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Preface

This volume contains the proceedings of the second international challenge on Kidney
and Kidney Tumor Segmentation (KiTS 2021), held virtually in conjunction with
the International Conference on Medical Image Computing and Computer Assisted
Interventions (MICCAI) in 2021. By “proceedings”, we mean to say that this volume
contains the papers written by participants in the challenge to describe their approach to
developing a semantic segmentation approach for kidneys, kidney tumors, and kidney
cysts, using the official training dataset released for this purpose, and any other publicly
available datasets of their choice.

Machine learning competitions like KiTS are poised to play an ever larger role in
machine learning research, especially in an application domain like medical imaging
where data is so difficult to collect and even more so to release. The standardized
benchmarks that competitions provide have a singular ability to elucidate which of the
many proposed methods truly are superior. Given that, we believe that those of us who
organize machine learning competitions have a responsibility to push the boundaries
of these events to bolster their impact and rigor, while also maintaining a high level of
participation.

From what we have seen, it is not often that machine learning competitions have
peer reviewed proceedings. In fact, the first iteration of KiTS in 2019 did not have
them, but one of the pieces of feedback that we heard after 2019 was that the impact
would be greater if the participants described their approaches with more clarity and in
greater detail. We thought that offering a peer-reviewed publication for contributions of
sufficient quality might incentivize participants to improve this and, given the contents
of this volume, we know now that we were correct. We thank the participants for their
diligent efforts in putting together exceptional manuscripts to describe their approaches.

Of course, no scientific program would be successful without the huge effort put
forth by the Program Committee. The Program Committee for KiTS 2021 deserves even
more praise, however, because these individuals also served to provide labels for the
KiTS 2021 dataset. It surely goes without saying that KiTS 2021 would not have moved
forward without their tireless efforts.

November 2021 Nicholas Heller
Fabian Isensee

Darya Trofimova
Resha Tejpaul

Nikolaos Papanikolopoulos
Christopher Weight
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Automated Kidney Tumor Segmentation
with Convolution and Transformer

Network

Zhiqiang Shen1, Hua Yang2, Zhen Zhang1, and Shaohua Zheng1(B)

1 College of Physics and Information Engineering, Fuzhou University,
Fuzhou, China

sunphen@fzu.edu.cn
2 College of Photonic and Electronic Engineering,

Fujian Normal University, Fuzhou, China

Abstract. Kidney cancer is one of the most common malignancies
worldwide. Early diagnosis is an effective way to reduce the mortality
and automated segmentation of kidney tumor in computed tomography
scans is an important way to assisted kidney cancer diagnosis. In this
paper, we propose a convolution-and-transformer network (COTRNet)
for end to end kidney, kidney tumor, and kidney cyst segmentation.
COTRNet is an encoder-decoder architecture where the encoder and the
decoder are connected by skip connections. The encoder consists of four
convolution-transformer layers to learn multi-scale features which have
local and global receptive fields crucial for accurate segmentation. In
addition, we leverage pretrained weights and deep supervision to further
improve segmentation performance. Experimental results on the 2021
kidney and kidney tumor segmentation (kits21) challenge demonstrated
that our method achieved average dice of 61.6%, surface dice of 49.1%,
and tumor dice of 50.52%, respectively, which ranked the 22th place on
the kits21 challenge.

Keywords: Convolutional neural network · Kidney tumor ·
Transformer

1 Introduction

Kidney cancer is one of the most common malignancies around the world leading
to around 180000 deaths in 2020 [18]. Early diagnosis of kidney tumor is crucial
to reduce kidney cancer mortality. Computed tomography (CT) is an effective
tool for early detection and enable radiologists to study the relationship between
tumor size, shape, and appearance and its prospects for treatment [11]. However,
highly accurate kidney cancer diagnosis relies on the experience of doctors and
the treatment subjective and imprecise. Computer-aid diagnosis (CAD) system
can be used as a second observer to confirm the diagnosis and reduce the heavy
burdens of radiologists.
c© Springer Nature Switzerland AG 2022
N. Heller et al. (Eds.): KiTS 2021, LNCS 13168, pp. 1–12, 2022.
https://doi.org/10.1007/978-3-030-98385-7_1
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Recently, deep learning-based CAD systems have been widely developed for
cancer diagnosis and achieved great performance [15,22,25]. Yu et al. used the
crossbar patches and the iteratively learning strategy to train two sub-models
for kidney tumor segmentation [22]. Ozdemir et al. developed a CAD system for
pulmonary nodule segmentation and nodule-level and patient-level malignancy
classification [15]. Zheng et al. designed a symmetrical dual-channel multi-scale
encoder module in the encoding layer for colorectal tumor MRI image segmen-
tation [25]. A CAD system of kidney cancer diagnosis may include kidney and
kidney tumor segmentation as well as kidney cyst segmentation. This is a chal-
lenging task because the locations, textures, shapes, and sizes of kidney tumor
are diverse in CT images as shown in Fig. 1. U-Net and its variants have been
widely used for end to end lesion segmentation [3,9,17,26]. U-Net is an encoder-
decoder architecture where the encoder and decoder are connected by the skip
connections [17]. The encoder is with stacked local operators, i.e., convolutional
layers and down-sampling operators, to aggregate long-range in-formation grad-
ually by sacrificing spatial information. The decoder is with up-sampling and
convolution layers to recover spatial resolution and refine the details. The skip
connections transfer the features from the encoder to the corresponding layers
of the decoder, which enable information reuse.

However, U-Net has limitations to explicitly model long-range dependency
be-cause the convolution are local operators. To aggregate long-range informa-
tion, the encoder usually stacks several convolutional layers interlaced with
down-sampling operators. Long-range dependency, i.e., large receptive field,
is crucial of a model to perform accurate segmentation. Therefore, previous
researches improved the U-Net to overcome this limitation implicitly by stack-
ing more convolution layers in the blocks of U-Net. For example, MultiResUNet
designed a MultiResBlock with three convolution layers to learn multi-scale infor-
mation [9]. However, large amount of convolution layers stacking in a model
may influence its efficiency and cause the gradient vanish by impeding the back-
propagation process.

In this paper, we propose a convolution-and-transformer network (COTR-
Net) for end to end kidney, kidney tumor, and kidney cyst segmentation. COTR-
Net has an encoder-decoder architecture where the encoder and the decoder are
connected by the skip connections. To overcome the problem mentioned above,
we inserted the transformer encoder layers [19] to the encoder of COTRNet.
Specifically, the encoder consists of several convolutional layers interlaced with
transformer encoder layers and max-pooling operators to explicitly model long-
range dependency. The decoder is composed of several up-sampling operators
each of which is followed by convolution layers to recover spatial resolution and
refine contexture details. In addition, we leverage the pretrained ResNet [4] to
develop the encoder, which accelerates the optimization process and prevent the
model from falling into local optimum. Moreover, we added the deep supervision
[12] to avoid the vanishing gradient phenomenon and rapidly train the model, in
which the information between the final output and the side outputs is progres-
sively aggregated. We evaluated the proposed method on the 2021 kidney and



Automated Kidney Tumor Segmentation 3

Fig. 1. Examples of an axial slice of kidney, tumor, and cyst with various locations,
textures, shapes, and sizes in CT scans. kidney, tumor, and cyst are highlighted by red,
green, and blue respectively. (Color figure online)

kidney tumor segmentation challenge (KITS21) [5]. Our method achieved aver-
age dice of 61.6%, surface dice of 49.1%, and tumor dice of 50.52%, respectively,
and ranked the 22th place on the leaderboard. Experimental results demonstrate
the effectiveness of the proposed method.

2 Related Work

In the following, we review the literature related to the proposed method on two
aspects including deep learning-based medical image segmentation methods and
self-attention mechanism.

2.1 Medical Image Segmentation

The emergence of U-Net has greatly promoted the development of medical image
segmentation [17]. Then, 3D U-Net extended the vanilla U-Net to the 3D sce-
nario. Since then, several new networks, such as U-Net++ [26], and MultiRe-
sUNet [9] both including 2D and 3D version of architectures has been proposed
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for medical image segmentation by improving U-Net architecture. In kidney
tumor segmentation, although CT scans has 3D spatial attribute, this task can
be resolved in 2D or 3D scenario. Jackson et al. proposed an automatic seg-
mentation framework based 3D U-Net for kidney segmentation [10]. Hou et al.
designed a triple-stage self-guided network to achieve accurate kidney tumor
segmentation [6]. Hu et al. presented a boundary-aware network with a shared
3D encoder, a 3D boundary decoder, and a 3D segmentation decoder for kidney
and renal tumor segmentation [8].

Although processing using 3D data can reflect the whole information about
the nodules, it will also require more training time and storage space. In addition,
CT scans usually have different slice thicknesses, which are not recommended to
be uniformly used in 3D segmentation task. On the contrary, 2D slices are not
influenced by the slice thickness, and both training time and resources needed
for processing are less than 3D patches. Therefore, in this work, we use 2D slice
to perform the kidney tumor segmentation task.

2.2 Self-attention Mechanism

Self-attention mechanism is an effective tool for convolution neural networks
(CNN) to localize the most prominent area and capture global contextual infor-
mation [7,19,20]. Oktay et al. proposed an attention U-Net where the attention
gates are added to the skip connections to filter the features propagated through
the skip connections [14]. Wang et al. designed a non-local U-Net for biomed-
ical image segmentation, in which the non-local block was inserted into U-Net
as size-preserving processes, as well as down-sampling and up-sampling layers
[21]. Zheng et al. proposed a dual-attention V-network for pulmonary lobe seg-
mentation where a novel dual-attention module to capture global contextual
information and model the semantic dependencies in spatial and channel dimen-
sions is introduced [24]. Recently, transformer has been exploited in medical
image processing [2,23]. Zhang et al. presented a two-branch architecture, which
combines transformers and CNNs in a parallel style for polyp segmentation [23].
Chen et al. proposed a TransUNet in which the transformer encodes tokenized
image patches from a convolution neural network (CNN) feature map as the
input sequence for extracting global contexts [2]. However, these methods need
large-scale GPU memory and this will not feasible for common users. Hence, we
proposed a lighted transformer-based segmentation framework which needs only
8G GPU memory for network training.

3 Methods

The diagram of the proposed method is illustrated in Fig. 2. We detail the
network architecture on Sect. 3.1 and the loss function on Sect. 3.2. The prepro-
cess and postprocess methods are presented on Sect. 3.3. Other implementation
details are introduced in Sect. 3.4.
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Fig. 2. The diagram of COTRNet.

3.1 Network Architecture

We proposed COTRNet for kidney and kidney tumor segmentation. The net-
work architecture of COTRNet is shown in Fig. 2. COTRNet take slices of size
224 × 224 as input and output the segmentation mask having the same size
as input. The motivation of the proposed COTRNet is to capture long range
dependencies i.e., large receptive field, of learned features for accurate kidney
and tumor segmentation. Inspired by the detection transformer (DETR) which
first exploited a pretrained CNN for feature extraction and transformer for fea-
ture encoding and predictions decoding [1]. The CNN and transformer are inde-
pendent with each other in DETR. Although the transformer is proficient in
learning global information, it takes the sequential data as input, which disen-
tangles spatial structure of the input images.

Instead, we integrate the transformer with CNNs where the transformer lay-
ers are inserted into the CNNs to learning long range dependencies and the CNN
then recover the spatial structure of the input images. COTRNet has an UNet-
like architecture, which consists of an encoder, decoder, and the skip connections.
Specifically, the encoder is composed of a series of convolution layers interleaved
with transformer encoder layers. The transformer encoder layer is shown in Fig.
3. An input image is first transformed to low level features by the first convolu-
tion layer, then, to features has global information by the transformer encoder
layer, and finally, the next convolution layer is utilized to reconstitute the spatial
structure. Through a series of operations, the output features of the encoder are
the fine-grained high-level representations which will then transfer to the decoder
for refinement and segmentation predictions. Besides, feature maps transferred
to the decoder through the skip connections also capture the global information
of the input images, which further facilitate the decoder to predict segmentation
masks via feature reuse.
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Fig. 3. The transformer encoder layer. A feature map is first transformed to a sequence,
and then plus with position encoding to input into the transformer encoder layers.

To accelerate the training process and prevent the network from falling into
local minimum, we leverage the pretrained parameters of ResNet18 to initialize
the encoder of COTRNet. Moreover, we exploit deep supervision mechanism to
promote grad-ually segmentation refinement, by supervising the hidden layers
to guide training by calculating the loss of the side outputs in the intermediate
stages of the decoder.

3.2 Loss Function

To overcome the data imbalance problem, we propose a class-aware weighted
cross-entropy and dice (CA-WCEDCE) loss for kidney and kidney tumor seg-
mentation. In general, the WCEDCE loss is a weighted combination of class
weighted cross-entropy loss and class-weighted dice loss. The class-weighted
cross-entropy (CWCE) loss is used to alleviate the inter-class unbalance prob-
lem, whereas the class-weighted dice (CWDCE) loss is exploited to solve the
unbalance between each foreground class and the background class. Formally,
the CA-WCEDCE loss is formulated as

LCA−WCEDCE(Y, Ŷ ) = 1
N

∑N
i=1 LCA−WCEDCE

(
Yi, Ŷi

)
=

1
N

∑N
i=1

[
αLCWCE

(
Yi, Ŷi

)
+ (1 − α)LCWDCE

(
Yi, Ŷi

)] (1)

where N is the batch size. α controls the contribution of the LCWCE and
LCWDCE to the total loss LCAWCE . Yi is the ith ground truth of a batch of
input images, and Ŷi is the ith predicted mask of a batch of predictions.
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The LCWCE is represented as

LCWCE

(
Yi, Ŷi

)
=

1
C

C∑

c=1

wc1 −
M∑

j=1

[yjc log ŷjc + (1 − yjc) log (1 − ŷjc)] (2)

And the LCWDCE is denoted as

LCWDCE

(
Yi, Ŷi

)
=

1
C

C∑

c=1

wc(1 − 2
∑M

j=1 yjc ∗ ŷjc
∑M

j=1 yjc + ŷjc
) (3)

where C refers the total number of classes which is equal to four (kidney,
tumor, cyst, and the background) in our task. M refers to the total number of
pixels of the input slice in a batch. wc denotes the weighted coefficient of the
cth class. yjc is jth ground truth pixel of class c, and ŷjc is the corresponding
predicted probability.

Since the deep supervision mechanism is exploited in network training, the
total loss is formulated as

L =
D∑

d=1

βdLCA−WCEDCE (4)

where D is the total number of output decoder. βd is the weighted coefficient
of the dth decoder.

3.3 Pre- and post- processing

Preprocessing. We perform data preprocessing follows four steps.

1. Normalization. The CT scans are clipped into [–200, 300] and normalized
them into [0, 255].

2. Extraction. Slices that contain foreground regions of the normalized CT scans
are extracted for network training according to the ground truth masks pro-
vided by KITS21 challenge.

3. Resample. The extracted slices are resized to [224, 224] according to the input
size of the pretrained model.

4. Augmentation. Data augmentation including random flip, random rotation,
random crop is utilized in training process.

Postprocessing. In inference, we conducted postprocess steps as follows.

1. Transformation. The logic predictions are transformed into probabilities
through the softmax function. Then, we transform the probabilistic maps
to the segmentation masks according to the maximum class.

2. Resample. We resize the segmentation masks to the original size according to
the raw CT scans.

3. Integration. The whole predicted mask for a raw CT scan is obtained by
combining all slice segmentation masks.

4. Refinement. Morphological operations are used to refined the segmentation
masks.
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3.4 Implementation Details

We perform our experiments on PyTorch [16]. The models are trained via Adam
optimizer with standard back-propagation with the learning rate of a fixed value
of 1e−4. We set the number of epochs as 20 and the batch size as 2. The networks
are trained on a single NVIDIA GeForce GTX 1080 with 8G GPU memory.

In training, α is set as 0.5 to balance the contribution of CWCE loss and
CWDCE loss. In Eq. 2, we set w1, w2, w3, w4, are set as 1, 2, 3, 4, respectively.
In Eq. 4, β1 = 0.05, β2 = 0.05, β3 = 0.2, β4 = 0.3, β5 = 0.4 to control the deep
supervision mechanism. we random selected slices contained foreground objects
as inputs. Data augmentation including random flip, random rotation, random
crop was utilized in training process. In testing, all slices of a CT scan were input
into the network to obtain predictions and the segmentation result of a CT scan
was obtained by combining the predicted masks of all slices.

Table 1. Quantitative results on KITS21 training set through five-fold cross-validation.
R: ResNet; T: Transformer encoder layer; P: Pretrained model; D: Deep supervision.
SD: Surface Dice

Method Kidney

(Dice)

Masses (Dice) Tumor (Dice) Kidney (SD) Masses (SD) Tumor (SD)

U-Net 0.9015 0.4011 0.4148 0.8127 0.3017 0.3045

U-Net+R+T 0.9117 0.4655 0.4622 0.8598 0.3192 0.3093

U-Net+R+P+D 0.9169 0.4695 0.4838 0.8620 0.3331 0.3048

U-Net+R+T+P 0.9177 0.5082 0.5007 0.8742 0.3341 0.3435

U-Net+R+T+P+D

(COTRNet)

0.9228 0.5528 0.5056 0.8853 0.3694 0.3548

4 Results

4.1 Dataset

We evaluated the proposed method on the KITS21 dataset. The KiTS21
dataset includes patients who underwent partial or radical nephrectomy
for suspected renal malignancy between 2010 and 2020 at either an M
Health Fairview or Cleveland Clinic medical center. KITS21 dataset includes
300 training cases of abdominal CT scans and the corresponding anno-
tations of kidney, tumor, and cyst. The annotation files of each training
case includes aggregated AND seg.nii.gz, aggregated OR seg.nii.gz, and aggre-
gated MAJ seg.nii.gz. We leveraged aggregated MAJ seg.nii.gz in our experi-
ments. The results of ablation study performed on the training set are shown in
Sect. 4.3 and the final results on the test set are presented in Sect. 4.4.
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4.2 Metrics

We used the same evaluation metrics as advocated by KiTS21 challenge, which
include SØrensen-Dice and Surface Dice (SD) [13]. KITS21 leverages the hierar-
chical evaluation classes (HECs) to obtain a relative comprehensive measure. In
an HEC, classes that are considered subsets of another class are combined with
that class for the purposes of computing a metric for the superset. The HEC
of kidney and masses considers kidneys, tumors, and cyst as the foreground to
compute segmentation performance; the HEC of kidney mass considers both
tumor and cyst as the foreground classes; the HEC of tumor considers tumor as
the foreground only.

4.3 Results on KITS21 Training Set

We reported the preliminary results on KITS21 challenge training set through
five-fold cross-validation. All the methods are trained with the loss function pre-
sented in Sect. 3.2. Table 1 lists the quantitative results. In general, COTR-
Net outperforms other methods by a large margin, especially in tumor and
cyst segmentation. Specifically, COTRNet achieved dice of 92.28%, 55.28%, and
50.56% for kidney, masses, and tumor, respectively; Measured by SD, COTRNet
obtained 88.53%, 36.94%, and 35.48% for kidney, masses, and tumor, respec-
tively. In these results, we can conclude that all components proposed in our
methods contributed positively to the best performance. We also illustrate qual-
itative results on Fig. 4. As shown, COTRNet can accurately delineate the renal

Fig. 4. Qualitative results on KITS21 dataset. R:ResNet; T:Transformer encoder layer;
P:Pretrained model; D:Deep supervision.
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region, tumor, and cyst. Especially in cyst segmentation, although other meth-
ods overlooked the object regions, COTRNet can correctly locate the regions
and delineate the margins of the cysts.

4.4 Results on KITS21 Test Set

KITS21 test set contains 100 CT cases. Our final model were trained on the
training set. Our method achieved average dice of 61.6%, surface dice of 49.1%,
and tumor dice of 50.52%, respectively, which ranked the 22th place on the kits21
challenge leaderboard.

5 Discussion and Conclusion

In this paper, we proposed the COTRNet to deal with kidney and tumor seg-
mentation tasks. Inspired by the DETR that used transformer to model global
information of features, COTRNet took advantage of transformer to capture
long range dependencies for accurate tumor segmentation. Furthermore, we
exploited pretrained parameters to accelerate convergence process. Deep super-
vision mechanism was used to gradually refine the segmentation results. We
evaluated the proposed method on KITS21 dataset. COTRNet achieved compa-
rable performance among kidney, cyst, and tumor segmentation. Experimental
results demonstrated the effectiveness of the proposed method.

Although the transformer can explicitly model global information, it needs a
large magnitude of GPU memory compared with the convolution operation. We
will focus on reducing the memory consumption of transformer and developing
more efficient and accurate segmentation framework in the future.

Acknowledgment. This work was supported by the Fujian Provincial Natural Sci-
ence Foundation project (Grant No. 2021J02019, 2020J01472).
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Abstract. In this paper we present our approach for the KiTS21 Chal-
lenge. The goal is to automatically segment kidneys, (renal) tumors
and (renal) cysts based on 3D computed tomography (CT) images of
the abdomen. The challenge provided public training 300 cases for this
purpose. To solve this problem, we used a 3D U-ResNet with pre- and
postprocessing and data augmentation. The preprocessing includes the
overlap-tile strategy by preparing the input patches, while a rule-based
postprocessing was applied to remove false-positive artefacts. Our model
achieved 0.812 average dice, 0.694 average surface dice and 0.7 tumor
dice. This led to the 12.5th position in the KiTS21 challenge.

Keywords: U-ResNet · Residual connection · Medical image
segmentation

1 Introduction

Kidney cancer is a common type of cancer for which automated anatomical
labeling would benefit diagnosis and treatment. In clinical practice, however,
manual delineation of all relevant structures is too much effort. Therefore, the
KiTS challenges have been set up to investigate automated procedures for the
extraction of kidney anatomy. The KiTS21 challenge follows the previous KiTS19
challenge which already provided a dataset of labeled kidneys in CT [1]. In addi-
tion, KiTS21 provides labels for tumors and cysts. The baseline approach to this
problem is a U-Net, of which the nnU-Net variation won the KiTS19 challenge.
We try to improve on this baseline with a 3D U-ResNet, data augmentation, pre-
and postprocessing. The residual connections of the U-ResNet should reduce the
vanishing gradient problem and has also been effectively used in other medical
applications [5]. In contrast to the nnU-Net, the overlap-tile strategy is used as
it was originally used in the U-Net [4].

This contribution is from the “DeepAnatomy” team of master’s students in
computer science at the University of Bremen in collaboration with the Fraun-
hofer Institute for Digital Medicine MEVIS.
c© Springer Nature Switzerland AG 2022
N. Heller et al. (Eds.): KiTS 2021, LNCS 13168, pp. 13–21, 2022.
https://doi.org/10.1007/978-3-030-98385-7_2
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2 Methods

We trained ca. 40 variations of the U-ResNet to find better parameters and
examine the effect of hyperparameters and preprocessing options. In the post-
processing we do a rule based cleanup.

2.1 Training and Validation Data

Our submission made use of the official KiTS21 training set alone. We converted
the annotations in majority voted labels and transversal orientation. From the
300 cases we made a randomized split of 210 training, 30 validation and 60 test
cases.

2.2 Preprocessing

First the CT values are thresholded at −1000 HU. We then resample the voxel
size to 1.5 mm, which we found best performing for a 3 level network. Adding
more levels did not improve the performance, but due of hardware limitations
we couldn’t train a 5 level network.

The data then gets augmented by x-axis flipping, which swaps the kidney
positions, scaling by ±10% and rotation. The rotation is sampled from a normal
distribution with a standard deviation of 15◦. We don’t use weighted inputs,
but the training batches are created with a certain ratio of foreground in it. By
doing this, we prevent the model from unlearning rare structures. Analyzing the
KiTS21 data showed that cyst voxels are very rare. The batches are generated
with a composition of patches, where 50% contain at least one voxel tumor or
cyst, 25% at least one voxel cyst and 25% without constraints. Because of the
patch size, the average number of cyst voxels in a batch is still smaller than
0.5%.

We separate the dataset images into smaller patches of size 32× 32× 32 vox-
els, since the full 3D images do not fit onto our available hardware. The patch
size of 32 voxels was chosen together with the batchsize, filter sizes, levels, etc.
(described in Sect. 2.3) in order to make use of all available GPU memory and
have a compromise between statistically independent samples and low overhead.

We use the overlap-tile strategy for seamless segmentation, so the architec-
ture uses valid-mode convolutions and the input images are padded with input
image context before being fed into our model to achieve an output patchsize of
32× 32× 32. The padding size depends on the model architecture and its num-
ber of convolution and pooling layers. Our architecture (see Sect. 2.3) requires
a padding of 21 voxels on both edges of every dimension, resulting in model
input images of size 74× 74× 74 voxels. The padding is implemented by cutting
out 74× 74× 74 patches from the input images (filled-up with −1000 HU out-
side the domain of the original CT volume) so that the output patches of size
32× 32× 32 voxels are exactly adjacent without overlapping or gaps.
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2.3 Proposed Method

To meet the challenge we decided to use a 3D U-ResNet architecture, i.e. a
U-Net [4] extended by residual blocks. A residual block consists of two 3D con-
volution layers with kernel size of 3× 3× 3 and strides of 1× 1× 1, each followed
by Batch Normalization and ReLu activation function (see Fig. 1).

We setup an U-ResNet with 3 levels, where every level combines a residual
block, a dropout layer (with dropout rate 0.2) and another convolution layer with
strides 2× 2× 2 in the down-path (down scaling to reduce the image size) or a
transposed convolution layer with strides 2× 2× 2 in the up-path (up scaling to
increase the image size). At each level the number of filters for every convolution
layer of that level is doubled, while the first level starts with filters of 32. All
the convolution layers of the network apply valid padding, except the layers
for up- and down scaling where same padding is used. Aligned with the U-
Net implementation the levels from down- and up-path of the same rank are
connected via shortcuts.

The first level starts with an additional convolution layer, combined with
following Batch Normalization and ReLu layer (down-path), and ends with a
convolution with kernel size 1× 1× 1 that has 4 output channels, one per output
class background, kidney, tumor or cyst, followed by Softmax as final activation
function (up-path).

Fig. 1. Residual Block

During training batches of 15 patches are fed into the model and a dice loss
function is used. As described in Sect. 2.2 we apply oversampling instead of class
weighting. As optimizer we chose Adam [3] with a learning rate of 0.0001. The
remaining parameters are the default ones of the tensorflow parametrization.

The validation during training is done after 800 training iterations based on
500 patches from validation data set, separated into validation batches of 50
patches.

For our validation strategy to find the best model, we built an inference
network and evaluated our models using the given evaluation measures of the
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challenge. This includes the Sørens-Dice Coefficient and Surface Dice for the
three HEC’s Kidney and Masses (kidney, tumor, cyst), Kidney mass (tumor and
cyst) and tumor. Also, we looked at the Dice and Surface Dice score only for the
kidney and cyst alone to see how our scores come up in the HEC’s. In the end,
we chose the model that had the best Dice and Surface Dice scores for the three
HEC’s.

2.4 Postprocessing

We used connected component analysis to remove false positive fragments not
connected to kidneys. This is achieved by retaining only the two components
with the largest fractions of voxels labeled “kidney” (1).

Since the lesions were often not classified consistently by our model, so that
there are voxels of both classes (tumor and cyst) within a single predicted lesion,
an additional postprocessing step homogenizes the classes per lesion. Therefore,
a connected component analysis is applied to determine all lesions from our
model’s output images. For each of these components, we apply a majority vote
to adjust the output class of the given component to the class which occurs more
frequently (number of voxels) within the given component.

3 Results

Fig. 2. Training plot. Jaccard 1 to 3 correspond to the classes kidney, tumor and cyst,
respectively
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Table 1. Scores on our internal test set

Dice Surface Dice

Kidney & Masses Kidney Mass Tumor Kidney & Masses Kidney Mass Tumor

0.951 0.798 0.781 0.904 0.648 0.627

Dice Surface Dice

Kidney Cyst Kidney Cyst

0.841 0.360 0.838 0.210

Kidney Tumor Cyst

Fig. 3. Example segmentation results on three test cases, compared with the reference
labels. green: true positive, pink: false positive, blue: false negative (Color figure online)
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The training took 169601 iterations. Figure 3 shows the training progression.
In addition to the required metrics, which were measured on our test set,

we also considered the Dice of kidney and cysts to better localize sources of
error (see Table 1). As can be seen in Fig. 3, there are cases where the marginal
regions of the cysts are incorrectly segmented as tumors or cysts and tumors are
interchanged. The kidneys, on the other hand, are generally well recognized.

tsyCromuT

Fig. 4. Example segmentation results on two test cases, left: without post-processing,
right: with post-processing. dark green: true positive both, light green: true positive
with postprocessing, dark pink: false positive without postprocessing

The second step of post-processing corrects the false-positive classified tumor
or cyst margins, as can be seen in Fig. 4.
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Fig. 5. Performance on average when adding different strategies

Figure 3 shows the impact of different strategies on the performance of the
model. Each strategy is added to the baseline U-ResNet in addition to the pre-
vious step, e.g. data augmentation is the baseline combined with the simple
postprocessing step, as well as oversampling of masses. By adding oversampling
a great improvement can be observed, which is due to the improvement of cyst
segmentation.

Table 2. Official results

Dice Surface dice Tumor dice

0.812 0.694 0.700
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The official results can be seen in Table 2. This leads to the 12th position for
the dice and 13th position for the surface dice in the overall ranking.

4 Discussion and Conclusion

While the segmentation of tumors was the most challenging part on the KiTS19
data, segmentation improved significantly with the KiTS21 data using the same
model. For this task, identifying cysts and distinguishing between cysts and
tumors proved most challenging.

The biggest improvement in cyst segmentation was achieved by oversam-
pling in the batches and adding data augmentation to the pipeline. Additionally,
changing the resampling had a great impact on the general performance. This
could have been used to chose different voxel spacing for the different structures.
One approach could be to start with higher voxel spacing for kidney segmenta-
tion and to use this model as a starting point for transfer learning with a lower
voxel spacing to segment and distinguish cysts and tumors. We did not do this
as a voxel spacing of 1.5 mm proved to be a good compromise between detailed
and contextual information.

Regarding the patching we first started with maximum large patches and
a batch size of 2 like suggested in the nnU-Net approach [2] to exploit GPUs
memory, we then tried different configurations of these two values and noticed
that increasing patch size while lowering batch size and vice versa did not impact
the performance significantly. We then increased the batch size again to 15 to
get a more robust sampling and adjusted the patch size accordingly.

Moreover, there were many false positive structures in the results, which were
probably caused by the small voxel size. These were removed by our postprocess-
ing, but this strategy could be extended to address the problem of small cysts on
tumor structures and vice versa. One idea would be to check if the volume for a
cyst is above a specific threshold, but there were also very small cysts included
in the data set. This raises the question of the medical relevance of these very
small cysts. In general, we can say that the close study of the data was the key
to improvement.
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Abstract. KiTS21Challenge is to develop the best system for automatic semantic
segmentation of renal tumors and surrounding anatomy. The organizers provide
a dataset of 300 cases and each case’s CT scan is segmented to three semantic
classes: Kidney, Tumor and Cyst. Compared with KiTS19 Challenge, cyst is a
new semantic class, but these two tasks are quite close and that is why we choose
nnUNet as our model and made some adjustments on it. Some important changes
are made to the original nnUNet to adapt to this new task. Furthermore, we train
models in 3 different ways and finally and merge them into one model by specific
strategies. Detailed information is available in the part of Methods. The organizer
uses an evaluation method called “Hierarchical Evaluation Classes” (HECs). The
HEC scores of each model are showed in the following .

