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Abstract The exponential rise in fish-derived biopolymers in the formof nets, gears,
food packagingmaterial, lures and traps has revolutionized the fishing industry in the
recent years. The promising usage and emerging market potential of biodegradable
films has resulted in the circular economy. This chapter summarizes re-use of fish
by-products such as chitin, chitosan, collagen, glycosaminoglycans, and hyaluronic
acids in multiple applications. The raw fish-derived biomaterial from skin, scales,
fins, and eyeballs has good flexibility, tensile strength, and viscosity; thus, commer-
cially viable as a protective matrix. The fabricated fishery waste is recycled in an
ecofriendly way to meet the growing market demand. Additionally, the prominent
market players that utilizes fish-derived biopolymer to prepare daily essentials like
toiletries, paper bags, food packaging material, bottles, textiles are enlisted. Further,
various biopolymer typologies of fishery industry are described in detail based on the
source of origin, physical appearance and their significant role in pharmaceutical,
cosmeceutical, nutraceutical, nanotechnological, and food applications. However,
due to some technological barriers in packaging material like film permeability,
porosity, oxidation of lipids, discoloration etc. the bioproducts are still at lab-scale;
that need to be addressed to reach industrial-scale. Moreover, the chapter discuss
about the sustainable strategies to design fish binders, gill nets, fishing lines, traps
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etc. that should be transparent, fragile, dissolvable to avoid ghost fishing and capable
to boost the ecological restoration of aquatic bodies. Finally, it covers the commer-
cial aspect of the seafood industry, where the fishery biopolymer is used as an edible
functional food, as a biodegradable preservative with enhanced shelf-life and as a
bioadsorbent to remove toxic compounds. Over the last few years, the nanotechno-
logical advancement of biopolymers and their blends have been exploited to treat
wastewaters for reuse in seafood processing industry. Therefore, the hybrid poly-
mers are considered environmentally safe and far superior to synthetic polymers if
redesigned at molecular and nanoscale level to minimize the bioburden on aquatic
life.

Keywords Fish-derived biopolymers · Biodegradable fishing gears · Functional
foods · Biofilm packaging · Wastewater treatment

1 Introduction

Biopolymers are chemically derived from a wide array of animal, vegetal and micro-
bial sources. These polymeric biomolecules include lipids, polysaccharides, polynu-
cleotides, and polypeptides, consisting of monomeric units linked by covalent bonds
to form larger molecules. The non-toxic biopolymer has been derived from diverse
biological sources including plants, bacteria, seafood waste, chicken feathers and
other organic matter from the fishing industry [1–4]. To be animal-specific, the
fishing industry is the major contributor to the bio-burden of the aquatic environ-
ment, which can be reduced by using fish-derived biopolymer like chitin, chitosan,
collagen, glycosaminoglycans, and hyaluronic acids [5]. The circular reinforcement
of this fish-derived polymer is an alternative to polyethylene, because it generates low
biodegradable waste, similar to plastic in functionality and appearance, and requires
less energy consumption to manufacture packaging material. For instance, Mari-
naTex is a novel, odorless, translucent, and flexible biopolymer with good shelf-life
is made from the fish waste, and red algae [6]. Similarly, the seafood waste with
crustacean shells is used to prepare recyclable bio-sheets [7].

Fish is considered to be one of the nutritious diets in human food because it is an
excellent source of high-quality protein, omega-3-fatty acids, various minerals like
phosphorous, magnesium, selenium, iodine etc. [8]. The fish-derived biopolymers
are used in the activities of petroleum drilling, deep sea exploration photography,
seafood packaging, and other ecological products that can restore the osmotic adap-
tation in aquatic life and aids in microbial genera to adapt to the harsh environment.
The most extensively studied fish-derived biopolymer is chitin and its deacylated
derivative chitosan. Chitin is considered the most abundant polysaccharide available
in nature. Another biopolymer is collagen, which is extracted from the scales and
bones of fishes [9]. It has good tensile strength and majorly applicable in pharma-
ceutical, biomedical, and food applications. Moreover, when dried solid fish waste
is biologically processed with the bacterium, Bacillus subtiltis (KP172548), 1.62
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gL−1 PHB (poly 3-hydroxybutyric acid) was produced [10]. Likewise, fermentation
experiment of shrimp waste with the bacterium, Salinivibrio sp. M318 yielded 42%
(w/w) PHB when fish oil was used as C-source and when the fish matrix was used
as N-source, then the yield of PHB is 51.7% (w/w) [11].

