
bRIGHT – A Framework for Capturing
and Adapting to Context for User-Centered

Design

Rukman Senanayake and Grit Denker(B)

SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA
{rukman.senanayake,grit.denker}@sri.com

Abstract. The ability to create and maintain a highly accurate model of an end
user’s context is an extremely useful feature. Achieving this ability poses many
challenges, especially since a great degree of partial information and uncertainty is
involved in capturing the user’s context. The bRIGHThuman-computer interaction
(HCI) framework and workstation address these challenges by creating a highly
accurate context model of a user engaging with a computer system. In this paper
we discuss the architectural design of bRIGHT, which addresses performance and
scalability to build accurate user context models, and the benefits we expect from
this improved version. We also discuss technological advances in other related
fields that influenced our decision-making.

Keywords: User context modeling · Run-time adaptation and automation · User
assistance · Context-aware automation · Context-aware filtering · Context-aware
prediction · Cognitive autofill · User-centered design architecture · User-centered
system

1 Introduction

The term context-awareness was coined with the rise of ubiquitous computing [1] and
quickly became an important topic in human computer interaction (HCI) [2]. Context of
use is fundamentally important in providingmeaningful, efficient, effective, and adaptive
user experiences (UX). Understanding the user and her context is the key enabling factor
in tailoring to current needs and making user experiences relevant, and it also opens the
path to dynamically adaptive system designs.

The word context covers a broad set of meanings in the UX and conventional HCI
arenas. For the purpose of this paper, and with respect to the bRIGHT system (Fig. 1)
and its current capabilities, we are focused on the aspects of the user’s context that
can be observed and recorded in terms of interactions with a computer system. There
are many other aspects to a user’s context [3–5]: location; physical vs. logical, societal
relationships and impacts (e.g., a pandemic changing how a user works); environmental
impacts; and interface interactions with a computer or a machine. We are focused on
modeling the subset of the user’s context that can be directly observed in terms of their
engagement with the system. The research questions we are investigating are:

© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
C. Ardito et al. (Eds.): INTERACT 2021, LNCS 13198, pp. 158–173, 2022.
https://doi.org/10.1007/978-3-030-98388-8_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-98388-8_15&domain=pdf
https://doi.org/10.1007/978-3-030-98388-8_15


bRIGHT – A Framework for Capturing and Adapting 159

• Can an accurate and detailed user context model positively and ongoingly enhance
UX during system operation?

• What degree of accuracy is required in a context model for achieving transformational
gains in UX?

In particular, bRIGHT does not aim to improve by adapting the user interface (UI)
itself; rather, it works with given UIs and improves the UX of the users in those UIs (cf.
Sect. 2). Currently, bRIGHT does not include technology to detect and integrate events
in external, environmental objects, but the framework allows for such extensions that
we plan for the future.

bRIGHT is a sensing, modeling, and analysis framework that allows accurate mod-
eling and adaptation to a user’s context. The bRIGHT context models store each user
action in a machine-processable and meaningful way that can be queried and used in
algorithms to determine user interest and provide predictions and assistance to the user.
bRIGHT allows rich and meaningful context and contains information at an abstraction
level to permit semantically equivalent statements such as, “After the company’s West
coast network security administrator read an email from her East coast colleague about
an ongoing attack on the company’s network, she proactively redirected identified traffic
through the company’s honeynets.” Observational approaches use less-rich context data
such as keystrokes, heat maps, or gaze patterns.

bRIGHT is beneficial for human-centered software engineering (HCSE) in twoways.
In the short term, user-centered design processes canmake use of bRIGHT’s user context
(and future cognitive) models to design systems that can adapt to new requirements or
changes in use. It is common for user modeling and context to be used in the design
and implementation of interfaces and interface components. But approaches in which
the user’s context is tracked and modeled in real time and then used to adapt the entire
user experience are still rare. bRIGHT was designed and developed to model a user’s
context, maintain the context model as accurately as possible, and evolve the UX by
offering proactive assistance to the user. The scope of our work covers the development
of a research framework that captures the user’s context and allows formal modeling of
mechanisms and techniques to update the model accurately. We also include the ability
to reason about the dynamics in the context model, and to investigate software and
hardware designs that would enable adaptive UX and properly harness the synergy of
these features. In addition, bRIGHT’s user context models do not forget; they represent a
time-machine-like record of all observed user actions. As such, thesemodels are useful in
the short- and long term because they provide a basis for context of use and evolutionary
trends.

