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Abstract. Single-view 3D face reconstruction is a fundamental Com-
puter Vision problem of extraordinary difficulty. Current systems often
assume the input is unobstructed faces which makes their method not
suitable for in-the-wild conditions. We present a method for performing
a 3D face that removes eyeglasses from a single image. Existing facial
reconstruction methods fail to remove eyeglasses automatically for gen-
erating a photo-realistic 3D face “in-the-wild”. The innovation of our
method lies in a process for identifying the eyeglasses area robustly and
remove it intelligently. In this work, we estimate the 2D face structure of
the reasonable position of the eyeglasses area, which is used for the con-
struction of 3D texture. An excellent anti-eyeglasses face reconstruction
method should ensure the authenticity of the output, including the topo-
logical structure between the eyes, nose, and mouth. We achieve this via
a deep learning architecture that performs direct regression of a 3DMM
representation of the 3D facial geometry from a single 2D image. We also
demonstrate how the related face parsing task can be incorporated into
the proposed framework and help improve reconstruction quality. We
conduct extensive experiments on existing 3D face reconstruction tasks
as concrete examples to demonstrate the method’s superior regulation
ability over existing methods often break down.

Keywords: 3D face reconstruction · Eyeglasses · Occluded scenes ·
Face parsing

1 Introduction

3D face reconstruction is an important and popular research field of computer
vision [4,12,33]. It is widely used in face recognition, video editing, film avatars
and so on. Face occlusions (such as eyeglasses, respirators, eyebrow pendants and
so on.) can degrade the performance of face recognition and face animation evi-
dently. We cannot use artificial intelligence to robustly predict the 3D texture of
the occluded area of the face. How to remove occlusions on face image robustly and
automatically becomes one crucial problem in 3D face reconstruction processing.
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As the human face is one kind of particular image (the face area is not large, but
there are many features, and humans are very familiar and sensitive to it), com-
mon image inpainting techniques cannot be used to remove face occlusions. The
traditional image inpainting methods reconstruct the damaged image region by
its same surrounding pixels, which does not consider the structure of the face. For
example, if an eye of a human is occluded, the conventional inpainted face can-
not reconstruct the eye image, and the output 2D face will have only one eye [36].
However, things have changed in recent years. Due to the rapid development of
deep learning and face parsing methods, face inpainting approaches have devel-
oped rapidly. Some common extreme scenarios (i.e., with eyeglasses) become easy
to handle.

3D morphable models 3DMM was proposed in 1999, which was a widely influ-
ential template reconstruction method [3,4,7,25,38,40]. Since the facial features
are distributed very regularly, the application of the template method has con-
tinued until now. On the other hand, due to the limitation of the template’s
space, the expressiveness of the model is very lacking, especially the geometric
details.

In this paper, we proposed a robust and fast face eyeglasses removal recon-
struction algorithm based on face parsing and the deep learning method. The
main contributions are summarized as follows:

• We propose a novel algorithm that combines feature points and face parsing
map to generate face which removes eyeglasses.

• In order to solve the problem of the invisible face area under eyeglasses
occluded scenes, we propose synthesizing input face image based on Gen-
erative Adversarial Network rather than reconstructing 3D face directly.

• We have improved the loss function of our 3D reconstruction framework for
eyeglasses occluded scenes. Our method obtains state-of-the-art qualitative
performance in real-world images.

2 Related Work

2.1 Generic Face Reconstruction

Blanz et al. [3,35] proposed the 3D Morphable Model (3DMM) for modeling the
3D face from a single face photo. 3DMM is a statistical model which transforms
the shape and texture into a vector space representation. Though a relatively
robust face model result can be achieved, the expressive power of the 3D model
is limited. In addition, this method suffers from high computational costs. Rara
et al. [28] proposed a regression model between the 2D face landmarks and the
corresponding 3DMM coefficient. They employed principal component regres-
sion for face model coefficient prediction. Since large facial pose changes may
reduce the performance of 2D facial landmark detection, Dou et al. [9] proposed
a dictionary-based representation of 3D face shape; They then adopted sparse
coding to predict model coefficients. The related comparative experiment shows
that their method achieved better robustness to the previous facial landmark
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detection method. Following this work, Zhou et al. [41] also utilize a dictionary-
based model; they introduced a convex formulation to estimate model parame-
ters.

