
Chapter 9
The Ring of Conditions
for Horospherical Homogeneous Spaces

Johannes Hofscheier

Abstract These are notes of a five talks lecture series during the “Graduate Summer
School in Algebraic Group Actions”, at McMaster University, June 11th–15th, 2018.
The aimof this lecture series is to introduce the ring of conditions of a spherical homo-
geneous space with a special emphasis on the horospherical case, i.e., homogeneous
spaces with respect to a connected complex reductive group which are torus bundles
over a flag variety. In these notes, we start with an example from enumerative geom-
etry which naturally yields first instances of spherical varieties. We continue with
a recollection of the necessary background on reductive groups needed throughout
the rest of the manuscript. After that we introduce spherical varieties: we discuss the
Luna–Vust theory of spherical embeddings and explain the complete combinatorial
description of horospherical varieties (an important subfamily of spherical varieties).
We conclude with the definition of the ring of conditions of spherical homogeneous
spaces and give an explicit description for the horospherical case.

Keywords Spherical variety · Linear algebraic group · Enumerative geometry ·
Ring of conditions

9.1 Motivation

In the following, some elementary knowledge of algebraic geometry is expected
from the reader. Introductory texts which cover the required topics are, e.g., [9, 23,
24, 27]. Parts of this manuscript follow the lecture notes [11] by Kiritchenko.

First examples of spherical varieties emerged from enumerative geometry such as
Grassmannians. It turns out that many enumerative problems reduce to intersection
theoretic questions on algebraic varieties equippedwith a “good” transitive (or almost
transitive) action of an algebraic group. Here is a classical example:
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Problem 1 Howmany lines in 3-spaceC
3 intersect 4 given lines in general position?

Recall the general trick how to rephrase an affine geometric question into a linear
one: Suppose X is an affine geometric object in C

n . Introduce one further dimension
and consider the linear span of X regarded as a subset of the affine hyperplane {xn+1 =
1} where xn+1 denotes the additional coordinate.

Hence, the above question reduces to a problem in the Grassmannian Gr(2, 4) (2-
planes inC

4). This algebraic variety admits a transitive action byGL4 (the general lin-
ear group of invertible 4 × 4-matriceswith complex entries). Indeed, let e1, . . . , e4 be
the standard basis inC

4 and consider the natural action ofGL4 onC
4.ClearlyGL4 acts

transitively on planes in C
4 and the stabilizer P of the coordinate plane span{e1, e2}

is given by

P =
{(

A C
0 B

)
: A, B ∈ GL2,C ∈ Mat(2 × 2)

}
.

Hence Gr(2, 4) ∼= GL4 /P is a homogeneous space under GL4 and P is an example
of a parabolic subgroup (see definition below).

Note that by the transition to Gr(2, 4), we implicitly consider the lines as sitting in
the projective 3-space P

3 and intersections are taken in the projective sense. Indeed,
two parallel lines do not intersect in the affine 3-space, but their corresponding 2-
planes do. This corresponds to the fact that two parallel lines intersect at infinity
in P

3.
Let us recall the crucial ideas of Schubert’s solution to Problem 1. To solve it, he

developed the calculus of “conditions” (see [22]), which has since become known
as Schubert Calculus. Examples of conditions are:

1. for a given point a, denote by σa the condition that a line contains a;
2. for a given line �, denote by σ� the condition that a line intersects �; or
3. for a plane �, denote by σ� the condition that a line is contained in �.

Schubert’s brilliant idea was that conditions can be added and multiplied and this
corresponds to logical “or” and “and” operations on the conditions, e.g., σ�1 + σ�2 is
the condition that a line intersects line �1 or line �2 while σ�1 · σ�2 is the condition that
a line intersects both lines �1 and �2. So, for instance, Problem 1 can be reformulated
to: What is σ�1 · · · σ�4 where �i are four lines in general position? In particular, we
can reformulate the problem in an algebraic equation and obtain

σ�1 · σ�2 · σ�3 · σ�4 = (σ�1 · σ�2) · (σ�3 · σ�4) =?.

So we have to understand the conditions σ�1 · σ�2 and σ�3 · σ�4 . By using some
heuristics, Schubert came to the conclusion that “perturbations” of the condi-
tion σ�1 · · · σ�4 do not change the answer (the conservation of number principle),
i.e., we are allowed to move the lines �i . In particular, we may assume that �1, �2
lie on a plane, and so do �3 and �4 (see Fig. 9.1). From that it straightforwardly fol-
lows that a line intersects both �1 and �2 if and only if it is either contained in the
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Fig. 9.1 The conservation of number principle implies that we are allowed to move the lines �i

plane � spanned by �1 and �2 (recall that we take intersections in P
3) or it contains

the intersection point of �1 and �2. Using Schubert calculus this means

σ�1 · σ�2 = σa + σ� and σ�3 · σ�4 = σa′ + σ�′

where a is the intersection point of �1 and �2 and� is the plane spanned by �1 and �2
and similarly for �3, �4.

Thus, we get

σ�1 · σ�2 · σ�3 · σ�4 = (σa + σ�) · (σa′ + σ�′ ) = σa · σa′ + σa · σ�′ + σa′ · σ� + σ� · σ�′ .

Clearly there is exactly one line passing through both a and a′ and there is exactly
one line contained in both � and �′. On the other hand, as a is not contained in �′,
the condition σa · σ�′ is not satisfied by any line, and similarly for σa′ · σ�.

We obtain

σ�1 · σ�2 · σ�3 · σ�4 = σa · σa′︸ ︷︷ ︸
=1

+ σa · σ�′︸ ︷︷ ︸
=0

+ σa′ · σ�︸ ︷︷ ︸
=0

+ σ� · σ�′︸ ︷︷ ︸
=1

= 2.

Of course, we haven’t given a precise explanation yet and in his fifteenth problem
Hilbert asked for a rigorous foundation of Schubert Calculus. Our goal will be to
understand De Concini’s and Procesi’s solution to Hilbert’s problem. For that, we
also need to understand spherical geometry, a topic which is exciting in its own right.
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9.2 Linear Algebraic Groups: A Crash Course

The classical books byBorel, Humphreys and Springer [2, 10, 25] are excellent refer-
ences for what follows. Amoremodern and accessible book is [18]. For convenience,
we work over the field of complex numbers C.

