
Chapter 3
Lattice Distances in 3-Dimensional
Quantum Jumps

Mónica Blanco

Abstract For Q a lattice polytope and x /∈ Q a lattice point, we say that (Q, x) is
a quantum jump if conv(Q ∪ {x}) contains exactly one more lattice point than Q.
Usually this can only happen when the lattice distance between x and Q is somehow
bounded. In this paper I collect several results and information on the bound for
that distance in 3-dimensional quantum jumps, and the consequences on the distance
between the boundary of a polytope and its interior lattice points.

Keywords Lattice polytope · Lattice distance · Quantum jump · Interior points

3.1 Introduction

Throughout my research on classifying lattice 3-polytopes by their number of lattice
points [2–4] there has been a recurrent situation: suppose there is a lattice polytope Q,
and a lattice point x /∈ Q,what can I say about x with respect to Q so that conv(Q ∪
{x}) does not contain more lattice points other than those of Q and x? Usually the
answer had to do with the distance from x to Q being bounded.

In order to explain things more formally we need to introduce notation and some
basic definitions. A lattice point is an element of Z

d , and a lattice polytope is the
convex hull of finitely many lattice points.Wewrite lattice d-polytope if the polytope
isd-dimensional. Twopolytopes P andQ are equivalent, orunimodularly equivalent,
if there exists a unimodular transformation that maps one to the other. That is, if there
exists an affine map t : R

d → R
d such that t (Zd) = Z

d and t (P) = Q. The size of a
lattice polytope P ⊂ R

d is the number of lattice points in it. An affine functional f :
R

d → R is integer if f (Zd) ⊆ Z and it is primitive if f (Zd) = Z. The (lattice) width
of a lattice d-polytope P ⊂ R

d with respect to an integer functional f is the length
of f (P) ⊂ R, and the width of P is the minimum among those, for f non-constant.
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Finally, for S ⊂ R
d , we denote by conv(S) and aff(S) the convex and affine hulls

of S. In particular, an affine subspace S ⊂ R
d is lattice if aff(S ∩ Z

d) = S.
Let us now introduce the main two definitions in this paper:

Definition 1 The lattice distance between a lattice hyperplane H ⊂ R
d and a lat-

tice point x ∈ Z
d is dist(x, H) := | f (x)|, where f is a primitive functional with

f (H) = 0.

Definition 2 Let Q ⊂ R
d be a lattice polytope, not necessarily full-dimensional,

and let x ∈ Z
d \ Q. We say that the pair (Q, x) is a quantum jump if

conv
(
Q ∪ {x}) ∩ Z

d = (
Q ∩ Z

d
) ∪ {x}.

More generally, let Q, R ⊂ R
d be lattice polytopes, not necessarily full-

dimensional, with Q ∩ R = ∅. We say that the pair (Q, R) is a quantum union if

conv
(
Q ∪ R

) ∩ Z
d = (

Q ∩ Z
d
) ∪ (

R ∩ Z
d
)
.

That is, if the lattice points of conv(Q ∪ R) are either in Q or in R.

The name of quantum jumpwas first used by Bruns, Gubeladze, andMichałek [5].
Notice that they restrict the concept of quantum jump (Q, x) for when both Q
and conv(Q ∪ {x}) are full-dimensional and normal. Remember that a lattice d-
polytope Q is normal if, for all k ∈ N, every lattice point in kQ can be written as the
sum of k lattice points in Q.

Now, if we want to take a look at the distance of quantum jumps, we first need to
define the distance between a point and a polytope. Following Definition1, they are
well and naturally defined the following distances:

Definition 3 1. Let Q ⊂ R
d be a lattice (d − 1)-polytope, and let x ∈ Z

d \ aff(Q),
then

dist(x, Q) := dist(x, aff(Q)).

2. Let H1, H2 ⊂ R
d be parallel lattice hyperplanes (H1 ∩ H2 = ∅), then

dist(H1, H2) := dist(x, H2), for any x ∈ H1.

3. Let �1, �2 ⊂ R
3 be lattice lines such that aff(�1 ∪ �2) = R

3, then

dist(�1, �2) := dist(H1, H2),

where H1, H2 are the unique pair of parallel lattice hyperplanes such that �i ⊂ Hi .
4. Let s1, s2 ⊂ R

3 be lattice segments such that aff(s1 ∪ s2) = R
3, then

dist(s1, s2) := dist (aff(s1), aff(s2)) .
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Fig. 3.1 The three figures show different facets of a lattice polygon Q, the hyperplane they are
contained in, and the lattice point x . Only the facet in the middle figure is visible from x

Notice that the width and the distance are heavily related. In broad terms, the dis-
tance between two lower-dimensional objects R1, R2 ⊂ R

d with aff(R1 ∪ R2) = R
d

is the width of conv(R1 ∪ R2)with respect to a specific functional that is determined
by the relative position between R1 and R2. In general, if R := conv(R1 ∪ R2) ⊂ R

d

is not full-dimensional, the distance between R1 and R2 is measured in the lat-
tice aff(R) ∩ Z

d ∼= Z
dim(R). In the case of lattice segments, we call (lattice) length of

a segment the distance between its two endpoints (vertices). Notice that a lattice seg-
ment of length k has exactly k + 1 lattice points. We say that a segment is primitive
if it has length one.

Now, the distance that is not necessarily well-defined is the distance from a point
to a full-dimensional polytope. This notion will be written in terms of the distance
to the visible facets (see Fig. 3.1):

Definition 4 Let Q ⊂ R
d be a lattice d-polytope, F ⊂ Q a facet of Q and x ∈

Z
d \ Q. F is visible from x if aff(F) strictly separates x from Q.

Definition 5 Let Q ⊂ R
d be a lattice d-polytope and let x ∈ Z

d \ Q.

1. The minimum distance between x and Q is

dx (Q) := min {dist(x, aff(F)) | F facet visible from x} .

2. The maximum distance between x and Q is

Dx(Q) := max {dist(x, aff(F)) | F facet visible from x} .

See Fig. 3.2 for a 2-dimensional example of themaximum andminimumdistances
between a point and a polygon. Notice that Dx(Q) is the height of x over Q as in [5,
Definition 4.1].

Let us see what we know about the distance of quantum jumps in each dimension.
For this, we can also think of a quantum jump as follows: any d-dimensional quantum
jump is of the form (Pv, v), for P ⊂ R

d a latticed-polytope, v ∈ vert(P) a vertex of P
and Pv := conv(P ∩ Z

d \ {v}). Notice that the dimension of Pv can be d or d − 1.
For example, the lattice distance in quantum jumps of dimension ≤ 2 is always

one:
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Fig. 3.2 A lattice
polygon Q, a lattice point x ,
and the two facets of Q
visible from x , F and G. In
this case, dist(x, F) = 2
and dist(x,G) = 1.
Hence dx (Q) = 1
and Dx (Q) = 2

G

F

x

Q

Lemma 6 Let P be a lattice polytope of dimension d ∈ {1, 2}, and let v be a vertex
of P.