Section 2 provides some related work and Sect. 3 gives an overview of the bRIGHT
system. A use case is presented in Sect. 4. Details of the approach and status of devel-
opment are provided in Sect. 5. Section 6 summarizes the next steps for bRIGHT
development and application and contains our conclusions.

2 Related Work

With increasing regularity, humans are interacting with autonomous systems and also
with systems powered by artificial intelligence (AI). In such interactions, the systems’



160 R. Senanayake and G. Denker

ability to observe, model, and leverage the user’s context becomes vital in improving
system effectiveness and efficacy. The context is pivotal to the decision-making process
of the user; decision-making does not happen in a vacuum and is almost always grounded
in user context. If autonomous systems or AI-based systems are capable of tracking and
reasoning about the user’s context, then they can also play a role in providing the right
kind of assistance at the right time and place.

To characterize bRIGHTwith respect to other context-aware systems, and following
the nomenclature in [4], bRIGHT is a context-server based approach, and in particular a
context-aware framework, because it allows extension to specific context. bRIGHTuses a
semantic type system tomodel context that is similar to ontological approaches, but does
not use the full power of ontological relationships. bRIGHT’s type system records for
each contextual model instance the context type and value, time stamp, and the (sensor)
source and confidence of the contextual instance. Context processing is done in bRIGHT
in various ways:We use rules for interest modeling as well as context interpretation (e.g.,
knowledge about domain-specific classes like Internet Protocol (IP) address, types of
attacks, and so on in the security domain). bRIGHT is not currently handling security
and privacy yet, but in a separate project we have implemented an ontology-based policy
reasoner for privacy and security that could easily be integrated with bRIGHT. Historical
context data is by default integrated into bRIGHT, since bRIGHT’s context model does
not forget and keeps the entire user context history.

It is common for user modeling and their context to be used in the design and imple-
mentation of interfaces and interface components. For example, (contextual) personas
[6] are an approach to enrich the communication between designer and developer, and
contextual personas [7] include aspects of the digital work environment. Value-Based
Requirements Engineering (VBRE) [8] makes users’ values explicit through analysis
with a reference taxonomy. The taxonomy contains concepts such as values, motiva-
tions, and emotional reactions, all of which are important in decision making. VBRE
can be used in requirements engineering to support user-centric design (UCD) (e.g.,
as done in [9] for a health decision support system). These approaches are used in the
requirements or design phase of systems. bRIGHT’s approach is different in that it is
used during system operation. bRIGHT observes the user, builds a contextual model of
the user’s interest, and uses that model to dynamically adopt the UX at runtime. This
use of bRIGHT is in line with work that aims to improve processes through integration
of machine learning (ML) [10] and benefits user experiences in Web Internet of Things
(IoT) applications [11]. bRIGHT’s implementation is intentionally generic so that it can
serve as a basis for many possible applications.

Currently, bRIGHT’s focus is on modeling user interactions with a set of computer
applications to create an accurate user context model during operation. bRIGHT uses
its context model for a variety of adaptation techniques such as “right information at the
right time” or “workflow/task automation” or “contextual auto-fill from context model.”
Section 4 provides examples of those adaptation techniques.

Other approaches aim to improve usability through adaptive behavior of the UI. For
example, [12] provides users with a minimal feature-set and an optimal layout based
on the context of use. They are using Role-Based UI Simplification (RBUIS) based on



bRIGHT – A Framework for Capturing and Adapting 161

a-priori statically defined user roles and tasks. Role-based UI models support feature-
set minimization by assigning roles to task models and layout optimization through
workflows that represent adaptive UI behavior visually and through code. The main
difference to our approach is that the roles and corresponding adaptations are determined
a-priori, whereas our approach models the user at runtime and determines adaptations
very specifically to what the user is and has been looking at and what actions the user has
done so far. The adaptations are thus very tuned to the current user’s context. As such,
bRIGHT’s approach could be used in conjunction with RBUIS or similar UI adaptation
frameworks.

