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Abstract. Advances in machine learning and deep learning make it pos-
sible to detect and analyse emotion and sentiment using textual and
audio-visual information at increasing levels of effectiveness. Recently, an
interest has emerged to also apply these techniques for the assessment of
mental health, including the detection of stress and depression. In this
paper, we introduce an approach that predicts stress (emotional valence
and arousal) in a time-continuous manner from audio-visual recordings,
testing the effectiveness of different deep learning techniques and various
features. Specifically, apart from adopting popular features (e.g., BERT,
BPM, ECG, and VGGFace), we explore the use of new features, both
engineered and learned, along different modalities to improve the effec-
tiveness of time-continuous stress prediction: for video, we study the use
of ResNet-50 features and the use of body and pose features through
OpenPose, whereas for audio, we primarily investigate the use of Inte-
grated Linear Prediction Residual (ILPR) features. The best result we
achieved was a combined CCC value of 0.7595 and 0.3379 for the devel-
opment set and the test set of MuSe-Stress 2021, respectively.

Keywords: Emotion detection · Excitation source features · Human
pose · LP analysis · Multimodal fusion · Multimodal sentiment analysis

1 Introduction

Understanding emotion from different types of media content like text, audio,
and video is a critical development for the early detection of mental health issues
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such as depression and anxiety. The recent growth in deep learning methods
has helped to improve the automated understanding of different types of media
content. The research effort outlined in this paper was conducted within the
context of the Multimodal Sentiment Analysis in Real-life Media (MuSe) 2021
challenge. This challenge consists of four sub-challenges, namely MuSe-Wilder,
MuSe-Sent, MuSe-Stress, and MuSe-Physio [1], with these sub-challenges relying
on two datasets: MuSe-CaR and ULM -TSST [2]. The work proposed in this paper
addressed the Multimodal Emotional Stress (MuSe-Stress) 2021 sub-challenge,
targeting the prediction of the level of emotional arousal and valence in a time-
continuous manner from audio-visual recordings. The MuSe-Stress 2021 dataset
(i.e., ULM -TSST) was distributed in two versions: (1) extracted features and (2)
raw audio-visual recordings, along with a text version of the speech. We studied
the results obtained by the provided baseline, leading to the observation that
the extracted features had already been experimented with in different setups.
Hence, we focused on engineering new features, with the goal of improving the
effectiveness of emotional stress prediction.

For the video modality, we explored and experimented with various pre-
trained vision models and found ResNet-50 [3] to obtain the best performance
for the development test. Further, to explore novel features, we extracted new fea-
tures related to human pose. In particular, we exploited the emotional attributes
encoded in human body language like hand gestures, shoulder movement, neck
movement, and full-body position. Extracting features from human pose was
challenging due to the following reasons: (1) hand gesture identification: all par-
ticipants have a sensor in one hand, which makes it difficult for a model to
identify both hands (often only one hand was detected), (2) foot gesture iden-
tification: the video was recorded at a certain distance, with many frames hav-
ing missing lower body parts, and (3) natural movement: all participants were
equipped with sensors, with these sensors restricting the natural movement of
body parts, thus limiting the availability of pose and associated emotional infor-
mation. Some of these challenges were resolved through the use of OpenPose [4],
YOLO [5], and pre-processing (e.g., resizing of the bounding box of a hand).
We observed that human pose is able to provide good features for detecting
human emotions. Still, to solve the aforementioned challenges in a more effec-
tive way, other approaches can be leveraged to obtain better features from human
gestures.

For the audio modality, we experimented with the provided features and
also investigated new features, namely Integrated Linear Prediction Residual
(ILPR) features [6]. Our final audio predictions were based on the combination
of eGeMAPS [7] and ILPR features. For the text modality, we experimented
with BERT [8] features. Still, from the baseline and based on our experiments,
we learned that text features generally degrade the performance when combining
them with other features. We largely used the model and code given as the
baseline to implement our deep learning approach, tuning various parameters
like the network size and the learning rate. Since early fusion (concatenation
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of features before model training) was not resulting in a good performance, we
adopted the late fusion approach used by the baseline.