With the development of deep learning, 3D face reconstruction has witnessed
remarkable progress in both quality and efficiency by Convolution Neural Net-
work (CNN). In 2017, Anh et al. [33] utilized ResNet to estimate the 3D Mor-
phable Model parameters. However, the performance of the methods is restricted
due to the limitation of the 3D space defined by the face model basis or the
3DMM templates.

2.2 Face Parsing

The unique structure pattern of human face contains rich semantic represen-
tation, such as eyes, mouth, nose and so on. The low and intermediate visual
features of the known region are not enough to infer the missing effective seman-
tic features, so it is impossible to model the face geometry [2,16]. Generate Face
Completion [21] introduces face parsing to form regular semantic constraints. As
shown in Fig. 1, the adoption of face parsing map can assist the face inpainting
task.

2.3 Deep Face Synthesis Methods

In the existing depth learning based face inpainting methods, due to the adoption
of standard convolution layer, the synthetic pixels of the area to be inpainting
comes from two parts: the valid value of the unobstructed area and the substitute
value of the occluded area. This approach usually leads to color artifacts and
visual blur. Deep learning has been widely used in face synthesis tasks. Li et
al. [21] introduced the face parsing map into the face synthesis task in order to
guide GAN to generate a reasonable more brilliant face structure.

3 Our Method

3.1 Landmark Estimation Network

In the landmark estimation task, we built the sufficiently effective landmark esti-
mation network (Fig. 2) based on the MobileNet-V3 model [15]. In our method,
accurate facial landmark Lface ∈ R

2×68 generation is a crucial part. The network
NL aims to generate Lface from a face image Iin : Lface = NL(Iin; θlmk), where
θlmk denotes the model parameters. NL is designed to extract facial features
instead of face recognition, which is different from traditional detectors [19,37].
We set the loss function as follows:

Llmk = ‖Lface − Lgt‖22 (1)

where Lgt denotes the ground truth face landmarks and ‖·‖2 denotes the L2

norm.
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Fig. 1. Our method overview. See related sections for details.

Fig. 2. Landmark prediction network of our method.

3.2 Face Synthesis Module

Overall, We design the synthesis module Ns to synthesize a 2D image of a human
face without eyeglasses. The module Ns consists of three parts: deleter, generator
and discriminator.

Deleter. Normally, the task of the deleter is to delete the occluded eyeglasses
areas Im of the facial features in the input image Iin (Fig. 3). Overall, the deleter
Nde is based on the U-Net structure [30]. Inspired by the annotated face dataset
CelebAMask-HQ [20], we used the encoder-decoder architecture Nde to estimate
pixel-level label classes. Given the input face image Iin ∈ R

H×W×3, we applied
the trained model Nde to obtain the face parsing map M ∈ R

H×W×1. According
to the map M, we identify and delete the eyeglasses area Im to obtain the
corrupted image Ico.
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Fig. 3. Face parsing module of our method.

Generator. The generator Nge is also based on the U-Net structure, which
desires to synthesize the full face by taking corrupted images Ico and landmarks
L (Lface or Lgt). The generator can be formulated as Iout = Nge(Ico, L; θge),
with θge the trainable parameters.

Discriminator. The purpose of the discriminator is to judge whether the data
distribution meets our requirements. The ambition of face synthesis is achieved
when the generated results are not distinguishable from the real ones.

Loss of Discriminator. We use a combination of an adversarial loss, a per-
pixel loss, a perceptual loss, a style loss, a total variation loss and an adversarial
loss, for training the face synthesis network.