Keywords: Semantic segmentation · nnU-Net ·Model ensemble

1 Introduction

This challenge is a semantic segmentation task of renal tumors and surrounding anatomy.
The organizer provides 300 cases who undergone a contrast-enhanced preoperative CT
scan that includes the entirety of all kidneys. Each case’s most recent corticomedullary
preoperative scanwas (or will be) independently segmented three times for each instance
of the following semantic classes—Kidney, Tumor, Cyst. Each instance was annotated
by three independent people and final label is result of aggregating all of these files by
various methods--OR, AND, MAJ. Another knowledge we use is that the scalar value
of cysts in CT image is at the low level, since the cysts contain mostly water. This makes
the scalar data augmentation not perform well.

Following contents in this paper:

Methods: In this part, we introduce our main approach and detailed parameters of our
model.

Results: Official evaluation criteria is explained at first and then our results and training
details is showed.

Discussion andConclusion: we summarize our approach and results here, and point out
the parts that can be improved.

© Springer Nature Switzerland AG 2022
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2 Methods

We take nnU-Net as our main method and make some adjustments on it. Firstly, we
adjust the data augmentation to adapt the challenge. We removed the scalar value related
data augmentation strategy, as it modifies the scalar value. Secondly, we use a “two-step”
method to accomplish the whole task. We put tumors and cysts into one class to train a
model in the first part, and trained another model to distinguish cyst from tumor in the
second part. Thirdly, we trained another model which takes kidney and cyst as a whole.
At last, we take advantage of model ensemble to integrate trained models into a system.
We use the “two-step” method and the traditional “one-step” three-classification method
respectively, and integrate the 3 methods as our final model.

Ensemble

Fig. 1. The brief introduction of our main approach. Three parallel models are trained and ensem-
bled into a final model. In fact, this simple way has a good effect on the result. DenseUNet is used
here for that the lightweight net takes short time to train but has a similar effect at the same time.

2.1 Training and Validation Data

Our submission made use of the official KiTS21 training set alone.

2.2 Preprocessing

As the first processing step, nnU-Net crops the provided training cases to their
nonzero region. It reduced the image size of datasets substantially and thus improved
computational efficiency.

Resampling. In the medical domain, the voxel spacing (the physical space the vox-
els represent) is heterogeneous. To cope with this heterogeneity, nnU-Net resamples
all images to the same target spacing using either third order spline, linear or nearest
neighbor interpolation. In our project, the original image size is 512 × 512 and final
resampled to 603 × 603.
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Data Augmentation. A variety of data augmentation techniques are applied on the fly
during training: rotations, scaling, Gaussian noise, Gaussian blur, brightness, simulation
of low resolution, gamma and mirroring. Gray enhancement is discontinued because it
changes the gray value which is important to the recognition of cysts.

ROI. It is a part only for DenseUnet. Taking advantage of the preliminary segmentation
results of nnUnet, we work out the ROI (region of interest) for DenseUnet. It proves that
this action will help reduce scale of DenseUnet and improve the result.

2.3 Proposed Method

Network Architecture. All U-Net architectures configured by nnU-Net originate from
the same template. This template closely follows the original U-Net [3] and its 3D
counterpart. There are not many changes compared with traditional U-Net. Batch nor-
malization, which is often used to speed up or stabilize the training, does not perform
well with small batch sizes. Therefore, nnU-Net use instance normalization for all U-Net
models. And the default kernel size for convolutions is 3 × 3 × 3 and 3 × 3 for 3D
U-Net and 2D U-Net, respectively.

Fig. 2. The network structure of nnUnet including 3D U-Net and 2D U-Net [7].

The original author of DenseUnet [4] use it on automatic liver and tumor segmen-
tation. DenseUnet applies the technique of densenet to U-net and has a good effect on
the problem of segmentation. For each 3D input, the volume of 3D is quickly reduced
to adjacent slices of 2D through the transform processing function F proposed in this
paper. These 2D slices are then fed into the 2D DenseUNet to extract intra-chip features.

Loss Function. The loss function is the sum of cross-entropy and Dice loss. For each
deep supervision output, a corresponding down-sampled ground truth segmentation
mask is used for loss computation.

Optimization Strategy. We simply use the Adam optimizer provided by PyTorch.

Validation and Ensembling Strategy. We put each image into models trained by dif-
ferent methods. And to validate them, we determine the final prediction by majority
voting.
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Fig. 3. The network structure of DenseUnet [8]. The original input image size is 224× 224× 3,
in our project, the size is modified to 512 × 512 × 3. And the other parameters are the same.

Post-processing. Connected component-based postprocessing [2] is commonly used in
medical image segmentation. Especially in organ segmentation it often helps to remove
spurious false positive detections by removing all but the largest connected component.
nnUNet follows this assumption and automatically benchmarks the effect of suppressing
smaller components on the cross-validation results. It can be explained by the picture
below.

Postprocessed

Fig. 4. The demonstration of the effect of Post-processing. By taking advantage of connected
component-based postprocessing, we eliminate noises around the kidney area.

3 Results

Evaluative Criteria. The organizer uses an evaluation method called “Hierarchical
Evaluation Classes” (HECs). In an HEC, classes that are considered subsets of another
class are combined with that class for the purposes of computing a metric for the super-
set. HECs: 1. Kidney and Masses: (Kidney + Tumor + Cyst) 2. Kidney Mass: (Tumor
+ Cyst) 3. Tumor: (Tumor only).

Results. Here are the scores of our models and some living examples
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(1) HEC scores

a. model 1 (on validation set) 
Sørensen-Dice Surface Dice

Kidney and Masses 0.94041 0.89721
Kidney Mass 0.83983 0.74429
Tumor 0.83207 0.72894

b. model 2 (on validation set) 
Sørensen-Dice Surface Dice

Kidney and Masses 0.93036 0.89275
Kidney Mass 0.83049 0.72003
Tumor 0.76701 0.66083

c. model 3 (on validation set) 
Sørensen-Dice Surface Dice

Kidney and Masses 0.92845 0.89135
Kidney Mass 0.77596 0.61060
Tumor 0.79925 0.68406

(2) Some examples of predictions next to human-labels

case 30 case 151

Ground truth

Prediction

Fig. 5. Examples of case 30 and case 151.
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(3) Final results from the leaderboard

Dice Surface Dice

0.861 0.774

Training Details. Based on experience and as a trade-off between runtime and reward,
all networks are trained for 1000 epochs with one epoch being defined as iteration over
250 minibatches. It took 15 days to train each model and the project took 2 months in
total.

4 Discussion and Conclusion

Our project mainly takes advantage of current efficient network—nnU-Net and does not
make a lot of innovation. But the power of nnU-Net is so strong and it is not easy to
find a better way. There is a lot of room for improvement in our result because all our
members are newbies in this field, and the time for this task is urgent. In the future, we
can also try some other networks and compare the effect with the previous method.

All in all, thank you very much to the organizer for providing this opportunity.
Although our result is not so perfect, we have harvested a lot in the participation.

Acknowledgements. Thank MIC-DKFZ [5] very much for nnUnet.
Thank nitsaick [6] very much for DenseUnet.
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Abstract. Accurate segmentation of kidney tumours can help doctors diagnose
the disease. In this work, we described a multi-stage 2.5D semantic segmentation
networks to automatically segment kidney and tumor and cyst in computed tomog-
raphy (CT) images. First, the kidney is pre-segmented by the first stage network
ResSENormUnet; then, the kidney and the tumor and cyst are fine-segmented by
the second stage network DenseTransUnet, and finally, a post-processing oper-
ation based on a 3D connected region is used for the removal of false-positive
segmentation results. We evaluate this approach in the KiTS21 challenge, which
shows promising performance.

Keywords: Multi-stage · Kidney and tumor and cyst segmentation · Deep
learning

1 Introduction

Kidney cancer is the cancer of the genitourinary system with the highest mortality rate
[1]. There are many ways to treat kidney tumors, and segmentation is only one of them.
If the results of segmentation are valid, it will be helpful for subsequent tumor detection
and treatment. Currently, clinical practice mainly relies on manual segmentation of the
kidney and tumor, but manual segmentation brings problems such as time-consuming
and laborious, and also causes inconsistent segmentation results due to differences in
the subjective perceptions of physicians, which makes preoperative planning difficult,
thus the need for automated segmentation is becoming more and more urgent.

In the work, motivated by the [2], we developed a two-stage neural network to locate
and segment the kidney, tumor and cyst from 3D volumetric CT images. It consists
of two main stages: one is rough kidney localization and the other is accurate kidney,
tumor and cyst segmentation. In the first stage, only the kidney (with tumor and cyst)
is segmented, and the segmentation results are stored to obtain the region of interest
(ROI) and leave out the outside pixels to mitigate class imbalance and reduce memory
consumption; in the second stage, we train a fine segmentation network based on the
cropped kidney region obtained in the first stage. Finally, the predictedmask of the target
region is transformed into a volume of the original size.

© Springer Nature Switzerland AG 2022
N. Heller et al. (Eds.): KiTS 2021, LNCS 13168, pp. 28–34, 2022.
https://doi.org/10.1007/978-3-030-98385-7_4
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2 Methods

Since the kidneys make up only a small portion of the entire CT image. Each case
may include non-kidney region, its segmentation is easily misled by unrelated tissues.
In addition, direct segmentation of the kidney, tumor and cyst can cause difficulties in
segmentation due to differences in tumor and cyst sizes and blurred boundaries between
the two. This class imbalance leads to extremely difficult identification and segmentation,
so themodel is trained inmulti- stage. Therefore, first, we train a ResSENormUNet to get
a coarse segmentation of the kidney with the region of interest (ROI) in the volume. The
extracted kidney then into DenseTransUNet for kidney, tumor, and cyst segmentation.
As shown in Fig. 1. Finally, the results are post-processed.

Fig. 1. The pipeline of our method

2.1 Training and Validation Data

There are 300 and 100 abdominal CT scans for training and testing in the KiTS21
Challenge dataset, respectively. Our submissionmade use of the official KiTS21 training
set alone. We split the given 300 training CT volumes into 240 for training and 60 for
validation, and evaluate the segmentation accuracy using the Dice score. For the training
set, we input the original image in the first stage of the network, and in the second
stage we will crop the original image and the labels directly according to the labels
of the original image, and then input the second stage of the network for training. For
the validation set, we input the original image for prediction in the first stage, crop the
prediction result and then input it to the second stage network for further refinement.

2.2 Preprocessing

Firstly, we truncated the image intensity values of all images to the range of [−79, 304]
HU to remove the irrelevant details. The choice of HU boundary values is referred to
[6]. Then, truncated intensity values are normalized into the range of [0, 1] using a min-
max normalization. Normalization over entire image in stage 1 benefits ROI extraction
and normalization over solely ROI enhances learning targets so as to facilitate model
learning [3]. Since the medical image acquisition is difficult, the amount of data is small
and time-consuming to label, it is necessary to choose data enhancement for the data,
which can not only add more equivalent data on the original data, but also improve the
generalization ability of the model. In this paper, the data augmentation methods include
horizontal flipping, random brightness contrast, random gamma, grid distortion, and flat
reduction rotation, etc.
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2.3 Proposed Method

2.3.1 Kidney Localization

Stage 1 of our model uses a 2.5D approach to find the ROI position of the kidney in
the volume. Therefore, we merge kidney, tumor, and cyst of the target to one class.
2.5D can take more contextual information between slices into account compared to 2D,
extracting more adequate features while reducing memory pressure, improving training
speed compared to the 3D approach, and producing more accurate results than the 2D
approach. The network structure of this stage is shown in Fig. 2, and themodel is a UNet-
like convolutional neural network. The model input is a stack 9 slice of adjacent axial,
providing large image content in the axial plane. The model output is a segmentation
map corresponding to the center slice of the stack. In the encoder, the first convolutional
kernel size after the input is 7× 7 to increase the perceptual field of the model without
incurring significant computational overhead. The remaining convolutional kernels are
all of size 3 × 3. The step sizes are all 2. The Rectified Linear Unit (ReLU) is used
as the nonlinear activation function. Both SE Norm [4] and multiscale supervision are
added. SE Norm can effectively improve the performance of the model. The SE Norm
combines Squeeze-and-Excitation (SE) blocks with normalization. Similar to Instance
Normalization, SE Norm layer first normalizes all channels of each example in a batch
using themean and standard deviation. Secondly, apply global average pooling (GAP) to
squeeze each channel into a single descriptor. Then, two fully connected (FC) layers aim
at capturing non-linear cross-channel dependencies. Besides, we apply deep supervision
to enhance the discriminative ability of medium-level features. In each decoder level,
we use a convolution and an upsampling to get the same spatial size as the original

Fig. 2. Architecture for kidney coarse segmentation
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image and calculate the loss using the masks from all level. The advantage is that each
upsampling will be as similar as possible to the target.

2.3.2 Kidney Tumor Cyst Segmentation

The stage 2 aims at further segmentation of the kidney, tumors and cysts, and this stage
uses the region of interest obtained in the previous stage as network input. The network
structure of this phase is shown in Table 1, with densenet161 as the backbone network.
Because adding a densely connected network is proven to enhance feature propagation,
encourage feature reuse, and improve the network’s ability to identify features, while
mitigating the problem of gradient disappearance. In addition, adding Transformer to
the model. Transformer is designed to model long-range dependencies in sequence-to-
sequence tasks and capture the relations between arbitrary positions in the sequence
[5]. It is powerful in modeling global context. Same as the stage 1, we also added deep
supervision in DenseTransUnet.

Table 1. Architectures of the DenseTransUNet. The symbol k means kernel size, s means stride,
p means padding and ch means output channels. “()×d” means this block is repeated for d times.

Name Ops Feature map
(h× w)

Input - 512× 512

Convolution 1 BN + ReLU + conv(k = 7, s = 2, p = 3, ch = 96) 256× 256

Pooling max pool (k = 3, s = 2, p = 1) 128× 128

Dense block 1
(

BN+ReLU+conv(k=1,ch=192)
BN+ReLU+conv(k=3,p=1,ch=48)

)
× 6 128× 128

Transition layer 1 BN + ReLU + conv (k = 1)+average pool (k = 2) 64× 64

Dense block 2
(

BN+ReLU+conv(k=1,ch=192)
BN+ReLU+conv(k=3,p=1,ch=48)

)
× 12 64× 64

Transition layer 2 BN + ReLU + conv (k = 1)+average pool (k = 2) 32× 32

Dense block 3
(

BN+ReLU+ conv (k=1,ch=192)
BN+ReLU + conv (k=3,p=1,ch=48)

)
× 36 ReLU+

conv (k = 1)+ average pool (k = 2)

32× 32

Transition layer 3 BN+ ReLU + conv (k = 1)+ average pool (k = 2) 16× 16

Dense block 4
(

BN+ReLU+conv (k=1,ch=192)
BN+ ReLU + conv (k=3,p=1,ch=48)

)
× 24 16× 16

Transformer layer conv (k = 3, ch = 2208, s = 1, p = 1)+ reshape
+Multi-Head Attention (MHA) block
+Feed Forward Network (FFN)+ reshape

1× 256

Upsampling layer 1 transposed conv (k = 3, s = 2, p = 1)
+skip connection (dense block 3)
+conv(k = 3, p = 1, ch = 768)+ BN + ReLU

32× 32

(continued)
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Table 1. (continued)

Name Ops Feature map
(h× w)

Upsampling layer 2 transposed conv (k = 3, s = 2, p = 1)
+skip connection (dense block 2)+
conv (k = 3, p = 1, ch = 384)+ BN + ReLU

64× 64

Upsampling layer 3 transposed conv (k = 3, s = 2, p = 1)+
skip connection (dense block 1)
+ conv (k = 3, p = 1, ch = 96)+ BN + ReLU

128× 128

Upsampling layer 4 transposed conv (k = 3, s = 2, p = 1)
+skip connection (convolution 1)+
conv (k = 3, p = 1, ch = 96)+ BN + ReLU

256× 256

Upsampling layer 5 transposed conv (k = 3, s = 2, p = 1)
+conv(k = 3, p = 1, ch = 96)+ BN + ReLU

512× 512

Convolution 2 k = 3, p = 1, ch = 4 512× 512

2.3.3 Post-processing

Apost-processingmethod based on three-dimensional connectivity domain analysis was
used to calculate the area of the region consisting of each detected marker object, leaving
only the portion of the region area larger than the threshold as the maximum connected
region of the kidney with or without cancerous tissue. Since the tumor will connect
with the kidney and given by the prior knowledge that no more than two kidneys exist
in the abdomen. Therefore, first, we merge the kidneys and tumor of the segmentation
result and ignore the background. If this component is smaller than the second largest
componentmultiplied by 0.8, we remove it. Second, we perform another post-processing
based on the connected region only for the tumor. We will remove if this component is
smaller than the largest component multiplied by 0.4.

2.3.4 Loss and Optimization

All networks are trained with stochastic gradient descent and a batch size of 16. The
unweighted sum of the Generalized Dice Loss and the Focal Loss is utilized to train
the model. Use Adam optimizer with initial learning rate of 1e−4 and multiplied by 0.1
when loss is not decrement in 5 epochs. Each model was trained for 100 epochs.

3 Results

We use the Dice coefficient, which is widely used in medical image segmentation, to
quantitatively evaluate the accuracy of the model. An example of our prediction results
is depicted in Fig. 3.
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Fig. 3. An example of prediction results of case 256. The kidney is shown in red, the tumor in
green, and the cyst in blue.

Table 2 shows the results of our model on the validation dataset. We validated our
method on the KiTS21 challenge, the performance is shown in Table 3. Training was
done on Nvidia GeForce RTX 3090 GPU (single GPU training). All networks were
implemented with the PyTorch framework. It took about 5 days for training the model
in the first stage and about 2 days for it in the second stage.

Table 2. The experimental results in validation data using our method.

Kidney Tumor Cyst

Average dice on validation dataset 0.9430 0.7779 0.7099

Table 3. Results on the KiTS21 challenge test set.

Mean sampled average dice Mean sampled average SD Position

Ours 0.8462 0.7454 10

4 Discussion and Conclusion

In this paper, we propose a segmentation method based on a multi-stage stepwise refine-
ment approach for the segmentation of kidney, tumor and cyst in abdominal enhanced
CT images. A 2.5D approach is used for data input in network training to preserve cer-
tain contextual semantic information while relieving memory pressure. In addition, this
paper adopts a post-processing method based on the 3D connected domain to remove the
false positive regions in the segmentation results and further improve the segmentation
accuracy. There are issues in this paper that need further study and the network and
methods can be improved for smaller kidneys, tumor and cyst segmentation.
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Abstract. In this paper, we have described an automated algorithm for accurate
segmentation of kidney, kidney tumors, and kidney cysts from CT scans. The
Dataset for this problem was made available online as part of KiTS21 Challenge.
Our approach was placed 13th in the official leaderboard of the competition. Our
model uses a 2 stage Residual Unet architecture. The first network is designed to
predict (Kidney+Tumor+Cyst) regions. The secondnetwork predicts segmented
tumor and cyst regions from the output of the first network. The paper contains
implementation details along with results on the official test and internal set.

Keywords: KiTS21 · Kidney segmentation · Unet

1 Introduction

There are more than 400,000 new cases of kidney cancer each year [1], and surgery is
its most common treatment [2]. KiTS21 challenge [3] was conducted to accelerate the
development of reliable kidney and kidney tumor semantic segmentationmethodologies.
Ground truth semantic segmentation for abdominalCTscans of 300uniquekidney cancer
patients were provided as part of the training dataset for the challenge. The submission
models are then evaluated on a test set of 45 patients (part of 300 CT scans) which is
separate from the official test set of 100 cases.

2 Methods

2.1 Training and Validation Data

Our submissionmade use of the officialKiTS21 training set alone.Wedivided the official
KiTS21 dataset into training, validation, and internal test set. We used a validation set
to finetune our approach. The approach which had the best score on the internal test set
was used to create the final submission. The internal test and validation set are sampled
from 300 cases, initially provided in the KiTS21 challenge.

The below table shows the distribution of scans among different sets (Table 1).
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Table 1. Distribution of available samples between training, validation, and test set

Training Validation Internal test Official test set

225 30 45 100

2.2 Preprocessing

We use a two-stage segmentation process, the first stage for Kidney + Tumor + Cyst
segmentation. For the first stage, we resample all cases to a common voxel spacing of
3.22× 1.62× 1.62 mm, with a patch size of 80× 160× 160, for the training cases. The
voxel spacing 3.22× 1.62× 1.62 mm was chosen on the basis of the median spacing of
the training dataset which is 3.22 × 0.81 × 0.81 mm. The x and y spacing was doubled
to avoid training large numbers of patches. Before creating the patches for training we
cropped the abdomen region from the entire CT scan to avoid training of unnecessary
negative patches. We used bicubic interpolation to resample the cases.

Each case is then clipped to the range [−80, 304]. We then subtract 101 and divide
by 76 to bring the intensity values in a range that is more easily processed by CNNs.
The clipping range was selected after analyzing the voxels covered by kidney, tumor,
and cyst segmentation in the CT scans over the entire training set. The−80 and 304 are
values chosen based on the distribution. Similarly, 101 and 76 are the mean and standard
deviation of the distribution.

For the Second Stage, we resampled the voxel spacing to 0.78 × 0.78 × 0.78 mm
and used the patch size of 64 × 128 × 128. Since we had Kidney + Tumor + Cyst
Segmentation output from the first stage,we only used the patcheswhere the first network
predicted any region. Similar to the first stage, We clipped voxels to the range between
[−31, 208], then subtract by 55 and divide by 65 based on the voxel covered by Tumor
and Cyst segmentation in CT scans.

2.3 Network Architecture

For both stages, we used base 3D unet architecture with residual blocks. Both Networks
use 3D convolutions, ReLu nonlinearities, and batch normalization.We double the num-
ber of feature maps with each DownBlock in the unet. We perform downsampling till
the feature map size reaches 4. For the Upsampling block, we used the Scale of 2 to
upsample input. The first stage takes a single channel input of shape 80× 160× 160 and
outputs the tensor of the same shape which represents Kidney + Tumor + Cyst mask
as a single entity. Similarly, the second network gives 2 channel outputs representing
tumor and cyst regions respectively (Fig. 1).

This architecture of both networks uses residual blocks instead of simple convolution
sequences, which is implemented in a similar fashion as conv-batchnorm-relu-conv-
batchnorm-relu. The addition of the residual takes place before the last relu.

2.4 Network Training

All the stages are trained with Adam optimizer and an initial learning rate of 1e−3. We
reduce the learning rate by a factor of 5.We stopped the training after 50 epochswith stage
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Fig. 1. Overview of the two-stage segmentation process

1 taking 80 minutes per epoch to train and stage 2 with 75 minutes per epoch. The batch
sizes for stage 1 and stage 2 are 2 and 4 respectively. We used flipping, rotation, scaling,
brightness, contrast, and gamma augmentations to augment patches during training. Loss
function was a combination of cross-entropy and dice loss. The training was done on
Nvidia GeForce GTX 1080 Ti GPUs. All networks were implemented with the PyTorch
framework (Fig. 2).

Fig. 2. Training and validation loss for stages 1 and 2

3 Results

We did not experiment with different network architectures. We tested our networks on
internal test data consisting of 45 samples. The evaluation metric uses the same setup
as challenge evaluation. It consists of two metrics Sørensen-Dice and Surface Dice [4].
The score for the kidney is computed by treating all the labels i.e. kidney, tumor, and
cyst labels as foreground and rest as background. Similarly Mass consists of labels from
tumor and cyst. Our network is very effective at detecting both kidney and tumor in
most cases. However, the segmentation of cysts needs improvement. We noticed that the



38 V. Pawar and B. Kss

cyst network fails to segment smaller size cyst areas in CT scans especially if the size is
smaller than 10 × 10 which ranges to 4 slices.

Finally, our approach finished the competition with 13th rank. Table 2 shows the
mean dice and surface dice score over kidney and mass region with dice score of the
tumor which was considered as a tiebreaker in the competition (Table 3 and Fig. 3).

Table 2. Experiment results on the internal test set

Kidney Mass Tumor Mean

Dice 0.96 0.82 0.77 0.85

Surface dice 0.93 0.71 0.67 0.77

Table 3. Results on the official test set

Dice Surface dice Tumor dice

0.784 0.696 0.680

Fig. 3. Experimental outputs from our network. The first image shows the ground truth on a slice.
The second image shows network predictions.

4 Discussion and Conclusion

In the preprocessing section of the paper, we mentioned that we used the same clipping
values as the second stage which has tumor and cyst voxel values. Surprisingly using
values based on voxels covering cyst does not yield better results for cyst segmenta-
tion. Due deadline of the competition and time-consuming training methods we did not
explore the effects of other Unet variations with respect to results on the data.

In conclusion, We described a two-stage semantic segmentation pipeline for kid-
ney and tumor segmentation from 3D CT images. Final evaluation results on KiTS21
challenge results are 0.78, 0.69, and 0.68 average dice, average surface dice, and dice
score of tumor respectively placing our approach to the 13th rank on the competition
leaderboard.
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Abstract. Medical image processing plays an increasingly important role in clin-
ical diagnosis and treatment. Using the results of kidney CT image segmentation
for three-dimensional reconstruction is an intuitive and accurate method for diag-
nosis. In this paper, we propose a three-step automatic segmentation method for
kidney, tumors and cysts, including roughly segmenting the kidney and tumor
from low-resolution CT, locating each kidney and fine segmenting the kidney, and
finally extracting the tumor and cyst from the segmented kidney. The results show
that the average dice of our method for kidney, tumor and cysts is about 0.93, 0.57,
0.73.

Keywords: Medical image segmentation · Deep learning · Neural network

1 Introduction

Segmentation and reconstruction of CT or MRI medical images is the main source of
navigation data, i.e. anatomical structure of tissues and organs [1–4]. At present, themost
commonly used method of medical image segmentation is still manual segmentation,
which takes a long time and depends on the operator’s experience and skills [5]. In
recent years, breakthroughs have been made in the research of neural networks [6–9].
The deep learning technology based on neural networks can achieve fast segmentation,
and effectively solve the problem of low accuracy and long time-consuming image
segmentation [10]. In the field of medical image segmentation, the breakthrough of
in-depth learning began with the introduction of Full Convolutional Neural Network
(FCN), and another breakthrough of neural network architecture U-Net made it possible
to achieve high-precision automatic segmentation of medical images. Long Jonathan
et al. [11] proposed Fully Convolutional Networks structure in 2015. In the same year,
Olaf Ronneberger et al. [12] proposed the U-Net network structure. U-Net is a semantic
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segmentation network based on FCN, which is suitable for medical image segmentation.
With the proposal of 3D convolutional neural networks such as 3DU-Net [13] and V-Net
[14], the segmentation accuracy of some organs has reached a milestone. For example,
in the MICCAI challenge 2019 kits19 competition, the accuracy of 3D U-Net in the task
of kidney segmentation is very close to that of human, but the required time to complete
a segmentation is far less than that of manual segmentation. The deep learning-based
methods not only surpass the traditional algorithms, but also approach the accuracy of
manual segmentation.

In this paper, we propose a three-step automatic segmentation method for kid-
ney, tumors and cysts, including roughly segmenting the kidney and tumor from low-
resolutionCT, locating each kidney andfine segmenting the kidney, and finally extracting
the tumor and cyst from the segmented kidney.

2 Methods

2.1 Network Architecture

The network architecture (3D U-Net) is illustrated in Fig. 1. We choose 3D U-Net as
the neural network for the all three steps. 3D U-net includes an encoding path and a
decoding path, each of which has four resolution levels. Each layer of the encoding path
contains two 3 × 3 × 3 convolution, each followed by a ReLu layer, followed by a 2
× 2 × Maximum pool layer with step size of 2 in each direction of 2. In the decoding
path, each layer contains a 2 with a step size of 2 × 2 × 2, followed by two 3 × 3 × 3,
each followed by a RuLu layer.

Fig. 1. The network architecture. Blue cuboids represent feature maps. The number of channels
is denoted next to the feature map. (Color figure online)

2.2 Segmentation from Low-Resolution CT

Considering that the complete CT sequence is too large for the GPU, we scaled the
spacing of all CT sequences to 3.41, 1.71 and 1.71. Then we cut the size of the sequence
to 128 * 248 * 248 under the condition of constant spacing. Finally, we uniformly scale
all the sequence sizes to 96 * 128 * 128 for the training of neural network. Then we use
the generated data for training of the 3D U-Net for the first step.
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2.3 Fine Segmentation of Kidney

According to the results of rough segmentation in the previous step, we first locate
the position of two (or one) kidneys. Secondly, we crop the CT image with the region
located and scale the size to 80 * 128 * 128. Then, we set the kidney, tumor and cyst
to a unique label as the training data for the second step. Finally, we conduct the data
augmentation including random translation, scaling, and trained the second 3D U-Net
with the generated data.

2.4 Segmentation of Tumor and Cysts

To prevent the network from identifying areas outside the kidney as tumors or cysts, only
the region of kidney segmented in the above step is used as the input for the network in
step 3. Tumor and cysts were labeled with 1 and 2, respectively. After segmentation, we
scale the segmented results to the original size as the final output.

2.5 Training Protocols

All the algorithms were implemented using Pytorch1.2 with Python3.7 and ran on a
workstation with a AMD 5800X CPU, 32G memory and a NVIDIA RTX8000 GPU.
The training protocols of the proposed method is shown in Table 1.

Table 1. Training protocols

Data augmentation methods Scaling, rotations, brightness, contrast, gamma

Initialization of the network Kaiming normal initialization

Batch size 4

Total epochs 50

Loss function Dice loss and weighted cross entropy

3 Results

As the accuracy metrics, the Dice similarity coefficient (DSC), average symmetric sur-
face distance (ASSD [mm]) and surface distance deviation (SDD [mm]) between the
predicted mask and the ground truth mask were employed. Assume A and B are two
masks, these metrics are given by (1), (2) and (3), where S(A) and S(B) are the surface
points ofAandB, respectively, andd(a, S(B)) is theminimumEuclidiandistancebetween
the point a and the points on the surface S(B).We perform 5-fold cross-validation on 300
data sets, but due to limited time, only one-fold has finished at the time of submission.
The result is shown in Table 2. Figure 2 shows the results with voxel-based rendering



Three Uses of One Neural Network 43

from three examples in the evaluation dataset. Figure 3 shows the segmentation results
on CT slices.

