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Abstract. The performance of text-to-image synthesis has been signifi-
cantly boosted accompanied by the development of generative adversarial
network (GAN) techniques. The current GAN-based methods for text-
to-image generation mainly adopt multiple generator-discriminator pairs
to explore the coarse/fine-grained textual content (e.g., words and sen-
tences); however, they only consider the semantic consistency between
the text-image pair. One drawback of such a multi-stream structure is
that it results in many heavyweight models. In comparison, the single-
stream counterpart bears the weakness of insufficient use of texts. To alle-
viate the above problems, we propose a Multi-conditional Fusion GAN
(MF-GAN) to reap the benefits of both the multi-stream and the single-
stream methods. MF-GAN is a single-stream model but achieves the
utilization of both coarse and fine-grained textual information with the
use of conditional residual block and dual attention block. More specif-
ically, the sentence and word features are repeatedly inputted into dif-
ferent model stages for textual information enhancement. Furthermore,
we introduce a triple loss to close the visual gap between the synthesized
image and its positive image and enlarge the gap to its negative image.
To thoroughly verify our method, we conduct extensive experiments on
two benchmarked CUB and COCO datasets. Experimental results show
that the proposed MF-GAN outperforms the state-of-the-art methods.
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1 Introduction

Text-to-image synthesis aims at generating high-resolution, photo-realistic and
text-consistent images according to natural language descriptions, which is a
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challenging task in computer vision and natural language processing. It drives
research progress in multimodal learning and also has great potential applica-
tions, such as image editing, video games and computer-aided design.

Recently, many methods for text-to-image synthesis [6,13,17] are based on
Attentional Generative Adversarial Network (AttnGAN) [16]. AttnGAN consists
of two-stage generators, and generally encodes text descriptions into two kinds
of vectors, namely, global sentence vector and local word vector. The first stage
generator utilizes the sentence vector to generate low-resolution images, and
the second stage generator generates high-resolution images based on the initial
images and the spatial attention mechanism. More recently, many studies adopt
a simple single-stream GAN for text-to-image generation (see, e.g., [14,19,20]).
In particular, HDGAN [20] resembles a simple vanilla GAN, which has multi-
ple side outputs and uses complicated hierarchical-nested adversarial objectives
for training. DF-GAN [14] fuses image features and sentence features through
several deep fusion blocks and adopts a one-way discriminator, instead of a two-
way discriminator, to speed up the convergence of the generator. DTGAN [19]
employs the visual loss to ensure that the generated images and real images have
similar color distribution and shape.

These methods have proven to be useful. The single-stream structure is more
efficient than the stacked structure, as the former contains only one genera-
tor and one discriminator, while the latter (e.g., AttnGAN) is more complex
and consists of three generators, three generators, and a deep attentional mul-
timodal similarity module. Thus the single-stream network is more preferable
when it is necessary to decrease the run time and improve the stability of the
generative model. However, it still has many shortcomings. Firstly, with the size
of the feature map increasing, it becomes more and more difficult to fuse sen-
tence vectors and image features through affine transformation only, and most
fine-grained information at the word level may be lost during the generation
process. Secondly, the one-way discriminator only pays attention to the match-
ing information between texts and images, but ignores the fact that matching
the generated images and real images can improve the quality of the generated
images. Although visual loss can alleviate this problem, it neglects the informa-
tion available from matching real and generated images.

To address these problems, we propose a novel Multi-conditional Fusion
Generative Adversarial Network (MF-GAN), which has only one genera-
tor/discriminator pair without involving extra modules such as object detection.
In the generator, we propose a Conditional Residual Block and a Dual Attention
Block, respectively, to take advantage of sentence features and word features to
model text-to-image mapping. In the discriminator, we first map the input image
into the semantic space, then employ a triplet loss to pull the synthesized image
towards its corresponding ground-truth image and push it away from another
image that is associated with a different text description.

We summarize the contributions of our work as follows. Firstly, we propose a
novel Multi-conditional Fusion Generative Adversarial Network (MF-GAN) for
text-to-image generation, where sentence features and word features are applied
for many times during image synthesis with only a single-stream GAN. Secondly,
triplet loss is carried to improve the semantic consistency and image quality by
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making the generated image close to its related image and far away from the
irrelevant image in the semantic space. To the best of our knowledge, it is the first
time to introduce the triplet loss in text-to-image synthesis. Lastly, we conduct
extensive experiments to quantify the advantages of MF-GAN. The experimental
results show that MF-GAN outperforms the state-of-the-art methods on two
standard benchmark datasets.