If Pv is of dimension d − 1, then dist(v, Pv) = 1 and, if Pv is of dimension d, we
have dv(Pv) = Dv(Pv) = 1.

To understand the idea in general: let Pv be d-dimensional. For any (d − 1)-
dimensional face of Pv that is visible from v, chose S an empty (d − 1)-dimensional
simplex in it. Since (Pv, v) is a quantum jump, so is (S, v), which implies that the
convex hull of S and v is an empty d-simplex. Remember that an empty simplex of
dimension d is a lattice d-polytope with d + 1 vertices and such that those vertices
are its only lattice points.

In the cases of d = 1, 2, any empty simplex has to be unimodular, hence the vertex-
facet distance (lattice distance between a vertex and the only facet that does not
contain it) is always 1. In dimension 3 things get more complicated since we have
empty tetrahedra of arbitrarily high volume, and hence arbitrarily high vertex-facet
distance (e.g. Reeve tetrahedra [8]). That is, quantum jumps between a unimodular
triangle and a lattice point that is at arbitrarily high lattice distance from it.

In Sect. 3.2 of this paper I put together some information on the lattice dis-
tance of 3-dimensional quantum jumps (Q, x) that derives partially from previous
research [2–4]. We distinguish when Q is 2 or 3-dimensional:

1. If Q is 2-dimensional (Sect. 3.2.1) it so happens that the classifications of lattice 3-
polytopes of size 5 and 6 [2, 3], together with a suitable classification of lattice
polygons, give all the information there is to know about the distance from Q
to x . It can be summarized as follows:

Theorem 7 (see Corollary14) Let Q ⊂ R
3 be a lattice polygon, and let x ∈ Z

3 \
aff(Q) such that (Q, x) is a quantum jump. Then, the lattice distance from x to Q
is at most 3 unless Q is a lattice triangle of width one, in which case the distance is
unbounded.

2. As a direct consequence of the results of the previous section, in Sect. 3.2.2 we
have the following result on the distance of a quantum union of lattice segments:

Theorem 8 (see Corollary16) Let s, t ⊂ R
3 be lattice segments with aff(s ∪ t) =

R
3 such that (s, t) is a quantum union. Then, the lattice distance from s to t is one,

unless both s and t are primitive, in which case it is unbounded.
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3. For the case of Q being 3-dimensional (Sect. 3.2.3), Example18 shows that there
exist quantum jumps of this type at arbitrarily high distance. We also look at
all the lattice 3-polytopes P of size 11 and width > 1 (database of [4]), and for
each vertex v of P such that Pv is 3-dimensional we compute the minimum and
maximum distances from v to Pv. Looking at the numbers one can easily see that
there is no hope in trying to bound these distances, having very high numbers for
both the minimum and the maximum distances.

Finally, in Sect. 3.3 I use all the information gathered in the previous section to
study the distance between the boundary of a polytope and its interior.More precisely,
for P ⊂ R

3 a lattice 3-polytope we look at the distance between a lattice point or
segment in ∂P (the boundary of P) and the inner lattice polytope of P , which
is IP := conv{int(P) ∩ Z

3}. Notice that IP together with a point (or segment) of the
boundary is always a quantum jump (or union). The definition of inner polytope also
applies to rational polytopes.

We only look at inner polytopes IP of size ≥ 3 (see Remark20), and we separate
cases according to its dimension:

1. IP has dimension 1, that is, it is a lattice segment of length ≥ 2. In this case we
look at the distance between IP and a segment in the boundary. By Corollary16,
this distance must be one, leading to:

Theorem 9 (see Theorem21) The projection of P in the direction of the segment IP
is a reflexive polygon (polygon with a unique interior lattice point).

2. IP has dimension 2. In Sect. 3.3.2 we prove a specific property that a polygon
has to satisfy in order to appear as the inner polygon of a 3-dimensional lattice
polytope (see Theorem23). Together with the results of Corollary14 we obtain:

Corollary 10 (see Corollary24) For IP of dimension 2 and size ≥ 12, the distance
from any boundary point of P to IP is at most 1.

3. IP has dimension 3. Again we look at the classification of lattice 3-polytopes
of size ≤ 11 and width > 1 [4], take the polytopes with 3-dimensional inner
polytope, and look at the minimum and maximum distances from any vertex
to the inner polytope. In Sect. 3.3.3 we simply collect some information on the
numbers obtained, without exploring it further. This time the values look more
promising, since the largest value that appears is a maximum distance of 6, and
in very high proportion the maximum and minimum distances are 1.

For future work one could try and complete the results on distances between a
lattice point of the boundary of a polytope, and its 2 or 3-dimensional inner polytope.
For the inner polytope of dimension 2, it is left to explore the cases when IP has up
to 11 lattice points. This seems perfectly doable with the help of the classification
of polygons of Proposition11, together with the results of Sect. 3.2.1. On the other
hand, for IP of dimension 3, one would have to identify in the used database all the
polytopes that yield maximum and minimum distances equal to 1 and try to derive
the properties they have as opposed to those that yield larger distances. One would
have then to try and extend this to lattice 3-polytopes of size larger than 11.
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Fig. 3.3 The complete classification of lattice polygons that do not contain a unit square

3.2 Distances in 3-Dimensional Quantum Jumps or Unions

Let Q ⊂ Z
3 be a lattice polytope and let x ∈ Z

3 \ Q.We study the distance between x
and Q, provided that (Q, x) is a quantum jump.

3.2.1 Quantum Jumps (Q, x) with Q of Dimension 2

We first see at what distance can a lattice point be from a lattice polygon, so that
they form a quantum jump. For this, we first classify lattice polygons in a way that
is suitable distance-wise. In the following lemma, we call unit square any lattice
polygon unimodularly equivalent to [0, 1]2.
Proposition 11 Let Q ⊂ R

2 be a lattice polygon. Then Q either contains a unit
square or is equivalent to one of the following configurations:

1. �2, the unimodular triangle;
2. T1 := conv{(1, 0), (0, 1), (−1,−1)}, the unique terminal triangle;
3. T2 := conv{(2, 0), (0, 1), (−1,−2)}, a clean triangle with three non-collinear

interior lattice points;
4. F1(k) := conv{(0, 0), (0, 1), (k, 0)}, for k ≥ 2;
5. F2(k) := conv{(0, 1), (0,−1), (k, 0)}, for k ≥ 2;
6. F3(k) := conv{(−1,−1), (0, 1), (k, 0)}, for k ≥ 2; or
7. F4(k ′, k) := conv{(0, 1), (0,−1), (−k ′, 0), (k − k ′, 0)}, for 0 < k ′ < k.

