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Abstract. Attribute descriptions enrich the characteristics of fashion products,
and they play an essential role in fashion image research. We propose a fashion
classification model (M2Fashion) based on multi-modal data (text + image). It
uses the intra-modal and inter-modal data correlation to locate relevant image
regions under the guidance of attributes and the attention mechanism. Compared
with traditional single-modal feature representation, learning embedding from
multi-modal features can better reflect fine-grained image features. We adopt a
multi-task learning framework that combines category classification and attribute
prediction tasks. The extensive experimental result on the public dataset Deep-
Fashion shows the superiority of our proposed M2Fashion compared with state-
of-the-art methods. It achieves +1.3% top-3 accuracy rate improvement in the
category classification task and +5.6%/+3.7% top-3 recall rate improvement in
the attribute prediction of part/shape, respectively. A supplementary experiment
on attribute-specific image retrieval on the DARN dataset also demonstrates the
effectiveness of M2Fashion.
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1 Introduction

With the development of convolutional neural networks (CNN) and the publication
of large-scale fashion datasets, significant progress has been made in fashion-related
research, including fashion item recognition [1–3], fashion compatibility recommen-
dation [4, 5], fashion attribute prediction [1, 6, 7] and fashion image retrieval [8–10].
Fashion category classification is a multi-class classification task, and fashion attribute
prediction is a multi-label classification task. both of them generate helpful information
for fashion items. Traditional classificationmethods usually only use the features learned
from images as input and ignore the attribute information.

Figure 1 illustrates three fashion items in a fashion dataset.Wecan see that each image
belongs to a category and has some attribute labels associated with it. The attribute labels
of each fashion image reflect the category of the image. For example, an item with the
‘strapless’ attribute is unlikely to be a pair of ‘Jeans’, while an item with the ‘mini’
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attribute is more likely to be a ‘dress’. In addition, there is a specific correlation between
the attribute labels describing a fashion image, and they are not entirely independent.
For example, ‘denim’ and ‘crochet’ will not be used to describe the same piece of
clothing, while ‘strapless’ and ‘mini’ express the same piece of clothing because they
are independent of each other. The use of labels and dependencies between labels helps
to understand fashion items more accurately. Our goal is to use images and a group of
known attribute labels to build a multi-modal classification model.

denim

distressed

boyfriend

mineral wash

chiffon

mini

strapless

sweetheart

candy

crochet

mini

strapless

sweetheart

(a) category: dress (b) category: dress (c) category: Jeans

Fig. 1. Examples of fashion images and attributes. Image (a) and Image (b) share some attributes:
mini, strapless and sweetheart, and they belong to the same category. Image (c) belongs to a
separate category and has completely different attributes.

To support multi-modal interaction, we use two types of attention mechanisms to
facilitate the interaction between visual and semantic information, i.e. an attribute-
specific spatial attention module and an attribute-specific channel attention module.
They enable the network to learn multi-modal features based on known attribute labels.
In the model training phase, we represent the state of the labels as positive, negative or
unknown to model them. Suppose we know the attribute state of image (a) and set it to
true (‘strapless’) or false (‘maxi’), the model can predict with a high degree of confi-
dence that the image belongs to the ‘upper body’ category and has the ‘mini’ attribute.
We compare our model with some competing methods on public datasets, which proves
the model’s superiority. The main contributions are as follows:

• We propose a fashion classification model (M2Fashion) based on multi-modal fea-
tures. It is an attribute-guided attention-based model, which extracts more associated
information between images and attributes to promote accurate fashion classification
and attribute prediction. A channel attention module and a spatial attention module
are integrated into the model for data fusion of two different modalities.

• We adopt a multi-task learning framework that combines category classification and
attribute prediction tasks. Compared with other classification models, the attributes
in our model are not independent, and their relationship is contained in the attribute
hierarchy.

