perception system. Automated
driving system are often considered context-aware systems and therefore the
findings of this study could potentially be transferred to other context-aware
systems. Most of the interviews were conducted at one Tier 1 supplier company
with offices in Sweden and the United States. To support generalisability of the
results, a sampling strategy was chosen that included different roles on different
levels and at both locations of the case company. In addition, individual intervie-
wees outside of the case company were included in the study. A threat to validity
is the sole focus on the automotive industry. In order to support transferability
of the results to other fields, the interview questions were formulated with the
intent of being non-specific to the automotive field.

5.4 Conclusion

This case study was conducted in the setting of an automotive supplier company
by collecting qualitative data through interviews with automotive experts, the-

Setting AI in Context 213

matic analysis of the data, and validation of findings through a focus group and
background literature triangulation. The results show a lack of standardisation
of concepts and processes for defining the operational context and deriving the
ODD for automated driving systems. Because of the typically distributed devel-
opment of systems in the automotive industry, this creates challenges which lead
to misinterpretation and slow iteration loops between the stakeholders. A major
problem the study identifies are missing documentations of context assumptions.
Whether a context is assumed, or explicitly given through a use case, can make a
difference during the function development and testing. Furthermore, the study
reveals a lack of involvement of function developers in the requirement engineer-
ing activities that lead to the context definition. As a result, function developers
often misinterpret or question the defined operational context.

The study also elicited possible solutions to the challenges. Besides obvi-
ous solutions, such as more standardisation and deeper involvement of function
developers in the definition of the operational context, the participants also sug-
gested ideas such as diverse data about the context, completeness criteria for
the ODD, more efficient leveraging from other contexts, and improved integra-
tion of context definitions into scaled agile frameworks. These ideas can serve
future efforts and research towards a standardisation of context definitions for
automated driving systems or other context-aware systems that use AI.

References

1. Brown, P.J.: The stick-e document: a framework for creating context-aware appli-
cations. Electronic Publishing-Chichester, Technical report, June 1996

2. Chen, H., Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments. Knowl. Eng. Rev. 18(3), 197–207 (2003)

3. Cockburn, A.: Writing effective use cases. Addison-Wesley Longman, Technical
report (2000)

4. Colwell, I., Phan, B., Saleem, S., Salay, R., Czarnecki, K.: An automated vehicle
safety concept based on runtime restriction of the operational design domain. In:
Intelligent Vehicles Symposium, Proceedings, pp. 1910–1917 (2018)

5. Creswell, J.W.: Research Design: Qualitative, Quantitative, and Mixed Methods
Approaches, 4th edn. Sage Publications, Thousand Oaks (2014)

6. Creswell, J.W., Poth, C.N.: Qualitative Inquiry and Research Design Choosing
Among Five Approaches. Sage Publishing, Thousand Oaks (2017)

7. Czarnecki, K.: Operational Design Domain for Automated Driving Systems - Tax-
onomy of Basic Terms (2018)

8. Damak, Y., Leroy, Y., Trehard, G., Jankovic, M.: Operational context-based design
method of autonomous vehicles logical architectures. In: 15th International Con-
ference of System of Systems Engineering (SoSE), pp. 439–444. IEEE (2020)

9. Gyllenhammar, M., et al.: Towards an operational design domain that supports the
safety argumentation of an automated driving system. In: 10th European Congress
on Embedded Real Time Systems, pp. 1–10 (2020)

10. Henricksen, K., Indulska, J.: A software engineering framework for context-aware
pervasive computing. In: Proceedings of the Second Annual Conference on Perva-
sive Computing and Communications, pp. 77–86. IEEE (2004)

214 H.-M. Heyn et al.

11. International Organization for Standardization: ISO/TR 4804:2020 Road vehicles
- Safety and cybersecurity for automated driving systems - Design, verification and
validation. International Organization for Standardization, Geneva (2020). www.
iso.org

12. Irvine, P., Zhang, X., Khastgir, S., Schwalb, E., Jennings, P.: A two-level abstrac-
tion odd definition language: Part i. In: 2021 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 2614–2621. IEEE (2021)

13. Jackson, M.: The world and the machine. In: 17th International Conference on
Software Engineering (ICSE), pp. 283–283. IEEE (1995)

14. Dey, A.K.: Understanding and using context. Pers. Ubiquit. Comput. 5, 4–7 (2001)
15. Knauss, A.: Acon: A learning-based approach to deal with uncertainty in contex-

tual requirements at runtime. Inf. Softw. Technol. 70, 85–99 (2016)
16. Knauss, A., Damian, D., Schneider, K.: Eliciting contextual requirements at design

time: a case study. In: 4th International Workshop on Empirical Requirements
Engineering (EmpiRE), pp. 56–63. IEEE (2014)

17. Koopman, P., Fratrik, F.: How many operational design domains, objects, and
events? In: Proceedings of AAAI Workshop on Artificial Intelligence Safety, Hon-
olulu, USA (2019)

18. Nemoto, Y., Uei, K., Sato, K., Shimomura, Y.: A context-based requirements anal-
ysis method for PSS design. Procedia CIRP 30, 42–47 (2015)

19. NHTSA: Automated Driving Systems: a vision for safety (2017)
20. Palinkas, L.A., Horwitz, S.M., Green, C.A., Wisdom, J.P., Duan, N., Hoagwood,

K.: Purposeful sampling for qualitative data collection and analysis in mixed
method implementation research. Admin. Policy Mental Health Mental Health
Serv. Res. 42(5), 533–544 (2013). https://doi.org/10.1007/s10488-013-0528-y

21. Pfeffer, R., Basedow, G.N., Thiesen, N.R., Spadinger, M., Albers, A., Sax, E.: Auto-
mated driving - challenges for the automotive industry in product development
with focus on process models and organizational structure. In: 2019 International
Systems Conference (SysCon), pp. 1–6. IEEE (2019)

22. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of uncertainty for dynam-
ically adaptive systems. In: 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems (SEAMS). pp. 99–108. IEEE (2012)

23. Reschka, A., Böhmer, J.R., Nothdurft, T., Hecker, P., Lichte, B., Maurer, M.: A
surveillance and safety system based on performance criteria and functional degra-
dation for an autonomous vehicle. In: Conference on Intelligent Transportation
Systems, Proceedings (ITSC), pp. 237–242 (2012)

24. SAE: J3016B Taxonomy and Definitions for Terms Related to Driving Automation
Systems for On-Road Motor Vehicles. Technical report, SAE International (2018).
https://www.sae.org/standards/content/j3016 201806/

25. Saldaña, J.: The Coding Manual For Qualitative Researchers. Sage Publishing,
Thousand Oaks (2013)

26. Schwalb, E., Irvine, P., Zhang, X., Khastgir, S., Jennings, P.: A two-level abstrac-
tion odd definition language: Part ii. In: 2021 IEEE International Conference on
Systems, Man, and Cybernetics (SMC), pp. 1669–1676. IEEE (2021)

27. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a Formal Model of Safe and
Scalable Self-driving Cars, pp. 1–37 (2017)

28. Soultana, A., Benabbou, F., Sael, N.: Context-awareness in the smart car. In: Pro-
ceedings of the 4th International Conference on Smart City Applications (SCA),
pp. 1–8. ACM Press, New York, New York, USA (2019)

www.iso.org
www.iso.org
https://doi.org/10.1007/s10488-013-0528-y
https://www.sae.org/standards/content/j3016_201806/

Setting AI in Context 215

29. Thorn, E., Kimmel, S., Chaka, M.: A Framework for Automated Driving System
Testable Cases and Scenarios (2018). https://www.nhtsa.gov/sites/nhtsa.dot.gov/
files/documents/13882-automateddrivingsystems 092618 v1a tag.pdf

30. University of Oxford: Oxford Learner’s Dictionary, Entry: Context (2021). https://
www.oxfordlearnersdictionaries.com/definition/english/context

31. Vogelsang, A., Borg, M.: Requirements engineering for machine learning: perspec-
tives from data scientists. In: IEEE 27th International Requirements Engineering
Conference (RE), pp. 245–251. IEEE (2019)

https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://www.nhtsa.gov/sites/nhtsa.dot.gov/files/documents/13882-automateddrivingsystems_092618_v1a_tag.pdf
https://www.oxfordlearnersdictionaries.com/definition/english/context
https://www.oxfordlearnersdictionaries.com/definition/english/context

Cognition and Expression

Requirements Engineering
for Software-Enabled Art: Challenges

and Guidelines

Niklas Möller1 and Jennifer Horkoff1,2(B)

1 University of Gothenburg, Gothenburg, Sweden
gusmolnia@student.gu.se, jennifer.horkoff@gu.se

2 Chalmers|University of Gothenburg, Gothenburg, Sweden

Abstract. Context and motivation: With the rise of new technolo-
gies, new forms of interactive and mixed-media art are generated. Due
to the technological complexity of such systems, software developers are
needed to support their creation. Question/problem: Previous work
guiding the requirements process for software-enabled art is scarce. Prin-
cipal ideas/results: In this paper, we articulate challenges as well as
guidelines in the process of requirements-finding for art-systems. We
interviewed eight developers and interaction designers in a Design Sci-
ence Study, leading up to the design of an artifact consisting of guidelines
aimed at supporting the elicitation process of developers collaborating
with artists for the first time. Contribution: The artifact is evaluated
as useful through an online survey with experienced practitioners in the
field of art and technology.

Keywords: Digital-art · Software-enabled art · Requirements
guidelines

1 Introduction

During the last two decades an increase in technologies, devices and applications
have challenged traditional system boundaries and produced new combinations
of creative and innovative products [1]. One sector that is accelerating and taking
advantage of new technologies are the creative arts, giving contemporary artists
the possibility to extend and transform their practices beyond traditional forms
of artmaking [2]. Technology (as well as the growing amount of data and infor-
mation) generates artforms within a new and interdisciplinary horizon, fusing
boundaries within arts, science and technology [3].

These artworks are often described as digital art, mixed-media art or interac-
tive art [4]. Examples include the use of: sensor cameras and motion tracking to
produce digital and interactive scenography within dance and theatre [5]; VR,
AR and 360◦ film to produce immersive storytelling [6]; real-time data, API’s and
IoT to influence light and images for a museum installation [7]; and touchscreens
to produce interactive films [8]. Technologically, the design and implementation
c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 219–234, 2022.
https://doi.org/10.1007/978-3-030-98464-9_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_17&domain=pdf
http://orcid.org/0000-0002-2019-5277
https://doi.org/10.1007/978-3-030-98464-9_17

220 N. Möller and J. Horkoff

of such systems are often complex which naturally calls for programmers and
software engineers to work with artists towards their art realisation [9].

In order to design the right software system, the software engineering process
usually starts with understanding the system requirements. For software devel-
opers who are eliciting and capturing requirements for an art-system, it can be
difficult specify the requirements apriori [10]. Rather, art-systems tend to have
an emergent and evolving functionality due to the exploratory and creative pro-
cess of an artist. This conditions the development process and creates certain
problems related to requirements finding [11]. Biswas and Singh [10] elaborate
on this problem: “The artistic design can not be and should not be decided
a priori, to preserve the core value of the artistic creativity. Creative artist’s
work processes do not necessarily follow “analyze-model-design-build” trajecto-
ries like engineers. They iteratively and intuitively generate creative ideas and
evolve their design based on their perception and experience.”

Although agile methods and agile requirements engineering (RE) practices
may seem like a promising solution to this challenge [11], using Agile Methodolo-
gies at a broader scale in the art world would imply structuring creative processes
of artists in an iterative manner suitable to engineers. The artist would need to
be well informed about how to manage agile projects in order to still govern
their own productions. This makes solutions like these arduous.

The motivation of this study is to further articulate and describe common
challenges that arise when a software developer is working together with an
artist, with emphasis on the process of requirements elicitation. Further, we aim
to improve a real-world solution by developing an artefact that can support
the developers in their process of requirements finding when enabling art with
the use of software. This can possibly help art-projects become more successful
in using technology for novel purposes, while similarly making the process of
requirements elicitation less challenging for the developer.

The research questions are as follows:

RQ.1: Which specific challenges arise when eliciting and capturing requirements
for software-based art systems?

RQ.2: What possible guidelines can be followed to meet these challenges?
RQ.3: Are the guidelines perceived as useful to those with experience in art and

technology?

This paper is organized as follows. Section 2 summarizes related work, while
Sect. 3 describes the research method. Section 4 presents the research question
results and Sect. 5 discusses these findings. Finally, Sect. 6 concludes the paper.

2 Related Work

Requirements Engineering in an Art Context. Biswas and Singh describe
the challenges that arise when traditional software engineering methods are
applied in an art context, including the difficulties of discovering requirements

Requirements Engineering for Software-Enabled Art 221

apriori due to the emergent nature of artistic work, and artists’ refusal of stan-
dardisation in work methods [10]. Their solution is an altered development pro-
cess involving a skilled requirements engineer that is well informed about art
and aesthetics, who is handed the role to translate the requirements to a devel-
oper who is quickly generating prototypes and new code. While such a solution
seems possible, the researchers did not evaluate their proposition in any real
world application or case study, and we note that the proposal seems to fit bet-
ter within larger organisations rather than small teams. In this work we focus
on evaluating guidelines aimed for smaller teams.

