# Chapter 2 On the Fine Interior of Three-Dimensional Canonical Fano Polytopes



Victor Batyrev, Alexander Kasprzyk, and Karin Schaller

**Abstract** The Fine interior  $\Delta^{\text{FI}}$  of a *d*-dimensional lattice polytope  $\Delta$  is a rational subpolytope of  $\Delta$  which is important for constructing minimal birational models of non-degenerate hypersurfaces defined by Laurent polynomials with Newton polytope  $\Delta$ . This paper presents some computational results on the Fine interior of all 674,688 three-dimensional canonical Fano polytopes.

Keywords Lattice polytope · Fine interior · Hypersurface

### 2.1 Introduction

Let  $M \cong \mathbb{Z}^d$  be a free abelian group of rank d. We set  $M_{\mathbb{Q}} := M \otimes \mathbb{Q}$  and denote by N the dual group Hom $(M, \mathbb{Z})$  in the dual  $\mathbb{Q}$ -linear vector space  $N_{\mathbb{Q}} := \text{Hom}(M, \mathbb{Q})$ . Let  $\langle \cdot, \cdot \rangle : M_{\mathbb{Q}} \times N_{\mathbb{Q}} \to \mathbb{Q}$  be the natural pairing.

A convex compact *d*-dimensional polytope  $\Delta \subseteq M_{\mathbb{Q}}$  is called *lattice d-tope* if all vertices of  $\Delta$  belong to the lattice  $M \subseteq M_{\mathbb{Q}}$ , i.e.,  $\Delta$  equals the convex hull conv( $\Delta \cap M$ ) of all lattice points in  $\Delta$ . The usual interior  $\Delta^{\circ}$  of  $\Delta$  is the complement  $\Delta \setminus \partial \Delta$ , where  $\partial \Delta$  is the boundary of  $\Delta$ . Another interior of a lattice polytope  $\Delta$  was introduced by Fine [3, 13, 15, 20]:

**Definition 1** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a lattice *d*-tope. Denote by  $\operatorname{ord}_{\Delta}$  the piecewise linear function  $N_{\mathbb{Q}} \to \mathbb{Q}$  with

V. Batyrev

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

A. Kasprzyk

K. Schaller (🖂)

© Springer Nature Switzerland AG 2022

e-mail: victor.batyrev@uni-tuebingen.de

School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK e-mail: a.m.kasprzyk@nottingham.ac.uk

Mathematisches Institut, Freie Universität Berlin, Arnimallee 3, 14195 Berlin, Germany e-mail: karin.schaller@fu-berlin.de

A. M. Kasprzyk and B. Nill (eds.), *Interactions with Lattice Polytopes*, Springer Proceedings in Mathematics & Statistics 386, https://doi.org/10.1007/978-3-030-98327-7\_2

$$\operatorname{ord}_{\Delta}(y) := \min_{x \in \Delta} \langle x, y \rangle \ (y \in N_{\mathbb{Q}}).$$

Then the convex subset

$$\Delta^{\mathrm{FI}} := \bigcap_{n \in N \setminus \{0\}} \{ x \in M_{\mathbb{Q}} \mid \langle x, n \rangle \ge \mathrm{ord}_{\Delta}(n) + 1 \}$$

is called the *Fine interior* of  $\Delta$ .

One can show that only finitely many linear inequalities  $\langle x, n \rangle \ge \operatorname{ord}_{\Delta}(n) + 1$ are necessary to define  $\Delta^{\text{FI}}$ . Therefore,  $\Delta^{\text{FI}}$  is a convex hull of finitely many rational points  $p \in M_{\mathbb{Q}}$ . Moreover, any lattice point  $p \in \Delta^{\circ} \cap M$  in the usual interior of  $\Delta$ is contained in  $\Delta^{\text{FI}}$ . Therefore,  $\Delta^{\text{FI}}$  contains the convex hull of  $\Delta \cap M$ , i.e., we get the inclusion  $\operatorname{conv}(\Delta^{\circ} \cap M) \subseteq \Delta^{\text{FI}}$ . In particular,  $\Delta^{\text{FI}}$  is non-empty if  $\Delta^{\circ} \cap M$  is non-empty. Moreover, for any lattice polytope  $\Delta$  of dimension  $d \leq 2$  one has the equality  $\operatorname{conv}(\Delta^{\circ} \cap M) = \Delta^{\text{FI}}$  [3]. The Fine interior  $\Delta^{\text{FI}}$  of a lattice polytope  $\Delta$  of dimension  $d \geq 3$  may happen to be strictly larger than the convex hull  $\operatorname{conv}(\Delta^{\circ} \cap M)$ . The simplest famous example of such a situation is due to M. Reid. Other similar examples based on hollow 3-topes can be found in Sect. 2.7:

**Example 2** ([20, Example 4.15]) Let  $M \subseteq \mathbb{Q}^4$  be 3-dimensional affine lattice defined by

$$M := \left\{ (m_1, m_2, m_3, m_4) \in \mathbb{Z}^4 \, \Big| \, \sum_{i=1}^4 m_i = 5, \, \sum_{i=1}^4 i m_i \equiv 0 \pmod{5} \right\}.$$

Consider the *M*-lattice 3-tope  $\Delta \subseteq M_{\mathbb{Q}}$  defined as the convex hull of 4 lattice points

 $(5, 0, 0, 0), (0, 5, 0, 0), (0, 0, 5, 0), \text{ and } (0, 0, 0, 5) \in M.$ 

Then  $\operatorname{conv}(\Delta^{\circ} \cap M) = \emptyset$ , but  $\Delta^{\operatorname{FI}}$  is the 3-dimensional *M*-rational simplex

$$conv\{(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2)\}$$

and  $\Delta^{\text{FI}} \cap M$  is empty.

In this paper, we are interested in lattice *d*-topes  $\Delta \subseteq M_{\mathbb{Q}}$  obtained as Newton polytopes of Laurent polynomials  $f_{\Delta}$  in *d* variables  $x_1, \ldots, x_d$ , i.e.,

$$f_{\Delta}(\mathbf{x}) = \sum_{m \in \Delta \cap M} a_m \mathbf{x}^m,$$

where  $a_m \in \mathbb{C}$  are sufficiently general complex numbers. The importance of the Fine interior is explained by the following theorem [3, 15, 20]:

**Theorem 3** Let  $\mathcal{Z}_{\Delta} \subseteq \mathbb{T}^d$  be a non-degenerate affine hypersurface in the *d*-dimensional algebraic torus  $\mathbb{T}^d$  defined by a Laurent polynomial  $f_{\Delta}$  with Newton *d*-tope  $\Delta$ . Then the following conditions are equivalent:

- a smooth projective compactification V<sub>Δ</sub> of Z<sub>Δ</sub> has non-negative Kodaira dimension, i.e., κ ≥ 0;
- 2.  $\mathcal{Z}_{\Delta}$  is birational to a minimal model  $\mathcal{S}_{\Delta}$  with abundance;
- *3. the Fine interior*  $\Delta^{\text{FI}}$  *of*  $\Delta$  *is non-empty.*

**Remark 4** By well known results of Khovanskii [14], one has vanishing of the cohomology groups

$$h^{i}(\mathcal{O}_{\mathcal{V}_{\Lambda}}) = 0 \ (1 \le i \le d-2)$$

and the equation  $h^{d-1}(\mathcal{O}_{\mathcal{V}_{\Delta}}) = |\Delta^{\circ} \cap M|$ . The numbers  $h^{i}(\mathcal{O}_{\mathcal{V}_{\Delta}})$  are birational invariants of  $\mathcal{Z}_{\Delta}$ ; they do not depend on a smooth projective compactification  $\mathcal{V}_{\Delta}$  of  $\mathcal{Z}_{\Delta}$ . In particular, the number  $|\Delta^{\circ} \cap M|$  is the geometric genus  $p_{g}$  of the affine hypersurface  $\mathcal{Z}_{\Delta} \subseteq \mathbb{T}^{d}$ .

Smooth projective compactifications of non-degenerate hypersurfaces in  $\mathbb{T}^d$  can be obtained using the theory of toric varieties [14].

Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a lattice *d*-tope. We consider the *normal fan*  $\Sigma^{\Delta}$  of  $\Delta$  in the dual space  $N_{\mathbb{Q}}$ , i.e.,  $\Sigma^{\Delta} := \{\sigma^{\theta} \mid \theta \leq \Delta\}$ , where  $\sigma^{\theta}$  is the cone generated by all inward-pointing facet normals of facets containing the face  $\theta \leq \Delta$  of  $\Delta$ . One has dim $(\sigma^{\theta}) + \dim(\theta) = d$  for any face  $\theta \leq \Delta$ . We denote by  $X_{\Delta}$  the normal projective toric variety constructed via the normal fan  $\Sigma^{\Delta}$ . In particular, the above function  $\operatorname{ord}_{\Delta} : N_{\mathbb{Q}} \to \mathbb{Q}$  is a piecewise linear function with respect to this fan defining an ample Cartier divisor on  $X_{\Delta}$ . In particular, the cones  $\sigma^{\theta} \in \Sigma^{\Delta}$  are defined as

$$\sigma^{\theta} = \left\{ y \in N_{\mathbb{Q}} \mid \operatorname{ord}_{\Delta}(y) = \langle x, y \rangle \text{ for all } x \in \theta \right\}.$$

**Remark 5** Using the normal fan  $\Sigma^{\Delta}$ , one can compute the fundamental group  $\pi_1(\mathcal{V}_{\Delta})$  of a smooth projective birational model  $\mathcal{V}_{\Delta}$  of a non-degenerate affine hypersurface  $\mathcal{Z}_{\Delta}$  (given as in Theorem 3). The fundamental group  $\pi_1(\mathcal{V}_{\Delta})$  does not depend on the choice of the smooth birational model and it is isomorphic to the quotient of the lattice *N* modulo the sublattice *N'* generated by all lattice points in (d-1)-dimensional cones  $\sigma^{\theta}$  of the normal fan  $\Sigma^{\Delta}$  [4].