• Extensive experiments are carried out to compare the proposed model with several
state-of-the-art models on public datasets. Experimental results show the superiority
of the proposedmodel. In addition,M2Fashion is applied to an attribute-specific image
retrieval tasks by removing the final classifier. This supplementary experiment also
demonstrates the effectiveness of our model.
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2 Related Work

Attribute Learning. The existing attribute learning methods can be categorized into
two groups: 1) visual feature-based [9, 10]. They embed images in a common low-
dimensional space and use the feature vectors in the low-dimensional space for attribute
classification. 2) visual-semantic feature-based [11–13]. They learn joint representation
by exploring the correlation between multi-modal content. Some of these methods use
semantic information from attributes or annotated text to extract saliency or visual atten-
tion from the image. The above studies all learn visual/semantic features but ignore the
relationship between attributes. Our work aims to mine the inner correlation of multiple
attributes to learn fine-grained image representations.

Attention-Based Models. In recent years, the attention mechanism is widely used
in computer vision and natural language processing. This technology has also been
researched and applied in the field of fashion. Ji et al. [14] proposed a tag-based atten-
tion mechanism and a context-based attention mechanism to improve the performance
of cross-domain retrieval of fashion images. Li et al. [15] proposed a joint attribute
detection and visual attention framework for clothes image captioning. Ma et al. [16]
proposed an attribute feature embedding network, which learns attribute-based embed-
ding in an end-to-end manner to measure the attribute-specified fine-grained similarity
of fashion items. Inspired by the success of the attention mechanism, we proposed to
use two attribute-aware attention modules for fine-grained image classification tasks.

Multi-task Learning. Since it was proposed, multi-task learning (MTL) has achieved
many successes in several domains, such as image classificationwith landmark detection
[17], attribute-enhanced recipe retrieval [18], and visual question answering [19]. To
explore the intrinsic correlation of attributes to obtain more reliable prediction results,
we are motivated to build a multi-task framework to model the correlation and common
representation of categories and multiple attributes of fashion images.

3 Methodology

3.1 Problem Formulation

Given a set of fashion items denoted byD = {(x1, A1), ..., (xn, An)}, where xi(1 ≤ i ≤ n)

is the i-th image, xi ∈ R
c×h×w (c, h, and w are the number of channel, height, and weight

respectively), Ai = [ai1, ai2, ..., aiK ] is a multi-hot attribute vector which describes the
image appearance with K semantic attributes, aij ∈ {−1, 0, 1} (1 ≤ j ≤ K), and K is
the number of all attributes. The attribute set is denoted as A = {A1,A2, ...,AK }. The
goal of our model is to map the unimodal representation from images and attributes to a
joint semantic space, and learn a classifier f (•) in the joint space so that y = f (x, A; θ).
In category classification tasks, y denotes the predicted image category, and in attribute
prediction tasks, y denotes predicted attribute labels.



72 Y. Wan et al.

ResNet

Attribute hierarchy
chiffon
v-neck
lace

floral
sleeve
zipper

…
…

0
1
0

1
1
0

…
…

Attribute representation

Image representation

Em
bedding

1x1 conv

spacial
duplicate

1x1
conv

softm
ax

Attribute-aware spatial attention

M
ax

pooling

FC FC

…

Attribute-aware channel attention
Em

bedding

Category 
classification

Attribute
prediction

Multi-task classifierInput representation

…

part

neckline

root

floral

…texture

v-neck

style

sleeve length

sleeve

Fig. 2. The framework of our proposed model. It is made up of four key components, input
representation module, attribute-aware spatial attention module, attribute-aware channel attention
module, and multi-task classifier.

3.2 Network Structure

Figure 2 illustrates the framework of our model. It consists of four key components:
input representation module, attribute-aware spatial attention (ASA) module, attribute-
aware channel attention (ACA)module, andmulti-task classifier. For an input image, the
image embedding vector is extracted using ResNet pre-trained on ImageNet. Then, to
learn the fine-grained features of the image, we use the image and multiple attributes to
learn the feature representation. We adopt the architecture of [16] but add some changes
to the method. In their work, spatial attention and channel attention of images guided by
attributes are generated by embedding one attribute category such as ‘sleeve_length’. In
contrast, our model combines images and attribute values such as ‘3/4 sleeve’ to generate
attribute-guided attention. Our intuition is that images with the same attribute values will
have more similar features. After that, these new attribute-aware features are fed into
the attribute classifier.