A Systematic Literature Review on the application of software engineering
principles within an art context has been performed through the project SArt
(Software and Art) at the Norwegian University of Science and Technology. The
researchers assessed that requirements engineering in the arts are challenging
and that it “deserves extended further research from software engineering point
of view” [9]. Even though the SArt project was completed 2009, to our knowledge
there is no larger study that has covered the subject more in depth.

Creative Requirements Engineering. Maiden et al. propose the application
of specific creativity techniques to stimulate the requirements finding to become
a more innovative process [1]. The techniques are facilitated by the Requirements
Analyst through workshops with one or several participating stakeholders. These
workshops seek to find incomplete ideas rather than acquire complete informa-
tion and explore search spaces instead of exclusively performing requirements
documentation. While this understanding of requirements finding as a creative
problem solving process can be useful when exploring elicitation in the creative
arts, the research assumes that the stakeholders involved need help coming up
with creative ideas. This does not overlap very well with the arts, where the
stakeholder (artist) has creativity as his/her profession.

Agile Methods for Art. Marchese [11] reports on the development of an
interactive art installation applying Adaptive Software Development, an agile
method. Here, the frequently changing and evolving requirements stabilize
thanks to the iterative, feedback based process. However, requirements elicita-
tion is performed through standard methods such as interviews and observation,
without mentioning if these techniques were altered to better suit the arts.

Prototyping. Prototyping is a commonly used elicitation technique in situa-
tions with unclear requirements [12]. It allows for experimentation with differ-
ent configurations and can help clarify fuzzy requirements. For a study about
requirements elicitation in the arts, we investigate if prototyping is used and if
so, in which way it combines with other elicitation techniques.

222 N. Möller and J. Horkoff

3 Methodology

Research Approach. The problem has been improved by applying a Design
Science approach, solving problems through the creation and evaluation of arti-
facts [13]. Here, the artifact is a series of guidelines that software developers can
follow when eliciting requirements in art-projects. Guidelines do not have a pre-
defined structure, but they usually make suggestions about appropriate actions
to perform when one encounters a particular situation [14].

Scope. The guidelines has been designed based on the assumptions that the
creative team is small enough to be self-managing, and that the artwork is dis-
covered during a shared process of creation between developer and artist. Also,
the guidelines are based on the assumption that the collaboration between the
developer and artist is happening for the first time.

In terms of the type of digital art covered by this study, Candy [15] describes
different use cases of technology in artmaking. 1) Software as a tool: this can
be a physical device such as a smartphone used to take a photo or capture a
video, or a software application that helps artists to design their content (such
as Adobe Photoshop or Ableton Live). Even though software is involved, we do
not consider art created and expressed with such tools to be relevant, as these
artworks can be created without a software developer. However, some digital
tools for artmaking involve the need for computer programming, putting them
in our scope. A game engine, such as Unity, would be such an example where
scripting can enable graphical effects or interaction between a user and virtual
objects. 2) Technology and software as an artistic medium: a good example is
Augmented Reality where the software is enabling superimposed virtual images
onto a real-world environment. Here, computer programming and software devel-
opment is necessary in order to enable technology to be used as a medium, and,
thus, such art is within our scope. 3) Technology as a mediator: here, the tech-
nology invites two or more parties to interact with one another. This can be an
interaction between an environment, audience and/or practitioner-performer. If
such a mediation took place through a software that has already been imple-
mented (such as YouTube or Zoom), this would exclude the artwork from our
scope. However, if the mediation is happening through a software that was pro-
grammed specifically for the purpose (such as a Media Capture and Streams
API, or sensors and IoT-systems) the artwork would fall in our scope.

Requirements Engineering for Software-Enabled Art 223

Iteration 1

1 interview with artist
Asses problem definition

5 interviews with developers
Gather material for artifact

Design first version of artifact
based on interview material

2 interviews
Evaluates artifact

Re-design artifact based on
Evaluation

Online survey
Evaluates final artifact

Iteration 2

Fig. 1. Design science iterations

Design Science Steps. Design Science
is performed as an iterative search pro-
cess. We have performed two iterations,
described in Fig. 1. These are adapting
activities proposed by Peffers et al. [13]
in the following manner:
Activity 1: Problem identification and
motivation. The problem was identified
through academic literature on the sub-
ject of Requirements Engineering for
interactive art-systems. It was confirmed
and further understood in a real-world
context by interviewing one artist about
an upcoming interactive art project.
Activity 2: Define the objectives for a
solution. Our solution objectives focus on
designing an artefact that shall have a
practical usefulness, and were based on
collected challenges (RQ1).
Activity 3: Design and development.
Design and development has been per-
formed during both iterations, creating an
artefact consisting of guidelines (RQ2).
Activity 4: Evaluation. In the context of
this research, the evaluation is performed
in relationship to the usefulness of the artefact. It was performed at the end
of both iterations and has taken on the form of both interviews and a survey
(RQ3).
Activity 5: Communication. Lastly, the artefact and the findings are communi-
cated via publication.

Interviews. The major form of data collection has been semi-structured inter-
views [16]. The interviews were recorded and took between 30–45 min and were
in all cases except one performed as video meetings over the Internet. An initial
interview with an artist was performed to assess the problem definition from the
artist’s perspective. Although the final artifact is created for the developer per-
spective, we felt it was useful to understand the problems and challenges from
the artist perspective as well. The second round of interviews focused on explor-
ing challenges and guidelines for the RQ’s and design of the artefact. The third
round of interviews focused on evaluation of the initial design of the artefact. All
interview guides can be found in our online appendix https://doi.org/10.5281/
zenodo.5568964.

In total, eight different participants were contacted over email. Since the
problem area involves a relatively small population of software developers who
have experience of collaborating with artists, the sampling was non-probabilistic
and purposive. Participant 1 was chosen as she was leading an upcoming

https://doi.org/10.5281/zenodo.5568964
https://doi.org/10.5281/zenodo.5568964

224 N. Möller and J. Horkoff

software-enabled project, with questions focusing on anticipated challenges. All
other participants were software developers, except for participant 7 who was
an artist and a PhD candidate in Interaction Design. They were chosen as they
had worked in at least two projects involving programming and art. Two of
the eight participants had worked in more than five such projects, while three
had worked in more than 10 such projects. As an example of such a project,
motto.io is an interactive novella designed for smartphone-based web browsers.
It allows participants to record and share video clips and narrates these together
with algorithms and computer vision1. The mapping between the participant ID,
role, purpose of interview and interview guide can be found in Table 1.

Survey. During the second iteration the evaluation was performed as an unsu-
pervised online survey. It presented all the guidelines and evaluated these on a
likert scale based on the guidelines’s usefulness, and offered a possibility of eval-
uating the guidelines in a qualitative way, suggesting additions or changes. The
survey was initially distributed to 10 participants. Five of these were developers
who were contacted based on personal contacts or recommendations. The other
five were the participants who participated in the second round of interviews (ID
2–6). In addition to this, we contacted Ars Electronica Futurelab, a laboratory
for Arts and Technology in Austria [17], to distribute the survey internally to
their developers. There were 9 responses in total.

Table 1. Participants mapped to roles and interview guides

Participant
ID

Role Purpose of interview Interview
guide

1 Artist and PhD Candidate
in Contemporary
Performance Practices

Assess problem definition 1

2 Software Developer and
Interaction Designer

Data collection for RQ1 and RQ2 2

3 Software Developer Data collection for RQ1 and RQ2 2

4 Software Developer Data collection for RQ1 and RQ2 2

5 Interaction Designer,
Professor and Composer of
Generative Music

Data collection for RQ1 and RQ2 2

6 Software Developer Data collection for RQ1 and RQ2 2

7 Artist and PhD candidate
in Interaction Design

Evaluation of the first version of the
artefact

3

8 Software Developer Evaluation of the first version of the
artefact

3

Data Analysis. Open Coding has been applied to analyze the qualitative data
from the interviews and surveys [16,18]. The process started by transcribing
1 https://www.nfb.ca/interactive/motto/.

https://www.nfb.ca/interactive/motto/

Requirements Engineering for Software-Enabled Art 225

the recorded interviews using a speech-to-text API. Then, each recording was
listened to again and transcription errors were corrected.

The coding began by identifying relevant sentences that related to research
questions and their themes of challenges and guidelines. Following Runesson and
Höst [18], sentences from each interview were extracted and captured through
tabulation in order to get a better overview of the data. Here, specific codes
were assigned to each sentence. The tables were later rearranged where each
table represented a particular challenge or guideline. Later, the codes in the
tables were arranged in a hierarchy through a tree structure. To avoid coding
bias, parts of the transcribed interviews together with relevant coding tables
were confirmed with the second author.

4 Results

Here we present results in relationship to the research questions. Figure 2 outlines
the codes generated from interviews with participants 1–6, gathering require-
ments for our artefact, where the codes are structured hierarchically through
a tree. We share a selection of quotes adapted to written language for better
readability, with the codes in bold letters.

Pre-condition. There are pre-conditions in the domain of arts that creates
challenges when eliciting requirements for an art-system. Participant 3 empha-
sised the lack of technical understanding when saying that: “They have the
same problem as every other artist when we’re working with digital art, they have
a lot of good ideas and a lot of talent, but they don’t know what they can do.”
Participant 4 experienced the same issue and added that software-related arte-
facts generated by artist sometimes “are pretty boring because they haven’t been
thinking so much of what is possible”. Participant 5 described the problem in
more general terms by describing how tools condition creativity: “knowledge
of technology and tools are conditioning our imagination. They are part of the
ideation process. If you don’t know a certain concept, you can’t think in those
terms.” He went on describing that “that’s the danger of these artists that are
too much focused on the ideas. They don’t realize that the technology and their
understanding of technology is conditioning their ideation, and that is a crucial
thing”. He suggested that artists in general tend to focus too much on ideas by
saying that “in the fine arts circles tool is sort of a swear word, and craft is a
swear word and ideas are the holy grail”.

RQ1. Which specific challenges arise when eliciting and capturing
requirements for software-based art systems? We summarize our high-
level resulting codes for this question in the following.

Planning. Often the technical collaborations starts late. This means that
the ideation has already taken place, making the developer more involved in
scoping rather than idea finding. As participant 3 described: “if you arrive late,
then usually they have too big vision for what we can actually do” continuing
saying that “my role will be more to cut and that’s a very frustrating role”.

226 N. Möller and J. Horkoff

Challenges

Pre-condition Planning Content Process

Lack of
technical

understanding

Tools
condition
creativity

Technical
collaboration starts

late
Unknown Non-functional

requirements Novel Volatile Explorative Unstructured

Need to cut Vision is set Too big vision Feeling Experience Poetic

Fig. 2. Challenges - Hierarchy of codes

Participant 4 encountered similar issues: “I think the problem is that the often
the technical specifications are coming into the process pretty late. It’s a problem
since a lot of ideas are set”. He suggested that this made the quality suffer:
“if they want to have a technical process that is integrated and it feels like it’s
having a good purpose in the show, then they have to bring it in at the same time
as they’re doing the script because otherwise it will not be any good”. Part of this
problem related to funding, as participant 3 reported that “the artists will get a
little bit of money for writing, you know, and they will write a project and they
will have these big ideas and they will, they will say, we can do this and this.
And they will consult maybe if you’re lucky a few hours with a technician”.

Content. The artistic content seemed further to create challenges. The content
that conditions the software system is unknown from the beginning and it shall
ideally also be novel. It also involves many non-functional requirements such as
feelings, poetic visions or envisioned experiences. Participant 1 related this to
her own practice when saying that “In an artistic idea and artistic development,
often it is maybe an experience that you as an artist want to create. This is
difficult from the very beginning to say how it is going to work”. She admitted
that “sometimes not so easy to already have a set definitio”. In her own vision
for how to use technology in an upcoming project, she was using concepts and
non-functional requirements such as enhancement, meta-reality and fifth
dimensionality: “the key ideas is the enhancement and being able to create a
meta reality which is not visible for the audience” and it probably goes a little bit
feeling-wise into this direction and “a possibility of having more layers where
the space becomes fifth dimensional”.

Participant 4 said that: “the hardest thing is to make a poetic vision. It’s
really hard and they have to have some concrete examples. How should it look
like, what should it look like?”. Participant 5 described related observations from
his practice as a composer saying that “maybe the requirements are not very
clear. It might be a test of an algorithm from some other domain onto generative
graphics or pitch patterns or whatever. It might be an appropriation or learning
of a new algorithm’. Further, he suggested that artistic creations are novel: “You
apply it in novel ways because every person is different. What comes out is my
music.” Speaking about this in relationship to a production process, he admitted
that the content is unknown by saying that “you voluntarily obey to create
something that was outside of your initial prediction or beyond your horizon

Requirements Engineering for Software-Enabled Art 227

of prediction.” Finally, he went on suggesting that this is a general, maybe
unconsciously, adapted attitude in arts and music: “It’s part of the definition
of contemporary art and music that you want to do something that hasn’t been
done before. Not all artists do that consciously, but it’s part of the value system
of contemporary art and especially experimental art”. This, he suggested, might
be a requirement itself for contemporary art: “the requirement may only be that
it should be something that you haven’t seen before or heard before”.