DSC = 2(A ∩ B)

A + B
(1)

ASSD = 1

|S(A)| + |S(B)| ×
(∑

a∈S(A) d(a, S(B)) +
∑

b∈S(B) d(b, S(A))
)

(2)

SDD =
√

1

|S(A)| + |S(B)| ×
(∑

a∈S(A) (d(a, S(B)) − ASSD)2 +
∑

b∈S(B) (d(b, S(A)) − ASSD)2
)

(3)

Table 2. Dice comparison on three structures

Dice ASSD (mm) SSD (mm)

Kidney 0.93 1.24 2.45

Tumor 0.57 8.24 10.86

Cysts 0.73 6.70 6.90

Fig. 2. Segmentation results with voxel-based rendering from three examples in the evaluation
dataset. For each example, the ground truth and the segmentation results are given for visual
comparison. (yellow: cysts, red: kidney, brown: tumor) (Color figure online)
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Fig. 3. Segmentation results on CT slices. The two rows are the ground truth and segmentation
results of our method. (yellow: cysts, red: kidney, brown: tumor) (Color figure online)

4 Discussion and Conclusion

We propose a three-step automatic segmentation method for kidney, tumor and cysts
based on 3D U-Net. The results show that the average dice of our method for kidney,
tumor and cysts is about 0.93,0.57,0.73. According to the final result, the average Dice,
Surface Dice and Tumor Dice are respectively 0.781, 0.618, 0.660. The results show
that the accuracy of our method on kidney is better than that of tumor and cysts. The
region of the kidney can be accurately identified, but the accuracy of tumor and cysts is
not satisfactory. As limited by the competition time, the neural network requires more
time to be fully trained. Future work will focus on promoting accuracy of our method
on the tumors and cysts.
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Abstract. As the most successful network structure in biomedical image seg-
mentations, U-Net has presented excellent performance in many medical image
segmentation tasks. We argue that the skip connections between the encoder and
decoder layers pass too many redundant information, and filtered out the unneces-
sary information may be helpful in improving the segmentation accuracy. In this
paper, we proposed a contrast attention mechanism at the skip connection, and
proposed a contrast attention U-Net for KiTS21 challenge. The proposed method
is able to achieve better performance over nnU-Net models with both low reso-
lution and full resolution inputs in the 5-fold cross validation in the training set.
In the final unrevealed testing set, our method achieves a mean sampled average
Dice coefficient of 0.8815 and a mean sampled average surface Dice coefficient
of 0.8007, which ranked the 5-th in the KiTS21 challenge.

Keywords: Kidney segmentation ·Deep learning · 3D U-Net · Contrast attention

1 Introduction

Precise and quantitative evaluation on kidney masses, including tumors and cysts, have
been an effectiveway inguiding future treatments. In clinical practice, such task is usually
performed manually, which is time consuming and tedious. To make it reproducible, it
is urgent to develop an automatic method for kidney mass segmentation and distinguish
between tumors and cysts. Deep learning has been widely adopted in biomedical image
segmentation, and has shown much higher accuracy in many tasks [1–4].

One of the most commonly adopted convolutional neural network (CNN) structure
in biomedical image segmentation is U-Net [5], which have shown great performance
in almost all biomedical image segmentation tasks. The skip connections between the
encoder and decoder layers enable it to gather both semantic information from the
deeper layers and the spatial information from the shallower layers. The nnU-Net [6],
on the other hand, utilizes the U-Net structure, but focused on the preprocessing and
data augmentation methods and built an self-adaptive framework for 3D medical image
segmentation tasks. The success of nnU-Net not only proved the strong representation
ability of U-Net, but also highlighted the importance of proper preprocessing and data
augmentation methods, especially when the images are anisotropic.
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From the released training dataset of the kidney tumor segmentation (KiTS) chal-
lenge in 2021, we made several observations. 1) The CT images are anisotropic, and
the slice spacing vary from about 0.5 mm to 5 mm; 2) the physical field of view varies,
where some images include lung, while some only include abdomen organs; and 3) the
kidney segmentation is much easier than the kidney masses. Motivated by the above
observations, we propose to adopt a two-stage segmentation method as shown in Fig. 1.
In particular, we extract the coarse kidney region from down-sampled low-resolution
images in the first stage, and generate the fine segmentation results in the second stage.

To better segment the foregrounds, attention mechanism was further introduced to
the plain U-Net. Attentionmechanism has shown to be effective in both natural language
processing and computer vision. In medical image segmentation tasks, several variants
of U-Net have been proposed by introducing attention mechanism to U-Net [1, 7, 8].
The attention mechanism provides a guidance to the network in focusing on the most
important features, and is able to increase the segmentation accuracy. Moreover, by
guiding the network to extract important features, the attention mechanism is helpful in
increasing the parameter efficiency. In this paper, we proposed a contrast attention (CA)
mechanism to the skip connections of U-Net. Instead of passing the entire output feature
maps from the encoder layers, the proposed CAmodules perform as edge detectors, and
only passes the local differential information to the corresponding layers at the decoder.
As we will show in this paper, the proposed CAU-Net is able to overperform nnUNet in
the 5-fold cross validation on the KiTS21 training set by using much fewer parameters.
In the testing set, the proposed method achieves a mean sampled average dice coefficient
of 0.8815 and a mean sampled average surface dice coefficient of 0.8007, which ranked
at the 5-th place in the KiTS21 challenge.

U-Net
Stage1

CAU-Net
Stage2

(a) Original image (b) Coarse segmentation (c) Fine segmentation

Fig. 1. Whole pipeline of the proposed segmentation method.

2 Methods

In this paper, we proposed a two-stage segmentation method, as shown in Fig. 1. In
particular, in the first stage, coarse segmentation results for kidneywere generated, which
are used for extracting the regions of interest (ROIs), i.e., the regions with kidney, from
the CT images. In the second stage, the CNN only focused on the ROIs and generated the
fine segmentationmap. In the first stage,we adopted a 3DU-Net for coarse segmentation,
and in the second stage, we adopted the proposed CAU-Net for fine segmentation. The
network structures of these two stages are shown in Fig. 2 and Fig. 3, respectively.
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Fig. 2. 3D U-Net structure for coarse segmentation.

2.1 Training and Validation Data

Our submission made use of the official KiTS21 training set alone.
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Fig. 3. Architecture of the proposed CAU-Net for fine segmentation.

2.2 Preprocessing

In KiTS21, the images varies in voxel spacing. As the CNNs are not capable in interpret-
ing the voxel spacing, we resampled all images to a common voxel spacing. The choice
of voxel spacing is in general a tradeoff between the textural information and spatial
contextual information, due to the fact that the training of 3D CNNs are patch-based,
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instead of image-based. For instance, with a smaller voxel spacing, despite that a richer
textural information can be preserved, the image patch of a certain matrix size would
correspond to a smaller physical volume, leading to a small physical field of view in
the CNNs. Therefore, the voxel spacing should be carefully chosen to arrive at a good
tradeoff.

In particular, in the first stage, as the goal is to locate the kidney area from a coarse
segmentation map, we adopted a larger voxel spacing of 3.4 × 1.7 × 1.7 mm. In the
second stage, to generate a fine segmentation result, a voxel spacing of 0.85×0.85×0.85
mmwas adopted. During resampling, the masks were resampled using nearest neighbor
interpolation. The images, however, adopted varies interpolation methods on different
directions. By noting that the images in the training set are generally with small voxel
spacing in the transverse plane (y-z plane), bilinear interpolation was adopted on the
y-z plane. In the x-axis, as the voxel spacing varies from 0.5mm to 5mm, to reduce
resampling artifacts, nearest neighbor interpolation was adopted.

In CT images, the image intensity values are in fact the HU values, and the typical
HU values of different tissues in CT images are presented in Table 1. In this paper, we
clipped the HU values to the range [−79, 304]. Then the values were subtracted by 101
and divided by 76.9. All samples in the training set were used.

In our experiment, the images were cropped to patches with size (144, 128, 128) in
the first stage, and size (96, 96, 96) in the second stage. In the second stage, to balance
the patches with foreground and background, a dedicated patch sampler was adopted to
ensure that at least one third of the patches are centered at the foreground.

Table 1. Typical tissues radiodensities of human body [1].

Tissue HU

Air −200

Bone 400+

Kidney 25–50

Water 0 ± 10

Blood 3–14

2.3 Proposed Network Architecture

The proposed Contrast Attention U-Net (CAU-Net) employs a U-Net like structure in
general. In the classical U-Net, skip connections are employed to fuse the feature maps
hierarchically with the decoder featuremaps. In our proposed network, contrast attention
(CA) module is added at the skip connections to encourage the network extract the most
prominent features and pass them to the decoder. As shown in Fig. 3, the proposed
Contrast Attention U-Net (CAU-Net) employs a U-Net like structure in general, but
makes several important modifications. The detail hyperparameters, such as strides and
kernel sizes can be found in Fig. 3.
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2.3.1 Contrast Attention Module

Subtraction 

Avgpool 3x3x3
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Fig. 4. The architecture of the contrast attention module.

U-Net is the most successful network architecture in medical image segmentation,
which fuses high-level and low-level features by the skipping connections to obtain rich
contextual information and precise location information.However, simply concatenating
or uniform weighting different levels of feature maps may introduce a large amount of
redundant information, which may lead to the blurring of the extracted image features,
even smooth boundaries. To copewith this problem,we added the contrast attention (CA)
at the skip connections of a classical U-Net, which can remove the identical information
and extract the local differential information from the featuremaps. The feature values of
the same tissues are similar and the feature values of different tissues are quite different.
Therefore the CA module is also equivalent to an implicit edge attention module, which
can make the model better distinguish different tissues.

Figure 4 presented the design of the CA module. The output feature of the i-th layer
can be obtained as

Di = cat(up(Di+1),E
ca
i ) (1)

for i = 1, 2, 3, 4, where cat denotes the channel-wise concatenation, up denotes bilinear
upsampling. Di represent the i-th decoder feature map. Eca

i denotes the i-th CA feature
map, and it is defined as

Eca
i = Ei − Avg(Ei) (2)

where Ei denotes the encoder feature map of the i-th layer. Avg represents an average
pooling layer with a window size of 3 and stride 1.

2.3.2 Loss Function

The sum of dice loss and cross entropy loss is adopted as loss function. The total loss is
the average of the 5 deep supervision losses.

2.3.3 Training and Validation Strategies

We adopted stochastic gradient descent (SGD) with Nestrov trick as the optimizer, with
an initial learning rate of 0.01 and momentum 0.99. The batch size is set to be 2. We
define an epoch as 250 batch iterations. The learning rate reduces in a polynomial way.
The network is trained for 1000 epochs. Data augmentation is also implemented to
reduce the over-fitting risk, with random zooming, random rotation, random flipping,
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and random Gaussian smoothing adopted. But we switched off the data augmentation
in the last 10 epochs.

Five-fold cross validation is adopted. At each fold, wemonitored the dice coefficients
of the last 50 epochs, and selected the result of the last epoch as the final model.

2.3.4 Ensembling and Post-processing

Test-time augmentation is also adopted by mirroring the images along the three axes. In
the first stage,we keep the largest two components, and crop the regions of interest, which
is used as the input of the second stage. It is worth noting that if one of the components
is much smaller than the other, only the largest component is retained. In the second
stage, we use the same strategy to remove some false positives. To generate the final
segmentation results in the testing set, we further use majority voting to ensemble the
results of the five final models in the five-fold cross validation.

3 Results

The network is trained on a workstation with Nvidia GTX 1080Ti GPU with 11GB
memory.Due to limitedmemory, the batch size is set to be 2. The network is implemented
on PyTorch v1.9.0 [9] and monai v0.5.3 [10]. Each training epoch took about 250 s, and
the training for each fold took about 84 h. During inference, the time consumed for each
subject is about 60 s.

Table 2 summarizes the five-fold cross validation results on the trining set. As we can
see from Table 2, the proposed method achieved better performance than full resolution
and low resolution nnU-Net in all metrics. Compared with cascade nnU-Net, the method
was worse in kidney and kidney mass segmentation, but better in tumor segmentation.
It is worth noting that our method only has 25M parameters in total, which is far less
than nnU-Net.

Table 2. Five-fold cross validation results on the KiTS21 training set.

Method # parameters Kidney
DC

Mass
DC

Tumor
DC

Kidney
SD

Mass
SD

Tumor
SD

nnUNet(full) 31.2M 0.9666 0.8618 0.8493 0.9336 0.7532 0.7371

nnUNet(low) 31.2M 0.9683 0.8702 0.8508 0.9272 0.7507 0.7347

nnUNet(cascade) 64.4M 0.9747 0.8799 0.8491 0.9453 0.7714 0.7393

Proposed 5.6M(stage1)
18.87M(stage2)

0.9693 0.8760 0.8509 0.9357 0.7686 0.7449

We tested ourmethod on the 100CT scans of theKiTS21Challenge, the performance
is shown in Table 3.
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Table 3. The results of our model on the KiTS21 test dataset.

Method Mean sampled average dice Mean sampled average SD

Proposed 0.8815 0.8007

4 Discussion and Conclusion

In this paper, a CAU-Net was proposed for KiTS21. The CA modules are proposed to
remove redundant information and extract the local differential information. With CA
module on the skip connection, less information has been passed to the decoder layers,
but the edge information is more prominent and the performance of the model is better.
In the KiTS21 test dataset, the results of our method are 0.8815 for the Mean Sampled
Average Dice and 0.8007 for the Mean Sampled Average Dice.
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Abstract. Kidney cancer is one of the most common malignant tumors
in the world. Automatic segmentation of kidney, kidney tumor, and kid-
ney cyst is a essential tool for kidney cancer surgery. In this paper, we use
a coarse-to-fine framework which is based on the nnU-Net and achieve
accurate and fast segmentation of the kidney and kidney mass. The aver-
age Dice and surface Dice of segmentation predicted by our method on
the test are 0.9077 and 0.8262, respectively. Our method outperformed
all other teams and achieved 1st in the KITS2021 challenge.

Keywords: Automatic kidney segmentation · Kidney cancer ·
Coarse-to-fine framework

1 Introduction

Kidney cancer is the 13th most common cancer worldwide, accounting for 2.4% of
all cancers, with more than 330,000 new cases diagnosed yearly, and its incidence
is still increasing [1]. Due to the wide variety in kidney tumor morphology, it’s
laborious work for radiologists and surgeons to delineate the kidney and its mass
manually. Besides, the work relies on assessments that are often subjective and
imprecise.

Automatic segmentation of renal tumors and surrounding anatomy is a
promising tool for addressing these limitations: Segmentation-based assessments
are objective and necessarily well-defined, and automation eliminates all effort
save for the click of a button. Expanding on the 2019 Kidney Tumor Segmen-
tation Challenge [2], KiTS2021 aims to accelerate the development of reliable
tools to address this need, while also serving as a high-quality benchmark for
competing approaches to segmentation methods generally.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-030-98385-7 8.
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2 Methods

Semantic segmentation of organs is one of the most common tasks in medical
image analysis. There are already many accurate and efficient algorithms for
medical image segmentation tasks, such as nnU-Net [3]. In this paper, we use
the nnU-Net as a baseline and adopt the coarse-to-fine strategy to segment the
kidney, the kidney tumor, and the kidney cyst, as shown Fig. 1. We also propose
a surface loss to make the network segment the surface better. To be specific,
our algorithm contains three steps:

Coarse Segmentation. We first use a nnU-net to get the coarse segmentation.
Then we crop the tightest bounding box (bbox) containing kidney region-of-
interest and expand the bbox 1.5 times. The kidney mass is always contained
in the kidney area. So we can use the kidney ROI, instead of the original full
CT image, to get more accurate segmentation results. This stepis is necessary
to crop image to a smaller size and retain useful areas.

Fine Kidney Segmentation. Then we refine the predictions of kidney from
the cropped kidney ROI by a single classification nnU-net.

Fine Tumor and Mass Segmentation. With the kidney ROI and refine
kidney segmentation, we segment the kidney tumor and mass by two nnU-Net
separately and combine them with the refine kidney segmentation as the final
segmentation.

Fig. 1. An overview of our coarse-to-fine segmentation framework.

2.1 Training and Validation Data

Our submission use the official KiTS2021 training set alone [4]. We divide the
provided data into training set and validation set at a ratio of 4:1.
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2.2 Preprocessing

In each case, the labels are annotated by three independent people and we use
the majority voting strategy for the multiple annotations. We follow the way
in the nnU-Net to preprocess the training data. The spacing of all official CT
images is the same on the x-axis and y-axis, but different on the z-axis. We
resample all images to the same target spacing [0.786 0.78125 0.78125] using
third order spline interpolation and then normalize the data. Besides, A variety
of data augmentation techniques are applied on the fly during training: rotations,
scaling, mirroring, etc.

2.3 Proposed Method

2.3.1 Kidney Segmentation
After hard mining, we find the accuracy of mass is worse than the accuracy of
the kidney. So we decide to segment the kidney mask firstly and then segment
the tumor and cyst from the kidney mask. Specifically, we first use the nnU-
Net to get the kidney ROI from the CT image for each case and then use the
coarse-to-fine framework to segment the kidney mask from the kidney ROI.

2.3.2 Mass Segmentation
With the predicted kidney mask, we use another nnU-Net to segment the mass.
By analyzing the provided CT images, we find that the mass is more likely to
be on the edge of the kidney. Therefore, we combine the predicted kidney mask,
which contains the kidney edge information, with the kidney ROI and feed them
to the nnU-Net.

2.3.3 Tumor Segmentation
To further improve the tumor segmentation performance, we train another nnU-
Net to segment the tumor alone. Similar to the mass Segmentation, we also use
the predicted kidney mask and the kidney ROI as the inputs for the nnU-Net.

2.3.4 Surface Loss
Compared to the 2019 KiTS Challenge, the metric in this year has one more
Surface Dice [5], which is used to quantitatively assess the overlap between the
predicted surface of segmentation and the real surface. Considering that, we
propose the surface loss function, which will penalize the unacceptable regions
of the predicted surface. The surface loss function is defined as the summation of
distances from all false-positive points and false-negative points in the prediction
to the surface of ground truth, as shown below:

Ls = 1
C

∑

ppred∈ FP∪FN

(

min
pgt∈ Sgt

‖ppred − pgt‖2
)

(1)

where Sgt is the surface of the ground truth, FP and FN are the sets of false-
positive points and false-negative points separately, and C is a constant.
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During the actual training process, we combine the surface loss with the Dice
loss and cross-entropy loss, and do not use the surface loss until the Dice loss
and cross-entropy loss are low enough. In other words, the surface loss is used
to fine-tune the final surface segmentation results in our method.

2.3.5 Postprocessing
After training, we remove the isolated blocks which are smaller than 20,000
voxels for the kidney. We also remove all tumors and cysts outside kidneys
and take the rest as the final segmentation results. Besides, we combine the
kidney coarse segmentation and kidney fine segmentation by voting, as the final
kidney prediction. We also combine the tumor fine segmentation and the tumor
segmentation from the mass fine segmentation to get better tumor prediction.

2.3.6 Implementation Details
During the training, we use batch normalization (BN) where the batch size is
2. And we use stochastic gradient descent (SGD) as the optimizer. The initial
learning rate is set to be 0.01 and the total training epochs are 1000. The patch
size in the coarse segmentation stage is [128,128,128] while [128,192,96] in the
fine segmentation stage. Considering the training time consuming, we do not use
the 5-fold cross-validation as mentioned in nnU-Net [3], and just split all train-
ing data into training set and validation set randomly. Other hyper-parameters
mainly follow the nnU-Net as default. We implement our network with PyTorch
based on a single NVIDIA GeForce RTX 3090 GPU with 24 GB memory.

3 Results

3.1 Metric

According to the organizers’ request, we use two metrics for evaluation, the
volumetric Dice coefficient, and the Surface Dice. And we use Hierarchical Eval-
uation Classes (HECs) for the three classes of targets, in which classes that are
considered subsets of another class are combined with that class for the purposes
of computing a metric for the superset. For KiTS2021, the following HECs will
be used:

Kidney and Masses: Kidney + Tumor + Cyst
Kidney Mass: Tumor + Cyst
Tumor: Tumor only

3.2 Results and Discussions

We summarize the quantitative results on in Table 1. All the results are based
on the validation set, which contains 60 cases. The average Dice is 0.9099, and
the Dice for kidney, kidney mass, kidney tumor are 0.9752, 0.8851, and 0.8693
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respectively. The average Surface Dice is 0.8348, and the Surface Dice for kid-
ney, kidney mass, kidney tumor are 0.9486, 0.7867, and 0.7692 respectively. For
the tumor segmentation, our algorithm performs significantly better than the
baseline. While for the kidney and cyst segmentation, the improvement of our
algorithm is very small. This is because we didn’t use the cascaded nnU-Net due
to its long training time.

On the test set, the average dice of our prediction is 0.9077 and the average
surface dice is 0.8262, as shown in Table 2. Compared to the 2nd method, our
method segment the kidney tumor more accurately by 2.8%, resulting in a nearly
1% improvement in both Dice and Surface Dice. We believe this is mainly because
we use the kidney fine prediction as an additional input for tumor segmentation
to provide the kidney information.

Figure 2 shows a demonstration of the prediction result. The left side is the
ground truth and the right side is our prediction.

Table 1. Results of experiments on validation set. (Splitted by ourself)

Model Dice Surface dice

kidney Mass Tumor Ave Kidney Mass Tumor Ave

Baseline 0.9748 0.8793 0.8365 0.8969 0.9499 0.7810 0.7392 0.8234

Ours 0.9752 0.8851 0.8693 0.9099 0.9486 0.7867 0.7692 0.8348

Improvement +0.04% +0.58% +3.28% +1.30% –0.13% +0.57% +3.00% +1.14%

Table 2. Quantitative results on test set. (Given by the organizer)

Team Rank Dice Surface dice Tumor dice

Ours 1 0.908 0.826 0.860

Alex Golts et al. 2 0.896 0.816 0.832

Yasmeen George 3 0.894 0.814 0.831

Fig. 2. A demonstration of prediction results of case 010. The kidney is shown in red
and the tumor is shown in green. (Color figure online)

https://kits21.kits-challenge.org/results


58 Z. Zhao et al.

4 Conclusion

In this paper, we use a coarse-to-fine framework to segment the kidney, tumor,
and cyst from CT images. We use the nnU-Net as a baseline and improve it by
using the surface loss and ROI cropping. Experiments show that our method
truly works. The Dice of the kidney is very high and we segment the kidney
tumor more accurately. Our method outperforms all other competing teams,
and we attribute this mainly to the three parts: the good performance of the
nnU-Net; using kidney segmentation to predict tumor and mass; our postprocess.
Finally, we hope that our work can make some contribution to the automatic
segmentation for kidney cancer.

Acknowledgment. We would like to express our gratitude to the KiTS2021 organiz-
ers and the nnU-Net team. We also want to say thanks to Nicholas Heller and Fabian
Isensee for their kind help.
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Abstract. Automatic segmentation of kidney tumors and lesions in
medical images is an essential measure for clinical treatment and diag-
nosis. In this work, we proposed a two-stage cascade network to segment
three hierarchical regions: kidney, kidney tumor and cyst from CT scans.
The cascade is designed to decompose the four-class segmentation prob-
lem into two segmentation subtasks. The kidney is obtained in the first
stage using a modified 3D U-Net called Kidney-Net. In the second stage,
we designed a fine segmentation model, which named Masses-Net to seg-
ment kidney tumor and cyst based on the kidney which obtained in the
first stage. A multi-dimension feature (MDF) module is utilized to learn
more spatial and contextual information. The convolutional block atten-
tion module (CBAM) also introduced to focus on the important feature.
Moreover, we adopted a deep supervision mechanism for regularizing
segmentation accuracy and feature learning in the decoding part. Exper-
iments with KiTS2021 testset show that our proposed method achieve
Dice, Surface Dice and Tumor Dice of 0.650, 0.518 and 0.478, respec-
tively.

Keywords: Cascade framework · Kidney/tumor segmentation · Deep
learning

1 Introduction

Kidney cancer is one of the most aggressive cancer, which have 40 0000 growth
numbers and high fatality rate of 40%. Renal cell carcinoma (shorted as kidney
tumor) and renal cysts (cysts for short) are the most common diseases that cause
to it. The cysts are formed in the kidneys with age, and won’t easily bring about
injury while tumors often pose high risks to human health.

Studies have shown that tumors are more susceptible to effective treatment if
they are detected at earlier stage. However, these tumors may grow into a large
size before being detected [1]. Therefore, early accurate diagnosis can effectively
improve the survival rate of kidney cancer patients. The success of such studies
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Fig. 1. Illustration of sample segmented images from three patients in the KiTS21
dataset. The first row is the transverse plane, and the second row is with the labels.
Red, green and blue denote kidney, kidney tumor and cyst, respectively. (Color figure
online)

relies on the computed tomography (CT) technology, which can provide high-
resolution images with good anatomical details. Combined with the great poten-
tial information from medical images, such as the location, shape and size of the
kidney and tumor, radiologists can know about disease severity and progression,
then make a more accurate clinical decision. Hence, accurate segmentation of
kidney and kidney tumor is an essential step for radiomic analysis as well as
developing advanced surgical planning techniques. The segmentation of kidney,
kidney tumor and cyst are usually manually marked by radiologists. However,
manual segmentation is a time-consuming and tedious task due to the hundreds
slices of CT. Moreover, the label results strongly depend on the experience of
radiologists and prone to errors. In order to reduce the burden of manual works
and improve segmentation accuracy, automatic segmentation of kidney, kidney
tumor and cyst has become a new demand.

Deep learning (DL) technology has been widely applied in the medical image
field and play an essential role in kidney and kidney tumor segmentation works.
Methods based on deep learning are categorized into two: one-stage and two-
stage method. One-stage methods [2–7] are designed to predict the multi-class
results directly from whole images. Guo et al. [5] proposed an end-to-end model
based on residual and attention module. Residual connection was added to each
convolutional layer to generate clearer semantic features. Skip connection was
also used in attention module to make the decoder focus on the segmentation
target. Zhao et al. [6] presented a multi-scale supervised 3D U-Net to segment
kidneys and kidney tumors from CT images. Multi-scale supervision was adopt
to obtain more accurate predictions from deep layers. Sabarinathan et al. [7]
presented a novel kidney tumor segmentation method. This work introduced
supervision layers into the decoder part, and coordinate convolutional layer was
utilized to improvise the generalization capacity of the model.

Two-stage methods [8–13] aim to solve the imbalance problem between fore-
ground and back-ground. Those methods firstly detect the volume of interest
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(VOIs), then segment the target organs from the VOIs. A typical two-stage
method was proposed by Cheng et al. [8], they employed a double cascaded
framework, which decomposed the complex task of multi-class segmentation into
two simpler binary segmentation tasks. In the first step, the region of inter-
est (ROI) including kidney and kidney tumor is extracted, and then segment
the kidney tumor in second step. However, these works still suffer from several
anatomical challenges. First, the low contrast between kidney and nearby organs,
the unclear boundaries and heterogeneity of tumor, all make accurate segmenta-
tion become more difficult, as shown in Fig. 1(a) and Fig. 1(b). Second, Fig. 1(c)
indicates that kidney tumors and cysts exhibit various size, shape, location and
number from different patients.

To address the above challenges and improve the segmentation performance
of unbalanced kidney and tumor datasets, we proposed a two-stage framework
to obtain kidney and masses (kidney, cyst), respectively. In this framework, the
complex multi-class segmentation task is transformed into two simplified sub-
tasks: (i) locating the kidney region and segmenting the kidney, (ii) segmenting
the kidney tumor and cyst in the kidney. The Kidney-Net applied in the first
stage is modified based on a normal 3D U-Net, while our core works mainly focus
on masses segmentation in the second stage. In the second stage, a fine segmenta-
tion network Masses-Net is trained based on the cropped kidney region obtained
in the first stage to segment tumors and cysts. In order to leverage more use-
ful features, a multi-dimension feature (MDF) module is utilized to learn more
space and context information. Meanwhile, convolutional block attention module
(CBAM) also applied to focus on the important feature. Finally, a deep super-
vision mechanism was also used in the decoding, which works as a regularizing
role in segmentation accuracy and feature learning.

2 Methods

In this section, we mainly introduce our method for kidney and kidney masses
(tumor and cyst) segmentation. The proposed two-stage segmentation frame-
work is illustrated in Fig. 2. The framework consists of two phases: the first
stage for kidney segmentation and the second stage for masses (tumor and cyst)
segmentation.

In the first stage, the pre-processed CT images are fed into a kidney segmen-
tation network, which named Kidney-Net. The output of Kidney-Net is a coarse
segmentation result of overall kidney and is binarized to produce an overall kid-
ney mask. The mask is applied for boundary coordinates and crop volume of
interest (VOI). The cropped VOI is the input of the second stage, a Masses-Net
is used for tumor segmentation and cyst segmentation.

In the training processing, the two networks are trained individually due to
the different input patches. In the testing processing, two individual results of
Kidney-Net and Masses-Net are fused via a union method, which add the two
prediction results directly. Then the merge result is refined by a post-processing
method.
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Fig. 2. Schematic of the workflow of the proposed two-stage segmentation framework.

2.1 Kidney-Net

In our method, we concatenated two networks to segment the kidney, kidney
masses (tumor and cyst) respectively. The Kidney-Net in the first stage is used
for kidney segmentation. As shown in Fig. 3(a), Kidney-Net is a u-shaped net-
work which only contains three pooling layers. And the encoder/decoder blocks
are all regular convolution block, which is composed of two convolution layers
with batch normalization (BN) and rectified linear unit (ReLU). Due to the
Kidney-Net is trained to predict the probabilities of every voxels belong to kid-
ney, Dice loss function is utilized for the voxel level classification task and be
formulated as:

Lkidney = 1 − 2 ∗ ∑2
i=1 (ri ∗ ti)

∑2
i=1 (ri + ti) + θ

(1)

Where ri, ti, i ∈ 0, 1 is the segmentation kidney result and target kidney
mask, respectively, and θ is a smooth term to avoid division by zero.

2.2 Masses-Net

The architecture of Masses-Net is shown in Fig. 3(b). Masses-Net is similar to
the Kidney-Net. For the purpose of utilizing more global features, the encoder of
Masses-Net contains four pooling operations and four encoder blocks. The input
and output blocks are regular convolution block, which used for generate low-
level feature maps. Then, the feature maps generate by input block are fed into
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Fig. 3. Overview of the proposed segmentation network. (a) The basic architecture of
the Kidney-Net (b) The basic architecture of the Masses-Net

four successive encoder blocks to obtain global features. The decoder is used for
target segmentation and working in a coarse-to-fine pattern, which also contains
four decoders. Finally, the output of the last three decoder blocks is fed into
Soft-max activation function for the tumor and cyst prediction. Moreover, deep
supervision scheme is applied. The key components are illustrated as follow.

Residual Connection Mechanism. Considering the problems related to over-
fitting and vanishing gradient, residual connection is incorporated to maintain
more spatial and contextual information and make the learnable network param-
eters increasingly effective [14]. Figure 4(a) shows the input/output block, which
is similar to a regular residual block. Combining the residual connection, the net-
work can achieve a better result. Figure 4(b) shows a encoder/decoder block of
our network. In this block, a multi-dimension feature (MDF) module is applied
to replace the regular convolution layers. And the architecture of MDF is shown
in the Fig. 4(c), residual connection also adopted in the module.
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Fig. 4. (a) The input/output block, (b) the encoder/decoder of proposed network, (c)
multi-dimension feature (MDF) module.