The per-pixel loss is formulated as follows:

Lpixe =
1
S

‖Iout − Iin‖ (2)

where S denotes the mask size and ‖·‖ denotes the L1 norm. Here, S is the
denominator and its role is to adjust the penalty. A straightforward objective of
per-pixel loss is to minimize the differences between the input face images and
the synthetic images. It should be pointed out that our input image will not
contain occlusion, so we don’t need to consider this.

The style loss computes the style distance between two images as follows:

Lstyle =
∑

n

1
On × On

∥∥∥∥
Gn(Iout � Im) − Gn(Iin � Im)

On × Hn × Wn

∥∥∥∥ (3)

where Gn(x) = ϕn(x)Tϕn(x) denotes the Gram Matrix corresponding to ϕn(x),
ϕn(·) denotes the On feature maps with the size Hn × Wn of the n-th layer.

Due to the use of the normalization tool, the synthesized face may have
artifacts, checkerboards, or water droplets. We define the total variation loss as:

Lvar =
1

PIin

‖∇Iout‖ (4)

where PIin is the pixel number of Iin and ∇ is the first order derivative, contain-
ing ∇h (horizontal) and ∇v (vertical).

The total loss with respect to the face synthesis module:

Lfsm = λpixeLpixe + λstyleLstyle + λvarLvar (5)

Here, we use λpixe = 1, λstyle = 250 and λvar = 0.1 in our experiments.
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3.3 3D Face Reconstruction

The classic single-view 3D face reconstruction methods utilize a 3D template
model (e.g., 3DMM) ) to fit the input face image [3,25]. This type of method
usually consists of two steps: face alignment and regressing the 3DMM coeffi-
cients. The seminal work [4,8,11] describe the 3D face space with PCA:

S = S + Aidαid + Bexpβexp,T = T + Btβt (6)

where S and T denote the mean shape and texture, Aid, Bexp and Bt denote
the PCA bases of identity, expression and texture. αid ∈ R

80 and βexp ∈ R
64,

and βt ∈ R
80 are the corresponding 3DMM coefficient vectors.

After the 3D face is reconstructed, it can be projected onto the image plane
with the perspective projection:

V2d (P) = f ∗ Pr ∗ R ∗ Smod + t2d (7)

where V2d (P) denotes the projection function that turned the 3D model into
2D face positions, f denotes the scale factor, Pr denotes the projection matrix,
R ∈ SO(3) denotes the rotation matrix and t2d ∈ R

3 denotes the translation
vector.

Therefore, we approximated the scene illumination with Spherical Harmon-
ics (SH) [6,23,26,27] parameterized by coefficient vector γ ∈ R

9. In sum-
mary, the unknown parameters to be learned can be denoted by a vector
y = (αid,βexp,βt,γ,p) ∈ R

239, where p ∈ R
6 = {pitch,yaw, roll, f, t2D}

denotes face poses. In this work, we used a fixed ResNet-50 [14] network to
regress these coefficients.

The corresponding loss function consists of two parts: pixel-wise loss and face
feature loss.

Pixel-Wise Loss. The purpose of this loss function is very simple, which is to
minimize the difference between the input image I(i)out and the rendered image
I(i)y . The rendering layer renders back an image I(i)y to compare with the image
I(i)out. The pixel-wise loss is formulated as:

L1 =
∥∥∥I(i)out − I(i)y

∥∥∥
2

(8)

where i denotes pixel index and ‖·‖2 denotes the L2 norm.

Face Features Loss. We introduce a loss function at the face recognition level
to reduce the difference between the 3D model of the face and the 2D image.
The loss function computes the feature difference between the input image Iout
and rendered image Iy. We define the loss as a cosine distance:

L2 = 1 − <G(Iout), G(Iy)>
‖G(Iout)‖ · ∥∥G(Iy

∥∥ (9)
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where G(·) denotes the feature extraction function by FaceNet [31], <·, ·>
denotes the inner product.

