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Abstract. Tiny object detection is an important and challenging object
detection subfield. However, many of its numerous applications (e.g.,
human tracking and marine rescue) have tight detection time constraints.
Namely, two-stage object detectors are too slow to fulfill the real-time
detection needs, whereas one-stage object detectors have an insufficient
detection accuracy. Consequently, enhancing the detection accuracy of
one-stage object detectors has become an essential aspect of real-time
tiny objects detection. This work presents a novel model for real-time
tiny objects detection based on a one-stage object detector YOLOv5. The
proposed YOLO-P4 model contains a module for detecting tiny objects
and a new output prediction branch. Next, a weighted bi-directional
feature pyramid network (BiFPN) is introduced in YOLO-P4, yielding
an improved model named YOLO-BiP4 that enhances the YOLO-P4
feature input branches. The proposed models were tested on the Tiny-
Person dataset, demonstrating that the YOLO-BiP4 model outperforms
the original model in detecting tiny objects. The model satisfies the real-
time detection needs while obtaining the highest accuracy compared to
existing one-stage object detectors.

Keywords: Tiny object detection · Bi-directional feature pyramid
network · Real-time detection · YOLOv5

1 Introduction

Object detection is a critical component of computer vision research that focuses
on the recognition and localization of objects in images. Detecting tiny objects
is an essential but challenging object detection area with many applications,
including surveillance, tracking [17], aided driving [18], remote sensing image
analysis [10], and marine rescue [16]. Tiny object detection deals with very small
objects in images of extremely low resolution. An increase in resolution yields
blurred images, making it difficult to extract enough features for learning. These
characteristics pose a significant challenge for tiny object detection.

Current object detection algorithms can be broadly classified into one-stage
and two-stage object detection algorithms. One-stage object detection algo-
rithms are fast and enable very rapid detection while ensuring a specific degree of
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detection accuracy. These algorithms include SSD [2], RetinaNet [1], and YOLO
series (YOLOv3 [3], YOLOv4 [4], YOLOv5 [5]). In contrast, two-stage object
detection algorithms are extremely accurate. Thus, algorithms such as Faster-
RCNN [6] and Mask R-CNN [7] have higher detection accuracy than one-stage
detection algorithms, but their detection speed is typically worse. Many applica-
tion scenarios, such as personnel tracking and sea rescue, pose strict requirements
on the model’s detection time. The two-stage object detection algorithm cannot
meet the real-time detection requirements, and the one-stage object detection
algorithm’s detection accuracy is insufficient. Therefore, the one-stage object
detection algorithms’ detection accuracy improvement has become a significant
concern in the tiny object detection domain.

This paper studies the accuracy problems in detecting tiny objects and, as a
result, proposes an improved approach and advances the parameter settings in
the training process. The proposed algorithm, named YOLO-P4, enhances the
tiny object detection accuracy. YOLO-P4 is based on the YOLOv5 one-stage
object detection algorithm but includes both a new prediction branch and a
module specialized for detecting tiny objects, thus substantially improving the
model’s effectiveness.

However, it is important to note that YOLO-P4 improves the accuracy at
the expense of detection speed. Thus, YOLO-BiP4 is also proposed to improve
detection speed. The algorithm builds on a new feature fusion structure called
weighted bi-directional feature pyramid network (BiFPN) [2], but the struc-
ture was modified for the YOLO-P4 feature layer. As a result, the YOLO-BiP4
algorithm reduces the number of model parameters while maintaining detection
accuracy and improving the detection speed to satisfy the real-time detection
requirements.

2 Related Work

The proposed algorithm for tiny object detection is based on BiFPN, a multiscale
feature fusion approach. This section briefly introduces the two parts of tiny
object detection and multiscale feature fusion.

2.1 Tiny Object Detection

Many research efforts were directed at handling the lack of information and large
size differences between the object and the background to improve the accuracy
and speed of tiny object detection. For example, Kis et al. [8] used data enhance-
ment to increase the number of tiny objects via oversampling images containing
the tiny objects and copy-pasting them. Gong et al. [9] focused on the fact that
image feature fusion is affected by the dataset scale distribution, introducing a
fusion factor α to enhance the fusion effect between feature pyramid network’s
(FPN) layers. Liu et al. [10] proposed UAV-YOLO, which modified the ResNet
structure by changing the number of layers and the connection of modules. As
a result, the network’s receptive field was enlarged, and its semantic feature
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extraction capability improved. Jiang et al. [11] proposed a simple and effec-
tive scale matching method to achieve a favorable tiny object representation by
aligning the tiny objects’ scales in datasets for pre-training and learning. The
listed methods approach the tiny object detection from different angles striving
to improve its performance.