Multi-dimension Feature Module. Due to the 3D kernel can be used to
capture more spatial information, 3D neural network is adopted for segmenta-
tion tasks in medical image. However, some important characteristics frequently
appear in the x/y plane and be ignored by the 3D kernels. Inspired by the
anisotropic convolutional [15], multi-dimensions feature (MDF) module is pro-
posed to leverage more features in the network. As shown in Fig. 4(c), MDF
mainly composed of two parts: a multi dimensions feature extractor and a con-
volutional block attention module (CBAM) [16]. The multi dimensions feature
extractor consists two branches: 3D convolution branch and modified anisotropic
convolutional branch. Regular 3D convolution branch contains two successive
convolution layers with kernel of 3× 3 × 3, and is used for capturing spatial infor-
mation. The modified anisotropic convolutional branch only uses the 3× 3 × 1
kernel to learn the shape characteristics in the x/y plane. In fact, the modified
anisotropic convolutional operations can leverage intra-slice information without
increasing the amounts of parameters too much in a 3D network. Finally, the
output of two branches is concatenated, which can be formulated as:

mc = Concat (Conv (3 × 3 × ki) (x)) i = 1, 3 (2)

The CBAM is a lightweight attention module that combine the spatial atten-
tion and channel attention, and it can be embedded in other networks easily.
CBAM contains two separate submodules: Channel Attention Module (CAM)
and Spatial Attention Module (SAM), and the two submodules work respec-
tively. The CBAM incorporated after the multi dimensions feature extractor is
used to focus on the important feature in different channels from the concate-
nated feature maps. And the SAM is also applied to learn the region of interest
which contain potential lesion characteristics. Moreover, the residual connection
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also applied in the MDF to leverage more feature. Finally, the output of MDF
operation is formulated as:

Output = Fsam (Fcam (mc)) + x (3)

Deep Supervision Mechanism. Increasing the depth of the neural network
can improve the representation ability, while cause vanishing gradient problem
to make the network become difficult to train. Deep supervision is proposed
to mitigate such problems. Unlike the previous networks, deep supervision pro-
vides integrated direct supervision to the hidden layer instead of only providing
supervision in the output layer and passing it back to the earlier layer. This can
effectively solve the problems of gradient disappearance and slow convergence. As
shown in Fig. 3, we introduced deep supervision in the last three decoder blocks
of the decoder part. The output layer and the hidden layer can be supervised
via deep supervision at the same time, which can jointly improve the gradient
propagation to minimize the loss.

2.3 Loss Function

In order to alleviate the imbalance problem from multi-class segmentation task,
the combination of dice loss and weight cross entropy (WCE) loss is utilized in
our network. The loss function can be formulated by the following:

Lmass = αLdice + (1 − α)LLwce (4)

where α is the weight and be set to 0.5 in our experiment. And the formulation
of Ldice and Lwce can be describe detail as follow:

Ldice = 1 − 2 ∗ ∑3
i=1

∑N
n=1 (rin ∗ tin)

3 ∗ ∑3
i=1

∑N
n=1 (rin + tin) + θ

(5)

Lwce =
3∑

i=0

wi

N∑

n=1

(rin log (tin) + ((1 − rin) log (1 − tin))) (6)

Where N denote the voxel number, and i denote the index of each voxel. rin
and tin is the predicted result and the target label of voxel n on category i. And
wi is the weight in the weight cross entropy (WCE) loss.

As shown in Fig. 4, the deep supervision is adopted for the multi outputs in
the networks. The outputs from various scales are up-sampled to the original
image size. Hence, the final loss in out training stage is formulated as:

Ltotal =
1
3

l=4∑

l=2

Lmass (Rl, T ) (7)
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3 Experiment

3.1 Datasets

The abdominal CT of 300 patients from KiTS21 challenge are applied for training
and evaluation in our experiment. Kidney Tumor Segmentation (KiTS) dataset
was collected from either an M Health Fairview or Cleveland Clinic medical
center between 2010 and 2020. The dataset provides the segmentation labels
which contain four classes: (i) background, (ii) kidney, (iii) tumor and (iv) cyst.
And the ground-truth of each CT are annotated by professional medical experts.
It should be noted that excluding and modifying training cases was explicitly
permitted. Therefore, we excluded 10 cases, which some slices are contaminated
and loss some information so that unable to load and train by our network. The
IDs of these cases are 52, 60, 65, 66, 91, 111, 115, 135, 140, 150. Finally, the rest
290 CT scans were randomly split into training set and validation set with a
radio of 4:1. Due to use cross-validation would force the computation time to
be multiplied by the number of folds, we only keep a validation set rather than
using cross-validation. In order to strike a balance between training enough data
and being able to predict our errors, 20% is selected as the account of validation.
In the experiments, we train the model and fine-tune hyper-parameter on the
training set, and the validation set was used for chose the model with best results.

3.2 Pre-processing and Post-processing

One challenge in kidney and tumor segmentation is the unclear boundary. The
mitigate the problem, Gaussian filter is applied, then CT voxel intensity of the
filtered images is clipped into [−100, 400]. Finally, the images are normalized
via the z-score normalization. Considering the limit of GPU memory, a sliding
window technique is adopted to crop the whole CT image into smaller patches. In
the first stage, the size of patches is 256 × 256 × 16 and the stride is [128, 128, 8].
For the second stage, we cropped patches in the VOI after mask inference. And
the size of final training patches is 96× 96 × 64 with a stride of [48, 48, 32].

In the post-processing, the connected component analysis is utilized to
remove the unconfident candidates and keep the largest two components as left
and right kidney.

3.3 Training and Implementation Details

The proposed networks were implemented using Python based on the Pytorch
and experiments were performed on a computer with a single GPU (i.e., NVIDIA
GTX 1080 Ti) and Linux Ubuntu 18.04 LTS 64-bit operating system. We use
Adam optimizer (β1 = 0.9, β2 = 0.999) with initial learning rate 1.0–04 for
optimization in the training stage. And the batch-size and training epochs are
set as 2 and 50 respectively.
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3.4 Metrics

Our method was evaluated by its Sørensen-Dice score and surface Dice. The
Sørensen-Dice are defined by the following formulas:

D(P,G) =
2 × |P ∩ G|
|P | + |G| (8)

where P and G represent the predicted segmentation results and the ground
truth, respectively. It should be noted that the quantitative results in our exper-
iment are calculated by the evaluation codes, which provided by the challenge
organizations.

4 Results and Discussion

Table 1 shows the results of the ablation study for our proposed method and
highlights the effect of each component applied to the model on the segmentation
results. We evaluate the performance of each component by removing the multi-
dimension feature module (MDF) and deep supervision (DS), respectively. We
exploit Sørensen-Dice and surface Dice as the evaluation metric and finally report
the average of all cases.

From the table it is observed that, during validation, the proposed method
achieves the Sørensen-Dice score of 0.9304, 0.5729 and 0.563 for kidney, masses
and kidney tumor respectively by involving multi-dimension feature module
(MDF) and deep supervision mechanism. Similarly, our network without MDF
got separately Sørensen-Dice score of 0.9321, 0.5535 and 0.5463 for the three-
class regions. It can also be found that, without incorporating DS in the pro-
posed architecture, Sørensen-Dice score is reduced to 0.9306, 0.5519 and 0.5262
respectively for kidney, masses and kidney tumor.

In the testset of KiTS21, we achieve the Dice, Surface Dice and Tunor Dice
of 0.650, 0.518 and 0.478, respectively.

The qualitative results of KiTS21 dataset on our proposed model is shown
in Fig. 5. The first column shows the ground truth of input images. The rest
columns show the results of our ablation study. In the output images, the green
and blue colored spot are tumor region and cyst region, whereas the red color
spot is the kidney region. From the qualitative results it is observed that the
efficacy of our proposed network.
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Table 1. Ablation study on the KiTS validation dataset for the multi-dimension feature
module (MDF) and deep supervision (DS) into the baseline framework.

Method Dice kidney Dice masses Dice tumor SD kidney SD masses SD tumor

Ours 0.9304 0.5729 0.563 0.8722 0.4006 0.3987

Ours w/o MDF 0.9321 0.5535 0.5463 0.8758 0.3765 0.3784

Ours w/o DS 0.9306 0.5519 0.5262 0.8723 0.3783 0.3687

U-Net 0.9307 0.5333 0.5209 0.8722 0.3658 0.364

Ground Truth Ours Ours w/o MDF Ours w/o DS U-Net

Fig. 5. Examples of segmentation results. Each row denotes one patient, and from
left to right, each column represents the ground truth and different predictions by our
method, our network without MDF, our network without DS and U-Net, respectively.
The red mask and green mask represent separately kidney area and masses (tumor and
cyst) area, while the blue mask represents cyst area. (Color figure online)

5 Conclusion

In this paper, we described a two-stage cascade framework to obtain kidney,
kidney tumor and cyst, respectively. The complex multi-class segmentation task
is translated into two subtasks. We designed two networks to implement the
subtasks and named them Kidney-Net and Masses-Net, respectively. Kidney-
Net is used for kidney segmentation while Masses-Net is applied for masses
(tumor and cyst) segmentation. We merge the outputs from two networks and
the merge result is refined via a post-processing method. In order to leverage
more space and context information, a multi-dimension feature (MDF) module is
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embedded into the Mass-Net. And convolutional block attention module
(CBAM) also applied to learn important feature. In addition, deep supervision
mechanism is utilized for improving segmentation accuracy.

Our method segment three critical organs on KiTS21 validation dataset with
the Sørensen-Dice of 0.9304, 0.5729 and 0.563, respectively. While our method
has shown effectiveness on the validation set, we will continue to work on further
optimization of the network in the future.

Acknowledgment. This work was supported by the Fujian Provincial Natural Sci-
ence Foundation project (2021J01578, 2021J02019, 2019Y9070).

References

1. Choudhari, K., Sharma, R., Halarnkar, P.: Kidney and tumor segmentation using
U-Net deep learning model. In: 5th International Conference on Next Generation
Computing Technologies (NGCT 2019) (2020)

2. Yang, G., Li, G., Pan, T., Kong, Y., Zhu, X.: Automatic segmentation of kidney
and renal tumor in CT images based on 3D fully convolutional neural network
with pyramid pooling module. In: 2018 24th International Conference on Pattern
Recognition (ICPR) (2018)

3. Yu, Q., Shi, Y., Sun, J., Gao, Y., Zhu, J., Dai, Y.: Crossbar-Net: a novel convolu-
tional neural network for kidney tumor segmentation in CT images. IEEE Trans.
Image Process. 28, 4060–4074 (2019)

4. Isensee, F., Maier-Hein, K.H.: An attempt at beating the 3D U-Net (2019)
5. Guo, J., Zeng, W., Yu, S., Xiao, J.: RAU-Net: U-Net model based on residual and

attention for kidney and kidney tumor segmentation. In: 2021 IEEE International
Conference on Consumer Electronics and Computer Engineering (ICCECE), pp.
353–356. IEEE (2021)

6. Zhao, W., Jiang, D., Queralta, J.P., Westerlund, T.: MSS U-Net: 3D segmenta-
tion of kidneys and tumors from CT images with a multi-scale supervised U-Net.
Inform. Med. Unlocked 19, 100357 (2020)

7. Sabarinathan, D., Parisa Beham, M., Mansoor Roomi, S.M.M.: Hyper vision net:
kidney tumor segmentation using coordinate convolutional layer and attention
unit. In: Babu, R.V., Prasanna, M., Namboodiri, V.P. (eds.) NCVPRIPG 2019.
CCIS, vol. 1249, pp. 609–618. Springer, Singapore (2020). https://doi.org/10.1007/
978-981-15-8697-2 57

8. Cheng, J., Liu, J., et al.: A double cascaded framework based on 3D SEAU-Net
for kidney and kidney tumor segmentation (2019)

9. Hou, X., Xie, C., Li, F., Wang, J., Nan, Y.: A triple-stage self-guided network
for kidney tumor segmentation. In: 2020 IEEE 17th International Symposium on
Biomedical Imaging (ISBI) (2020)

10. Causey, J., et al.: An ensemble of u-net models for kidney tumor segmentation
with CT images. IEEE/ACM Trans. Comput. Biol. Bioinform. (2021)

11. Zhang, Y., Wang, Y., Hou, F., et al.: Cascaded volumetric convolutional network
for kidney tumor segmentation from CT volumes (2019)

12. Xie, X., Li, L., Lian, S., Chen, S., Luo, Z.: SERU: a cascaded SE-ResNeXT U-Net
for kidney and tumor segmentation. Concurr. Comput. Pract. Exp. 32(2), 5738
(2020)

https://doi.org/10.1007/978-981-15-8697-2_57
https://doi.org/10.1007/978-981-15-8697-2_57


70 C. Lin et al.

13. Yan, X., Yuan, K., Zhao, W., Wang, S., Cui, S.: An efficient hybrid model for kidney
tumor segmentation in CT images. In: 2020 IEEE 17th International Symposium
on Biomedical Imaging (ISBI) (2020)

14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778 (2016)

15. Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmenta-
tion using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas,
S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp.
178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9 16

16. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention
module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018.
LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-
3-030-01234-2 1

https://doi.org/10.1007/978-3-319-75238-9_16
https://doi.org/10.1007/978-3-030-01234-2_1
https://doi.org/10.1007/978-3-030-01234-2_1


Squeeze-and-Excitation Encoder-Decoder
Network for Kidney and Kidney Tumor

Segmentation in CT Images

Jianhui Wen, Zhaopei Li, Zhiqiang Shen, Yaoyong Zheng,
and Shaohua Zheng(B)

College of Physics and Information Engineering, Fuzhou University, Fuzhou, China
sunphen@fzu.edu.cn

Abstract. Kidney cancer is one of the top ten cancers in the world,
and its incidence is still increasing. Early detection and accurate treat-
ment are the most effective control methods. The precise and automatic
segmentation of kidney tumors in computed tomography (CT) is an
important prerequisite for medical methods such as pathological local-
ization and radiotherapy planning, However, due to the large differences
in the shape, size, and location of kidney tumors, the accurate and auto-
matic segmentation of kidney tumors still encounter great challenges.
Recently, U-Net and its variants have been adopted to solve medical
image segmentation problems. Although these methods achieved favor-
able performance, the long-range dependencies of feature maps learned
by convolutional neural network (CNN) are overlooked, which leaves
room for further improvement. In this paper, we propose an squeeze-
and-excitation encoder-decoder network, named SeResUNet, for kidney
and kidney tumor segmentation. SeResUNet is an U-Net-like architec-
ture. The encoder of SeResUNet contains a SeResNet to learns high-level
semantic features and model the long-range dependencies among differ-
ent channels of the learned feature maps. The decoder is the same as
the vanilla U-Net. The encoder and decoder are connected by the skip
connections for feature concatenation. We used the kidney and kidney
tumor segmentation 2021 dataset to evaluate the proposed method. The
dice, surface dice and tumor dice score of SeResUNet are 67.2%, 54.4%,
54.5%, respectively.

Keywords: Kidney tumor segmentation · Squeeze-and-excitation
network · U-Net

1 Introduction

Kidney cancer is the malignant tumor with the highest mortality in the uri-
nary system. Computed tomography (CT) imaging is the most common medical
treatment for kidney cancer inspection and diagnosis. Segmenting kidneys and
tumors from CT images is an important prerequisite for medical methods such as
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pathological localization and radiotherapy planning. This is usually done manu-
ally by professional medical personnel or staff with relevant backgrounds. How-
ever, manual segmentation of kidney and kidney tumor from a large number of
slices is time-consuming and suffers from human error. Automatic segmentation
of the kidney and tumor can help doctors quickly locate the tumor and prepare
for further surgical planning. The expansion of public databases has extremely
promoted the segmentation of medical images. The kidney tumor segmentation
challenge 2019 (KiTS19) [4] first released a public data set with kidney tumor
annotations for the participants to develop automated segmentation approaches.
KiTS19 provides 300 high-quality CT scan images of kidney cancer patients.
Among them, 210 high-quality annotated CT scans are used for training, and
90 CT scans are used for algorithm testing. The KiTS19 Challenge has greatly
promoted the segmentation of kidneys and kidney tumors.

Recently, deep learning-based methods have achieved impressive performance
on medical image segmentation. Specifically, U-Net and its variants [1,8,11,14]
are widely exploited for kidney and kidney tumor segmentation. For example,
Yang et al. proposed a 3D full convolutional network combined with a pyra-
mid pooling module (PPM) for kidney and kidney tumors segmentation, which
can make full use of the 3D spatial contextual information to improve the seg-
mentation of the kidney as well as the tumor lesion [12]. Abhinav Dhere et al.
used the anatomical asymmetry of the kidney to define an effective kidney seg-
mentation agent task through self-supervised learning [2]. Yu et al. proposed a
framework named Crossbar-Net, which through vertical patches and horizontal
patches to capture both the global and local appearance information of the kid-
ney tumors, and cascade the horizontal sub-model with the vertical sub-model
to segment the kidney and tumor [13]. Isensee et al. use the nnUnet for kidney
and kidney tumor segmentation, which won the 1nd place in the kidney tumor
segmentation challenge 2019 (KiTS2019) [7]. Hou et al. proposed a three-stage
self-guided network to accurately segment kidney tumors. The first stage deter-
mines the rough position of the target, the second stage optimize, smooth kidney
boundary and get the initial tumor segmentation result, the tumor refine net is
proposed to optimize previous stage’s tumor segmentation result in the third
stage, which ranked the 2nd place in the KiTS19 [5]. Although these methods
achieved favorable performance, the long-range dependencies of feature maps
learned by convolutional neural network (CNN) are overlooked, which leaves
room for further improvement.

Motivated by the squeeze-and-excitation network [6] to model long-range
dependencies of the learned feature maps, in this paper, we propose a squeeze-
and-excitation encoder-decoder network, named SeResUNet, for kidney and kid-
ney tumor segmentation. Specifically, SeResUNet is an U-Net-like architecture
including an encoder, a decoder, four skip connection paths. The encoder of
SeResUNet contains a SeResNet to learns high-level semantic features and model
the long-range dependencies among different channels of the learned feature
maps. The decoder is the same as the vanilla U-Net. The encoder and decoder
are connected by the skip connections for feature concatenation. We evaluated
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the proposed method on the 2021 kidney and kidney tumor segmentation chal-
lenge (KiTS21) dataset [4]. Experiment result shows that the dice, surface dice
and tumor dice scores of SeResUNet are 67.2%, 54.4%, 54.5%, respectively.

2 Method

In this section, we detail our architecture for automated kidney and kidney
tumor segmentation in CT images. First, We introduced the overall architecture
in Sect. 2.1. In Sect. 2.2, the squeeze-and-excitation module are specified. Then,
in Sect. 2.3, we present the deep supervision used in this work. Finally, the loss
function is discussed in Sect. 2.4.

Fig. 1. Network architecture for segmentation

2.1 Architecture

The overview of our proposed framework is shown in Fig. 1. Our method is an
encoder-decoder architecture. The encoder adopts ResNet50 [3] as backbone,
including four residual blocks followed by maxpooling layers, to gradually aggre-
gate high-level semantic information. In addition, we exploit the Squeeze-and-
Excitation (SE) module in the encoder to model long-range dependencies of
channel relation among the input feature maps. Specifically, SE module trans-
form the feature maps into a channel descriptor, then recalibrate the input fea-
tures themselves by channel-wise multiplication. The decoder up-samples the
high-level feature map to obtain the segmentation map with size the same as
the original image. Each convolution layer of decoder is of kernel size of 3 × 3,
stride of 1, and padding of 1. In order to avoid the problem of vanishing gradient
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and to train the proposed network quickly, we introduce multi-level deep super-
vision in the decoder, where deep supervision is performed on each layer of the
decoder so that the shallow layer can be fully trained. After the four-layer up-
sampling of the decoder, a segmentation map with the same size as the original
image is obtained.

2.2 Squeeze-and-Excitation Module

We employ Squeeze-and-Excitation (SE) module [6] to capture channel-
dependencies of the learned features. The structure of the SE module is depicted
in Fig. 2.

Fig. 2. Squeeze-and-Excitation module

Squeeze operation compresses each two-dimensional feature channel into a
real number with a global receptive field, and the output dimension matches the
input feature channel number. In short, it is to carry out global average pooling,
the specific equation is as follows:

Sc = Fs (ωc) =
1

H × W

H∑

α=1

W∑

β=1

ω(α, β) (1)

where ωc represents the cth feature map of size H×W . After Eq. 1, the H×W×C
input is converted to 1 × 1 × C, which represents the numerical distribution of
the C feature maps in this layer, corresponding to the Fs (·) in Fig. 2.

Excitation is similar to the gate in the recurrent neural network, expresses
the correlation between different feature channels by generating weights for each
feature channel, the specific equation is as follows:

Ec = Fe(S,W ) = σ(g(S,W )) = σ (W2δ (W1S)) (2)

where σ refers to the ReLU [9] function, W1,W2 is a fully connected layer with
different parameters, used to fuse feature map information of different channels.
The dimension of E obtained after Eq. 2 is 1 × 1 ×C, where C is the number of
channels.

Recalibration operation multiply the excitation output E by the previ-
ous features, completing the recalibration of the original feature in the channel
dimension. The specific equation is as follows:

Fscale (ωc, Ec) = ωc · Ec (3)
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2.3 Deep Supervision

To avoid the vanishing gradient problem and quickly train the proposed net-
work, we perform deep supervision in the decoder, as shown in the right of Fig. 1.
Specifically, each layer of the decoder predicts a segmentation map for the cal-
culation of the loss function. This is different from multi-task learning (MTL).
MTL has different ground truths to calculate different losses, while there is only
one ground truth for deep supervision. Different network layers calculate loss
and sum them according to different coefficients. The weighted coefficients are
set as 0.4, 0.3, 0.2, 0.05, 0.05, respectively. Since the sizes of feature map of each
output layer are different, we down-sample the ground truth to the same size of
the corresponding output segmentation map for loss calculation.

2.4 Loss Function

Loss function is used to estimate the degree of inconsistency between the pre-
dicted segmentation map f(x) of the model and the ground truth Y . Considering
the proportions of the volume of the kidney, tumor, cyst and background area are
different, there is an imbalance in data distribution. Therefore, we use weighted
cross-entropy (WCE) loss function to solve this problem. The specific definition
is as follows:

Lwce(β, P ) =
S∑

i=0

βiP i
GT log

(
pi

pred

)
(4)

where S is the number of classes, specific for kidney, kidney tumor, kidney cyst
and background. P i

GT and pi
pred are the probabilities of the ith class of the ground

truth and the prediction respectively, βi is the weight of the ith class. Here, the
weights βi are set to 1.0, 2.0, 4.0 and 4.0 for kidney, tumor, cyst and background
respectively, in Eq. 4 according to the preliminary experiments.

3 Experiments

In this section, we illustrate the KiTS21 dataset on Sect. 3.1. Then, the evalu-
ation metrics are presented on Sect. 3.2. Next, we describe the pre-process and
post-process methods on Sect. 3.3. Finally, we specify the implementation details
on Sect. 3.4.

3.1 Datasets

The CT scans used in this work come from The 2021 Kidney and Kidney Tumor
Segmentation Challenge (KiTS21), which contains 300 complete data of kidneys,
kidney tumors, kidney cysts and background labels. We randomly divided 60
data into one big category, divided into five in total, for five-fold cross-validation.

The data labels provided by the KiTS21 challenge are not exactly the same.
Some data contains 4 complete labels, and some may only contain 3 of them.
This also makes the training of our model difficult. Figure 3 shows some of them.
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Fig. 3. Illustration of the annotations in the KiTS21 dataset.

3.2 Metrics

This article employs Dice and surface Dice similarity coefficient (surface
DSC)[10] to evaluate our segmentation results. Dice is one of the most com-
monly used evaluation indicators. Specifically, we use kidneys, kidney tumors,
and cysts as the foreground, everything else as background to calculate Dice
scores. In medical images, the voxel spacing is usually unequal, and the calcu-
lation of surface voxels usually leads to larger errors. The surface Dice used in
this article is given an allowable error distance, and the surface within this error
range is regarded as the overlapping part, the surface overlap dice value of the
ground truth mask and the predict mask is calculated.

3.3 Pre- and Post-processing

We consider using 2D U-Net to complete our experiments. KiTS21 challenge
provides 3D dataset, we first convert voxels into slice data, highlight organ
and tumor features through threshold processing and threshold normalization,
enhance the data by flipping, random cropping, and random translation.

In the post-processing part, considering the influence of noise, we perform
the operation of the largest connected domain on the data to eliminate the noise.

3.4 Implementation Details

First, we initialize the model parameters, set the training epoch to 20, the initial
learning rate to 10−5, batchsize is set to 8, and use the Adam optimizer. The
proposed network was implemented in python using Pytorch (v1.5.1) framework
in the backend. All training and testing experiments are run on a workstation
with an NVIDIA GeForce GTX 2080Ti with 11G GPU memory.

4 Result

We evaluated our model on KiTS21 dataset through five-fold cross-validation.
The results were obtained by averaging the best performance of each fold. Table 1
reports the quantitative results of the proposed SeResUNet and the most com-
monly used segmentation methods. The dice of kidney, masses and tumor we
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test are 91.60%, 58.80%, 54.16% respectively, and the surface dice are 84.62%,
37.91%, 37.59% respectively, and the result of dice, surface dice and tumor dice
in KiTS21 are 67.2%, 54.4%, 54.5% respectively. In addition, the segmentation
results we test are shown in Fig. 4.

Table 1. Dice score (mean) and surface dice of the proposed method on 5-fold cross
validation.

Method Kidney (Dice) Masses (Dice) Tumor (Dice) Kidney (SD) Masses (SD) Tumor (SD)

2D U-Net 0.9132 0.3769 0.3712 0.8425 0.2618 0.2573

SeResUNet18 0.8801 0.3923 0.3556 0.7952 0.2677 0.2370

SeResUNet50+D 0.9144 0.5797 0.5274 0.8396 0.4187 0.3741

SeResUNet18+D 0.9160 0.5880 0.5416 0.8462 0.3791 0.3759

Fig. 4. Qualitative comparison of segmentation results for KiTS21 dataset test:Ground
truth, U-Net, SeResUNet, SeResUNet50 with deep supervision (SeResUNet50+D),
and proposed SeResUNet18 with deep supervision (SeResUNet18+D). Color coding:
red,Kidney; green,Tumor; blue,Cyts. (Color figure online)

5 Discussion and Conclusion

In this work, we proposed a novel segmentation network called SeResUNet to
deal with the kidney and tumor segmentation task. First, we adopt the encoder-
decoder architecture like U-Net, and use ResNet to deepen the network in the
encoder. At the same time, in order to avoid deep network degradation prob-
lems and speed up the convergence, we add multi-level deep supervision to the
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decoder. In addition, we noticed the importance of different channels and intro-
duced Squeeze-and-Excitation module, which automatically obtains the weight
of each feature channel through learning, and then highlights useful features
based on this weight and suppresses features that are not useful for the current
task. Finally, the weight cross-entropy loss function is used to solve the problem
of data imbalance. Through the evaluation on the KiTS21 dataset, it can be seen
that the model we proposed has a stronger ability in the kidney and its tumor
segmentation.

It can be seen from Table 1 that our network is improved by 0.28%, 21.1% and
16.88% respectively compared with the classic network 2D U-Net. The segmenta-
tion results of the kidney have not improved much, but the segmentation results
of tumors and cysts have improved greatly, indicating that our model performs
better in the subtle parts. Compared with Se-ResUNet18 and Se-ResUNet50,
kidney, masses and tumor are increased by 0.16%, 0.83%, 1.42% respectively, it
shows that the results obtained by deeper networks are not necessarily better.
In addition, we also compare whether to use deep supervision. The experimen-
tal result shows that the segmentation results of our model after adding deep
supervision will be much better.
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Abstract. Kidney cancer is aggressive cancer that accounts for a large
proportion of adult malignancies. Computed tomography (CT) imaging
is an effective tool for kidney cancer diagnosis. Automatic and accu-
rate kidney and kidney tumor segmentation in CT scans is crucial for
treatment and surgery planning. However, kidney tumors and cysts have
various morphologies, with blurred edges and unpredictable positions.
Therefore, precise segmentation of tumors and cysts faces a huge chal-
lenge. Consider these difficulties, we propose a cascaded deep neural net-
work, which first accurately locate the kidney area through 2D U-Net,
and then segment kidneys, kidney tumors, renal cysts through Multi-
decoding Segmentation Network (MDS-Net) from the ROI of the kidney.
We evaluated our method on the 2021 Kidney and Kidney Tumor Seg-
mentation Challenge (KiTS21) dataset. The method achieved Dice score,
Surface Dice and Tumor Dice of 69.4%, 56.9% and 51.9% respectively,
in the test cases. The model of cascade network proposed in this paper
has a promising application prospect in kidney cancer diagnosis.

Keywords: Kidney · Kidney tumor segmentation · Cascaded deep
neural network · Multi-decoding

1 Introduction

Renal cell carcinoma (RCC) is a malignant tumor formed by the malignant
transformation of epithelial cells in different parts of the renal tubule [6]. Its
incidence accounts for 80% to 90% of adult renal malignant tumors, and the
prevalence of men is higher than that of women [1,4,5]. The incidence of kidney
cancer is closely related to genetics, smoking, obesity, hypertension, and anti-
hypertensive therapy, which is second only to prostate cancer and bladder cancers
among tumors of the urinary system. Accurate segmentation of tumors from 3D
CT remains a challenging task due to the unpredictable shape and location of
tumors in the patient, as well as the confusion of textures and boundaries [9,19].

The traditional method of manually segmenting tumors is not only time-
consuming and laborious, but also has the problem of inconsistent results during
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segmentation by senior doctors, which leads to unsatisfactory results in clini-
cal applications [6,13,17]. Therefore, computer-assisted kidney tumor segmenta-
tion methods have attracted much attention. In recent years, deep learning has
penetrated into various application fields, and its performance in many fields
such as image detection, classification, and segmentation has exceeded the most
advanced level [7]. Among current CNN-based methods, the popular U-Net [16]
and 3D U-Net [3] architecture have exhibited promising results in medical image
segmentation tasks [10], such as pancreas segmentation [14], prostate segmenta-
tion [18] and brain segmentation [15]. Although 3D Fully Convolutional Network
(FCN) [12] segmentation performance is higher than 2D FCN, it requires greater
memory consumption. Zhang et al. [20] proposed a cascaded framework network
for automatic segmentation of kidneys and tumors, which alleviates the problem
of inaccurate segmentation caused by insufficient network depth due to excessive
memory consumption. With extremely limited data, a cascaded 3D U-Net with
a active learning function can improve training efficiency and reduce labeling
work [8].

Recently, Li et al. [10] proposed a 3D U-Net based on memory efficiency and
non-local context guidance, which captures the global context through a non-
local context guidance mechanism and fully utilize long-distance dependence
in the feature selection process. In the 3D U-Net, this method complements
high-level semantic information with spatial information through a layer skip
connection between the encoder and the decoder, and finally realizes the precise
segmentation of the kidney and the tumor.

In this work, we develop a fully automatic cascaded segmentation network
with multi-decoding paths. The kidney area is first located through 2D U-Net.
The area is cropped according to the region of interest located in the first stage
and input it into MDS-Net to accurately segment the kidney, renal tumor and
renal cyst. General, the contributions of our work can be summarized in the
following three aspects:

1. We develop a two-stage cascaded segmentation network with multi-decoding
paths and evaluate it on the 2021 Kidney and Kidney Tumor Segmentation
Challenge (KiTS21) dataset.