See Fig. 3.3 for a depiction of the polygons of Proposition11. For its proof, let us
first establish the following notation.
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Fig. 3.4 The situation in the
proof of Proposition11
when Q contains three
collinear lattice points in a
facet

xT

(1, 1)(−1, 1)

y

Remark 12 Let P ⊂ R
d be a polytope, and let R � P . If a point x ∈ R

d is not a
point of P , then P ∩ Cx (R) = ∅, where Cx (R) := x − R≥0

(
R − x

)
. This fact fol-

lows trivially from convexity of polytopes. We use it whenever we want to determine
a polytope P , and we know R a subset of P and x a point not in P .

Proof (Proof of Proposition11) For Q with 3 lattice points, we have Q ∼= �2. If Q
has 4 lattice points, then Q ∼= T1, Q ∼= F1(2) or Q is equivalent to the unit square.

So assume for the rest of the proof that Q has size at least 5. In particular we know
that Q has 3 collinear lattice points and we can assume, without loss of generality,
that these are (−1, 0), (0, 0) and (1, 0).

If Q contains a unit square, we have finished. Assume for the rest of the proof
that Q does not contain a unit square. That is, we have Q a lattice polygon of
size ≥ 5, containing the lattice points (−1, 0), (0, 0) and (1, 0), and not containing
a unit square. Since Q is 2-dimensional, it has some lattice point outside of the
line � := {y = 0} and, by Lemma6, we can choose one in either �+ := {y = 1}
or �− := {y = −1}. Without loss of generality, we assume that the point (0, 1) ∈ �+
is in Q. That is, the triangle T := conv{(−1, 0), (1, 0), (0, 1)} ⊂ Q.

Let us now distinguish the cases according to whether Q has three collinear lattice
points in a facet or not.

1. Suppose the three collinear points (−1, 0), (0, 0) and (1, 0) are in a facet of Q.
Then Q ⊂ {y ≥ 0}. Since Q does not contain a unit square, the points (−1, 1)
and (1, 1) cannot be in Q. Moreover, by Remark12 this implies that no point in
the affine cones C(−1,1)(T ) and C(1,1)(T ) is in Q. See Fig. 3.4. That means that
the only lattice points that can lie in Q \ T are in the following sets:

A := {
(i, 0), i ∈ Z \ [−1, 1]}, B := {

(0, j), j ∈ Z, j ≥ 2
}

Q can contain points of A or points of B, but in order for (1, 1) and (−1, 1) not
to be in Q, it cannot contain points of A and B at the same time. Adding points
of A to T gives rise to polygons of the type F1(k), and adding points of B gives
rise to F2(k).

2. If no facet of Q contains three collinear points, then the origin, which is in the
relative interior of the segment conv{(−1, 0), (1, 0)} ⊂ Q, must be an interior
point of Q. So Q must contain some lattice point in {y < 0} and, by Lemma6,
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Fig. 3.5 The situation in the
proof of Proposition11
when Q does not contains
three collinear lattice points
in a facet o

(−3,−1) (−2,−1) (0,−1)

T

y

x

it contains some point of �−. Let us denote this point by p−. We can assume
without loss of generality that (−2, 0), (2, 0) /∈ conv(T ∪ {p−}), or else we
can simply choose a different triple of collinear lattice points in {y = 0}. That
is, p− ∈ {±3,±2,±1, 0} × {−1}. By symmetry of the already established points
with respect to the line {x = 0}, we can assume that p− ∈ {x ≤ 0}. Also we know
that p− = (−1,−1) since Q does not contain a unit square. The three remain-
ing possibilities p− ∈ {(−3,−1), (−2,−1), (0,−1)} are depicted in Fig. 3.5.
Let T ′ := conv(T ∪ {p−}) ⊆ Q, and let us study the three options for p−.

a. p− = (−3,−1).We can apply the unimodular transformation (x, y) �→ (x −
y + 1, y) so that T ′ is mapped to F3(2) and assume now that F3(2) ⊆ Q. See
the left-most picture in Fig. 3.6. The lattice points (−1, 0), (0,−1) and (1, 1)
cannot lie in Q, or else it would contain a unit square. This already implies that
the conesC(−1,0)(F3(2)),C(0,−1)(F3(2)) andC(1,1)(F3(2)) do not intersect Q.
With that, the only lattice points that can be in Q are the points (r, 0), with r >

2. We can take as many as wanted and this gives rise to configurations F3(k).
b. p− = (−2,−1). Again we apply the same unimodular transformation so

that T ′ is, in this case, mapped to F2(2) ⊆ Q. In order for Q not to have unit
squares, no point in {−1, 1}2 can lie in Q which, after removing the corre-
sponding lattice cones, leaves the following possibilities for further points
of Q:

A := {(−1, 2)}, B := {(−1,−2)},

C := {(r, 0), r ∈ Z, r ≥ 3}, D := {(s, 0), s ∈ Z, s ≤ −1}

The points in A and B cannot be in Q at the same time, and each gives rise
to a configuration equivalent to T2. The points in C or D cannot be in Q at
the same time as the points in A or B. If Q has points of D, we have configu-
rations F4(k ′, k) and, if Q only has points of C we get configurations F2(k).

c. p− = (0,−1). In this case, T ′ = F4(1, 2). After excluding the points in the
cones with apex in {−1, 1}2, Q can have other lattice points in:

A := {(r, 0), r ∈ Z \ [−1, 1]}, B := {(0, s), s ∈ Z \ [−1, 1]}

Q cannot have points of A and B at the same time, and adding to T ′ points
of either A or B gives rise to configurations equivalent to F4(k ′, k). �
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(r, 0)

y

x

y

x(s, 0) (r, 0)

(−1, 2)

(−1,−2)

y

x(r, 0)

(0, s)

Fig. 3.6 The three possible polygons T ′ in the proof of Proposition11. In each figure, the dark
gray area is the polygon T ′ (or equivalent). The light gray area is the union of the cones that do not
intersect Q. Black dots are lattice points of T ′, crosses are lattice points that cannot be in Q, and
white dots are the possible lattice points of Q \ T ′

Let us now take that classification and see what are the conditions on the coordi-
nates of a lattice point x ∈ Z

3 so that a polygon Q and x /∈ aff(Q) form a quantum
jump.