**Example 6** The minimal model  $S_{\Delta}$  of a non-degenerate affine surface  $Z_{\Delta}$  defined by a Laurent polynomial with the Newton polytope  $\Delta$  from Example 2 is a *Godeaux* surface. It is a surface of general type with  $p_g = q = 0$ ,  $K^2 = 1$ , and  $\pi_1(S_{\Delta}) \cong \mathbb{Z}/5\mathbb{Z}$ .

**Definition 7** A lattice *d*-tope  $\Delta$  is called *canonical Fano d-tope* if  $|\Delta^{\circ} \cap M| = 1$ . Up to a shift by a lattice vector, we will assume without loss of generality that  $0 \in M$  is the single lattice point in the interior  $\Delta^{\circ}$  of the canonical Fano *d*-tope  $\Delta$ , i.e.,  $\Delta^{\circ} \cap M = \{0\}$ . All canonical Fano 3-topes have been classified [16]. There exists exactly 674,688 canonical Fano 3-topes  $\Delta$ . The aim of this paper is to present computational results of their Fine interiors  $\Delta^{\text{FI}}$  and some related combinatorial invariants. These data are important for computing minimal smooth projective surfaces  $S_{\Delta}$  with  $p_g = 1$  and q = 0 which are birational to affine non-degenerate hypersurfaces  $\mathcal{Z}_{\Delta} \subseteq \mathbb{T}^3 \cong (\mathbb{C}^{\times})^3$ .

The simplest description of the minimal surface  $S_{\Delta}$  has been obtained when  $\Delta$  is a reflexive 3-tope [5].

**Definition 8** A lattice *d*-tope  $\Delta \subseteq M_{\mathbb{Q}}$  containing the origin  $0 \in M$  in its interior is called *reflexive* if the dual polytope

$$\Delta^* := \{ y \in N \mid \langle x, y \rangle \ge -1 \text{ for all } x \in \Delta \} \subseteq N_{\mathbb{O}}$$

is a lattice polytope.

There exist 4,319 reflexive 3-topes, classified by Kreuzer and Skarke [17]. They form a small subset in the list of all 674,688 canonical Fano 3-topes [16]. Reflexive 4-topes are also classified by Kreuzer and Skarke [18]. There exist 473,800,776 reflexive 4-topes, but the complete list of all canonical Fano 4-topes is unknown and expected to be much bigger.

If  $\Delta$  is a reflexive *d*-tope, then  $X_{\Delta}$  is a Gorenstein toric Fano *d*-fold and the Zariski closure  $\overline{Z}_{\Delta}$  in  $X_{\Delta}$  is a Gorenstein Calabi-Yau (d-1)-fold. If d = 3, then  $\overline{Z}_{\Delta}$  is a K3-surface with at worst finitely many Du Val singularities of type  $A_k$ . The minimal surface  $S_{\Delta}$  is a smooth K3-surface which is obtained as the minimal (crepant) desingularization of  $\overline{Z}_{\Delta}$  [5].

One motivation for the present paper is due to Corti and Golyshev, who have found 9 interesting examples of canonical Fano 3-simplices  $\Delta$  such that the affine surfaces  $\mathcal{Z}_{\Delta}$  are birational to elliptic surfaces of Kodaira dimension  $\kappa = 1$  [11].

The computation of the Fine interior  $\Delta^{\text{FI}}$  for all canonical Fano 3-topes  $\Delta \subseteq M_{\mathbb{Q}}$  has shown that the dimension of the Fine interior  $\Delta^{\text{FI}}$  has only three values: 0, 1, and 3. It is rather surprising that there are no canonical Fano 3-topes  $\Delta$  with dim $(\Delta^{\text{FI}}) = 2$ .

The condition dim( $\Delta^{\text{FI}}$ ) = 0 holds if and only if  $\Delta^{\text{FI}}$  equals the lattice point  $0 \in M$ . There exist exactly 665,599 canonical Fano 3-topes with  $\Delta^{\text{FI}} = \{0\}$ , where  $0 \in M$  is the only interior lattice point of  $\Delta$ . These polytopes are characterized in [3, Proposition 3.4] by the condition that  $0 \in N$  is an interior lattice point of the lattice 3-tope

$$[\Delta^*] := \operatorname{conv}(\Delta^* \cap N).$$

**Remark 9** If  $\Delta$  is a canonical Fano 3-tope, then  $\Delta^{\text{FI}} = \{0\}$  if and only if the nondegenerate affine surface  $\mathcal{Z}_{\Delta}$  is birational to a *K*3-surface [3, Theorem 2.26].

The case dim $(\Delta^{\text{FI}}) = 1$  splits in two subcases. There exists exactly 20 canonical Fano 3-topes  $\Delta$  such that  $0 \in M$  is the midpoint of the Fine interior  $\Delta^{\text{FI}}$ . Therefore, we call this Fine interior *symmetric*. Canonical Fano 3-topes with 1-dimensional symmetric Fine interior are characterized by the condition that  $[\Delta^*]$  is a reflexive 2-tope.

The Fine interior of the remaining 9,020 canonical Fano 3-topes with dim( $\Delta^{\text{FI}}$ ) = 1 contains  $0 \in M$  as a vertex. Therefore, we call this Fine interior *asymmetric*. Canonical Fano 3-topes with 1-dimensional asymmetric Fine interior are combinatorially characterized by the condition that  $0 \in N$  is contained in the relative interior of a facet  $\Theta \leq [\Delta^*]$  of the lattice 3-tope [ $\Delta^*$ ]. The minimal surfaces  $S_{\Delta}$  corresponding to canonical Fano 3-topes with 1-dimensional Fine interior (symmetric and asymmetric) are elliptic surfaces of Kodaira dimension  $\kappa = 1$ .

There exist exactly 49 canonical Fano 3-topes with  $\dim(\Delta^{\text{FI}}) = 3$ . These polytopes are characterized by the condition that  $0 \in N$  is a vertex of the lattice 3-tope  $[\Delta^*]$ . The surfaces  $S_{\Delta}$  corresponding to canonical Fano 3-topes  $\Delta$  with 3-dimensional Fine interior  $\Delta^{\text{FI}}$  are of general type (i.e.,  $S_{\Delta}$  has maximal Kodaira dimension  $\kappa = \dim(S_{\Delta}) = 2$ ).

Remark 10 The Fine interior computations were done using

$$\Delta^{\mathrm{FI}} = \bigcap_{\theta \leq \Delta} \bigcap_{n \in \mathcal{H}(\sigma^{\theta})} \left\{ x \in M_{\mathbb{Q}} \, \middle| \, \langle x, n \rangle \geq \mathrm{ord}_{\Delta}(n) + 1 \right\},$$

where  $\mathcal{H}(\sigma^{\theta})$  denotes the set of all irreducible elements in the monoid  $\sigma^{\theta} \cap N$ . It is the minimal generating set of the monoid  $\sigma^{\theta} \cap N$  and is called *Hilbert basis* of  $\sigma^{\theta} \cap N$ .

In the next sections we consider examples and discuss additional properties of canonical Fano 3-topes  $\Delta$  in dependence of their Fine interiors  $\Delta^{FI}$ . All computations were done using the Graded Ring Database [8], including the data of all 674,688 canonical Fano 3-topes, and MAGMA [7]. Therefore, all statements have been checked by computer calculations. The canonical Fano 3-topes used as examples in this paper appear with an ID that is the example's ID in the Graded Ring Database.<sup>1</sup>

#### 2.2 Almost Reflexive Polytopes of Dimension 3 and 4

**Definition 11** A canonical Fano *d*-tope  $\Delta \subseteq M_{\mathbb{Q}}$  is called *almost reflexive* if the convex hull of all *N*-lattice points in the dual polytope  $\Delta^*$  is reflexive.

It is easy to show the following statement:

**Proposition 12** If a canonical Fano d-tope  $\Delta$  is almost reflexive, then

$$\Delta^{FI} = \{0\}.$$

**Proof** If  $[\Delta^*]$  is reflexive, then  $\Delta = (\Delta^*)^*$  is contained in the dual reflexive polytope  $[\Delta^*]^*$ . Therefore, the Fine interior of  $\Delta$  is contained in the Fine interior of the reflexive polytope  $[\Delta^*]^*$  and  $([\Delta^*]^*)^{\text{FI}} = \{0\}$ . Thus,  $\Delta^{\text{FI}} = \{0\}$ .

<sup>&</sup>lt;sup>1</sup> http://www.grdb.co.uk/forms/toricf3c.

The converse statement is not true in general for  $d \ge 5$ , but there exist many equivalent characterizations of reflexive and almost reflexive *d*-topes among canonical Fano *d*-topes if d = 3 or d = 4.

Let us recall some combinatorial invariants of arbitrary lattice d-topes.

**Definition 13** The *Ehrhart power series* of an arbitrary lattice *d*-tope  $\Delta \subseteq M_{\mathbb{Q}}$  is defined as

$$P_{\Delta}(t) := \sum_{k \ge 0} |k\Delta \cap M| t^k,$$

where  $|k\Delta \cap M|$  denotes the number of lattice points in the *k*-th dilate  $k\Delta$  of  $\Delta$ .