The remainder of this paper is structured as follows. Section 2 presents related
works. Section 3 describes the overall framework of MF-GAN. three important
components. Section 4 evaluates MF-GAN using two popular datasets. Section 5
concludes the paper with future works.

2 Related Work

The most popular and efficient text-to-image synthesis methods are GAN based
methods. The application of GAN was first proposed by Reed et al. [10] in 2014.
It contains a generator and a discriminator, where the former generates inter-
related images from texts, and the latter tries to distinguish generated images
from real images until it reaches the Nash equilibrium. However, the images
generated by this method have low resolution. To address this problem, Stack-
GAN [18] adopts a tree-like structure to improve the image quality. AttnGAN
[16] adopts an attention-driven, multi-stage GAN for the fine-grained text-to-
image generation, obtaining very promising results. Encouraged by the success
of AttnGAN, researchers further improve its performance. For example, SEGAN
[13] and SDGAN [17] apply siamese network [8] to fulfill low-level semantic diver-
sity. MirrorGAN [9] regenerates the corresponding text description based on the
generated images. CPGAN [6] designs a memory construction [1] to learn the
meaningful visual features from each relevant image for a given word by using
Bottom-Up and Top-Down Attention model and Yolo-V3.

Apart from the methods which take the stacked structure as the backbone
as mentioned above, there are many ways to convert the generation process into
multiple steps, which may lead to better performance on complex datasets such
MSCOCO [7]. More specifically, IGSG [3] builds scene graphs from text descrip-
tions first, which reason about the objects and their relationships. Then it uses
a graph convolutional network to generate scene layouts from the scene graphs.
Finally, a low-resolution image is generated by a Cascade Refinement Network.
InferrGAN [2] decomposes the text-to-image generation into three steps: gener-
ating bounding boxes for each object in the text description, generating object
shapes based on the bounding boxes, and generating the image conditioned on
them. Moreover, ObjGAN [5] proposes an object-driven attention mechanism to
provide fine-grained information for different components.

However, the training process of the generation process is slow and inefficient.
To simplify the model, HDGAN [20] presents an extensible single-stream gen-
erator architecture. DF-GAN [14] also presents a novel simplified text-to-image
backbone and Matching-Aware zero-centered Gradient Penalty to achieve the
desired results without extra networks. DTGAN [19] adopts the attention mod-
ules and conditional normalization to fine-tune on each scale of feature maps.
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Fig. 1. The architecture of MF-GAN with only one generator/discriminator pair. The
generator contains multiple CRBlocks (blue), DABlocks (yellow) and upsampling lay-
ers (orange). The discriminator contains multiple DownBlocks, which generate image
features from the input images. Adversarial loss is calculated based on (text, gener-
ated image), (text, real-match image), and triplet loss is calculated based on (gener-
ated image, real-match image), (generated image, real-mismatch image). (Color figure
online)

Different from the methods mentioned above, MF-GAN refines image fea-
tures at the sentence level through conditional batch-normalization and affine
transformation. Besides, the dual attention module is used only on the large scale
of image features, which can focus on the word-level information. Additionally,
inspired by [12], we also employ the triplet loss to generate more realistic and
semantic consistent images.

3 Method

In this section, we present MF-GAN, a novel text-to-image adversarial generation
network, aiming at refining image features at both sentence and word level and
meanwhile improving semantic consistency by triplet loss.

3.1 Overall MF-GAN Architecture

MF-GAN is composed of three main components: a text encoder, a generator,
and a discriminator, as illustrated in Fig. 1.