Another line of research focuses on enabling end users to easily and autonomously
personalize the behavior of their applications. For example, [5] presents an approach that
allows end users without programming experience to customize the context-dependent
behavior of their IoT applications through the specification of trigger-action rules. The
goal is to support the dynamic creation and executionof personalized applicationversions
that are more suitable for users’ needs in specific contexts of use. bRIGHT’s context
model is accessible through programming interfaces and could be used for end user
development activities as described in [4], but we have not investigated this avenue of
research.

bRIGHT also does not attempt to automate UI generation adapted to a person’s
devices, tasks, preferences, or abilities, like SUPPLE [13], which formally defines inter-
face generation as an optimization problem that is feasible for a particular class of cost
functions. The notions of cost functions for adaptations as used in SUPPLE would be
interesting to investigate in the future for bRIGHT as a quantitative measure of value
added by automations provided by bRIGHT. For example, one of the cost functions in
[13] models a person’s ability to control the pointer and allows SUPPLE to generate user
interfaces adapted to unusual interaction techniques or abilities, such as an input jittery
eye tracker or a user’s limited range of motion due to a motor impairment. bRIGHT’s
automation techniques could be beneficial in some of these circumstances (e.g., avoid-
ing the need to control the pointer by providing pre-filled choices that users can confirm
through other means (voice, return key).

In the future, it would also be interesting to integrate the foundational context lan-
guage ContextML presented in [14] with bRIGHT’s context model. This would enable
the use of the bRIGHT’s context model as part of the Model-Driven UI Develop-
ment framework of [14] (assuming appropriate framework APIs). bRIGHT’s context
model is rich with domain-specific context and could be beneficial to more user- and
context-specific adaptations.

The context model built by bRIGHT is similar in many ways to context models
defined using ontological approaches such as [15–17]. Using ontologies allows us to
use general concepts to build a basic context model that has the necessary extensibility
to support domain-specific concepts. The user-profiling ontology developed by Skillen
[15] and COBRA-ONT developed by Chen et al. [16] are extensive, andwewill consider
them for integration into future bRIGHT developments.



162 R. Senanayake and G. Denker

3 Overview of bRIGHT

We are using bRIGHT (Fig. 1) to focus on understanding what type of hardware and
software design can lead to systems that accuratelymodel user context and use themodel
and its dynamics to capture user’s needs and interests. This information can be used to
help the user in a more efficient and effective way. In addition, our approach supports
the study of context of use, long-term evolutionary trends, and their impact on the user.

Fig. 1. AbRIGHTworkstation consisting of a touch tablewith proximity detection for positioning
controls under the hands of users. The center monitor has a gaze tracking system mounted on the
bottom that recordswhat the user is looking at. The user isworkingwith a cybersecurity application
that is rendered on the center monitor. The left monitor visualizes the recorded raw data regarding
the user’s interactions with the application (what the user did) and the user’s gaze (what the user
looked at). The right monitor visualizes the generated user context model that represents the user’s
interest at any given time.

We have used bRIGHT as an HCI research framework and as the backbone tech-
nology for future human-centered, resilient, and adaptive system designs. In a military
application, we used bRIGHT as an HCI framework to study opportunities to integrate
AI into counter unmanned aerial systems in simulated environments. We instrumented
the simulation software to record user activities and conducted human subject research
(HSR) using complementary measures such as video recording of user behaviors and
screens, physiological measurements of pulse waveforms, annotations of recordings,
task performance measures, interviews, and self-assessment. Analysis of the data col-
lected by bRIGHT helped identify possible optimizations for the counter unmanned
aerial simulation system via contextual filtering and cognitive autofill; these made user
interface interactions easier by auto-filling relevant data from short-term memory.



bRIGHT – A Framework for Capturing and Adapting 163

We also used bRIGHT as a backbone technology framework in cybersecurity appli-
cations and demonstrated user context models dynamically adapting and enabling
context-based filtering and task automation [18, 19] as shown in the next section.