Lemma 13 Let Q ⊂ R
2 × {0} be a lattice polygon and let x = (a, b, c) ∈ Z

3 be a
lattice point with c = 0 and such that (Q, x) is a quantum jump. Then:

1. if Q = �2, then at least one of the following happens:

i. a ≡ 1 (mod c) and gcd(b, c) = 1;
ii. b ≡ 1 (mod c) and gcd(a, c) = 1;
iii. a + b ≡ 0 (mod c) and gcd(a, c) = 1;

2. if Q contains a unit square, then c = ±1;
3. if Q = T1, then c = ±1, or c = ±3 and a ≡ −b ≡ ±1 mod 3;
4. if Q = F1(k), for k ≥ 2, then b ≡ 1 mod c and gcd(a, c) = 1;
5. if Q = F3(k), for k ≥ 2, then c = ±1; or
6. if Q = T2, F2(k), F4(k ′, k), for k > k ′ > 0, then c = ±1, or c = ±2 and a ≡

b ≡ 1 mod 2.

For the purpose of simplifying notation in Lemma13 and its proof, let us denote by
Q (resp. R) both the lattice polygon inR

2 and its embedding Q × {0} (resp. R × {0})
in R

3.

Proof Part 1 of the statement follows from the classification of empty tetrahedra [9],
which states that a lattice tetrahedron is empty if one of the three pairs of opposite
edges are at lattice distance one. It is also required that these opposite edges are
primitive segments (gcd condition in the statement).

In each of the cases 2–6, we choose a subpolygon R of Q of size 4 or 5:

2. R is the unit square in Q;
3. R := Q of size 4;
4. R := F1(2) ⊆ Q of size 4;
5. R := F3(2) ⊆ Q, of size 5;
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6. R := F2(2) ⊆ Q or R := F4(1, 2) ⊆ Q, of size 5.

Since (Q, x) is a quantum jump, and R ⊆ Q, so is (R, x). That is, the poly-
tope P := conv(R ∪ {x}) is of size 5 or 6. Let us find the possible equivalences of P
in the classification of lattice 3-polytopes of size 5 or 6 [2, 3]. Notice that in all the
cases, P is a pyramid over a known polygon with apex x , so it suffices to find these
in the mentioned classification:

2. P ∼= conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (1, 1, 0), (0, 0, 1)} (the unique configu-
ration of signature (2, 2) in [2]);

3. P ∼= conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0), (0, 0, 1)} or
P ∼= conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (−1,−1, 0), (1, 2, 3)} (the two configu-
rations of signature (3, 1) in [2]);

4. P ∼= conv{(0, 0, 0), (1, 0, 0), (−1, 0, 0), (0, 1, 0), (p, q, 1)}, with gcd(p, q) =
1 (the configurations of signature (2, 1) in [2]);

5. P ∼= conv{(−1,−1, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1)} (a pyra-
mid of width one in [3]);

6. P ∼= conv{(−1, 0, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1)},
P ∼= conv{(−1, 0, 0), (1, 0, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 1, 2)},
P ∼= conv{(−1, 1, 0), (1, 1, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 0, 1)}, or
P ∼= conv{(−1, 1, 0), (1, 1, 0), (0, 0, 0), (0, 1, 0), (0, 2, 0), (1, 0, 2)} (two pyra-
mids of width one, and configurations A.1 and A.2 in [3]).

It is left to the reader to see that adding all the lattice points in Q \ R does not
put any further restrictions on the coordinates of x . That is, for each value of x so
that (R, x) is a quantum jump, we also have that (Q, x) is a quantum jump. Notice
that the different possibilities for the values of a, b and c that appear in the statement
in each of the cases, appear by applying to P all the unimodular transformations
in R

3 that are automorphisms of Q. �

In terms of the distance from x to Q, which in Lemma13 is the value |c|, we have
the following result.

Corollary 14 Let Q ⊂ R
3 be a lattice polygon and let x ∈ Z

3 \ aff(Q) be a lattice
point such that (Q, x) is a quantum jump. Then exactly one of the following happens:

1. Q contains a unit square or Q ∼= F3(k), and dist(x, Q) = 1;
2. Q ∼= T2, F2(k) or F4(k ′, k), and dist(x, Q) = 1 or 2;
3. Q ∼= T1 and dist(x, Q) = 1 or 3; or
4. Q ∼= �2 or F1(k), and the distance from x to Q is unbounded.

The polygons �2, Ti and Fi (k) are as in Proposition11, for 0 < k ′ < k.

Notice that the only cases when the distance is unbounded are Q ∼= �2 or Q ∼=
F1(k), that is, when Q is a triangle of width one.
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3.2.2 Quantum Unions of Lattice Segments

The two cases where the distance is unbounded in the previous section also have in
common that all the lattice points are along two lattice segments. Let us think about
them as quantum unions of lattice segments.

Remark 15 1. In the case of Q = �2, we have that (Q, x) is a quantum jump
if P := conv(Q ∪ {x}) is an empty tetrahedron. We can also write it as P =
conv(s1 ∪ s2), with (s1, s2) a quantum union of primitive segments, where s1 is
an edge from x and one of the three vertices of �2, and s2 is the opposite edge.
Notice that in this case there are three possible choices for the pair of primitive
segments.

2. In the case Q = F1(k), we have that (Q, x) is a quantum jump if (s1(k), s2) is
a quantum union between the lattice segment s1(k) := conv{(0, 0, 0), (k, 0, 0)}
and the primitive segment s2 := conv{(0, 1, 0), x}.
Cases 1 and 4 of Lemma 13, reformulated in terms of the distance between seg-

ments that form a quantum union, are as follows:

Corollary 16 Let s, t ⊂ R
3 be lattice segments such that aff(s ∪ t) = R

3 and such
that (s, t) is a quantum union. Then:

1. if one of s or t is not primitive, then dist(s, t) = 1;
2. if both s and t are primitive, the distance dist(s, t) can be arbitrarily high, but

one of the following distances must be one:

dist(s, t), dist
(
conv{s1, t1}, conv{s2, t2}

)
, dist

(
conv{s1, t2}, conv{s2, t1}

)

where si , ti ∈ Z
3 are the end-points of s and t, respectively.

3.2.3 Quantum Jumps (Q, x) with Q of Dimension 3

For the case when Q ⊂ R
3 is a lattice 3-polytope, remember that we defined the

distance from a point x ∈ Z
3 \ Q to Q in terms of the distance to the facets of Q

that are visible from x (Definition5). In particular, one can study the distance from x
to Q, for (Q, x) a quantum jump, by combining the results of the previous section
on the facets of Q that are visible from x .