The text encoder aims at extracting the feature representations at both
sentence level and word level from the natural language descriptions. We adopt
a bi-directional Long Short-Term Memory (LSTM) pre-trained by [16] to learn
the text representation. Specifically, it takes a sentence as input, and each word
in the sentence corresponds to two hidden states in the bi-directional LSTM,
one for each direction. These hidden states are utilized to represent the semantic
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meaning of each word, and the last hidden states are concatenated to form the
global sentence vector. They are denoted by ω ∈ R

D×N and s ∈ R
D, where D

is the dimension of the word vector and sentence vector, N is the number of
words. In other words, ω is a feature matrix of all words and its ith column ωi

is the feature vector of the ith word in the given sentence.
The generator has three inputs: the sentence feature vector s, the word

feature matrix ω from the text encoder, and the noise vector z sampled
from the standard normal distribution. To make full use of all these infor-
mations for generating high-quality images, we apply m upsampling layers
(U1, U2, ..., Um) to enlarge image features, m Conditional Residual Blocks
(CRBlock) (R0, R1, ..., Rm) to fuse sentence information and image features, and
two Dual Attention Blocks (DABlock) (A1, A2) to complement more fine-grained
word-level information. Specifically, we have

ŝ = F ca(s); h0 = R0(fc(z, ŝ), s);
hi = Ri(Ui(hi−1)) for i = 1, 2, 3, ...,m − 2;
hj = Rj(Uj(Aj(hj−1, ω), hj−1)) for j = m − 1,m; k = 1, 2;
x = G(hm).

(1)

where (h0, h1, ..., hm) are the hidden states generated by (R0, R1, ..., Rm), which
represents the image features with gradually growing resolutions and hm is the
final output with the highest resolution. F ca is the Conditioning Augmentation
[18] which converts the sentence vector s to the Nc-dimensional conditioning vec-
tor ŝ, which is concatenated to the Nz dimensional noise vector z sampled from
the standard normal distribution. Then the result is fed into a fully connected
layer and the first CRBlock R0 to generate the 4× 4 image feature h0. CRBlock
Ri and DABlock Aj are described in detail in Sect. 3.2 and 3.3, respectively.

The discriminator in our MF-GAN mainly contains several DownBlocks,
each of which consists of several down-sampling layers and residual networks,
converting input images into 4× 4 image feature maps. Then the image features
of the generated images, real-match images, and real-mismatch images are used
to calculate the triplet loss (see Sect. 3.4) to improve semantic consistency. As
a result, the discriminator needs to judge whether the corresponding image and
text match according to the input image features and sentence features. In order
to do so, we first compress the sentence vector s to Nd dimensions and spatially
replicate it to form a 4×4×Nd tensor. Then this tensor is concatenated with the
image feature maps mentioned above, which is then fed into two convolutional
layers to calculate the adversarial loss for the discriminator and generator:

LD
adv = Ex∼Pdata

[max(0, 1 − D(x, s))]

+
1
2
EG(z,x,ω)∼PG

[max(0, 1 + D(G(z, s, ω), s))]

+
1
2
Ex∼Pmisdata

[max(0, 1 + D(x, s))],

(2)

LG
adv = Ex∼PG

[D(G(z, s, ω), s)], (3)
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where z is a noise sampled from the standard normal distribution, s is the
sentence vector, ω is the word feature matrix, Pdata, PG, Pmisdata respectively
denote the synthetic data distribution, real data distribution, and mismatching
data distribution.

3.2 Conditional Residual Block

Our CRBlock aims at refining image features using text information as guid-
ance. Specifically, we choose Conditional Batch Normalization (CBN) and Affine
Transformation (Affine), which can take sentence vectors as conditions to predict
the parameters of batch-normalization and linear transformation, respectively.
As shown in Fig. 1, CRBlock receives two inputs: sentence vector and image
feature map. Next we describe the CBN and Affine in detail.

CBN takes a batch of image features x ∈ R
N×C×H×W and sentence vector

s as input. It achieves the feature fusion as follows: First, it normalizes the mean
and standard deviation for each feature channel; second, it learns the parameters
γs and βs from the conditions s; third, it learns a set of affine parameters γ, β ∈
R

C from data. The modified normalization function is formatted as

CBN(x|s) = (γ + γs) × x − μ(x)
σ(x)

+ (β + βs), (4)

where μ(x), σ(x) ∈ R
C are the mean and standard deviation respectively. They

are computed across the dimension of batch and spatial independently for each
feature channel.

Affine is similar to CBN , which also receives two inputs: image features
x ∈ R

N×C×H×W and sentence vector s. It first predicts γs, βs ∈ R
C from s via

two one-hidden-layer MLPs. Then it fuses text information and image features,
which can be formally expressed as follows:

AFF (x|s) = γs × x + βs. (5)

3.3 Dual Attention Block

The purpose of our Dual Attention Block is to draw different sub-regions of
the image condition on words that are most relevant to those sub-regions, and
drawing the connection between words and channels. In implementation, we
apply spatial attention and channel-wise attention to image features.