This Ehrhart series is a rational function of the form

$$P_{\Delta}(t) = \frac{\psi_d(\Delta)t^d + \dots + \psi_1(\Delta)t + \psi_0(\Delta)}{(1-t)^{d+1}},$$

where  $\psi_i(\Delta)$  are non-negative integers for all  $0 \le i \le d$  [22] such that  $\psi_0(\Delta) = 1$ and  $\psi_1(\Delta) = |\Delta \cap M| - d - 1$ . Moreover,  $\sum_{i=0}^{d} \psi_i(\Delta) = v(\Delta)$ , where  $v(\Delta) := d! \cdot vol(\Delta)$  denotes the *normalized volume* of  $\Delta$ .

One has the following characterization of reflexive *d*-topes:

**Proposition 14** ([6, Theorem 4.6]) *A canonical Fano d-tope*  $\Delta$  *is reflexive if and only if* 

$$\psi_i(\Delta) = \psi_{d-i}(\Delta) \ (0 \le i \le d).$$

The Ehrhart reciprocity implies that the power series

$$Q_{\Delta}(t) := \sum_{k \ge 1} |(k\Delta)^{\circ} \cap M| t^{k}$$

is a rational function

$$Q_{\Delta}(t) = \frac{\varphi_{d+1}(\Delta)t^{d+1} + \dots + \varphi_2(\Delta)t + \varphi_1(\Delta)t + \varphi_0(\Delta)}{(1-t)^{d+1}},$$

where  $\varphi_0(\Delta) = 0$  and  $\varphi_1(\Delta) = |\Delta^\circ \cap M|$ . Using Serre duality, one obtains [12, Sect. 4, 5.11]

$$\varphi_i(\Delta) = \psi_{d+1-i}(\Delta) \quad (1 \le i \le d+1),$$

i.e., in particular

$$\psi_d(\Delta) = \varphi_1(\Delta) = |\Delta^\circ \cap M|$$

and

$$\psi_{d-1}(\Delta) = \varphi_2(\Delta) = |2\Delta^\circ \cap M| - (d+1)|\Delta^\circ \cap M|$$

Therefore, the lattice *d*-tope  $\Delta$  is a canonical Fano *d*-tope if and only if  $\psi_d(\Delta) = 1$ . Moreover,

$$\psi_{d-1}(\Delta) = |(2\Delta)^{\circ} \cap M| - (d+1)$$

if  $\Delta$  is a canonical Fano *d*-tope.

Applying the above equations, one immediately obtains the following criterion for reflexivity of canonical Fano *d*-topes in the case d = 3, 4:

**Proposition 15** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a canonical Fano *d*-tope with  $d \in \{3, 4\}$ . Then for d = 3, one has

$$P_{\Delta}(t) = \frac{t^3 + (|(2\Delta)^{\circ} \cap M| - 4)t^2 + (|\Delta \cap M| - 4)t + 1}{(1-t)^4}$$

and for d = 4, one obtains

$$P_{\Delta}(t) = \frac{t^4 + (|(2\Delta)^{\circ} \cap M| - 5)t^3 + \psi_2(\Delta)t^2 + (|\Delta \cap M| - 5)t + 1}{(1-t)^5}.$$

In particular,  $\Delta$  is reflexive if and only if

$$|\Delta \cap M| = |(2\Delta)^{\circ} \cap M|.$$

**Proposition 16** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a canonical Fano d-tope with  $d \in \{3, 4\}$  such that  $0 \in N$  is an interior lattice point of  $[\Delta^*]$ . Then  $[\Delta^*]$  is reflexive, i.e.,  $\Delta$  is almost reflexive.

**Proof** Let  $n \in N$  be an interior lattice point of  $[\Delta^*]$ . Then  $\langle x, n \rangle \ge 0$  for all  $x \in \Delta \cap M$  because

$$\Delta^* = \{ y \in N_{\mathbb{Q}} \mid \langle x, y \rangle \ge -1 \text{ for all } x \in \Delta \}$$

and  $\langle x, n \rangle$  is an integer. Since  $0 \in \Delta^{\circ} \cap M$ ,  $M_{\mathbb{Q}}$  is the set of all non-negative  $\mathbb{Q}$ -linear combinations of all lattice points in  $\Delta \cap M$ . This implies  $\langle x', n \rangle \ge 0$  for all  $x' \in M_{\mathbb{Q}}$ , i.e., n = 0. Therefore,  $[\Delta^*]$  has only one interior lattice point  $0 \in N$ , i.e.,  $[\Delta^*]$  is a canonical Fano *d*-tope.

It is clear that  $[\Delta^*]$  is contained in the interior of  $2[\Delta^*]$ . Therefore, we have  $[\Delta^*] \cap N \subseteq (2[\Delta^*])^\circ \cap N$ . On the other hand, for any lattice point  $n \in (2[\Delta^*])^\circ$ ,  $\langle x, n \rangle > -2$  for all  $x \in \Delta \cap M$ . Since  $\langle x, n \rangle$  is an integer,  $n \in \Delta^* \cap N$ , i.e.,

$$[\Delta^*] \cap N = (2[\Delta^*])^\circ \cap N.$$

Using Proposition 15,  $[\Delta^*]$  is reflexive.

**Corollary 17** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a canonical Fano *d*-tope with  $d \in \{3, 4\}$  such that  $0 \in N$  is an interior lattice point of  $[\Delta^*]$ . Then  $[\Delta^*]^*$  is the smallest (referring to inclusion) reflexive polytope containing  $\Delta$ .

**Proof** Let  $\Delta' \subseteq M_{\mathbb{Q}}$  be a reflexive *d*-tope such that  $\Delta \subseteq \Delta'$ . Then  $(\Delta')^* \subseteq \Delta^*$ . Since  $(\Delta')^*$  is a lattice polytope, it is contained in  $[\Delta^*]$ . Thus,  $[\Delta^*]^*$  is contained in  $((\Delta')^*)^* = \Delta'$ .

**Remark 18** If  $\Delta$  is a reflexive *d*-tope, then  $[2\Delta^{\circ}] = \Delta$ . If  $\Delta$  is a canonical Fano *d*-tope with  $d \in \{3, 4\}$  such that  $\Delta^{FI} = \{0\}$  and  $\Delta$  is contained in a reflexive *d*-tope  $\Delta'$ , then  $[2\Delta^{\circ}]$  is contained in  $[(2\Delta')^{\circ}] = \Delta'$ . Therefore,  $[2\Delta^{\circ}]$  is contained in the smallest reflexive polytope  $[\Delta^*]^*$  containing  $\Delta$ , i.e.,

$$[2\Delta^{\circ}] \subseteq [\Delta^*]^*.$$

Computations showed that among all 665,599 canonical Fano 3-topes  $\Delta$  with  $\Delta^{FI} = \{0\}$  there exist exactly 211,941 canonical Fano 3-tops such that  $[2\Delta^{\circ}]$  is reflexive. For the remaining canonical Fano 3-topes  $\Delta$  the lattice 3-topes  $[2\Delta^{\circ}]$  are larger than  $\Delta$ , but are not equal to the reflexive hull  $[\Delta^*]^*$ .

**Remark 19** Let  $\Delta$  be an almost reflexive 3-tope. We denote by  $\tau(\Delta)$  the lattice *d*-tope  $[2\Delta^{\circ}]$ . If  $\tau(\Delta)$  is not reflexive, then it is almost reflexive and we can consider the larger lattice *d*-tope  $\tau^2(\Delta) := \tau(\tau(\Delta)) \subseteq [\Delta^*]^*$ . After at most five steps,  $\tau^k(\Delta)$  is equal to the reflexive hull  $[\Delta^*]^*$  of  $\Delta$ .

In dimension 4, the situation is comparable:

**Example 20** Let  $\Delta \subseteq \mathbb{R}^4$  be the almost reflexive 4-tope defined by the inequalities  $x_i \ge -1$   $(1 \le i \le 4)$ ,  $x_1 \le 2$ , and  $x_1 + x_2 + x_3 + x_4 \le 1$ . Then  $\Delta^{FI} = \{0\}$  and the smallest reflexive 4-tope containing  $\Delta$  is the 4-simplex  $[\Delta^*]^*$  defined by the inequalities  $x_i \ge -1$   $(1 \le i \le 4)$  and  $x_1 + x_2 + x_3 + x_4 \le 1$ . It is easy to see that  $\tau(\Delta)$  is not the reflexive 4-tope  $[\Delta^*]^*$  because the vertex  $(4, -1, -1, -1) \in \text{vert}([\Delta^*]^*)$  is not in  $2\Delta^\circ$ . However,  $\tau^2(\Delta) = [\Delta^*]^*$ .

## 2.3 Canonical Fano 3-Topes with $\Delta^{FI} = \{0\}$

We note that the set of all reflexive 3-topes forms a rather small part of the set of all canonical Fano 3-topes. The majority of the canonical Fano 3-topes belong to the subset of almost reflexive 3-topes. The proof of the following statement is based on the result of Skarke [21] and the explanations in the previous section.