Remark 17 Let Q ⊂ R
3 be a lattice 3-polytope. For each facet F of Q, let H−

F be
the open halfspace from which the facet F is visible, and denote by H+

F = R
3 \ H−

F
the closed halfspace with Q ⊂ H+

F . Then subdivide R
3 \ Q into the regions

RI :=
⋂

F∈I
H−

F ∩
⋂

F /∈I
H+

F , I = ∅,
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Fig. 3.7 The subdivision of
the space of Remark17 for a
lattice polygon. The facets of
the polygon are labeled 1 to
4 and each semi-open region
of the space is labeled by the
facets that are visible from it.
Each region can see one, two
or three facets

1

23

4

14 12

23

34

134

124
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1

so that, for all x ∈ RI, the facets of Q that are visible from x are exactly those of I.
Notice that the closures of the regions RI are rational polytopes or polyhedra. See
Fig. 3.7 for a 2-dimensional example of this subdivision of the space.

Let RI be one of those regions and suppose that x ∈ RI ∩ Z
3 is such that (Q, x)

is a quantum jump. We can have three different types of situations.

1. If RI is bounded (or if RI ∩ Z
3 is finite), the distance of x to Q is automatically

bounded.
2. If RI ∩ Z

3 has infinitely many points (in particular RI is unbounded), and some
facet of I is not a triangle of width one, then the distance of x to Q is bounded
by the results of the previous section (Corollary14).

3. Finally, if RI ∩ Z
3 has infinitely many points and all the facets in I are triangles

of width one, the distance from x to Q may not be bounded. Notice that, even in
this last case the distance from x to Q could still be bounded by combining the
restrictions given for the coordinates of x as in parts 1 and 4 of Lemma 13 for all
the different facets of I.
For instance,we can find arbitrarily high distance in these types of quantum jumps.

Example 18 Let h ∈ Z, h > 0. Let:

1. x = (0, 0, 0);
2. F := conv{(1, 0, h), (0, 1, h), (1, 1, h)}, a unimodular triangle in {z = h};
3. Q ⊂ R

3 be a lattice 3-polytope such that Q ⊂ C , for C := R≥0(F) = {xh ≤
z} ∩ {yh ≤ z} ∩ {(x + y)h ≥ z} (the triangular cone of F with apex at the origin)
and such that x /∈ Q, F ⊂ Q.

Then F is a facet of Q, it is the only facet that is visible from x , and Q and x
are such that (Q, x) is a quantum jump with Dx (Q) = dx (Q) = dist(x, F) = h.
If moreover Q is contained in Cx := C ∩ {x ≤ 1} or Cy := C ∩ {y ≤ 1}, then Q
and conv(Q ∪ {x}) are polytopes of width one.
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Fig. 3.8 The regions C and Cy of Example18

We can also choose Q of size n, for any n ≥ 4, since the regionsC ,Cx orCy have
infinitely many lattice points. See Fig. 3.8 for a depiction of the polyhedral regionsC
and Cy .

Even though it is clear that arbitrarily bad examples can occur, how often does
this happen? Are they rare or does the general picture look bad? For this, we look at
our database of lattice 3-polytopes of size ≤ 11 and width > 1 [4]. For each of those
polytopes P ⊂ R

3 and for each v ∈ vert(P) such that Pv is full dimensional, we look
at the distance in the quantum jump (Pv, v). Notice that our database contains all the
information on the types of quantum jumps when Pv is of size ≤ 10 and extends to
a polytope P of width > 1. That is, of size ≤ 10, we do not have the information on
polytopes of width one that extend to polytopes of width one, which are infinitely
many for each size (and no enumeration exists).

For each quantum jump (Pv, v) we compute the values dv(Pv) and Dv(Pv) and
store the following vectors:

1. dP := (
dv(Pv)

)
v∈vert(P),Pv full-dimensional

2. DP := (
Dv(Pv)

)
v∈vert(P),Pv full-dimensional

We separate the 216, 453 polytopes of our database in three different groups. Notice
that the entries of each vector dP and DP are positive integers.

1. dP = (1, 1, . . . , 1) = DP . This is the best case scenario we can find, since every
vertex v of P , with Pv full-dimensional, is at distance one from all the facets
of Pv that are visible from v. However, only 5,796 polytopes (about 2.7%) fall
into this category.

2. dP = (1, 1, . . . , 1), DP = (1, 1, . . . , 1). In this case, things are not as nice, but
we still have that every vertex v of P , with Pv full-dimensional, is at distance one
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from at least one facet of Pv that is visible from v. In this category we have 77,443
polytopes (∼35.8%).

3. dP , DP = (1, 1, . . . , 1). This is the worst case we can have, in which some
vertex v of P , with Pv full-dimensional, is at distance larger than one from all
the facets of Pv that are visible form v. This is the case for most of the polytopes
in our database: 133,214 polytopes, or ∼61.5% of the total.

In terms of the magnitudes of the entries, we have that the largest entries in the
vectors dP and DP , for each n the size of P , are:

n 5 6 7 8 9 10 11
max dv(Pv) 5 7 13 19 25 31 37
max Dv(Pv) 7 13 19 25 31 37 43

Notice that themaximum values for dv(Pv) and Dv(Pv), for P of size n, are 6(n −
5) + 1 and 6(n − 4) + 1, respectively (for n = 5 in the first case). This has to do with
the fact that, as h grows (see Example18) we need more lattice points to construct a
polytope of width > 1 that yields a vertex at distance h.

The average values of the dv(IP) and Dv(IP) are, respectively, 1.42 and 3.35.

Remark 19 If we were to follow the lines of Sect. 3.2.1, we would want to have,
in this section, an irredundant list of lattice 3-polytopes Q, and the maximum and
minimum distances a point x can be from Q, for (Q, x) a quantum jump.

However, we need to consider that we have 216,453 polytopes and that, for each of
those polytopes P and each vertex v of P wehave a different polytope Pv. Organizing
the information on the distances with no redundancies among the Pv does not seem
to be worth undertaking, in light of the distances that appear and the arguments made.

3.3 Distance from the Boundary to the Inner Polytope

Let P ⊂ R
3 be a lattice 3-polytope with IP = ∅.

Remark 20 For IP of size 1 or 2, the classification of lattice 3-polytopes with 1
and 2 interior lattice points was completed, respectively, by Kasprzyk [7] and by
Balletti and Kasprzyk [1].

1. The 3-dimensional distances that can be measured in the case of IP consisting of
one lattice point are the distances between this point and the facets of P .

2. In the case of IP having two lattice points, we would have to look at the distance
between IP and a non-coplanar lattice segment in the boundary.