Process. Finally, the challenges encountered by developers when eliciting
requirements with artists seemed tied to the processes that artists employ when
making artistic work. Participant 4 reported on volatility when describing a
work with a data-driven video projection: “It can be really frustrating doing that
projection if they don’t really know why. What will happen is that they will find
out why they want the projection meanwhile you’re doing the projection and then
they are gonna change it all the time. They can say: Oh no, we don’t want it
like that anymore, we want to like this.” Participant 6 reported on an experi-
enced artist duo he worked with when saying that “They’re always very quick
to take new turns within their vision” and admitted that “it’s not going to
be structured at all. Things can change during the process”. He suggested that
“programming this kind of stuff is really different. Let’s say if you work on Spo-
tify or if you’re making a product, then you want everything super structured”.
Participant 2 suggested described the idea finding as “more of a collaborative
exploration. The requirements grew over time”.

RQ.2. What possible guidelines can be followed to meet these chal-
lenges? Data from the first six interviews were also coded by searching for
suggestions of possible guidelines that could be used to meet the challenges
described. Further iterations were made after evaluation interviews with partic-
ipants 7 and 8. The final version of the artifact is presented in Fig. 3, together
with a preamble. These guidelines seeks to answer RQ.2.

Mapping Between Challenges and Guidelines. We can describe how the
guidelines presented in this section meet the challenges collected as part of RQ1.
The issues related to poor planning, with the developers come in late into the
ideation and creation process, is meant to be solved by encouraging collaboration
from the start of the creative process (Guideline 7).

The challenge related to pre-conditions where artists often have a lack of
technical understanding and similarly are conditioned in their ideation through
their awareness of tools is meant to be solved through a demonstration of the
tools at an early state (Guideline 4) as well as making the initial prototyping
into tutorial sessions (Guideline 5). Also, by showing examples of other software-
enabled art (Guideline 1) a technical understanding of possibilities is cultivated.

Where Marchese [11] applied the agile methodology Adaptive Software Devel-
opment when producing an interactive art installation, none of the interviewed
participants described using a particular agile methodology as such. However,
iterations were often a part of the process and are therefore encouraged through
Guideline 10. This guideline is meant to mitigate the challenge related to a
volatile process while similarly allowing explorations.

228 N. Möller and J. Horkoff

Fig. 3. Guidelines for software developers in art projects

Requirements Engineering for Software-Enabled Art 229

The challenge of an unstructured process was taken into account by writing
the guidelines in a sequential order, beginning with activities that are encouraged
at the start of the process. The intention is that the artifact will guide the process
roughly sequentially, without imposing too much rigidity.

Prototyping is a well known elicitation technique from within RE [12]. It is
included in the artifact (Guideline 5) to solve the challenge of having an explo-
rative process since it allows for experimentation. Also, prototyping seems like
a good way to elicit a content that is unknown because of its tangible nature. It
further allows for non-functional requirements to be elicited and communicated
about and it is easily integrated within an iterative process.

Easterbrook [19] mentions that prototyping can be combined with other elic-
itation activities. The Wizard of Oz (Guideline 6) seems to be one such activity
in the field of the arts, where the functionality of a system can be faked beyond
the user’s awareness. This is applicable since an art-system sometimes only has
to present the illusion that it works, which is different from the standards in
software engineering where the functionality always has to be met.

Finally, in order to support the challenge related to producing novel content,
Guideline 2 emphasizes that it is important to keep an open attitude in the
beginning of a creative process as well as holding an understanding that current
aesthetic trends in how to use software for art-enabling purposes don’t always
align with the personal style of the artist.

RQ.3. Are the guidelines perceived as useful for those with experi-
ence in art and technology? Figure 4 shows the quantitative results from the
nine survey responses, including the distribution and average response for each
guideline. The average ranged from 4 to 4.77 out of 5, showing that those with
experience in art and technology agree on average that the guidelines are useful.

22%

11%

4 5321

Strongly
disagree

Disagree Neutral Agree
Strongly
Agree

Guideline 1 33%44%11%

Guideline 2 33%55%

11% 66%22%Guideline 3

55%33%11%

78%

Guideline 4

Guideline 5

Guideline 6

Guideline 7

Guideline 8

Guideline 9

Guideline 10

22%78%

22% 22% 55%

22% 66%

33%55%11%

11% 33%55%

4

4.22

4.55

4.33

4.77

4.22

4.33

4.33

4.22

4.11

Average

11%

11%

Fig. 4. Final evaluation - Survey responses

230 N. Möller and J. Horkoff

We further took into account the qualitative feedback from the survey result-
ing in the guidelines presented in Fig. 3. Regarding guideline 1, one respondent
pointed out that examples could be confusing because an art-work with software
might involve many functionalities and features. Therefore a developer who is
showing examples should clearly defines them and explain them well.

Guideline 2 emphasizes that the examples shall “not narrow the creative
thinking in a limiting way”. Feedback was received saying that “The risk with
showing examples is that they become the milestone/pinnacle of achievements.
Show only that which is required to get the point through. Otherwise, inspiration
can become a guideline, or a measuring stick which everything else is measured
against” while another respondent wrote that “showing examples of other work
too early can limit creativity and prevent a fresh take on the subject”. We have
updated the guideline to indicate that the developer should show only that which
is required to get the point across.

Guideline 3 received feedback “this is a superficial understanding and requires
the developer to have the tools and means to understand the artist. A structured
conversation provides more powerful means of understanding, rather than obser-
vation”. We have added this suggestion.

Guideline 5 received the feedback that “While producing prototypes it’s addi-
tionally appropriate to also prototype the prototypes”, suggesting a need to first
build environments where prototyping later is performed. This overlaps with the
interview with participant 3 who stated that he was avoiding existing tools such
as Unity and TouchDesigner and instead prototyped with his own tools that he
had been building over several years based on top of existing Javascript libraries.
These insights have been added to Guideline 5.

Guideline 6 received the feedback “I very much agree, but keep in mind that
sometimes having the artwork really perform what it claims to do can be very
important to some artists vision, even if it could more easily be faked.”. Guideline
6 makes it clear that technical results can be faked only in some cases.

One respondent disagreed with Guideline 8, concerning collaboration. “This
is a fact and does not depend on whether the artist likes it or not. The developer
is always a co-creator and therefore deserves the proper credit for that.” Further
studies should evaluate whether co-authorship is always mandatory.

Guideline 9 suggests that the developer and artist shall share the same stu-
dio. The qualitative feedback pointed out that this of course has to do with
personality types and preferences, and that collaborations can as well become
successful despite not following this guideline. Also, it was suggested that a good
middle way can be to collaborate in the same city, since this makes it easier to
have physical meetings. We’ve added this possibility to the guideline. Finally,
Guideline 10 was extended based on feedback to include the fact early tests could
be conducted with other members of the project.

5 Discussion

Timing and Scope. Developers who come in late into an artistic develop-
ment process reported that they needed to cut and make decisions rather than

Requirements Engineering for Software-Enabled Art 231

contributing to idea finding. Rather than weaving the artistic search process
with technological development, the artistic search process seemed to happen
by itself in isolation, generating visions too big to be realised or ideas that were
unrealistic. Being part of the requirements finding from the start seemed the
most ideal way of generating a manageable and realistic scope. It allowed for
integration of prototyping in a way that links the artistic idea development to
an evolutionary development process, something that many developers reported
as useful.

In a situation where the developer is coming late to the process, we would
argue that the developer is seen more as an assistant and engineer responsible for
implementation rather than a co-creator. Participant 5 suggested that this way
of treating the collaboration between an artist and engineer had historic roots,
still being popular in France where they have a master and assistant culture.
However, he also suggested that this view is outdated and that both sides lose in
this model “because the artist often is not aware of the extremely large amount
of aesthetic implications that come from their chosen implementations”.

Funding. Another circumstance to why developers are brought in late into
the process seems to be tied to the funding and economic circumstances in
art projects. Participant 7 reported that developers on average earn five times
as much as an artist. This made it according to her possible to only bring in a
developer for a few days. Participants 3 and 4 reported on similar circumstances,
pointing out that a small budget makes it difficult to engage in a way where the
possibilities of what technology can do meets the artists expectations.

However, there are funding opportunities in the art sector where longer col-
laborations between developer and artist are possible. Participant 3 participated
in a project that was designed over several sprints during a three years period,
where the length of the sprints in total added up to a year. The guidelines have
been constructed based on the condition that such collaborations are possible.

Collaboration. In this process of idea finding, the developer’s knowledge of
tools seemed very valuable. By both proposing features that are feasible, as
well as implementing these in a quick way and demonstrating for the artist,
the developers help the elicitation and idea finding to become creative. In many
cases the developers seemed to not wait for the artist to tell them what to do but
instead took a proactive role and implemented several features that could then
be evaluated and prioritized together through an iterative process. Guideline 8
seeks to encourage such an attitude among developers.

We would argue that such an attitude seems crucial if one seeks to overcome
the problem defined by Biswas and Singh [10]. Where they state that “system
developers need specifications to be clearly spelt out” they assume a more passive
role of the developer in the process of idea finding, reducing the role to only
implementation. For art-systems, being proactive and contributing in the idea
finding seems crucial, and this does not always require system specifications.
This is why Guideline 8 states that the developer shall be credited for creative
contributions, simply since the role extends beyond bare implementation.

232 N. Möller and J. Horkoff

Such an insight points to the fact that this kind of development requires an
interest in art. Participant 4 said that “I have always been doing a lot of different
art projects” and Participant 6 said that “I wouldn’t really deep down call myself
only a programmer, but I’m a bit of an artist myself”. Participant 7 pointed out
that feeling inspired and called to take part in such projects are important by
saying “ask your heart and stomach, is this a project you want to be part of”. As
such, the division between developer an artist is not strict, with many developers
being artists themselves.

Future Work. We have presented an initial version of the guidelines based
on an interview study and survey. The guidelines should be applied, evaluated,
and revised as part of future software-enabled art projects. Furthermore, the
guidelines are designed for self-managing creative teams, i.e., teams with relative
flexibility working without top-down leadership, given that many independent
art projects are based on funded projects. However, there are also larger arts
organisations that are exploring the integration of software technologies, such
as theatres and museums. Here, it would be necessary to investigate to what
extent the guidelines can be scaled given that larger organisations have other
constraints and ways of working.

We have investigated the problem from the developers point of view. In
future studies, it might be interesting to also explore the problem from the
artist point of view. Artists have the same interest since they want to make
interesting art. What guidelines would artists need to follow in order to better
enable art through software? Are there any particular guidelines that artists shall
follow when collaborating together with a developer, conditioned by the tools
and processes that enable software? We have also focused broadly on a wide
set of possible art forms. Future work can look at whether work with particular
media (e.g., augmented reality) needs more specific and specialized guidance.

Threats to Validity. We follow the classifications of Runeson and Höst [18]
when discussing validity threats.

Construct Validity. The interview guide for interviewing the developers was
based on concepts and terminologies common in Requirements Engineering.
These were concepts such as functional and non-functional requirements, scop-
ing, scenarios, Goal-models, constraints etc. There is a risk that these were
misunderstood by the developer who were interviewed, especially since these
terminologies might not suit the context of art-systems given that artists don’t
think or design through concepts found in Requirements Engineering. This was
mitigated by explaining the terms when necessary.

Internal Validity. To avoid bias in open coding, the first authors has shared parts
of the transcriptions and the coding tables with the second author. However,
there is still a risk that the data is biased since not all the transcriptions were
checked. The mapping done in the discussion between the challenges and the
guidelines tries to assess that there is a relationship between these. However,
there is still a risk that more factors are affecting and creating the challenges
described, and that these are not mitigated through the guidelines.

Requirements Engineering for Software-Enabled Art 233

External Validity. We have only interviewed a number of developers and artists,
having experience of a particular set of projects. Thus results may not be appli-
cable to every collaboration between a developer and an artist. However, the
participants that were interviewed had many years of experience from a broad
range of multiple projects. Furthermore, RE and art is an area without extensive
study, so we feel data from a smaller sample is useful to report and build upon.

Reliability. The first author has previous knowledge about art. This threat has
been mitigated by providing clear interview guides that other researchers can
follow if they were to conduct the same study.

6 Conclusion

In this Design Science Study, we have described and articulated specific chal-
lenges that arise when eliciting and capturing requirements for a software-based
art-system. We have designed an artifact consisting of guidelines that is intended
to be used by developers in a real-world context when beginning a collaboration
with an artist. The guidelines are structured in relationship to the development
process, beginning with activities that are useful at the start of the collabora-
tion. They try to mitigate or solve the challenges that were found by suggesting
elicitation techniques such as prototyping and Wizard of Oz, as well as describ-
ing specific recommendations for elicitation of art systems. The guideline also
promotes elicitation as a process of creative problem solving and idea finding,
encouraging the developer to be a co-author of the artwork, and taking an active
role in helping the artist cultivate an understanding of software tools which are
crucial in their own ideation.

The guidelines have been evaluated through an online survey based on their
usefulness. The results show that all guidelines can be considered useful for soft-
ware developers eliciting requirements for art-systems and suggest ways for fur-
ther improvements. A future artifact can investigate guidelines that are designed
for artists who are working with software developers, describing the constraints
and possibilities that exist when embarking on an artistic search process for
novel requirements in collaboration with a developer.