Input Representation. To represent an image, we use ResNet, a CNN model pre-
trained on ImageNet, as the backbone network. To maintain the spatial information
of the image, we remove the last fully connected (FC) layer in CNN. Given an image
xi ∈ R

h×w×3, the feature extractor outputs a vector xi ∈ R
h×w×d , where h × w is the

size of the feature graph, and d is the number of channels. We represent the attribute
label status as positive, negative, or unknown. They are represented by 1, −1 and 0,
respectively. For an image xi, we collect a set of labels embedded in Ai, the j-th element
in Ai means the i-th image has the attribute aij. Attribute label embeddings Ai are learned
from an embedding layer of size d × K.

Ai = f1(Ai) = δ(Wa1Ai), (1)

where Wa1 ∈ R
d×K denotes transformation matrix, δ denotes the tanh activation func-

tion. Note that we broadcast Ai along the height and width dimension so that its shape
is compatible to the image feature map xi.
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Attribute-Aware Spatial Attention. An attribute is related to a specific visual region
of the fashion image. For example, the attribute ‘3/4 sleeve’ usually appears on either
side of the middle area in the image, and to learn attribute-specific features such as
‘sleeve length’, the regions around the sleeve will receive more attention. To calculate
the attribute-specific image space attention, instead of using a single attribute category to
guide attention, we use multiple attribute values to generate attribute embedding. These
values are organized into a hierarchical structure, called attribute hierarchy.

Specifically, for an image xi and its attribute labels Ai, we use I and T1 to represent
xi and Ai, respectively. First, we get the attribute guided spatial attention feature vector
denoted as Vs, obtained by calculating the weighted average of the input image features
according to the attribute label embedding. For image embedding I, we employ a con-
volution layer with d 1 × 1 convolutional kernels following a nonlinear tanh activation
function to transform the dimension of the image to d. The mapped image feature vector
is expressed as

f2(I) = δ(Wv1I), (2)

where Wv1 denotes a convolutional layer containing d 1 × 1 convolution kernels, and δ

denotes the tanh activation function.
The attended image feature vector is fused with attribute feature using element-wise

product followed with an activation function.

fs(I , T1) = δ(Wv2(f2(I) � T ), (3)

where � denotes element-wise product operation, Wv2 is 1 × 1 convolutional layer,
and δ denotes the tanh activation function. The attention weight is obtained through the
softmax activation function.

αs
l = exp(fs(Il, T1))

∑h×w
j exp(fs(Ij, T1))

. (4)

Then, the spatial attention feature vector under the attention of attribute Ai can be
obtained by the following calculation.

Vs =
∑h×w

l
αs

l Il, (5)

where αs
l ∈ Rh×w is the attention weight, and Il is the image feature at location l.

Attribute-Aware Channel Attention. We adopt the attention mechanism of Ma et al.
[16] with one modification. In their work, they apply sum pooling on the output from
ASEN module. In contrast, we adopt global max pooling on the feature map Vs to
concentrate only on discriminative areas. For the attribute Ai, we employ a separate
attribute embedding layer to generate an embedding vector with the same dimension as
Vs,

Ãi = f3(Ai) = δ(Wa2Ai), (6)
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where wa2 ∈ R
c×n is the embedding parameter, and δ is the tanh activation function.

For the convenience of understanding, we use T2 to represent
∼
Ai. The spatial attended

features and attribute embedding are fused by concatenation, then fed into two sequential
FC layers to generate the attribute-aware channel attended feature. The attention weight
αc ∈ R

c is calculated by

αc = σ(Wc2σ(Wc1[T2, Vs])), (7)

Where [,] represents the concatenation operation, σ represents the sigmoid activation
function, and Wc1 and Wc2 are parameters of the FC layer. For simplicity of understand-
ing, the bias in the formula is removed. The final output of ACA is obtained by the
element-wise product of Is and attention weight αc.

Vc = αc � Vs. (8)

Finally, we further employ an FC layer over Vc to generate the attribute-guided
feature of the given image with known image labels.

Z = WVc + b, (9)

where W ∈ R
c×c is the transformation matrix, and b ∈ R

c is the bias.