In these two situations the distance is a priori unbounded if we look at it locally:
we can have a quantum jump between a unimodular triangle and a point in the first
case, and a quantum union of primitive segments in the second, at arbitrarily high
distance (see Corollaries14 and 16). There will be a bound following from the fact
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Fig. 3.9 A polytope P
having inner polytope IP of
dimension 1

P

IP

that there are only finitelymany lattice 3-polytopeswith 1 and 2 interior lattice points,
but the author does not believe it is worth exploring the more than 23 million such
polytopes.

So let P be such that IP has size at least three. Let S ⊂ ∂P be a lattice point
or primitive segment in the boundary of P , we look at the distance between S
and IP , relying on the fact that (IP , S) is a quantum jump (or union). This hap-
pens because conv(IP ∪ S) \ S ⊂ int(P), and the only interior lattice points of P
are those of IP .

3.3.1 Inner Polytope of Dimension 1

If IP is a lattice segment (see Fig. 3.9), and since IP has size at least 3, by Corol-
lary16, the distance from IP to any lattice segment in the boundary must be one. A
consequence of this is the following result1:

Theorem 21 (Averkov–Balletti–Blanco–Nill–Soprunov) Let P ⊂ R
3 bea lattice3-

polytope with IP a lattice segment of lattice length k (k + 1 collinear lattice points),
for k ≥ 2. If π : R

3 → R
2 is the lattice projection that maps IP to the origin

then π(P) is a reflexive polygon.

Proof Since k > 0, the projection π is well defined and unique, up to unimodular
transformation. Because the k + 1 collinear lattice points are in the interior of P ,
their projection, i. e. the origin, is an interior point of π(P). Let e be an edge of π(P),
then there exists a lattice segment e′ in the boundary of P such that π(e′) = e. Take
the following polytope Re := conv(IP ∪ e′) ⊂ P . Since e′ ⊂ ∂P and IP ⊂ int(P),
then Re cannot contain any extra lattice points. That is, it is the quantum union
of two lattice segments. By Corollary16, and since IP is not primitive, the distance
between IP and e′ must be one. In the projection, this directly implies that the distance
from the edge e and the origin (the respective projections of the segments) is one.
Hence π(P) is reflexive. �

1 Discussed in the Oberwolfach mini-workshop Lattice polytopes: Methods, Advances and Appli-
cations, September 2017.



64 M. Blanco

This result can help, for example, in the full classification of lattice 3-polytopes P
with IP a lattice segment. The projection has 16 possibilities: the 16 reflexive poly-
gons. For one such Q fixed, all the lattice points in P must be in π−1(Q).

3.3.2 Inner Polytope of Dimension 2

For P having inner polytope IP of dimension 2 (see Fig. 3.10), ourmain result resides
in proving a specific property that a polygon must have so that it can actually appear
as the inner polytope of a lattice 3-polytope. For this, let us introduce the concept
of front:

Definition 22 Let Q ⊂ Z
2 be a lattice polygon and let v be a vertex of Q. A front

of Q from v is a facet of the polygon Qv := conv(Q \ {v} ∩ Z
2) that is visible from v.

See Fig. 3.11 for an example of the fronts of a polygon.

Theorem 23 If P is a lattice 3-polytope with IP of dimension 2, then the fronts of IP
have length ≤ 8.

Proof Let F ⊂ IP be the longest front of IP , of length � > 0. We can assume with-
out loss of generality that IP ⊂ {z = 0}, � ≥ 3, that v := (0, 1, 0) is a vertex of IP

Fig. 3.10 A polytope P
having inner polytope IP of
dimension 2

P

IP

Fig. 3.11 Four copies of a
polygon Q, each showing
the fronts of Q from a
specific vertex

Q Q

Q Q
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Fig. 3.12 The setting of the
proof of Theorem23

o (�, 0)

r2(�)v0
v

T

r1

y

x

and F := conv{(0, 0, 0), (�, 0, 0)} (that is, F is a front of IP from v). In particular, we
have that T := F1(�) × {0} = conv(F ∪ {v}) ⊆ IP (for F1(�) as in Proposition11)
and that the only lattice points of IP in {y ≥ 0} are those of F and v. We need to
prove that � ≤ 8.

The intersection of P with the plane {z = 0} is the rational polygon P0 := P ∩
{z = 0}. We have that IP = conv(relint(P0) ∩ Z

3). That is, the inner polytope of P
coincides with the relative inner polygon of P0. For now let us identify R

2 × {0}
and R

2 in the trivial way, so from now on we simply say interior of P0 for the
relative interior of it embedded in the space R

3.
The vertex v = (0, 1) of IP is an interior point of P0, so for any line passing

through v there must be a vertex of P0 in each of the open halfspaces determined by
this line. In particular, there must be a vertex of P0 in the open halfspace {y > 1}. Let
us denote this vertex by v0 and consider the rational polygon T ′ := conv(T ∪ {v0}).
Since T ⊆ IP ⊂ int(P0) and v0 ∈ ∂P0, then T ′ \ {v0} ⊂ int(P0). That is, the only
lattice points of T ′ \ {v0} are those of T . In particular, (−1, 1), (1, 1) /∈ T ′ \ {v0},
which implies that v0 /∈ C(−1,1)(T ) ∪ C(1,1)(T ) (see Remark12).

This in turn implies that v0 must lie in the open rational triangle R� determined
by the hyperplanes {y = 1}, r1 := aff{(0, 0), (−1, 1)} = {x + y = 0} and r2(�) :=
aff{(�, 0), (1, 1)} = {x + (� − 1)y = �} (see Fig. 3.12).

That is,

v0 ∈ R� = int

(
conv

{
(−1, 1), (1, 1),

( −�

� − 2
,

�

� − 2

)})
,

which is well defined for � ≥ 3.
Observe that R� ⊂ R3 for all � > 3, and that R3 ∩ Z

2 = ∅. That is, there is no
lattice point in R�. In particular, v0 /∈ Z

3, and the only possibility is that v0 is the
intersection of a primitive segment uw := conv{u,w} ⊂ P with the plane {z = 0},
with neither u norw in this plane (and one in each of the halfspaces). This segment uw
is contained in an edge of P , although it is not necessarily equal to it.

In order to find out more about the coordinates of v0, we need to know the dis-
tances du := dist(u, H) and dw := dist(w, H) in the full-dimensional polytope P ,
for H := aff{P0} = {z = 0}.