**Proposition 21** A canonical Fano 3-tope  $\Delta$  is almost reflexive if one of the following equivalent conditions is satisfied:

2 On the Fine Interior of Three-Dimensional ...

- 1.  $\Delta^{\text{FI}} = \{0\};$
- 2.  $0 \in N$  is an interior lattice point of  $[\Delta^*]$ ;
- 3.  $\Delta$  is contained in some reflexive 3-tope;
- 4.  $\tau^k(\Delta)$  is the reflexive 3-tope  $[\Delta^*]^*$  for some sufficiently large k  $(1 \le k \le 5)$ ;
- 5. *the lattice* 3*-tope*  $[2\Delta^{\circ}]$  *has exactly one interior lattice point;*
- 6. the non-degenerate affine hypersurface  $Z_{\Delta}$  defined by a Laurent polynomial with Newton polytope  $\Delta$  is birational to a smooth K3-surface.

Computations show that there exist exactly 665,599 almost reflexive canonical Fano 3-topes. The set of almost reflexive 3-topes includes all 4,319 reflexive 3-topes. We have shown that for any almost reflexive 3-tope  $\Delta$ , the reflexive polytope  $\Delta^{\text{ref}} := [\Delta^*]^*$  is the smallest reflexive 3-tope containing  $\Delta$ . We call  $\Delta^{\text{ref}}$  the *reflexive hull* of  $\Delta$ . Thus we obtain a natural surjective map  $\Delta \mapsto \Delta^{\text{ref}}$  from the set of almost reflexive 3-topes, which is the identity on the set of reflexive 3-topes. The minimal surface  $S_{\Delta}$  is a *K*3-surface if and only if  $\Delta$  is an almost reflexive 3-tope. If  $\Delta$  is an almost reflexive 3-tope, but not reflexive, then the minimal surface  $S_{\Delta}$  is a crepant desingularization of the Zariski closure of  $Z_{\Delta}$  in the Gorenstein toric Fano threefold  $X_{\Delta^{\text{ref}}}$  defined by the reflexive hull of  $\Delta$ .

A generalization of the reflexive hull of almost reflexive 3-topes for arbitrary lattice *d*-topes with non-empty Fine interior can be obtained using the notion of the support of the Fine interior  $\Delta^{\text{FI}}$ .

**Definition 22** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a lattice *d*-tope with  $\Delta^{\text{FI}} \neq \emptyset$ . Then the set

 $\operatorname{supp}(\Delta^{\operatorname{FI}}) := \{n \in N \mid \text{ there exists } x \in \Delta^{\operatorname{FI}} \text{ with } \langle x, n \rangle = \operatorname{ord}_{\Delta}(n) + 1\}$ 

is called *support of the Fine interior* of  $\Delta$ .

**Example 23** If  $\Delta$  is a reflexive *d*-tope, then the support of the Fine interior of  $\Delta$  is the set of all non-zero lattice points in  $\Delta^* \cap N$ .

Remark 24 It is easy to show that one always has

$$\Delta^{\mathrm{FI}} = \bigcap_{n \in \mathrm{supp}(\Delta^{\mathrm{FI}})} \{ x \in M_{\mathbb{Q}} \, | \, \langle x, n \rangle \ge \mathrm{ord}_{\Delta}(n) + 1 \}.$$

**Definition 25** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a lattice *d*-tope with  $\Delta^{\text{FI}} \neq \emptyset$ . Then the rational polytope

$$\Delta^{\operatorname{can}} := \bigcap_{n \in \operatorname{supp}(\Delta^{\operatorname{FI}})} \{ x \in M_{\mathbb{Q}} \mid \langle x, n \rangle \ge \operatorname{ord}_{\Delta}(n) \}$$

contains  $\Delta$  and is called the *canonical hull* of  $\Delta$ .

**Example 26** If  $\Delta$  is an almost reflexive 3-tope, then supp $(\Delta^{\text{FI}})$  is the set  $(\Delta^* \cap N) \setminus \{0\}$  of boundary lattice points in the reflexive 3-tope  $[\Delta^*]$  and the canonical



**Fig. 2.1 Canonical Fano 3-topes**  $\Delta$  with  $\Delta^{FI} = \{0\}$ . Shaded faces are occluded and the Fine interior  $\{0\}$  is shown in grey with a double border. The whole polytope is the canonical hull  $\Delta^{can}$  as well as the reflexive hull  $\Delta^{ref}$  and the grey coloured polytope is  $\Delta$ . **a** Reflexive polytope  $\Delta = \text{conv}\{v_1, v_2, v_3, v_4\}$  with  $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1), v_4 = (-1, -1, -1),$  and  $\Delta^{ref} = \Delta^{can} = \Delta$ . All facets of  $\Delta$  have lattice distance 1 to the origin. **b** Almost reflexive polytope  $\Delta = \text{conv}\{v_1, v_2, v_3, v_4\}$  with  $v_1 = (1, 0, 0), v_2 = (0, 1, 0), v_3 = (0, 0, 1), v_4 = (-1, -1, -2),$  and  $\Delta^{ref} = \Delta^{can} = \text{conv}\{v_1, v_2, v_3, v_4, v_5\}$  with  $v_5 = (0, 0, -1)$  reflexive. The dark grey coloured facet of  $\Delta$  has lattice distance 2 and all other facets have lattice distance 1 to the origin

hull  $\Delta^{can}$  equals the reflexive hull  $\Delta^{ref}$  of the polytope  $\Delta$ , i.e.,  $\Delta^{can} = \Delta^{ref} = [\Delta^*]^*$ . In particular, in this case  $\Delta^{can}$  is always a lattice 3-tope.

There exists a smooth projective toric variety  $X_{\Sigma}$  defined by a fan  $\Sigma$  whose 1dimensional cones are generated by all lattice vectors from the finite set supp $(\Delta^{\text{FI}})$ . Then the minimal surface  $S_{\Delta}$  is a *K*3-surface which is the Zariski closure of  $Z_{\Delta}$ in  $X_{\Sigma}$  [3].

**Example 27** Let us consider the (almost) reflexive canonical Fano 3-tope  $\Delta = \text{conv}\{v_1, v_2, v_3, v_4\} \subseteq M_{\mathbb{Q}}$  (ID 547386, Fig. 2.1a) with vertices

$$v_1 := (1, 0, 0), v_2 := (0, 1, 0), v_3 := (0, 0, 1), \text{ and } v_4 := (-1, -1, -1)$$

and  $\Delta^{\text{FI}} = \{0\}$ . Moreover,

$$\Delta^{\text{ref}} = \operatorname{conv}(2\Delta^{\circ} \cap M) = \operatorname{conv}(\Delta \cap M) = \Delta$$

and

$$\Delta^{\operatorname{can}} = [\Delta^*]^* = (\Delta^*)^* = \Delta$$

because  $\Delta$  is reflexive, i.e.,  $\Delta^{ref} = \Delta^{can} = \Delta$  reflexive (Fig. 2.1a).

**Example 28** Consider the almost reflexive canonical Fano 3-tope  $\Delta \subseteq M_{\mathbb{Q}}$  (ID 547385, Fig. 2.1b) with vertices

$$v_1 := (1, 0, 0), v_2 := (0, 1, 0), v_3 := (0, 0, 1), and v_4 := (-1, -1, -2)$$

and  $\Delta^{\text{FI}} = \{0\}$ . Moreover,

$$\Delta^{\text{ref}} = \text{conv}((\Delta \cap M) \cup \{v_5\}) = \text{conv}\{v_1, v_2, v_3, v_4, v_5\}$$

and

$$\Delta^{\operatorname{can}} = [\Delta^*]^* = \operatorname{conv}\{v_1, v_2, v_3, v_4, v_5\}$$

with  $v_5 := (0, 0, -1)$  because  $\Delta$  is almost reflexive, i.e.,  $\Delta^{\text{ref}} = \Delta^{\text{can}} = \Delta$  reflexive (Fig. 2.1b).

#### 2.4 Asymmetric Fine Interior of Dimension 1

There exist exactly 9,020 canonical Fano 3-topes  $\Delta$  with 1-dimensional Fine interior such that  $0 \in N$  belongs to a facet  $\Theta \preceq [\Delta^*]$  of the lattice 3-tope  $[\Delta^*]$ . This class of canonical Fano 3-topes is characterized by the property that the lattice 3-tope  $[2\Delta^\circ]$  has exactly 2 interior lattice points.

The corresponding minimal surfaces  $S_{\Delta}$  are *simply connected* (i.e., have trivial fundamental group  $\pi_1(S_{\Delta})$ ) elliptic surfaces of Kodaira dimension  $\kappa = 1$ . We observed that the facet  $\Theta \leq [\Delta^*]$  is a reflexive 2-tope corresponding to one of the three types pictured in Fig.2.2. All *N*-lattice points on the boundary of  $\Theta$  belong to supp $(\Delta^{FI})$ . It was checked that for all these 3-topes  $\Delta$  the canonical hull  $\Delta^{can}$  is again a lattice 3-tope. Moreover, the Fine interior  $\Delta^{FI}$  is contained in the ray generated by the primitive lattice vector  $v_{\Delta} \in M$  which is the primitive inward-pointing facet normal of  $\Theta$ , i.e.,  $\langle x, y \rangle = 0$  for all  $x \in \Delta^{FI}$ ,  $y \in \Theta$ . The lattice point  $0 \in M$  is a vertex of  $\Delta^{FI}$ . More precisely, one has

$$\Delta^{\mathrm{FI}} = \mathrm{conv}\{0, \lambda v_{\Delta}\},\$$

where  $\lambda \in \{1/2, 2/3\}$ . The primitive lattice vector  $v_{\Delta}$  is the unique interior lattice point on a reflexive facet  $\theta_+ \leq \Delta$  of  $\Delta$  of one of the three possible types pictured in Fig. 2.2. These three reflexive polygons  $\theta_+$  are characterized by the condition that the dual reflexive polygons  $\theta_+^*$  are obtained from  $\theta_+$  (Fig. 2.3) by enlarging the lattice  $\mathbb{Z}^2$ in the following ways:  $\mathbb{Z}^2 + \mathbb{Z}(1/3, 2/3)$  (Fig. 2.3a),  $\mathbb{Z}^2 + \mathbb{Z}(1/2, 0)$  (Fig. 2.3b), and  $\mathbb{Z}^2 + \mathbb{Z}(1/2, 1/2)$  (Fig. 2.3c). Moreover, the reflexive facet  $\theta_+$  of  $\Delta$  is isomorphic to the facet  $\Theta$  of [ $\Delta^*$ ]. The projection  $M \to M/\mathbb{Z}v_{\Delta}$  of  $\Delta$  or of  $\theta_+$  along  $v_{\Delta}$  is a reflexive polygon of one of the three types pictured in Fig. 2.3, which is dual to  $\theta_+$  and  $\Theta$ . The lattice vector  $v_{\Delta}$  defines a character of the 3-dimensional torus  $\chi : \mathbb{T}^3 \to \mathbb{C}^\times$ . For almost all  $\alpha \in \mathbb{C}^\times$ , the fiber  $\chi^{-1}(\alpha)$  is an affine elliptic curve defined by a Laurent



