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Abstract

Deserts are the most dominant terrestrial environments as they cover over a third
of the Earth’s emerged surface. These arid ecosystems further influence global
biogeochemical cycling particularly via the emission of dust. These dust clouds
can travel thousands of kilometers and fertilize very distant environments as well
as intensify global warming. This is concerning as desert surfaces are expanding
with climate change. This concluding chapter therefore briefly discusses possible
novel research avenues that desert microbial ecologist could follow in the context
of climate change.

Deserts biomes experience a very wide range of macro-climatic conditions. They
may be either hot (e.g., the Sahara Desert) or cold (the Antarctic McMurdo Dry
Valleys), may be coastal (e.g., the Atacama and Namib Deserts) or inland (e.g.,
Mojave and Gobi Deserts) and may be low or high altitude. However, the critical
common feature shared by desert biomes is a general deficiency in water availability.
To be considered a desert, an environment must present an aridity index (Al),
defined as the ratio of Precipitation (P) over Potential Evapotranspiration (PET)
[AI=P/PET], below 0.65. The AI allows a further sub-classification of the aridity
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status of drylands from dry-subhumid (0.5 < AI <0.65) to hyperarid (Al <0.05).
Using these Al-based definitions, drylands/deserts represent the most dominant
biome on Earth, covering approximately 40% of the planet’s terrestrial surface and
being the only biome present on the six continents. To obtain a better understanding
of the climatic and geomorphological features that give rise to hot deserts globally,
the reader is referred to Chap. 1 of this book.

Given the scale of dryland coverage on terrestrial Earth, a comprehensive under-
standing of how these dominant ecosystems function is highly relevant at the
planetary scale. The chapters compiled in this book provide a comprehensive
“microbes-eye view” on how these fragile ecosystems are driven by microbially-
mediated processes. This is further emphasized by the fact that our species, Homo
sapiens, the most widespread (and devastating; IPCC 2021) ecosystem engineer on
the planet, has a high socioeconomic dependence on dryland ecosystems. More than
2 billion humans, mostly from poor and developing countries are potentially
impacted by dryland expansions (desertification processes), according to the United
Nations Decade for Deserts and the fight against Desertification (UNDDD)
2010-2020 reports (http://www.un.org/en/events/desertification_decade/whynow.
shtml).

Deserts have a substantial impact on the overall functioning of planet Earth
(Pointing and Belnap 2014; Kok et al. 2017). Annually, billions of tons of soil-
derived dust are emitted from deserts and dispersed at very large scales, with
significant impacts on local biogeochemistry and climate (Herut et al. 2002; Jickells
et al. 2005; Kellogg and Griffin 2006; Bristow et al. 2010; Gonzalez-Martin et al.
2014; Pointing and Belnap 2014; Kok et al. 2017; Sikoparija 2020). Remarkably, the
phosphorous-deficient Amazon Basin in South America, which is the most produc-
tive region in the world, receives a significant amount of phosphorous (P) from a
relatively small area in the southern Sahara in Chad, the Bodélé Depression of
around 10,800 kmz; circa the surface of Jamaica or Lebanon (Bristow et al. 2010).
Some 6.5 Tg of Fe and 0.12 Tg of P [1 Tg = 10” kg] are emitted each year from the
Bodélé Depression, fertilizing the otherwise oligotrophic Atlantic Ocean or the other
P-starved Amazon environments (Bristow et al. 2010). Similarly, the dust aerosols
emitted by Asian deserts have been shown to cross the Pacific Ocean and even reach
the eastern coast of the north America (Kellogg and Griffin 2006), a journey of over
15,000 km. Desert dust aerosols may even participate in global warming (Kok et al.
2017), a cause for concern given that global desert surface areas are increasing with
climate change (e.g., Huang et al. 2016, 2017). Desert soil stabilization via the
restauration of microbial-dominated biological soil crusts clearly represents a rele-
vant strategy that could be implemented to mitigate the impact of climate change at
both the desert biome and the global Earth system scales (e.g., Chap. 3; Bowker
2007; Tucker et al. 2020). Given that BSCs represent N and C fixation hubs in such
environments, such a strategy would have a beneficial effect on hot desert primary
production, as outlined in Chaps. 3 and 7.

