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Abstract. The influence of loadsmoving on plates have been the prime objectives
for structural experts in recent times. The immense application of this kind of
loading in many industrial areas has enhanced the prominence of assessing the
dynamic response of resonant structures undermoving loads. Therefore, this paper
focuses on the dynamic response of plates under moving mass using the finite
element method (FEM). The deflections, velocities, and accelerations for each
time step are computed using the Newmark integration method to arrive at the
solution. An MATLAB code based on FEM is established to proffer a productive
solution for this. The central deflection results of plates due to moving mass
have been validated with previously published works. Deflections at any point of
rectangular and curved plates due to a moving mass with constant velocity are
explored.

Keywords: Rectangular plate · Curved plate · Dynamic response · Finite
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1 Introduction

Dynamic analysis is one of the most required analyses among the modern engineering
design such as Highway bridges, aerospace, ship structures, etc., since it is consistently
subjected to dynamic loading. Among the dynamic analysis lots ofwork has been studied
about the free vibration analysis and the dynamic response analysis under moving loads
which are presented below. (Barik and Mukhopadhyay 1999; Barik and Mukhopadhyay
2002; Panda and Barik 2019; Mishra and Barik 2021) have analyzed the frequencies of
various shaped stiffened plates using FEM. The free vibration of rectangular and curved
stiffened plates have been explained (Sahoo and Barik 2020a, b; Sahoo and Barik 2021)
under the influence of various parameters using FEM. The deflections of stiffened plate
subjected to moving loads has been explained (Sahoo and Barik 2020a) using FEM.
Also the dynamic deflection of bare plates has been presented (Taheri and Ting 1989;
Taheri and Ting 1990) using structural impedancemethod and FEM respectively. Hence,
the main focus of this paper is to investigate the dynamic response of rectangular and
curved plates under moving mass.

Raske (1983) has predicted the deflections of a rectangular plate imposed with mass
moving in a circular path using the Fourier series for simply-supported boundary con-
dition. (Cifuentes and Lalapet 1992) have investigated the dynamic deflection of a plate
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under circularly moving mass employing FEM and the Lagrange multiplier formulation.
This analysis has been found to accommodate any irregular shape and boundary condi-
tions. (Shadnam et al. 2001) have performed the dynamic deflection of plates imposed
with travelling masses along an arbitrary trajectory, applying a numerical-analytical
method. (Gbadeyan and Oni 1995) have presented the dynamic deflections of a plate
under the impact of moving mass using the finite difference method.

Dynamic deflection of a plate under with moving mass has been proposed by (Wu
2007) making use of FEM. The deflections of a circular plate under the impact of mass
travelling in a circular direction have been suggested by (Ouyang 2011) offering an
analytical solution. (Amiri et al. 2013) have analyzed a plate for dynamic deflection
adopting the FSDT and the classical plate theory for various thickness values. The
dynamic amplification factor (DAF) of a rectangular plate imposed withmultiple masses
travelling along rectilinear paths in opposite directions has been determined by (Nikkhoo
et al. 2014).

(Esen 2013; Esen 2015) has explored the deflections of rectangular plates under the
impact of moving mass, applying FEM. The dynamic deflections and the DAFs have
been evaluated for cantilever and clamped boundary conditions. An analytical approach
has been portrayed (Ghazvini et al. 2016) to analyse the deflections of a plate subjected
to travelling mass for different plate thickness values. Demonstration of the deflections
of a Kirchhoff plate imposed with massless and mass load travelling with acceleration
in an arbitrary path with opposite directions have been made by (Dyniewicz et al. 2017)
employing FEM.

Dynamic deflections of plate imposed with moving mass have been explained (Song
et al. 2017) using a hybrid approach for different plate boundary conditions using an
extendedRayleigh-Ritz technique. (Rad et al. 2020) havediscussed thedynamic response
of rectangular plate subjected to moving mass for arbitrary boundary conditions using
Boundary Characteristic Orthogonal Polynomials (BCOP) technique.

The above literature has limited their study of dynamic response under moving
masses for the rectangular plates only. Thus, this paper attempts to determine the dynamic
response under moving mass of a rectangular and curved plate using the finite element
method. AnMATLAB code based on FEM is established to proffer a productive solution
for the analyses of rectangular and annular sector plates by introducing an isoparametric
quadratic plate bending element that can fit in with curved boundaries. The formulation
of the plate and stiffener elements are dealt with separately. The shear deformation is
accounted for in the formulation. TheNewmark integrationmethod is employed for each
time step deflection. To show the method’s effectiveness, the results are validated with
the previously published results wherever possible. The deflection has been investigated
for the plate subjected to a moving mass with constant velocity. Also, the deflections
have been explored at various points of rectangular and curved plates.
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2 Formulation

2.1 Plate Element Formulation

The transverse displacement and rotations along x- and y-directions at a node ‘r’ of a
quadratic isoparametric plate bending element (Fig. 1) are wr , θxr and θyr respectively.
At any point within the element, we have
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where Nr is the shape function for the node r expressed in non-dimensional coordinates.

Fig. 1. Plate Element.

The plate’s displacement field is expressed as
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Due to shear deformation, some warping occurs, which is illustrated in Fig. 2 and
the rotations are now expressed as

{
θx
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}
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{
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(3)
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Fig. 2. Deformation of plate cross-section.

where θx and θy are the average rotations and ϕx and ϕy are the average shear
deformations.