Our best performing combination achieved CCC values of (0.7549, 0.7640),
outperforming the baseline result (0.5043, 0.6966) for the development set (for
arousal and valence, respectively). However, our best performing combination
(0.2297, 0.4158) did not do well on the internal test set of MuSe-Stress 2021,
compared to the baseline test result (0.4562, 0.5614). We plan to further mitigate
this performance gap in future work.

The remainder of this paper is organized as follows. Section 2 discusses the
features and the model used by our approach. Section 3 describes our experi-
ments and the results obtained. Finally, Sect. 4 concludes the paper.

2 Features and Model

2.1 Audio

Speech, which is the preferred form of communication between individuals, car-
ries a substantial amount of primary information (e.g., the intended message) and
secondary information (e.g., emotion, speaker identity, and gender). Speech pro-
duction characteristics are different for neutral speech and emotionally charged
speech. This difference in speech production characteristics under different emo-
tion scenarios is reflected in terms of changes in the vocal tract system and the
excitation source [6]. This motivated us to explore information about both the
excitation source and the vocal tract for feature extraction for the purpose of
time-continuous prediction of emotional valence and arousal.

Excitation Source Features for Audio. The task of separation of the vocal
tract and excitation source information from a given speech signal has been
explored in the literature [9–11]. Researchers have suggested the use of Linear
Prediction (LP) analysis, with proper order selection [12] to model the vocal
tract and excitation source information. The LP Coefficients obtained from
LP analysis represent the vocal tract information, and the LP residual signal
obtained using the inverse filter represents the excitation source information.
For a detailed overview of the Integrated Linear Prediction Residual (ILPR)
signal extraction process, please refer to [13]. A brief description regarding the
extraction of the ILPR signal is given below.

Given a speech signal s[n], where n represents the sample index and n =
0, 1, . . ., the first stage involved is using a pre-emphasis filtering to enhance the
high-frequency components of the speech signal. The filtered signal se[n] is then
used for further LP analysis. The LP analysis works by predicting the present
speech sample ŝe[n] based on a combination of p past speech samples (s[n −
1], . . . , s[n − p]). This combination of p past samples can be mathematically
represented as

ŝe[n] = −
p∑

k=1

ckse[n− k], (1)
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where ck represents the Linear Prediction Coefficients (LPCs). The LP residual
(LPR) signal e[n] can then be computed as follows:

e[n] = se[n] +
p∑

k=1

ckse[n− k]. (2)

The LPCs are computed using the Levinson-Durbin Algorithm [14]. An
inverse filter Ilp(z) is realized using the computed LPCs. The transfer function
of the inverse filter in the z-domain is given as follows:

Ilp(z) = 1 +
p∑

k=1

ckz
−k. (3)

Finally, the ILPR signal is obtained by passing the original speech signal s[n]
through the inverse filter Ilp(z). The resulting ILPR signal can then be further
used to compute speech features.

eGeMAPS Features. eGeMAPS features for the audio modality are part of
the baseline feature set. In accordance with the time step defined in the baseline,
eGeMAPS features of 88 dimensions are computed from the ILPR signal at a
time step of 500 ms. The ILPR eGeMAP and the Speech signal eGeMAPS are
concatenated to form a combined feature vector of dimensionality 164. The ILPR
eGeMAP represents information from the excitation source, whereas the speech
eGeMAP represents vocal tract characteristics. This combined feature vector is
used in our work to model the emotional information from the audio modality.

2.2 Video

ResNet. Computer vision applications such as object detection and object
recognition are actively exploring the use of Convolutional Neural Networks
(CNNs), given the ability of these artificial neural networks to identify features
of interest without human intervention. Moreover, multi-layered CNNs like VGG
can obtain a high effectiveness for a multitude of prediction tasks, including the
task of face recognition [15].

In general, CNNs perform better as the number of layers increases [16].
Indeed, a higher number of layers allows a neural network to learn more complex
features, eventually enabling the neural network to solve more complex tasks.
However, one drawback of deep neural networks is the occurrence of vanishing
gradients during backpropagation, making it difficult to train multi-layered neu-
ral networks. The issue of vanishing gradients refers to the phenomenon where
the gradients of the loss function get smaller as they are propagated towards the
initial network layers, given the application of the chain rule.