In a world hit by the worst pandemic of modern record, it is also noteworthy that
cross-continental desert dust transport events represent potential human and plant
health hazards as exogenous pathogens (particularly spore-forming microorganisms)
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may hitch-hike on dust particles and colonize/affect new hosts (Griffin 2007;
Gonzalez-Martin et al. 2014; Zhang et al. 2016; Salawu-Rotimi et al. 2021). In
this context, the recent advances in microbial aerobiology—particularly meta’omics’
(e.g., Archer and Pointing 2020; Archer et al. 2021; Maki et al. 2021; Chap. 2)—
represents a key future avenue of research for desert microbial ecology.

In addition to water deficiency, a range of other abiotic stresses are imposed on
desert (micro)biota. These may include (hyper)oligotrophy, high soil salinity, high
UV irradiation, and high daily and seasonal temperature fluctuations (Noy-Meir
1973). As a result, microorganisms are often referred to as the main driving forces of
hot desert biogeochemical cycling (Pointing and Belnap 2012; Makhalanyane et al.
2015; Cowan et al. 2020). Chap. 7 summarizes the data indicating how microbial
communities from different desert biotopes perform key steps of the C, N, and P
cycles. There is even a growing body of evidence demonstrating that desert BSCs are
crucial for the cycling of S (e.g., Qi et al. 2021; Zhang et al. 2021). Indeed, as clearly
described in the various chapters of this book—and contrary to historical belief'—
these depauperate ecosystems are populated by a wide array of taxa (e.g., Chaps. 3—
9). Diverse, active, and highly adapted microbial communities have successfully
colonized the various niches present in hot deserts, from exposed desert pavements
to cryptic refuge niches (such as hypo/endoliths; Chaps. 3-9; Cowan et al. 2020).
Even the harshest of desert ecosystems, such as in the most hyperarid regions of the
Atacama and Namib Deserts, are colonized by a wide range of active microbial taxa
(Gunnigle et al. 2014, 2017; Schulze-Makuch et al. 2018; Ledn-Sobrino et al. 2019;
Chaps. 4 and 9). The unique and specialized adaptations of microorganisms to the
polyextreme conditions imposed by desert environments—many of which are
described in Chap. 10—are exemplified by the recent discovery of the microbial
metabolic capacity for harvesting atmospheric trace gasses such as H, and CO,
effectively unlimited resources in otherwise depauperate environments, for energy
and biomass production (e.g., Ji et al. 2017; Jordaan et al. 2020). The observation
that aerobic H, oxidation is “hydrogenic” (water-producing: Ortiz et al. 2021) offers
the intriguing and potentially paradigm-changing possibility that desert soil micro-
bial communities generate their own water! The extent to which metabolic
hydrogenesis contributes to the water budgets of desert soil microbiomes, and
whether this process is capable of supporting basal cellular metabolism (or even
higher desiccation-sensitive metabolic functions such as photosynthesis and cell
division) is currently unknown.

Nevertheless, this recent discovery strongly suggests that, within the many desert
niches described in this book, new metabolic processes may remain to be discovered,

'In 1903, when Captain Scott first discovered the Dry Valleys in Antarctica, he wrote “It is worthy
to record, too, that we have seen no living thing, not even a moss or a lichen; all that we did find, far
inland amongst the moraine heaps, was the skeleton of a Weddell seal, and how that came there is
beyond guessing. It is certainly a valley of the dead; even the great glacier which once pushed
through it has withered away” (Scott 1907). Yet this Mars-like environment unarguably harbors
diverse and active microbial communities (e.g., Lee et al. 2012; Chan et al. 2013; Ortiz et al. 2020;
Canini et al. 2021; Chap. 10).


https://doi.org/10.1007/978-3-030-98415-1_2
https://doi.org/10.1007/978-3-030-98415-1_7
https://doi.org/10.1007/978-3-030-98415-1_3
https://doi.org/10.1007/978-3-030-98415-1_9
https://doi.org/10.1007/978-3-030-98415-1_3
https://doi.org/10.1007/978-3-030-98415-1_9
https://doi.org/10.1007/978-3-030-98415-1_4
https://doi.org/10.1007/978-3-030-98415-1_9
https://doi.org/10.1007/978-3-030-98415-1_10
https://doi.org/10.1007/978-3-030-98415-1_10

344 J.-B. Ramond and D. A. Cowan

thanks to microbial metabolic ingenuity and plasticity when confronted with envi-
ronmental extremes. The latest high-resolution and high-throughput methods used to
study (desert) environmental microbial communities, which are described in
Chap. 2, could be central to such discoveries. It is an exciting prospect that such
discoveries could lead to the future development of new biotechnologies and even
improvements in desert farming (Marasco et al. 2012; Bull et al. 2016; Chap. 8).