Acknowledgements. We wish to express my thanks to all artists and developers
who participated in the interviews. You brought valuable insights with your real-world
perspectives.

References

1. Maiden, N., Jones, S., Karlsen, K., Neill, R., Zachos, K., Milne, A.: Requirements
engineering as creative problem solving: a research agenda for idea finding. In: 2010
18th IEEE International Requirements Engineering Conference, pp. 57–66. IEEE
(2010)

2. Salter, C.: Entangled: Technology and the Transformation of Performance, 1st edn.
The MIT Press, Cambridge (2010)

234 N. Möller and J. Horkoff

3. Miller, A.I.: Colliding Worlds: How Cutting Edge Science is Redefining Contem-
porary Art, 1st edn. W. W. Northon & Company Ltd., London (2014)

4. Giannini, T., Bowen, J.: Of museums and digital culture: a landscape view. In:
Proceedings of EVA London 2018. BCS Learning and Development Ltd. (2018)

5. Mitsi, M.: How digital scenography and images affect the visual spectacle in a
site-specific choreographic installation (2018)

6. Theatre, N.: About the studio (2021). https://www.nationaltheatre.org.uk/
immersive/studio

7. Postscape: IoT art - real time networked art installations (2020). https://www.
postscapes.com/networked-art/

8. NFB of Canada: Motto: A behind-the-scenes look at the making of Vincent
Morisset’s latest adventure (2020). https://blog.nfb.ca/blog/2020/11/30/motto-
case-study/

9. Trifonova, A., Jaccheri, L., Bergaust, K.: Software engineering issues in interactive
installation art. Int. J. Arts Technol. 1(1), 43–65 (2008)

10. Biswas, A., Singh, J.: Software engineering challenges in new media applications.
In: Software Engineering Applications (SEA 2006) (2006)

11. Marchese, F.T.: The making of trigger and the agile engineering of artist-scientist
collaboration. In: Tenth International Conference on Information Visualisation (IV
2006), pp. 839–844. IEEE (2006)

12. Alavi, M.: An assessment of the prototyping approach to information systems
development. Commun. ACM 27(6), 556–563 (1984)

13. Peffers, K., Tuunanen, T., Rothenberger, M.A., Chatterjee, S.: A design science
research methodology for information systems research. J. Manage. Inf. Syst. 24(3),
45–77 (2007)

14. Offermann, P., Blom, S., Schönherr, M., Bub, U.: Artifact types in information
systems design science – a literature review. In: Winter, R., Zhao, J.L., Aier, S.
(eds.) DESRIST 2010. LNCS, vol. 6105, pp. 77–92. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-13335-0 6

15. Candy, L.: Creating with the digital: tool, medium, mediator, partner. In: Brooks,
A., Brooks, E.I. (eds.) ArtsIT/DLI -2019. LNICST, vol. 328, pp. 13–28. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-53294-9 2

16. Seaman, C.B.: Qualitative methods in empirical studies of software engineering.
IEEE Trans. Softw. Eng. 25(4), 557–572 (1999)

17. A. Electronica: Laboratory and atelier for future systems (2021). https://ars.
electronica.art/futurelab/en/

18. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empirical Softw. Eng. 14(2), 131–164 (2009)

19. Nuseibeh, B., Easterbrook, S.: Requirements engineering: a roadmap. In: Proceed-
ings of the Conference on the Future of Software Engineering, pp. 35–46 (2000)

https://www.nationaltheatre.org.uk/immersive/studio
https://www.nationaltheatre.org.uk/immersive/studio
https://www.postscapes.com/networked-art/
https://www.postscapes.com/networked-art/
https://blog.nfb.ca/blog/2020/11/30/motto-case-study/
https://blog.nfb.ca/blog/2020/11/30/motto-case-study/
https://doi.org/10.1007/978-3-642-13335-0_6
https://doi.org/10.1007/978-3-030-53294-9_2
https://ars.electronica.art/futurelab/en/
https://ars.electronica.art/futurelab/en/

A Study on the Mental Models of Users
Concerning Existing Software

Michael Anders1(B) , Martin Obaidi2 , Barbara Paech1,
and Kurt Schneider2

1 Heidelberg University, Im Neuenheimer Feld 205, 69190 Heidelberg, Germany
{michael.anders,paech}@informatik.uni-heidelberg.de

2 Leibniz University Hannover, Welfengarten 1, 30167 Hannover, Germany
{martin.obaidi,kurt.schneider}@inf.uni-hannover.de

Abstract. Context and Motivation: Software users describe require-
ments for new software and give feedback to existing software. Both
are well studied in requirements engineering research. However, both are
also heavily influenced by the users’ comprehension of existing software.
We do not know which aspects of software users have in mind when they
talk about it. While their mental model is interesting in itself, knowing
this mental model could be helpful both, during requirements elicitation
and validation-whenever user statements need to be understood.

Problem: There is no standard methodology to study mental models
and existing mental model studies mostly focus on specific elements of a
specific software.

Principal results: We have asked students to describe and draw a cer-
tain software. We coded the answers to understand the abstraction levels
and the software aspects mentioned. We also analyzed differences. Our
results showed a strong focus on the interaction and domain level. The
users’ drawings primarily represented the user interface. We found only
small differences between participants with a computer science back-
ground compared to those without one.

Contribution: This paper presents initial insights on the software
aspects in the mental model of users concerning existing software. It also
describes our method to study this model and ideas for future studies.

Keywords: Mental model · User understanding · Software aspects ·
User language analysis

1 Introduction

Software users make statements about requirements for new software and give
feedback to existing software. Requirements engineering (RE) research and prac-
tice has engineered techniques to capture these statements informally, e.g. in
interviews, and to represent them in a structured form, e.g. in user stories or

Supported by the Deutsche Forschungsgemeinschaft (DFG) - 433661943.

c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 235–250, 2022.
https://doi.org/10.1007/978-3-030-98464-9_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_18&domain=pdf
http://orcid.org/0000-0001-6932-6146
http://orcid.org/0000-0001-9217-3934
http://orcid.org/0000-0002-7456-8323
https://doi.org/10.1007/978-3-030-98464-9_18

236 M. Anders et al.

goal models [7,13]. Furthermore, user feedback is captured in social media or user
forums in terms of users’ opinions, complaints, questions and requested features
regarding a software they are using. RE research has devised techniques to clas-
sify this feedback into these categories [18]. However, we know very little about
how users comprehend an existing software. What do they know about this soft-
ware, what do they not know? What have they learned about the software? How
would they explain the software to other people? We call this comprehension
the user view or synonymously the outside view of software. It most probably
refers to software facets that are visible to the user, such as the user interface
(UI) or the features offered. This is in contrast to the inside view of software
which encompasses the components and their composite behavior.

In psychology and human-computer-interaction, this comprehension is called
mental model. Jones et al. state “Mental models are conceived of as a cognitive
structure that forms the basis of reasoning, decision making, and, with the limita-
tions also observed in the attitudes literature, behavior. They are constructed by
individuals based on their personal life experiences, perceptions, and understand-
ings of the world. They provide the mechanism through which new information
is filtered and stored” [10]. Thus, also user requirements and user feedback are
influenced heavily by the users’ comprehension of existing software. We do not
know which aspects of software users have in mind when they talk about it.
While the mental model is interesting in itself, knowing this mental model could
be helpful both, during requirements elicitation and validation. Requirements
engineers could better understand user requirements and feedback and respond
to it.

In this paper, we report on an exploratory study of mental models of users
concerning existing software. We are interested in the software aspects comprised
by this mental model and their expression by the users, not in the specifics of
a certain software. We cannot use user statements from social media and user
forums as they mostly focus on individual software features. Furthermore, they
are by nature short and often without adequate context to provide comprehensive
information. Along the same lines, requirements interviews are not suited as they
only describe new features. Requirements documents are not adequate either,
since they are not original user statements. We therefore conducted interviews
with 17 students about the e-learning software that they are currently using
(Moodle and Stud.IP).

In search of a research method to frame the interviews, we resorted to related
work in the area of mental models. Mental models are studied in the area of
human-computer-interaction in order to understand whether the mental rep-
resentation of a particular software helps to explain its behavior. This goal is
obviously different from our goal. However, as discussed in Sect. 2, there are
some studies that try to characterize the mental model [4,5,16]. Based on these,
we asked the students to explain the software and to draw their comprehension
thereof. We used ideas from qualitative analysis for coding texts [17].

This paper offers three contributions: (1) We describe a method to study the
characteristics of a mental model, (2) we report on first insights into the users’

A Study on the Mental Models of Users Concerning Existing Software 237

mental models and (3) we reflect on the usefulness of this method, the results
we obtained, and the consequences for future studies.

The paper is structured as follows: In Sect. 2 we present background and
related work. Section 3 reports on the study design and Sect. 4 on the results.
In this section we also reflect on the results. In the next section we discuss
the threats of validity. The final section concludes and presents ideas for future
studies.

2 Background and Related Work

In this section, we first introduce some related work in the field of mental models
and then discuss the task-oriented requirements engineering (TORE) framework
[15] which we later use to categorize the software aspects mentioned by users.

2.1 Mental Model

The general concept of a mental model has been adapted for technical systems in
the context of human-computer-interaction (HCI). In 1983, Norman [14] stipu-
lated that when a person interacts with a software, they form an internal mental
representation of themselves and the things they interact with, called a mental
model. He distinguished between the target system, the conceptual model of the
target system as a reference model described by target system experts, the men-
tal model of the user and the scientist’s conceptualization of the mental model
of the user. In our research, the target system is an existing software. Norman‘s
conceptual model corresponds to all models developed during software engineer-
ing by the developers. The aim of this paper is to contribute to the scientists’
conceptualization of the mental model of software users. A user builds a mental
model in order to operate software [11]. By applying this mental model, a person
is able to mentally simulate, understand, and predict the behavior of software.
Such a model resides in the brain of the user and is out of reach for software
engineers. By making mental models explicit, the view and expectations of a
person related to software can be better understood [2].

The GOMS (Goal-Operator-Method-Selection) model was developed as a
conceptualization of the mental model in HCI [9]. It describes the relationship
between operator goals, such as moving a piece of text, and the operations that
the software offers to do so. The mental model is thus described primarily by
the handling of functions on the user interface (UI). Several research studies
have been conducted in the past to elicit mental models. Some use conceptual-
izations of specific software, e.g. processing components for a search engine such
as indexing and searching of specific systems [4]. Others are interested in the
general approach underlying a mental model. For example Hofer et al. [5] distin-
guish 9 different ideas including behavior, structure, and purpose of a system,
while Rieh et al. [16] distinguish processing model, global-view model, interface
model, and interactivity model.

238 M. Anders et al.

Results of these mental model studies looking for a general approach vary.
For example, Zhang et al. [19] found that the majority of students describing
the Web used the connection-view (focusing on the communication in the Web)
followed by the functional view (focusing on the tasks to be supported by the
Web) and less students used the process view (focusing on the search engine)
or the technical view (focusing on the components). Rieh et al. [16] wanted to
use the same categories, but they were not suitable for describing a repository.
They found that most students use the processing model (focusing on operations
and algorithms) followed by the interaction model (focusing on the UI) and few
students use the global-view model (focusing on the context of the repository) or
the interactivity model (focusing on the interaction steps with the repository).
Reasons could be that Zhang’s students knew the system well, while Rieh’s
students just had a short introduction to the system. Both had to execute tasks
before describing the mental model. Clearly, also the system type differs.

For our purposes, specific concepts are not suitable as we are interested in
aspects of software in general. The general approach categories are not suit-
able, as they are too coarse-grained and, as discussed above, system dependent.
GOMS includes general aspects, but is too limited, and therefore, we base our
conceptualization on TORE (see Sect. 2.2).

A major challenge for mental model studies is the question of how to access a
user’s mental model. These models cannot be accessed directly, but only through
representations created by the users. As stated by Zhang [19], some methods of
accessing mental models are limited because they focus on a single representa-
tion. Therefore, she recommends combining representations like oral interviews,
drawings, and solving tasks related to the software. We combined two repre-
sentations: oral explanations of the software to another person and a drawing
together with a drawing description as both can easily be created during an
interview.

2.2 TORE

We base our analysis of the users’ statements on the TORE framework intro-
duced in [15]. TORE has been applied in different development projects in the
past [1] to guide requirements engineers in their communication and decisions
while eliciting and specifying requirements. It originally consists of 18 decision
points (which will be capitalized in this work, to highlight them). For each deci-
sion point a part of the requirements is specified. These partial requirements
are called decisions as requirements engineers make decisions while crafting the
requirements together with the users. TORE does not prescribe a specific tem-
plate, but gives some recommendations. The decision points are grouped into
four abstraction levels as can be seen in Fig. 1. The Goal and Task Level and
the Domain Level capture the system context. The Interaction Level captures
decisions on how the software supports the users’ tasks and activities. On the
System Level, the UI is described by refining the Interaction Level. Furthermore,
details of the application core are determined. Thus, TORE comprises decisions,
and thus requirements, ranging from the context through interaction to the level

A Study on the Mental Models of Users Concerning Existing Software 239

Fig. 1. TORE levels and their individual categories

Table 1. TORE categories and their definitions

Goal, Task, and Domain Level

Stakeholders Roles supported by or influencing the developed software

Stakeholders’ Goals Goals the software should fulfill

Stakeholders’ Tasks Responsibilities of the Stakeholder as part of larger
processes in the domain

Activities Steps in the Stakeholder Tasks

Domain Data Data relevant to some activity

Interaction Level

Interaction The interaction between a user and the software
Includes in addition the Dialog as a refinement of the
Interactions into screen sequences

System Functions Functions executed by the software that consume, manipulate
or produce data
Includes in addition the Navigation and Support Functions
needed for the data related functions

Interaction Data Data relevant for the System Functions
Includes the UI-Data which refines the Interaction Data

UI Structure (Workspace) Grouping of Interaction Data and System Functions which
are relevant for one Task into so-called Workspaces
Includes Screen Structure as a refinement of the Workspaces

System Level

Internal Actions Steps needed to realize the Interaction Level

Architecture (Software) Components of the software and their relationships

Internal Data Data processed by Internal Actions

of an object-oriented design. In the following, we call decision points categories,
as we use them as coding categories.