Residual Networks (ResNets) [3] were proposed in 2016 to mitigate the van-
ishing gradient problem. A ResNet is composed of a series of convolutional layers
with residual blocks. These blocks have skip connections that allow gradients to
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flow directly from the later convolutional layers to the initial convolutional lay-
ers. For the MuSe-Stress 2021 sub-challenge, we leveraged ResNet-50 to extract
features from the video modality, obtaining these features from the last con-
volutional layer present in this network architecture. Note that ResNet-50 is a
network deeper than VGG-16 [15], where the latter is used as a baseline archi-
tecture by the organizers of the Muse-Stress 2021 sub-challenge. Furthermore,
ResNet-50 outputs 2048-D features, whereas VGG-16 produces 512-D features.

The inputs used for feature extraction are the facial images cropped directly
from the raw video using MTCNN [17]. Due to variations in size, all facial images
were re-sized to a resolution of 224× 224 before being fed into a ResNet-50 pre-
trained on VGGFace2 (no fine-tuning was used). VGGFace2 [18], a further devel-
opment of VGGFace [19], is a large-scale dataset for recognizing faces, consisting
of 3.31 million images of 9,131 identities. In what follows, the features (activa-
tion vectors) extracted through ResNet-50, pre-trained on VGGFace2, will be
referred to as RN50.

OpenPose. To extract additional features from the video modality, we made
use of OpenPose, an open-source system for multi-person 2-D pose detection in
real time [4]. The OpenPose approach, which relies on the use of stacked CNNs,
consists of two major parts: while one part predicts 2-D confidence maps for
keypoints of interest (e.g., body, foot, hand, and facial keypoints), the other
part predicts so-called Part Affinity Fields (PAFs), with a PAF referring to a
set of 2-D vector fields that encode the location and orientation of limbs over
the image domain [4,20].

Among the different kinds of features that can be extracted by OpenPose,
we decided to work with facial features and body&foot features. Throughout
the remainder of this paper, these features will be further referred to as OFF
and OBF, respectively. For OFF, 70 2-D keypoints were extracted, whereas for
OBF, 25 2-D keypoints were extracted1. The 70 OFF and 25 OBF keypoints
are shown in Fig. 1.

As OFF and OBF aim at representing different types of visual information,
the inputs used to extract the aforementioned features are different. In particular,
the inputs used for facial feature extraction are the same facial images used
for ResNet-50 feature extraction. Furthermore, unlike the cropped facial images
used for obtaining OFF, OBF is created using the corresponding full-resolution
images. Given these different inputs, we made use of two different pre-trained
models. First, for OBF, we made use of the body25 model, which has been pre-
trained on a combination of the MPII dataset and a subset of foot instances
taken from the COCO dataset [21], and where the latter was labeled using the
Clickwork platform [21]. Second, for OFF, we made use of a face model that has
been pre-trained on facial keypoints taken from the COCO dataset [4].

1 The 25 OBF keypoints are Nose, Neck, R/L Shoulders, R/L Elbows, R/L Wrists,
MidHip, R/L Hips, R/L Knees, R/L Ankles, R/L Eyes, R/L Ears, R/L BigToes,
R/L SmallToes, R/L Heels, and Background (R/L stands for Right/Left).
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Fig. 1. Image A shows the 70 facial keypoints extracted by OpenPose. Image B shows
the 25 body&foot keypoints identified by OpenPose.

Besides the use of facial features and body&foot features, we also investigated
the extraction of hand features. The ULM -TSST dataset is composed of videos
that feature free-talking participants in a stressful situation, and with these par-
ticipants making use of minimal body movements. However, while talking, the
participants are still freely moving their hands around. As such, we hypothe-
size that these hand gestures are representative of the emotional state of the
participants (i.e., we hypothesize that these hand movements convey emotional
information).

OpenPose can identify 21 hand keypoints, making available a model that has
been pre-trained on the COCO dataset. However, the extraction of hand features
using OpenPose is still a work in progress due to the limitations discussed below.

– OpenPose is unable to identify keypoints from full-resolution images properly.
This is for instance illustrated in Fig. 2, where most of the keypoints are
wrongly identified. Hence, we decided to crop hands before doing keypoint
recognition using You Only Look Once version 3 (YOLOv3) [5].