1.1 Sources of Fish-Derived Biopolymers

The fish-derived biopolymers exist in several shapes, highly branched with low
molecular weight and arranged intrinsically by delicate polysaccharides and proteins
as a structural constituent of the skeletal system. Because of their complex poly-
meric structure bounded by glycosidic linkages, these polymers provide mechanical
strength to the tissues and keep them intact [12]. The raw biopolymers belong to
plant origin, microbial origin, agricultural wastes, fossil wastes etc. Also, they can
be synthesized chemically from the monomer units such as amino acids, fatty acids,
lipids, chitin, chitosan, proteins, DNA, RNA etc., that can be scaled readily at low
cost, to commercialize processing of the biopolymers [13, 14]. Few of the biopoly-
mers synthesized from microbes include chitosan (polyamides), polylactic acid
(PLA), poly 3-hydroxybutyric acid (PHB), polyesters, polyphosphates, hyaluronic
acid (HA) connected through linear polysaccharide chains bounded by hydrogen
bonds [15]. They provide flexibility, tensile strength, and viscosity to the cells and
act as a protective matrix.

The major biopolymer present/produced from fishes and its wastes include
collagen (protein-based) such as hyaluronic acid (HA) and glycosaminoglycan
(GAG), chitin, and its derivative chitosan (polysaccharide-based), and gelatin s
found in various connective tissues of the body like scales, skin, bones, ligaments,
tendons and cartilage [16–18] (Fig. 1). The collagen is responsible for drug and
gene carriers. It is used as burn cover dressings as well in the wound healing
process. Many researchers have diverted their studies to the extraction and char-
acterization of collagens obtained from the various fishes like rabbitfish (Chimaera
monstruosa), cuckoo ray (Leucoraja naevus), small spotted catshark (Scyliorhinus
canicula), Atlantic grenadier (Nezumia aequalis), lantern shark (Etmopterus sp.),
Catla, Cirrhinus mrigala. The collagen is extracted from the skin, bones, and fins
of fish, which gets denatured at a low temperature (25–30 °C) as compared to
mammalian collagen, which has a denaturation temperature difference of 9 °C i.e.,
(39–40 °C). The skin of the fish usually consists of type I collagen and is around 70%
degree of purity depending upon the type of species, found in the various seasons
and the fish has a capacity to retain the moisture and exhibits no irritation. Thus, fish
collagen is an excellent source and can be used in dermal applications [19].

Chemically, chitin and chitosan are crystalline in nature and insoluble in common
solvents, except the acidic solvent. They have strong inter/intra-molecular units of 2-
acetamido-2-deoxy-β-D-glucose bounded by β (1–4) linkages. They are non-allergic
in nature, therefore, suitable for controlled drug delivery systems, where they can
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Fig. 1 Different types of Fish-derived biopolymers used in fishing industries

be used as protein-carrier (amino acids) and enzyme-carriers, and various types of
packaging material [20].

1.2 Market Potential of Biopolymers in the Circular Economy

The fishing industry mainly depends on plastics for various activities such as fish
luring, fishing nets, ropes, baskets, gloves etc. that further adds the cost of transporta-
tion from rural to urban areas. To reduce the financial burden, the proficient set-up
of bioplastic plants near the fishing zone can lead to the sustainable development of
the packaging industry and restore the environment.

The natural biopolymers obtained from marine sources have a minimum impact
on food chain due to its high biocompatibility and rapid disintegration. Moreover,
the natural biopolymers help in reducing the land and water pollution.

Also, in termsof employment, the biopolymers are advantageous to get profoundly
skilled labour, and create ease of license for commercial fishing assignment with a
monetary benefit. According to the global market report by Markets and Markets
[21] it is estimated that the biopolymer market will grow to US $27.9 billion by 2025
at the CAGR of 21.7%. The global growth highlights the potential of bioplastic in
accordance with environmental concerns. This is a great opportunity to minimize
dependence on conventional plastic and enhance the production of biopolymer [22].
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The fish-derived biopolymer can provide a restorative solution to marine life, and
meet daily human needs of toiletries, paper bags, food packaging material, bottles,
textiles and many more [23].