A detailed description of the categories we used in the coding can be found
in Table 1. We selected TORE for our analysis as it offers a rich framework
for different abstraction levels of software and different kinds of requirements.

240 M. Anders et al.

Fig. 2. TORE model including relationships as a heat map

Goal models also provide a rich framework to elicit and specify requirements [6].
However, they focus on agents, their intentions, resources, and dependencies and
do not include means to talk about the software design, e.g. in terms of data
and interaction.

For our purposes, we simplified TORE to include less categories, but kept
the abstraction levels (see Table 1). Since we analysed user statements about
existing software, we did not make use of To-Be Activities. We omit the System-
Responsibilities, as they are part of As-Is Activities (from here on simplified as
Activities) and refined into System Functions. We omit the GUI-categories as
they are refinements of Interaction Level categories.

The TORE categories Activities, Interaction and Internal Actions corre-
spond to actions executed by the user or the system. As such, they establish
relationships between an actor and an object. Because these actions are of great
importance in the behaviour of the users to the system, we further refined these
relationships. In our case, the actors are the supported stakeholders (users) of
the software or the software itself, and the objects are the other categories. This
enables us to more closely analyse how the users describe the actions between
them and the system and to better analyse who the actor and the object of a
certain action are. These refined relationships can be seen from the arrows in
Fig. 2 (colors and thickness to be ignored here). Activity is refined into relation-
ships “works with” with regard to Domain Data and “communicates with” with
regard to Stakeholders. Interactions relate Stakeholders to Interaction Data
(“inputs or accesses”), Workspaces (“selects”), System functions (“utilizes”) or
Stakeholders themselves (“exchanges with”). Internal Actions relate Software
and Internal Data (“processes”).

A Study on the Mental Models of Users Concerning Existing Software 241

As TORE does not cover non-functional requirements (NFR), we also used
codes for the NFRs mentioned in the ISO 25010 standard [8].

3 Study Design

3.1 Research Questions

We want to understand the mental model from different perspectives: We look at
two representations, namely text and drawings, as will be explained in Sect. 3.2.
Our assumption is that we can gain a deeper understanding of the users’ mental
models by analyzing which aspects of the software they mention in the text.
Regarding the drawings, we are interested in the overall understanding of the
software conveyed by the drawing, which we call the fundamental idea. Through
the analysis of the number of different words used by the users, we also want to
understand how the aspects are described and how uniform these descriptions
are across users. We additionally analyze the differences between the two repre-
sentations (and the corresponding interview task) and the influence of software
variants as well as knowledge backgrounds. This leads to the following research
questions:

RQ1: Which mental model of existing software do users have?
RQ1.1: Which software aspects do users discuss in how many different words?
RQ1.2: Which fundamental ideas do users express in their drawings?
RQ1.3: What influence does the interview task have?
RQ1.4: What influence does experience with software development have?
RQ1.5: What influence does the software variant have?

3.2 Data Collection

We conducted exploratory interviews with 17 students from different fields at two
universities. We recruited them through personal contacts and in our lectures.
For diverse views, we included 9 students from fields unrelated to computer
science, such as biology, language studies, metals technology, urban design, and
teaching. They did not possess any advanced programming skills. The other
8 students came from computer science or other related fields with profound
programming experience. The software we selected for this study were two e-
learning platforms widely used at the participating universities: Stud.IP1 and
Moodle2. Interviews were conducted online.

The first task for the participants was to give an oral explanation of what the
software is and what it does. We asked them to imagine that they were explaining
the software to their grandparents to motivate them to give a thorough explana-
tion and not assume anything as too basic to explain. We intentionally did not
present them any uses cases or specific parts of the software to discuss because

1 https://studip.de/.
2 https://moodle.org/.

https://studip.de/
https://moodle.org/

242 M. Anders et al.

any use case created by us could influence their mental model and invalidate our
later analysis. In the following, we abbreviate the documents of this task with
(E). The second task for the participants was to draw their inner picture of the
software on a plain sheet of paper and to describe what they were drawing. The
description helps us to avoid misinterpretation of the participants’ intentions. In
the following, we abbreviate the documents of this task with (D). Participants
were not given any time constraint for either task and were allowed to restart
their drawings at any point, though only one participant used this possibility.

All interviews were conducted in the students’ native language of German,
to allow them to express themselves as fluently as possible and to ensure that
they could express themselves without being hindered by language barriers. The
interviews were then transcribed manually by two German native speakers. Then
the transcripts were translated into English. The translations were done by a
trained translator and additionally double checked with the original German
sentences during coding. The focus of the translation was to maintain the original
structure and the used wording as much as possible.

In total, the collected data set contains about 7600 words and 464 sen-
tences. The average interview contained 447 words (221 in E & 226 in D) and 27
sentences.

3.3 Data Analysis

We used manual coding with the help of MAXQDA3. While (E) could be coded
individually without further context, coding of (D) had to take both the descrip-
tion and the user’s drawing into account. Examples of this were statements about
the position of certain objects (e.g. “Here on the left you have this thing”), where
annotators had to decide if certain statements were about the discussed software
itself or merely statements about the drawing process. Each textual document
(of both E and D) and each drawing was coded individually by the first two
authors and then discussed to ensure the correctness of the assigned codes. In
the following definitions, we explain the codes, the coding steps, and the inter-
rater agreement.

Codes and Coding Steps. We assigned codes to sub-phrases where a phrase
is defined as a linguistic entity of any length made up of a whole or parts of a
sentence and a sub-phrase is a distinct, relevant part of a phrase (from one to
several words), distinguished from neighboring parts.

We used the codes explained below. Note, that while we set out with an
initial set of coding rules, these were refined iteratively throughout the coding
process. Table 2 gives an example of the resulting codes when applying the rules
to sentences.

– TORE-Codes (RQ1, RQ3, RQ4, RQ5): Each relevant sub-phrase is assigned
to a distinct TORE category according to the definitions of Table 1.

3 https://www.maxqda.de/.

https://www.maxqda.de/

A Study on the Mental Models of Users Concerning Existing Software 243

– Word-Codes (RQ1): Relevant words in coded sub-phrases are additionally
used as Word-Codes in their lemmatized form where Word-Codes for verbs
include a “to”.

– Relationship-Codes (RQ1, RQ3, RQ4, RQ5): Each sub-phrase coded with
Activity, Interaction, or Internal Action is coded with its relationship intro-
duced in Fig. 2.

– NFR-Codes (RQ1, RQ3, RQ4, RQ5): One or more consecutive sub-phrases
containing a judgement relating to an NFR mentioned in the ISO 25010
standard [8], are coded with the NFR.

– Drawing-Codes (RQ2, RQ3, RQ4, RQ5): The codes for the fundamental
ideas of the drawings emerged when looking at the drawing. We distin-
guish drawings mainly showing the UI or parts of it (UI), drawings using
a metaphor as a central graphical element (Analogy), drawings providing
different user steps in the drawing (e.g. through arrows) and corresponding
explanations (Process), and finally drawings with a general mind-map or con-
nections between parts and features (Structure).

The codes were assigned in the order listed above, where TORE-Codes and
Word-Codes were assigned in parallel.

Table 2. Coding examples

Sentence: Lecturers can upload exercises and pictures

Sub-Phrases: Lecturers upload exercises pictures

Word-Codes: lecturer to upload exercise picture
TORE-Codes: Stakeholder Interaction Interaction Data Interaction Data
Rel-Codes: inputs

Sentence: It’s a pity that there is no uniform setup

NFR-Codes: Usability

Inter-rater Agreement. The inter-rater agreement was captured in each of
the textual coding steps to fulfill multiple purposes. The first purpose was to
guarantee the correctness of the coding process as especially Word-Codes and
Relationship-Codes depend on the assigned TORE-Codes. Secondly, it was mea-
sured to improve the definitions and rules of the individual codes. After each step,
both coders discussed every single disagreement to come to a definitive under-
standing. Afterwards, the main causes of disagreement between the coders were
captured and the coding rules were adapted accordingly.

The agreement and values were measured using MAXQDA’s own “Inter-
coder Agreement” functionality using the Brennan and Perediger [3] Kappa.
TORE-Codes were the most difficult to assign with a Kappa value of 0.66. The
main cause for disagreement was the classification into the individual TORE
categories. Our rules of assignment proved more comprehensive and clear for

244 M. Anders et al.

some categories than for others. Specifically the judgement between whether a
segment was part of the Interaction Data or the Workspace category posed a
challenge for the coders. Of all disagreements, 22.2% could be traced back to
this classification problem alone. We clarified our definition subsequently, which
should drastically reduce this problem in the future. Relationship- and NFR-
Codes showed a higher agreement between the annotators with values of 0.75
and 0.77 respectively. Word-Code agreement was not measured, as their position
(i.e. the relevant sub-phrases) was defined by TORE-Codes and their label was
defined by the lemmatized word.

4 Results and Discussion

In this section, we present the results of our analysis and discuss insights follow-
ing from them. We have made the data set publicly available online4.

4.1 Answering the Research Questions

In the following, we distinguish two kinds of numbers: (i) The appearance of a
code in an interview and (ii) the occurrence of a code in an interview. If a code
is used in an interview several times, it has several occurrences, but only one
appearance. The latter thus abstracts from particularities of interviews where
people use words repeatedly.

RQ1.1: Which software aspects do users discuss in how many different words?
Table 3 presents the occurrences in percentages (Occ) and appearances (App)

of TORE-Codes for explanations, drawings, and overall interviews. Of the over-
all 1431 occurrences of TORE-Codes, almost two thirds focus on the Interaction
Level, primarily Workspaces (21.7%) and Interactions (23.9%). System Func-
tions were rarely mentioned (4.5%). More than a quarter (26.1%) of all occur-
rences are on the Goal, Task, and Domain Level, half of them Domain Data.
Only 8.2% (mostly Software with 7.7%) of the occurrences relate to the System
Level.

Figure 2 visually represents the occurrences of TORE- and Relationship-
Codes as a heat map. The colors and width of the arrows indicate the magnitude
of the occurrences. For Activity relationships (5.7%), users primarily focus on
“works with”. Of all Interaction relationships (23.9%), “selects” is used most
often, followed by “inputs.” All other Relationship-Codes occur, but much more
rarely.

NFRs were also used only sparsely (26 occurrences with mostly usability and
functional suitability). Only 12 of the 17 interviews mentioned an NFR.

Figure 3 shows the variation of occurrences between the interviews. The most
often used categories Workspace and Interaction also show the highest variation.
Both have a median of 19 occurrences per interview with high outliers at 43
4 https://doi.org/10.5281/zenodo.5910981.

https://doi.org/10.5281/zenodo.5910981

A Study on the Mental Models of Users Concerning Existing Software 245

Table 3. TORE occurrences and appearances

Explanation text Drawing text Total

TORE Occ App Occ App Occ App

Goal 0.1% 1 0.3% 1 0.2% 1

Task 1.1% 8 0.2% 1 0.7% 8

Stakeholder 9.2% 17 4.2% 7 7.2% 17

Activity 8.7% 16 1.7% 7 5.7% 16

Domain Data 15.7% 16 7.8% 11 12.4% 16

Domain Level 34.7% 17 14.2% 11 26.1% 17

Interaction 27.4% 17 19.1% 14 23.9% 17

System Function 4.7% 12 4.3% 11 4.5% 14

Interaction Data 15.8% 17 15.5% 13 15.7% 17

Workspace 8% 14 40.6% 15 21.7% 17

Interaction Level 55.8% 17 79.5% 15 65.7% 17

Software 9% 17 5.8% 10 7.7% 17

Internal Action 0.2% 2 0.5% 2 0.4% 4

Internal Data 0.2% 2 0% 0 0.1% 2

System Level 9.5% 17 6.3% 10 8.2% 17

Total 830 (100%) Avg. 9 601 (100%) Avg. 6 1431 (100%) Avg. 10

0 5 10 15 20 25 30 35 40 45

Goal
Task

Stakeholder
Activity

Domain Data
Interaction

System Function
Interaction Data

Workspace
Software

Internal Action
Internal Data

Fig. 3. Variation of TORE occurrences

Table 4. Mental model ideas

Idea Interviews

UI 11

Analogy 1

Structure 3

Process 2

Total 17

and 37 respectively. Interaction Data has the next highest median at 14 with
significantly lower variation.