For this, let us look at a 3-dimensional proper subpolytope of P:
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K := conv{(0, 0, 0), (1, 0, 0), (2, 0, 0), (0, 1, 0), u,w} ⊂ P

So far, the information we have is that K = conv(K0 ∪ {u,w}), for K0 := K ∩ {z =
0} = conv{o, (2, 0, 0), (0, 1, 0), v0} and u and w lying one in {z > 0} and the other
in {z < 0}, the edge uw being primitive and cutting the plane {z = 0} at the rational
point v0 ∈ R�. Let us prove the following properties of K :

1. K has size 6.Onone hand, K ∩ {z = 0} = K0 does not containmore lattice points
other than (0, 0, 0), (1, 0, 0), (2, 0, 0) and (0, 1, 0), since K0 ⊂ T ′ and T ′ ∩ Z

3 =
T ∩ Z

3. On the other hand, if K contains an extra lattice point other than those
four and u or w, this lattice point would have to lie outside of uw (which is a
primitive edge) and outside of {z = 0}. Since K \ uw ⊂ int(P), this would be an
interior lattice point of P outside of the plane {z = 0}, which is impossible by
hypothesis.

2. K has width > 1. Let f : R
3 → R be a linear primitive functional. If f is not

constant in the line {y = 0 = z}, then the width of K with respect to f is > 1
since f will take three different values in the points (0, 0, 0), (1, 0, 0), (2, 0, 0) ∈
K . Take now f to be constant in that line. Then the width of K with respect to f
is the width of π(K ) with respect to f ′, for π the lattice projection π : R

3 →
R

2, π(x, y, z) = (y, z), and f ′ the primitive functional f ′ : R
2 → R, f ′(y, z) =

f (π−1(y, z)). Notice that f ′ is well defined because f is constant in the fibers
of the projection. But under this projection, the point (0, 1) is an interior point
of π(K ), hence the width of π(K ) with respect to any functional is > 1. See the
picture on the right in Fig. 3.13.

That is, K is a lattice 3-polytope of size 6 and width > 1, and the classification
of such polytopes appears in [3]. However, not all of these polytopes are a possible
candidate for K . To narrow the possibilities, we can figure out the oriented matroid
of our configuration K , since the classification in [3] is also organized according to
this combinatorial information. Remember that the oriented matroid of a finite set of
points is the information recording the affine dependencies, in particular coplanarities
and collinearities between the points (see [6] for information on oriented matroids).

For this, one extra thing thatwe cannotice is that v cannot be avertexof K . Suppose
otherwise, then the polytope K ′ := K (0,1,0) = conv{o, (1, 0, 0), (2, 0, 0), u,w} is a
polytope of size 5 with three collinear lattice points. That is, K ′ is the convex hull

Fig. 3.13 The intersection K0 of K with the plane {z = 0}, and the projection of K under π
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of a lattice segment of length 2 and a primitive lattice segment uw. By Corollary16,
the lattice distance between these two lattice segments must be one. Taking again
projection π , this is equivalent to the segment π(uw) being at distance one from the
origin. Which is impossible since (0, 1) is a lattice point strictly in between π(uw)

and the origin (see the picture in the right of Fig. 3.13). In particular, v is not a vertex
of K0 and the picture on the left of Fig. 3.13 is not accurate.

That is, the oriented matroid of the six lattice points of K can be described as
follows:

1. four of them are vertices (o, (2, 0, 0), u and w);
2. one non-vertex point is in an edge ((1, 0, 0) = 1

2 ((0, 0, 0) + (2, 0, 0)));
3. the hyperplane containing the three collinear points and the other non-vertex point

({z = 0}) leaves the remaining two vertices (u and w) strictly in opposite sides of
it.

Notice that there are four different types (or orbits) of points: the endpoints of
the collinearity (o and (2, 0, 0)), the middle point of the collinearity ((1, 0, 0)),
the other two vertices (u and w), and the remaining non-vertex point (v). This
sixth point v has three different possibilities, in terms of the oriented matroid.
The three possibilities for v are: (I) it is in the relative interior of one of the
facets conv{o, u,w} or conv{(2, 0, 0), u,w}; (II) it is in the relative interior of the
triangle conv{(1, 0, 0), u,w}; or (III) it lies in the interior of one of the tetrahe-
dra conv{o, (1, 0, 0), u,w} or conv{(1, 0, 0), (2, 0, 0), u,w}. These three options
are shown in Fig. 3.14. For each of these three cases, the oriented matroid is fully
described.Without going into details of how theorientedmatroids are represented and
classified in [3], one can derive that the oriented matroid of the three options (I), (II)
and (III) are, respectively, oriented matroids 3.6, 3.8 and 4.11 as encoded in [3,
Fig. 1].

In [3, Tables 8 and 9] we can see that the only lattice 3-polytopes of size 6,
width > 1 and with one of the three specified oriented matroids are B.7 (oriented
matroid 3.8), C.1 (oriented matroid 3.6), and F.13 to F.17 (oriented matroid 4.11).
The following 3 × 6 matrices have, as columns, the six lattice points of each of those
seven polytopes:

Fig. 3.14 The three possibilities (I), (II), and (III) in the proof of Theorem23
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B.7

⎛

⎝
0 1 0 −1 0 0
0 0 1 −1 0 2
0 0 0 0 1 −1

⎞

⎠

C.1

⎛

⎝
0 1 0 −1 0 −1
0 0 1 −1 0 0
0 0 0 0 1 2

⎞

⎠

F.13

⎛

⎝
0 1 0 −2 1 4
0 1 0 −1 0 1
0 1 1 −2 0 2

⎞

⎠

F.14

⎛

⎝
0 0 −1 1 1 1
0 0 −1 2 0 −2
0 1 −1 1 0 −1

⎞

⎠

F.15

⎛

⎝
0 0 1 1 −1 −3
0 0 0 2 −1 −4
0 1 0 1 −1 −3

⎞

⎠

F.16

⎛

⎝
0 1 −1 0 1 2
0 0 −2 0 3 6
0 0 −1 1 1 1

⎞

⎠

F.17

⎛

⎝
0 1 1 0 −1 −2
0 0 3 0 −2 −4
0 0 1 1 −1 −3

⎞

⎠

That is, our polytope K must be equivalent to one of them, say K̃ , and let t :
R

3 → R
3 be any unimodular transformation that maps K to K̃ . Then t will send the

edge conv{(0, 0, 0), (2, 0, 0)} to the unique collinearity of three lattice points in K̃ ,
and v = (0, 1, 0) to the only non-vertex of the remaining lattice points.