The fish-derived biopolymers are used to make compostable barrier coatings,
using equal combination of cellulose pulp fromplant sources. This type of sustainable
coating can be used in multiple packaging of food and feed in daily lives. The fish
residue valorization towards zero-waste sustainable industry can replace the global
plastic dependence in the future if it is unanimously implemented under the climate
action program [24]. The notable leadingmarket players in utilizing fisherywaste and
manufacturing bioplastic are NatureWorks, Italy; Braskem, Brazil; BASF, Germany;
Biome plastic, UK; Toray Industries, Japan; Plantic Technologies, Australia; Tianan
Biologic Materials, China and many more [25]. The successful use of biopolymer
in everyday life might bring monetary ramifications but from an ecological point of
view, it can balance nature degradation [26]. However, there are certain drawbacks of
biopolymers that need to be addressed for universal acceptance, such as, low thermal
and tensile strength, high moisture-holding capacity, compatibility, slow production
process as compared to synthetic counterparts. To alleviate these disadvantages, a
blend of polymers is done to increase their applicability at a larger scale and change
the design of the biopolymer for its feasibility in biological degradability.

2 Types of Biopolymer in Fishing Industries

The recent advancement in the biodegradable films in the fishing industry based on
their mechanical, barrier and antioxidant properties has gained popularity amongst
many industralists [27]. The significant attributes of biopolymers are stability, dura-
bility, feasibility and resiliency is further improved by incorporating graphene oxide,
protein isolates, fatty acids, essential oils, and other cross-linkers. Natural biopoly-
mers like starch, protein, cellulose, chitin, pectin, chitosan, lignin and collagen
is obtained from animal and plant kingdom. Carbohydrate-based biopolymers are
low toxic, renewable, biodegradable, and stable in nature; hence, frequently used
commercially in pharmaceutical industries, cosmetic industries, fishing industries
and so forth [22, 28]. The origin, physical appearance and role of biopolymer are
listed in Table 1.

2.1 Chitin

Chitin is crystalline in nature; it is a microfibrillar polymer of glucose and extracted
from the exoskeleton of insects, invertebrates, some fish cells, and wall of fungi. It is
stable in alkaline solution and dissolves in acidic solutions only. A significant natural
source of chitin is shrimp and crab, which are abundant in the seafood processing
industry. The chitin biopolymer is mainly used in biomedical engineering to prepare
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Table 1 Sources and applications of significant biopolymers

Name of
polymer

Source of origin Physical
appearance

Role of
biopolymers

References

Chitin Crab, Shrimp and
prawn

Translucent,
pliable, resilient,
and quite tough

Used in fishing
and cosmetic
industry

[29]

Chitosan Shellfish and
crustacean waste
materials

Pale, white and
flaky and its
moisture content
was 10.9%

Bioremediation of
toxic phenolic
product, promote
osteogenesis, fat
absorbent action,
flocculating agent,
purify drinking
water,
manufacturing,
personal hygiene
products,
anti-bacterial,
anti-acid, fat
absorbent action

[30, 31]

Collagen Exoskeleton of
marine
invertebrates

Hard, fibrous,
insoluble, protein,
and molecules
form long, thin
fibrils

Biodegradable
matrices, solid
support
micro-carrier in
the production of
enzymes, Sutures,
dental composites,
sausage casings,
skin regeneration
templates,
cosmetics

[32]

Gelatin Fish, bones, pig
skin

Translucent, water
soluble,
flavourless, moist
and brittle when
dry

Pharmaceutical
and medical use,
thickener,
stabilizer, food
wetting agent,
emulsifier

[32]

Hyaluronic acid
(HA)

Eyeballs of fishes
(Tuna, Shark and
Swordfish)

Transparent,
viscous fluid or
white powder,
water soluble

Cosmeceuticals,
anti-aging
products,
nutraceuticals,
food ingredient,
nanotechnological
processes

[28–30, 33–35]
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biomaterial that can repair and restore damaged tissue. Globally, the annual produc-
tion rate of chitin from crustaceans and fish scale waste is estimated to be 10 billion
tons. In coastal areas, the material form of chitin is a major source of beach pollution
which is hard, inelastic and nitrogenous polysaccharides [36].