2. We propose a fusion module based on global context (GC) [2], which can real-
ize the attention to channel and spatial context to achieve noise suppression
and enhancement of useful information.

3. We present a regional constraint loss function, which is used to measure the
constraint relationship of impassable regions.

2 Methods

Figure 1 shows the two-stage cascaded deep neural network for kidney tumor
segmentation. First input the pre-processed image to locate the kidney through
2D U-Net to obtain an accurate kidney area, then use the kidney area as the
bounding box of the original CT, cropping to get the input image, and train the
MDS-Net to segment kidney, tumors and cysts.
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Fig. 1. The two-stage cascaded segmentation framework

Fig. 2. The kidney localization network (U-Net)

2.1 Kidney Localization Network

For the localization of the kidney, we trained a 2D U-Net for kidney segmentation
and localization. As shown in Fig. 2, the encoding path composed of four encoder
blocks, and each block is composed of 2D convolution, Batchnorm, LeakyReLU
and downsampling. On the decoding path, each decoding block is composed of
2D convolution, Batchnorm, ReLU, and upsampling. After upsampling on the
last layer, the image undergoes a 3 × 3 convolution. The input of the network
is a 256 × 256 image, and the output is divided into the background and the
kidney through a Sigmoid function. The loss function used is Dice loss

LossKI = 1 − DSC(LKI , L̂KI), (1)

where DSC(A,B) calculates the Dice similarity coefficient of A and B, LKI and
L̂KI are the corresponding gold standard and predicted label of whole regions
including the kidneys, tumors, and cysts. For the segmentation results, we per-
formed connected components analysis and selected the largest two connected
component to locate the kidney.

2.2 Multi-decoding Segmentation Network

Multi-decoding segmentation network (MDS-Net) is designed to segment nor-
mal kidneys, kidney tumors, and kidney cysts. The Fig. 3 shows the design of
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MDS-Net, which consists of an encoding path, three decoding paths, and a fusion
prediction branch.

Fig. 3. Multi-decoding segmentation network

The image patch obtained by the first stage cropping is input to the encoding
path for feature extraction, and three segmentation results (L̂KI , L̂MA, L̂TU )
are obtained by the three decoding paths. Fusion of the features obtained by the
three decoding paths to obtain the final segmentation result L̂KTC .

Due to the imbalance of the segmentation classes, e.g. the cyst does not exist
in any cases or only occupies a small area, which makes the network difficult to
train. Therefore, we set the three regions of the target segmentation as KI is the
entire kidney region, including normal kidney, tumor and cyst, MA is kidney
masses that include tumors and cysts region, and TU is the region of tumors
only. By decomposing the original multi-label segmentation task into these three
single-label segmentation tasks, the impact of category imbalance is reduced.

In the encoding path, feature extraction is performed by a convolutional layer
and four encode blocks, and each encode block is composed of a 3D convolutional
layer, Batchnorm, LeakyRelu, and downsampling. The future map obtained after
downsampling is used as the input of the next module, and is also input into the
decoding path through a skip connection. Each decoding branch is composed of
a feature global context fusion block (see Sect. 2.3 for details), decoder, and a
convolutional layer. The decode block is similar to the encode block, while the
last layer is upsampling. The fusion block fuses and corrects the output feature
maps from the previous layer and skip connection. The features obtained by
the three decoding paths are output through the Sigmoid layer to obtain (L̂KI ,
L̂MA, L̂TU ) separately, the corresponding loss functions are

LossKI = 1 − DSC(LKI , L̂KI), (2)

LossMA = 1 − DSC(LMA, L̂MA), (3)
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LossTU = 1 − DSC(LTU , L̂TU ), (4)

where (LKI , LMA, LTU ) is the ground truth of region (KI, MA, TU). Finally,
the feature map output by each layer of decoding path is fused using the fusion
module, and then the final segmentation result is predicted, and the loss function
is

LossKTC = 1 − DSC(LKTC , L̂KTC) + LossRC , (5)

LKTC is defined as the ground stand of the three categories kidneys, kidney
tumors, kidney cysts. So the loss function of the entire network is

Loss = LossKTC + LossKI + LossMA + LossTU + LossRC , (6)

LossRC is the regional constraint loss (see Sect. 2.4 for details).

2.3 Global Context Fusion Block

Inspired by [11,21], the GCFB is designed to fuse and calibrate feature maps
to achieve noise suppression and enhancement of useful information. As shown
in Fig. 4, the Global Context (GC) block that combines Non-local and Squeeze-
and-Excitation (SE) block is used to calibrate the features, which can realize the
attention to the channel and spatial context, and obtain the fused feature map
through the convolutional layer and ReLU.

Fig. 4. Global context fusion block

In GCFB, first concat the input on the channel to get ZC . The GC block
can be defined as:

Z
′
C = ZC ⊗ Softmax(W1ZC), (7)

ZGC = ZC + W3ReLU(LN(W2Z
′
C)), (8)
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W∗ is the parameters of the convolution layers. Therefore, the final output of
the GCFB is

ZGCFB = ReLU(BN(W4ZGC)). (9)

2.4 Regional Constraint Loss Function

As shown in Fig. 5, there are regional relationships in different regions of the
kidney, the region of KI contains MA, TU is in MA. In order to achieve the
constraint of this relationship, the overlap degree of different regions [11] is
calculated to measure whether the constraint relationship between the regions
is satisfied. The regional constraint loss function is

LossRC = 1 − 1
2
(

∑

x∈Ω

L̂KI(x) · L̂MA(x)

∑

x∈Ω

L̂MA(x)
+

∑

x∈Ω

L̂MA(x) · L̂TU (x)

∑

x∈Ω

L̂TU (x)
), (10)

where (L̂KI , L̂MA, L̂TU ) is predicted result from three decoding path from MDS-
Net (see Fig. 3), the Ω is the common spatial space.

Fig. 5. Regional constraint of kidney

3 Experimental Results

3.1 Dataset

The KiTS21 Challenge provides contrast-enhanced CT scans and annotation
data from 300 patients who underwent partial or radical nephrectomy for sus-
pected renal malignant tumors at M Health Fairview or Cleveland Clinic Medical
Center between 2010 and 2020, which provides us with three annotation data,
and we finally chose the voxel-wise majority voting aggregations for training and
validation. The size, shape and density of the tumor are various in different CT
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scans. Moreover, only a few images of existing cysts. The annotation work is
completed by experienced experts, trainees and laid-off workers together, and
the annotated data is used as the ground truth of the training. Since only the
training set data was provided, we randomly divided the data of the 300 cases
into 5 pieces, each with 60 cases. One of the 5 pieces was selected in turn as the
verification set and the other 4 pieces as the training set.

3.2 Implementation Details

Data Processing: Before training our cascade model, we first performed a
crop slice operation to make all volume slices the same thickness to reduce GPU
memory consumption and training time. For the first network, we input 2D axial
slices, which are obtained by extracting slices from the original 3D CT along
the z-axis and adjusting the size from 512× 512 to 256 × 256. For the second
network MDS-Net, according to the maximum rectangular frame range of the
region of each kidney, the size of the block of the region of interest extracted
is 128 × 128 × 128. Then, we truncated the image intensity values of all images
to the range of [−100, 500] HU to remove the fat area around the kidney and
remove irrelevant details.

Implementation Details: As an experimental environment, we choose
PyTorch to implement our model and use NVIDIA Tesla P100 16GB GPU for
training. The input size of the first network is 256× 256 with a batch size of 16,
The input size of the second network is 128 × 128 × 128 with batch size of 4. In
our model, we set the epoch to 200, and the initial learning rate is 1× 10−2.

Evaluation Metrics: We employ the DSC and the Surface Dice provided in the
KiTS21 toolkit as the primary evaluation criteria for evaluating segmentation
performance. For KiTS21, the following hierarchical classes are used to evaluate
the DSC and the Surface Dice.

– Kidney and Masses (KI): Kidney + Tumor + Cyst,
– Kidney Mass (MA): Tumor + Cyst,
– Tumor (TU): Tumor only.

3.3 Results

To evaluate the effectiveness of our method, we compared our network with
other state-of-the-art methods, including 2D U-Net and 3D U-Net. Furthermore,
to explore the advantage of GCFB and LossRC , we also compared our method
with the method without GCFB and LossRC . We perform visual and statistical
comparisons under the same data set and data parameters. In addition, in order
to explore the advantages of our method, we use the evaluation index Dice
coefficient and the Surface Dice to verify our method on the KiTS 21 data set.
We compared the results of our method with four different methods:
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Table 1. Dice score and Surface Dice of the proposed method and other baseline
methods on the validation set.

Method Dice (%) Surface dice

KI MA TU KI MA TU

2D U-Net 90.78 43.61 44.86 83.30 28.21 29.51

3D U-Net 91.59 59.29 57.71 83.76 40.55 39.95

Ours (wo GCFB) 92.55 63.23 58.63 83.84 42.11 39.11

Ours (wo LossRC) 93.12 67.91 62.78 85.75 46.37 42.25

Ours 93.48 68.32 64.26 86.29 45.90 43.34

From Table 1, compared to 2D U-Net and 3D U-Net, our proposed methods
performed better both in Dice and Surface Dice. It also shows that our proposed
methods with GCFB and LossRC can achieve better results than our methods
without GCFB or LossRC . In addition, Fig. 6 shows the visualization results of
different methods on the validation set. In Fig. 6, our method is more effective
than other methods in easier cases and challenging cases. We finally used the
trained cascaded model to perform the prediction on the test cases. We obtained
Dice score, Surface Dice and Tumor Dice of 69.4%, 56.9% and 51.9% respectively.

Fig. 6. Visualization results of different methods on the validation set. The segmenta-
tion contained in the yellow dashed box is our concern. (Color figure online)
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4 Conclusion

In this work, we proposed a novel two-stage cascade and multi-decoding method
for kidney segmentation. We utilized U-Net to achieve the location and extrac-
tion of the region of kidney, and then designed MDS-Net for the final seg-
mentation. For MDS-Net, we developed a segmentation network with multiple
decoders, combined the features of the three decoding paths with GCFB, and
obtained the final segmentation result. Besides, we presented a regional con-
straint loss function to predict the segmentation result with more reality. It has
been evaluated on the dataset from KITS 2021. Experimental results show that
this method obtains good segmentation results on kidney tumors.

Acknowledgment. This work was financed by Fujian Provincial Natural Science
Foundation project (Grant No. 2021J02019, 2021J01578, 2019Y9070), Fuzhou Science
and Technology Project (2020-GX-17).
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Abstract. Abdominal computed tomography is frequently used to non-
invasively map local conditions and to detect any benign or malign
masses. However, ill-defined borders of malign objects, fuzzy texture, and
time pressure in fact, make accurate segmentation in clinical settings
a challenging task. In this paper, we propose a two-stage deep learn-
ing architecture for kidney and kidney masses segmentation, denoted as
convolutional computer tomography network (CCTNet). The first stage
locates volume bounding box containing both kidneys. The second stage
performs the segmentation of kidney, kidney tumors and cysts. In the
first stage, we use a pre-trained 3D low resolution nnU-Net. In the second
stage, we employ a mixup augmentation to improve segmentation per-
formance of the second 3D full resolution nnU-Net. The obtained results
indicate that CCTNet can provide improved segmentation of kidney,
kidney tumor and cyst.

Keywords: nnU-Net · Mixup · Kidney · CT · Segmentation

1 Introduction

The kidney cancer is one of the ten most common cancers, and it is the third
most common genitourinary malignancy [3] with high mortality. Kidney cysts,
although being benign, are also a cause for concern due to their potential for
malign transformation. Thus, it is essential to maximize the rate of their diagno-
sis, especially in early stages, when curative treatment is still possible. Medical
imaging, such as MRI, CT and US, plays crucial role in detecting both kidney
cyst and kidney cancer. Nowadays, kidney cancer cases are frequently found only
incidentally during the regular medical image evaluation [4].

The incidence of renal cell carcinoma (RCC; one of the most common kid-
ney cancers) is continuously growing and, since the 1990-ies, the incidence has
doubled in developed world [4]. This may be attributed to advances in medical
imaging technology, which provide more precise and detailed images than ever
c© Springer Nature Switzerland AG 2022
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before, and to a more frequent employment of imaging techniques in everyday
clinical practice. RCC currently accounts for more than 400,000 new cases world-
wide every year [4]. It affects mainly the population of those older than 60 years
and thus, with the aging world population, the number of patients is expected
to increase even further.

Early diagnosis and subsequent treatment of kidney cancer is critical because
it improves both health-related quality of life and overall survival. Develop-
ment of computer-assisted diagnosis is important since it can help to auto-
mate MRI/CT/US evaluation, release some workload burden from radiologists,
increase the number of evaluated images and in turn increase the proportion of
RCC patients diagnosed in the very early stages, when curative treatment may
be possible.

Currently, state-of-the-art models for semantic segmentation are based on
U-net architecture, V-net architecture or their 3D derivatives. These architec-
tures were also backbone for the recent Kidney and Kidney Tumor Segmentation
Challenge 2019 (KITS 2019) [1]. The best performing models in final results were
based on U-net and V-net architectures. The ultimate winner of KITS 2019 chal-
lenge nnU-net [2] proved itself also on several other segmentation challenges and
currently represents gold standard in medical image semantic segmentation.

In this paper, we build upon the nnU-net and propose to use mixup [6]
augumentation that was shown to improve the generalization of the state-of-the-
art neural network architectures. The results obtained on published KITS2019
dataset indicate that mixup can be with advantage used also in segmentation of
3D CT images. We achieved improved performance on all evaluated classes.

In the next section, we provide the description of the proposed architecture
together with the details of network training and validation. Then, the results
of the proposed network and the baseline are given, followed by discussion.

2 Methods

Previous results indicate [2] that most of the performance gains are not network
architecture dependent, but rather can be obtained by careful tuning of the
network parameters. Another part of the machine learning pipeline that yields
performance improvements is the data pre-processing and post-processing. As
a such we did not attempt to find the architecture modifications to boost the
performance but rather try to provide better condition for network training
through mixup augumentation [6].

2.1 Training and Validation Data

Our submission made use of the official KITS21 training set alone and we used
majority voting aggregation for multiple segmentation annotations. The public
training dataset includes 3D CT scans of 300 of patients who underwent par-
tial or radical nephrectomy for renal malignancy between years 2010 and 2020.
The validation dataset used to evaluate performance consisted of scans of 100
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patients. A review of these cases was conducted to identify all patients who had
undergone a contrast-enhanced preoperative CT scan that includes the entirety
of all kidneys. Gathered samples were annotated though extensive process, where
annotation team was placed into three categories based on the level of knowl-
edge. Their primary goal was to identify three semantic classes: kidney, tumor
and cyst.

2.2 Preprocessing

The data transformation, re-sampling, and normalisation were handled by the
nnU-Net configuration. As described in [2], this means for anisotropic data that
image resampling strategy in place was third order spline interpolation for in-
plane and nearest neighbours for out-of-plane. The normalisation was global
dataset percentile clipping and z-score with global foreground mean and s.d.
The clipping of HU values was handled by nnU-net default setting (0.5 and 99.5
percentile).

Since wrong labels can limit the quality of predictions learned by deep neural
networks [5], we analysed true labels provided by the challenge organizers. Three
cases were modified after the consultation with radiologist. In the case of 084,
the mass structure attached to the left kidney is labeled as kidney. We cleared
the kidney label, however we did not add any label for the mass, since it was
difficult to decide whether this is a cyst or a tumor. The another modified case,
277, was more tricky. The labels provided by the organisers denote the cyst and
tumor in the left kidney. However, closer inspection shows that this is in fact
a single structure. In this case, we replaced the cyst label by the tumor label.
Finally, in the third modified case - 299, we corrected the label for the left kidney.
Axial view showed some nodule growing out of the left kidney, that is labeled
as kidney, but has different density and does not fit to the kidney shape. We
removed the kidney label for this nodule.

2.3 Proposed Method

The proposed classifier network consists of two cascade connected nnU-Net net-
works as depicted in Fig. 1. In the first stage we employ the nnU-Net to locate
kidney in 3D CT image and crop volume containing kidneys. This step has two
goals. To reduce computational cost in the second stage, and to eliminate pos-
sible erroneous predictions (e.g. cyst lying in some distant areas of CT image).
Since the segmentation achieved by nnU-Net in KITS 2019 challenge was suffi-
ciently high, we take advantage of the nnU-Net pre-trained on data from KITS
2019 challenge. To avoid some errors on the borders, we add 60 voxels in every
direction to the cropped volume containing the kidneys.

To train nnU-Net in the second stage we use mixup [6] augmentation. Mixup
is a data-agnostic augmentation routine that constructs virtual training exam-
ples by convex combinations of pairs of training examples and their labels accord-
ing to the rule [6]

xmixup = λxi + (1 − λ)xj , (1)
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ymixup = λyi + (1 − λ)yj , (2)

where (xi, yi) and (xj , yj) are two random training data samples, and λ ∈ [0, 1].
The λ is distributed according Beta distribution λ ∼ β(α, α), where α ∈ (0,∞).

mix(x ,x , )1 2

1st stage

2nd stage

Fig. 1. Proposed two stage approach (CCTNet).

The networks parameters are automatically configured by nnU-Net, meaning
that as a loss function a combination of Dice and Cross-entropy loss is used, and
SGD with Nesterov momentum is used for network training optimization. To
validate our approach, we used 5-fold cross-validation.

3 Results

In order to objectively asses the performance of the proposed approaches, three
Hierarchical Evaluation Classes (HECs) were introduced : kidney and masses,
kidney mass, and tumor. Kidney and masses HEC includes semantic classes
kidney, tumor, and cyst. Kidney mass HEC covers only tumor and cyst. Finally,
tumor HEC is the same as the semantic class for tumor.

To train the final model, we used batch size equal to four and the mixup
augmentation with λ ∼ β(α = 0.4).

The results in terms of combined Sorensen-Dice loss and Surface Dice loss are
presented in Table 2. We provide results for HECs as well as individual semantic
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Table 1. Detailed specification of 3D convolutional layers (conv) and transposed con-
volutions (T conv). Every conv layer is followed by normalisation and leaky ReLU
activation function.

Network Layer no Kernel Stride Output dimension Network Layer no Kernel Stride Output dimension

conv 0 (1,3,3) (1,1,1) (56,256,128) conv 5 (3,3,3) (1,1,1) (7,8,4)

conv 0 (1,3,3) (1,1,1) (56,256,128) conv 5 (3,3,3) (1,1,1) (7,8,4)

conv 1 (3,3,3) (1,2,2) (56,256,64) T conv 5 (1,2,2) (1,2,2) (7,16,8)

conv 1 (3,3,3) (1,1,1) (56,256,64) conv 4 (3,3,3) (1,1,1) (7,16,8)

conv 2 (3,3,3) (2,2,2) (28,64,32) conv 4 (3,3,3) (1,1,1) (7,16,8)

conv 2 (3,3,3) (1,1,1) (28,64,32) T conv 4 (2,2,2) (2,2,2) (14,32,16)

conv 3 (3,3,3) (2,2,2) (14,32,16) conv 3 (3,3,3) (1,1,1) (14,32,16)

conv 3 (3,3,3) (1,1,1) (14,32,16) conv 3 (3,3,3) (1,1,1) (14,32,16)

conv 4 (3,3,3) (2,2,2) (7,16,8) T conv 3 (2,2,2) (2,2,2) (28,64,32)

conv 4 (3,3,3) (1,1,1) (7,16,8) conv 2 (3,3,3) (1,1,1) (28,64,32)

conv 5 (3,3,3) (1,2,2) (7,8,4) conv 2 (3,3,3) (1,1,1) (28,64,32)

conv 5 (3,3,3) (1,1,1) (7,8,4) T conv 2 (2,2,2) (2,2,2) (56,128,64)

conv 1 (3,3,3) (1,1,1) (56,128,64)

conv 1 (3,3,3) (1,1,1) (56,128,64)

T conv 1 (1,2,2) (1,2,2) (56,256,128)

conv 0 (3,3,3) (1,1,1) (56,256,128)

conv 0 (3,3,3) (1,1,1) (56,256,128)

bottleneck - conv 6 (3,3,3) (1,2,1) (7,4,4)

bottleneck - conv 6 (3,3,3) (1,1,1) (7,4,4)

classes. As can be seen, the CCTNet provides improvement for each of consid-
ered hierarchical classes. This is also confirmed by evaluating the performance
on individual semantic classes. By closer analysis of the results, we discovered
that this improvement comes not only from mixup augmentation alone. We also
noticed an improvement after the implementation of the crop in the first stage.

Table 2. Average of Sorensen-Dice loss and Surface Dice loss for predicted hierarchical
and semantic classes on KITS21 public data

Network HECs Semantic classes

Kidney and Masses Kidney Mass Tumor Kidney Tumor Cyst

CCTNet (ours) 0.00896 0.00518 0.00236 0.04580 0.01100 0.01026

3D full res nnU-net (baseline) 0.01068 0.00730 0.00302 0.08090 0.02238 0.01804

The Fig. 2 shows the example prediction of the CCTNet. We randomly
selected case 0193 from cases containing all three labels (kidney, tumor, cyst).
As can be seen, the segmentation of kidneys is pretty good. There is some dif-
ference between prediction and ground truth in the cyst located in the right
kidney. The most noticeable difference is visible in the tumor label. However,
when comparing predictions to the unlabeled CT, we can notice that indeed the
real tumor lies outside the ground truth annotated region.
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Fig. 2. Example segmentation for the 0193 case. Green contours denote ground
truth label. Predicted segmentation classes are: red=kidney, yellow=tumor, blue=cyst.
(Color figure online)

Overall performance of our method was also independently measured on
KITS21 challenge validation data. Sørensen-Dice and Surface Dice metric was
determined for every HEC of every case of the validation set and averaged over
each HEC. Additionally average Sørensen-Dice value on the Tumor HEC score
was measured and was used as a tiebreaker in case of the same score.

Table 3. Overall performance of CCTNet on KITS21 validation data

Network Sørensen-Dice Surface Dice Tumor Dice

CCTNet 0.8777 0.793 0.795

4 Discussion

We have investigated errors in segmentation of kidney and masses to get a better
insight on the network performance. In case of kidney, many errors were at the
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kidney’s boundary. It was interesting to see that in some cases the network
provided more accurate boundary than human annotator. However, in evaluation
this is considered as a mistake since these two labels do not match.

As was already mentioned, the network tend to mark small cysts where they
do not exist. There were also opposite cases, i.e., the network missed to find
small cysts. This can be probably expected since these cysts are rather small
and the volume is quite heterogeneous, so small cysts are hard to spot.

We will take a closer look at two erroneous predictions depicted in Fig. 3.
As can be seen in Fig. 3a, the network marked part of the cyst (brown) as
a tumor (yellow). So even though there exists only one single segment (cyst),
the network concatenated two different segments (cyst and tumor). This also
happens in several other predicted cases. During fault cases analyses, we iden-
tified a repeated pattern in true labels, where two distinct segments (cyst and
tumor) share common boundaries and therefore create an illusion of one sin-
gle object (approximately 10–15% of all cysts shared common boundaries with
tumor). Therefore, we hypothesize that the network learned this feature and
transformed it erroneously to predictions, even though cysts were completely
benign with no malign characteristics.

The case depicted in Fig. 3b shows hydronephrosis segmented as a cyst.
Hydronephrosis means renal pelvis enlargement, which can resemble kidney
cyst on CT scans, when only nephrogenic phase is considered (period when
all of the healthy renal parenchyma is contrast-enhanced). In practice, however,
hydronephrosis and cysts are two distinct objects and radiologists need to con-
sider also delayed phase to definitely distinguish between those two. However,
this was rather a solitary case hardly with any real impact on network learning.

We mentioned just few aspects, but more detailed investigation can reveal
more similar cases. Some of these may be corrected by post-processing but for
others some updates in network learning would be necessary.

Fig. 3. Examples of incorrect segmentation of the proposed network: red represents
cysts and yellow tumors. (Color figure online)
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Abstract. With the KiTS21 Grand Challenge, I propose the automatic
segmentation model between the kidney and the mass of the kidney
which includes tumor and cyst. Convolutional Neural Network is trained
in patches of three-dimensional abdominal CT imaging. For the seg-
mentation of the 3D image, a variant of U-Net which consists of 3D
Encoder-Decoder CNN architecture with additional Skip Connection is
used. Lastly, there is a loss function to resolve the class imbalance prob-
lem frequently occurring in the task of medical imaging. Sørensen-Dice
Score and Surface Dice Score on the test set are 80.13 and 68.61.

Keywords: KiTS21 challenge · 3D Encoder-Decoder U-Net · Medical
imaging

1 Introduction

(a) Axial Plane (b) Coronal Plane (c) Sagittal Plane

Fig. 1. Examples of KiTS21 challenge dataset. Kidney class is shown in red, tumor
class is shown in blue. Not shown in the figure, but cyst class is in green. (Color figure
online)

According to Association of American Medical College, a shortage of between
40,800 and 104,900 physicians by 2030 will occur in the United States. Moreover,
as reported by International Agency for Research on Cancer, more than 400,000
c© Springer Nature Switzerland AG 2022
N. Heller et al. (Eds.): KiTS 2021, LNCS 13168, pp. 98–102, 2022.
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people are affected by kidney cancer in each year and resulted in 175,000 deaths
globally. Kidney is involved in removing wastes and excretion of metabolites
in the body, and is also responsible for important functions such as moisture
and electrolyte balance, acid-alkaline maintenance, and control of other organ
functions by producing hormones and vitamins, which may affect surrounding
tissues or organs. In addition, tumors in the kidneys are often found after lesions
are transmitted to other organs with no special awareness at first, and are often
found during tests for other internal diseases due to various non-specific symp-
toms and signs. The most precise way to evaluate tumors occurring in the kid-
neys is to take abdominal CT images, so it is important to analyze the acquired
images quickly to extract kidneys and tumors. As a way to automate this, the
paper presents a method for segmenting abdominal CT images into kidneys,
tumors and cysts for KiTS21 which is the grand challenge of Kidney and Tumor
Segmentation in 2021 via Deep Convolutional Neural Network model.

2 Methods

Based on U-Net architecture, the winner [3] on KiTS19 developed the variants
of the architecture. In the methods, motivated by the winner’s model, I propose
the model which is the variant of the winner’s. With the open source framework
MIScnn [5], methods for KiTS21 challenge are implemented in Keras using the
Tensorflow backend.

2.1 Training and Validation Data

Our submission made use of the official KiTS21 training set alone. For target
data, only voxel-wise majority voting is used.

2.2 Preprocessing

In the 3D Volumetric Image processing, all large dataset cases such as the KiTS
dataset should be resampled in common spacing. The reason is that, though
the voxel spacings of the cases are generally inconsistent, deep learning neural
networks cannot interpret voxel spacings. In order to input the data without
that problem, all of the voxel spacings become 3.22× 1.62× 1.62 mm. After
resampling, because the range of HU (Hounsfield Unit) values is too large to
train, I clip the value to [−79, 304] which is the range of fat to soft tissue.
Furthermore, Normalization is used following clipping to limit the range and
set the standard distribution. Succeeding those preprocessing for the volume,
data augmentation is required to regularize overfitting. The method consists of
linear and non-linear transformations such as scaling, rotating, symmetric and
elastic deformation [7]. Also, Gaussian noise, intensity and contrast algorithms
such as gamma correction are included. Lastly, before training, patchwise-crop
which analysis of random cropped patches by 80× 160× 160 from the image is
performed.
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2.3 Proposed Method

Although the challenge evaluates only performance, in terms of light-weight and
acceleration of both training and inference time, I describe the one-stage seman-
tic segmentation model.

Fig. 2. Network architecture based on 3D Encoder-Decoder U-Net

Network Architecture. It is similar to the winner’s model. Basically, both
shapes of this model and the winner’s model are from 3D U-Net Encoder-Decoder
architecture [6]. First, to make a difference and achieve better performance, addi-
tional Skip Connections are used. Skip Connection can be split up two ways. One
is Residual Connection [1] that is sum of layers. The other is Dense Connection
[2] that is concatenation of layers. To maximize the propagation of information,
Dense Connection is chosen. Second, Max-pooling is included in the network
architecture to extract the maximum value of the feature map. Also, there are
Activation Function such as ReLU and Batch Normalization in Transposed Con-
volution.

Loss Function. In Object Detection or Segmentation, especially in medical
tasks such as KiTS21, class imbalance is one of the most important issues. As
mentioned, in the challenge, the kidney mass class and even kidney class are
much smaller than the background class. To overcome class imbalance, there
is Focal loss [4] function which is a variant of Cross-Entropy loss. To use with
Softmax, α-factor is modified from scalar to vector. And, there is gamma-factor
from the best result in the experiment of Lin et al. [4]. Also, Dice Loss is utilized
to perform better. In conclusion, the architecture uses sum of Focal Loss and
Dice Loss for loss function.
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Optimization and Validation Strategy. For optimization, Adam Optimizer
with lr = 3e−4 is chosen. Additionally, monitoring the validation metric on each
epoch, a strategy to prevent underfitting is used. The strategy is reducing the
learning rate on plateau. If there is no room for improvement in the metric of the
validation set, then the scheduler reduces learning rates to induce improvement
of the metric. In the paper, the scale factor is 0.1 and patience is 150. The
minimum threshold is 1e−4 and the minimum limitation of the learning rate is
3e−6.

3 Results

(a) Ground Truth of case 00037 (b) Prediction of case 00037

(c) Ground Truth of case 00092 (d) Prediction of case 00092

Fig. 3. Examples of Ground Truth and Prediction. Kidney class is shown in red, tumor
class is shown in blue. cyst class is in green. There is case 00037 predicted incor-
rectly in the tumor as the cyst. Whereas, case 00092 is predicted more accurately than
case 00037. (Color figure online)

Totally, 300 cases are released publicly for the challenge. In the experiment, ran-
domly 240 cases are selected for training and 60 cases are selected for validation.
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I train the model on local GPU, NVIDIA RTX 3090 24 GB. Training costs about
three days. With batch size of 2 and 500 epochs, The results of the validation
score are below.

Table 1. Sørensen-Dice Score and Surface Dice Score on the validation

Kidney Dice Mass Dice Tumor Dice Mean Dice

93.69 78.83 75.03 82.52

Kidney SD Mass SD Tumor SD Mean SD

87.13 64.05 60.16 70.45

On the test, 100 cases are newly used. Sørensen-Dice Score and Surface Dice
Score on the test set are 80.13 and 68.61.

4 Discussion and Conclusion

I described a one-stage semantic segmentation model for KiTS21 Challenge from
3D Abdominal CT imaging. With the model based on U-Net and the sum of
Focal Loss and Dice Loss, I attempted to overcome Class Imbalance. As a result,
Sørensen-Dice Score and Surface Dice Score on the test set are 80.13 and 68.61.
For the better performance, some modules such as Atrous Spatial Pyramid Pool-
ing or U-Net++ could be used.