Table 5 shows the number of Word-Codes for each TORE category. The num-
ber of occurrences of a category does not determine the number of words for the
category. For example, Domain Data occurs only half as often as Interaction,
but has only 12 fewer words (84 to 72). However, comparing the three levels, the
number of words is roughly proportional to the number of occurrences.

246 M. Anders et al.

Table 5. Word-Codes per TORE category

Domain Level Interaction Level System Level

Category Nr. Category Nr. Category Nr.

Goal 1 Interaction 84 Software 24

Task 6 System Function 31 Internal Action 5

Stakeholder 17 Interaction Data 73 Internal Data 2

Activity 49 Workspace 82

Domain Data 72

Total 145 Total 270 Total 31

RQ1.2: Which fundamental ideas do users express in their drawings?
As shown in Table 4, UI is the idea used most often (11 of 17 drawings). Only

a single drawing is based on an Analogy (a chest of drawers). Even Process is
used only twice despite the focus of users on Interactions in their statements.

RQ1.3: What influence does the interview task have?
Table 3 also shows the differences between E and D. The Domain Level is

much more prevalent in E (34.7%) than it is in D (14.2%). The Interaction
Level is more prevalent in D (due to Workspace). The focus on Workspaces in D
correlates with the focus on the UI-idea in the drawings (see Table 4). As can be
seen from the appearances, all E-documents mention all levels, but much fewer
D-documents mention Goals, Task and, Domain Level or System Level.

RQ1.4: What influence does experience with software development have?
We compared the percentages of TORE-Code occurrences of CS and Non-CS

student interviews, but only found slight differences of a few percent.

RQ1.5: What influence does the software variant have?
As there are much fewer Stud.IP-interviews, we only compared the percent-

ages of occurrences of TORE-Codes in all interviews with the Moodle-interviews
and found almost no differences in the discussed aspects.

4.2 Discussion and Future Work

In the following, we discuss the insights we draw from this study.

Preliminary Insights on the Users’ Mental Models. The heat map
in Fig. 2 visualizes the most prominent aspects in the users’ mental models.
We found that overall the text focuses on the Interaction Level, mainly on
Workspaces and Interactions, and less on System Functions. This is confirmed by
the drawings which mainly base on the UI-idea. It is well known that during RE
the UI (or an abstraction like the workspace) is important for the users [12]. Our
research shows that this is also the case for the mental model of existing software.

A Study on the Mental Models of Users Concerning Existing Software 247

Similarly, from the use case description technique, it is well known that users
prefer requirements which describe what they can do with the software over pure
system functions. Again, this is confirmed in our study for the mental model.
However, this might also be influenced by our type of application, which does
not have complex system functions. Figure 2 shows that Interaction-relationships
relating to Interaction Data and Workspaces are equally prominent. Therefore,
during interaction the whole UI as well as the data are equally important. This
insight needs to be confirmed in future studies and can be used to improve
the communication with users. Also for the System Level in terms of Internal
Data and Software, our research confirms experiences from RE that they are not
important for the mental models of users.

It is important to note that during the analysis we discovered that users often
use the same words on the Domain and Interaction Level. They use domain-
specific terms to describe different Interaction Data elements (e.g. “Assignment”
instead of “File”). We want to study this phenomenon further, as we believe it
to be a source of ambiguity in understanding the user.

NFRs are often neglected during RE. They are frequent in the statements of
users in terms of user feedback. Our research shows that they are not prominent
in the mental model when giving explanations.

While our research shows that the Goal, Task and Domain Level is important
in the mental model, it seems surprising that Stakeholder Goals and Tasks were
mentioned only very rarely. In our coding, both are very far from the actual
software use (e.g. “to keep track of university courses”). The type of application
might have an influence here. The users might relate our type of application
more to small-grained interactions (save a file, register for a class, broadcast
a message), rather than an overarching vision or goal. For other applications
(e.g., a Corona Pass App) the final user goal (e.g. get access to restaurants)
might be more prominent in the mental model than any interaction details.
In goal-oriented languages, goals are often also low-level operational goals. In
TORE, an overarching goal such as exchanging information with peers is a Goal
or Task, whereas a low-level goal such as making a file available to students is
an Interaction. Thus, low-level goals are prominently represented in the mental
models. We want to study the role of goals in the mental models in more depth,
as this is a frequent concept in the communication with users.

As Fig. 3 and Table 5 show, the aspects discussed and the number of words
used to express them can vary significantly, both between different users and
TORE categories. Also, these differences might hinder the communication with
users and should be studied in the future.

The similarity of CS and Non-CS students needs to be studied with a higher
number of participants.

Preliminary Insights on the Study Design. Through our study method,
we could derive first results on the users’ mental models of existing software. As
discussed in Sect. 5, the scenario used in the interviews might pose a threat to
construct validity. Therefore, in the future, we will ensure a study setting where
participants describe software on a detailed level, while focusing on their own

248 M. Anders et al.

mental model. Very likely, the complexity of software has an influence on the
ideas and aspects discussed by users. We will study more complex software in
future studies. Using different representations is very important. Drawings make
the user focus on the UI. Our research showed that textual explanations are
much richer (in terms of appearances) than textual explanations of drawings.
Thus, it might suffice to use textual explanations and drawings without text.

5 Threats to Validity

We categorize the threats to validity for our study according to the guidelines
from Runeson et al. [17].

Construct Validity: To ensure that the statements of the participants were
as generic and basic as possible, we created a scenario in which the users had
to explain the software to their grandparents. However, a possible side effect
of this scenario might be that the expressed mental model is not that of the
participant itself, but rather the assumed mental model of their grandparents.
This might significantly change the aspects discussed. It is, however, difficult to
avoid this effect, as we wanted the participants to describe the software in fine
detail, without assumptions as to what is common knowledge and thus not worth
expressing. Furthermore, we specifically asked the participants not to consider
the grandparent-scenario for their drawings and the results for the drawings have
many similarities to the explanations.

Internal Validity: The user interface layout of Moodle has changed signifi-
cantly within the last year. The effect this has on the mental models of users,
especially those users that expressed general ideas in the UI category, is impos-
sible to measure without detailed studies about their mental model prior to the
changes.

Another threat we encountered while conducting the interviews is the par-
ticipants’ uncertainty about their drawing skills. Many participants explicitly
mentioned their - in their own opinion - insufficient drawing skills. This might
affect the extent to which they are able to express their mental model in the
drawing. We aimed to counter this uncertainty by ensuring the participants,
that their artistic talent is of no concern and that we would use the description
of the drawing to clarify any ambiguities resulting from a lack of drawing skills.

External Validity: We cannot claim any external validity as this was only an
exploratory study with a limited data set focusing on a particular type of system
with a particular group of users (namely students), which are inherently native
to the use of computers. Many other mental model studies have students as sub-
jects and focus on specific systems such as search engine, Web, technical systems
or repositories [4,5,16,19]. Still, despite the difficulties of acquiring participants
completely unfamiliar with the use of modern technology, future studies should
also look into the mental models of these kinds of users, to draw more meaningful
conclusions on the differences between different user types. Additionally, employ-
ing students as participants poses another threat. Some of them depend on the

A Study on the Mental Models of Users Concerning Existing Software 249

researchers in their classes or potential thesis papers. This might affect their
behaviour and consequently their expressions towards the interviewer. However,
this effect should be minimal as none of the participants were actually depen-
dent on the interviewers at the time of the interview. Lastly, the use of only one
specific software could have a significant influence on the reported results. We
do not yet know how a specific software affects the discussed software aspects
and other parts of our analysis. We want to analyze different software systems in
future studies in order to investigate the effect that a specific software or domain
in which it is used has on the results of our analysis.

Reliability: A threat for reliability is the fact that both coders also drafted the
coding rules, as they were part of the research team. In addition, both coders
have a computer science background, which may have had an influence on their
coding. Future work should employ independent coders to check the quality of
our developed coding rules.

6 Conclusion

In this paper, we introduce an approach for the analysis of users’ mental models
regarding existing software. The approach is based on the manual analysis of
users’ statements and focused on extracting the software aspects that users dis-
cuss when explaining a software and drawing their own mental model of it. We
present results from the application of this method in an exploratory study. We
show which aspects users focus on in their oral statements and which ideas they
use in their drawings. We also analyze the effects of different interview tasks,
software systems, and computer science backgrounds. The study confirms the
usefulness of our method. It also allows us to derive first insights into the mental
models and gives us hints for future studies. We are encouraged to design larger
studies where we capture user statements from more participants regarding more
complex software.

References

1. Adam, S., Doerr, J., Eisenbarth, M., Gross, A.: Using task-oriented requirements
engineering in different domains - experiences with application in research and
industry. In: 17th IEEE Requirements Engineering Conference, pp. 267–272 (2009)

2. Banovic, N., Buzali, T., Chevalier, F., Mankoff, J., et al.: Modeling and understand-
ing human routine behavior. In: CHI Conference on Human Factors in Computing
Systems, pp. 248–260 (2016)

3. Brennan, R.L., Prediger, D.J.: Coefficient kappa: some uses, misuses, and alterna-
tives. Educ. Psychol. Meas. 41(3), 687–699 (1981)

4. Hendry, D.G., Efthimiadis, E.N.: Conceptual models for search engines. In: Spink,
A., Zimmer, M. (eds.) Web Search. ISKM, vol. 14, pp. 277–307. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-75829-7 15

5. Hofer, S.I., Reinhold, F., Loch, F., Vogel-Heuser, B.: Engineering students’ thinking
about technical systems: an ontological categories approach. Front. Educ. 5, 66
(2020)

https://doi.org/10.1007/978-3-540-75829-7_15

250 M. Anders et al.

6. Horkoff, J., Yu, E.: Analyzing goal models: different approaches and how to choose
among them. In: ACM Symposium on Applied Computing, pp. 675–682 (2011)

7. Horkoff, J., Yu, E.: Interactive goal model analysis for early requirements engineer-
ing. Requirements Eng. 21(1), 29–61 (2014). https://doi.org/10.1007/s00766-014-
0209-8

8. ISO/IEC: ISO/IEC 25010 system and software quality models. Technical Report
(2010)

9. John, B.E., Kieras, D.E.: The GOMS family of user interface analysis techniques:
comparison and contrast. ACM Trans. Comput. Hum. Interact. 3(4), 320–351
(1996)

10. Jones, N., Ross, H., Lynam, T., Perez, P., et al.: Mental models: an interdisciplinary
synthesis of theory and methods. Technical Report (2011)

11. Kieras, D.E., Bovair, S.: The role of a mental model in learning to operate a device.
Cogn. Sci. 8(3), 255–273 (1984)

12. Lauesen, S., Harning, M.B.: Virtual windows: linking user tasks, data models, and
interface design. IEEE Softw. 18(4), 67–75 (2001)

13. Lucassen, G., Dalpiaz, F., Werf, J.M.E.M., Brinkkemper, S.: The use and effec-
tiveness of user stories in practice. In: Daneva, M., Pastor, O. (eds.) REFSQ 2016.
LNCS, vol. 9619, pp. 205–222. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-30282-9 14

14. Norman, D.A.: Some observations on mental models. In: Mental Models, pp. 7–14.
Psychology Press, Hove (2014)

15. Paech, B., Kohler, K.: Task-driven requirements in object-oriented development.
In: do Prado Leite, J.C.S., Doorn, J.H. (eds.) Perspectives on Software Require-
ments. SECS, vol. 753, pp. 45–67. Springer, Boston (2004). https://doi.org/10.
1007/978-1-4615-0465-8 3

16. Rieh, S.Y., Yang, J.Y., Yakel, E., Markey, K.: Conceptualizing institutional repos-
itories: using co-discovery to uncover mental models. In: 3rd Symposium on Infor-
mation Interaction in Context, pp. 165–174. ACM (2010)

17. Runeson, P., Host, M., Rainer, A., Regnell, B.: Case Study Research in Software
Engineering: Guidelines and Examples, 1st edn. John Wiley & Sons, New York
(2012)

18. Santos, R., Groen, E.C., Villela, K.: A taxonomy for user feedback classifications.
In: REFSQ Workshops, vol. 2376. CEUR-WS (2019)

19. Zhang, Y.: The influence of mental models on undergraduate students’ searching
behavior on the web. Inf. Process. Manage. 44(3), 1330–1345 (2008)

https://doi.org/10.1007/s00766-014-0209-8
https://doi.org/10.1007/s00766-014-0209-8
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-3-319-30282-9_14
https://doi.org/10.1007/978-1-4615-0465-8_3
https://doi.org/10.1007/978-1-4615-0465-8_3

Vision Video Making with Novices:
A Research Preview

Melanie Busch1(B), Jianwei Shi1, Lukas Nagel1, Johann Sell2,
and Kurt Schneider1

1 Software Engineering Group, Leibniz Universität Hannover,
Welfengarten 1, 30167 Hannover, Germany

{melanie.busch,jianwei.shi,lukas.nagel,
kurt.schneider}@inf.uni-hannover.de

2 Didaktik der Informatik/Informatik und Gesellschaft, Humboldt-Universität zu
Berlin, Rudower Chaussee 25, 12489 Berlin, Germany

sell@informatik.hu-berlin.de

Abstract. [Context and motivation] It is crucial to develop a vision
of what a new piece of software will do and how it will affect personal
tasks, processes, and the environment. Vision videos have been proposed
for visualizing a tentative vision very early in a project, long before proto-
types are in reach. Such a video can support the elicitation and validation
of (software) product visions. [Question/problem] However, vision
videos often have to be produced by people without prior knowledge in
video production. Can video novices be adequately supported through an
adapted vision video creation process? What materials, documents, and
steps are crucial for planning, recording, and finalizing a video? [Princi-
pal ideas/results] We derived recommendations for Affordable Vision
Videos. In this paper, we describe how the recommended process and
techniques performed when we created a vision video with the “Viva con
Agua” (VcA) NGO. [Contribution] The lessons learned from this case
study helped us improve our recommendations for requirements engi-
neers who are not proficient in directing videos but consider using them
as a good medium for expressing visions and soliciting rich feedback.