2.2 Chitosan

Chitosan is differing from chitin only by the acetyl content of the polymer. It is
a modified natural biopolymer that is hard, non-toxic and cellulose-like fibre. A
significant production material of chitosan is shrimp waste and other sources of
chitosan are crustaceans, insects, fungi and some algae. Their excellent properties
include biocompatibility, bioactivity, biodegradability, penetrability, anti-microbial
activity, chelation, drug carrier for controlled release, film, and absorptive limit. It
promotes bone tissue building, fat absorbent action decalcification of dental enamel,
healing of ulcers and injuries and osteogenesis. It inhibits bacterial plaque forma-
tion [37]. Commercially, chitosan offers a wide range of applications such as in
cosmetic preparation, biomedical, paper industry, food industry, textile industry,
pharmaceutical, biotechnology, and biochemistry. It is also used to prevent food
spoilage from microbe contamination, preparation of biofilms for food packaging,
purify the water, and delay blanching of fruit juices [38]. Commercially, chitosan
offers a wide range of applications in diverse industries including biomedical,
cosmetic, paper, food, textile and biotechnological industry.

2.3 Collagen

Mammalian cells are rich in collagen protein, which is usually synthesized by fibrob-
last that originates from pluripotential adventitial cells or reticulum. A collagen
molecule is a triple helical structure with a length of 300 nm and a width of 1.5 nm,
respectively. The molecular weight of collagen, based on amino acid sequence is
300000 Daltons [39]. Collagen is rod-shaped molecule and accounting for about 20–
30% of total body proteins and primary structural materials [40]. The collagenmatrix
is used in the treatment of severe burns and collagen sponges used in dressing for
acute injuries, nucleic acid and protein transporters to assist bone repairs. In addition,
collagen hydrogel is used as genetic material delivery carriers in biomedical applica-
tions. For example, thermostable collagen nanoparticles utilized as an anti-cancerous
agent such as camptothecin and hydrocortisone bearer for parenteral administration
and other therapeutic compounds [27]. Collagen has wide range of applications
because of their diverse physicochemical properties such as high biocompatibility,
low anti-genecity, non-toxicity and high biodegradability [41].
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2.4 Gelatin

Gelatin is water-soluble, a sterile biopolymer that does not contains preservative and
have a three-year expiration date at room temperature. Structurally, it is a heteroge-
neous polypeptide, forming a complex mixture of α-chains, β-chains and γ-chains.
Gelatin is synthetic colloids produced from the degradation of bovine collagen by
incomplete hydrolysis of collagen removed from fish, pig skin and cow bones so
forth. It is an important biopolymer that is colourless, translucent, flavourless food
ingredients. It is extensively used in preservation of meat and fish-based products
due to its good foaming, emulsifying and wetting properties [42]. Therefore, gelatin
is widely used in food packaging industries owing to its exclusive functional and
technical characteristics.

2.5 Hyaluronic Acid (HA)

HA is a water-soluble, translucent, high molecular weight biopolymer, which is
only present in the eyeball and cartilage intracellular matrix of fishes. It is the only
glycosaminoglycan member that is non-sulphated by alternating disaccharide units
of N-acetyl-D-glucosamine and D-glucuronic linked by β-(1 → 3) and β-(1 →
4) glycosidic bonds [43, 44]. HA is highly used in the biomedical field due to its
high biocompatibility in visco-surgery, controlled tissue permeation and hydration
in arthritis treatment, and macromolecular carrier in cancer therapy, plastic surgeries
and targeted drug-deliveries of intra-ocular surgeries. It has characteristic inflamma-
tion property that allows it to hold water molecules in limited space and provides
lubricity to the tissues. Therefore, Hyaluronic acid have tremendous potential in
regenerative medicine and cosmetology [45].