The strain components of the plate can be expressed with the help of Eqs. (2) and
(3)
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Combining Eqs. (1) and (4)
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The stress-strain relationship is defined by
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{σ }T =
{
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(8)

The element stiffness matrix is
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h = Plate thickness, E = Young’s Modulus of plate
ν = Poisson’s ratio of plate, ρ = Mass density of plate
At any point within the element
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The plate’s acceleration field is given by
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The acceleration field may be exhibited by combining Eqs. (12) and (13),
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ẅr

θ̈xr

θ̈yr

⎫
⎬

⎭
= [G][N ]

8∑

r=1

⎧
⎨

⎩

ẅr
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Applying D’Alembert’s Principle, the inertia force associated with the acceleration
can be expressed as
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The element mass matrix is
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2.2 Moving Mass

A load Pz having mass Pzm equal to Pz/g, is travelling with a velocity of v across the
plate. The position of the mass, presented as a function of time t, is given by

x1 = x0 + vxt1 (19)

y1 = y0 + vyt1 (20)

where (x0, y0) is the initial coordinate at which the mass first enters the plate at t = 0,
and vx and vy are the x and y components respectively of the constant velocity v of
the mass along the plate. Due to the moving mass, the additional mass, damping, and
stiffness element matrices which are position-dependent are given by
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Hence, the new element mass, stiffness, and damping matrices become respectively
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{k}new = {k}e +
{
k
}

e
(25)

{c}new = {c}e (26)



64 P. R. Sahoo and M. Barik

2.3 Load Position

Aplate of 6×6mesh grid is shown in Fig. 3 with the path of the loads and their positions.
The expression for the load position on the plate is x

a .
Where, x = the position of the load
and a = length of the plate (Fig. 3).

Fig. 3. Load position for moving load (mass).

3 Solution Procedure

The governing equation of motion is

[M ]new{ü} + [C]new{u̇} + [K]new{u} = {F} (27)

3.1 Dynamic Response Due to Moving Force (Newmark Integration Method)

For the n-th time step at time tn = tn−1 + t:

K = Knew + a0Mnew + a1Cnew (28)

Ftn = Ftn +Mnew
[
a0utn−1 + a2u̇tn−1 + a3ütn−1

]

+Cnew
[
a1utn−1 + a6u̇tn−1 + a7ütn−1

] (29)

where ütn−1 , u̇tn−1 and utn−1 are the initial acceleration, velocity and displacements of the
structural system at time t = tn. Displacements, velocities and accelerations at time tn

utn = K
−1

Ftn (30)

u̇tn = u̇tn−1+a4ütn−1+a5ütn (31)
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ütn = a0
(
utn − utn−1

) − a2u̇tn−1 − a3ütn−1 (32)
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And the values of β and γ are 0.25 and 0.5.

4 Numerical Examples

4.1 Square Plate

Table 1. Material properties of a square plate

Properties Value

E 206GPa

ρ 7929 kg/m3

ν 0.3

Mass 4.45 kN

Velocity 5.08 m/s

t 0.5× 10−3 s

Table 2. Dimensions of a square plate

Dimensions Value

a 1,524m

b 1,524m

h 0,00635m
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A square is imposed with a moving mass (Fig. 4) is analysed. The plate’s material
properties and dimensions are presented in Table 1 and 2 respectively. The convergence
of the deflection result is explained for different mesh grids and illustrated in Fig. 5.
Also, the dynamic deflections for the same time interval, are compared with the results
of (Wilson and Tsirk 1967) in Fig. 6.

Fig. 4. Clamped square plate
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4.2 Rectangular Plate

Table 3. Material properties of a rectangular plate

Properties Value

E 200GPa

ρ 7850 kg/m3

ν 0.3

Mass 1 kN

Velocity 60 km/h

t 0.001 s

Table 4. Dimensions of a rectangular plate

Dimensions Value

a 5m

b 3m

h 0.05m

The dynamic response of a rectangular plate (Fig. 7) is explored. The plate’s material
properties and dimensions are presented in Table 3 and 4 respectively. The deflections
are computed in various positions (1/4th, centre and 3/4th) of the plate (Fig. 7) and
presented in Fig. 8.
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Fig. 7. Rectangular plate subjected to moving mass.
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Table 5. Dimensions of an annular sector plate

Dimensions Value

Centre line length 5m

b 3m

h 0.05m

4.3 Annular Sector Plate

The dynamic response of an annular sector plate with circumferential edges are free and
radial edges are simply supported (Fig. 9) is explored. The plate’s material properties
and dimensions are presented in Table 3 and 5 respectively. The deflections with are
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Fig. 9. Annular sector plate subjected to a moving mass.
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computed in various positions (1/4th, centre and 3/4th) of the plate and presented in
Fig. 10.

5 Conclusions

A quadratic plate element including shear deformation is reviewed for the dynamic
response analysis using FEM. The formulation can be used for thin as well as thick
plates. The deflections, velocities, and accelerations have been calculated for each time
step using the Newmark integration method. Following conclusions can be drawn from
the analysis:

• The deflections of a square plate are analyzed for the effect of moving mass which
is validated through convergence study (Fig. 5) and also verified with the previously
published works (Fig. 6). This study proves the method’s efficacy.

• The dynamic deflections at different locations of rectangular (Fig. 8) and curved
plate (Fig. 10) keeping the same center-line distance are explained under the effect of
moving mass.

• The dynamic deflections are more for the curved plate than that of the rectangular
one.

• The rectangular plate’s maximum deflection is found at the central load position
whereas in case of curved plate the maximum deflection load position shifted towards
the end of the structure.

• The rectangular plate is showing a better result than that of the curved one for the
dynamic response analysis under the influence of moving mass.
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