Keywords: Requirements engineering · Vision · Video · Video making

1 Introduction

Nowadays, countless different software systems exist in our everyday life. To
name just a few examples: The day begins with the use of a smartphone alarm
clock, followed by the preparation of a coffee with a fully automatic coffee
machine and the drive to the office with a smart car. The creation of software
systems like these require a vision at the very beginning of the development pro-
cess [2]. But how can a vision be communicated clearly and simply? One possible
solution for conveying a vision that appeals to both the visual and the auditory
channels is to use video, so-called Vision Video. According to Schneider et al.
[9], vision videos generally present the underlying problem, a solution illustrated
c© Springer Nature Switzerland AG 2022
V. Gervasi and A. Vogelsang (Eds.): REFSQ 2022, LNCS 13216, pp. 251–258, 2022.
https://doi.org/10.1007/978-3-030-98464-9_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98464-9_19&domain=pdf
https://doi.org/10.1007/978-3-030-98464-9_19

252 M. Busch et al.

by the future software system, and the added value associated with it. Before a
vision video can be used for requirements engineering, it has to be produced. As
this aspect is only rarely covered by research [3,5,6], in this paper, we focus on
the vision video making process.

In our research, we take the position that vision videos must be easy to
produce, with little effort and without additional costs. This approach is called
Affordable Video Approach [9]. Karras and Schneider [4] found that software pro-
fessionals without prior knowledge in video production need guidance for produc-
ing vision videos. In a subsequent publication, Karras and Schneider compiled
guidelines for vision video production [5]. Based on our previous work in the field
of vision videos [1,4,5,8,9], we have gained experience in preproduction, shoot-
ing and editing of vision videos. We now derived a step by step process of vision
video creation, which we tested in the case study with novices without prior
knowledge of vision videos. We supported the novices in the phase of prepro-
duction through recurring exchanges, guiding documents and materials so they
could shoot the vision video on their own. After the vision video was finalized,
we conducted an interview with the two vision holders about their experience
and opinion on making a vision video.

The paper is structured as follows: Sect. 2 describes the case study. Section 3
presents the results. Section 4 includes the discussion, lessons learned and threats
to validity. The paper is concluded in Sect. 5.

2 Case Study: A Vision Video for Viva con Agua e.V.

The goal of this research is to review and improve the existing vision video cre-
ation process and techniques. In particular, we wanted to figure out whether
vision video novices could be adequately supported by an adapted video cre-
ation process. We supported and guided such novices as part of our case study.
Afterwards we conducted interviews with the two involved vision holders.

2.1 Case Organization

We performed a case study with members of the non-governmental organiza-
tion Viva con Agua de St. Pauli e.V. (VcA)1, who were interested in spread-
ing the vision of a software pool architecture among their volunteers. VcA has
more than 15000 volunteers. The volunteers of the association collect donations
to support Water, Sanitation, and Hygiene (WASH) projects worldwide. Since
volunteering is a free time activity and VcA applies the principle of open partic-
ipation, the organization faces challenges regarding the coordination that have
been addressed by the self-implemented computer-supported cooperative work
tool Pool2 in 2011. After the introduction of the Pool, a socio-technical organi-
zation [7] and thus, also a structural coupling between the Pool and the social
system of the organization arose.
1 VcA, https://www.vivaconagua.org/, accessed 2021-09-21.
2 https://pool2.vivaconagua.org/, accessed 2021-09-21.

https://www.vivaconagua.org/
https://pool2.vivaconagua.org/

Vision Video Making with Novices: A Research Preview 253

2.2 Process and Materials Used

Four roles from two participating organizations took part in the video-making
process. On the side of the vision holder (VcA), three lay actors played the scenes
in the video. To keep the effort for vision videos low, scenes are often played by
the requirements engineers themselves as in Schneider et al. [9]. In addition, two
vision holders communicated with RE-Coaches. The RE-Coaches (instantiated
by researchers of the Leibniz Universität Hannover), are the authors of this paper
and one vision holder is a co-author. In addition, a video expert (one student
assistant) was in close dialogue with the RE-Coaches. All exchanges between
vision holders and RE-Coaches took place online via conferencing tools or email.

The RE-Coaches participated actively in the preproduction and postproduc-
tion, whereas the vision holders were active in the sections of preproduction and
shooting. In the following, we describe the sequence of exchange in chronological
order. First, exchanges between vision holders and RE-Coaches took place. The
product vision was identified. In the next step, one of the vision holders created
a short written draft of the vision. Since the RE-Coaches are familiar with the
creation of vision videos, they prepared the necessary materials and documents
in consultation with the vision holders during the preproduction phase. The
following materials and documents were created specifically to support novices:

– storyboard: hand-drawn pictures next to short descriptions of the scenes
– emotion graph: shows the development of emotion through the scenes
– key video shooting recommendations for novices
– material list: tabular listing of materials, quantity, scene, source
– scene list: tabular listing of location and time, scene, actor, material

Figure 1 shows the adapted process of vision video making which based on
the guidelines of Karras and Schneider [5]. In the preproduction phase, after
the step of planning the shots, the step “Create Vision Video of Vision Video”
was added. This novel additional step is inserted to convey the main idea of the
video’s content concretely, e.g. to possible actors or other persons on the side of
the vision holders who did not take part in the preproduction phase. Based on
the storyboard, the RE-Coaches developed a simple low-effort orientation video
to help vision holders produce the real vision video. This “vision video of the
vision video” consists of a montage of the hand-drawn storyboard images with
an audio track of the dialogues. In the preproduction phase, we selected key
video shooting recommendations from existing guidelines [5] we deemed most
relevant to novices. These guidelines are documented on one-page as a quick
reference for vision holders during the shooting. The green colored boxes with
dashed lines indicate the steps which the vision holders performed by themselves
without any further support of the RE-Coaches.

254 M. Busch et al.

Rough Edit

Tight Edit

Second Person
Review

Ini�al Mee�ngs
with

Stakeholders

Define Video´s
Purpose and

Topics

Invent Story

Plan Individual
Shots

Shoot
Scenes

Check Image &
Sound Quality

a�er each Shot

Storyboard
or

Script

List of
Shots by
Loca�on

Shortened
Shoo�ng

Guidelines

Rules for
Cu�ng

Pr
ep

ro
du

c�
on

Sh
oo

�n
g

Po
st
pr
od

uc
�o

n

Create
Vision Video of

Vision Video

!

!

Steps performed by VcA Members Steps added or adapted in the Process

Vision Video of
Vision Video

Finalized
Vision Video

Fig. 1. Adapted process of vision video making according to [5]

2.3 Empirical Investigation: Interviews

We interviewed two vision holders from VcA who had a vision in mind and
wanted to communicate it through a vision video. The interviews were semi-
structured, as an interview guide was used, but we also asked situational follow-
up questions. Due to the pandemic the interviews were held online via BigBlue-
Button3, a conferencing system. During the interviews, the audio was recorded
with the consent of the interviewees and then transcribed for the analysis. The
interviews took place after the video shoot and took 18 and 37 min respectively.
One interview participant answered in much more detail, hence the different
interview duration. Each interview was divided into three sections: (1) The

3 https://bigbluebutton.org/.

https://bigbluebutton.org/

Vision Video Making with Novices: A Research Preview 255

experience of creating a vision video (2) The use of materials and documents
(3) Rating of the final vision video.

3 Results

Experiences of Making a Vision Video
Both interviewees were very positively surprised that the video shoot worked
so well considering that they had no prior knowledge regarding vision video
creation. One of them stated that they did not expect the shooting to be com-
pleted in just one day. Another positive statement was that the video quality
was surprisingly good, even though only smartphone cameras were used to film
the scenes. The filming of the video took place using several smartphones partly
from different angles.

Helpful Materials for Novice (Vision) Video Makers
Both interviewees said that the material list was used and one stated that
the list was important. One interviewee said that the discussions with the
RE-Coaches prior to the actual shooting were very supportive in clarifying the
vision more and more. Opinions are divided on the “vision video of the vision
video”. One interviewee stated that they remember the “vision video of the
vision video” most closely of all the support materials they were given. On a scale
from 0 (not helpful at all) to 5 (totally helpful) they rated the video with a 4.
One interviewee said the hand-drawn pictures and the spoken dialogues were very
illustrative. According to the other interviewee, the video was shown to the actors
too late. For this reason, the respondent rated the helpfulness of the “vision
video of the vision video” with a 3. Another document that was considered
important by one of the interviewees was the storyboard. The sequence of
the scenes and images included in the storyboard were perceived as relevant.
The scene list had also been considered, as mentioned by one interviewee. The
scene list showed that double casting of a role was possible, so the scene list
was explicitly mentioned by one interviewee. The emotion graph and the key
video shooting recommendations for novices were consulted before the
shooting but not used during the shoot.

Rating of the Final Vision Video
One question in the interview asked about the rating of the finished vision video
on a 6-point Likert-scale from 0 (not at all satisfied) to 5 (completely satisfied).
Both interviewees were satisfied with the vision video and rated it a 4. In the
interview, the respondents were asked whether they would use vision videos in
the future, and if so, for what purpose or in which context. One interviewee
stated that a future use of vision videos in the context of workshops could be
well imagined. To detail the previous statement, they mentioned contexts where
it is necessary to present things under time pressure and without much effort.
The other interviewee issued a similar statement and noted that vision videos
could be seen as a kind of workshop result.

256 M. Busch et al.

4 Discussion

Vision videos provide a good way to convey a vision among stakeholders in the
early phases of a project. In this paper, we focus on how to best support novices
during vision video making. An important point to emphasize is that all scenes
for the vision video were shot by novices during only one day. This result is
comforting, as even novices can make vision videos in a moderate amount of
time. The required time of only one day and the exclusive use of smartphones
for filming further underline the principles of the Affordable Video Approach
proposed by Schneider et al. [9].

4.1 Lessons Learned

The order of the lessons corresponds to the sequence of steps or the used mate-
rials in the video making process:

– The purpose of using vision videos is to elicit, visualize, and validate visions
about software and its use. Discussions between vision holders and RE-
Coaches are an important step in evolving and sharpening the vision.

– The “vision video of the vision video” was a fast and inexpensive way of
providing a first version of a vision video with sound. It is recommended to
benefit from such a rich-media shortcut before filming all scenes with real
people.

– We propose using the emotion graph as an orientation in the preproduction
phase.

– The items on the material list have to be reviewed in terms of availability by
participants of the video shoot.

– Ways to ensure a good sound quality for outdoor recordings are required.

4.2 Threats to Validity

Despite careful design and execution, there are some limitations to our work
which we discuss in the following section. We classify threats according to Wohlin
et al. [10]. Construct Validity: A threat to the construct validity is that the
process has only been practically implemented on the example of one case, which
resulted in only one vision video. Internal Validity: One of the vision hold-
ers interviewed is also a co-author of this paper, as they assisted us with their
knowledge of VcA during the writing process. The impact of this limitation was
mitigated by interviewing the other vision holder as well. Furthermore, the men-
tioned co-author was strictly separated from the preparation and evaluation of
the interviews. These tasks were only performed by the RE-Coaches. Conclu-
sion Validity: The conclusion validity concerning the evaluation of the vision
video creation process could be subjectively impacted, as the analysis was pri-
marily performed by a single author. However, the other authors participating as
RE-Coaches reviewed the transcripts and the derived findings and came to the
same results. External Validity: An important threat to the external validity

Vision Video Making with Novices: A Research Preview 257

is that a replication of the case study is not possible. Our adapted process of
vision video making requires replication in other case studies to support our
findings and gain generalizability.

5 Conclusion

In the case study reported in this paper, the authors supported novices in creat-
ing a vision video using an adapted vision video making process. Novices with no
previous experience were able to shoot the scenes for a vision video in just one
day. In the end, the vision holders were satisfied with the final vision video. In
addition, the case study showed once again that no expensive camera equipment
is needed for filming; all scenes were shot with smartphones.

Evaluation Plan: Our results indicate that further research on the creation of
vision videos with novices is necessary and promising. In the short term, we plan
to interview the vision holders once the created video has been distributed to the
target audience. We also look to give out questionnaires to audience members.
In the long term, we plan workshops for novices with a focus on creating vision
videos. Workshop participants might be able to create videos with little effort
by following a process influenced by the results of this paper.