An algebraic variety G is called an algebraic group if G is a group and the
mapsG × G → G, (g, h) �→ gh andG → G, g �→ g−1 aremorphisms of algebraic
varieties. The Lie algebra of G, usually denoted by g, is the tangent space TeG at
the identity element e ∈ G equipped with a binary operation [·, ·] called the Lie
bracket. Important examples of algebraic groups are GLn (=the general linear
group of invertible n × n-matrices with complex entries), SLn (=the special linear
group of n × n-matrices with complex entries and determinant 1), abelian varieties
(=complete connected algebraic groups) or elliptic curves (=1-dimensional abelian
varieties). We will work with linear algebraic groups, i.e., Zariski closed subgroups
of GLn . If G ⊆ GLn is a linear algebraic group, then TeG = g ⊆ gln = Te GLn =
{(n × n) − matrices}, and the Lie bracket can be defined as the commutator of matri-
ces

[A, B] := AB − BA.

Remark 2 If one replaces “algebraic varieties” and “morphisms of algebraic vari-
eties” by “smooth manifolds” and “smooth maps”, one obtains the definition of a
Lie group.

Exercise 3 Let G be an algebraic group.

1. Show that only one irreducible component of G can pass through e. This com-
ponent is called the identity component of G, usually denoted by G◦.

2. Show that G◦ is a normal subgroup of finite index in G, whose cosets are the
connected as well as irreducible components of G.

Exercise 4 Which of the following algebraic groups are linear?

1. (Cn,+),
2. An elliptic curve,
3. PGLn .

Fromnowon all algebraic groups are assumed to be linear, unless stated otherwise.

Definition 5 An element g ∈ G ⊆ GLn is called semisimple if the matrix g is diag-
onalizable. It is called unipotent if all eigenvalues of g are equal to 1. (This definition
is independent of the choice of the embedding G ⊆ GLn .)

Exercise 6 Letπ : G → GLn be a (rational) representation of an algebraic groupG,
i.e., π is a morphism of algebraic groups. Show that:

1. If G = (C∗)n , then any matrix in π(G) is diagonalizable.
2. If G = C

n , then any matrix in π(G) is unipotent.



9 The Ring of Conditions for Horospherical Homogeneous Spaces 201

Exercise 7 (Jordan decomposition) Show that every element g ∈ G has a unique
decomposition g = gsgu , where gs ∈ G is semisimple, gu ∈ G is unipotent, and gs
and gu commute.

The radical, denoted by R(G), of an algebraic group G is the identity component
of its maximal normal solvable subgroup. The unipotent radical, denoted by Ru(G),
is the set of unipotent elements in the radical of G.

Definition 8 An algebraic group G is reductive if Ru(G) = {e}. It is semisimple
if R(G) = {e}.
Theorem 9 (Characterization of reductive groups) Let G be an algebraic group.
The following conditions are equivalent:

1. G is reductive;
2. R(G) is a torus;
3. G◦ = T · S, where T is a torus and S is a connected semisimple subgroup;
4. any finite-dimensional rational representation of G is completely reducible

(recall: a rational representation of G in a vector space V is a homomor-
phism G → GL(V ) of algebraic groups);

5. G admits a faithful finite-dimensional completely reducible rational representa-
tion;

6. the Lie algebra of G admits a direct sum decomposition g = h ⊕ ih where h is
the Lie algebra of a maximal compact real Lie subgroup of G.

Exercise 10 Which of the following groups are reductive?

1. C
n ,

2. GLn ,
3. An elliptic curve.

Exercise 11 Show that an algebraic group G is reductive if and only if G does not
contain a normal subgroup isomorphic to C

n .

A character of an algebraic group G is a homomorphism of algebraic groups
χ : G → C

∗ and the set of all characters gives the character group ofG, i.e.,X(G) :=
{χ : G → C

∗ character}.
An algebraic torus is an algebraic group T that is isomorphic to

(C∗)n = {(z1, . . . , zn) ∈ C
n : zi �= 0}.

If G is an algebraic group, then a maximal element of the set

{H ⊆ G closed subgroup, H an algebraic torus}

(which is ordered by inclusion) is called a maximal torus of G.

Theorem 12 In an algebraic group, any two maximal tori are conjugated.

The dimension of T is called the rank of G. The character lattice X(T ) of T is also
called the weight lattice of G, and its elements are called weights of G.
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Exercise 13 Find a maximal torus of the following groups:

1. GLn ,
2. SLn ,
3. SOn .

The set {H ⊆ G closed connected solvable subgroup} is partially ordered by
inclusion. A maximal element of this set is called a Borel subgroup.

Exercise 14 Show that the upper-triangular invertible matrices form a Borel sub-
group in GLn and that any two Borel subgroups are conjugated. (Hint: Use the
Lie–Kolchin theorem [10, Theorem 17.6].)

Theorem 15 In an algebraic group, any two Borel subgroups are conjugated.

Definition 16 A (Zariski) closed subgroup P ⊆ G is called parabolic if P contains
a Borel subgroup of G.

Exercise 17 LetG be a linear algebraic group, B ⊆ G a Borel subgroup and T ⊆ G
a maximal torus.

1. Show that up to conjugation T ⊆ B.
2. Show that restricting characters from B to T induces an isomorphism of character

lattices X(B) ∼= X(T ).

The Weyl group W of G is defined as NG(T )/CG(T ), where NG(T ) and CG(T )

denote the normalizer and centralizer, respectively, of a maximal torus T ⊆ G. The
Weyl group acts on T by conjugation: if w = nCG(T ) for n ∈ NG(T ), then w(t) :=
(ntn−1) for t ∈ T .

Theorem 18 If G is a connected reductive group, then CG(T ) = T for any maximal
torus T ⊆ G. In particular, the Weyl group is given by W = NG(T )/T .

Exercise 19 If G is a connected reductive group, T ⊆ G a maximal torus, and
B ⊆ G a Borel subgroup with T ⊆ B, show that for any w ∈ W the double
coset BẇB is independent of the choice of a representative ẇ ∈ NG(T ). Thus, by
abuse of notation, we will denote this double coset by BwB.

Theorem 20 (Bruhat decomposition) If G is a connected reductive group, T ⊆ G
a maximal torus, and B ⊆ G a Borel subgroup with T ⊆ B, then there is a disjoint
union, i.e., BwB = Bw′B if and only if w = w′ in W,

G =
⊔
w∈W

BwB

In particular,
G/B =

⊔
w∈W

BwB/B.
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Exercise 21 You may want to start with n = 3 or n = 4 in the following problems.

1. Explicitly compute the Bruhat decomposition of GLn (take T to be the maximal
torus of diagonalmatrices and B theBorel subgroup of upper triangularmatrices).