Fig. 2.2 Reflexive Facets of  $\triangle$  Containing  $\pm v_{\Delta}$ . Three types of reflexive facets  $\theta_{\pm} \leq \Delta$  of  $\Delta$  containing  $\pm v_{\Delta}$  for all 9,020 + 20 canonical Fano 3-topes  $\Delta$  with dim( $\Delta^{FI}$ ) = 1. Vertices are coloured black, boundary points that are not vertices grey, and the origin light grey. a conv{(1, 0), (0, 1), (-1, -1)}. b conv{(1, 0), (-1, 1), (-1, -1)}. c conv{( $\pm 1$ , 0), (0,  $\pm 1$ )}



Fig. 2.3 Reflexive Projection Polytopes. Three types of reflexive polytopes obtained via a projection of  $\Delta$  along  $\pm v_{\Delta}$  for all 9,020 + 20 canonical Fano 3-topes  $\Delta$  with dim( $\Delta^{FI}$ ) = 1. Vertices are coloured black, boundary points that are not vertices grey, and the origin light grey. **a** conv{(-1, 2), (-1, -1), (2, -1)}. **b** conv{(-2, -1), (0, 1), (2, -1)}. **c** conv{ $(\pm 1, \pm 1)$ }

polynomial with the reflexive Newton polytope  $\Theta^* \cong \theta^*_+$  of one of the three types pictured in Fig. 2.3 with the distribution shown in Table 2.1. So  $\chi$  defines birationally an elliptic fibration.

**Table 2.1 Distribution of the Reflexive Facets of**  $\Delta$  **Containing**  $\pm v_{\Delta}$ . Table contains: Type of the reflexive facet  $\theta_{\pm}$  containing  $\pm v_{\Delta}$ , type of the dual reflexive facet  $\theta_{\pm}^*$ , the enlarged lattice used to obtain  $\theta_{\pm}^*$  from  $\theta_{\pm}$ , the number of canonical Fano 3-topes  $\Delta_{asym} := \{\Delta \mid 1\text{-dim. asym. } \Delta^{FI}\}$ , and the number of canonical Fano 3-topes  $\Delta_{sym} := \{\Delta \mid 1\text{-dim. sym. } \Delta^{FI}\}$  with respect to the facet type of  $\theta_{\pm}$  pictured in Fig.2.2

| $\theta_{\pm}$ | $\theta_{\pm}^{*}$ | Enlarged lattice                    | $#\Delta_{asym}$ | $#\Delta_{sym}$ |
|----------------|--------------------|-------------------------------------|------------------|-----------------|
| Figure 2.2a    | Figure 2.3a        | $\mathbb{Z}^2$ +                    | 3,038            | 7               |
|                |                    | $\mathbb{Z}(1/3, 2/3)$              |                  |                 |
| Figure 2.2b    | Figure 2.3b        | $\mathbb{Z}^2 + \mathbb{Z}(1/2, 0)$ | 4,663            | 9               |
| Figure 2.2c    | Figure 2.3c        | $\mathbb{Z}^2$ +                    | 1,319            | 4               |
|                |                    | $\mathbb{Z}(1/2, 1/2)$              |                  |                 |



Fig. 2.4 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1 Shaded faces are occluded. The Fine interior and the origin are shown in grey, with a double border around the origin. The facet  $\theta_+$  is grey dotted. **a** The whole polytope is  $\Delta = \operatorname{conv}\{v_1, v_2, v_3, v_4\}$  with  $v_1 = (2, 3, 8)$ ,  $v_2 = (1, 0, 0)$ ,  $v_3 = (0, 1, 0)$ , and  $v_4 = (-1, -1, -1)$ . Moreover,  $\Delta^{FI} = \operatorname{conv}\{(0, 0, 0), (1/2, 1/2, 1)\}, \theta_+ = \operatorname{conv}\{v_1, v_2, v_3\}, \operatorname{and} \Delta^{\operatorname{can}} = \operatorname{conv}\{v_1, v_2, v_3, v_4, v_5\}$  with  $v_5 = (0, 1, 4)$ . **b** The whole polytope is  $\Delta = \operatorname{conv}\{v_1, v_2, v_3, v_4\}$  with  $v_1 = (-1, 1, -2)$ ,  $v_2 = (1, -2, 3)$ ,  $v_3 = (1, 0, 0)$ , and  $v_4 = (-2, 5, -3)$ . Moreover,  $\Delta^{FI} = \operatorname{conv}\{(0, 0, 0), (0, 2/3, 0)\}$  and  $\theta_+ = \operatorname{conv}\{v_2, v_3, v_4\}$ , and  $\Delta^{\operatorname{can}} = \operatorname{conv}\{v_1, v_2, v_3, v_4, v_5\}$  with  $v_5 = (-2, 4, -3)$ 

**Example 29** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a canonical Fano 3-tope given as the convex hull of

 $v_1 := (2, 3, 8), v_2 := (1, 0, 0), v_3 := (0, 1, 0), \text{ and } v_4 := (-1, -1, -1)$ 

(ID 547324, Fig. 2.4a, Tables 2.2 and 2.4). Then

$$\Delta^{\mathrm{FI}} = \mathrm{conv}\{(0, 0, 0), (1/2, 1/2, 1)\} = \mathrm{conv}\{0, 1/2 \cdot v_{\Delta}\},\$$

where  $v_{\Delta} = (1, 1, 2)$ . One has  $v_1 + 2v_2 + v_3 = 4v_{\Delta}$ . Therefore,  $v_{\Delta}$  is the interior lattice point of the reflexive facet  $\theta_+$  of  $\Delta$  with vertices  $v_1$ ,  $v_2$ ,  $v_3$  and the images  $\overline{v}_1$ ,  $\overline{v}_2$ ,  $\overline{v}_3$  of  $v_1$ ,  $v_2$ ,  $v_3$  in  $M/\mathbb{Z}v_{\Delta}$  are vertices of the dual reflexive triangle  $\theta_+^*$  (Fig. 2.3b) satisfying the relation

$$\overline{v}_1 + 2\overline{v}_2 + \overline{v}_3 = 0.$$

To compute the canonical hull  $\Delta^{can}$  of  $\Delta$ , we obtain supp $(\Delta^{FI}) = \{s_i \mid 1 \le i \le 18\}$  with  $s_1 := (-1, -1, 1), s_2 := (-1, -1, 2), s_3 := (-1, -1, 3), s_4 := (-1, 0, 1), s_5 := (-1, 0, 2), s_6 := (-1, 1, 0), s_7 := (-1, 1, 1), s_8 := (-1, 2, 0), s_9 := (-1, 3, -1), s_{10} := (0, -1, 1), \dots, s_{18} := (-2, -2, 1)$ , which leads to

$$\Delta^{\text{can}} = \text{conv}\{v_1, v_2, v_3, v_4, v_5\}$$

with  $v_5 := (0, 1, 4)$  (Fig. 2.4a).