In summary, we used the loss function L3D to reconstruct the basic shape of
the face. We set L3D = λ1L1+λ2L2, where λ1 = 1.4 and λ2= 0.25 respectively in
all our experiments. We then used a coarse-to-fine graph convolutional network
based on the frameworks of Lin et al. [22] for producing the fine texture Tfina.

4 Experimental Details and Results

4.1 Implementation Details

In consideration of the module of Ncont, we used the ground truth of CelebA-HQ
datasets [18] as the reference. Considering the generator Nge, it consists of three
gradually down-sampled encoding blocks, followed by seven residual blocks with
dilated convolutions and a long-short term attention block. Then, the decoder
processes the feature maps gradually up-sampled to the same size as input.

4.2 Qualitative Comparisons with Recent Arts

Fig. 4. Comparison of qualitative results. Baseline methods from left to right: 3DDFA,
DF2Net, Chen et al., PRNet, and our method.

Figure 4 shows our experimental results compared with the others [5,10,13,39].
The result shows that our method is far superior to other frameworks. Our 3D
reconstruction method can handle eyeglasses occluded scenes, such as transpar-
ent glasses and sunglasses. Other frameworks can not handle eyeglasses well;
they are more focused on the generation of high-definition textures.
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4.3 Quantitative Comparison

Input PRNet’18 3DDFA’20 Ours

1.90 1.71 1.24

Fig. 5. Comparison of error heat maps on the MICC Florence datasets. Digits denote
90% error (mm).

Comparison Result on the MICC Florence Datasets. MICC Florence
dataset [1] is a 3D face dataset that contains 53 faces with their ground truth
models. We artificially added eyeglasses as input. We calculated the average 90%
largest error between the generative model and the ground truth model. Figure 5
shows that our method can effectively handle eyeglasses.

Eyeglasses occluded Input

Sela et al.

Our basic shape

Fig. 6. Reconstructions with eyeglasses. Left: qualitative results of Sela et al. [17] and
our shape. Right: LFW verification ROC for the shapes, with and without eyeglasses.

Eyeglasses Invariance of the Foundation Shape. Our choice of using the
ResNet-50 to regress the shape coefficients is motivated by the unique robustness
to extreme viewing conditions in the paper of Deng et al. [29]. To fully support
the application of our method to occluded face images, we test our system on
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the Labeled Faces in the Wild datasets (LFW) [24]. We used the same face test
system from Anh et al. [34], and we refer to that paper for more details.

Figure 6 (left) shows the sensitivity of the method of Sela et al. [32]. Their
result clearly shows the outline of a finger. Their failure may be due to more
focus on local details, which weakly regularizes the global shape. However, our
method recognizes and regenerates the occluded area. Our method much robust
provides a natural face shape under eyeglasses scenes. Though 3DMM also limits
the details of shape, we use it only as a foundation and add refined texture
separately.

Table 1. Quantitative evaluations on LFW.

Method 100%-EER Accuracy nAUC

Tran et al. [33] 89.40 ± 1.52 89.36 ± 1.25 95.90 ± 0.95

Ours (w/Gla) 84.77 ± 1.23 87.05 ± 0.89 92.77 ± 1.26

Ours (w/o Gla) 89.33 ± 1.15 89.80 ± 0.89 96.09 ± 0.61

We further quantitatively verify the robustness of our method to eyeglasses.
Table 1 (top) reports verification results on the LFW benchmark with and with-
out eyeglasses (see also ROC in Fig. 6-right). Though eyeglasses clearly impact
recognition, this drop of the curve is limited, demonstrating the robustness of
our method.

5 Conclusions

We propose a novel method to reconstruct a 3D face model from an eyeglass
occluded RGB face photo. Given the input image and a pre-trained ResNet, we
fit the face model to a template model (3DMM). In order to robustly reconstruct
RGB face without glasses, we design a deep learning network, which remakes
reasonable texture intelligently. Comprehensive experiments have shown that our
method outperforms previous arts by a large margin in terms of both accuracy
and robustness.
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