– Using the cropped hand images as input for feature extraction purposes also
comes with limitations. Indeed, OpenPose can only identify keypoints from
one hand at a time, as depicted in Fig. 3B. Furthermore, difficulties are also
encountered when an object (e.g., a sensor) is attached to a hand, as illus-
trated in Fig. 3C.

YOLOv3, which is pre-trained on the CMU Hand DB dataset [22], was used
to detect and crop hands from full-resolution images. However, it is still neces-
sary to choose a proper bounding box size to avoid having cropped images that
contain both hands. In addition, we believe the detection problems that arise due
to a hand holding an object can be addressed through the use of skin masking
for removing this object [23] (alternatively, a future version of the ULM -TSST
dataset may avoid the presence of hands with sensors attached altogether). Once
the above-mentioned limitations are overcome, it should be possible to leverage
the extracted hand gesture information to better predict valence and arousal
values in a time-continuous manner.
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Fig. 2. Image B shows the hand keypoints recognized by OpenPose in the full-resolution
Image A.

Fig. 3. Image A shows a hand image cropped from a full-resolution image. Image B
shows the keypoints identified in Image A using OpenPose. Image C visualizes the
keypoints found when an object is attached to a hand.

2.3 Text

The Bidirectional Encoder Representations from Transformers (BERT) [8] fea-
tures were provided for the text modality. We observed from the baseline results
that these features do not perform well in a standalone setting, even degrading
the performance when used in conjunction with other modalities (i.e., audio and
video). We explored the possible causes for the low performance of BERT fea-
tures. The first cause is related to the breaking of text based on segment length
rather than the end of a sentence, with the new model SentenceBERT [24] also
having this problem. From the literature, one can learn that BERT features
work well with full sentences, with full sentences helping to capture the context
in which a word is used. The second cause is related to human psychology: in
a stressful setting, humans are less likely to speak, resulting in lots of blank
segments. We believe that these segments must have emotional information but
we could not verify this using the other modalities as we aimed at improving the
performance. We can take this as another direction for future research.
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2.4 Fusion

Humans are essentially complex multimedia systems. They have multiple senses
and express their behavior in terms of multiple modalities, such as voice, facial
appearance, activity, and text. With the rapid development of sensing technolo-
gies, it is easy to capture these modalities automatically. There are two main
techniques for fusing multimodal information: early fusion and late fusion [25]. In
early fusion, we combine the features from multiple modalities at an early stage
and train a classifier on top of it. Various early-fusion techniques have been
explored for early fusion, particularly for image analysis. It has been observed
that early fusion is effective in scenarios where the spatio-temporal organization
of the data is similar (e.g., RGB images and thermal images) [26]. This is prob-
ably because, at the initial stage, the feature maps still contain local structure.

In our case, the modalities used (text, audio, and video) have different spatio-
temporal structures. In addition, a single classifier would not be able to learn
the class distributions of the individual modalities effectively. Therefore, we are
inclined to make use of late fusion. Yet, instead of using hand-crafted weights
to fuse the decisions from individual modalities, we feed the late multimodal
features to an LSTM-RNN and let it learn the fusion weights automatically by
looking at the data [20]. The LSTM does not only exploit the complementary
information from multiple modalities, but it also implements a self-attention
mechanism in the given time-series data. We find that such mid-level fusion
gives the best results on the given dataset.

3 Experiments and Results

3.1 Experimental Setup

Video. All experiments with features extracted from the video modality (i.e.,
RN50, OBF, and OFF ) were performed using the baseline LSTM-RNN model2.
In particular, a bi-directional LSTM-RNN was used and trained for 100 epochs,
relying on early stopping with a patience of 15 epochs. The number of seeds
was set to 10, saving the predictions made by the best-performing model. The
features and labels were segmented as stated in [1], using a window size and a
hop size of 300 steps (150 s) and 50 steps (25 s), respectively.

A grid search was performed to investigate the optimum combination of
different hyperparameter settings, taking into account the normalization of input
features (n), the hidden state dimension (h), the number of LSTM-RNN layers
(r), and the learning rate (lr). The values tested for each hyperparameter are
as follows: n = {True, False}, h = {8, 32, 64, 128}, r = {1, 4, 5, 9}, and lr =
{2e−5, 5e−5, 0.002, 0.2}.