Multi-task Learning. In this paper, theMTL framework is used to predict the categories
and attributes of images.We share feature vectors in two tasks, category classification and
attribute prediction, which helps to share knowledge and distinguish subtle differences
between different tasks. At the end of the network, we add two different branches, one
for predicting categories of images and the other for predicting attributes of images. The
shared attribute-guided image features output is fed to two branches, respectively. We
use the cross-entropy loss for category classification, denoted as

Lcategory = − 1

N

∑N

i=1
{yc

i log(P(ŷc
i |Zi)) + (1 − yi) log(1 − P(ŷc

i |Zi))}.
(10)

The output of the attribute prediction branch is passed into a sigmoid layer to squeeze
the output between [0,1] and output a

∧

j. We use the binary cross-entropy loss for attribute
prediction, denoted as

Lattribute =
∑K

j=1
aj log(p(âj|xi)) + (1 − aj) log(1 − p(âj|xi)), (11)

where aj is the j-th ground truth of the binary attribute label, p
(
a
∧

j|xi
)
is a component of

Y = [
y1, · · · , yk

]
, and Y is the predicted attribute distribution.

3.3 Label Mask Training

We adopt the strategy of label masking training proposed in [20] to learn the correlation
between labels and allow the model to perform multiple label classification with given



Learning Image Representation via Attribute-Aware Attention 75

partial labels. In the process of training, we mask a certain number of labels randomly
and use the ground truth of other labels to predict masked labels. For K possible labels,
we set certain labels Yu as unknown labels for a particular sample, where |Yu| is a random
number between 0.25K and K. Yu are randomly sampled from all available labels Y, and
their state is set as unknown. The remaining labels are known and denoted as Yk . These
labels in the known state will be used as input to the model along with the image, and
our model predicts labels in the unknown state. In the training process, some labels
are randomly masked as unknown, and the model learn the combination association of
different known status labels. After the label mask training is incorporated, Eq. (11) is
modified as

Lattribute =
∑K

j=1
E{CE(Yu, Ŷu|Yk)}. (12)

3.4 Triplet Network Training

We use the triplet network shown in Fig. 3 to train our model, aiming to learn effective
embedding and similarity measurements to minimize the distance between anchor and
positive samples and maximize the distance between anchor and negative ones.

The construction process of the input data in the triplet network is as follows. Given
an image triplet {xa, xp, xn}, xa is the anchor image, xp is the positive image, and xn is
the negative image. The positive example image has at least one attribute that is the same
as the anchor image, while the negative example does not have any attribute the same as
the anchor image. Let {Za, Zp, Zn} be the attribute attended feature embedding triplet.
The similarity is defined as cosine similarity.

sim(Za, Zp) = Za · Zp

‖Za‖ + ‖Zp‖ , sim(Za, Zn) = Za · Zn

‖Za‖ + ‖Zn‖ . (13)

We force the similarity between the anchor and the positive samples to be greater
than the similarity between the anchor and the negative samples, i.e., sim(Za, Zp) >

sim(Za, Zn). Then we define a triplet ranking loss function based on hinge loss as

Ltri = max{0, sim(Za, Zp) − sim(Za, Zn) + m}, (14)

where m represents the margin between two similarities. The total loss is defined as

Ltotal = Lcategory + λLattribute + γ Ltri, (15)

where λ and γ are parameters that balance the contribution of all losses.
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Fig. 3. The triplet network structure used to train our model.

4 Experiments

4.1 Experiments Settings

Datasets. Weconduct our experiments on a public datasetDeepfashion [1], a large-scale
clothes dataset.We choose its Category andAttribute Prediction benchmark (abbreviated
as DeepFashion-C) that is more suitable for our tasks. DeepFashion-C contains 289,222
clothes images in 46 categories and five attribute categories with 1,000 attribute values.
Each image is annotated with only one category and several attributes. We adopt the
same train-valid-test division as [1].

Metrics. For image category classification, top-k accuracy is usually adopted as the
evaluation metric. For image attribute prediction, the top-k recall rate used in [1] is
traditionally used as the evaluation metric.

Implementation Details. The proposed model is implemented in the Pytorch frame-
work with an NVIDIA GeForce GTX 1080Ti GPU. We use the ResNet 50 network
pre-trained on ImageNet for feature extraction. The images are resized to 224 × 224.
We use a 1× 1 convolutional layer to reduce the dimension of the feature vector to 512.
The multi-hot vector of the attributes is transformed to 512-dimensional vectors by an
embedding layer followed by the tanh activation function. Then the image and attribute
features are used to obtain spatial attention through the dot product operation. In the
ACA module, we use a separated attribute embedding layer. We use SGD to train the
triplet network, the total epoch is set to 20. The learning rate is 1e-5 and decays at the
rate of 0.95 every epoch. We empirically set α to 1 and γ to 0.5 in Eq. (15).