Since unimodular transformations preserve distances, we have that {du, dw} =
{d ′

u, d
′
w}, for d ′

u := dist(t (u), t (H)) and d ′
w := dist(t (w), t (H)). Moreover, we can

assume without loss of generality that du ≤ dw. Then:

(du, dw) =

⎧
⎪⎨

⎪⎩

(1, 1) if K ∼= B.7, C.1, F.13, F.15

(1, 2) if K ∼= F.14, F.17

(1, 3) if K ∼= F.16

The distance in our original coordinates of K , since H = {z = 0}, is measured on
the z-coordinate of the points. That is, let zu and zw be the respective z-coordinates ofu
andw, we have that du = |zu | and dw = |zw|.Without loss of generality zu > 0 > zw:

(zu, zw) =

⎧
⎪⎨

⎪⎩

(1,−1) if K ∼= B.7, C.1, F.13, F.15

(1,−2) if K ∼= F.14, F.17

(1,−3) if K ∼= F.16

Let us now see that the denominator of the rational coordinates of v0 can only
be 2, 3 or 4:

v0 = (1 − λ)u + λw, for some λ ∈ [0, 1]

where λ is such that the z-coordinate of v0 is 0:

0 = (1 − λ)zu + λzw =⇒ λ = zu
zu − zw

= du
du + dw

That is, λ ∈ 1
2Z, 1

3Z or 1
4Z, hence

v0 = (a, b, 0), for (a, b) ∈
(
1

2
Z

)2

∪
(
1

3
Z

)2

∪
(
1

4
Z

)2

.
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R3

R4 R5

R6

R8 R9

R7

(−1, 1) (1, 1)

(−3, 3)

(−9
7 , 97

)

(−1, 1) (1, 1) (−1, 1) (1, 1)

(−1, 1) (1, 1) (−1, 1) (1, 1)

(−1, 1) (1, 1) (−1, 1) (1, 1)

(−2, 2) (−5
3 , 53

)

(−3
2 , 32

) (−7
5 , 75

)

(−4
3 , 43

)

Fig. 3.15 The regions R3 to R9, with the points of the lattices L2, L3 and L4 contained in them.
Large squares are points of L2 \ Z

2, medium squares are the points of L3 \ Z
2, and small squares

the points of L4 \ L2. Black dots and crosses represent points ofZ
2 in ∂R� andR

2 \ R�, respectively

Remember also that v0 must lie in the open triangle R�. To prove the statement of
the theorem it remains to see that the intersection of R� with any of the lattices L2, L3

or L4, for Li := (
1
i Z

)2 × {0} is empty for � ≥ 9. This is true since R9 does not contain
any point of those lattices, and since R� ⊆ R9 for � ≥ 9. To help the reader visualize
this we have drawn in Fig. 3.15 all the regions R3 to R9 with the possible positions
for the point v0. �
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As a consequence of the theorem, we find that polygons that do not contain a
unit square can only be inner polytopes of lattice 3-polytopes if they have few lattice
points:

Corollary 24 Let P ⊂ R
3 be a lattice 3-polytope with IP of dimension 2. Then

exactly one of the following happens:

1. IP contains a unit square and all its fronts are of length ≤ 8;
2. IP ∼= T1;
3. IP ∼= F3(k), for 2 ≤ k ≤ 8;
4. IP ∼= T2, F2(k) or F4(k ′, k), for 0 < k ′ < k ≤ 8; or
5. IP ∼= �2 or IP ∼= F1(k), for 2 ≤ k ≤ 8.

In particular, in cases 1–4 any lattice point in the boundary of P is at distance at
most 1, 3, 1 and 2, respectively, from IP .

Proof The first part of the statement follows from Proposition11 and Theorem23,
considering that the longest fronts in F1(k), F2(k), F3(k) and F4(k ′, k) have length k.
The second part follows from Corollary14. �

Remark 25 In case 5, the distance of any boundary lattice point of P to IP will also
be bounded since there are only finitelymany lattice 3-polytopeswith those particular
polygons as inner polytopes. However, this bound can only be found globally, and
not locally, since the distance from a single lattice point to IP is a priori unbounded
(see Corollary14).

3.3.3 Inner Polytope of Dimension 3

Now there is only left the case where IP is 3-dimensional. In particular, these are
quantum jumps of the type considered in Sect. 3.2.3, and we can apply the results
of Sect. 3.2.1 as explained in Remark17. However, notice that we cannot use the
results of Sect. 3.3.2, since they heavily rely on IP being 2-dimensional.

We do the same as we did in Sect. 3.2.3: we check our database of lattice 3-
polytopes of size ≤ 11, width > 1 and 3-dimensional inner polytope, of which
there are 15,763 polytopes [4]. In this case, since a polytope with interior lattice
points cannot have width one, we are not losing cases by having only polytopes
of width > 1, but we only have polytopes with at most 11 lattice points in total.
Since IP is 3-dimensional, it has at least size 4, and since vert(P) ⊂ P \ IP , then IP
has at most 7 lattice points. That is, our database contains the information on IP of
size k ∈ {4, 5, 6, 7}, with P of size n ∈ {k + 4, . . . , 11} and with n − k ≤ 7 lattice
points in the boundary. In particular, both P and IP are very clean (few points in the
boundary) among the polytopes being checked.
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We consider the following vectors:

1. dP := (
dv(IP)

)
v∈vert(P)

2. DP := (
Dv(IP)

)
v∈vert(P)

In this case, the results we get are much more hopeful, since most of the polytopes P
have the distance from vertices to IP all ones:

1. 8,786 polytopes (∼55.74%) have dP = (1, 1, . . . , 1) = DP . That is, every ver-
tex v of P is at distance one from all the facets of IP that are visible from v.

2. 5,804 polytopes (∼36.82%) have dP = (1, 1, . . . , 1), DP = (1, 1, . . . , 1). In this
case, every vertex v of P is at distance one from at least one facet of IP that is
visible from v.

3. 1,173 polytopes (∼7.44%) have dP , DP = (1, 1, . . . , 1). That is, there exists a
vertex v of P that is at distance larger than one from all the facets of IP that are
visible form v.

Moreover, the values of the distances are much smaller. Themaximum andminimum
values for each size n are as follows:

n 8 9 10 11
max Dv(IP ) 3 4 5 6
max dv(IP ) 3 3 3 4

and the average values of the Dv(IP) and dv(IP) are, respectively, 1.12 and 1.02.

Remark 26 Following the reasonings of Remark19, in this case we would want
to have a list of polytopes Q and the maximum distance we can have a point x
so that (Q, x) is a quantum jump and there exists a polytope P such that Q = IP
and x ∈ ∂P . From our database we are only considering 15,763 polytopes and, for
each of those polytopes P , we have exactly one polytope IP .

Putting together all the equivalent inner polytopes, we find out that there are
only 39 equivalence classes of inner polytopes. Moreover, around 9,000 polytopes in
the database (more than half) have the unimodular tetrahedron as its inner polytope.

The maximum and minimum distances for IP of size k are as follows:

k 4 5 6 7
max Dv(IP ) 4 4 5 6
max dv(IP ) 4 3 2 2

Altogether, it seems that we could find manageable bounds for the distance in
quantum jumps (IP , v), although further work is required.
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