4 bRIGHT Runtime Adaptation – A Use Case

We are illustrating bRIGHT’s automation adaptations at runtime with a use case from
the cybersecurity background. SRI has developed several cybersecurity analysis tools
that were instrumented with bRIGHT: BotHunter1 is a malware detection and analysis
tool and Infected America is a tool to visualize IP reputation data. Typically, a network
operator or security specialist would use these and other tools to help in the analysis of
network status and investigate potential security threats. Since these tools are bRIGHT-
enabled, user interactions with these tools are observed and recorded in a user context
model. We will show in a step-by-step use case how a context model is used to provide
automation on the fly and improve the UX.

Figure 2, 3, 4, 5, and 6 show a sequence of actions performed by the user in the
BotHunter malware detection and analysis tool. Figure 2 shows the main Bothunter
interface that provides several analytical dashboard options. Users have the option to
see forensic graphs that summarize infection status per IP address. Other dashboard
panels summarize infection patterns or show the infection profiles in a table format with
detailed meta-information per infection. Finally, a table of external interactions for each
IP is available. For the use case, the network operator will use the “Forensic Confidence
Composition Graph” to understand how different IP addresses in his network have been
attacked and the “External Interactions” table to understand with what external IPs his
infected devices have communicated.

Fig. 2. BotHunter main UI with several analytical dashboard options. The cybersecurity appli-
cation BotHunter is bRIGHT-instrumented. As the user interacts with BotHunter (and other
applications), bRIGHT creates the user context model.

1 https://en.wikipedia.org/wiki/BotHunter and http://www.bothunter.net/about.html.

https://en.wikipedia.org/wiki/BotHunter
http://www.bothunter.net/about.html


164 R. Senanayake and G. Denker

Opening up the “Forensic Confidence CompositionGraph” results in Fig. 3. For each
IP in the operator’s network, it shows a color-coded summary of the different types of
evidence classes over IP addresses, such as scores for RBN (Russian Business Network),
RepeatScanner and DNSCheckIn among others.

Fig. 3. The Forensic Evidence Classes graph shows for each IP and summary of the kinds of
evidence that was collected. The graph is zoomable and clickable so that more details of evidence
can be explored by the user.

The network operator is interested in two of the IPs, namely 192.168.143.235 and
192.168.248.146 each of which represents internal IP addresses (PCs or servers) and
would like to better understand what is going on with these assets. Double clicking the
bar graphs of these two IP addresses opens up new dialog windows that show so-called
infection profiles for each of them (Fig. 4 shows an infection profile for 192.168.143.
235).

The user is also looking at infection profiles of the other IP addresses of interest.
Then the user looks at daily infection summaries per IP in BotHunter to get an idea
of how strong the evidence is for detected patterns. For example, the user looks at the
“Botnet Infection” information and forensic confidence for IP 192.168.143.235 as shown
in Fig. 5.

Finally, the user clicks on the “External Interactions” button to understand what
external IPs his network nodes communicated with. This is shown in the External Inter-
actions Table (Fig. 6). The information about communications with external IPs is useful
for another cybersecurity application in which the user can get more information about
those external IPs and whether they are known to be malicious. All this helps the user to
get a complete picture of the situation and decide what actions are necessary to counter
a potential attack.

The user’s interactions with BotHunter have been recorded in a contextual model
that is illustrated in Fig. 7.



bRIGHT – A Framework for Capturing and Adapting 165

Fig. 4. Infection Profile View for one of the chosen IP addresses that are of interest to the user.
Each infection profile view may have several infection profiles, each consisting of a list of icons
that symbolize the various evidence classes (e.g., inbound attack, egg download, connection to
malicious Command and Control (C&C) Server, connection to Russian Business Network (RBN),
or outgoing attack)). Infection Profiles provides a quick overview for the operator what has been
going on with the network asset in question and where the attack stands. This will enable the user
to quickly decide where to put his attention and act on isolating network nodes to limit the damage
and contain the exposure.