Baselines. We conduct comparative tests with some baseline models. All models use
the same triple sampling method for fine-tuning, but the training methods are different.
WTBI [21] first trains a generalized similarity model, and then fine-tunes each type of
clothing to obtain a class-independent model. DARN [8] constructs a tree structure for
all attributes to form a semantic representation space of clothing images. FashionNet [1]
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extracts features and landmark location information from images, and combines them
for training to predict image categories and attributes. Corbiere [9] uses weak label
information and images crawled from the Internet to make dot products and predicts the
probability of each word in the vocabulary. Attentive [3] uses a two-way convolutional
recursive neural network to improve classification through landmark-aware attention
and category-driven attention. Upsampling [22] increases the resolution of the feature
map through up-sampling and uses the predicted landmark location as a reference to
improve classification.

4.2 Experiment Results

We validate the performance of our model on the DeepFashion-C dataset, and Table 1
summarizes the performance of different methods in terms of top-k (k = 3, 5) recall
rate for fashion classification and attribute prediction. Some clothing classification and
attribute recognition results are show in Fig. 4. The following observations can be
obtained.

Table 1. Performance comparison of different models on DeepFashion-C dataset

Models Category Texture Fabric Shape Part Style All

Top-3 Top-5 Top-3 Top-5 Top-3 Top-5 Top-3 Top-5 Top-3 Top-5 Top-3 Top-5 Top-3 Top-5

WTBI 43.73 66.26 24.21 32.65 25.38 36.06 23.39 31.26 26.31 33.24 49.85 58.68 27.46 35.37

DARN 59.48 79.58 36.15 48.15 36.64 48.52 35.89 46.93 39.17 50.14 66.11 71.36 42.35 51.95

FashionNet 82.58 90.17 37.46 49.52 39.30 49.84 39.47 48.59 44.13 54.02 66.43 73.16 45.52 54.61

Corbiere 86.30 92.80 53.60 63.20 39.10 48.80 50.10 59.50 38.80 48.90 30.50 38.30 23.10 30.40

Attentive 90.99 95.78 50.31 65.48 40.31 48.23 53.32 61.05 40.65 56.32 68.70 74.25 51.53 60.95

Upsampling 91.16 96.12 56.17 65.83 43.20 53.52 58.28 67.80 46.97 57.43 68.82 74.13 54.69 63.74

Ours w/o ASA 91.89 96.13 55.61 65.17 40.12 54.73 59.70 68.98 49.17 59.19 64.48 71.82 52.64 62.37

Ours w/o ACA 90.12 95.15 54.73 64.82 39.45 53.27 58.21 66.72 47.87 57.53 60.54 68.61 50.47 60.07

Ours 92.33 96.65 56.89 66.31 40.42 55.83 60.42 69.87 49.62 61.17 65.38 72.79 54.85 64.76

• Our model outperforms all competitors in the category classification task and the
attribute prediction task. For the former, our model improves the top-3 accuracy rate
by 1.3%. For the latter, our model also improves the recall rate.

• We evaluate our model using only one attention module and get two variants:
M2Fashion w/o ASA and M2Fashion w/o ACA. The former employs global max
pooling instead of an attribute-aware spatial attention model to generate features. The
latter utilizes vector Vs as the attribute-guide feature vector directly. We can see that
removing the ASA or ACA module reduces the performance of the two subtasks,
showing the effectiveness of both ASA and ACA modules.

• The classification task has a more significant impact on the part-related attribute pre-
diction (+5.6% of top-3 recall rate) and the shape-related attribute prediction (+3.7%
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Fig. 4. Results of clothing category classification and attribute prediction on DeepFashion-C
dataset. The correct predictions are marked in green, and the wrong predictions are marked in red.