To mitigate issues in terms of overfitting, three different methods were inves-
tigated in a later stage of our experimentation: dropout, L2 regularisation, and
data augmentation. Similar to the previously described hyperparameter tuning

2 https://github.com/lstappen/MuSe2021.

https://github.com/lstappen/MuSe2021
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Table 1. Valence and arousal results obtained for hyperparameter tuning when making
use of the RN50 features and lr = 0.002.

Hyperparameter tuning

Valence Arousal

h r n d L2 CCC h r n d L2 CCC

64 4 False 0.0 0.0 0.3310 64 4 False 0.0 0.0 0.2022

128 5 False 0.0 0.0 0.6108 64 4 True 0.0 0.1 0.0036

128 5 False 0.5 0.0 0.6056 64 4 True 0.0 1e−6 0.2954

128 5 False 0.7 0.0 0.5078 64 4 True 0.0 1e−8 0.3339

128 5 False 0.5 1e−4 0.5687 64 4 True 0.5 1e−8 0.3397

128 5 False 0.7 1e−4 0.5875 64 4 True 0.7 1e−8 0.3955

128 5 False 0.5 1e−6 0.6198 16 4 True 0.0 0.0 0.4088

128 5 False 0.7 1e−6 0.5725 16 4 True 0.7 1e−8 0.3295

128 5 False 0.5 1e−8 0.6249 64 4 True 0.2 0.0 0.3320

128 5 False 0.7 1e−8 0.5802 64 2 True 0.0 0.0 0.2241

128 5 False 0.3 1e−8 0.6337 64 4 True 0.0 0.0 0.4368

approach, the impact of different values for dropout (d) = {0.2, 0.3, 0.5, 0.6,
0.7} and L2 regularisation (L2 ) = {0, 1e−8, 1e−6, 1e−4, 0.1} was investigated.
Data augmentation was applied to the facial images through random horizontal
flipping (flipping probability used: 0.5), leading to an increase in dataset size. For
each type of visual feature used, the best predictions obtained for the valence and
arousal dimensions were then passed onto the late fusion stage of the proposed
approach.

Late Fusion. All experiments with late fusion made use of an LSTM-RNN
model with the following default hyperparameter values: {h, r, lr} = {32, 2,
0.001}. The exception is the late fusion of OFF and other modalities (third
submission), for which h = 64.

3.2 Results and Discussion

Video. Table 1 shows the CCC values obtained when predicting continuous
arousal and valence values using the RN50 features for the development set and
for different hyperparameter settings. The best results achieved are indicated in
bold. Given the different hyperparameter settings, we were able to obtain the
best results for valence when making use of 128-D hidden states, a learning rate
of 0.00005, a dropout value of 0.3, and an L2 penalty of 1e–8. In addition, we
obtained the best results for arousal when using 64-D hidden states, a learning
rate of 0.002, and feature normalization, not using dropout and not using L2

regularisation. In summary, the highest CCC value achieved for the development
set is 0.6337 for valence and 0.4368 for arousal.
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Table 2. Impact of data augmentation on valence and arousal when making use of the
RN50 features. CCCi and CCCf refer to the CCC values obtained, without and with
data augmentation, respectively.

Data augmentation

Valence Arousal

lr h r n d L2 CCCi CCCf lr h r n d L2 CCCi CCCf

0.00200 64 4 False 0.0 0.0 0.3310 0.5089 0.002 64 4 False 0.0 0.0 0.2459 0.3203

0.00005 128 5 False 0.0 0.0 0.6108 0.5027 0.002 64 4 True 0.0 0.0 0.4193 0.3413

0.00005 128 5 False 0.3 0.0 0.6253 0.5583 0.002 64 4 True 0.5 0.0 0.3187 0.3468

0.00005 128 5 False 0.5 0.0 0.5904 0.5919 0.002 64 4 True 0.0 1e−4 0.1794 0.3094

0.00005 128 5 False 0.7 0.0 0.5717 0.5682 0.002 64 4 True 0.5 1e−4 0.2517 0.2926

– – – – – – – – 0.002 64 4 True 0.7 1e−4 0.3200 0.3277

– – – – – – – – 0.002 16 1 True 0.5 0.0 0.1429 0.1830

– – – – – – – – 0.002 16 4 True 0.0 0.0 0.1387 0.1083

Fig. 4. Valence learning curves: (A) after data augmentation and (B) before data
augmentation. The blue, red, and black dotted lines represent train loss, validation
loss, and development CCC score, respectively. (Color figure online)