2. Classify all parabolic subgroups in GLn (up to conjugation). (Hint: There is a
relationship between parabolic subgroups inGLn andflags inC

n . Recall that a flag
is an increasing sequence of subspaces of C

n , i.e., {0} = V0 � V1 � . . . � Vk =
C

n . The dimensions di := dim Vi yield an increasing sequence of integers 0 =
d0 < d1 < · · · < dk = n, called the signature of the flag.)

Exercise 22 LetG be a connected reductive group, T ⊆ G a maximal torus, B ⊆ G
a Borel subgroup with T ⊆ B and P ⊆ G a parabolic subgroup with B ⊆ P . Show
that

G/P =
⊔

w∈W/WP

BwP/P

where WP = NP(T )/T is the Weyl group of P .

The closure of B-orbits in G/P are the Schubert varieties (denoted by X (w)).
They play an important role in the study of G/P . The dimension of X (w) equals
the length l(w) of w (i.e., the minimal number of factors needed to write w as a
product of simple reflections). In particular, there exists a unique element w0 of
maximal length in W/WP .

Example 23 Let G = SLn and T be the maximal torus of diagonal matrices con-
tained in the Borel subgroup B of upper-triangular matrices. The Lie algebra g = sln
(i.e., the tangent space Te SLn equipped with the Lie bracket [·, ·]) is the set of
traceless matrices in Mat(n × n) equipped with the commutator bracket [A, B] =
AB − BA. Furthermore, the Lie algebra t of T coincides with the subspace of
diagonal matrices in sln . Observe that the Lie bracket induces a map ad : t →
End(g); A �→ [A, ·] which is a representation of Lie algebras, i.e., ad([A, B]) =
ad(A) ad(B) − ad(B) ad(A) for any A, B ∈ t (check this!). Let ε1, . . . , εn be the
linear forms in t∗ induced by the diagonal entries, i.e., εi (diag(t1, . . . , tn)) = ti and
set εi j = εi − ε j . It is straightforward to show that the Lie algebra decomposes into
eigenspaces as follows

and R = {εi j : 1 ≤ i, j ≤ n, i �= j}. If b is the Lie algebra of B, then

b = t ⊕
⊕
α∈R+

gα
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Fig. 9.2 Illustration of the
root system A2. We identify
the hyperplane {x + y + z =
0} ⊆ R

3 with R
2 via the

basis obtained by applying
the Gram–Schmidt algorithm
to the basis (α1, α2)

where R
3 and R

2 are
equipped with the usual
euclidian scalar products

2

1

1

2

where R+ = {εi j : i < j} and this set is called the set of positive roots. The set
of simple roots S = {αi := εi,i+1 : i = 1, . . . , n − 1} (cf. Fig. 9.2) forms a basis of t∗
(check this!) and induces an isomorphism t∗ ∼= {(x1, . . . , xn) ∈ R

n : x1 + . . . + xn =
0} ⊆ R

n . To any simple root αi one associates a reflection si , namely the linear
transformation on R

n which swaps the coordinates with index i and (i + 1). We
identify si with an element in W = NG(T )/T :

⎛
⎜⎜⎝
Ii−1

0 1
−1 0

In−i−1

⎞
⎟⎟⎠ T ∈ W .

Then W is generated by the si , i.e., W = 〈si : i = 1, . . . , n − 1〉 (check this!). It
straightforwardly follows that W is isomorphic to the group Sn of permutations on
the coordinates of R

n via si �→ (i, i + 1) (transposition swapping i with i + 1).

In general, the Lie bracket induces a natural representation ad : t → End(g); x �→
[x, ·]. There is a set of linear forms, called roots, R ⊆ t∗ such that

g = t ⊕
⊕
α∈R

gα

where gα denotes the linear subspace of eigenvectors of weight α, i.e., the set of
vectors x ∈ g such that [h, x] = α(h)x for all h ∈ t. The Lie algebra b of B can be
written as

b = t ⊕
⊕
α∈R+

gα
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for some subset R+ ⊆ R, called the set of positive roots. There exists a unique basis S
contained in R+ such that all positive roots are linear combinations of elements in S
with nonnegative integer coefficients. The elements of S are called simple roots.

The following fundamental theorem on parabolic subgroups can be found in any
introductory text on algebraic groups. Recall the definition of the Weyl group: W =
NG(T )/T . Let R be the set of roots and let S be the set of simple roots induced by
the choice of the Borel subgroup B.

Theorem 24 The assignment I �→ PI =⊔w∈WI
BwB induces a bijection between

subsets of the set of simple roots S and parabolic subgroups of G which contain B
(here WI denotes the group generated by the simple reflections sα for α ∈ I ).

9.3 Spherical Varieties

Recall the definition of a toric variety:

Definition 25 Let T be an algebraic torus. A normal irreducible T -variety is
called toric variety if it contains an open dense T -orbit.

Spherical varieties can be thought of as a generalization of toric varieties where
one allows also non-abelian group actions. Unfortunately, the straightforward gen-
eralization does not work:

Definition 26 (Incorrect definition) Let G be a connected linear algebraic group. A
normal irreducible G-variety is called spherical if it contains an open dense G-orbit.

Exercise 27 Show that the “incorrect definition” of spherical varieties does not
imply finiteness of the number of orbits, a property one would expect from a gener-
alization of toric varieties. (Hint: Consider the action of GLn on the space of (n × n)-
matrices by left multiplication. Show that the GLn-orbits are classified by matrices
in reduced row echelon form. If n ≥ 2, deduce that, although there is an open GLn

orbit, the number of GLn-orbits is infinite.)

So the definition of spherical varieties is more subtle: Let G be a connected
reductive complex linear algebraic group (this assumption has several implications
which make this choice important: finite generation properties, good representation
theory, cf. Theorem 9).

Definition 28 A normal irreducible G-variety is said to be spherical if it contains
an open orbit under the action of a Borel subgroup of G. (In particular, it contains
an open G-orbit.)

Example 29 Examples of spherical varieties are toric varieties (a Borel subgroup
of (C∗)n is (C∗)n itself).

Another point of view on spherical varieties, important to the theory, is as fol-
lows: First consider the open G-orbit which is a homogeneous space G/H for some
subgroup H of G. Then consider the embedding of G/H in X . So we make the
following definitions:



206 J. Hofscheier

Definition 30 A closed subgroup H ⊆ G is called spherical if G/H has a dense
open orbit for a Borel subgroup of G. In this case, G/H is called a spherical homo-
geneous space.

Recall that in Exercise 27, we have seen that an open G-orbit does not guarantee
the finiteness of G-orbits, a property one would expect from a generalization of
toric varieties. It is interesting that one can use this property as a characterization of
spherical homogeneous spaces:

Theorem 31 ([1]) A homogeneous G-space O is spherical if and only if any G-
variety X with an open orbit equivariantly isomorphic to O has finitely many G-
orbits.