References

1. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition
(2015)

2. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected con-
volutional networks (2018)

3. Isensee, F., Maier-Hein, K.H.: An attempt at beating the 3D U-Net (2019)
4. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object

detection (2018)
5. Müller, D., Kramer, F.: MIScnn: a framework for medical image segmentation with

convolutional neural networks and deep learning. BMC Med. Imag. 21(1) (2021).
https://doi.org/10.1186/s12880-020-00543-7

6. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical
image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.)
MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-24574-4 28

7. Simard, P., Steinkraus, D., Platt, J.: Best practices for convolutional neural net-
works applied to visual document analysis. In: Seventh International Conference on
Document Analysis and Recognition. Proceedings, pp. 958–963 (2003). https://doi.
org/10.1109/ICDAR.2003.1227801

https://doi.org/10.1186/s12880-020-00543-7
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.1109/ICDAR.2003.1227801
https://doi.org/10.1109/ICDAR.2003.1227801


An Ensemble of 3D U-Net Based Models
for Segmentation of Kidney and Masses

in CT Scans

Alex Golts(B), Daniel Khapun, Daniel Shats, Yoel Shoshan,
and Flora Gilboa-Solomon

IBM Research, Haifa, Israel
alex.golts@ibm.com

Abstract. Automatic segmentation of renal tumors and surrounding
anatomy in computed tomography (CT) scans is a promising tool for
assisting radiologists and surgeons in their efforts to study these scans
and improve the prospect of treating kidney cancer. We describe our
approach, which we used to compete in the 2021 Kidney and Kidney
Tumor Segmentation (KiTS21) challenge. Our approach is based on the
successful 3D U-Net architecture with our added innovations, including
the use of transfer learning, an unsupervised regularized loss, custom
postprocessing, and multi-annotator ground truth that mimics the eval-
uation protocol. Our submission has reached the 2nd place in the KiTS21
challenge.

Keywords: Semantic segmentation · Medical imaging · 3D U-Net ·
Kidney tumor

1 Introduction

Kidney cancer is among the 10 most frequently diagnosed cancer types [14] and
among the 20 deadliest [21]. Surgery is the most common treatment option. Radi-
ologists and surgeons diligently study the appearance of kidney tumors in CT
imaging to facilitate optimal treatment prospects [5,13,17]. Automatic segmen-
tation of kidney tumors and surrounding area is a promising tool for assisting
them. It has already been proposed as a step in surgery planning [18], as well as
enabled medical research relating tumor morphology to surgical outcome [5,13].

The 2019 Kidney and Kidney Tumor Segmentation challenge (KiTS19) [8]
was the first to provide a public dataset with kidney tumor labels [9], boosting the
available selection of segmentation algorithms specifically designed to segment
kidney tumors. In KiTS19, 210 cases were given to participants for training. The
kidneys and kidney tumors were annotated and the goal was to segment them
accurately in 90 additional test cases.

Compared to KiTS19, the main changes in KiTS21 are:

1. The 90 test cases are now added to the training set which now includes a
total of 300 cases. For the 2021 test, 100 additional cases are used.

c© Springer Nature Switzerland AG 2022
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2. A new segmentation class was added to the annotations, denoting cysts. Three
Hierarchical Evaluation Classes (HECs) by which participants are evaluated
are defined:
1) Kidney and Masses: Kidney + Tumor + Cyst
2) Kidney mass: Tumor + Cyst
3) Tumor: Tumor only

3. A Surface Dice metric [15] was added for evaluation in addition to Sørensen-
Dice.

4. Evaluation is performed against a random sample of aggregated segmentation
maps that constitute plausible annotations in which different foreground class
instances are labeled by different annotators.

Many of the successful algorithms for 3D segmentation in the medical domain
are based on 3D variants of the popular U-Net architecture [4,16]. Following its
success and dominance as seen in the leading solutions in the KiTS19 chal-
lenge [8], we base our solution on the open source nnU-Net framework [12].
It offers automatic configuration of the different stages in a medical imaging
segmentation task, including preprocessing, U-Net based network configuration,
and optional postprocessing.

Our proposed solution introduces several innovations:

– We employ a label sampling strategy during training to make use of the
available multiple annotations and address the new evaluation protocol.

– We perform a form of transfer learning by initializing our network weights
with those of a network pretrained on another public medical task.

– We augment the supervised training loss function with an unsupervised regu-
larized term inspired by [7,19] which encourages similar prediction for neigh-
boring voxels with similar intensity.

– We employ postprocessing which removes implausible tumor and cyst predic-
tions that are disconnected from a kidney, as well as small kidney predicted
fragments surrounded by another class.

The paper is structured as follows. In Sect. 2 we describe preprocessing and
architectural details that were determined automatically by the nnU-Net frame-
work [12]. In Sect. 3 we describe our unique decisions and contribution. These
include our annotation sampling method, pretraining, proposed regularized loss,
proposed postprocessing algorithm, and choice of models to use in a final ensem-
ble. In Sect. 4 we provide experimental results. Finally, Sect. 5 concludes the
paper.

2 nnU-Net Determined Details

2.1 3D U-Net Network Architecture

The U-Net [16] is an encoder-decoder network. The decoder receives semantic
information from the end of the encoder (bottom of the “U”) and combines it
through skip connections with higher resolution features from different layers
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of the encoder. In our 3D U-Net variant, all convolution kernels are 3 × 3 × 3.
Each block in the encoder consists of a sequence of Conv-InstanceNorm [20]-
LeakyReLU operations repeated twice. In the encoder, one of these Conv oper-
ations has a stride of 2 to facilitate downsampling. In total, there are five down-
sampling operations. In the decoder, the same number of upsampling operations
is done via transposed convolutions.

In most of our experiments, we apply the above architecture as a single-
stage network which gets a preprocessed image patch (Sect. 2.3) as input and
outputs a final segmentation map. However, we also experimented with a two-
stage architecture, described next.

2.2 3D U-Net Cascade Network Architecture

The 3D U-Net cascade is another network type offered in the nnU-Net frame-
work. It serves the purpose of increasing the spatial contextual information that
the network sees, while maintaining a feasible input patch size with regards to
the GPU memory. This can be achieved by applying a 3D U-Net on downsam-
pled, lower-resolution input data. However, this comes at the cost of reduced
detail in the generated segmentations. Therefore, a second stage is performed in
which another 3D U-Net is applied on high-resolution input data. In the second
stage, the high-resolution input is augmented with extra channels that contain
the one-hot encoded segmentation maps generated by the “low-resolution” 3D U-
Net from the first stage. These maps are first upsampled to the higher-resolution
input data size. Figure 1 depicts the 3D U-Net cascade in high level. In our case,
nnU-Net determined the first stage 3D U-Net to be of the same structure as the
second stage network, as detailed in Sect. 2.1.

Fig. 1. The 3D U-Net cascade model. In the first stage, low-resolution input enters a 3D
U-Net. The patch size covers a large portion of the image, facilitating rich contextual
information. Then, the low-resolution segmentation is upsampled and concatenated
with the high-resolution input. In the second stage, the input patch covers a smaller
portion of the input, but global segmentation information is already available. Then,
a second 3D U-Net is applied and refines the segmentations, obtaining them in high
resolution.
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2.3 Preprocessing

The median voxel spacing in the original training data is 0.78 × 0.78 × 3.0 mm.
The median volume shape is 512 × 512 × 109 voxels.

We clip each case’s intensity values to the 0.5 and 99.5% of the intensity
values in the foreground regions across the training set, which correspond to
the range [−62, 310]. Then, we subtract the mean and divide by the standard
deviation of the intensities in the foreground regions, which correspond to 104.9
and 75.3, respectively.

During training, patches with shape 128 × 128 × 128 are sampled and input
to the network. To increase training stability, the patch sampling enforces that
more than a third of the samples in a batch contain at least one randomly chosen
foreground class.

2.3.1 Low Resolution
In the first stage of the 3D U-Net cascade model, the low-resolution network
operates on input data resampled to a common spacing of 1.99 × 1.99 × 1.99
mm. This results in median volume shape of 201 × 201 × 207 voxels for the
training cases.

2.3.2 High Resolution
In the single stage 3D U-Net models, and the 2nd stage of the 3D U-Net cascade,
the network operates on input data resampled to a common spacing of 0.78 ×
0.78 × 0.78 mm. This results in median volume shape of 512 × 512 × 528 voxels
for the training cases.

2.4 Training Details

Beside our proposed regularized loss term (Sect. 3.4) all our models are trained
with a combination of dice and cross-entropy loss [12]. The loss is applied at the
five different resolution levels in the decoder.

Training is done on a single Tesla V100 GPU. The models train for 1000
epochs with each epoch consisting of 250 iterations with a batch size of 2. For
the single stage, full-resolution 3D U-Net model, training takes about 48 h.

We use an SGD optimizer with Nesterov momentum of 0.99 and learning

rate which decays in each epoch according to lr = 0.01
(
1 − epoch

1000

)0.9

.

3 Method

Our solution is based on 3D U-Nets with several novel additions. We found that
a 2D U-Net, although faster to train, results in significantly inferior performance
on the tumor and cyst classes. For the kidney class, performance is on par
with a 3D U-Net. We found at a late stage in the competition that the 3D U-
Net cascade model performs better than the single stage 3D U-Net. Therefore,
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most of our unique contribution was demonstrated using the single stage 3D
U-Net model. For the final submission, we ensemble three such models with one
cascade model. Next, we describe the training and validation data followed by
our unique decisions and contribution, which include the annotation sampling
method, optional pretraining, proposed regularized loss, proposed postprocessing
algorithm, and choice of models for ensemble.

3.1 Training and Validation Data

We use only the official KiTS21 300 training cases for our submission. The only
way in which we indirectly use other publicly available data in some of our
experiments is by initializing network weights with those of a model pretrained
on the Liver Tumor Segmentation (LiTS) database [1].

We train our models on 5 cross-validation splits of 240 training cases and
the remaining 60 used for validation. The splits are randomly decided by nnU-
Net [12]. In Sect. 4 we report average Dice and Surface Dice scores over the
cross-validation splits per HEC, as well as global averages across the HECs.
The evaluation metrics are computed using the competition’s official evaluation
function.

3.2 Pretraining

In Sect. 4.1.2 we show the effect of initializing the network weights from a pre-
trained model trained on LiTS [1]. This is in contrast to other experiments in
which the network weights were initialized randomly. We note that the specific
pretrained model we used is available for download under the nnU-Net frame-
work and fits the 3D U-Net network structure determined for our data without
any modification. This allowed us a simple way of testing a form of transfer
learning for our task.

3.3 Annotations

In KiTS21, each kidney/cyst/tumor instance has been annotated multiple times
by different annotators. The competition organizers provided a script for gen-
erating (seeded) random plausible aggregated segmentation maps for each case.
There are between 6 and 15 such maps per case, depending on the case’s number
of annotators and class instances. During evaluation, the competition metrics for
each case are computed and averaged against all the case’s sampled plausible
maps.

To resemble the official evaluation protocol, we wanted models to see different
plausible annotations during training. We achieve this by choosing for each slice
within a case (volume), a random plausible annotation map out of the 6 to 15
options that are available after running the sampling script. We use this random
choice as the set of training annotations. In Sect. 4.1.1 we show the effect on
performance of using different random seeds for this training annotation selection
procedure.
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3.4 Regularized Loss

Previous works on weakly supervised segmentation tasks have proposed to add to
the “standard” loss term, which makes use of the existing supervised label seeds,
another term which is unsupervised. It does not require labels as input, but only
the original signal (raw volume in our case), and the network prediction [7,19].
Intuitively, this loss term should encourage the predictions to follow a desired
behaviour, such as to be smooth in some sense. In semantic segmentation, we
might want the loss to penalize contradicting predictions for neighboring voxels
that are similar in their intensity. We experiment with a regularized loss proposed
in [7], which can be thought of as a special case of the Potts model [2]. We denote
the regularized loss Lreg. Then, the total training loss for training our 3D U-Net
becomes

Ltotal = Ldice + LCE + λLreg, (1)

where Ldice and LCE denote the dice and cross-entropy losses, respectively, and
λ is a hyperparameter.

3.4.1 Image Loss
In one of our attempts, we used the regularized loss proposed in [7] for a 2D
image, and applied it to each volume slice. This loss affects each pixel through
its four upper, lower, right and left neighbors. Let I be an image; i and j denote
two neighbors, ε is the pixel’s mentioned 4-neighborhood, and pc is the predicted
segmentation softmax score for class c. The loss is then given by

Lreg(I,p) =
∑

c

∑
(i,j)∈ε

wij

(
pc

i − pc
j

)2
, (2)

where
wij = e−β(Ii−Ij)

2
. (3)

3.4.2 Volume Loss
Here we generalize the regularized loss to also account for two additional forward
and backward neighbors from the adjacent slices. Equations 2–3 remain the same,
but ε now contains six neighbors instead of four.

3.5 Postprocessing

We applied a postprocessing algorithm on the segmentation results that removes
rarely occurring implausible findings. The algorithm consists of two parts

1. Tumor and cyst finding positioned outside of kidney findings are
removed.
We compute a slightly dilated mask of 3D-connected components of voxels
classified as tumor or cyst. For each dilated connected component, if it has
no intersection with at least one kidney classified voxel, then we change the
classification of the corresponding tumor or cyst finding to “background”.
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2. Small kidney fragments surrounded by another class are removed.
We compute 3D-connected components of voxels classified as kidney. We
select all components smaller in volume than the third largest. We then change
the classification of those smaller components to that of the majority of the
voxels in its slightly dilated surrounding.

3.6 Final Submission

For the final submission, we use an ensemble of four models, three single-stage,
high-resolution 3D U-Nets and one 3D U-Net cascade. Each of the four models is
an ensemble on its own of its five trained cross-validation folds. Our postprocess-
ing (Sect. 3.5) was applied on the final segmentation output after the ensemble.
The following is a description of each model in our final ensemble:

1. 3D U-Net trained with the regularized loss from Sect. 3.4.1.
2. 3D U-Net for which training was initialized with a model pretrained on

LiTS. (Sect. 3.2).
3. 3D U-Net trained with a different random seed for the training annotation

generation process (Sect. 3.3) than the other three models in the ensemble.
4. 3D U-Net cascade in which training of the first-stage, low-resolution net-

work was initialized with a model pretrained on LiTS (Sect. 3.2).

4 Results

In all experiments we use the official evaluation code which calculates Dice and
Surface Dice metrics averaged across sampled plausible annotation maps. The
results we show here are all average scores across five cross-validation splits.
For brevity we denote in the tables in this section the per-HEC dice scores as
D1,D2,D3 for the “Kidney and Masses”, “Kidney mass” and “Tumor” HECs,
respectively, and their mean is denoted MD. Similarly, surface dice scores are
denoted SD1,SD2,SD3, and their mean MSD.

4.1 Single-Stage, High-Resolution 3D U-Net

The following experiments were made based on the single-stage 3D U-Net model
(Sect. 2.1).

4.1.1 Random Annotations
In Table 1 we show how our 3D U-Net trained with random annotation procedure
as described in Sect. 3.3 performed against a baseline that we trained which used
aggregated maps according to a majority vote (MAJ). We also show results of
the baseline published in [11].

We see that the random annotation procedure unfortunately has no signifi-
cant effect on performance. We still decided to add the model with seed 3 to our
final model ensemble. In all the next experiments, we use our random annotation
procedure with seed 1.
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Table 1. Our random annotation procedure vs. baseline MAJ annotations

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

Baseline [11] 0.9666 0.8618 0.8493 0.9336 0.7532 0.7371 0.8926 0.8080

Baseline (our) 0.9660 0.8589 0.8444 0.9334 0.7506 0.7320 0.8897 0.8053

Seed 1 0.9662 0.8583 0.8449 0.9335 0.7513 0.7330 0.8898 0.8059

Seed 2 0.9655 0.8581 0.8419 0.9324 0.7500 0.7297 0.8885 0.8040

Seed 3 0.9668 0.8645 0.8478 0.9347 0.7567 0.7356 0.8930 0.8090

4.1.2 Pretraining
In Table 2, we show the effect of transfer learning, namely initializing our 3D
U-Net model from weights of a model pretrained on LiTS.

Table 2. Transfer learning from LiTS

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

Baseline [11] 0.9666 0.8618 0.8493 0.9336 0.7532 0.7371 0.8926 0.8080

Baseline (our) 0.9660 0.8589 0.8444 0.9334 0.7506 0.7320 0.8897 0.8053

With pretraining 0.9674 0.8651 0.8518 0.9346 0.7563 0.7396 0.8948 0.8102

We see some improvement, therefore we add the model with initialization
from a model pretrained on LiTS to our final model ensemble.

4.1.3 Regularized Loss
In Table 3 we show the effect of adding regularized loss, as described in Sect. 3.4.
Following limited hyperparameter search, we use β = 10 for the image loss, β = 5
for the volume loss, and λ = 1 for both versions. We add the model with image
regularized loss to our final model ensemble, as it showed slight improvement over
at least our baseline. Our experiments showed that hyperparameter tuning for
β and λ are important for the regularized loss. This could be one of the reasons
we did not manage to better optimize the volumetric version of the loss within
our time and resources constraints. It is also why we did not choose to employ

Table 3. Performance with regularized loss

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

Baseline [11] 0.9666 0.8618 0.8493 0.9336 0.7532 0.7371 0.8926 0.8080

Baseline (our) 0.9660 0.8589 0.8444 0.9334 0.7506 0.7320 0.8897 0.8053

Image loss 0.9659 0.8615 0.8493 0.9341 0.7528 0.7370 0.8922 0.8080

Volume loss 0.9663 0.8609 0.8482 0.9336 0.7512 0.7337 0.8918 0.8062
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this loss in conjunction with other steps like initializing with a pretrained model,
or the next experiment with the 3D U-Net cascade model. We suspected that
separate hyperparameter tuning might need to be performed for each scenario.

4.2 3D U-Net Cascade

In Table 4 we show the performance of our trained 3D U-Net cascade model
(Sect. 2.2) compared to the baseline published in [11] (for the same model type).

Table 4. Performance of our 3D U-Net cascade model

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

Cascade baseline [11] 0.9747 0.8799 0.8491 0.9453 0.7714 0.7393 0.9012 0.8187

Our cascade 0.9747 0.8810 0.8583 0.9459 0.7709 0.7461 0.9046 0.8210

We see some improvement for our cascade model over the published base-
line. This could be due to our random annotation procedure (Sect. 3.3) and our
initialization of the first-stage, low-resolution 3D U-Net with a model pretrained
on LiTS (Sect. 3.2).

4.3 Model Ensemble

In Table 5 we show the effect of ensembling four models as described in Sect. 3.6.
We also show for comparison an ensemble of only the three single-stage 3D U-Net
models, as well as the best single models (without ensemble), out of both single-
stage and cascade. Again, metrics are averaged across all five cross-validation
splits.

Table 5. Model ensemble

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

Best model (cascade) 0.9747 0.8810 0.8583 0.9459 0.7709 0.7461 0.9046 0.8210

Best 1-stage model 0.9674 0.8651 0.8518 0.9346 0.7563 0.7396 0.8948 0.8102

Ensemble of 1-stage models 0.9674 0.8667 0.8535 0.9363 0.7610 0.7442 0.8959 0.8138

Final ensemble 0.9702 0.8751 0.8597 0.9400 0.7709 0.7525 0.9017 0.8211

We see that the cascade model, which outperformed all the others, is alone
better than the final ensemble in terms of the average Dice score. But we do see a
slight improvement in average Surface Dice, and also in the tumor class metrics,
which are arguably the most critical in practice (and also the tumor Dice is used
as a tiebreaker in KiTS21). We also see that ensembling the three single-stage 3D
U-Net models improves over the best model among them. Therefore we decided
to ensemble all four models in our final submission.
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4.4 Postprocessing

In Table 6 we show the result of applying our proposed postprocessing algorithm
(Sect. 3.5) to the segmentation results of our final ensemble. Again, metrics are
averaged across all five cross-validation splits. We see improvement across all
metrics.

Table 6. Results with postprocessing applied to our final ensemble segmentations

Model D1 D2 D3 SD1 SD2 SD3 MD MSD

Without postprocessing 0.9702 0.8751 0.8597 0.9400 0.7709 0.7525 0.9017 0.8211

With postprocessing 0.9715 0.8790 0.8638 0.9415 0.7751 0.7569 0.9047 0.8245

Table 7 shows an example from case 16 in the database, predicted using our
model ensemble. Specifically, for the demonstration to be fair, the ensembled
model of cross validation fold 0, in which case 16 was part of the validation set.
In the first row, we see slice 60, which contains kidney (red) and tumor (green)
findings. In the second row, we see slice 105, in which a false tumor finding was
predicted, and successfully removed after applying our postprocessing algorithm,
since it has no contact with a kidney prediction.

Table 7. Example predictions for case 16. Top row: Slice 60, which contains kidney
(red) and tumor (green) findings. Bottom row: Slice 105, which contains a false tumor
prediction, successfully removed by our postprocessing algorithm.

original image prediction without prediction with ground truth
postprocessing postprocessing
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4.5 Test Set Results

In Table 8 we show the results of the top-five submissions on the KiTS21 test
set, where our submission reached second place.

Table 8. KiTS21 test set results

Rank Team D1 D2 D3 SD1 SD2 SD3 MD MSD

1 Z. Zhao et al. [3] 0.977 0.886 0.860 0.957 0.772 0.749 0.908 0.826

2 A. Golts et al. 0.976 0.881 0.832 0.956 0.769 0.722 0.896 0.816

3 Y. George [6] 0.976 0.876 0.831 0.955 0.765 0.722 0.894 0.814

4 X. Yang et al. [23] 0.973 0.874 0.822 0.950 0.758 0.707 0.890 0.805

5 M. Wu and Z. Liu [22] 0.970 0.863 0.811 0.944 0.747 0.711 0.881 0.801

5 Discussion and Conclusions

We presented results of our 3D U-Net based approach to solving the KiTS21
challenge. We managed to demonstrate minor improvements over published base-
lines based on a single-stage 3D U-Net, as well as a two-stage 3D U-Net cascade.
Improvements are owed, to varying degrees, to our following contributions: a
method for utilizing multiple annotations during training, weight initialization
from a model pretrained on a different task, an unsupervised term added to
the loss function that encourages smoothness in the segmentation predictions,
ensembling of multiple models, and a proposed postprocessing algorithm.

The participation in the challenge leaves us with quite a few interesting direc-
tions for future research. We experimented with using image blending techniques
for injecting tumor volume regions onto healthy kidney regions in order to enrich
the training dataset. These efforts showed initial promise but did not material-
ize in time for the competition deadline. We believe this could be a promising
direction for future research. We now realize that better performance could be
reached if we applied some of our contributions to the better performing 3D
U-Net cascade model, rather than the single-stage 3D U-Net. The regularized
loss could benefit from more thorough hyperparameter tuning as well as further
generalization to use more neighboring voxels. Additionally, more recent network
architectures for semantic segmentation are worth exploring. Outside the scope
of this particular challenge, it is worth investigating the trade-off between accu-
racy and runtime in medical imaging segmentation, for example as is evident
when comparing 2D and 3D U-Net architectures.

As we look to experiment with different network architectures, or work on
extending the idea of regularized losses for medical imaging segmentation, we
may opt for open source frameworks designed for flexible and efficient research
in the medical imaging domain. One such promising framework is the recently
released FuseMedML library [10].
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Abstract. Automated detection and segmentation of kidneys, tumors, and cysts
are useful for renal diagnosis and treatment planning. Herewe propose a two-stage
contrast-enhanced CT detection and segmentation framework that automatically
segments the kidney, kidney tumor, and cyst. Testing the proposed algorithm on
the KiTS21 dataset, we achieve the mean dice of 0.5905 and the mean surface
dice of 0.4234.

Keywords: Two-stage network · Kidney tumor · Segmentation

1 Introduction

Renal refers to the kidneys. The terms “tumor” and “mass” refer to abnormal body
growths.Our kidneysmight developmasses (growths or tumors) from time to time. Some
kidney tumors are benign (noncancerous), whereas others are malignant (cancerous).
According to GLOBOCANdata from 2018, an estimated 403,000 persons are diagnosed
with abnormal kidney growth each year, accounting for 2.2% of all cancer diagnoses
[1]. Due to the enormous variation in kidney and kidney tumor shape, there is a lot of
interest in understanding how tumor morphology influences surgical outcomes [2, 3]
and developing sophisticated surgical planning techniques [4].

For this purpose, measuring the shape and dimensions of a kidney tumor can be
revealed by contrast-enhanced Computed Tomography (CT) imaging which is essential
for diagnosis, treatment, and safe surgery [5]. Safe surgery involves avoiding injury to
the kidney’s vascular network. As a result, automatic semantic segmentation becomes a
critical component of surgical planning and is widely used. Previously the KiTS2019 [6]
focused on kidney and kidney tumor segmentation, whereas the newly introduced chal-
lenge KiTS21 includes an additional class of cyst. Therefore, in this article, we propose
to segment kidney, kidney tumor, and cyst. This remaining manuscript is organized as
follows.Methods and procedures are defined in Sect. 2, Sect. 3 presents the experimental
results, and Sect. 4 concludes the overall manuscript.
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2 Methods

In this work, we use a multi-stage algorithm to segment kidney, tumor and cyst. The
proposed algorithm comprises two stages, as depicted in Fig. 1. The first stage involves
the detection process, and the second stage applies the segmentation process. In both
settings, we consider ResUnet 3D as the backbone network. The detection process we
use for accurate localization of the kidney. The reason for this, to make the subsequent
segmentation process more effective.

Primarily, we preprocess the CT training data by resampling (the z-axis spacing to
2 mm, while retaining the x, y-axis unchanged) and cropping them to sizes 32× 384 ×
384. These CT images are provided as an input to the detection network. The detection
network initially detects both the kidneys’ shapes based on the preprocessed inputs. After
the detection process, we calculate the centers of each detected kidney according to (x,
y, z) points by using the skimage library. Further, the detected kidneys were cropped into
cube (volume) sizes 64 × 128 × 128 and provided that to the segmentation network to
predict kidney, tumor, and cyst. After that, we combine all the predicted masks from the
segmentation network to the volume size (s× 384× 384). Finally, we post-process (by
padding and resampling) the combined volume size (s × 384 × 384) to the original CT
scan size, i.e. (n × 512 × 512).

Fig. 1. The architecture of our proposed two-stage detection and segmentation framework.

2.1 Training and Validation Data

To validate our proposed framework, we use the official KiTS21 dataset. The dataset is
divided into training and validation sets (training: 269 cases, validation: 30 cases). For
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instance, 00000 to 00269 are training cases, and 00270 to 00299 are validation cases.
Note that we removed case 00160 from the adopted dataset due to its different size. In
addition, we use voxel-wise majority voting (MAJ) for training and validation.

2.2 Preprocessing

After analyzing the KiTS21 data, we found different z-axis spacing between cases, i.e.,
in the range [0.5 mm–5 mm]. In the dataset, around 125 cases where the z-axis spacing
is 5mm. To balance the z-axis spacing between each case, we resample the data to size
(s, 512, 512) and set the z-axis spacing to 2mm, while the x-axis and y-axis remain
unchanged.

Further, we discard the useless regions from each resampled CT slice and crop it to
size (s,384, 384) according to the image’s center point for both training and prediction.
Note that s denotes the number of resampled slices. The reasons for cropping are to
reduce the image size and to cover the possible kidney regions. To improve the GPU
utilization, we use the sliding window with a stride of 8 to resize the CT images to the
volume size (32, 384, 384). We also perform some data cleaning by removing those
volumes not containing the kidney, tumor, and cyst.

After the kidneys detection in stage 1, we separate left and right kidney regions
according to their masks. To cover the entire kidney in both left and right regions, we
crop the kidney to volume sizes (64,128,128) with a stride of 8 by the following formula.

Countervolume = n− 64

8
+ 1 (1)

In the above Eq. 1, n is the number of slices.
Meanwhile, to improve the network accuracy, the intensity of the other organs of the

CT is reduced by normalizing theHU intensity to the range [−100, 300]. The normalized
HU intensity range is further subtracted by 100, i.e., [−200, 200] and divided by 50,
which is more useful for CNNs [7] to process.

In addition, we use the data augmentation technique such as horizontal flip, trans-
lation, affine translation, etc. For stage 1, the training set size is extended to 18576
volumes, and the validation set is extended to 1914 volumes. Similarly, for stage 2, the
training set size is extended to 27066 volumes, and the validation set size is extended to
2550 volumes. Finally, we resample the z-axis spacing of combined CT scans into the
original CT scans’ z-axis spacing.

2.3 Proposed Method

2.3.1 Network Architecture

Since U-Net [8] has achieved excellent segmentation results specifically for 3D volu-
metric CT scans, which are 2D image sequences, therefore, our intended model also
takes advantage of U-Net 3D [1] and the Residual network [9] to perform the three-class
segmentation task. Our proposed ResU-Net 3D network architecture is shown in Fig. 2.

The intended network uses three encoder and decoder blocks, which are residual
convolutional blocks. The residual block contains three convolutional layers, and the
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Fig. 2. The proposed ResU-Net3D network

residual convolution kernel size is 3× 3× 3. The stride size of every residual convolution
is 1 × 1 × 1. In addition, the up-sampling using the transposed convolution and the up-
sampling’s convolution kernel size is 2× 2× 2where the stride is 2. The down-sampling
stride size is 2× 2× 2 convolution, and the final output layer is 1× 1× 1 convolution.
The network parameters are given in Table 1.

Table 1. The network parameters

Name Layers Stride Kernel size Padding

Convolution (C) Conv – –

Batch norm – –

ReLU – –

Residual block C1 1 × 1 × 1 3 × 3 × 3 1 × 1 × 1

C2 1 × 1 × 1 3 × 3 × 3 1 × 1 × 1

C3 1 × 1 × 1 1 × 1 × 1 0

C1 + C3

Down sample C 2 × 2 × 2 2 × 2 × 2 0

Up sample Transpose Conv 2 × 2 × 2 2 × 2 × 2 0

Concat Residual Block + Up Sample

Output layer C 1 × 1 × 1 1 × 1 × 1 0
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2.3.2 Training

Our proposed networks are implemented using the Pytorch1.9.0 framework. To train
the network, we use the Adam optimizer as the network optimizer. The initial learning
rate is set to 0.001, and we choose cross-entropy to calculate the loss function of the
network. For stage 1, the input volume sizes are 32 × 384 × 384, and for stage 2, the
input volume sizes are 64 × 128 × 128. The batch size in stage 1 is set to 4 and 16 in
stage 2. A total of 50 iterations (epochs) are performed for training the network on 32G
Nvidia V100 GPU.

2.3.3 Validation Strategy

According to Hierarchical Evaluation Classes (HECs) proposed by the KiTS21 chal-
lenge, the following HECs will be used.

• Kidney and Masses: Kidney + Tumor + Cyst
• Kidney Mass: Tumor + Cyst
• Tumor: Tumor only

To evaluate the performance of the model, we use dice and surface dice(SD).

3 Results

We selected case00270~case00299 as the validation set and provided these cases’ to
the proposed pipeline for prediction purposes. Table 2 shows the three classes dice and
surface dice where KMC denotes kidney and Masses class, Kidney Mass is denoted
by KM, and Tumor class is denoted by T. Table 3 shows the achieved Mean Dice and
surface dice are 0.5905 and 0.4234 in test set. Figure 3 provides the visual analysis of
the proposed pipeline prediction.