2.2 Multiscale Feature Fusion

Feature fusion combines features from different image scales. The vast majority
of the current target detection algorithms use a high feature layer after repeated
downsampling for target classification and regression, significantly affecting the
tiny object detection. Note that since the tiny object size is very small, the
available features are limited. As the network deepens, it is difficult to preserve
enough features at high sampling rates, and their detailed information may be
completely lost. This problem is tackled by fusing shallow and deep image fea-
tures to enhance the tiny object feature extraction. Shallow features have higher
resolution and contain more detailed location information. However, these fea-
tures undergo fewer convolutions, making them noisier and less semantic. In
contrast, deeper features contain more robust semantic information but have
lower resolution and poorer perception of details. Thus, an efficient fusion of
shallow and deep features is vital to ensure tiny object detection accuracy.

FPN [12] is a classical image feature fusion network. It has a top-down net-
work structure with lateral connections and constructs feature maps of various
sizes and high-level semantic information. FPN extracts features for images of
each scale and produces multi-scale feature representations with strong semantic
information for every level’s feature map. Nevertheless, it significantly increases
the network inference time and occupies considerable memory, seriously affecting
the model’s operational efficiency.

To overcome the discussed FPN’s drawbacks, scholars have proposed various
FPN structures. Liu et al. [13] developed a Path Aggregation Network (PANet),
which adds a bottom-up path aggregation network to FPN to fully integrate
the features from different feature layers and greatly improve the detection. The
YOLOv5 model’s neck utilizes FPN and PANet. Kim et al. [14] considered the
features’ contextual information and proposed a parallel FPN. A multi-scale
context aggregation module serves to resize the parallel feature mappings to the
same size while aggregating their contextual information to obtain each level
of the final feature pyramid. As a result, this action reduces the performance
differences between features at each level. BiFPN is another FPN improvement.
In contrast to treating features of different scales equally, BiFPN introduces a
weighting mechanism to balance the feature information. While considering the
distinct contributions of features at different scales, weights are assigned to each
branch involved in feature fusion to perform adaptive learning. BiFPN deletes
nodes with only one input or output edge and adds an extra edge between the
output and output nodes at the same level. Thus, more features can be fused
without increasing consumption (see Fig. 1).
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Fig. 1. The structure of BiFPN and backbone

3 The Proposed Model

3.1 YOLO-P4

According to the COCO dataset [15] definition, a small object is an object of
fewer than 32 × 32 pixels. Several practical applications require performing
remote acquisition of images, which typically have a large resolution, but the
object to be detected is small. For example, in the Tiny-Person [16] dataset, the
training contains a total of 21599 labels, among which 6872 labels are less than
3 pixels in length or width.

Within this work, the object smaller than 20 pixels is considered a tiny tar-
get, and they directly lead to the model’s low detection efficiency. The detection
results of using the YOLOv5s model to detect an image in Tiny-Person are shown
in Fig. 2(a). One can note from the figure that there are several undetected tar-
gets. The reasons stem from the YOLOv5s structure (see Fig. 3). In the model’s
backbone part, four downsampling operations are performed first, and then the
P3, P4, and P5 feature layers are fused in the neck part for target prediction.
The input image is sized 640 × 640, the detection layer size of P5 is 20 × 20,
which serves to detect targets of size 32 × 32 or larger. The P4 feature layer
corresponds to a detection layer of size 40 × 40 and is used to detect targets of
size 16 × 16 or larger. Finally, the P3 feature layer has 80 × 80 size and can
detect targets of size 8 × 8 or larger.