166 R. Senanayake and G. Denker

The user next launches the Infected America application (shown in Fig. 8) to deter-
mine the IP reputation data of one of the external IP addresses to which the system asso-
ciated with IP 192.168.143.235 is connected. At this point, a set of external IP addresses
in the user’s context model can be used for pre-populating this field. bRIGHT’s context
model then sends this list of IP addresses to the Infected America application to pro-
vide the user contextual auto-fill entries that match both the type (IP address) and the
fact that they need to be external addresses and not internal ones (e.g., 192.168.248.146
and 192.168.143.235), since Infected America is used for obtaining information about
external IP addresses and their historical behavior, not internal ones.

Fig. 5. Detected Infection Patterns View shows for each IP the kind of detected patterns such as
malware coordination, spyware and malicious download and how much forensic evidence was
collected for each pattern along with other meta data

Fig. 6. External Interactions Table shows for each local IP to which external IPs is has connected.
This information is useful as it allows the user to now broaden the analysis outside of his own
network and further investigate attacking nodes from the wider internet and decide mitigation
strategies (such as taking the local IP off the network and rerouting traffic to that node to a honey
net to further understand attackers).



bRIGHT – A Framework for Capturing and Adapting 167

Fig. 7. Context model of a user interacting with BotHunter.

Fig. 8. Infected America, another bRIGHT-instrumented cybersecurity application.



168 R. Senanayake and G. Denker

bRIGHT’s context model is a result of only a few minutes of user interaction with
bRIGHT. This means that bRIGHT can accurately determine interest even with limited
user data. In this way, bRIGHT’s modeling approach differs from data-hungry modeling
approaches such as machine learning to dynamically determine user interest with high
accuracy.

5 Approach

In this section, we describe the technology of bRIGHT’s design and illustrate how it
impacts our research methodology from a user-centered design perspective.

The bRIGHT system is designed and developed to meet certain requirements. Chief
among these is the ability to handle high volumes of raw signal information from gaze
tracking, multi-touch, and biometric (face recognition, iris scanning) sensors and the
ability to scale to support large groups of users working together to solve complex
problems. bRIGHT’s framework has support for the Kafka streaming server to introduce
an integration end point into bRIGHT that is standardized and widely popular.

The use of open-source APIs was motivated by performance considerations and ease
of deployment in various labs.

Fig. 9. The bRIGHT architectural overview depicting major system components.

Architecture of bRIGHT. The major system components of the bRIGHT architecture
are shown in Fig. 9. In the following sections we describe the roles of components and
how they integrate as a cohesive HCI framework that facilitates our research. This is a



bRIGHT – A Framework for Capturing and Adapting 169

technical viewpoint of context modeling that facilitates our user-centered research. Our
methodological viewpoint will be described in a future publication.

Extending the Application Model. The bRIGHT system is designed as a research
framework and concept design for a future workstation. It allows us to investigate appli-
cation paradigms such as object-oriented programming, which supports capture of accu-
rate user context. bRIGHT has extensions to a typical application’s business logic that
include the bRIGHT analytics subscriber module (BASM), semantic interaction model
(SIM), and the semantic visualization model (SVM) for each application. Further infor-
mation about the application modeling enhancements in bRIGHT can be found in [19,
20]. The BASM is a component that connects to the bRIGHT analytical reasoner via
the Kafka output stream from the bRIGHT state manager. The main purpose of BASM
is to update the application’s state with input from the bRIGHT analytics module. Such
input could provide predictive data when an analytics module determines the user will
need to match a required entry in a field in the application interface.

Knowledge Representation. The persistent data storage model for bRIGHT’s state
management uses a distributed, open-source, massively scalable graph database technol-
ogy called JanusGraph. The scenarios in which graph databases outperform traditional
relational databases are well documented. Given the nature of bRIGHT’s knowledge
representation, a graph representation is used as the primary form over which the analy-
sis modules execute their reasoning.We use JanusGraph (part of the Apache TinkerPop2

graph computing framework) and Gremlin3 as the graph traversal machine and language
for implementation of the connected component representing bRIGHT’s world state.