Table 2. Mean Dice and SDS of classes on KiTS21 validation set

Network KMC Dice KM Dice T Dice KMC SD KM SD T SD

Ours 0.9130 0.5635 0.4864 0.7718 0.3424 0.2834

Table 3. Mean Dice and SDS of the proposed pipeline on KiTS21 test set

Network Mean Dice Mean SD

Ours 0. 5905 0. 4234
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Fig. 3. Visualization of predictions of our proposed model. The 1st column is the input CT slice,
the 2nd column is the mask, and the third column is our proposed method predictions.

4 Discussion and Conclusion

This work proposed two-stages detection and segmentation architecture to automatically
segment kidney, cyst, and tumor based on the KiTS21 benchmark. For both the detection
and segmentation networks, the ResUnet 3D is utilized as the backbone. The designed
two-stage architecture achieved the mean dice of kidney and messes, kidney messes and
the tumor is 0.5905, and the mean surface dice is 0.4234. However, our model generated
low dice and surface dice for the tumor and cyst. The reason for that is that tumor and
cyst are quite tiny and have limited availability in the adopted dataset. Therefore, to
address this problem, in the future, we plan to augment data of the tumor and cyst for
better detection and segmentation, which will eventually lead us to better quantitative
outcomes.

Acknowledgment. We would like to express our gratitude to the KITS21 organizers and the
Shenzhen Technology University School-Enterprise Graduate Student Cooperation Fund.
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Abstract. In order to compete in the KiTS21 challenge, we propose a 3D deep
learning cascaded model for the renal enhanced CT image segmentation. The
proposedmodel comprises two stages,where stage 1 segments the kidney and stage
2 segments the tumor and cyst. The proposed deep learning network architecture is
based on the residual and 3D UNet architecture. The designed network is utilized
for each segmentation stage (for stage 1 and stage 2). Our intended cascadedmodel
achieved a dice score of 0.96 for the kidney, 0.81 for the tumor, and 0.45 for the
cyst on the KiTS21 validation dataset.

Keywords: Renal segmentation · Renal tumor segmentation · Renal cyst
segmentation

1 Introduction

Every year around 400,000 people are affected by kidney tumors. Due to thewide variety
in kidney and kidney tumor morphology, there is currently a great interest in tumor mor-
phology and its surgical outcomes [1]. For instance, focusing on kidney morphology is
essential to advance surgical planning. In order to accelerate such research and develop-
ment, KiTS challenge has been introduced. In KiTS 2019, the initial focus was on kidney
and kidney tumor segmentation [2]. However, the ongoing KiTS 21 challenge focuses
on three-class segmentation tasks: kidney, kidney tumor, and cyst segmentation. Auto-
matic semantic segmentation is a promising tool for these endeavors, but morphological
variability is not easy. Therefore, there is a need for reliable segmentation techniques
that can perform well and provide aid to renal surgical planning. Here we propose a
cascaded 3D model that efficiently performs the renal, tumor, and cyst segmentation to
solve the challenging task of morphological variability.
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2 Methods

Our intended segmentation approach consists of a two-stage segmentation model based
on 3D-Unet. For this purpose, we adopt different pre-and post-processing strategies.
First, we resample the original CT scans and then crop the center parts of the CT scans.
The cropped CT scans are then used as the input to the segmentation network, which is
the first stage of our proposed model for renal contour prediction.

Further, a histogram equalization [3] approach is applied on segmented/predicted
renal to enhance the contained tumor and cyst. Because the histogram equalization
uplift the pixel brightness (contrast) and useful for the subsequent segmenting step [4].
Afterward, we concatenate the segmented renal (from stage 1) and enhanced renal (after
the enhancement process) as two channels and provided that as input to stage 2 (second
segmentation network). Upon providing the concatenated two channels input to the stage
2 network, the intended model predicts the tumor and cyst. Finally, the prediction results
of both stages are merged into a single channel and reduced to the original CT size
to evaluate the model performance. The algorithmic flow of the proposed pipeline is
depicted in Fig. 1.

Fig. 1. Our proposed cascaded 3D model involves two stages. Stage 1 segments the renal, and
stage 2 performs tumor and cyst segmentation. Finally, all the predicted outputs from each stage
are merged into a single channel output.
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2.1 Training and Validation Data

To train our model, we adopt the KiTS21 benchmark dataset. The benchmark dataset
contains 300 contrast-enhanced CT scans, which provide three-class labels for kidney,
kidney tumor, and cyst. We divide the KiTS21 dataset into training and validation sets,
i.e., 270 and 30, respectively. In addition, we use voxel-wise majority voting (MAJ) for
training and validation.

2.2 Preprocessing

As an initial preprocessing step, the CT intensities (Hounsfield units-HU) of training
and validation sets were selected to a range of [-135, 215]. Doing so will change the
appearance of the picture to highlight particular structures [8]. Further, we analyzed the
spacing distribution of KiTS 21 CT images. After analyzing them, we found different
z-axis spacing between cases, i.e., in the range [0.5mm-5mm]. To balance the z-axis
spacing between each case, we resample the data and set the z-axis spacing to 3.0mm.
We also use min-max normalization to normalize the HU intensities. For kidney seg-
mentation stage 1, we resize the x and y-axis of the input data to (256, 256). For stage 2
(tumor and cyst segmentation), the respective regions of the preprocessed image (512,
512) is cropped according to the predicted labels (masks) from stage 1.

2.3 Proposed Method

2.3.1 Architecture

Our proposed network uses the Residual 3D U-Net [5–7], which has four up-sampling
layers and four down-sampling layers. Each layer is composed of 3D convolution, ReLU
activations, and batch normalization. The first level of the UNet extracts 32 feature maps
in the proposed pipeline, and each down-sampling process maximizes the extracted
feature maps up to 512. The network learning rate is 0.001; the batch size is 8, epochs
are 200, and cross-entropy is used as the loss function. We utilize the Adam optimizer
as the network optimizer to train the network. The proposed architecture is used for
each stage separately. The Pytorch1.9.0 framework is used to implement our proposed
approach (Fig. 2).

2.3.2 Methodology

Stage 1: Kidney segmentation

In the kidney segmentation stage, we initially aim to extract the whole kidney. Because
the dataset contains multiple classes such as kidney, tumor, and cyst, thus it is not easy
to directly detect or segment the kidney. Therefore, we change the individual kidney,
tumor, and cyst masks into a single class, i.e., kidney. Considering the z-axis, we crop the
3D cube with length 96 and stride 48 by using the center crop on the x and y-axis to clip
the subsequent cube with shape (1,96,192,192) and provide that as input to the kidney
segmentation network. For this purpose, we use the regionprops function to analyze all
input data’s kidney regions and try different shape sizes, where we find the shape size
(1,96,192,192) is a perfect range to cover both kidney regions entirely.
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Fig. 2. Our proposed ResU-Net3D network architecture

Next, we embed our proposed network architecture in the kidney segmentation stage.
The kidney segmentation network predicts the renal contour. Prior to the tumor segmen-
tation, the predicted renal is cropped and enhanced. The cropping step is essential to
filter out all unnecessary information, such as the outer side of the kidney contours.
The cropping is achieved by multiplying the input image with the prediction mask of
predicted renal (output of stage 1).

Stage 2: Tumor and cyst segmentation

The tumor and cyst segmentation network take the two-channels input image by con-
catenating the predicted/segmented renal from stage 1 and enhanced renal after stage
1. On the z-axis, we crop the 3D cube with length 64 and stride 16 by using the center
crop on the x and y-axis to clip the next cube, which comprises a single kidney with
shape size (2,64,160,160) and provide that as input to the tumor and cyst segmentation
network. Note that we utilize the same region props function to choose our clipping
range. Finally, the designed network predicts tumor and cyst.

3 Results

We validated our approach using 30 KiTS Challenge CT images. Figure 3 provides
the visual predictions of our proposed two-stage segmentation model.The quantitative
results are reported in Table 1. Our proposed method achieved kidney dice of 0.96.
Moreover, we evaluated our model with and without HE enhancement. Applying the HE
processing step results in better tumor dice and cyst dice, as shown in Table 1. Table 2
shows the final KiTS21 result.
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Fig. 3. Visual predictions of our proposed model, where the first column represents input images,
column two is the ground truth (mask) images, and the third column shows the predictions of our
cascaded 3D model. The colored boxes indicate each class, such as kidney, tumor, and cyst.

Table 1. The experimental outcomes on validation data with and without HE processing.

Kidney Tumor Cyst

Dice with HE 0.96 0.8150 0.4504

Dice without HE 0.6710 0.4028

Table 2. The final KiTS21 results.

Dice Surface dice Tumor dice

Dice with HE 0.645 0.466 0.502
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4 Discussion and Conclusion

In this manuscript, we proposed a two-stage cascaded approach to segment kidney,
renal tumor, and renal cyst. For this purpose, we employed a Residual 3DUnet architec-
ture embedded into each stage of the cascaded pipeline. Our proposed model achieved
promising segmentation results in terms of kidney and tumor segmentation. Since the
boundary between the tumor and the kidney is unclear, which makes the kidney and
tumor segmentation difficult. Therefore, we used histogram equalization to enhance the
output from the initial stage, which serves as a second channel and enriches the image
information for subsequent stage 2.

Moreover, adopting the cascading strategy and training the models separately makes
distinguishing between tumor and cyst easier. Our model prediction for cyst is lower as
compared to the two other segmentation tasks. As many cases have no or unclear cysts.
As a result, the proposed model tends to false positives predictions. To address this in
the future, we will focus on model optimization and designing complex architectures
that efficiently detect cysts.

Acknowledgment. Wewould like to thank the KiTS21 organizers and the Shenzhen Technology
University School-Enterprise Graduate Student Cooperation Fund.
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Abstract. This paper assesses whether using clinical characteristics in
addition to imaging can improve automated segmentation of kidney can-
cer on contrast-enhanced computed tomography (CT). A total of 300
kidney cancer patients with contrast-enhanced CT scans and clinical
characteristics were included. A baseline segmentation of the kidney
cancer was performed using a 3D U-Net. Input to the U-Net were the
contrast-enhanced CT images, output were segmentations of kidney, kid-
ney tumors, and kidney cysts. A cognizant sampling strategy was used to
leverage clinical characteristics for improved segmentation. To this end,
a Least Absolute Shrinkage and Selection Operator (LASSO) was used.
Segmentations were evaluated using Dice and Surface Dice. Improvement
in segmentation was assessed using Wilcoxon signed rank test. The base-
line 3D U-Net showed a segmentation performance of 0.90 for kidney and
kidney masses, i.e., kidney, tumor, and cyst, 0.29 for kidney masses, and
0.28 for kidney tumor, while the 3D U-Net trained with cognizant sam-
pling enhanced the segmentation performance and reached Dice scores
of 0.90, 0.39, and 0.38 respectively. To conclude, the cognizant sampling
strategy leveraging the clinical characteristics significantly improved kid-
ney cancer segmentation. The model was submitted to the 2021 Kidney
and Kidney Tumor Segmentation challenge.

Keywords: Kidney cancer · Deep learning · Cognizant sampling ·
Clinical characteristics · Automated semantic segmentation

1 Introduction

According to World Health Organization a total of 431,288 people were diagnosed
with kidney cancer in 2020. This makes kidney cancer the 14th most common
cancer worldwide [1]. Although the number of new cases is relatively high, many
patients present asymptomatic until the cancer has metastasized, and more than
fifty percent of all cases are thus discovered incidentally on abdominal imaging
examinations performed for other purposes [2]. Masses suspected of malignancy
are investigated predominantly with contrast-enhanced computed tomography
(CT) or magnetic resonance imaging (MRI) [2]. Information about size, location,
c© Springer Nature Switzerland AG 2022
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and morphology of the tumor can enhance treatment decisions, but manual
evaluation of the CT scans remains laborious work. Scoring systems such as the
R.E.N.A.L Nephrometry Score and PADUA exist to steer manual evaluation
[3,4], but are subject to interobserver variability [5].

Treatment of localized kidney cancer consists of surgery of tumor and imme-
diate surroundings (i.e., partial nephrectomy), surgery of tumor and entire kid-
ney (i.e., radical nephrectomy), or active surveillance in case of patients who do
not undergo surgery immediately but are carefully followed and evaluated for
signs of disease progression [2].

Computer decision-support systems have potential to personalize treatment.
Examples of such systems include volumetric measurements and radiomics
approaches [6]. A crucial first step in these systems is to accurately identify
kidney and kidney cancer.

The 2021 Kidney and Kidney Tumor Segmentation Challenge (KiTS21) pro-
vides a platform for researchers to test software dedicated to segmenting kidney
cancer. KiTS21 does not only include images and corresponding annotations,
but also an extensive set of clinical characteristics. The organizers of KiTS19
investigated whether imaging and clinical characteristics affected segmentation
performance and found that tumor size had a significant association with tumor
Dice score [7]. Therefore, it is reasonable to assume there may be other clinical
characteristics that can be leveraged to improve segmentation.

The aim of our study was to assess whether using clinical characteristics in
addition to imaging can improve the segmentation of kidney cancer.

2 Materials and Methods

We compared two different strategies (Fig. 1). As baseline, we used a 3D U-
Net. We propose to improve this baseline by investigating in the validation set
which clinical characteristics affect the model’s performance and leverage this
for cognizant sampling.

2.1 Training and Validation Data

Our submission exclusively used data from the official KiTS21 training set. The
dataset contained contrast-enhanced preoperative CT scans of 300 patients who
underwent partial or radical nephrectomy between 2010 and 2020. Each CT scan
was independently annotated by three annotators for each of the three seman-
tic classes: Kidney, Tumor, and Cyst. To create plausible complete annotations
for use during evaluation, the challenge organizers generate groups of sampled
annotations. Across these groups, none of the samples have overlapping instance
annotations. It is therefore possible to compare and average them without under-
estimating the interobserver disagreement.

We randomly divided the dataset into training, validation, and test sets,
consisting of 210, 60, and 30 patients respectively.
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Fig. 1. By leveraging the performance of our baseline 3D U-Net model on the validation
set (top row), we propose a cognizant sampling strategy based on clinical characteristics
for improved segmentation

2.2 Preprocessing

Images in the dataset were acquired from more than 50 referring medical centers,
leading to various acquisition protocols and thus notable differences in the image
resolutions. The in-plane resolution ranged from 0.44 mm to 1.04 mm while the
slice thickness ranged from 0.5 mm to 5.0 mm. To alleviate these differences,
we chose to resample all images to a common resolution of 3 mm × 1.56 mm
× 1.56 mm, which is the median slice thickness and twice the median in-plane
resolution. Images were resampled using Lanczos interpolation, annotations were
resampled using nearest neighbor interpolation. Resampling yielded a median
image size of 138 × 256 × 256 voxels.

We truncated the image intensities to the 0.5 to 99.5 percentiles of the inten-
sities of the annotated voxels in the training set. Afterwards, we performed
zero-mean-unit-variance standardization based on these voxels.

Augmentations included adjustments of gamma, contrast, and brightness,
addition of Gaussian noise, Gaussian blurring, scaling, rotation, and mirroring.
To accommodate GPU memory limitations we cropped the images into patches
of 96 × 160 × 160 voxels.

2.3 Baseline 3D U-Net

Training. The baseline 3D U-Net consisted of a downsampling path followed
by an upsampling path. Downsampling was performed by max pooling opera-
tions while upsampling was done with transposed convolutions. The different
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parameters are described in Table 1. Because of the substantial class imbalance,
we defined the loss function as the equally weighted sum of the Dice and a
weighted Cross Entropy. We used Adam as optimizer with an initial learning
rate of 0.005. The learning rate was reduced with a factor 0.3 if there had been
no improvement in the validation loss during the last 10 epochs. The model was
trained from scratch for 100 epochs. Each epoch included 400 volumes randomly
sampled from the training set in batches of two. All deep learning was performed
using PyTorch version 1.5.0.

Evaluation. During inference we used a sliding window (size 96 × 160 × 160
voxels) to cover the entire volume. Windows overlapped with half the window
size. Postprocessing consisted of retaining the two largest connected components
using anatomical prior knowledge. We evaluated the model’s predictions using
the KiTS21 evaluation script with sampled annotations as the ground truth
(see Sect. 2.1). This evaluation uses three hierarchical evaluation classes: Kidney
and Masses (Kidney + Tumor + Cyst), Masses (Tumor + Cyst), and Tumor
in combination with six evaluation metrics: Dice and Surface Dice scores of the
three classes [8].

2.4 Cognizant Sampling Leveraging Clinical Characteristics

To devise a cognizant sampling strategy, we investigated the effect of clinical
characteristics on the model’s performance on the validation set. We investigated
all clinical characteristics that had complete cases (i.e., no missing data) and had
contrast between the patients (i.e., the variable was not the same value for all
patients).

The Least Absolute Shrinkage and Selection Operator (LASSO) was used
to assess which characteristics were significantly associated with kidney tumor
Dice. The LASSO uses L1 regularization, which has the advantage that a sparse
subset of characteristics was selected [9]. Clinical characteristics were normalized
before LASSO analysis, LASSO used 5-fold cross validation.

The characteristics associated with kidney tumor Dice were weighted by the
inverse of the frequency of those characteristics in the cognizant sampling strat-
egy. For example, if smoking history was associated with kidney tumor Dice
and 50% of the patients in the training population smoked, the weights of the
non-smoker subset was set twice as large during cognizant sampling.

The model was retrained with no other changes than the application of the
cognizant sampling strategy.



Leveraging Clinical Characteristics for Tumor Segmentations 133

Table 1. Network description

Layer name Layer description Output dimension

Input Input 1 × 96 × 160 × 160

Dconv1 Double convolution block: 2× (3D

convolution - instance normalization - ReLU

activation) convolution kernel size:

3 × 3 × 3, stride: 1 × 1 × 1, padding: 1

24 × 96 × 160 × 160

Mpool Downsampling, level 1 Max pooling kernel

size: 2 × 2 × 2, stride: 2 × 2 × 2

24 × 48 × 80 × 80

Dconv2 Double convolution block 48 × 48 × 80 × 80

Mpool Downsampling, level 2 48 × 24 × 40 × 40

Dconv3 Double convolution block 96 × 24 × 40 × 40

Mpool Downsampling, level 3 96 × 12 × 20 × 20

Dconv4 Double convolution block 192 × 12 × 20 × 20

Mpool Downsampling, level 4 192 × 6 × 10x10

Dconv5 Double convolution block 384 × 6 × 10 × 10

Tconv4 Upsampling, level 4 transposed convolution

kernel size: 2 × 2 × 2, stride: 2 × 2 × 2

192 × 12 × 20 × 20

Concat Concatenation: [Dconv4, Tconv4] 384 × 12 × 20 × 20

Dconv6 Double convolution block 192 × 12 × 20 × 20

Tconv3 Upsampling, level 3 96 × 24 × 40 × 40

Concat Concatenation: [Dconv3, Tconv3] 192 × 24 × 40 × 40

Dconv7 Double convolution block 96 × 24 × 40 × 40

Tconv2 Upsampling, level 2 48 × 48 × 80 × 80

Concat Concatenation: [Dconv2, Tconv2] 96 × 48 × 80 × 80

Dconv8 Double convolution block 48 × 48 × 40 × 40

Tconv1 Upsampling, level 1 24x96 × 160 × 160

Concat Concatenation: [Dconv1, Tconv1] 48 × 96 × 160 × 160

Dconv9 Double convolution block 24 × 96 × 160 × x160

Output 3D Convolution and softmax activation

convolution kernel size: 1 × 1 × 1, stride:

1 × 1 × 1, padding: 0

4 × 96 × 160 × 160

2.5 Statistical Evaluation

We evaluated segmentation performance (i.e., (Surface) Dice scores) of the base-
line model and the model with the cognizant sampling on the test set (N = 30
patients). Normality of these performance scores was assessed using the Shapiro-
Wilk test. Statistical differences in performance were assessed using the paired
t-test in case of normal distributions and using the Wilcoxon signed ranked
test in case of non-normal distributions. A P-value below 0.05 was considered
statistically significant. All statistical analyses were performed using R version
3.6.1.
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3 Results

Output of the LASSO showed that presence of chronic kidney disease, a his-
tory of smoking, larger tumor size, and radical nephrectomy instead of partial
nephrectomy yielded higher tumor Dice scores (Table 2, Fig. 2).

Fig. 2. Least Absolute Shrinkage and Selection Operator (LASSO) analysis shows that
four variables are associated with kidney tumor Dice at one standard error from the
minimum.

Table 2. The four variables associated with kidney tumor Dice in the validation set
according to the Least Absolute Shrinkage and Selection Operator (LASSO)

Variable Coefficient

Intercept 0.108

Comorbidities: chronic kidney disease 0.118

Smoking history: previous smoker 0.076

Radiographic size 0.065

Surgical procedure: radical nephrectomy 0.050

The cognizant sampling strategy significantly improved the model’s segmen-
tation performance (Table 3, Fig. 3).

The model was submitted to the 2021 Kidney and Kidney Tumor Segmenta-
tion challenge in which it was ranked 25th. The model achieved an average Dice
score of 0.492, an average Surface Dice score of 0.367, and an average tumor
Dice score of 0.253 on the test set.
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Table 3. Dice and Surface Dice scores for the model trained with random sampling
and the model trained with the proposed cognizant sampling strategy. SD = standard
deviation, PR = percentile range.

Dice Kidney Masses Tumor

Random sampling

Mean (SD) 0.90 (0.08) 0.29 (0.28) 0.28 (0.29)

Median (25–75 PR) 0.93 (0.88–0.94) 0.17 (0.03–0.55) 0.15 (0.03–0.57)

Cognizant sampling

Mean (SD) 0.90 (0.12) 0.39 (0.32) 0.38 (0.34)

Median (25–75 PR) 0.95 (0.92–0.95) 0.42 (0.07–0.70) 0.37 (0.03–0.71)

P-value 0.004 0.013 0.033

Surface dice Kidney Masses Tumor

Random sampling

Mean (SD) 0.74 (0.14) 0.12 (0.11) 0.11 (0.11)

Median (25–75 PR) 0.79 (0.66–0.84) 0.07 (0.03–0.18) 0.06 (0.03–0.18)

Cognizant sampling

Mean (SD) 0.78 (0.16) 0.23 (0.18) 0.23 (0.21)

Median (25–75 PR) 0.84 (0.73–0.90) 0.19 (0.05–0.38) 0.22 (0.01–0.39)

P-value 0.003 <0.001 <0.001

Fig. 3. Example of a 66 year old patient from the test set in whom the cognizant
sampling leveraging clinical characteristics improved segmentation of the cancer. From
left to right: Image, ground truth annotations, segmentation from baseline 3D U-Net,
segmentation from the model using cognizant sampling

4 Discussion and Conclusion

A cognizant sampling strategy leveraging clinical characteristics significantly
improved segmentation of kidney cancer on contrast-enhanced CT.

A baseline 3D U-Net was trained using random sampling. The clinical charac-
teristics that were most associated with segmentation performance were identi-
fied using LASSO regression and used in a cognizant sampling strategy thereby
leveraging the effect of the identified clinical characteristics. Previous studies
showed that data-driven weighting can yield results that are independent of



136 C. B. Lund and B. H. M. van der Velden

clinical characteristics [10,11]. Such approaches have the potential to eliminate
bias towards characteristics such as smoking history, but potentially also unde-
sirable bias such as in gender or race.

Our baseline model was a standard 3D U-Net instead of e.g. the nnU-Net
provided by the challenge organizers. Since the aim of our study was to assess
whether using clinical characteristics in addition to imaging can improve the seg-
mentation of kidney cancer, we chose to direct our attention towards leveraging
the potential effect of the clinical data rather than focusing solely on outper-
forming the results obtained with nnU-Net. It is plausible that leveraging the
clinical characteristics could also improve other network architectures such as
nnU-Net, because it can circumvent potential biases in patient populations. To
conclude, we showed that cognizant sampling leveraging clinical characteristics
improves segmentation of kidney cancer on contrast-enhanced CT.
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Abstract. The number of kidney cancer patients is increasing each year.
Computed Tomography (CT) scans of the kidneys are useful to assess
tumors and study tumor morphology. Semantic segmentation techniques
enable the identification of kidney and surrounding anatomy on the pixel
level. This allows clinicians to provide accurate treatment plans and
improve efficiency. The large size of CT volumes poses challenges for
deep segmentation methods as it cannot be accommodated on a sin-
gle GPU in its original resolution. Downsampling CT scans influences
the segmentation performance. In this paper, we present a coarse-to-fine
cascaded network based on 3D U-Net architecture for semantic segmen-
tation of kidney CT volumes into three classes kidney, tumor, and cyst.
A two stage approach is implemented where a 3D U-Net model is first
trained on downsampled CT volumes to delineate kidney region. This
is followed by another 3D U-Net model which is trained using the full
resolution images cropped around the areas of interest generated by first
stage segmentation results. A set of 300 CT scans were used for train-
ing and evaluation. The proposed approach scored 0.9748, 0.8813, 0.8710
average dice for kidney, tumor and cyst using 3D cascade U-Net model.
The performance of the cascade network outperformed other trained U-
Net models based on 2D, 3D low resolution and 3D full resolution. The
model also achieved the 3rd place in the leaderboard of KiTS21 challenge
with a mean sampled average dice score of 0.8944 and a mean sampled
average surface dice score of 0.8140 using a test set of 100 CT scans.

Keywords: Semantic segmentation · Cascaded network · 3D U-Net ·
Medical image diagnostics

1 Introduction

The number new cases with kidney tumors is increasing each year [2]. Globally,
kidney cancer is the sixth most commonly diagnosed cancer for men and the
ninth for women [1]. In Australia, it is the seventh most common cancer [2]. Kid-
ney tumors can be classified as benign, indolent or malignant. Benign tumors can
grow slowly but does not spread to other tissues. A malignant tumor is cancerous
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with renal cell carcinoma is the most common type of kidney cancer leading to
140,000 deaths annually worldwide [4]. An indolent tumor is also cancerous, but
this type of tumor rarely spreads to other parts of the body. A great research
effort is being invested on studying the relationship between tumor morphol-
ogy (size, shape and appearance) and surgical outcomes. Small tumors are often
detected incidentally when the patient has a scan for an unrelated problem [3].
There is a need for automated semantic segmentation and classification methods
to objectively quantify the severity of kidney tumors in order to better inform
treatment decisions. This will also help doctors to solve diagnostic problems and
improve efficiency.

Recent advances in imaging tools facilitate the detection and diagnosis of
kidney tumors and contribute to preventive treatment of kidney cancer. Clin-
icians predominantly rely on imaging tests, primarily Computed Tomography
(CT), to both diagnose and stage renal cell carcinomas [2]. CT uses x-rays to
provide cross-sectional images of the body from different angles. The 2D slices
are combined to form the final 3D volume for the kidney. CT scan reveals any
abnormalities or tumors and can be used to measure the size of the tumor.

Semantic segmentation plays an important role in diagnostics support sys-
tems in the medical domain. It enables the identification of different objects in
images on the pixels level. In this paper, we apply semantic segmentation for kid-
ney tumor diagnosis where each voxel in the CT scan is labeled as background,
kidney, renal tumors or cyst.

2 Methods

Inspired by nnU-Net work [3], we implemented a coarse-to-fine cascaded U-Net
approach which has two stages. In the first stage, a 3D U-Net model is trained
on downsampled images to roughly delineate kidney region. In the second stage,
a 3D U-Net model is trained to have more detailed segmentation of the three
classes (kidney, tumor, cyst) using the full resolution images guided by the first
stage segmentation maps (See Fig. 1 for the network architecture).

Fig. 1. Kidney cancer segmentation framework using 3D cascaded U-Net architecture
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2.1 Training and Validation Data

In this paper, we use the kits21 dataset [1]. The KiTS21 challenge organizers
have produced ground truth semantic segmentations for arterial phase abdom-
inal clinical CT scans for training and validation. The dataset consists of 300
unique kidney cancer patients who underwent partial or radical nephrectomy
for suspected renal malignancy between 2010 and 2020 at either an M Health
Fairview or Cleveland Clinic medical center. Each CT volume consists of 29–1059
slices of 512–796 × 512 pixels. The voxel dimensions are [0.44–1.04, 0.44–1.04,
0.5–5] mm.

Regions in CT scan are for 3 different classes, kidney, tumor and cyst. The
ground truth segmentation mask is provided for each class separately. A group
of trainees that consists of medical students, undergraduates planning to study
medicine, and one Computer Science PhD student annotate region of inter-
ests by placing 3D bounding boxes as well as guidance pins for axial slices.
A group of experts that include radiologists and urologic cancer surgeons review
the annotations and leave comments if necessary. The round review is repeated
until experts approve the annotation for accuracy and completeness. Finally the
guidance for each region is sent individually to three laypeople for contour anno-
tations. Trainees review the contour annotations and ensure that they adhere to
the expert-approved guidance. Finally, contour annotations are postprocessed to
generate segmentations.

All DL models in this paper used majority aggregation based ground truth
segmentation for training and validation (Fig. 2).

Fig. 2. Sample 2D slices from 2 CT scans with annotated kidney, tumor and cyst in
blue, orange and green in order (Color figure online)
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2.2 Data Preprocessing

The CT intensities (HU) were transformed by subtracting mean and dividing by
standard deviation. The data augmentation methods include random rotations,
gamma transformation, and random cropping.

2.3 Proposed Method

The proposed approach is based on two stage cascaded network for kidney, tumor
and cyst segmentation using 3D U-Net architecture. In the first stage, each
CT scan was resampled using third order spline interpolation to a spacing of
1.99× 1.99× 1.99 mm resulting in median volume dimensions of 207× 201× 201
voxels. While in the second stage, a spacing of 0.78 × 0.78 × 0.78 mm was used
with median volume dimensions of 528 × 512 × 512 voxels.

The 3D U-Net architecture had an encoder and a decoder path each with
five resolution steps. The encoder part was performed using strided convolutions
starting with 30 feature maps then doubling up each level to a maximum of 320.
The decoder part was based on transposed convolutions. Each layer consists 3D
convolution with 3×3×3 kernel and strides of 1 in each dimension, leaky ReLU
activations, and instance normalization.

All the models were trained from scratch using 5-fold cross-validation with
a patch size of 128 × 128 × 128 that was randomly sampled from the input
resampled volumes. The models were trained using stochastic gradient descent
(SGD) optimizer for 1000 epochs using a batch of size 2 with 250 batches per
epoch. The training objective was to minimize the sum of cross-entropy and dice
loss.