(a) YOLOv5s detection results (b) YOLOs-P4 detection results

Fig. 2. Comparison of detection results
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Fig. 3. The structure of YOLOv5s

The current three detection layers typically serve for detecting objects with a
size above 8 × 8. When the object size is smaller than 8 × 8, the detection accu-
racy drops dramatically. Nevertheless, the size of tiny objects is generally smaller
than 8 × 8. Further, as noted previously, downsampling drastically reduces the
feature information, preventing one from extracting sufficient information. An
analysis revealed that the input image size could be upgraded to 960 × 960 so
that the detection layer size of the P3 feature layer is 120 × 120. Then, the tiny
object size is expanded 2.25 times, and more valuable features can be extracted.
The images of P2, P3, P4, and P5 feature layers with input sizes of 640 and 960
are visualized in Fig. 4. One can note that the P3 feature layer of the 960 × 960
image contains more effective information than the 640 × 640 image.

However, although the number of effective features contained in the P3 fea-
ture layer is boosted by increasing the input image size, the small scale of a
tiny object renders effective features retained after two downsamplings too few
to extract sufficient information. Figure 3 shows that the features in P3 provide
insufficient information for tiny object feature extraction. Thus, using the infor-
mation in the P2 feature layer is necessary, ensuring it participates in the feature
fusion process.

Fig. 4. Feature layer display for different input sizes



8 Y. Hu et al.

Therefore, to involve P2 in feature fusion, the original model’s structure
was extended by adding a module for detecting tiny objects and a new output
detection branch (Predict-Tiny). The improved model is called YOLO-P4, and
its structure is depicted in Fig. 5.

Fig. 5. The structure of YOLOv5s-P4

Compared with the original model in Fig. 3, one can note that YOLO-P4
adds another upsampling before the tiny object detection layers and after the
original model is upsampled twice to fuse P2 with tiny objects’ rich features.
Further, it adds a new output detection branch, which greatly improves the
model’s detection of tiny objects.

Table 1. Number of models’ parameters

Model YOLOv5x YOLOv5l YOLOv5m YOLOv5s

Original 88.40M 47.37M 21.47M 7.25M

P4 96.48M 51.72M 23.46M 7.93M

BiP4 78.26M 44.16M 21.51M 8.10M

3.2 YOLO-BiP4

Recall that the YOLOv5 improvement for tiny object detection increases the
inference time loss while enhancing the model’s detection. Namely, adding an
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upsampling and a new detection layer introduces many parameters, leading to
the model inference time loss. In FPN-PANet, the number of parameters passing
through the upsampling layer doubles with each additional upsampling layer.
Table 1 compares the number of parameters in the original and the improved
YOLO-P4 models. The table shows that there are more parameters in YOLO-P4
than in the original model. The parameters increase the corresponding inference
time, which is unsuitable for the task at hand. Therefore, the YOLO-BiP4 algo-
rithm is proposed to ensure sufficient detection accuracy without significantly
increasing the inference time.

The analysis reveals that controlling the number of parameters reduces the
inference time loss. YOLO-P4’s neck part has a structure of FPN+PANet. Not
to increase the inference time significantly, BiFPN is introduced.

In contrast to other feature fusion methods, BiFPN introduces a weighting
mechanism that enables different features treatment. Each branch involved in
feature fusion is assigned a weight based on their contributions at different scales
during feature fusion. Then, adaptive learning is employed during model training
to ensure the model’s detection accuracy. Figure 1 presents the BiFPN structure,
which fuses five feature layers in turn. When performing fusion, the weights are
set in the following ways. Let Pi denote the feature at layer i, and wi is that
feature’s fusion weight.

1) Unbounded fusion: Addition is performed directly on the fusion branches.
It is equivalent to the one where each fusion branch’s weight is equal to one (i.e.,
wi = 1, ∀i ).

2) Softmax-based fusion: the output follows the formula

Output =
4∑

i=1

exp(wi))∑4
j=1 exp(wj))

· Pi (1)

3) Fast normalized fusion: The ReLU function is introduced before the cal-
culation to ensure that weight is greater than zero. ε = 0.0001 is a small value
to avoid numerical instability. The output equation is

Output =
4∑

i=1

wi

ε +
∑4

j=1 wj

· Pi (2)

The improved BiFPN is introduced into the YOLO-P4 model, yielding the
YOLO-BiP4 architecture. Specifically, one of the BiFPN’s input feature layers
is removed, changing the number of feature layers at the input side from five
to four (namely, P2, P3, P4, and P5). The BiP4 structure is built using both
top-down and bottom-up rules, and the fast-normalized fusion is used to set the
weights. Figure 6 depicts the YOLO-BiP4 structure.