The bRIGHT state manager (BSM) is the component responsible for connecting
to the JanusGraph database back-end and populating the initial world state when the
bRIGHT system powers up (see Fig. 9 above). In addition, the BSM subscribes to all
of the input and output streams from the Kafka server, and based on the data flow on
these streams, builds and manages the context model. The bRIGHT analytics module
connects to the BSM and uses updates from the BSM to run various run-time analyses
of the graph representation to enable predictive input and task automation, etc. The
results are sent back to the BSM as state updates and passed along to the corresponding
components of the system via the Kafka output streams. The bRIGHT analytics module
also uses graph analytics techniques to identify regions of the graph or relationships that
may be of interest in studies related to long-term evolution of context. These features
are experimental and in advanced prototype stages.

Context Model. The BSM creates the context model based on various graph queries
that execute due to triggers received from the Kafka input streams. This could be a user-
action-associated semantic interaction model instance (i.e., pressing the “Send Mail”
button in a mail client creates a SIM instance associated with being streamed into the
BSM via the Kafka input stream), or it could be a gaze context response from the
application for a query generated by the bRIGHT back-end server. This might happen
because the user’s gaze fell on a part of the screen being tracked for this application. The

2 https://tinkerpop.apache.org/.
3 https://tinkerpop.apache.org/gremlin.html.

https://tinkerpop.apache.org/
https://tinkerpop.apache.org/gremlin.html


170 R. Senanayake and G. Denker

graph queries utilize a system that is built on open domain knowledge and encapsulates
some common concepts required for state management. Example domain knowledge
could be the format of an IP address and its relationship to the network mask. Common
concepts useful in such a case could be that IP addresses are often associated with
geolocations, which contain properties such as “Country”, “State”, and “Zip Code”.

Since the entire system is engineered end-to-end with the ability to stream signals
such as gaze and also interprets the operational semantics of such signals at the user
level—i.e., instead of updating the context model with gaze at point P(Xi,Yj), we update
it with higher-level concepts such as: The user looked at the “Subject line of an unopened
email containing …”—in real-time speed. As such, there is no loss of information in
terms of what interactions the user took in engaging the system, and the context model
reflects almost all the information and concepts the user is currently interested in. It is
not an exaggeration to claim that all the major design decisions in the bRIGHT system
were made to maintain high accuracy of the context model.

The BSM maintains a journal of all updates applied to the context model; there-
fore, the evolution of the context model can be played forward and back in time when
experiments are conducted. The Kafka stream data are also available, and we can fully
replay any specific experiment or scenario, recreating the results from the signal streams
upward. This allows us to run various graph analysis algorithms over the evolution of
the context model and develop insights into long-term effects and patterns.

In cybersecurity demonstrations and experiments, we have seen the context models
grow to contain thousands of entries and fairly complex connected components within
the span of a few hours. Most of the content is from the gaze-tracking input, since cyber
operators consume a lot of information both in terms of transaction rate and volume. It is
not surprising that the context model of a cyber operator grows rapidly as a consequence
of workflow. Cyber operators are constantly monitoring complex intrusion detection
and malware detection software as well as routinely communicating with multiple team
members to effectively collaborate. This complex and detailed context model also high-
lights why it is extremely difficult to track operator interests and anticipate their needs
without such a rich and complex representation.

Kafka Streaming Server. The 3rd-generation bRIGHT system generates approxi-
mately 6 gigabits of sensor data every second. In addition, it creates intermediate sensor
processing results such as blob detection output from the multi-touch surface, proximity
detectors, face recognition status sensors, and so forth. bRIGHT needs to handle all of
these streams of high sustained transfer-rate-oriented signals while performing complex
context-oriented reasoning. As such, we chose to improve the scalability of our signal
streaming capacity by integrating the Apache Foundation’s Kafka streaming server into
the bRIGHT framework4.

The Kafka server has bRIGHT-friendly input streams (see Fig. 9, application status
data and sensor data) and output streams (gaze queries being sent to applications, task
automation, or predictive input results from the analytics module). Any future experi-
ments conducted using this platform will be done by integrating software relevant to the

4 https://kafka.apache.org.

https://kafka.apache.org


bRIGHT – A Framework for Capturing and Adapting 171

experiment and connecting to a new Kafka input stream and output stream specific to
that experiment context.