3 Results

The proposed models are implemented using nnU-Net framework [3] with Python
3.6 and PyTorch framework on NVIDIA Tesla V100 GPUs. For performance
evaluation, we report the average 5-fold dice coefficient and Surface Dice (SD).
To compare the performance of the proposed network, we report the performance
measures for 2d U-net model, 3D full resolution and 3D low resolution U-Net
models. Table 1 displays the dice and SD scores for all trained models. The table
shows that the dice scores of 0.9748, 0.8813, 0.8710 for kidney, tumor and cyst in
order. Another test set which consisted of 100 CT scans was used on to evaluate
the submitted solutions on KiTS21 challenge. Our model achieved the 3rd place
in the leaderboard with a mean sampled average dice score of 0.8944 and a mean
sampled average surface dice score of 0.8140. We also visualize the segmentation
results for all trained models in Fig. 3.
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Fig. 3. Segmentation results for kidney, tumor and cyst using U-Net trained models
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Table 1. Average 5-fold performance measures for the trained U-Net models for kidney
tumor segmentation

U-Net model Dice scores SD scores

Kidney Cyst Tumor Kidney Cyst Tumor

2D 0.9615 0.7686 0.7367 0.9072 0.6154 0.5787

3D FullRes 0.9691 0.8693 0.8535 0.9359 0.7626 0.7415

3D LowRes 0.9685 0.8705 0.8568 0.9272 0.7508 0.7377

3D Cascade 0.9748 0.8813 0.8710 0.9448 0.7728 0.7605

KiTs21 Leaderboard 0.8944 0.8140

4 Discussion and Conclusion

The paper presents a cascaded deep neural network for semantic segmentation
of kidneys and surrounding anatomy. The approach is based on 3D U-Net with
two stages for training. The first stage model is trained on downsampled volumes
while the second stage model is trained on the cropped region of interest in its
full resolution. The models were able to accurately segment the kidney and
tumor while the performance of cyst segmentation is lowest due to the small
number of annotated cases with cyst. The model achieved an average dice score
of 0.9748, 0.8813, 0.8710 for kidney, tumor and cyst using 3D cascade U-Net
model. The performance of the cascade network outperformed other trained U-
Net models based on 2D, 3D low resolution and 3D full resolution. The model
also achieved the 3rd place in the leaderboard of KiTS21 challenge with a mean
sampled average dice score of 0.8944 and a mean sampled average surface dice
score of 0.8140 using a test set of 100 CT scans.
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Abstract. The accurate, automated detection and segmentation of
renal tumors is of great interest for the imaging-based diagnosis, his-
tologic subtyping, and management of suspected renal malignancy. The
KiTS21 Grand Challenge provides 300 contrast enhanced CT images
with kidney, tumors and cysts with corresponding manual annotation,
to facilitate the development of robust segmentation algorithms for this
task. In this work, we present an adaptation of the historically-successful
3D U-Net architecture, combined with deep supervision, foreground over-
sampling and large-scale image context, and trained on the majority-
prediction segmentation masks. Our model achieved test-set performance
of 97.0%, 85.1%, and 81.9% volumetric Dice score, and 93.7%, 72.0%, and
70.0% surface Dice score, on combined foreground, renal masses, and
renal tumors, respectively, which tied for sixth place among challenge
participants.

Keywords: 3D U-Net · Medical image segmentation · Renal tumor
detection

1 Introduction

With the increasing quantity and quality of volumetric medical images, deep-
learning methods are gaining in popularity, and equal or exceed the performance
of expert human reviewers on a wide variety of detection, segmentation and clas-
sification tasks [8]. Automated tumor detection and delineation is of particular
interest in the context of renal masses, which are often incidentally detected and
whose imaging features have significant implications for patient management [6].

3-D encoder-decoder networks, such as 3D U-Net [9] and V-Net [5], have been
shown to be robust to a wide variety of segmentation tasks across imaging modal-
ities and protocols. Crucially for medical imaging applications, where the amount
of training data is often severely limited due to privacy concerns and time- and
cost-prohibitive annotation, such networks can generally be trained end-to-end
from very few images. Although the U-Net architecture has subsequently been
c© Springer Nature Switzerland AG 2022
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augmented by the incorporation of residual blocks, attention gating, and other
features, the “vanilla” U-Net often outperforms its successors. Motivated by this
observation, nnU-Net (short for “no new U-Net”) [4] focuses primarily on stan-
dard network architectures, while tuning hyperparameters such as batch size,
optimizer parameters, and patch and kernel size to improve the network gen-
eralization ability. The nnU-Net has achieved top performance by mean Dice
similarity on all but one class of the Medical Segmentation Decathlon challenge
[1], and was also the basis for the top-performing entry in the KiTS19 Grand
Challenge [2,3]. Medical images are mostly single channeled and less diverse
than natural images [7]. Hence, we hypothesize that a straightforward 3D U-Net
architecture with proper processing and sampling of original data and minor
modifications to network architecture, may achieve similarly high performance
on the current challenge dataset.

2 Methods

2.1 Training and Validation Data

Our submission made use of the official KiTS21 training set alone. The data
was trained with 240 cases and validated using the remaining 60 cases. Net-
work training and validation are performed on the majority-voting segmentation
masks provided by the challenge organizers.

2.2 Preprocessing

The original CT scans are resampled to isotropic 1.99 mm × 1.99 mm × 1.99
mm resolution by third-order spline interpolation, and the ground-truth segmen-
tation masks are resampled using nearest-neighbor interpolation.

We achieved optimal network performance by performing case-by-case clip-
ping of Hounsfield intensity values to the 0.5th and 99.5th percentile, after which
each volume was normalized by subtracting the mean intensity and dividing by
the standard deviation. All results reported in this paper were obtained with this
normalization technique. Data augmentation including mirroring, rotation about
all axes, brightness control, gamma correction, contrast adjustment, and scaling
were applied randomly at run time to all image patches, with a probability of
0.4 for each operation.

2.3 Network Architecture

The network is constructed based on the 3D U-Net [9] architecture, using the nn-
UNet framework; the network architecture is depicted in Fig. 1. The breadth of
first convolutional block is set to 32 channels, and doubles at each downsampling
step. Downsampling is continued until reaching output dimension 4×4×4. At the
shallowest layers of the upsampling arm, we generate downsampled prediction
masks by convolution followed by softmax output. Such supervision enables the
network to predict correctly starting from the low resolution and avoid passing
wrong segmentation information to the higher resolution layers.
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Fig. 1. The scheme of the 3D U-Net. All convolution blocks use 3 × 3 × 3 kernels and
the transposed convolution use 2 × 2 × 2 kernels.

2.4 Loss Function

We use the sum of categorical cross-entropy and soft Dice loss as our objective
function at each output layer. The final loss function is the weighted sum of the
losses calculated at each output layer of the network, with the weight decreasing
by a factor of two with each drop in resolution.

2.5 Optimization Strategy

We choose a patch size of 128×128×128 and set the batch size to 4, maximizing
the patch volume under the constraints imposed by GPU memory. Patches are
sampled at random from the training images at run time, with oversampling
of the foreground classes achieved by requiring that at least one-third of each
patch be occupied by a foreground label (kidney, cyst, or tumor) to focus network
training on the foreground classes. We implement SGD with an initial learning
rate of 0.06, 0.99 momentum and Nesterov as our optimizer. We define one epoch
as 250 batches and the whole training phase lasts for 1000 epochs.

2.6 Validation

Our hold-out validation set consists of 60 cases selected at random without
replacement from the public dataset. Validation is performed using a sliding
window approach with a stride equal to half the patch size.
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2.7 Post-processing

The predictions are resampled to their original resolutions by nearest-neighbor
interpolation without any further processing.

3 Results

Validation loss was minimized at epoch 892; training and validation loss curves
are depicted in Fig. 2 below.

Fig. 2. Training loss (blue), validation loss (red), and exponential moving average of
the composite Dice (green) across 1000 epochs. (Color figure online)

Model selection was performed by comparison to the majority-vote segmen-
tation on the validation dataset; performance metrics for the final network were
calculated against both the majority-vote and individual annotations for com-
parison. On the test set, the network attained a mean volumetric Dice score of
0.970, 0.851 and 0.819 on the “kidney + masses”, “masses” and “tumor” classes,
respectively; mean surface Dice scores on the same classes reached 0.937, 0.720
and 0.700 respectively. Performance metrics for both the validation and test sets
are shown in Table 1 below, with representative slices from the best-performing
validation cases presented in Fig. 3.
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Table 1. Volume Dice and surface Dice on the validation and test sets.

Dice (Majority/Individual/Test) Surface Dice

Kidney + Masses 0.971/0.963/0.970 0.937/0.919/0.937

Masses 0.861/0.856/0.851 0.762/0.749/0.720

Tumor 0.840/0.835/0.819 0.743/0.729/0.700

Fig. 3. Representative segmentation from the top-four validation cases, as determined
by the mean of volumetric and surface Dice scores across all evaluation classes. Kidneys
are annotated in red, renal tumors in green, and cysts in blue. Top row: predicted
segmentation; Bottom row: majority-vote ground truth. (Color figure online)

Both the mean Dice coefficient and mean surface Dice are relatively robust to
the choice of majority or individual annotation for evaluation, with a maximum
absolute decrease of 0.008 for Dice coefficient and 0.018 for surface Dice across
all hierarchical classes when comparing individual annotation to the majority-
voting scheme. Validation performance under the two evaluation methods was
also strongly correlated at the subject level (Spearman r = 0.996). The network
generalized well to the test set, with an absolute decrease of 0.016 and 0.029 in
volume Dice and surface Dice coefficients, respectively, on the tumor class.

The distributions of volumetric and surface Dice coefficients across the vali-
dation set (Fig. 4) are left-skewed with multiple outliers at low Dice coefficient,
most prominently among masses and tumors. Among validation cases containing
a solitary renal tumor, we observed that all outliers with respect to volumetric
and surface Dice have tumor volumes below the median (24.75 cm3), as computed
from the majority-vote segmentation (Fig. 5). Performance on tumors below the
median volume differ from performance on larger tumors, both by volumetric
Dice (median 0.832, vs. 0.942, Mann-Whitney U = 28, p < 10−9) and surface
Dice coefficients (median 0.751 vs. 0.829, Mann-Whitney U = 216, p < 0.005).
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Fig. 4. Box-and-whisker plots for the volumetric and surface Dice coefficients of vali-
dation cases, for all evaluation classes.

Among cases in the validation set with worst tumor Dice coefficient, we
observe three general failure modes for both tumor and cyst segmentation
(Fig. 6): omission or false detection of small masses (Fig. 6A, D), under- seg-
mentation (Fig. 6B, C) and tumor/cyst mis-classification (Fig. 6D, E). Generally,
small cysts were particularly vulnerable to under-segmentation or omission.

Fig. 5. Histograms of tumor volumetric (top) and surface (bottom) Dice coefficients,
in validation cases with a single renal tumor (n = 57). For illustrative purposes, we
define the “low volume” class to include tumors with majority-vote volume below the
median on this dataset, with “high volume” containing the remainder.
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Fig. 6. Representative examples of segmentation failure, defined by lowest volumetric
Dice score for the tumor class. Kidneys are annotated in red, renal tumors in green, and
cysts in blue. Top row: CT image; Middle row: predicted mask overlaid; Bottom row:
majority-vote ground truth segmentation overlaid. Note missed/false-positive small
masses (cases A, D), under-segmented cysts and tumors (cases B, C), and mis-classified
masses (cases D, E). (Color figure online)

4 Discussion and Conclusion

Our work demonstrates once again that 3D U-Net architectures achieve competi-
tive performance on kidney and renal mass segmentation in the KiTS21 dataset.
Building on the nnU-Net framework, we incorporate deep supervision, a tar-
geted foreground-oversampling strategy, and large-volume image patches with
maximized batch size to optimize network performance. On the test dataset,
we achieve competitive volume Dice scores of 0.970, 0.851 and 0.819 for kid-
ney (including tumor and cysts), mass and tumor and surface Dice scores of
0.937, 0.720 and 0.700 for kidney (including tumor and cysts), mass and tumor
respectively, tying for sixth place out of 25 participating teams.

Validation performance metrics indicate that the majority-vote segmentation
is a reasonable proxy for individual reviewers’ annotations. Both volumetric and
surface Dice scores against individual annotations are quite similar to those
attained on the majority predictions used for training. Nevertheless, alternative
strategies leveraging the individual annotations directly, including ensemble pre-
diction using networks trained by separate reviewers, may be of further interest.
For applications where minimizing boundary error is particularly desirable, it
may be beneficial to add a proxy for the surface Dice coefficient to the objective
function directly.
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Renal tumors and cysts remain challenging targets for segmentation due to
their morphological heterogeneity and inconsistent Hounsfield intensity values
between CT scans [7]. We have found that small masses are especially challeng-
ing for our current architecture, and that low tumor volume is associated with
a decrease in both volumetric and surface Dice scores. Although U-Net archi-
tectures are known to perform robustly even with limited training data, it is
possible that given a larger training set, higher-capacity models may achieve
superior performance in renal mass segmentation. Given the relative abundance
of publicly-available contrast-enhanced CT without voxel-level annotation, the
design of semi-supervised or weakly-supervised architectures for 3D semantic
segmentation is of particular interest to improve upon our current performance.
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Abstract. Kidney and Kidney tumor segmentation from CT scans has tremen-
dous potential to help doctors in early diagnosis and localization of tumor, its
size and type and for making timely treatment plans. However, considering the
nature and volume of data, it is difficult and time consuming to train on such CT
scans. In this paper, we propose enhancements to the 3D U-Net model to incor-
porate Spatial and Channel Attention in order to improve the identification and
localization of segmentation structures by learning on spatial context. When com-
pared with Residual U-Net model with greater depth and more feature maps, our
Spatial and Channel Attention enhanced U-Net with less depth and feature maps
performed significantly better on validation and training set when trained under
similar conditions.

Keywords: Kidney tumor · Segmentation · 3D U-Net · Spatial attention ·
Channel attention

1 Introduction

Manually identifying tumors from CT scans is a tedious and time-consuming process.
It is also a difficult task as there can be inconsistencies in proper segmentation even by
experienced practitioners. In some cases, the boundaries of lesions can also be unclear
in CT scan images and the images can also have poor contrast and structure definition.
To help solve these issues, many computer vision based deep learning methods have
been proposed and developed which are trained to segment and/or classify such lesions.
One of the most popular models for such tasks is U-Net [1] which can be modified for
3D convolutions and with residual units as proposed in [2]. Furthermore, the size of
such imaging modalities can be huge, thus making it difficult to train on all the data. So
proper data preprocessing and manipulation can also play an important role in making
the training efficient and viable and make the model more robust to drift in data.

In this paper, we enhance the basic U-Net by including visual attention introduced
in [3] with 3D convolutions. Attention blocks help our model train more effectively by
refining the features with the help of a global attention map. Combination of attention
mechanism with U-Net has previously been explored in [4]. [5] introduced Squeeze and
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excite mechanism which is advantageous for channel refinement as used in works such
as [6] with variations of attention mechanism across spatial and channel dimensions and
[7] with project and excite blocks for segmentation of volumetric medical scans. Models
with attention have previously been used for Kits19 [8] dataset in works such as [9]
which use attention modules at the end of their model for final refinement of features. In
this paper, we use architecture is similar to [10] which uses spatial and channel attention
separately for fine and sparse features. We also trained a standard U-Net with residual
blocks for comparison and found that our spatial and channel attention enhanced U-Net
performed better on training and validation sets, that too with less number of epochs.
We also resample our data, especially along the z-axis to effectively increase the number
of training image slices per volume. In order to reduce training time on constrained
resources, we use Nvidia Clara SmartCache [11] to improve training times without
loading the entire dataset to cpu memory. The following sections describe in detail
the data methods and the custom deep learning U-Net model used in our challenge
submission.

2 Methods

In this section we discuss the data split for training, preprocessing steps and data aug-
mentations from the point of view of generalizability, and finally the custom U-Net
model along with the details about attention blocks.

2.1 Training and Validation Data

Our submission made use of the official KiTS21 training set alone. For segmentation
masks, we have used “aggregated_AND” based final masks to train our model. We have
refrained from using data from other similar studies and instead use data augmentation
techniques to adapt the segmentationmodel for better generalizability. The data was split
in a 90:10 ratio for training and validation respectively. The data is randomly shuffled
before creating the validation split. The final submission uses a model trained on the
entire training set.

2.2 Preprocessing

The number of slices for each volume sample is different and the number of slices can
also be high enough to consume all available resources during training. To avoid such a
scenario, we resample the data to 2 × 1.62 × 1.62 mm to have the same voxel spacing
across the patient image volumes. The lower spacing along the z-axis increases the
number of training slices per patient and thus helps generalizability. We further clean
the data by keeping only the body structures in frame by cropping the foreground. The
final cropped data is further divided in chunks of 64 × 128 × 128 volumes for training
and evaluation. For training Residual U-Net, we divide the cropped data in chunks of 64
× 160 × 160 to capture higher spatial information.

The intensity values vary based on physical properties of structures and thus we
remove unnecessary values corresponding to structures like bone and air by clipping to
range (−80, 305). Then the clipped values are rescaled between 0 and 1 for all images.
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In order to improve training times and prevent crashes by cpu memory bottleneck,
we use the Nvidia Clara SmartCache dataset loader. We set the cache rate = 0.4 and
replace rate = 0.5. This ensures sufficient data is cached in memory for training while
replacing 50% of cached data at each step without caching the entire dataset and choking
the cpu memory.

2.3 Data Augmentations

In order to make the model generalizable, we introduce variance in data using data aug-
mentation techniques. To introduce spatial variance, we use 3D Elastic deformation with
a probability of 0.5. The parameters for 3D elastic deformation are: sigma (smoothness
factor) = (5, 8); magnitude = (50, 150); translate = (10, 10, 5) in pixels; rotate = (5, 5,
180) in degrees, scale = (0.1, 0.1, 0.1) in proportion of image size. This augmentation
introduces variation in shape of structures while maintaining spatial information.

For introducing perceptual or intensity variations, we use random intensity shift with
maximum intensity offset value of 0.1. We also use Gaussian noise with mean = 0 and
standard deviation = 0.1. Both of the intensity-based augmentations are applied with
probability of 0.25 individually.

2.4 Proposed Method

Following the success of U-Net models and its variants, we have decided to use the U-
Net model with 3D Convolution blocks as our base architecture. Our base architecture
has 3 encoding and 3 decoding blocks with a bottleneck block in between. Figure 1(A)
describes the architecture used in our submission. The number of feature maps for
encoder blocks are (32, 64, 128), followed by 128 feature maps for the bottleneck block.
The feature maps from skip connections are stacked in decoding blocks resulting in
feature maps (256, 128, 64). All the encoding and decoding blocks have kernel size of
3 × 3 × 3 and stride value as 2, except for bottleneck block with kernel size of 3 × 3
× 3 and stride value 1, and the final output conv layer with kernel size 1 × 1 × 1 and
stride value 1. To enhance this base model, we have added Spatial attention and Channel
attention modules, as introduced in [12] in an architecture similar to [10] which was
proposed for 2D segmentation tasks.

Spatial Attention Block: The spatial attention block is responsible for identifying where
the useful information is present in the image, by utilizing the inter-spatial relationships
of the image features. Figure 1(B) describes the spatial attention block used in our
proposed approach. The spatial attention block uses mean and max operations along
channel dimension followed by 3D conv (7 × 7 × 7) to identify region of interest and
multiply the attention map with output of preceding 3D Conv + ADN (Attention +
Dropout + Normalization) block to filter out location of important features.

Channel Attention Block: Instead of focusing on where the important feature is, the
channel attention block identifies what is useful in a given image. Figure 1(C) describes
the channel attention block used in our approach. The channel attention block uses mean
and max values across spatial dimensions followed by a conv block to identify what is
important in a given volume.
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Fig. 1. (A) describes the enhanced U-Net architecture used in our submission. (B) represents the
working of Spatial Attention Block. (C) represents the working of Channel Attention Block. (B)
and (C) includes the interaction of attention mechanism with preceding blocks in the U-Net.

Our implementation is similar to model architecture of [10]. We have added Spatial
attention to the first encoding and last decoding blocks having the largest dimensions.We
have added channel attention to the bottleneck layer. The depth and number of feature
maps of our enhanced U-Net has been limited due to resource constraints but can be
increased to further improve the results.

2.5 Residual U-Net for Comparison

We also train a residual 3D U-Net to compare performance of our proposed model. The
residual U-Net is similar to [13], however the number of features maps are different
(16, 32, 64, 128, 256). The absence of attention blocks allows for a greater number of
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encoding-decoding blocks with more number of feature maps. Also, as compared to 64
× 128 × 128 patch size used for training our proposed model, we increase the size of
patches to 64 × 160 × 160 for residual U-Net to increase the spatial information per
patch.

2.6 Implementation and Training

The model is implemented in pytorch using MONAI [11] framework. Both the models
output 4 channels corresponding to 4 classes including the background. For training we
have used DiceCE loss which is a combination of Dice and Cross Entropy loss functions.
We have used AdamWoptimizer with a learning rate of 10e− 4. Bothmodels are trained
for 300 epochs for comparison and the final submission is made using our proposed
model which is trained for 500 epochs on Nvidia P100 GPU with 16 GB VRAM and 24
GB CPU RAM. Validation is performed at the end of each epoch using the overall dice
score as metric. Each epoch takes ~1.5 min and the whole model completes 500 epochs
in ~13 h.

2.7 Inference Procedure

For final inference, since the model is trained on 64 × 128 × 128 sized chunks of input
volume, we use sliding window inference with overlap = 0.8. The high overlap value
increases the inference time but also improves the segmentation results. The 4 channeled
output is converted to 1 channel by using maximum probability of segmented classes.
And finally, the voxel spacing of the segmented volumes are restored to original spacing
of the input volume by inverse transform.

3 Results

Here we provide the comparative results of our proposed model with residual U-Net
based on training and validation set. We provide overall dice and structure specific
dice scores. Finally, we also provide the dice scores on the test set as provided by
kits21 evaluation system. Table 1 shows the performance of our proposed model and
Residual U-Net on validation and complete training set after 300 epochs. Our approach
outperformed Residual U-Net by margin or ~0.2 in mean Dice score on both validation
and training sets.

Figure 2 shows the segmentation results corresponding to a volume from validation
set of our proposed model after 300 epochs. As it can be seen, the results do not suffer
from jagged/rough edges from resampling the input volume.

The results on the test set of KiTS21 are summarized in Table 2. Our approach ranked
18th on the KiTS21 challenge leaderboard.
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Table 1. Dice score for individual classes and mean across classes of our approach compared
with residual U-Net on validation and complete training set after 300 epochs.

Set Kidney Tumor Cyst Mean

Residual U-Net Validation set 0.901 0.456 0.273 0.543

Our approach 0.952 0.665 0.656 0.757

Residual U-Net Complete training set 0.901 0.480 0.270 0.550

Our approach 0.937 0.683 0.523 0.714

Fig. 2. Visualization of predicted segmentation map and corresponding label for an image from
validation set.

Table 2. Dice score for individual classes and mean across classes of our approach on test set.

Mean sampled average Dice Mean sampled average SD Tumor Dice

Our approach 0.7038 0.5059 0.566

4 Conclusion

In this paper, we propose an enhancement for existing 3D U-Net model using attention-
based blocks. The model we have used is a modified version of U-Net with spatial
and channel attention modules. We preprocess and augment the data to improve the
generalizability of our segmentation model. We compare our architecture (Mean Dice:
0.757) with Residual U-Net (Mean Dice: 0.543) architecture and show that our proposed
architecture, which is inferior in depth and number of feature maps as compared to
Residual U-Net, manages to outperform the Residual U-Net by significant margin on
validation set after being trained for similar number of epochs. Our approach ranked
18th on the final KiTS21 challenge leaderboard. Our proposed approach has potential to
improve results by further increasing the depth and number of feature maps and using a
larger sized chunks to improve spatial context.
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Abstract. Transfer learning has witnessed a recent surge of interest
after proving successful in multiple applications. However, it highly relies
on the quantity of annotated data. Constrained by the labor cost and
expertise, it is hard to annotate sufficient organs and tumors at the voxel
level for medical image segmentation. Consequently, most bench-mark
datasets were collected for the segmentation of only one type of organ
and/or tumor, and all task-irrelevant organs and tumors were annotated
as the background. We aim to make use of these partially but plen-
tifully labeled datasets to boost the segmentation performance of the
annotation-limited KiTS21 segmentation task. To this end, we first con-
struct a general medical image segmentation model that learns to seg-
ment these partially labeled organs or tumors. Then we transfer its pre-
trained weights to a specific downstream task, i.e., KiTS21. The primary
experiments demonstrate the effectiveness of the proposed transfer learn-
ing strategy. Our method achieves 0.890 Dice score, 0.805 SurfaceDice,
and 0.822 Tumor Dice in the KiTS21 challenge.

Keywords: Transfer learning · Limited annotation · Kidney tumor
segmentation

1 Introduction

Automatic kidney tumor segmentation in computed tomography images is one
of the most important tasks in the computer-aided diagnosis of kidney diseases.
Although deep learning has achieved great success in many medical applications,
kidney tumor segmentation remains challenging due to its limited annotations,
which is a common issue for most medical image segmentation tasks.

Fortunately, there are more and more open-source benchmarks available for
the development of medical image segmentation algorithms. However, most of
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them suffer from the partially labeled issue due to the intensive cost of anno-
tations. To address this issue, Zhang et al. [7] proposed a dynamic on-demand
network (DoDNet) that learns to segment multiple organs and tumors by using
partially labeled datasets. This makes it more convenient to learn a single seg-
mentation network from the diverse labeled datasets. In this paper, we investi-
gate the transfer learning problem from partially labeled datasets to downstream
tasks. We conduct experiments on the KiTS21 dataset. The primary results have
demonstrated the effectiveness of the proposed transfer learning strategy.

2 Methods

Our Method is heavily based on DoDNet [7] and nnUNet [5], the pipeline consists
of two-part: first, we use dynamic head pre-train our backbone on Multi-Organ
and Tumor Segmentation (MOTS) [7] dataset, then transfer the pre-trained
weight on the KiTS21 task. We illustrate the structure of our model in Fig. 1.
In the downstream task, we don’t use dynamic filter generating and replace the
dynamic head with a convolution layer.

Fig. 1. The pipeline of our proposed method. We use dynamic head pre-train a segmen-
tation network on several partially labeled datasets, and then transfer the pre-trained
weights to the KiTS21 task.
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2.1 Training and Validation Data

MOTS is composed of seven partially labeled sub-datasets, involving seven organ
and tumor segmentation tasks (including LiTS19 [1], KiTS19 [4], and Medical
Segmentation Decathlon [6]). There are 1,155 3D abdominal CT scans collected
from various clinical sites around the world, including 920 scans for training and
235 for the test.

Because KiTS21 dataset contains KiTS19 dataset, so MOTS has overlapped
data with KiTS21. Therefore, we only use 210 cases that have been used in
MOTS pre-train for fine-tuning. According to MOTS, we choose 168 images for
training and 42 for validation. Note that our final submission model is fine-tuned
on all the official KiTS21 training set. In addition, we use voxel-wise majority
voting (MAJ) for training and validation.

2.2 Preprocessing

Our pre-processing strategy follows nnUNet [5]. We resample all cases to a com-
mon voxel spacing of 0.78126 × 0.78125 × 0.78125, and train the network with
a patch size 128 × 128 × 128. The data augmentation methods include scaling,
rotations, brightness, contrast, gamma, and Gaussian noise augmentations.

2.3 Proposed Method

Fig. 2. Detailed network architecture. Number on the blocks represents the channel
size of the outputs.

Network Architecture. The main component of our framework is Residual 3D
U-Net. It uses 3D convolutions, LeakyReLU nonlinearities, and instance normal-
ization. Upsampling is performed via transposed convolution and downsampling
is performed with strided convolutions. The residual blocks of encoder are com-
posed of Conv-instnorm-Conv-instnorm-Conv-instnorm-LeakyReLU. As shown
in Fig. 2, the encoder has 4 stages. In each stage, we perform downsampling at
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the first residual block, then repeat these basic residual blocks (without down-
sampling) 2, 3, 5, and 2 times, respectively. Inspire by [2], we use ASPP to
capture objects as well as useful image context at multiple scales. Different from
the encoder, the residual blocks of the decoder are composed of Conv-instnorm-
LeakyReLU-Conv-instnorm, which are similar to [3]. These residual blocks are
implemented in every stage of the decoder only once.

Loss Function. We train the model with the combination of dice loss and cross-
entropy loss. For the two Hierarchical Evaluation Classes (HECs), i.e., Kidney
and Masses and Kidney Mass, we design a HECs-based loss to optimize it.
We consider HECs as the foreground and the rest as the background, and jointly
use the Dice loss and binary cross-entropy loss as the objective for each task.
Our total loss is a combination of the following three-part:

loriginal: Computed on all classes (i.e. Kidney, Tumor and Cyst),
lHEC1 : Only computed on HEC Kidney and Masses,
lHEC2 : Only computed on HEC Kidney Mass.

The final loss function is:

ltotal = loriginal + αlHEC1 + βlHEC2 , (1)

where α and β are weight of each loss.

Table 1. Performance of different methods. ‘SD’ means Surface Dice. Kidney, masses
and tumor represent HECs Kidney and Masses, Kidney Mass and Tumor, respec-
tively. All methods are trained based on the nnUNet framework for 1,000 epochs with
the same training strategies.

Method Dice Kidney Dice Masses Dice Tumor
nnUNet 0.9718 0.8498 0.8596

Ours(w/o pre-train) 0.9706 0.8603 0.8522
Ours(w/ pre-train) 0.9721 0.8634 0.8577

Method SD Kidney SD Masses SD Tumor
nnUNet 0.9410 0.7402 0.7443

Ours(w/o pre-train) 0.9384 0.7476 0.7358
Ours(w/ pre-train) 0.9404 0.7510 0.7450

Strategy. The stochastic gradient descent (SGD) algorithm with a momentum
of 0.99 was adopted as the optimizer. To reduce the computational cost in the
ablation experiment, all results we reported are obtained by training the models
for 100 epochs based on the nnUNet framework. The learning rate was initialized
to 0.01 and decayed according to a polynomial policy lr = lrinit × (1 − k

K )0.9,
where the maximum epoch K was set to 1,000.
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3 Results

We use the KiTS21’s official code to generate ‘groups’ of sampled segmenta-
tion and evaluate our predictions. The volumetric Dice coefficient and the Sur-
face Dice are used as the evaluation metrics. The results summarized in Table 1
demonstrate the superior performance of our method over the nnUNet baseline.
Some examples of our prediction results are depicted in Fig. 3.

Table 2. Ablation study of the proposed HEC-based loss functions.

Loss Settings Dice Kidney Dice Masses Dice Tumor
loriginal 0.9128 0.6694 0.6372

ltotal(α=1,β=1) 0.9053 0.6422 0.6297
ltotal(α=0.1,β=0.3) 0.9237 0.7114 0.6835

Loss Settings SD Kidney SD Masses SD Tumor
loriginal 0.8494 0.5072 0.4733

ltotal(α=1,β=1) 0.8336 0.4904 0.4616
ltotal(α=0.1,β=0.3) 0.8574 0.5289 0.5045

Fig. 3. Visualization of the segmentation results of case 151 (the first row) and 175
(the second row).

We use loriginal (original loss function of nnUNet) and our HEC-based loss
to perform the ablation study on a basic nnUNet framework. In order to reduce
the computational cost in the ablation experiment, we only train nnUNet with
100 epochs. From Table 2, we can see that α = 0.1 and β = 0.3 achieve the best
performance.
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4 Discussion and Conclusion

We used dynamic filter generation and various partially labeled datasets for pre-
training in this research to provide a two-stage semantic segmentation pipeline
for kidney and tumor segmentation. The results of the experiments show that the
suggested transfer learning approach successfully transfers pre-trained weights
from MOTS to KiTS21 tasks. It shows that other small-sample 3D medical image
segmentation tasks can benefit from a pre-trained 3D network.
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