Figure 6 demonstrates that YOLO-BiP4 removes the vertices with only one
input or output edge, thus reducing the number of parameters by a certain
amount. Such a design can effectively improve the model’s detection speed.
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Fig. 6. The structure of YOLO-BiP4

4 Experiments

4.1 Evaluation Methods and Datasets

In the object detection field, the model’s detection effectiveness is commonly
measured using the mean average precision (mAP). Furthermore, in models
requiring real-time detection, the number of parameters and the model’s detec-
tion speed are also crucial. Typically, a model is said to satisfy the real-time
detection requirement when its detection speed is greater than 30 frames per
second (FPS). Therefore, this work studies these three aspects in a multi-
dimensional analysis of the model performance.

Tiny-Person is a dataset for tiny object detection collected from high-quality
video and web images. It contains 72,651 annotations of human targets with low
resolution in visual effects. In total, there are 1610 images, including 794 images
in the training set and 816 images in the test set. The average absolute scale of
all objects in the Tiny-Person dataset is 18 pixels, while the average size is less
than 5 × 5. More than 30% of the objects span less than 3 pixels in height or
width, all of which can be called tiny objects.

4.2 Experimental Environment and Parameter Description

The hardware environment used in the experiments reported herein consisted
of a CoreTM i7-7700HQCPU@2.80 GHz, GeForce GTX1070 graphics card for
training, and RTX3090 graphics card for testing. The main software used was
Pycharm 2020.2. The configured virtual environment was based on Python 3.9,
and the utilized deep learning framework was Pytorch 1.8.0.

A series of YOLOv5 models were studied, including the original models (i.e.,
YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x), the model with improved
input parameters (i.e., YOLOv5-960), and the models with improved network
structure (i.e., YOLOv5-P4 and YOLOv5-BiP4). The trained models result from
200 training epochs on the Tiny-Person dataset using the Adam optimizer with
a learning rate set to 0.001.
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Table 2. Detection accuracy for different test sizes when the training size is 640. The
results reported as mAP (%)

TIS YOLOv5x YOLOv5l YOLOv5m YOLOv5s

640 27.70 27.63 27.47 26.97

960 35.94 35.26 34.08 33.15

1408 38.77 38.18 36.71 36.64

1536 38.86 38.68 36.82 36.49

Table 3. Detection speed for different test sizes when the training size is 640. The
results reported as FPS

TIS YOLOv5x YOLOv5l YOLOv5m YOLOv5s

640 110.51 198.89 328.08 490.83

960 45.43 89.09 143.55 333.72

1408 23.26 45.32 77.58 181.18

1536 15.43 37.52 61.16 126.38

4.3 Comparison of Improved Detection Results

The experiments aimed at improving the input parameters were performed first.
The input size ranged from 640 to 960, and the mAP and detection speed were
compared for each YOLOv5 model over 200 epochs. The experiments show that
increasing the input images’ size during testing can effectively improve the mod-
els’ detection. The experiments comparing the detection speed and accuracy for
both the training and test input image sizes are shown in Tables 2, 3, 4 and 5.
Here, TIS stands for Test Image Size.

As shown in the table, increasing the input image size enhances the detection
accuracy for both training and testing but hampers the detection speed. The
model whose training input was of size 960 improves its detection over the course
of the training, but its detection speed decreases. The results demonstrate that
the detection accuracy and speed are optimal when the input size equals 1408
for the model test. As a result, the following experiments’ input parameters were
based on a training input sized 960 and a testing input sized 1408.

YOLO-P4 adds a module that fuses the P2 feature layer in the original model
to improve the extraction of effective tiny object features. Further, a new output
prediction branch called Predict-Tiny that is dedicated to tiny object detection
is introduced. Tables 6 and 7 show the YOLO-P4’s detection accuracy and speed
when the training size equals 960, and the testing size is 1408.