Amorphismϕ : X → Y ofG-varieties is called equivariant ifϕ(g · x) = g · ϕ(x)
for any g ∈ G and all x ∈ X .

Definition 32 Suppose G/H is a spherical homogeneous space. An equivariant
open embedding of G/H into a normal irreducible G-variety X is called a spherical
embedding, and X is called a spherical variety.

In particular, the description of spherical varieties splits into two parts:

1. Classify all spherical homogeneous spaces G/H .
2. For a fixed spherical homogeneous space, classify all G-equivariant open embed-

dings G/H ↪→ X into normal irreducible G-varieties.

Historically, the second problem has been answered first by the work of Luna and
Vust [17]. Only recently, the first problem has been answered by work of several
researchers (see [3, 6, 15, 16]).

Exercise 33 Show the following statements:

1. A closed subgroup H ⊆ SL2 is spherical if and only if dim H > 0.
2. Table9.1 shows a list of all spherical subgroups of SL2 (up to conjugation).

(Although spherical varieties with an SL2-action seem to be special, they actually
play a crucial role in the development of spherical varieties. See, for example, [17]
or [8, 14].) Hints: If this is too hard, then verify explicitly that the subgroups given
in Table9.1 are spherical:

a. SL2 /B ∼= P
1 where SL2 naturally acts on P

1,
b. it is enough to show that U1 is spherical (why?) and to do that consider the

natural action of SL2 on A
2,

c. consider the natural action of SL2 on P
1 × P

1 to show that T is a spherical
subgroup of SL2,

d. consider the natural action of SL2 on the symmetric (2 × 2)-matrices to show
that N is a spherical subgroup of SL2.

Exercise 34 A closed subgroup H ⊆ G is called horospherical if it contains a max-
imal unipotent subgroup U of G. Show that horospherical subgroups are spherical.
In particular, flag varieties are spherical. (Hint: Use the Bruhat decomposition.)
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Table 9.1 Classification of spherical subgroups of SL2 (up to conjugation)

H Details

SL2

B Borel subgroup

Uk =
{(

ξ ∗
0 ξ−1

)
: ξ ∈ μk

}
k ∈ N, μk group of kth roots of unity

T Maximal torus

N Normalizer of a maximal torus

9.3.1 The Luna–Vust Theory of Spherical Embeddings

Recall that for a fixed algebraic torus T , all toric embeddings T ↪→ X into a normal
irreducible T -variety can be combinatorially described by polyhedral fans in the
vector space Hom(X(T ), Q). A similar description exists for spherical embeddings
which we now explain. This is called the Luna–Vust theory of spherical embeddings.
Good references for this theory are [13, 17]:

Let G be a connected reductive complex algebraic group and fix a spherical
subgroup H ⊆ G. Let B be a Borel subgroup of G and T a maximal torus of G
contained in B. We now explain how all spherical embeddings G/H ↪→ X can be
described combinatorially.

Definition 35 The combinatorial objects needed in the Luna–Vust theory are listed
in Table9.2. The rank of M is also called the rank of the spherical homogeneous
space G/H , i.e., rk(G/H) = rk(M). Let N := Hom(M, Z) be the dual lattice
of M and note that we have a dual pairing 〈·, ·〉 : N × M → Z. Furthermore,
set MQ := M ⊗ Q and NQ = Hom(M, Q). Recall, that in our context a valuation
is a map ν : C(G/H)∗ = C(G/H) \ {0} → Q which satisfies:

1. ν( f1 + f2) ≥ min{ν( f1), ν( f2)} whenever f1, f2, f1 + f2 ∈ C(G/H)∗;
2. ν( f1 f2) = ν( f1) + ν( f2) for all f1, f2 ∈ C(G/H)∗; and
3. ν(C∗) = 0.

A valuation ν is called G-invariant if ν(g · f ) = ν( f ) for all g ∈ G and f ∈
C(G/H)∗.

As the set of B-semi-invariant rational functions on G/H will appear frequently
below, we introduce the notation C(G/H)(B) for it.

Lemma 36 As G/H has an open B-orbit, a B-semi-invariant rational function f
is determined by its weight χ f up to a scalar multiple. Said in other words: For
any χ ∈ M, there is fχ ∈ C(G/H)(B) (unique up to a scalar multiple) such that b ·
fχ = χ(b) fχ .
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Table 9.2 The Luna–Vust data

Object Definition

Weight lattice M = {χ ∈ X(B) :
∃ f ∈ C(G/H)∗, B-semi-invariant
with b · f = χ(b) f for b ∈ B}

Colors D = {B-invariant prime divisors in G/H}
Valuation cone V = {ν : C(G/H)∗ → Q, G-invariant

valuation}

Table 9.3 The “Luna–Vust data” for the toric case

Object Toric case

Weight lattice M = X(T )

Colors D = ∅

Valuation cone V = NQ

The following interpretation of a valuation ν : C(G/H) → Q (invariant or not)
will be useful:

ρ : {ν : C(G/H) → Q valuation} → NQ; ν �→ [χ �→ ν( fχ )].

Theorem 37 ([4])Themapρ|V : V ↪→ NQ is injective and its image is a polyhedral
cone whose dual cone is simplicial and not necessarily full-dimensional.

Any color D ∈ D induces a valuation νD and by abuse of notation, we will
write ρ(D) := ρ(νD). In general, the map ρ|D : D → NQ is not that well-behaved
(see Exercise 38).

Exercise 38 Find the “Luna–Vust data” for the spherical homogeneous spaces from
Exercise 33. In particular, you should see the following phenomena:

1. SL2 /T : the map ρ : D → N might not be injective;
2. SL2 /N : the image of a color ρ(D) might not be primitive in N ;
3. SL2 /B: the image of a color might even be zero, i.e., ρ(D) = 0.

Example 39 The “Luna–Vust data” of the toric case is listed in Table9.3.