**Table 2.2 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1**. Table contains: vertices vert( $\Delta$ ) of  $\Delta$ , vertices vert( $\Delta^{FI}$ ) of the Fine interior  $\Delta^{FI}$ , unique primitive lattice point  $v_{\Delta} \in \theta_+$  in the reflexive facet  $\theta_+ \leq \Delta$ , and weights  $(w_i)_{0 \leq i \leq 3}$  of the weighted projective 3-space  $\mathbb{P}(w_0, \ldots, w_3)$  appearing in [11]

| ID     | $\operatorname{vert}(\Delta)$                   | $vert(\Delta^{FI})$       | ν <sub>Δ</sub> | $(w_i)_{0 \le i \le 3}$ |
|--------|-------------------------------------------------|---------------------------|----------------|-------------------------|
| 547324 | (2, 3, 8), (1, 0, 0), (0, 1, 0), (-1, -1, -1)   | $0, 1/2 \cdot v_{\Delta}$ | (1, 1, 2)      | (1, 5, 6, 8)            |
| 547323 | (-1, 1, -2), (1, -2, 3), (1, 0, 0), (-2, 5, -3) | $0, 2/3 \cdot v_{\Delta}$ | (0, 1, 0)      | (1, 4, 7, 9)            |
| 547311 | (-1, 4, 2), (-1, -1, 0), (0, 0, -1), (2, 0, 1)  | $0, 2/3 \cdot v_{\Delta}$ | (0, 1, 1)      | (2, 5, 8, 9)            |
| 547490 | (1, 2, 4), (1, 0, 0), (1, -2, 3), (-1, 1, -2)   | $0, 1/2 \cdot v_{\Delta}$ | (0, 1, 0)      | (1, 5, 8, 14)           |
| 547321 | (1, -2, 3), (0, 1, 0), (1, 0, 0), (-6, 3, -8)   | $0, 1/2 \cdot v_{\Delta}$ | (-1, 1, -2)    | (3, 7, 8, 10)           |
| 547305 | (0, 1, 0), (1, 0, 0), (1, 2, 4), (-4, -6, -7)   | $0, 2/3 \cdot v_{\Delta}$ | (-1, -1, -1)   | (4, 7, 9, 10)           |
| 547526 | (1, 0, 0), (0, 1, 0), (-2, 1, 5), (2, -4, -9)   | $0, 2/3 \cdot v_{\Delta}$ | (1, -1, -3)    | (5, 9, 8, 11)           |
| 547454 | (2, 1, 7), (1, 0, 0), (0, 1, 0), (-2, -3, -3)   | $0, 1/2 \cdot v_{\Delta}$ | (0, 0, 1)      | (3, 7, 8, 18)           |
| 547446 | (0, 1, 1), (-6, 7, -15), (1, -2, 3), (1, 0, 0)  | $0, 1/2 \cdot v_{\Delta}$ | (-1, 1, -2)    | (5, 8, 9, 22)           |

**Table 2.3 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1**. Table contains: primitive inward-pointing facet normals  $(n_i)_{1 \le i \le 4}$  of  $\Delta$ , vertices  $vert(\theta_+)$  of the reflexive facet  $\theta_+ \le \Delta$ , and primitive inward-pointing facet normal  $n_{\theta_+}$  of the reflexive facet  $\theta_+ \le \Delta$ 

| ID     | $(n_i)_{1 \le i \le 4}$                              | $\operatorname{vert}(\theta_+)$     | $n_{\theta_+}$ |
|--------|------------------------------------------------------|-------------------------------------|----------------|
| 547324 | (-2, -2, 1), (-1, -1, 3), (-1, 3, -1), (7, -3, -1)   | (2, 3, 8), (1, 0, 0), (0, 1, 0)     | (-2, -2, 1)    |
| 547323 | (-3, -3, -2), (-1, 0, 1), (-1, 6, 4), (17, 3, -5)    | (1, -2, 3), (1, 0, 0), (-2, 5, -3)  | (-3, -3, -2)   |
| 547311 | (-1, -1, 1), (-1, 2, 1), (1, 2, -5), (7, -2, 5)      | (-1, 4, 2), (-1, -1, 0), (2, 0, 1)  | (1, 2, -5)     |
| 547490 | (-2, -2, 1), (-1, 0, 0), (-1, 6, 4), (23, 2, -8)     | (1, 2, 4), (1, 0, 0), (-1, 1, -2)   | (-2, -2, 1)    |
| 547321 | (-3, -3, -2), (-2, -2, 1), (-1, 3, 2), (9, -5, -8)   | (0, 1, 0), (1, 0, 0), (-6, 3, -8)   | (-2, -2, 1)    |
| 547305 | (-7, -7, 11), (-2, -2, 1), (-1, 2, -1), (7, -3, -1)  | (0, 1, 0), (1, 2, 4), (-4, -6, -7)  | (7, -3, -1)    |
| 547526 | (-5, -5, -2), (-3, -3, 1), (-1, 2, -1), (25, -8, 10) | (1, 0, 0), (0, 1, 0), (2, -4, -9)   | (-3, -3, 1)    |
| 547454 | (-7, -7, 2), (-1, -1, 2), (-1, 1, 0), (7, -2, -2)    | (2, 1, 7), (0, 1, 0), (-2, -3, -3)  | (7, -2, -2)    |
| 547446 | (-9, 21, 14), (-5, -3, -2), (-1, -1, 0), (9, 1, -3)  | (0, 1, 1), (-6, 7, -15), (1, -2, 3) | (9, 1, -3)     |

**Example 30** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a canonical Fano 3-tope given as the convex hull of

$$v_1 := (-1, 1, -2), v_2 := (1, -2, 3), v_3 := (1, 0, 0), \text{ and } v_4 := (-2, 5, -3)$$

(ID 547323, Fig. 2.4b, Tables 2.2 and 2.4). Then (Table 2.3)

$$\Delta^{\rm FI} = \operatorname{conv}\{(0, 0, 0), (0, 2/3, 0)\} = \operatorname{conv}\{0, 2/3 \cdot v_{\Delta}\},\$$

where  $v_{\Delta} = (0, 1, 0)$ . One has  $v_2 + v_3 + v_4 = 3v_{\Delta}$ . Therefore,  $v_{\Delta}$  is the interior lattice point of the reflexive facet  $\theta_+$  of  $\Delta$  with vertices  $v_2$ ,  $v_3$ ,  $v_4$  and the images  $\overline{v}_2$ ,  $\overline{v}_3$ ,  $\overline{v}_4$  of  $v_2$ ,  $v_3$ ,  $v_4$  in  $M/\mathbb{Z}v_{\Delta}$  are vertices of the dual reflexive triangle  $\theta^*_+$  (Fig. 2.3a) satisfying the relation

$$\overline{v}_2 + \overline{v}_3 + \overline{v}_4 = 0.$$

| support sul | $pp(\Delta^{FI})$ of the Fine interior $\Delta^{FI}$ , and $v$ | vertices vert( $\Delta^{can}$ ) of the canonical hull $\Delta^{can}$                                                          |                                                                               |
|-------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| D           | vert(Θ)                                                        | supp $(\Delta^{\text{FI}})$                                                                                                   | $vert(\Delta^{can})$                                                          |
| 547324      | (-1, 3, -1), (-1, -1, 1), (1, -1, 0)                           | $(-2, -2, 1), (-1, -1, 1), S_1$                                                                                               | $vert(\Delta), (0, 1, 4)$                                                     |
| 547323      | (-1, 0, 1), (-1, 0, 0), (2, 0, -1)                             | $(-3, -3, -2), (-1, 0, 0), S_2$                                                                                               | $vert(\Delta), (-2, 4, -3)$                                                   |
| 547311      | (-1, -1, 1), (0, 1, -1), (1, 0, 0)                             | $(-1, -1, 1), (-1, 0, 1), S_3$                                                                                                | $vert(\Delta), (-1, 2, 0)$                                                    |
| 547490      | (-1, 0, 0), (-1, 0, 1), (3, 0, -1)                             | $(-2, -2, 1), (-1, 0, 0), S_4$                                                                                                | $vert(\Delta), (1, -1, 4)$                                                    |
| 547321      | (-1, -1, 0), (-1, 3, 2), (1, -1, -1)                           | $ \begin{pmatrix} (-2, -2, 1), (-1, -1, 0), (-1, 0, 0), (-1, 1, 1), (-1, 3, 2), \\ (0, -1, -1), ((1, -1, -1)) \end{pmatrix} $ | vert( $\Delta$ ), (1, 0, 1), (0, -3, 4)                                       |
| 547305      | (-1, 2, -1), (1, -1, 0), (0, -1, 1)                            | $ (-1, -1, 1), (-1, 0, 0), (-1, 2, -1), (0, -1, 1), (1, -1, 0), \\ (7, -3, -1) $                                              | vert( $\Delta$ ), (0, -2, -3), (1, 2, 2)                                      |
| 547526      | (-1, -1, 0), (-1, 2, -1), (2, -1, 1)                           | (-3, -3, 1), (-1, -1, 0), (-1, 2, -1), (0, -1, 0), (2, -1, 1)                                                                 | $\operatorname{vert}(\Delta) \setminus \{(-2, 1, 5)\}, (0, 1, 3), (-3, 1, 6)$ |
| 547454      | (-1, 1, 0), (0, -1, 0), (2, -1, 0)                             | $(-1, -1, 1), (-1, -1, 2), S_5$                                                                                               | $vert(\Delta), (2, 1, 2)$                                                     |
| 547446      | (-1, -1, 0), (0, 2, 1), (2, 0, -1)                             | $\left( (-1, -1, 0), (-1, 0, 0), (0, 2, 1), (1, 1, 0), (2, 0, -1), (9, 1, -3) \right)$                                        | $vert(\Delta), (1, 0, -1), (1, 0, 3)$                                         |
|             | 0117 0017 0017 017 017 017 017 017 017 0                       |                                                                                                                               |                                                                               |

Table 2.4 9 Canonical Fano 3-topes with Asymmetric Fine Interior of Dimension 1. Table contains: vertices vert( $\Theta$ ) of the reflexive facet  $\Theta \leq [\Delta^*]$ ,

where  $S_1 := (-1, -1, 2), (-1, -1, 3), (-1, 0, 1), (-1, 0, 2), (-1, 1, 0), (-1, 1, 1), (-1, 2, 0), (-1, 3, -1), (0, -1, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, 0, 1), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1, 2), (0, -1,$ 

(0, 1, 0), (1, -1, 0), (1, -1, 1), (1, 0, 0), (2, -1, 0)

 $S_2 := (-1, 0, 1), (-1, 1), (-1, 2, 2), (-1, 3, 2), (-1, 4, 3), (-1, 6, 4), (0, 1, 1), (0, 2, 1), (0, 3, 2), (0, 5, 3), (1, 1, 0), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1), (1, 2, 1),$ 