Spatial attention module takes the word feature ω ∈ R
D×T and the

hidden image feature h ∈ R
D̂×(H×W ) as input. Note that ωi is the D-dimensional

feature vectors of the ith word (a total of T words), and hi is the D̂-dimensional
feature vectors of ith sub-region of the image. We first map the word feature
to the common semantic space of the image feature by a perception layer U ∈
R

D̂×D, producing ω′ = Uω. Then, we calculate the word-context vector for hj ,
which represents the relevance between the word vectors and the jth sub-region:

cj =
T−1∑

i=0

βj,iω
′
i, where βj,i =

exp(s′
j,i)∑T−1

k=0 exp(s′
j,k)

, (6)
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where s′
j,i = hT

j ω′
i, and βj,i means the weight of the ith word when generating

jth sub-region of the image. Therefore, the output of spatial attention module
is (c0, c1, ..., c(H×W )−1) ∈ R

D̂×(H×W ).
Channel-wise attention module has the same inputs as spatial attention

module: the word features ω ∈ R
D×T and hidden image features h ∈ R

D̂×(H×W ).
But it uses a different perception layer V ∈ R

(H×W )×D to convert the word
feature into the common semantic space of the image features, producing ω′′ =
V ω. Then we apply similar method to calculate word-context vector cj for the
jth channel of the image feature, which is a dynamic representation of word
vectors relevant to channels:

cj =
T−1∑

i=0

αj,iω
′′
i , where αj,i =

exp(r′
j,i)∑T−1

k=0 exp(r′
j,k)

, (7)

where r′
j,i = hT

j ω′′
i, and αj,i represents correlation values between channels and

words across all spatial locations. Hence, the output of channel-wise attention
module is (c0, c1, ..., cD̂−1) ∈ R

(H×W )×D̂.
Then we compute element-wise products of these two output attention maps

from the above two modules and the original image features respectively. Finally,
a new feature map is obtained after a channel-wise cascade processing.

3.4 Triplet Loss

To enhance the generation consistency, we apply triplet loss working on our
discriminator and focus on the hardest negatives in a mini-batch. In prac-
tice, given a pair of generated image and corresponding real image (Ig, Ir),
we choose its hardest negative image in this batch of real images by I ′ =
argmaxI �=Ird(D(Ig),D(I)), where D means generating image features by a set
of downsampling blocks in the discriminator and d means calculating the differ-
ences between two features. Then with the predefined margin α, we adopt the
triplet loss as following:

Ltriplet = max(d(D(Ig),D(Ir)) − d(D(Ig),D(I ′)) + α, 0). (8)

The generator loss consists of triplet loss and adversarial loss:

LG = LG
adv + λT Ltriplet, (9)

where λT is a hyper-parameter for triplet loss.
The discriminator loss contains adversarial loss and Matching-aware zero-

center gradient penalty (MA-GP) loss [14], which enables us to synthesize more
realistic images through a zero-centered gradient penalty on real data:

LD = LD
adv + λMEx∼Pdata

[(||∇xD(x, s)|| + ||∇sD(x, s)||)p], (10)

where p and λM are the hyper-parameters to balance two kinds of loss.
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4 Experiment

4.1 Datasets and Training Details

We evaluate our MF-GAN for text-to-image generation on two widely used
datasets. The first dataset is the CUB-200-2011 bird dataset [15], which con-
tains 200 bird species with 11788 images. We split them into 8,855 training
images and 2933 test images. Each image is annotated with 10 descriptions, 15
part locations, 312 binary attributes and 1 bounding box. We pre-process the
CUB dataset to ensure that the bounding boxes of birds have greater-than-0.75
object-image size rations suggested by [18]. The second dataset is the COCO
dataset [7], which contains 82783 images for training and 40504 images for val-
idation, and each image has 5 descriptions. The greater number and types of
images make the COCO dataset more challenging than the CUB dataset.

As for training details, we set D = 256, Nc = 128, Nz = 100, Nd = 256 and
W0 = H0 = 256 by default. Then we train MF-GAN for 800 epochs on CUB
and 120 epochs on COCO dataset by using Pytorch. Besides, we use Adam with
β1 = 0.0 and β2 = 0.9 to optimize our training process. The learning rate is set
to 0.0001 for generator and 0.0004 for discriminator according to Two Time-scale
Update Rule (TTUR) [14]. The text encoder and its parameters are all same as
the previous works [16].