Additionally, Table 2 shows how data augmentation affects the predictions
made. Given the valence results presented in Table 2, we can observe that data
augmentation often helps in getting better predictions along this dimension when
not making use of hyperparameter tuning (row 1); however, the CCC values
obtained after data augmentation and hyperparameter tuning are lower than
the CCC values obtained before data augmentation but after hyperparameter
tuning (rows 2–5). Furthermore, the arousal results presented in Table 2 also
show that data augmentation often helps in getting better predictions along this
dimension; however, the highest CCC value obtained after data augmentation is
still lower than the highest CCC value obtained before data augmentation.

Furthermore, Fig. 4 shows how the training and validation loss change as
a function of model training, depicting the training loss using a blue line and
the validation loss using a red line. We can observe that the validation loss in
Fig. 4(A) follows the training loss more closely than in Fig. 4(B). However, the
highest CCC value obtained is much higher in Fig. 4(B). For arousal, we can
observe trends similar to the trends observed for valence, as illustrated by Fig. 5.
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Fig. 5. Arousal learning curves: (A) after data augmentation and (B) before data
augmentation. The blue, red, and black dotted lines represent train loss, validation
loss, and development CCC score, respectively. (Color figure online)

Table 3. Valence and arousal results obtained for our five submissions, levering late
fusion of different modalities (A for audio, V for video, and T for text). The best CCC
values obtained for the development set and the test set are highlighted in bold.

Submission Features Valence Arousal Combined

dev/test dev/test dev/test

1 Best A + Best V –/– 0.6324/0.1798 0.6620/0.2669

Best A + Best V + Best T 0.6916/0.354 –/–

2 OFF 0.6024/0.2953 0.5203/0.0403 0.5613/0.1678

3 Best A + Best V + OFF –/– 0.7553/0.1330 0.7456/0.2896

Best A + Best V + Best T + OFF 0.7366/0.4461 –/–

4 Best A + Best V + OBF –/– 0.7017/0.2159 0.7205/0.3146

Best A + Best V + Best T + OBF 0.7393/0.4113 –/–

5 Best A + Best V + OFF + OBF 0.7640/0.4158 0.7549/0.2297 0.7595/0.3228

In particular, we can again observe that the validation loss follows the training
loss more closely in Fig. 5(A) than in Fig. 5(B). However, the highest CCC
value in Fig. 5(A) is still lower than the highest CCC value that can be found
in Fig. 5(B).

Given the experimental results obtained, we can conclude that data augmen-
tation can help in preventing overfitting. Nevertheless, for the MuSe-Stress 2021
sub-challenge, we decided not to make use of data augmentation. Indeed, when
hyperparameter tuning is in place, most CCC values obtained after data aug-
mentation are then lower than the corresponding CCC values obtained before
data augmentation, for both valence and arousal. Furthermore, since we only
paid a limited amount of attention to the use of data augmentation for mitigat-
ing the risk of overfitting, we believe future work could still explore the use of
other types of data augmentation, such as random vertical flipping and random
cropping, as well as an optimization strategy that makes it possible to effectively
combine hyperparameter tuning and data augmentation.

Submission Results. Table 3 shows the results obtained for our five
submissions. All submissions leveraged late fusion, except for the second
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submission, which obtained the predictions when only making use of OFF. The
best A (audio), V (video), and T (text) values represent the best development
scores obtained for each modality, for which the feature and hyperparameter
combinations used are summarized below.

– Best A: Combining ILPR eGeMAPS features with an LSTM-RNN ([h, r, lr ]
= [64, 4, 0.002]) yielded a development score of 0.5632 and 0.4841 for valence
and arousal, respectively.