3 Commercial Applications in Fisheries

The fish gear should be reused for the sustainable use of biopolymers in the fishery
industry (Fig. 2). The alternative approach to design fish binders, gill nets, fishing
lines, traps etc. which should be transparent, flexible, dissolve in water after few
days and possess superior permeability to prevent ghost fishing. The biopolymer
fishing gears can halt the vicious circle of death of fishes and other aquatic animals
by derelict nets, and boost ecological restoration of waterbodies and aquatic life [46].
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Fig. 2 Applications of fish-derived biopolymers in fisheries

3.1 Fishing Lines

Most of the fishing lines or ropes aremade from synthetic polymers as they are single-
stranded, strong, thin, and available in different colors to distinguish from other
fishing lines. The synthetic polymer causes more harm to the fishes as they do not
degrade and form a lump of fine network at the fishing place, further entangling and
injuring the fishes and rest aquatic life. To overcome this situation, the biodegradable
fishing lines were designed with natural materials such as polyglycolic acid resin
(PGA)filamentwith high tensile and knot strength. ThesePGAfilamentswhenmixed
with PLA, p-dioxanone, and ε-caprolactone make it more heat resistant and firm. The
monofilament of PGA also gave good results with blends of polybutylene succinate
(PBS) and polybutylene adipate-co-terephthalate (PES) to yield optimal strength
under seawater [47]. These fishing lines if left in the water bodies for more than a
fortnight, they will maintain 25% of the original tenacity [48]. The successful brands
of eco-friendly fishing lines, in the form of filament, fluorocarbon and braid (hybrid)
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are Toray, Eagle claw, Fieldmate showed a remarkable four-month biodegradation
time.

3.2 Fishing Nets

Globally, the nylon nets are widely used as a fish gear. Despite its wide use, it is
abandoned in the sea for a longer duration as it needs physical labor. According to
the technical report available online, on average 13,941 gillnets are lost each year.
Because of this, there are a negative effect on the benthic environment, navigational
problems, marine litter, and plastic pollution.

To reduce this problem, the Norwegian Directorate of Fisheries has initiated a
gear disposal and recycling program named Abandoned, Lost or Discarded Fishing
Gears (ALDFG) and retrieved 20,450 lost gillnets and other fish gears [49]. Tradi-
tionally, the biodegradable fish netswere designed using a blend of 82%polybutylene
succinate (PBS) and 18%polybutylene adipate-co-terephthalate (PBAT),whichwere
tested for their catching efficiency for a longer time duration of 6–42months [46]. As
compared to conventional gear made of Nylon polyamide, polyester, polyethylene,
and polypropylene; the biodegradable fishing nets started biodegradation into natural
materials by the action of microorganisms and lose their ghost fishing capacity after
few months of underwater exposure. However, the fishing performance and stiffness
of biodegradable nets is lower with respect to nylon nets. Therefore, projects like
Innovative Fishing Gear for Oceans (INDIGO), funded by the European Union is
undergoing to design 100% biodegradable fishing net with a controlled lifespan [50].

3.3 Fishing Gear and Traps

Asper theFAO[51] technical report, it is estimated to discard approximately 6.40,000
tonnes of all fishing gear in the oceans annually in bad weather conditions. The
fishing traps are made to catch fish during low tides. It is usually made of steel
boundary vessels, with sufficient enclosed space to house targeted fishes for their
smooth entry and barricaded exit. Polyhydroxyalkanoate (PHA) is also used as trap
apparatus and degrades naturally if continuously submerged for many months [52].
Currently, the biodegradable fishing trap derived from cellulosic derivatives such as
polysaccharides, chitin or chitosan are widely used in fishing industry as it readily
dissolves in the water in few days and prevent unwanted fish mortality [52].
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3.4 Fishing Lure

The artificial fishing lures are well fabricated by fine plastics of PVC or silicone
rubber. Such lures do not get digested in the fish body and thus become aquatic
pollutants. They also affect the growth and development of fish by hindering its
gastrointestinal tract and can eventually led to the death of thefish.Thebiodegradable,
semitransparent, and the soft lure ismade bymolding likeworms using jelly chitosan,
water-soluble gum, cereals starch, soy protein, etc. Further, the addition of marine
fats and oils, to the bait attracts the fish and makes the process less time-consuming.
The PVOH polymers as hydrogel matrix of soluble capsules, which are prepared
by mixing carrageenan and gum, is biodegradable, transparent, and used mostly in
recreational fishing activities [53]. The biological lures can control the bait release
in an effective way, as an aquatic feed in farmed fisheries.

4 Industrial Applications of Biopolymers

The fish-derived biopolymers can be valorised to produce various useful materials.