One of bRIGHT’s core abilities is tracking the user’s interest and responding to
queries in the user’s context model to execute application functionality in the near
future. This “predictive input” is an extremely accurate form of autofill. When cer-
tain applications are fully integrated with bRIGHT, input parameters can be populated
for an application feature and will auto-execute if there is enough evidence in the context
model to suggest the user may do this in the near future. Task automation and predictive
input are some of the outputs from the bRIGHT analytics module that are streamed to
the application software using the Kafka output. Accurately tracking the context of the
user allows proactive engagement that supports the user with needed information for
input and task automation.

6 Future Work and Conclusions

A major focus for future work is to evaluate bRIGHT in user studies. While we have
applied bRIGHT internally to various projects to experiment with task automation and
cognitive autofill as means to adapt to user context, we have yet to conduct large and
formal user studies.

Given the revolutionary gains in performance of AI-based systems and the rapid
increase in deployment of autonomous systems in defense and disaster recovery, every
aspect of human-machine interaction (HMI) is transforming rapidly. Understanding the
user’s context and leveraging it has always been significant in HMI, but this is now
becoming one of the key areas for research and development because amuch broader and
more accurate definition of contextwill be needed in the future.We can expand our ability
to capture user context by integrating better sensor systems, as evidenced in autonomous
driving systems; however, to achieve truly transformational gains, we need advances in
fundamental computing principals such as application modeling paradigms. These must
be updated from vastly outdated models such as object-oriented programming, etc. As
we have shown in our previous work [19, 20], expandingmodeling so the application can
respond to contextual queries about rendering context on screen and user interactions is
important. We must provide a rich operational semantics level to create highly accurate
context models of the user.

By improving the knowledge representation scheme in bRIGHT and adding support
to embed high-level decision theory constructs such as “value maximization”, “seman-
tic framing”, “attribute framing”, “loss aversion”, and “temporal discounting” among
others, we will support identification and tracking of human decision-making based on
context.

At present, the entire bRIGHT framework is built upon a very narrow definition of the
user’s context.Adding support for high-level concepts such as societal and environmental
characteristics will increase the broader impact of this technology.

Our work in the last 8 years has allowed us to capture information and adapt the
bRIGHT platform to the user’s context in the short term. The ability to track long-term
evolution of human experiences, interests, and values is useful. Indeed, rapid advances
in AI and the predominance of autonomous systems will change the future.



172 R. Senanayake and G. Denker

We have demonstrated a need to extend basic computing principles such as applica-
tionmodeling paradigms to better support understanding the user’s context.We extended
existing applications by adding semantic interaction models and semantic visualization
models that better describe the user-level operational semantics of the interactions and
on-screen content. When the user engages with the system, we are able to identify, track,
and adapt their context so that a response to change happens in near-real-time fashion. As
such, we designed the entire bRIGHT framework end-to-end with these requirements
in mind. To make revolutionary gains in capturing a broad swath of the user context
(including societal and environmental aspects), user-centered design processes must
follow a holistic approach that accounts for advances in sensor systems, software archi-
tectures, and application modeling. Consideration of short-term trends and long-term
evolutionary patterns will also be important.

References

1. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: First Workshop
on Mobile Computing Systems and Applications, pp. 85–90. IEEE (1994)

2. Moran, T.P. (ed.): Special issue on context in design. Hum.-Comput. Interact. 9, 1–149 (1994)
3. Calvary,G.,Coutaz, J., Thevenin,D., Limbourg,Q.,Bouillon, L.,Vanderdonckt, J.:Aunifying

reference framework formulti-target user interfaces. Interact. Comput. 15(3), 289–308 (2003)
4. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. J. Ad Hoc

Ubiquitous Comput. 2(4), 263–277 (2007)
5. Ghiani, G., Manca, M., Paternò, F., Santoro, C.: Personalization of context-dependent

applications through trigger-action rules. ACM Trans. Comput.-Hum. Interact. 24(2), 1–33
(2017)

6. Matthews, T., Whittaker, S., Moran, T., Yuen, S.: Collaboration personas: a new approach
to designing workplace collaboration tools. In: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2247–2256 (2011)

7. Wang, R., Larusdottir, M., Cajander, Å.: Describing digital work environment through
contextual personas. IFIG WG 13.2 Workhop at INTERACT 2021 (2021)