However, the world’s climate is clearly changing and, in general, desert regions
are predicted to become hotter and drier (Huang et al. 2016, 2017). For the first time,
the most recent IPCC report clearly states that climate change is an anthropogenic
phenomenon: “It is unequivocal that human influence has warmed the atmosphere,
ocean and land. Widespread and rapid changes in the atmosphere, ocean,
cryosphere and biosphere have occurred.” and “Each of the last four decades has
been successively warmer than any decade that preceded it since 1850” (IPCC
2021). This global temperature increase is clearly shown in Fig. 12.1, a 20-year
comparison of global temperature anomalies in 2001, compared to 2021. Further-
more, 50 °C and above temperatures are now measured at high frequencies globally
(Fig. 12.2; Di Luca et al. 2020) and are not limited to drylands. In June 2021, a
record high 49.5 °C was measured in British Columbia (Canada) at a latitude of
50.2333° N!
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Fig. 12.1 Maps of the monthly global temperature anomalies on Earth from January to August in
2001 and 2021. Imagery produced by the NASA Earth Observations team based on data provided
by the NASA Goddard Institute for Space Studies (GISS). Downloaded from https://neo.sci.gsfc.
nasa.gov/ on the 6th of October 2021. The maps depict how much warmer (i.e., redder) or colder
(i.e., bluer) a region may be in a given month compared to the norm for that same month in the same
region from 1951 to 1980. These maps do not depict absolute temperature but instead show
temperature anomalies, or how much it has changed. The source data for these images is 2 x 2
degrees—or 180 x 90 pixels
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Fig. 12.2 Photograph of a bus stop in the suburbs of Madrid (Spain) on the 14th of August 2021
indicating a temperature of 50 °C (!). Photo courtesy Mr. José Luis Corbacho

In heating steadily warming world, can hot desert microbial communities main-
tain their essential ecosystem functions? This is a critical question, the answer to
which requires both a qualitative and quantitative understanding of the functions of
desert soil microbiomes, and how such functions may change with changes in water
availability and temperature regimes. These two factors are intimately
interconnected: increased temperatures will elevate rates of evapotranspiration and
decrease mean desert soil moisture contents. In habitats where water-stress is the
dominant driver of microbial community structure and function (Makhalanyane
et al. 2015), it is confidently predicted that increased mean temperatures will
negatively impact microbial communities and the processes they mediate (Neilson
et al. 2017; Jansson and Hofmockel 2020). Temperature rises in African and North
America deserts have already been shown to reduce the photosynthetic rates in
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lichens (Maphangwa et al. 2012) and mosses (Grote et al. 2010), and to significantly
decrease biological soil crust cover (~ 44% in 4 years) at two semiarid sites in Spain
(Maestre et al. 2013).

However, climate change and the associated regional warming, despite being
global phenomena (IPCC 2014, 2021), will have locally specific impacts (Faramarzi
et al. 2013; IPCC 2014). Different deserts and the different habitats of each desert
harbor unique microbial assemblages that may react differently to thermal and xeric
impacts; i.e., may exhibit different degrees of structural and functional resilience
(Caruso et al. 2011; Johnson et al. 2017; Chaps. 10 and 11). Consequently, a global
effort is necessary to evaluate the impacts of increasing temperatures in each of the
Earth’s hot deserts, by cataloging and understanding the responsiveness of the
different microbial communities, and the way in which such responses affect
ecosystem services. This is particularly relevant, given that climate models often
lack microbially-mediated data (Treseder et al. 2012; Jansson and Hofmockel 2020).
Apart from higher seasonal temperatures (Fig. 12.1), climate change is also predicted
to lead to hydrological cycle discrepancies in hot deserts, i.e., longer droughts, and
with fewer but more intensive precipitation events (Faramarzi et al. 2013; IPCC
2014, 2021). In this context, the studies summarized in Chap. 11 provide critical
information on how hot desert microbial communities may react to changes in water
inputs.

Our conclusion, supported by the comprehensive chapters contributing to this
text, is that the past decades of research on desert soil ecosystems using the latest and
most sophisticated omics technologies have done much to help us understand the
structure and functional capacity of desert soil microbiomes. We also conclude that
there remain huge gaps in our understanding of these fascinating systems, particu-
larly relating to the quantitative aspects of soil microbiome function and their
responsiveness to the abiotic variables to which they are exposed. The next two
decades of research on desert soil microbiomics may be even more exciting that
the last!
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