Acknowledgement. This work was supported by the Deutsche Forschungsgemein-
schaft (DFG) under Grant No.: 289386339, project ViViUse.

References

1. Busch, M., Karras, O., Schneider, K., Ahrens, M.: Vision meets visualization: are
animated videos an alternative? In: Madhavji, N., Pasquale, L., Ferrari, A., Gnesi,
S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 277–292. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-44429-7 19

2. Creighton, O., Ott, M., Bruegge, B.: Software cinema-video-based requirements
engineering. In: 14th IEEE International Requirements Engineering Conference
(RE 2006), pp. 109–118. IEEE, September 2006

3. Karras, O.: Supporting Requirements Communication for Shared Understanding
by Applying Vision Videos in Requirements Engineering. Logos Verlag Berlin
GmbH (2021)

4. Karras, O., Schneider, K.: Software professionals are not directors: what consti-
tutes a good video? In: 2018 1st International Workshop on Learning from other
Disciplines for Requirements Engineering (D4RE), pp. 18–21. IEEE (2018)

5. Karras, O., Schneider, K.: An interdisciplinary guideline for the production of
videos and vision videos by software professionals. Technical Report, Software
Engineering Group, Leibniz Universität Hannover (2021). https://arxiv.org/abs/
2001.06675v2

6. Karras, O., Schneider, K., Fricker, S.A.: Representing software project vision by
means of video: a quality model for vision videos. J. Syst. Softw. 162, 110479
(2020)

https://doi.org/10.1007/978-3-030-44429-7_19
https://arxiv.org/abs/2001.06675v2
https://arxiv.org/abs/2001.06675v2

258 M. Busch et al.

7. Kunau, G.: Facilitating computer supported cooperative work with socio-technical
self-descriptions. Ph.D. thesis, Technische Universität Dortmund (2006)

8. Nagel, L., Shi, J., Busch, M.: Viewing vision videos online: opportunities for dis-
tributed stakeholders. In: 2021 IEEE 29th International Requirements Engineering
Conference Workshops (REW), pp. 306–312 (2021)

9. Schneider, K., Busch, M., Karras, O., Schrapel, M., Rohs, M.: Refining vision
videos. In: Knauss, E., Goedicke, M. (eds.) REFSQ 2019. LNCS, vol. 11412, pp.
135–150. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15538-4 10

10. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., Wesslén, A.: Exper-
imentation in Software Engineering. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-29044-2

https://doi.org/10.1007/978-3-030-15538-4_10
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.1007/978-3-642-29044-2

Author Index

Alhoshan, Waad 52
Anders, Michael 235
Aymaz, Iliass 63

Balasubramaniam, Nagadivya 3
Bartels, Nedo 175
Berry, Daniel M. 19
Bragilovski, Maxim 131
Brataas, Gunnar 159
Brunotte, Wasja 26
Busch, Melanie 251

Chazette, Larissa 26
Cherukuri, Himaja 79
Craviee De Abreu Vieira, Daniel 183

Dalpiaz, Fabiano 35, 131
Dellsén, Emanuel 115

Eriksson, Olof 199
España, Sergio 35

Farrell, Marie 96
Ferrari, Alessio 52, 79

Geppert, Hanna 63
Gordijn, Jaap 175
Græslie, Lisa S. 159
Großer, Katharina 63

Hanssen, Geir Kjetil 159
Hasso, Hussein 63
Herwanto, Guntur Budi 148
Heyn, Hans-Martin 199
Hiekkanen, Kari 3
Horkoff, Jennifer 115, 219

Jürjens, Jan 63

Kauppinen, Marjo 3
Klös, Verena 26
Knauss, Eric 199

Kopczyńska, Sylwia 183
Kujala, Sari 3

Letsholo, Keletso J. 52
Linder, Jennifer 199
Luckcuck, Matt 96

Möller, Niklas 219
Monahan, Rosemary 96
Murali, Vidhya 87

Nagel, Lukas 251
Nayak, Anmol 87

Obaidi, Martin 235
Ochodek, Mirosław 183

Paech, Barbara 235
Ponnalagu, Karthikeyan 87
Post, Amalinda 87

Qiu, Xinlu 159
Quirchmayr, Gerald 148

Rasiman, Randell 35

Schneider, Kurt 235, 251
Sell, Johann 251
Sheridan, Oisín 96
Shi, Jianwei 251
Speith, Timo 26
Spoletini, Paola 79
Sturm, Arnon 131
Subbiah, Padmini 199

Timmapathini, Hari Prasad 87
Tjoa, A. Min 148

Venkoparao, Vijendran Gopalan 87

Westgårdh, Karl 115

Zhao, Liping 52

	 Preface
	 REFSQ 2022 Organization
	 Contents
	Artificial Intelligence and Explainability
	Transparency and Explainability of AI Systems: Ethical Guidelines in Practice
	1 Introduction
	2 Related Work
	2.1 Ethical Requirements of AI Systems
	2.2 Transparency as a Quality Requirement
	2.3 Explainability as a Quality Requirement

	3 Research Method
	4 Results
	4.1 Overview of Ethical Guidelines of AI Systems
	4.2 From Ethical Guidelines to Explainability Requirements
	4.3 Quality Requirements Related to Transparency and Explainability

	5 Discussion
	5.1 Transparency and Explainability Guidelines in Practice
	5.2 Threats to Validity

	6 Conclusions
	References

	Requirements Engineering for Artificial Intelligence: What Is a Requirements Specification for an Artificial Intelligence?
	1 Introduction: Background and Some Related Work
	2 Basic Approach
	3 Recall, Precision, Summarization
	4 Evaluation of A1 and A2 with the Measures
	5 What an RS for an AI Is
	6 Related Work
	7 Future Work
	References

	Quo Vadis, Explainability? – A Research Roadmap for Explainability Engineering
	1 Introduction
	2 State of the Art
	3 Explainability: Research Directions
	3.1 Details on the Workshop and Methodology
	3.2 Fundamental Research Questions
	3.3 Explainability Engineering

	4 Conclusion
	References

	Machine Learning
	How Effective Is Automated Trace Link Recovery in Model-Driven Development?
	1 Introduction
	2 Related Work on Automated RTR
	3 Case Study at Mendix
	3.1 Studied Artefacts
	3.2 Studied Datasets
	3.3 Objective and Evaluation Scenarios

	4 Requirement Trace Link Classifier
	4.1 Data Description and Trace Construction
	4.2 Feature Engineering
	4.3 Data Rebalancing
	4.4 Classification Algorithms

	5 Results
	5.1 Quantitative Results
	5.2 Features Importance

	6 Threats to Validity
	7 Conclusion and Future Work
	References

	A Zero-Shot Learning Approach to Classifying Requirements: A Preliminary Study
	1 Introduction
	2 Background: From Transfer Learning to Zero-Shot Learning
	3 Preliminary Study
	4 Conclusion and Future Plan
	References

	Natural Language Processing
	Abbreviation-Expansion Pair Detection for Glossary Term Extraction
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Abbreviation Detection
	5 Detection of AEP Candidates
	5.1 AEP Detection with Semantic Similarity Measures
	5.2 AEP Detection with Syntactic Similarity Measures
	5.3 AEP Detection with Feature-Based Similarity Measures
	5.4 Evaluation of the Approaches on a Synthesized Data-Set
	5.5 Evaluation of the Approaches on a Requirements Data-Set

	6 Integration into Clustering Workflow
	6.1 Ideal Clustering Solution
	6.2 GTE Processing Steps

	7 Discussion
	8 Conclusions
	References

	Towards Explainable Formal Methods: From LTL to Natural Language with Neural Machine Translation
	1 Introduction
	2 Towards Explainable LTL Requirements
	2.1 RQ1: From LTL to NL with Neural Machine Translation
	2.2 RQ2, RQ3: Visual Representations and Empirical Evaluation

	3 Conclusion and Future Works
	References

	Req2Spec: Transforming Software Requirements into Formal Specifications Using Natural Language Processing
	1 Introduction
	2 Background
	3 Req2Spec Pipeline
	3.1 Dataset
	3.2 Scope and Pattern Classification
	3.3 Named Entity Recognition (NER)
	3.4 Test Intent Extraction
	3.5 Triplet Extraction
	3.6 Expression (EXPR) Generation
	3.7 HANFOR Formal Specifications (FS)

	4 Results
	5 Conclusion and Future Work
	References

	FRETting About Requirements: Formalised Requirements for an Aircraft Engine Controller*-8pt
	1 Introduction
	2 Background
	3 Our Requirements Elicitation Process Using FRET
	3.1 Requirements-Driven Methodology
	3.2 Speaking FRETISH: Parent Requirements
	3.3 Adding Detail: Child Requirements

	4 An Analysis of Elicited Requirements
	4.1 Requirement Templates
	4.2 Parent-Child Relationship in Our Use Case
	4.3 Translatable Requirements

	5 Lessons Learnt and Future Improvements
	6 Conclusions and Future Work
	References

	User Stories
	Invest in Splitting: User Story Splitting Within the Software Industry
	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Results
	5 Discussion
	6 Conclusions
	References

	Guided Derivation of Conceptual Models from User Stories: A Controlled Experiment
	1 Introduction
	2 Background and Related Work
	3 Guidelines for Deriving Models from User Stories
	4 Experiment Design
	5 Experiment Results
	5.1 Background Questionnaire
	5.2 Completeness and Validity of the Derived Models
	5.3 Subjects' Opinion
	5.4 Qualitative Insights

	6 Discussion
	7 Threats to Validity
	8 Summary
	References

	From User Stories to Data Flow Diagrams for Privacy Awareness: A Research Preview
	1 Introduction
	2 Related Work
	3 The Proposed Approach
	3.1 Generating Elements and Relationships from User Stories
	3.2 Generating Data Flow Diagrams

	4 Case Study
	5 Preliminary Evaluation
	6 Conclusion and Future Work
	References

	Business, Markets, and Industrial Practice
	Requirements Engineering in the Market Dialogue Phase of Public Procurement: A Case Study of an Innovation Partnership for Medical Technology
	1 Introduction
	2 Background
	2.1 Innovative Partnership and Market Dialogue
	2.2 Procurement and Requirements Engineering

	3 The Autoscore Case
	4 Method
	4.1 Research Method
	4.2 Data Points
	4.3 Data Analysis

	5 Findings
	5.1 Focusing Requirements Through Vendor Dialogue Meetings
	5.2 Risk Management
	5.3 A Cross-Functional Procurement Team
	5.4 Trust from Vendors

	6 Discussion
	6.1 Clarifying and Focusing Needs and Requirements
	6.2 Understanding of the Innovation Partnership Instrument Among Vendors
	6.3 Vendor Matching
	6.4 A Well-Aligned Cross-Functional Procurement Team
	6.5 Summary of Discussion

	7 Threats to Validity
	8 Conclusions
	References

	A Business Model Construction Kit for Platform Business Models - Research Preview
	1 Introduction
	2 Revenue Model as a Part of a Platform Business Model
	3 Dynamics of Evolving Platform Business Models
	4 Organizing Revenue Models into Patterns
	5 Roadmap
	6 Conclusion
	References

	On Testing Security Requirements in Industry – A Survey Study
	1 Introduction
	2 Related Work
	3 Research Methodology
	4 Results and Discussion
	4.1 Demographic Information
	4.2 RQ1. Are Security Requirements Tested?
	4.3 RQ2. How Valuable to the Project Is Testing Security Requirements?
	4.4 RQ3. What Are the Challenges of Testing Security Requirements?
	4.5 RQ4. What Are the Approaches and Tools Used to Test Security Requirements?

	5 Conclusions
	References

	Setting AI in Context: A Case Study on Defining the Context and Operational Design Domain for Automated Driving
	1 Introduction
	2 Background
	2.1 Research Design

	3 Methodology
	3.1 Preparation of Interviews
	3.2 Data Collection Through Interviews
	3.3 Data Analysis

	4 Results
	4.1 RQ1: What Is the Current Understanding of Context Definitions?
	4.2 RQ2: What Are the Challenges with Deriving Context Definitions from Use Cases?
	4.3 RQ3: Which Support Would Be Appropriate for Deriving Context Definitions from Use Cases?

	5 Discussion
	5.1 Triangulation with Background Literature
	5.2 Discussion and Main Findings
	5.3 Threats to Validity
	5.4 Conclusion

	References

	Cognition and Expression
	Requirements Engineering for Software-Enabled Art: Challenges and Guidelines
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussion
	6 Conclusion
	References

	A Study on the Mental Models of Users Concerning Existing Software
	1 Introduction
	2 Background and Related Work
	2.1 Mental Model
	2.2 TORE

	3 Study Design
	3.1 Research Questions
	3.2 Data Collection
	3.3 Data Analysis

	4 Results and Discussion
	4.1 Answering the Research Questions
	4.2 Discussion and Future Work

	5 Threats to Validity
	6 Conclusion
	References

	Vision Video Making with Novices: A Research Preview
	1 Introduction
	2 Case Study: A Vision Video for Viva con Agua e.V.
	2.1 Case Organization
	2.2 Process and Materials Used
	2.3 Empirical Investigation: Interviews

	3 Results
	4 Discussion
	4.1 Lessons Learned
	4.2 Threats to Validity

	5 Conclusion
	References

	Author Index