8. Thew, S., Sutcliffe, A.: Value-based requirements engineering: method and experience.
Require. Eng. 23(4), 443–464 (2017). https://doi.org/10.1007/s00766-017-0273-y

9. Sutcliffe, A.: Conflicting requirements and design trade-offs. In: IFIPWG 13.2+ 13.5Work-
shop on Dealing with Conflicting User Interface Properties in User-Centered Development
Processes. Mumbai (2017)

10. Johansen, P.S., Jacobsen, R.M., Bysted, L.B.L., Skov, M.B., Papachristos, E.: Designing a
machine learning-based system to augment the work processes of medical secretaries. In:
Loizides, F., Winckler, M., Chatterjee, U., Abdelnour-Nocera, J., Parmaxi, A. (eds.) Human
Computer Interaction andEmergingTechnologies:Adjunct Proceedings from the INTERACT
2019 Workshops, pp. 191–196. Cardiff University Press, Cardiff (2020)

11. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for the
internet of things: a survey. IEEE Commun. Surv. Tutor. 16(1), 414–454 (2013)

12. Akiki, P.A., Bandara, A.K., Yu, Y.: RBUIS: simplifying enterprise application user interfaces
through engineering role-based adaptive behavior. In: Proceedings of the 5th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems. pp. 3–12 (2013)

13. Gajos, K., Weld, D.S.: SUPPLE: automatically generating user interfaces. In: Proceedings of
the 9th International Conference on Intelligent User Interfaces, pp. 93–100 (2004)

https://doi.org/10.1007/s00766-017-0273-y


bRIGHT – A Framework for Capturing and Adapting 173

14. Yigitbas, E., Jovanovikj, I., Biermeier, K., Sauer, S., Engels, G.: Integrated model-driven
development of self-adaptive user interfaces. Softw. Syst. Model. 19(5), 1057–1081 (2020).
https://doi.org/10.1007/s10270-020-00777-7

15. Skillen, K.-L., Chen, L., Nugent, C.D., Donnelly, M.P., Burns, W., Solheim, I.: Ontological
user profile modeling for context-aware application personalization. In: Bravo, J., López-de-
Ipiña, D., Moya, F. (eds.) UCAmI 2012. LNCS, vol. 7656, pp. 261–268. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-35377-2_36

16. Chen, H., Finin, T.: An ontology for a context aware pervasive computing environment. In:
IJCAI Workshop on Ontologies and Distributed Systems, Acapulco (2005)

17. Wang,X.H., Zhang,D.Q.,Gu,T., Pung,H.K.:Ontologybased contextmodeling and reasoning
using OWL. In: IEEE Annual Conference on Pervasive Computing and Communications
Workshops, Proceedings of the Second, pp. 18–22. IEEE (2004)

18. Porras, P.A., Senanayake, R., Kaehler, J.: Revolutionizing the visual design of capture the
flag (CTF) competitions. In: Proceedings of the 21st International Conference on Human-
Computer Interaction HCI’19. Orlando, Florida, USA 26–31 July 2019

19. Senanayake, R., Denker, G., Lincoln, P.: bRIGHT – workstations of the future and leveraging
contextual models. In: Yamamoto, S.,Mori, H. (eds.) HIMI 2018. LNCS, vol. 10904, pp. 346–
357. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92043-6_29

20. Senanayake, R., Denker, G.: Workstations of the future for transformational gains in solving
complex problems. In:Kurosu,M. (ed.)HCII 2019. LNCS, vol. 11568, pp. 476–488. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22636-7_36

https://doi.org/10.1007/s10270-020-00777-7
https://doi.org/10.1007/978-3-642-35377-2_36
https://doi.org/10.1007/978-3-319-92043-6_29
https://doi.org/10.1007/978-3-030-22636-7_36

	bRIGHT – A Framework for Capturing and Adapting to Context for User-Centered Design
	1 Introduction
	2 Related Work
	3 Overview of bRIGHT
	4 bRIGHT Runtime Adaptation – A Use Case
	5 Approach
	6 Future Work and Conclusions
	References