4.1 Functional Foods

Several edible marine invertebrates, including cuttlefish and sea cucumber, are
promising potential ingredients as functional foods [54]. Many researchers have
reported that chitin and chitosan (biopolymer) derived from these edible marine
invertebrates exert a broad spectrum of bioactivities, namely antioxidant, antimicro-
bial, anticoagulatory, anticancer, hypocholesterolemic and wound healing properties
[55, 56]. These bioactivities of chitin and its derivative have beenmainly attributed to
its physical and chemical properties, including molecular weight, functional groups
and deacetylation degree [57].

Chitin is used as a health supplement in the form of capsules due to its exceptional
lipid metabolism capacity [58]. Kuprina et al. [59] have developed a functional food
from a mixture of pollock and salmon belly minced fish meat with the biologically
active chitinmineral food supplement “Hizitel”.Azuma and Ifuku [60] suggested that
chitin nanofibers (CNFs) and surface-deacetylated chitin nanofibers (SDACNFs) are
promising functional food for patients with inflammatory bowel disease or obesity.
The authors observed that CNFs substantially ameliorate the clinical symptoms of
IBD. SDACNFs reduced the levels of leptin in serum and repressed the rise in body
weight.

Chitosan increases the nutritional benefits of the food products, including boosting
immune response and glucose-lowering effect while maintaining the organoleptic
properties of the product [61–63]. Chitosan is a promising source of dietary fibre in
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organisms that lacks a specific chitinase enzyme in their gastrointestinal tract [64].
Lie et al. [65] reported that the feed supplementation with high molecular weight
chitosan decreased fatty deposit in liver, spleen, andmuscle of broiler chickens.Qinna
et al. [66] suggested a new functional food containing chitosan (1%) and pectin (5%)
as an alternative to meat. Anandan et al. [67] found that dietary supplementation with
chitosan had a protective effect on lipid oxidation in induced myocardial infarction
in rats.

Microcrystalline cellulose (MCC) biopolymer is broadly considered as a func-
tional ingredient in several food products, including dairy, bakery, and confectionary
[68]. The colloidal MCC contains 98 g/100 g of insoluble dietary fibre [69]. The
experimental animals fed with MCC fortified diet showed a reduced level of choles-
terol [70]. MCC fortified food also plays a substantial role in the management of
obesity and diabetes mellitus via hypolipidemic and hypoglycemic effect, respec-
tively [71]. Cellulosic nanomaterials (CNMs) biopolymer is extensively utilized in
nutraceutical and food industry because to its exceptional physico-chemical proper-
ties, namely highmechanical strength, lightweight, and biocompatibility [72]. Bacte-
rial cellulose (BC) biopolymer is widely used as a resource of dietary fibre, and it is
approved as a “generally recognized as safe” food by the U.S.FDA [73].

4.2 Biodegradable Preservative and Packaging

Seafood is a rich source of functional health-promoting compounds, including vita-
mins (vitamins D, B and A) and polyunsaturated fatty acid [74]. However, seafood
products are highly perishable, and it is most prone to degradation by microbiolog-
ical, enzymatic, and chemical reactions.Currently, chitin and chitosanbiopolymer are
used as an alternate biodegradable natural preservative for retaining seafood quality
and increasing the shelf-life of seafood-based products [74]. Generally, chitin and
chitosan increase the shelf life of marine-based products by improving oxidative
stability, reducing lipid oxidation, and inhibiting the growth of microorganisms.

Chitin biopolymer is used as an edible coating in food safety as it principally
maintains the sensory characteristics of food material. Moreover, chitin is also used
as a support matrix for enzyme immobilization that imparts remarkable opera-
tional stability in the food processing industry [74]. Morganti [75] has developed
chitin-based biodegradable food packaging material by using chitin nanofibrils. The
combination of polylactic acid and nanocellulose biopolymer is also used as a novel
promising sustainable eco-friendly food packaging material [76].