– Best V: The models used for predicting valence and arousal adopted different
settings.
• Valence: Combining RN50 features with an LSTM-RNN ([h, r, lr ] = [128,

5, 5e−5]) yielded a development score of 0.6253.
• Arousal: Combining normalized RN50 features with an LSTM-RNN ([h,
r, lr ] = [128, 9, 0.002]) yielded a development score of 0.4399.

– Best T: Combining BERT features with an LSTM-RNN ([h, r, lr ] = [64,
4, 0.002]) yielded a development score of 0.3626 and 0.2308 for valence and
arousal, respectively.

For each submission, the combination of features submitted for valence and
arousal typically differed as it is not necessary to use identical modalities to
predict valence and arousal. Our third submission obtained the highest test
score for valence, namely 0.4461. Furthermore, our fifth submission obtained the
highest test score for arousal, namely 0.2297, and the highest combined score,
namely 0.3228.

Fig. 6. Late fusion results for valence: (A) Participant 67 and (B) Participant 37.

Discussion of Submission Results. Figure 6 and Fig. 7 show the valence and
arousal values obtained for a number of participants of interest (i.e., participants
showing a clear contradicting result) when leveraging late fusion, combining
the speech, text, and video modalities. The labels Sub 1 to Sub 5 refer to the
corresponding submissions listed in Table 3.

For Fig. 6(A), we can observe that all of the curves follow a similar trend,
except for Sub 2. Different from Fig. 6(A), we can observe that all of the curves
in Fig. 6(B) follow a similar trend. Also, using Table 3 to examine Sub 2 in more
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Fig. 7. Late fusion results for arousal: (A) Participant 40 and (B) Participant 39.

detail, which is the submission that only made use of OFF, we can see that this
submission achieved the lowest development and test score for valence. This leads
to the assumption that the use of a single feature for predicting emotional valence
and arousal tends to come with limited effectiveness and that leveraging other
features (e.g., from a different modality) helps in producing better predictions.
For Participant 67, we can observe particularly contradictory valence predictions
in Fig. 6(A), and where this observation can most likely be attributed to different
participant behavior. Indeed, most of the participants freely talk for five minutes
without any aid, whereas Participant 67 talks while using written notes. Taking
the position of the camera into consideration, the entire face of Participant 67 is
hardly visible, and her eyes are focused on the document she has with her. This
makes it difficult to extract meaningful facial information (70 keypoints).

For arousal, we can observe two curves with a deviating trend in Fig. 7(A),
namely Sub 2 and Sub 3. Specifically, for Sub 3, we can observe that the values
obtained are not close to the values obtained by the other submissions, although
Sub 3 and the other curves fluctuate similarly (except for Sub 2). For Fig. 7(B),
we can observe that all of the curves, including Sub 2, follow a similar trend.
Also, looking into the results presented in Table 3, we can again conclude that
better arousal predictions can be obtained when making use of multiple features
from different modalities. Indeed, when examining Sub 2 and Sub 3 in more
detail, we can see that these submissions obtain the lowest arousal development
and test scores, with both submissions making use of OFF for predicting valence
and arousal. In addition, making the comparison to Sub 1, we can observe that
the use of OFF lowers model effectiveness. Furthermore, given that the curves
for Participant 40 and Participant 67 show a similar trend, it is of interest to
look at the commonality between these participants in order to achieve a better
understanding of the effectiveness of OFF. Doing a manual inspection of the
audio-visual recordings of these two participants, we notice that the camera angle
used is not frontal in nature but rather tilted towards the left. As a result, the
face of these participants is not entirely visible in the corresponding recordings,
hampering the extraction of all essential features. In this respect, it is also worth
noting that in 65 out of the 69 videos available (94.2% of the dataset), the entire
face of the participant is visible.
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Given the experimental results obtained for late fusion, we can conclude that
using multiple features and hyperparameter tuning helps in improving model
effectiveness. Additionally, we can conclude that the contradictory results, as
present in both Fig. 6(A) and Fig. 7(A), have a significant impact on the model
effectiveness when the size of the dataset used is small, even though our experi-
mental results show that the use of a single feature follows a trend that is similar
to the trend obtained when combining different features.