Example 40 Consider the natural action of SL2 on C
2. Let B be the Borel subgroup

of upper triangular matrices, T the maximal torus of diagonal matrices and U the
unipotent radical of B. Denote the standard basis of C

2 by e1, e2. Then SL2 /U ∼=
SL2 ·e1 = C

2 \ {0} and B · e2 = C × C
∗ is the open B-orbit. The rational functions

on SL2 /U are given by C(x, y) = C(A2). It is straightforward to verify that

C(SL2 /U )(B) ∼= {cyk : c ∈ C, k ∈ Z}.
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Fig. 9.3 Illustrating the “Luna–Vust data” of SL2 /U

Hence,M = Zω where ω is the fundamental weight of SL2 induced by the diagonal
elements of T . Clearly D = div(y) is the only B-stable prime divisor in SL2 /U ,
i.e., we only have one colorD = {D} and ρ(D) = α̌|M where α̌ denotes the coroot
associated to the simple root α of SL2 (with respect to our choice of Borel). If we
consider the blowup of A

2 at the origin, we obtain an exceptional SL2-invariant
divisor E which induces an SL2-invariant valuation νE such that ρ(νE ) = α̌|M. In
particular, the ray Q≥0α̌ is contained in the valuation cone V. If we consider the
spherical embedding SL2 /U ↪→ P

2, we see that the line at infinity induces a G-
invariant valuation ν with ρ(ν) = −α̌|M, and thus V = NQ.

One usually illustrates the combinatorial data in a picture (see Fig. 9.3).

Definition 41 We introduce the following “colored” extensions of the notions of
polyhedral cone, face and fan from the toric case.

1. A colored cone is a pair (C,F ) with

a. F ⊆ D,
b. C ⊆ NQ convex cone generated by ρ(F ) and finitely many elements ofV ∩

N ,
c. the relative interior of C intersectsV,
d. C contains no lines and 0 /∈ ρ(F ).

Such colored cones are usually called strictly convex colored cones, but as we are
only interested in strictly convex cones, we will omit the specifier and just speak
of colored cones.

2. A colored face of a colored cone (C,F ) is a pair (C′,F ′) such that

a. C′ is a face of C (in the usual sense),
b. the relative interior of C′ intersects V,
c. F ′ = {D ∈ F : ρ(D) ∈ C′}.

3. A colored fan is a finite set � of colored cones with the following properties:

a. every colored face of a colored cone of � is in �,
b. for all ν ∈ V, there exists at most one colored cone (C,F ) ∈ � such that ν

is in the relative interior of C.
4. The support of a color fan � is the set

⋃
(C,F )(C ∩ V) ⊆ V where (C,F ) runs

through all elements in �.

Let us explain how to associate a colored fan �X to a spherical embedding
G/H ↪→ X .
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Fig. 9.4 The colored fans of SL2 /U ↪→ A
2 and SL2 /U ↪→ P

2

Theorem 42 X is covered by finitely many G-invariant open subvarieties of X
containing a unique closed G-orbit (such varieties are called simple embeddings).

Let X ′ ⊆ X be an open G-invariant subvariety which is a simple embedding
and denote the G-invariant divisors of X ′ by X1, . . . , Xm ′ . Let F ′ be the set of
colors D ∈ Dwhose closure in X contain the closed orbit of X ′.We defineC′ to be the
cone inNQ generated by ρ(D) for D ∈ F ′ and ρ(Xi ) := ρ(νXi ) for i = 1, . . . ,m ′.
Then (C′,F ′) is a colored cone inNQ. Moreover the set of colored cones constructed
this way (together with their colored faces) forms a colored fan, which we denote
by �X .

Theorem 43 (Luna–Vust) The map X �→ �X is a bijection from the isomorphism
classes of spherical G/H-embeddings and the set of colored fans.

Example 44 (Example 40 continued) Clearly SL2 /U ↪→ A
2 is a simple spherical

embedding (the origin is the only closed SL2-orbit). On the other hand the spheri-
cal embedding SL2 /U ↪→ P

2 is not simple (indeed we can cover it with an affine
chart A2 and the complement of the unique SL2 fixed point). The corresponding col-
ored fans are illustrated in Fig. 9.4 (understand how to get them and which colored
fan corresponds to which spherical embedding). Note that the circle means that the
cone Q≥0 is “colored” by the unique color of SL2 /U , i.e., (Q≥0, {D}).

Exercise 45 Use the Luna–Vust theory to classify all spherical embeddings of
SL2 /T and SL2 /N . Draw the corresponding colored fans. Hint: You should find 2
in both cases.

Many results about spherical varieties are known. Unfortunately, due to lack of
time, we won’t be able to dig any deeper.

Theorem 46 A list of selected results:

1. The number of B-orbits is finite;
2. X is complete if and only if any ν ∈ V is contained in some colored cone of �X ;
3. there is a bijective correspondence between G-orbits in X and colored cones

in �X ;
4. a combinatorial smoothness criterion;
5. combinatorial descriptions of the Picard group and the divisor class group;
6. ampleness criterion for divisors;

and many more . . .

To learn more about the features of spherical varieties, the interested reader is
encouraged to consult [26] for further reading.
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9.3.2 The Classification of Spherical Homogeneous Spaces

The classification of spherical homogeneous spaces G/H turns out to be quite hard.
Luna’s brilliant insight in spherical varietiesmade it possible tofind such adescription
from Wasserman’s list of certain spherical varieties of rank 2 [28]. Inspired by it,
Luna [16] formulated a conjectural description and proved it for spherical varieties
of typeA. Only recently Luna’s Conjecture was proven in general with the combined
efforts of several researchers [3, 6, 15]. Unfortunately, time does not permit to give
more details on this exciting topic, instead we will see a complete answer for an
interesting special case.

9.3.3 The Complete Picture in the Horospherical Case

Recall from Exercise 34 that a closed subgroup H ⊆ G is called horospherical
if it contains a maximal unipotent subgroup of G. An exceedingly well written
introduction to horospherical varieties can be found in [19, 20] by Pasquier.

Fix a maximal unipotent subgroup U ⊆ G, a Borel subgroup U ⊆ B of G and a
maximal torus T ⊆ B.

Let us list some fundamental properties of horospherical subgroups. We refer
to [19] for further details and references.

Proposition 47 For a horospherical subgroup H ⊆ G with U ⊆ H, the following
statements hold:

1. the normalizer P := NG(H) is a parabolic subgroup containing B. Let I ⊆ S
be the unique set of simple roots such that P = PI (see Theorem 24);

2. M = {χ ∈ X(P) : χ |H = 1} ⊆ {χ ∈ X(T ) : 〈α̌, χ〉 = 0 for all α ∈ I };
3. H =⋂χ∈M ker(χ);

4. D = {Dα := Bw0sαP/H : α ∈ S \ I } where w0 ∈ W is the longest element in
the Weyl group W = NG(T )/T and sα denotes the simple reflection associated
to the simple root α;

5. P−w0(I ) coincides with the stabilizer of the open B-orbit in G/H;
6. V = NQ.

Theorem 48 ([13,Theorem6.1]) If H ⊆ G isa spherical subgroup, then NG(H)/H
is diagonalizable. In particular, if H contains U, then P/H is a torus where
P := NG(H).