4.2 Evaluation Metrics

Similar to previous works (e.g., [14]), we adopt two metrics, Inception Score(IS)
[11] and Frechet Inception Distance (FID) [14], to evaluate the performance.

Inception Score (IS). The Inception score aims to measure two indicators of
GAN: the quality and diversity of the synthesized images. It is formulated as:

I = exp(ExDKL(p(y|x)||p(y))), (11)

where x is a synthesized image and y is the label predicted by a pre-trained
Inception v3 model. IS computes the KL-divergence between the distribution
of p(x|y) and p(y). A higher IS score means that each generated image clearly
belongs to a specific class and the labels are evenly distributed. But when the
mode collapses, this result will have no reference value.

Frechet Inception Distance (FID). The FID has the same function as IS, but
the difference is that it calculates the Frechet distance between the distribution
of the real image r and the generated image x in the feature space of a pre-trained
Inception v3 network. The FID is formulated as:

F (r, x) = ||μr − μx||22 + Tr(Σr + Σx − 2
√

ΣrΣx), (12)

where μr, μx, Σr, Σx are respective means and covariance of real data distribu-
tion and generated data distribution. Lower FID means that two distributions
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Table 1. The IS and FID scores on CUB and COCO datasets.

Method CUB COCO

IS↑ FID ↓ IS↑ FID↓
AttnGAN [16] 4.36 ± 0.03 − 25.89 ± 0.47 35.49

ControlGAN [4] 4.58 ± 0.09 − 24.06 ± 0.60 −
SD-GAN [17] 4.67 ± 0.09 − 35.69 ± 0.50 −
SE-GAN [13] 4.67 ± 0.04 18.167 27.86 ± 0.31 32.28

DF-GAN [14] 4.86 ± 0.04 16.09 − 28.92

DTGAN [19] 4.88 ± 0.03 16.35 − 23.61

MF-GAN 4.94 ± 0.07 15.52 28.70 ± 0.22 27.95

are closer, the quality of synthesized images is higher and the diversity is better.
Moreover, the FID is more sensitive to the model collapse, because only one
category of images will cause really high FID score.

4.3 Quantitative Results

We compare MF-GANwith numerous text-to-image synthesis methods, including
the classic method (i.e., AttnGAN [16]), two AttnGAN based improved meth-
ods (i.e., SD-GAN [17] and SE-GAN [13]), DF-GAN [14], controlGAN [4], and
DTGAN [19]. Note that we do not choose CPGAN as it does not experiment on
the CUB dataset and needs two extra pre-trained: Bottom-Up and Top-Down
(BUTD) Attention model and Yolo-V3. The test results of all these approaches
on CUB and COCO dataset are from their corresponding published results.

Table 1 shows the IS and FID scores on the CUB and COCO dataset. We
make the following observations. First, MF-GAN outperforms SE-GAN which
employs sliding loss to enrich image ID information in image synthesis by achiev-
ing inception scores of 4.94 and FID scores of 15.52. Second, MF-GAN improves
the IS from 4.86 to 4.94 and reduce the FID from 16.09 to 15.52 compared to
DF-GAN which also has a single-stream structure. These quantitative results
on CUB dataset show that our MF-GAN generates images that have higher
quality and diversity than other models. Third, Compared with AttnGAN, the
FID value of our MF-GAN is greatly reduced. Moreover, our model decreases
the FID from 28.92 to 27.95 compared with DF-GAN. It demonstrates that our
DF-GAN outperforms the art-of-the-state methods on the COCO dataset.

4.4 Qualitative Results

We now compare the images generated by AttnGAN, DF-GAN, and MF-GAN.
Figure 2 shows the qualitative results on the CUB dataset (the first four columns)
and the COCO dataset (the last four columns). Note that the first row shows 8
texts extracted from the test set of CUB and COCO, and the following two rows
show the sample images generated by AttnGAN, DF-GAN, and our MF-GAN,
respectively, from the corresponding text.
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this bird has 
wings that are 
brown and has a 
white belly

this small bird has 
a rose colored 
breast and light 
brown wings.

the bird is small 
with a belly of 
yellow and a 
head of black.

the bird has a 
black crown and 
a black belly and 
breast.