We believe that we could still improve model effectiveness during late fusion
by applying a more in-depth pre-processing strategy. As an example, and as men-
tioned in Sect. 2.2, we made use of full-resolution images to extract 25 body key
points. Since these full-resolution images contain information unrelated to body
key points, the extracted features might contain wrong information. This wrong
information may have a negative impact on the model effectiveness obtained
during late fusion. As a result, by performing tight cropping so that the images
used only contain relevant subjects, we believe the features extracted from these
cropped images can help in improving the effectiveness of late fusion.

4 Conclusions and Future Work

In this paper, we explored the simultaneous use of multimodal features, both
engineered and learned, to improve human emotion detection for the MuSe-
Stress 2021 sub-challenge. Specifically, by applying an LSTM-RNN-based late
fusion approach using ResNet-50 and OpenPose features for video, ILPR and
eGeMAPS features for audio, and BERT features for text, we achieved a com-
bined CCC value of 0.7595 and 0.3379 for the development set and the test set
of MuSe-Stress 2021, respectively. An experimental investigation of the degrada-
tion in effectiveness obtained for the test set points to the need for incorporating
different strategies to further improve the effectiveness of late fusion, such as
data pre-processing and data augmentation.
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Pierre et Marie Curie-Paris VI (2010)

10. Rothenberg, M.: Acoustic interaction between the glottal source and the vocal
tract. Vocal Fold Physiol. 1, 305–323 (1981)

11. Loweimi, E., Barker, J., Saz-Torralba, O., Hain, T.: Robust source-filter separation
of speech signal in the phase domain. In: Interspeech, pp. 414–418 (2017)

12. Prasanna, S.R.M., Gupta, C.S., Yegnanarayana, B.: Extraction of speaker-specific
excitation information from linear prediction residual of speech. Speech Commun.
48(10), 1243–1261 (2006)

13. Baghel, S., Prasanna, S.R.M., Guha, P.: Exploration of excitation source infor-
mation for shouted and normal speech classification. J. Acoust. Soc. Am. 147(2),
1250–1261 (2020)

14. Makhoul, J.: Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)
15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition (2015)
16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-

volutional neural networks. Commun. ACM 60(6), 84–90 (2017)
17. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using

multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10),
1499–1503 (2016)

18. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for
recognising faces across pose and age. In: 2018 13th IEEE International Conference
on Automatic Face & Gesture Recognition (FG 2018) (2018)

19. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition, pp. 1–12. British
Machine Vision Association (2015)

20. Stappen, L., et al.: MuSe 2020 challenge and workshop: multimodal sentiment anal-
ysis, emotion-target engagement and trustworthiness detection in real-life media:
emotional car reviews in-the-wild. In: Proceedings of the 1st International on Mul-
timodal Sentiment Analysis in Real-life Media Challenge and Workshop, pp. 35–44
(2020)

21. Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E., Sheikh, Y.: OpenPose: real-
time multi-person 2D pose estimation using part affinity fields. arXiv preprint
arXiv:1812.08008 (2018)

22. Simon, T., Joo, H., Matthews, I., Sheikh, Y.: Hand keypoint detection in single
images using multiview bootstrapping. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4645–4653 (2017)

23. Qin, S., Kim, S., Manduchi, R.: Automatic skin and hair masking using fully
convolutional networks. In: 2017 IEEE International Conference on Multimedia
and Expo (ICME) (2017)

24. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese
BERT-networks. arXiv preprint arXiv:1908.10084 (2019)

http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1812.08008
http://arxiv.org/abs/1908.10084


744 A. Kumar et al.

25. Atrey, P.K., Hossain, M.A., El Saddik, A., Kankanhalli, M.S.: Multimodal fusion
for multimedia analysis: a survey. Multimed. Syst. 16(6), 345–379 (2010)

26. Zhang, Q., Xiao, T., Huang, N., Zhang, D., Han, J.: Revisiting feature fusion for
RGB-T salient object detection. IEEE Trans. Circ. Syst. Video Technol. 31(5),
1804–1818 (2020)


	Exploring Multimodal Features and Fusion for Time-Continuous Prediction of Emotional Valence and Arousal
	1 Introduction
	2 Features and Model
	2.1 Audio
	2.2 Video
	2.3 Text
	2.4 Fusion

	3 Experiments and Results
	3.1 Experimental Setup
	3.2 Results and Discussion

	4 Conclusions and Future Work
	References