Now, we come to an important geometric characterization of horospherical homo-
geneous spaces.

Recall that a continuous surjective map p : E → X of topological spaces is called
a fiber bundlewith fiber F (another topological space) if X can be covered with open
subsetsU such that there are homeomorphisms ϕ : p−1(U ) → U × F in such a way
that p agrees with the projection onto the first factor (see Fig. 9.5). It is said to be
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Fig. 9.5 Local trivialization
of fiber bundles

Fig. 9.6 Quotient by free
torus action is locally trivial
in Zariski topology

a principal �-bundle, for � a topological group, if in addition E is equipped with a
continuous �-action � × E → E preserving the fibers of p, i.e., if y ∈ p−1(x) for
some x ∈ X , then γ · y ∈ p−1(x) for any γ ∈ �, and acts freely and transitively on
them.

Here is a crucial observation on principal torus bundles in algebraic geometry.

Lemma 49 Let the torus S act freely on the normal irreducible variety E with good
geometric quotient p : E → E/S. Then for each y ∈ E/S there exists an affine open
neighbourhood U ⊆ E/S of x such that the diagram in Fig.9.6 commutes and the
upper left isomorphism is S-equivariant.

Exercise 50 Show that if an algebraic torus S acts freely on a normal irreducible
variety E with good geometric quotient p : E → E/S, then p admits Zariski open
trivializations (i.e., prove Lemma 49). What if we replace S by a connected reduc-
tive G? Hint: For the second part of the question, you may want to consider the
morphism φ : X → Y ; (A, B) �→ (det(A), tr(AB), det(B)) where X = {(A, B) ∈
Mat(2 × 2, C)2 : det(AB − BA) �= 0, tr(A) = tr(B) = 0} and Y = {y ∈ C

3 :
4y1y3 − y22 �= 0}.

Let p : E → X be a �-principal bundle. Suppose that E and X are G-spaces for
another topological group G. Then p : E → X is an equivariant principal �-bundle
if p is equivariant (i.e., p(g · y) = g · p(y) for any g ∈ G and y ∈ E) and the two
actions by� andG commute (usually one assumes that� acts from the right whileG
acts from the left).

Proposition 51 If H ⊆ G is a closed subgroup, then the following statements are
equivalent:

1. H is horospherical, i.e., contains the unipotent radical of a Borel subgroup;
2. G/H is an (algebraic) equivariant principal torus bundle over a flag variety G/P

where G naturally acts on G/H resp. G/P by left translations (the dimension of
the torus fiber coincides with the rank of G/H);

3. H =⋂χ∈M ker χ for some parabolic subgroup P of G and some sublattice M ⊆
X(P).
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Furthermore, P = NG(H) and P = T H = BH for all maximal tori T of B con-
tained in P and all Borel subgroups B of G contained in P.

Proof (1) ⇒ (2): By Theorem 48, S := P/H = NG(H)/H is an algebraic torus. It
acts on G/H by right-translations, i.e.,

S × G/H → G/H ; (pH, xH) �→ xp−1H .

It is straightforward to check that S acts freely on G/H , and thus the result follows
by Lemma 49.

(2) ⇒ (1): Suppose that the fibers of the torus bundle p : G/H → G/P are
isomorphic to the algebraic torus T . As the two actions by G and T commute, the
morphisms ϕt : G/H → G/H ; xH �→ t · xH for t ∈ T areG-equivariant automor-
phisms. It follows by [26, Proposition 1.8] that we may consider T as a subgroup
of NG(H)/H . Set N := NG(H). Let T̃ be the preimage of T under the natural pro-
jection map N → N/H . Note that N → N/H is a morphism of algebraic groups
and that T̃ is a closed subgroup ofG. Since p−1(x P) ∼= T for any x P ∈ G/P , it fol-
lows that a conjugate of P is contained in T̃ , and thus it contains a maximal unipotent
subgroup U . As the natural projection morphism of algebraic groups T̃ → T maps
unipotent elements on unipotent elements, it follows that U is in its kernel which
implies that U ⊆ H .

(1) ⇔ (3) straightforwardly follows from Proposition 47 (3). �
Exercise 52 Show that SL2 /Uk is indeed a torus bundle over SL2 /B.

Exercise 53 Use the Luna–Vust theory to classify all spherical embeddings of
SL2 /U where U ⊆ SL2 is a maximal unipotent subgroup. Draw the correspond-
ing colored fans. Hint: You should find 6.

Proposition 54 ([20, Proposition 1.6]) The assignment which associates to a
horospherical subgroup H ⊆ G the pair (M, I ) (see Proposition 47) induces a
bijection between horospherical subgroups of G and pairs (M, J ) where J ⊆ S
and M ⊆ X(T ) is a sublattice such that 〈α̌, χ〉 = 0 for any α ∈ J and all χ ∈ M.

The horospherical subgroup associated to a pair (M, J ) as in Proposition 54 is
given by H =⋂χ∈M ker χ where M ⊆ X(PJ ).

Exercise 55 Use the combinatorial description of horospherical subgroups to clas-
sify those contained in SL2.

A colored fan � is called toroidal if F = ∅ for any (C,F ) ∈ �. Observe that
in the horospherical case toroidal fans coincide with fans in the toric sense. In this
special case, we have the following explicit construction of horospherical toroidal
varieties:

Proposition 56 ([20, Examples 1.13 (2)]) If H ⊆ G is a horospherical subgroup
containing U and � is a toroidal fan, then the corresponding spherical embed-
ding is G-equivariantly isomorphic to G ×P X� where X� denotes the toric variety
corresponding to the fan � (with acting torus P/H where P = NG(H)).
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In the situation of Proposition 56, recall that P acts on G × X� by p · (g, x) :=
(gp−1, pH · x) with good geometric quotient G ×P X� = (G × X�) /P .

9.4 The Ring of Conditions of a Horospherical Variety

A good reference for the ring of conditions is the classical paper by De Concini and
Procesi [7].

Let G be a connected complex algebraic group and H ⊆ G a closed subgroup
(not necessarily spherical). Consider the homogeneous space G/H .

Recall that two subvarieties X,Y ⊆ G/H are said to intersect properly if either
X ∩ Y = ∅ or each irreducible component of the intersection X ∩ Y has dimen-
sion dim(X) + dim(Y ) − dim(G/H). They are said to intersect transversally if
the intersection X ∩ Y is smooth and has pure dimension dim(X) + dim(Y ) −
dim(G/H).

Theorem 57 (Kleiman’s transversality theorem [12,Corollary 4]) Let X,Y ⊆ G/H
be two irreducible subvarieties. The left translate of X by g ∈ G we denote by gX.