Fig. 5. Visualization of the attribute-aware spatial attention on DeepFashion-C.

top-3 recall rate) than the texture-related attribute prediction (+1.3% top-3 recall rate).
It does not perform well on the style-related attribute prediction and the fabric-related
attributes prediction because it is hard to focus the attention on these two attributes
on the images. The classification of clothing is more dependent on the shape charac-
teristics of clothing, and clothing classification can also promote the understanding
of shape-related attributes.

4.3 Attention Visualization

Visualization of our attention mechanisms can be found in Fig. 5. We observe that the
learned attention gives a higher response in the attribute-related areas, which shows that
the attention helps find out which areas are relative to the given attribute. According to
our observations, the attributes related to ‘part’, such as ‘maxi’ in Fig. 5(a) and ‘sleeve’
in Fig. 5(e), are more likely to highlight local visual features. The attention map of
attributes related to ‘material’ or ‘style’ focuses on the entire clothing.
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4.4 Impact of Joint Learning and the Pooling Methods

The Impact of Joint Learning. We explore the correlation between category classi-
fication and attribute prediction. As shown in Table 2 (top), the results show that the
joint learning of categories and attributes improves the accuracy of the two tasks. We
found that after adopting the multi-task learning framework, in the classification task,
the top-3 accuracy is increased by 4.1%, and the top-5 accuracy is increased by 3.0%;
in the attribute prediction task, the top-3 recall rate is increased by 11.7%, and the top-5
recall rate is increased by 12.2%.

The Impact of Global Max Pooling. We use global max pooling instead of global
average pooling to capture global context information. Global max pooling is sensi-
tive to discriminative local features. The function of global maximum pooling is verified
by ablation experiments. The results are shown in Table 2 (bottom). Global max pooling
improves the recall rate of category classification and attribute prediction.

Table 2. Performance comparison of different learning methods and pooling methods.

Methods Category All

Top-3 Top-5 Top-3 Top-5

Category only 88.64 93.84 – –

Attribute only – – 48.65 57.74

Category + attribute 92.23 96.65 54.35 64.76

GAP 91.72 95.84 53.63 62.84

GMP 92.23 96.65 54.35 64.76

Table 3. Performance comparison of attribute-specific fashion retrieval on DARN using MAP

Models Category Clothes
button

Clothes
color

Clothes
length

Clothes
pattern

Clothes
shape

Collar
shape

Sleeve
length

Sleeve
shape

All

Triplet 23.59 38.07 16.83 39.77 49.56 47.00 23.43 68.49 56.48 40.14

CSN 34.10 44.32 48.38 53.68 54.09 56.32 31.82 78.05 58.76 50.86

ASEN 36.69 46.96 51.35 56.47 54.49 60.02 34.18 80.11 60.04 53.31

Ours 36.91 48.03 51.14 57.51 56.09 60.77 35.05 81.13 62.23 54.29

4.5 A Case: Attribute-Specific Image Retrieval

The learned model can be applied to attribute-specific image retrieval tasks by removing
the final classifier. For instance, given a query with an image and two labels v-neckline
and floral, the model returns top-k similar images with these two labels.
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We conduct the experiment on DARN [8] dataset, which contains about 253983
upper-clothing images and has a total of 9 attributes and 179 attribute values. We ran-
domly divided the dataset into 8:1:1 for training, validation and test. Similar to [16],
we use the metric of mean average precision (MAP) for evaluation. Following baselines
are considered for comparison: Triplet Network, Conditional Similarity Network (CSN)
[23], and Attribute specific embedding network (ASEN) [16].

Table 3 shows the results of attribute-specific image retrieval tasks on the DARN
dataset. We can see that (1) the triplet network that learns the universal embedding
space performs the worst; (2) our proposed M2Fashion outperforms other baselines. We
attribute the better performance to the fact that M2Fashion uses multiple attribute labels
and label masks to learn the association between labels and the attention of labels with
images. In contrast, ASEN uses a single attribute category to guide attention.

5 Conclusions

In this paper, we explore fine-grained fashion image embedding to capture multi-modal
content for fashion categorization. The proposed model adopts the visual-text attention
mechanism to capture the association between different modal data and effectively uses
any number of partial labels to perform multi-label and multi-class classification tasks.
It also helps to discover how different attributes focus on specific areas of an image.
In the future, we will study the impact of the hierarchical structure of attributes on the
model and extend the model to hierarchical attribute prediction.
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