Chitosan is widely used as a packaging material component, additive and coating
agent for seafood-based products because of its distinctive functional and physico-
chemical properties [77, 78]. Several researchers have demonstrated that chitosan-
based coatings help in maintaining the physico-chemical properties of fish and
other seafood-based products[78]. Sathivel et al. [79] documented that an edible
coating of 1 or 2% chitosan biopolymer suspended the degree of lipid oxidation in
Oncorhynchus gorbuscha during frozen storage. Kumar et al. [80] demonstrated that
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the chitosan can be used as an encapsulation biomaterial for several sensitive prod-
ucts, including fish oil due to its noticeable emulsification capacity. Benjakul et al.
[81] concluded that chitosan can enhance the gelling properties of marine-based
products, including fish surmini products. Kok et al. [82] observed that chitosan
(1%) constrained the growth of microorganisms in fish ball throughout 21 days of
storage. Ye et al. [83] showed that chitosan-coated plastic films inhibited the growth
of Listeria monocytogenes on salmon for at least 6 weeks. Mohan et al. [84] revealed
that the edible chitosan coating (1 and 2%) improved the textural properties, water
holding capacity, drip loss, and inhibited the bacterial growth in Sardinella logiceps
during cold storage conditions.

Numerous researchers have repeated that chitosan-based coatings could impede
the production of trimethylamine—nitrogen in marine food by inhibiting the growth
of microorganisms [85, 86]. Chitosan has been used as an edible coating or film
in marine-based products owing to its tremendous film-forming ability. Moreover,
it is used as an antimicrobial and antioxidant agent in seafood-based products [87].
Chitosan-based coating is used as a preservative in seafoodproducts due to its remark-
able ability to reduce the increase in pH value [88]. Several studies have reported
that chitosan-based coatings can increase the quality, sensory attributes (taste, odour,
colour, appearance, texture, flavour and elasticity) and shelf life of seafood products
[88]. Therefore, chitosan-based biopolymer possesses promising prospects in food
preservatives and food packaging industries.

4.3 Wastewater Treatment

Wastewater contains heavymetals, dissolved and particulatematter, solids,micropol-
lutants, nutrients, and microorganisms in a complex matrix [89]. The water is gener-
ally contaminated through various industrial processes, agricultural and domestic
activities (swimming, boating, and fishing etc.) [90–92]. The contaminated wastew-
ater is highly toxic and can adversely affect the organisms [93–95]. Therefore, it is
of paramount importance to develop effective strategies for treating wastewater [96–
98]. Additionally, in the current scenario, wastewater treatment is highly critical due
to dwindling water supplies, tougher discharge regulations, and rising wastewater
disposal costs [99]. The primary aim of wastewater treatment is to remove as many
dissolved solids as possible before discharging the residual water (effluent) into
the environment. Conventional wastewater treatment encompasses pre-, primary-,
and secondary-treatment [100]. However, the conventional methods lack accuracy,
cost-effective discharge standards and desired level of purification [101]. Over the
last few decades, natural biopolymers including chitosan, chitin and cellulose have
garnered tremendous interest in wastewater treatments due to their high efficiency,
low-cost, high mechanical stability, abundance, renewability, biodegradability, and
high porosity [102, 103]. The different biopolymers used for wastewater treatment
are summarized in Table 2.
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Table 2 List of different biopolymers used for the treatment of wastewater

S. no. Biopolymer-based material Wastewater treatment References

1 MWCNTs/SnO2 decorated cellulose
nanofiber

Removal of Cu (II) from
wastewater

[115]

2 Natural cellulose fiber Sorbent for lead in wastewater [116]

3 Reactive polyhedral oligomeric
silsesquioxane nano-cellulose
hybrids

Adsorption removal of Cu2+ and
Ni2+ from wastewater

[117]

4 Cellulose-Based Solid Acid Absorption of heavy meatal ions
from printing wastewater

[118]

5 Cellulose-based membrane Adsorption of liquid waste dyes
and chromium

[119]

6 Chitin/polyethylenimine biosorbent
(CH-PEI)

Removal of uranyl-carbonate
compounds from water

[120]

7 Chitin-glucan nanopaper Adsorption of heavy metal ions [121]

8 Chitin/chitosan nano-hydroxyapatite
composite

Removal of copper (II) [121]

9 Chitosan microspheres Selective heavy metal removal [122]

10 Chitosan bed columns Removal of arsenic [123]

11 Chitosan and duckweed
combination

Removal of boron [124]

12 Chitosan-clay nanocomposites Removal of Cu (II) from aqueous
solution

[125]

13 Magnetic nanoparticles of chitosan
modified with polyhexamethylene
biguanide

Removal of hexavalent chromium
from aqueous solution

[126]