Experiments show that adding the fusion module and the output prediction
branch significantly improves the YOLO-P4’s detection accuracy but decreases
the detection speed in turn. Nevertheless, except for the YOLOx-P4 model, the
proposed models can all meet the real-time detection requirement. Compared to
the model before the improvement (i.e., YOLOv5), the detection accuracy has
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Table 4. Detection accuracy for different test sizes when the training size is 960. The
results reported as mAP (%)

TIS YOLOv5x YOLOv5l YOLOv5m YOLOv5s

640 29.58 29.52 29.30 26.64

960 37.88 37.75 37.37 35.34

1408 42.59 41.95 41.75 40.89

1536 42.32 41.93 42.27 41.08

Table 5. Detection speed for different test sizes when the training size is 960. The
results reported as FPS

TIS YOLOv5x YOLOv5l YOLOv5m YOLOv5s

640 108.28 207.18 335.43 497.41

960 54.31 90.32 143.76 323.87

1408 24.34 46.75 84.96 179.62

1536 15.23 37.83 68.38 155.91

Table 6. Model’s detection accuracy comparison. The results reported as mAP (%)

Model YOLOv5x YOLOv5l YOLOv5m YOLOv5s

Original 42.59 41.95 41.75 40.89

P4 45.90 45.69 44.79 42.77

BiP4 45.66 44.61 44.29 43.26

Table 7. Model’s detection speed comparison. The results reported as FPS

Model YOLOv5x YOLOv5l YOLOv5m YOLOv5s

Original 24.34 46.75 84.96 179.62

P4 18.36 36.92 45.91 91.51

BiP4 21.08 40.45 62.23 109.78

improved by 7.8%, 8.9%, 7.3%, and 4.6%, respectively. Figure 2(a) and 2(b) show
the detection results before and after the improvement, where the differences are
highlighted using the black boxes.

Table 1 compares the number of parameters in YOLO-P4 to those in the
original YOLOv5 model. Note that detection speed decreases as the number of
parameters increases.

Next, the YOLO-P4 model structure was improved by introducing the BiFPN
structure to reduce the number of parameters and enhance the detection speed.
The BiFPN structure is improved by removing one input, thus reducing the
number of model parameters and significantly increasing the model’s detection
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Table 8. Comparison of different models detection results in Tiny-Person dataset

Model mAP (%) FPS

YOLOx-BiP4 (Ours) 45.66 21.08

YOLOl-BiP4 (Ours) 44.61 40.45

YOLOm-BiP4 (Ours) 44.29 62.23

YOLOv5l 41.95 46.75

YOLOv4 32.83 44.87

NAS-FPN 37.75 18.06

RetinaNet-101 33.53 5.20

SSD-513 31.2 8.10

Faster R-CNN 47.35 5.80

speed. The improved model’s accuracy and speed are shown in Tables 6 and 7,
respectively, whereas the corresponding number of parameters is given in Table 1.

Tables 6 and 7 show that, compared to YOLO-P4, the improved YOLO-BiP4
model reduced the number of parameters while increasing the detection speed by
14.8%, 9.6%, 35.5%, and 20.1%, respectively. Furthermore, the improved model
maintained the YOLO-P4’s detection accuracy. Compared to YOLOv5-960, the
YOLO-BiP4’s detection accuracy is 7.2%, 6.3%, 6.1%, and 5.8% higher, respec-
tively.

Finally, Table 8 shows the YOLO-BiP4’s detection results and contrasts them
to other one-stage and two-stage models’ performances on the Tiny-Person
dataset. Table 8 demonstrates that the proposed YOLO-BiP4 model achieves
the highest accuracy of a one-stage model for detecting tiny objects while satis-
fying the real-time detection requirements.

5 Conclusions and Future Works

Building on the YOLOv5 algorithm, this paper first proposed YOLO-P4, an
improved algorithm for tiny object detection. A module dedicated to tiny object
detection was added to fuse the P2 feature layer with sufficient object features,
and an output prediction branch was added to predict tiny objects. Experiments
demonstrate that such modifications improve the YOLO-P4’s average accuracy
in detecting tiny objects by 7.2%. Then, YOLO-BiP4 is proposed to reduce the
number of model parameters and improve the detection speed. YOLO-BiP4 is
based on YOLO-P4 but introduces the BiFPN structure to improve the YOLO-
P4’s feature layer. This modification results in the average reduction of the
number of parameters by 10.9%, while the detection speed increased by 19.9% on
average. The proposed model achieves the highest accuracy of the one-stage tiny
object detectors while considering the real-time detection requirement. However,
the detection speed is still insufficient despite the tiny object detection accuracy
improvement. Thus, simultaneous improvement of the detection accuracy and
speed remains a critical direction for future research.
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