(1, 4, 2), (2, 0, -1), (2, 1, 0), (2, 3, 1), (3, 2, 0), (4, 1, -1)

 $S_3 := (-1, 1, 1), (-1, 2, 1), (0, 0, 1), (0, 1, -1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 2, -5)$ 

 $S_4 := (-1, 0, 1), (-1, 1), (-1, 2, 2), (-1, 3, 2), (-1, 4, 3), (-1, 6, 4), (0, 1, 1), (0, 2, 1), (0, 3, 2), (0, 5, 3), (1, 0, 0), (1, 1, 0), (0, 1, 1), (0, 2, 1), (0, 3, 2), (0, 5, 3), (1, 0, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0), (1, 1, 0),$ 

(1, 2, 1), (1, 4, 2), (2, 1, 0), (2, 3, 1), (3, 0, -1), (3, 2, 0), (4, 1, -1)

 $S_5 := (-1, 0, 1), (-1, 1, 0), (0, -1, 0), (0, -1, 1), (1, -1, 0), (2, -1, 0), (7, -2, -2)$ 

To compute the canonical hull  $\Delta^{can}$  of  $\Delta$ , we obtain supp $(\Delta^{FI}) = \{s_i \mid 1 \le i \le 20\}$  with  $s_1 := (-3, -3, -2), s_2 := (-1, 0, 0), s_3 := (-1, 0, 1), s_4 := (-1, 1, 1), s_5 := (-1, 2, 2), s_6 := (-1, 3, 2), s_7 := (-1, 4, 3), s_8 := (-1, 6, 4), s_9 := (0, 1, 1), s_{10} := (0, 2, 1), \dots, s_{20} := (4, 1, -1)$ , which leads to

$$\Delta^{\text{can}} = \text{conv}\{v_1, v_2, v_3, v_4, v_5\}$$

with  $v_5 := (-2, 4, -3)$  (Fig. 2.4b).

**Remark 31** The detailed information about a small selection of the 9,020 canonical Fano 3-topes with dim $(\Delta^{\text{FI}}) = 1$  and  $0 \in \text{vert}(\Delta^{\text{FI}})$  can be found in Tables 2.2, 2.3, and 2.4.

#### 2.5 Symmetric Fine Interior of Dimension 1

There exist exactly 20 canonical Fano 3-topes  $\Delta$  such that 0 is the center of 1dimensional Fine interior  $\Delta^{\text{FI}}$ . In this case,  $S_{\Delta}$  is an elliptic surface of Kodaira dimension  $\kappa = 1$  with non-trivial fundamental group  $\pi_1(S_{\Delta})$  of order 2 or 3. Computations show that one always has  $\Delta = \Delta^{\text{can}}$  and

$$\Delta^{\rm FI} = {\rm conv}\{-\lambda v_{\Delta}, \lambda v_{\Delta}\}$$

with  $\lambda = \frac{1}{2}$  if and only if  $|\pi_1(\mathcal{S}_{\Delta})| = 2$  and

$$\Delta^{\text{FI}} = \text{conv}\{-\mu v_{\Delta}, \mu v_{\Delta}\}$$

with  $\mu = \frac{2}{3}$  if and only if  $|\pi_1(S_\Delta)| = 3$ . The primitive lattice vectors  $\pm v_\Delta$  are the two unique interior lattice points in two reflexive facets  $\theta_{\pm} \leq \Delta$  of one of the three possible types pictured in Fig. 2.2. The reflexive facets  $\theta_{\pm}$  of  $\Delta$  are isomorphic to the facet  $\Theta$  of  $[\Delta^*]$ . The projections  $M \to M/\mathbb{Z}(\pm v_\Delta)$  of  $\Delta$  or of  $\theta_{\pm}$  along  $\pm v_\Delta$  reveal a reflexive polygon of one of the three types pictured in Fig. 2.3, which is dual to  $\theta_{\pm}$  and  $\Theta$ . The lattice vector  $v_\Delta$  defines a character of the 3-dimensional torus  $\chi : \mathbb{T}^3 \to \mathbb{C}^{\times}$ . For almost all  $\alpha \in \mathbb{C}^{\times}$ , the fiber  $\chi^{-1}(\alpha)$  is an affine elliptic curve defined by a Laurent polynomial with the reflexive Newton polytope  $\Theta^* \cong \theta_{\pm}^*$  of one of the three types pictured in Fig. 2.3 with the distribution shown in Table 2.1. So  $\chi$  defines birationally an elliptic fibration. The vertex sets of  $\Delta$  and these reflexive facets are related via vert $(\Delta) = \operatorname{vert}(\theta_+) \cup \operatorname{vert}(\theta_-)$ . Moreover, every edge of  $\Delta$  is either an edge of  $\theta_+$  or  $\theta_-$  of these two facets or it is parallel to  $v_\Delta$ .

**Example 32** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a canonical Fano 3-tope given as the convex hull

$$v_1 := (0, 1, 0), v_2 := (2, 1, 1), v_3 := (-2, -3, -5), and v_4 := (2, 1, 9)$$

(ID 547393, Fig. 2.5b, Tables 2.5 and 2.6). Then



Fig. 2.5 Canonical Fano 3-topes with Symmetric Fine Interior of Dimension 1. Shaded faces are occluded. The Fine interior and the origin are shown in grey with a double border around the origin. The facets  $\theta_{\pm}$  are grey dotted. **a** The whole polytope is  $\Delta = \operatorname{conv}\{v_1, v_2, v_3, v_4\}$  with  $v_1 = (1, 0, 0)$ ,  $v_2 = (2, 1, 1)$ ,  $v_3 = (-2, -3, -5)$ , and  $v_4 = (2, 1, 9)$ . Moreover,  $\Delta^{FI} = \operatorname{conv}\{(0, 0, -1/2), (0, 0, 1/2)\}$ ,  $\theta_+ = \operatorname{conv}\{v_1, v_3, v_4\}$ ,  $\theta_- = \operatorname{conv}\{v_1, v_2, v_3\}$ , and  $\Delta^{\operatorname{can}} = \Delta$ . **b** The whole polytope is  $\Delta = \operatorname{conv}\{v_1, v_2, v_3, v_4\}$  with  $v_1 = (-4, 2, 9)$ ,  $v_2 = (1, 0, 0)$ ,  $v_3 = (0, 1, 0)$ , and  $v_4 = (7, -6, -18)$ . Moreover,  $\Delta^{FI} = \operatorname{conv}\{(-2/3, 2/3, 2), (2/3, -2/3, -2)\}$ ,  $\theta_+ = \operatorname{conv}\{v_1, v_2, v_3\}$ ,  $\theta_- = \operatorname{conv}\{v_1, v_2, v_3, v_4\}$ , and  $\Delta^{\operatorname{can}} = \Delta$ 

$$\Delta^{\text{FI}} = \text{conv}\{(0, 0, -1/2), (0, 0, 1/2)\} = \text{conv}\{-\lambda v_{\Delta}, \lambda v_{\Delta}\}$$

with  $\lambda = \frac{1}{2}$ , where  $v_{\Delta} = (0, 0, 1)$ . One has  $2v_1 + v_3 + v_4 = 4v_{\Delta}$  and  $2v_1 + v_2 + v_3 = 4(-v_{\Delta})$ . Therefore,  $v_{\Delta}$  is the interior lattice point of the reflexive facet  $\theta_+ = \theta_{134}$  of  $\Delta$  and  $-v_{\Delta}$  is the interior lattice point of the reflexive facet  $\theta_- = \theta_{123}$  of  $\Delta$  (Fig. 2.2b). The images  $\overline{v}_1, \overline{v}_3, \overline{v}_4$  of  $v_1, v_3, v_4$  in  $M/\mathbb{Z}v_{\Delta}$  and the images  $\overline{v}_1, \overline{v}_2, \overline{v}_3$  of  $v_1, v_2, v_3$  in  $M/\mathbb{Z}(-v_{\Delta})$  are vertices of the dual reflexive triangle  $\theta_{\pm}^*$  (Fig. 2.3b) satisfying the relation

$$2\overline{v}_1 + \overline{v}_3 + \overline{v}_4 = 0$$

and

$$2\overline{v}_1 + \overline{v}_2 + \overline{v}_3 = 0,$$

respectively.