1. There exists a dense open subset U ⊆ G such that gX and Y intersect properly
for each g ∈ U.

2. If X,Y are smooth, then there exists a dense open subset U ⊆ G such that gX
and Y intersect transversally for any g ∈ U.

In particular, if X and Y have complementary dimensions (but are not necessarily
smooth), the intersection gX ∩ Y consists of finitely many points and this number is
constant for generic g ∈ G.

Remark 58 There is a slight strengthening of Kleiman’s transversality theorem
in [7, Sect. 6.1].

Recall that the free abelian groupZk(G/H) = ⊕
X⊆G/H

ZX , where the sum is over

closed irreducible subvarieties of codimension k, is said to be the group of algebraic
cycles of codimension k. Theorem 57 makes it possible to introduce an intersection
pairing between groups of algebraic cycles of complementary codimensions

Zk(G/H) and Zdim(G/H)−k(G/H).

It is enough to define it for irreducible cycles and then extend bilinearly:

Zk(G/H) × Zdim(G/H)−k(G/H) → Z;
(X,Y ) �→ (X · Y ) := #(gX ∩ Y ) (for generic g ∈ G).

Here X,Y ⊆ G/H are assumed to be irreducible subvarieties.
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Definition 59 Two algebraic cycles X,Y ∈ Zk(G/H) are said to be equivalent,
i.e., X ∼ Y , if for any algebraic cycle of complementary codimension
Z ∈ Zdim(G/H)−k(G/H) the intersection products are the same (X · Z) = (Y · Z).
We denote the group of equivalence classes by Ck(G/H) := Zk(G/H)/ ∼ and
consider it as the “group of conditions of dimension dim(G/H) − k”.

Clearly the intersection pairing factors through the equivalence relation, so
that we obtain an intersection pairing on the groups of conditions: Ck(G/H) ×
Cdim(G/H)−k(G/H) → Z. So farC∗(G/H) :=⊕dim(G/H)

k=0 Ck(G/H) is only a group,
but we want to introduce a product on it, so that it becomes a ring. Again, it is
enough to define a product structure for classes of irreducible cycles X ∈ Zk(G/H)

and Y ∈ Zl(G/H) and then extend bilinearly. Here is a naive approach:

Definition 60 Define the intersection product of [X ] and [Y ] where X,Y ⊆ G/H
are two irreducible subvarieties by [X ] · [Y ] := [gX ∩ Y ] for generic g ∈ G.

Unfortunately this definition of an intersection product may not be well-defined
in general (see Exercise 61).

Exercise 61 Show that the naive definition of an intersection product of two
irreducible subvarieties X,Y ⊆ G/H is not well-defined in general. (Hint: Con-
sider G = (C3,+) acting on A

3 by translations. Let H = {0} and compute the inter-
section product of X = {y = 0},Y = {x = yz} ⊆ C

3.)

Proposition 62 ([7]) For a flag variety G/P, the intersection product in
Definition 60 is well-defined and the ring C∗(G/P) can be identified with the Chow
ring A∗(G/P) or with the cohomology ring H∗(G/P, Z).

Led by this observation, De Concini and Procesi showed the remarkable fact that
the intersection product of Definition 60 is well-defined on spherical homogeneous
spaces. Let C be the set of smooth (or complete) spherical embeddings G/H ↪→
X . This set C admits the partial ordering defined such that a spherical embed-
ding G/H ↪→ X1 is greater than G/H ↪→ X2 if there exists an equivariant mor-
phism X1 → X2. De Concini’s and Procesi’s idea is to show that for any X ∈ C
and any algebraic cycle Y ⊆ G/H , there is an X ′ ∈ C with X ≤ X ′ such that the
closure Y of Y in X ′ intersects the boundary of the open G-orbit in X ′ properly.
The existence of such a “good compactification” ensures that if one considers the
embedding X ′ then we may always assume (up to generic translations by G) that the
intersection with Y takes place in the open G-orbit G/H . To get an isomorphism of
rings, we have to consider “good compactifications” of all algebraic cycles at once.

Theorem 63 ([7, Sect. 6.3]) The intersection product from Definition 60 is well-
defined on a spherical homogeneous space G/H and there is a canonical isomor-
phism of graded rings

C∗(G/H) = lim−→
X ′

A∗(X ′) = lim−→
X ′

H∗(X ′, Z)
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where the limit is taken over complete (or equivalently smooth) spherical embed-
dings G/H ↪→ X ′.

Remark 64 Anycomplete spherical embedding is dominatedby a smoothprojective
toroidal one, and thus they form a cofinal set.

Exercise 65 Explicitly compute the ring of conditions for some spherical homoge-
neous spaces SL2 /H where H ⊆ SL2 is a spherical subgroup. (Hint: In this case,
the rank of the spherical homogeneous space is bounded by 1, and thus there are
only finitely many spherical embeddings, so that we can straightforwardly compute
the direct limit of cohomology rings.)

Exercise 66 Use the ring of conditions of Gr(2, 4) to solve the “4-lines problem”.

9.4.1 The Horospherical Case

From now on let H ⊆ G be a horospherical subgroup containing the unipotent rad-
ical U of a Borel subgroup B. Set P := NG(H) which is a parabolic subgroup
containing B.

Any character α ∈ X(P) induces an action of P on the affine line Cα by p · x =
α(p)x .We obtain an action of P onG × Cα by p · (g, x) = (gp−1, α(p)x). The geo-
metric quotient by this action exists and is denoted by G ×P Cα , i.e., G ×P Cα =
(G × Cα)/P . For the equivalence classes in G ×P Cα we write g � x . The projec-
tion map G ×P Cα → G/P; g � x �→ gP yields an equivariant line bundle on G/P
where G acts on the left, i.e., g′ · (g � x) = (g′g) � x . We write δ(α) := G ×P Cα

and note that these bundles are usually called homogeneous fiber bundles (see [26,
Section2.1]). If we compose the map X(P) → Pic(G/P) with the inclusion M ⊆
X(P), we obtain a map δ : M → Pic(G/P).

The following statement combinatorially describes the cohomology ring of
smooth projective toroidal horospherical varieties. It is a special case of a more
general result.