A person in a 
black jacket 
skiing through 
deep snow

Lots of 
sheep graze 
on a grass 
field.

A pizza covered 
in veggies on a 
white plate 
sitting on a table

A couple 
paddling in 
a canoe on 
a river

Fig. 2. Sample images synthesized by AttnGAN, DF-GAN and MF-GAN conditioned
on text descriptions from CUB (1–4 columns) and COCO (5–8 columns) datasets.

AttnGAN uses a stacked network structure to generate low-resolution images
and add more details to it. In this way, once the initial generated images is
completely distorted, it is difficult to further improve by the subsequent gener-
ators. In comparison, both DF-GAN and our MF-GAN adopt a single network
structure, and the generated images are more realistic. For example, the images
generated by AttnGAN in columns 1 to 3 lack the shape of the bird, and their
color information does not match the corresponding text; however, the images
generated by DF-GAN and our MF-GAN have the key characteristics of a bird.

In addition, when compared against DF-GAN, MF-GAN generates more
details in both the background and the target object. As shown in columns 1 to
3, the birds in the last row are more complete than the previous row. Obviously,
the COCO dataset is more challenging than the CUB bird dataset. It is difficult
for all methods to generate complete and realistic images for all target objects in
the text. However, the images generated by AttnGAN are distorted with greater
probability (e.g., images generated by AttnGAN in columns 5 to 8 can no longer
find the approximate shapes of the person, sheep, pizza, and canoe). DF-GAN
has made great progress on this basis, the generated images are more realistic
and contain more objects, while our MF-GAN generates even more details than
DF-GAN, and the overall details are richer (e.g., in the 5th and 8th columns,
the person and canoe generated by our model are more realistic).

4.5 Ablation Study

We next perform ablation experiments on the CUB dataset to verify the effective-
ness of each component in our MF-GAN, which contains Conditional Residual
Network (CRBlock), Dual Attention Block (DABlock) and triplet loss (Tloss)
working on the discriminator. We first remove triplet loss from our MF-GAN,
and then remove CRBlock by retaining affine transformation and removing
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Table 2. Quantitative results of the models that remove the CRBlock, DABlock,
Triplet loss (Tloss) from MF-GAN and replace with visual loss (Vloss) on CUB dataset.

Method IS↑
MF-GAN without (DAB + CRB + Tloss) 4.31 ± 0.05

MF-GAN without (CRB + Tloss) 4.51 ± 0.03

MF-GAN without Tloss 4.70 ± 0.03

MF-GAN replace Tloss with Vloss 4.52 ± 0.04

MF-GAN 4.94 ± 0.04

conditional batch-normalization. Finally, we continue to remove DABlock. We
test their performance on the CUB dataset, and the results are shown in Table 2.

After removing the triplet loss, the IS score decreases from 4.94 to 4.70,
suggesting that the triplet loss is able to improve image quality and semantic
consistency. Then we continue to remove our CRBlock, and the IS score further
drops from 4.70 to 4.51, suggesting that the CRBlock is more effective than affine
transformation only in the text-to-image generation task. Finally, we remove
the DABlock, the IS score drops to 4.31, which shows that DABlock can indeed
improve the quality of the generated images.

We also compare our triplet loss with visual loss. Note that we employ triplet
loss to improve the quality of the generated images and the semantic consistency
between texts and images by matching image ID information; however, visual
loss proposed by [19] has the similar function, which computes the L1 loss based
on the image features of real image and the generated image. In experiments, we
keep the backbone of our model and hyper-parameters λT , but replace triplet
loss with visual loss. The results are shown in Table 2, suggesting that the triplet
loss is more efficient than the visual loss.

5 Conclusion

In this paper, we propose a novel and simple text-to-image synthesized method,
Multi-conditional Fusion Generative Adversarial Network (MF-GAN), to model
the image feature maps at both sentence and word level. In addition, we intro-
duce the triplet loss to improve image quality and semantic consistency. Exten-
sive experiments demonstrate that our MF-GAN outperforms the state-of-the-
art methods on the CUB dataset and COCO dataset. Results of ablation study
show the effectiveness of each module in MF-GAN on improving the image qual-
ity and semantic consistency. For future works, we plan to investigate object
detection and semantic alignment for further improving semantic consistency.
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