14 Novel chitosan based thin sheet
nanofiltration membrane

Rejection of heavy metal
chromium

[127]

Chitosan biopolymer has widely used an adsorbent for removing several pollu-
tants from wastewater, including heavy metals and dyes, because of its high degree
of deacetylation that promotes higher interaction of free amine groups with the
pollutants. It is also considered to be an efficient bio-sorbent towards several other
contaminants because of its hydroxyl group enriched structure [104]. Chitosan is also
an ideal alternative substitute to conventional synthetic materials for the treatment
of effluents in agricultural wastewater, such as residual pesticides, herbicides, and
fertilizers. Pambi and Musonge [105] suggested that chitosan is a suitable low-cost
biodegradable material for treating wastewater from sugar industry by performing
a dual role of coagulant and flocculant through its relatively high molecular weight
and charge density. Crini et al. [106] reported a novel direct bioflocculation method
for treating wastewater from paper and pulp industry by using low-cost chitosan.
Ahmad et al. [107] effectively remove the solids frompalmoil effluent using flake and
powdered chitosan. Altaher [108] successfully remove the turbidity from seawater
by dissolving chitosan in hydrochloric acid. Dima et al. [109] reported that reticulate
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chitosan micro/nanoparticles can efficiently remove the toxic Cr (VI) from seafood
processing waste.

Gopi et al. [110] have successfully developed cellulose nanofibers (CNFs)
basedbio-aerogels for specificadsorption of methylene blue and rhodamine 6G
from wastewater. Albukhari et al. [111] purified nitrophenol and dye-contaminated
water using silver nanoparticles@cellulose acetate paper prepared by impregnation
method. Zhou et al. [112] used magnetic cellulose powder for purifying dye-polluted
water–ethanol combination. Garcia et al. [113] immobilized laccase on chitosan
and alginate-based matrix for effective removal of 17α-ethinylestradiol from water.
Chitosan-silica nanoparticles have been successfully developed for catalytic degrada-
tion of 1,1-dimethylhydrazine from wastewater [114]. Overall, natural biopolymers
have demonstrated prodigious potential in wastewater treatment.

5 Conclusion and Future Perspective

The multiple applications of fish-derived biopolymers have widened the scope of the
circular economy of the fishing industry. Over the last few years, the nanotechno-
logical advancement of biopolymers has been exploited to purify wastewaters. This
treatment is environment friendly as it avoids chemical substances, thus safe for flora
and fauna of the aquatic system. The treated wastewater is free from toxic micropol-
lutants, dyes and pesticides and reusable for seafood processing. More specifically,
seafood is highly perishable, and the biofilm packaging enhance the shelf-life of
the food product without compromising the organoleptic characteristics. The edible
coating is thermostable, pH stable, resistant to bacterial growth and a good emulsifier
to be considered for food processing and packaging material.

Another promising industrial application is to prepare functional foods by
blending fish waste with biopolymers. This can be used as a dietary supplement
as it is rich in protein, omega-3-fatty acids, dietary fibres and minerals and GRAS in
bakery, confectionary, and nutraceuticals. Because of the biocompatibility, elasticity,
translucent and odourless characteristics of chitin, chitosan, collagen, gelatin, and
hyaluronic acid are potential candidates for biomaterial. This soluble biopolymer
is suitable for fishing gears as it will reduce ghost fishing incidents and reduce the
physical activity of collecting submerged fishing nets/lines. The latest technologies
involve hybrid polymers that need less time and energy to produce with superior
flexibility and strength to lessen the dependence on plastics. As mostly fishing gears
and plastic-based and many companies are working together on more sustainable
ways to produce completely biodegradable products. However, many challenges
like increasing the catching capacity of fishes, using biopolymeric fishing nets; low
tensile strength of fishing lines; high water holding capacity of fishing lures which
leads to microbial degradation etc. are needed to be addressed.
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Therefore, the future study needs in-depth analysis on the structural and func-
tional aspects of biopolymer to be reinforced in the fishing industry as an alternative
to polyethylene. Despite all the challenges, the biopolymer prototypes need to be
exclusively developed for efficient drug-delivery systems in medical and pharmaco-
logical products. In addition, the promotion of biopolymers in the fishing industry
community will further reduce the global bioburden.
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