Theorem 67 ([21, Theorem1.2]) Let X� be a smooth projective toroidal horospher-
ical variety defined by an (uncolored) fan� with rays ρ1, . . . , ρn. Let v1, . . . , vn ∈ N
be the primitive vectors along the rays ρi . Then the cohomology ring H∗(X�, Q) is
isomorphic as an H∗(G/P, Q)-algebra to the quotient of H∗(G/P, Q)[x1, . . . , xn]
by the sum of ideals

〈
x j1 · · · x jk : ρ j1 , . . . , ρ jk do not span a cone of �

〉+〈
c1 (δ(m)) −

n∑
i=1

〈vi ,m〉xi : m ∈ M
〉
,

where c1(δ(m)) ∈ H 2(G/P, Z) denotes the first Chern class of the line bundle δ(m).
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Note that the first ideal in the sum of ideals in Theorem 67 corresponds to the Stanley-
Reisner ideal of the toric variety. The challenge is to find a good description of the
ring in Theorem 67 as we want to take the direct limit over all smooth projective
toroidal fans �.

The following approach is inspired by [5]. To keep notation simple, set MQ =
M ⊗ Q andNQ = HomZ(M, Q). Let � be a smooth projective toroidal fan inNQ.
Amap f : NQ → Q is piecewise polynomial if for any σ ∈ �, themap f |σ : σ → Q

extends to a polynomial function on the linear space spanQ{σ }, i.e., a piece-
wise polynomial function f on � is a collection of compatible polynomial func-
tions fσ : σ → Q. In particular, such a function is continuous. We denote by R�

the set of all piecewise polynomial functions on � which is a ring under pointwise
addition and multiplication. Let S∗(MQ) be the symmetric algebra of the Q-vector
space MQ. Recall that S∗(MQ) can be naturally identified with the polynomial
functions on NQ. Note that R� is a positively graded Q-algebra with graded subal-
gebra S∗(MQ). Indeed, any piecewise polynomial function f = ( fσ )σ∈� uniquely
decomposes into a sum of homogeneous piecewise polynomial functions.

Exercise 68 Let � be a smooth projective toroidal fan in NQ. Show that for any
ray ρ there is a piecewise linear function ϕρ on� which vanishes on all the other rays
and satisfies ϕ(uρ) = 1 where uρ is the primitive ray generator in N of the ray ρ.

Let us write �(1) for the set of rays of a fan � and uρ for the primitive generator
in N of the ray ρ ∈ �(1).

Lemma 69 If� is a smooth projective toroidal fan, then {ϕρ : ρ ∈ �(1)} (where ϕρ

is defined in Exercise 68) forms a basis of R1
� the space of piecewise linear functions

on �.

Exercise 70 Let � be a smooth projective toroidal fan. Show that R� is isomorphic
to the Stanley-Reisner algebra R� , i.e., the quotient ring of Q[Tρ : ρ ∈ �(1)] by the
relations

∏k
i=1 Tρi = 0 whenever ρ1, . . . , ρk are distinct rays which do not generate a

cone of �. (Hint: Clearly
∏k

i=1 ϕρi = 0 whenever ρ1, . . . , ρk do not generate a cone
of �. Therefore, there is a unique algebra homomorphism from R� to R� , which
sends Tρ to ϕρ . Show that this map is an isomorphism.)

We can now reformulate Theorem 67:

Proposition 71 Let X� be a smooth projective toroidal horospherical variety
defined by an (uncolored) fan �. Then the cohomology ring H∗(X�, Q) is iso-
morphic as an H∗(G/P, Q)-algebra to the quotient of H∗(G/P, Q) ⊗ R� by the
ideal

〈
c1 (δ(m)) ⊗ 1 −

∑
ρ∈�(1)

〈uρ,m〉1 ⊗ ϕρ : m ∈ M
〉

=
〈
c1(δ(m)) ⊗ 1 − 1 ⊗ 〈·,m〉 : m ∈ M〉,

where 〈·,m〉 ∈ S∗(MQ) is a (piecewise) linear function on �.
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Proof The statement is a reformulation of Theorem 67 except the equality of the two
ideals which remains to be shown. Recall from Lemma 69 that the set of piecewise
linear functions {ϕρ : ρ ∈ �(1)} (where ϕρ are defined in Exercise 68) forms a basis
of R1

� . Then the (piecewise) linear function 〈·,m〉 for m ∈ M can be expressed as a
linear combination in this basis, namely 〈·,m〉 =∑ρ∈�(1)〈uρ,m〉ϕρ . �

Wedenote byR the set of all piecewise polynomial functions on smooth projective
toroidal fans in NQ, i.e., R =⋃� R� where the union is taken over all smooth
projective toroidal fans �.

Theorem 72 We have that

C∗(G/H) ⊗ Q ∼= (H∗(G/P, Q) ⊗ R) / 〈c1(δ(m)) ⊗ 1 − 1 ⊗ 〈·,m〉 : m ∈ M〉 ,

where 〈·,m〉 ∈ S∗(MQ) is a piecewise linear function on any smooth projective
toroidal fan.

Proof For convenience, let us write A := H∗(G/P, Q).
By Theorem 63, we have

C∗(G/H) ⊗ Q =
(
lim−→
X ′

H∗(X ′, Z)

)
⊗ Q = lim−→

X ′
H∗(X ′, Q)

where the limit is taken over all smooth projective toroidal embeddings of G/H
which is a directed set. Indeed, for any two smooth projective toroidal embeddings
with corresponding fans�1, �2, we can find a third smooth projective toroidal fan�

which refines both fans �1 and �2. We introduce the relation � � �′ whenever �′
refines �. Suppose � � �′, so that we obtain an equivariant map X�′ → X� .
Our goal is to understand how the representation of cohomology rings given in
Proposition 71 behaves under this map. By Proposition 71, the cohomology rings
(as A-algebras) are generated by classes of divisors, so that the map corresponding
to X�′ → X� is givenbypullingbackdivisorswhich in turn induces the natural inclu-
sion R� ⊆ R�′ . Let I� := 〈c1(δ(m)) ⊗ 1 − 1 ⊗ 〈·,m〉 : m ∈ M〉 ⊆ A ⊗ R� . Simi-
larly define I�′ in A ⊗ R�′ . As I� ⊆ I�′ , we obtain the natural map μ�,�′ : (A ⊗
R�)/I� → (A ⊗ R�′)/I�′ . Then ((A ⊗ R�)/I�,μ�,�′) is the direct system yield-
ing the direct limit lim−→ H∗(X ′, Q). Moreover, we obtain two more direct systems,
namely (I�, I� ⊆ I�′) and (A ⊗ R�, A ⊗ R� ⊆ A ⊗ R�′) (for � � �′). Indeed,
we obtain a direct system of exact sequences:

0 → I� → A ⊗ R� → (A ⊗ R�)/I� → 0.

The statement follows by the fact that taking direct limits in the category of modules
is an exact functor, lim−→ A ⊗ R� = A ⊗ R, and lim−→ I� = I , where I denotes the ideal
in the statement. �
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