To compute the canonical hull  $\Delta^{\text{can}}$  of  $\Delta$ , we obtain  $\text{supp}(\Delta^{\text{FI}}) = \{s_i \mid 1 \le i \le 6\}$ with  $s_1 := (-1, -2, 2), s_2 := (-1, 1, 0), s_3 := (0, -1, 0), s_4 := (1, -1, 0), s_5 := (2, -1, 0), \text{ and } s_6 := (9, -2, -2), \text{ which leads to } \Delta^{\text{can}} = \Delta.$ 

| ID     | $\operatorname{vert}(\Delta)$                                                                   |
|--------|-------------------------------------------------------------------------------------------------|
| 547393 | (0, 1, 0), (2, 1, 1), (-2, -3, -5), (2, 1, 9)                                                   |
| 547409 | (-4, 2, 9), (1, 0, 0), (0, 1, 0), (7, -6, -18)                                                  |
| 547461 | (0, 1, 0), (2, 1, 1), (-2, -3, -5), (0, 1, 4)                                                   |
| 544442 | (1, 0, 0), (0, 1, 0), (3, -6, 8), (1, -4, 4), (-5, 6, -12)                                      |
| 544443 | (-1, -2, 0), (3, -6, 8), (0, 1, 0), (1, 0, 0), (-3, 4, -8)                                      |
| 544651 | (-4, 1, -3), (4, -2, 3), (0, 1, 0), (1, -2, 3), (-1, 1, -3)                                     |
| 544696 | (5, -4, -15), (1, 0, 0), (0, 1, 0), (-4, 2, 9), (-3, 1, 6)                                      |
| 544700 | (-2, -3, -3), (0, 1, 0), (1, 0, 0), (-1, -4, -6), (2, 5, 9)                                     |
| 544749 | (-6, -5, -8), (0, 1, 0), (1, 0, 0), (-2, -1, 0), (3, 2, 4)                                      |
| 520925 | (0, 1, 0), (0, 0, 1), (-2, -1, 0), (-2, 0, -1), (8, 2, 3), (-2, -3, -2)                         |
| 520935 | (3, 4, 6), (2, 1, 2), (-3, -2, -2), (1, 0, 0), (0, 1, 0), (-6, -5, -8)                          |
| 522056 | (-1, -1, 0), (0, 1, 0), (1, 0, 0), (-1, -1, -3), (-5, -3, -6), (6, 4, 9)                        |
| 522059 | (2, 5, 6), (-2, -3, -3), (0, 1, 0), (1, 0, 0), (-1, -4, -6), (0, 1, 3)                          |
| 522087 | (1, 0, -3), (1, 0, 0), (0, 1, 0), (-4, 2, 9), (-3, 1, 6), (5, -4, -12)                          |
| 522682 | (2, 1, 4), (-3, -2, -4), (-2, -3, -4), (1, 2, 4), (1, 0, 0), (0, 1, 0)                          |
| 522684 | (-2, -1, -4), (3, 2, 4), (-2, -1, 0), (1, 0, 0), (0, 1, 0), (-4, -3, -4)                        |
| 526886 | (-3, 4, -6), (1, 0, 0), (0, 1, 0), (3, -6, 8), (0, 1, -2), (2, -5, 6)                           |
| 439403 | (1, 2, 2), (-1, 0, 0), (-1, 1, -1), (1, 0, 0), (-1, -2, -2), (1, 1, 3), (1, -3, -1)             |
| 275525 | (4, 1, 2), (0, 1, 0), (-2, -1, 0), (1, 1, 2), (-3, -1, -2), (-2, -1, -2), (1, 1, 0), (1, -1, 0) |
| 275528 | (-1, 0, -1), (-3, -2, 1), (-2, -1, 2), (0, -1, 0), (0, 1, 0), (1, 0, 1), (2, 1, -2), (3, 2, -1) |

Table 2.5 20 Canonical Fano 3-topes with Symmetric Fine Interior of Dimension 1. Table contains: vertices  $vert(\Delta)$  of  $\Delta$ 

**Example 33** Let  $\Delta \subseteq M_{\mathbb{Q}}$  be a canonical Fano 3-tope given as the convex hull

 $v_1 := (-4, 2, 9), v_2 := (1, 0, 0), v_3 := (0, 1, 0), and v_4 := (7, -6, -18)$ 

(ID 547409, Fig. 2.5b, Tables 2.5 and 2.6). Then

$$\Delta^{\rm FI} = \operatorname{conv}\{(-2/3, 2/3, 2), (2/3, -2/3, -2)\} = \operatorname{conv}\{-\mu v_{\Delta}, \mu v_{\Delta}\}$$

with  $\mu = \frac{2}{3}$ , where  $v_{\Delta} = (1, -1, -3)$ . One has  $v_1 + v_2 + v_3 = -3v_{\Delta}$  and  $v_1 + v_3 + v_4 = -3(-v_{\Delta})$ . Therefore,  $v_{\Delta}$  is the interior lattice point of the reflexive facet  $\theta_+ = \theta_{123}$  of  $\Delta$  and  $-v_{\Delta}$  is the interior lattice point of the reflexive facet  $\theta_- = \theta_{134}$  of  $\Delta$  (Fig. 2.2b). The images  $\overline{v}_1, \overline{v}_2, \overline{v}_3$  of  $v_1, v_2, v_3$  in  $M/\mathbb{Z}v_{\Delta}$  and the images  $\overline{v}_1, \overline{v}_3, \overline{v}_4$  of  $v_1, v_3, v_4$  in  $M/\mathbb{Z}(-v_{\Delta})$  are vertices of the dual reflexive triangle  $\theta_{\pm}^*$  (Fig. 2.3b) satisfying the relation

$$\overline{v}_1 + \overline{v}_2 + \overline{v}_3 = 0,$$

and

$$\overline{v}_1 + \overline{v}_3 + \overline{v}_4 = 0,$$

respectively.

| <sup>H</sup> , unique | nterior $\overline{\Delta}^{\text{FI}}$ |                     |
|-----------------------|-----------------------------------------|---------------------|
| interior ∠            | the Fine i                              |                     |
| the Fine              | $p(\Delta^{FI})$ of                     |                     |
| $rt(\Delta^{FI})$ of  | apport sup                              |                     |
| ertices ve            | $\Delta$ , and su                       |                     |
| contains: v           | acets $\theta_{\pm} \leq$               |                     |
| 1. Table o            | eflexive fa                             |                     |
| imension              | ±) of the 1                             |                     |
| rior of D             | ices vert( $\theta$                     |                     |
| Fine Inte             | $\leq \Delta$ , vert                    |                     |
| mmetric               | facets $\theta_{\pm}$                   |                     |
| s with Sy             | reflexive                               |                     |
| 10 3-tope             | $\theta_{\pm}$ in the                   |                     |
| mical Far             | Its $\pm \nu_{\Delta} \in$              |                     |
| 20 Cano               | attice poin                             | $^{1} = \Delta$     |
| ble 2.6               | imitive l                               | ere: $\Delta^{car}$ |

| primitive la $\Delta c_{an}$ | to canonical r<br>(trice points $\pm v_{\Delta}$<br>= $\Delta$ ) | $\in \theta_{\pm}$ in the refle | It is symmetric time function of Dimension 1. It sitve facets $\theta_{\pm} \leq \Delta$ , vertices vert $(\theta_{\pm})$ of the refle | Here contains: vertices vert( $\Delta^{-1}$ ) of the Fine interior $\Delta^{-1}$ , unique exive facets $\theta_{\pm} \leq \Delta$ , and support supp( $\Delta^{\text{Fl}}$ ) of the Fine interior $\Delta^{\text{Fl}}$ |
|------------------------------|------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | $vert(\Delta^{H})$                                               | $\pm \nu_{\Delta}$              | $\operatorname{vert}(\theta_{\pm})$                                                                                                    | supp( $\Delta^{\rm H}$ )                                                                                                                                                                                               |
| 547393                       | $\pm 1/2 \cdot \nu_{\Delta}$                                     | $\pm(0, 0, 1)$                  | (0, 1, 0), (2, 1, 1), (-2, -3, -5) (0, 1, 0), (-2, -3, -5), (2, 1, 9)                                                                  | (-1, -2, 2), (-1, 1, 0), (0, -1, 0), (1, -1, 0), (2, -1, 0), (9, -2, -2)                                                                                                                                               |
| 547409                       | $\pm 2/3 \cdot \nu_{\Delta}$                                     | $\pm (1, -1, -3)$               | (-4, 2, 9), (1, 0, 0), (0, 1, 0) (-4, 2, 9), (0, 1, 0), (7, -6, -18)                                                                   | (-3, -3, -1), (-1, -1, 0), (-1, 2, -1), (2, -1, 1), (15, -3, 7)                                                                                                                                                        |
| 547461                       | $\pm 1/2 \cdot \nu_{\Delta}$                                     | $\pm(0, 0, 1)$                  | (0, 1, 0), (2, 1, 1), (-2, -3, -5) (2, 1, 1), (-2, -3, -5), (0, 1, 4)                                                                  | (-3, 6, -2), (-1, -2, 2), (-1, 1, 0), (0, -1, 0), (1, -1, 0), (2, -1, 0)                                                                                                                                               |
| 54442                        | $\pm 1/2 \cdot \nu_{\Delta}$                                     | $\pm(1, -1, 2)$                 | (0, 1, 0), (1, -4, 4), (-5, 6, -12) (1, 0, 0), (0, 1, 0), (3, -6, 8)                                                                   | (-2, -2, -1), (-1, -1, 0), (-1, 1, 1), (1, -1, -1), (3, -1, -2), (10, -2, -5)                                                                                                                                          |
| 54443                        | $\pm 1/2 \cdot \nu_{\Delta}$                                     | $\pm (1, -1, 2)$                | (-1, -2, 0), (0, 1, 0), (-3, 4, -8) $(3, -6, 8), (0, 1, 0), (1, 0, 0)$                                                                 | (-2, -2, -1), (-1, -1, 0), (-1, 1, 1), (1, -1, -1), (3, -1, -2), (6, -2, -3)                                                                                                                                           |
| 544651                       | $\pm 2/3 \cdot \nu_{\Delta}$                                     | $\pm(1, 0, 0)$                  | (-4, 1, -3), (0, 1, 0), (1, -2, 3) $(4, -2, 3), (0, 1, 0), (-1, 1, -3)$                                                                | (-3, -3, 1), (0, -1, -1), (0, -1, 0), (0, 2, 1), (3, -3, -4)                                                                                                                                                           |
| 544696                       | $\pm 2/3 \cdot \nu_{\Delta}$                                     | $\pm (1, -1, -3)$               | (1, 0, 0), (0, 1, 0), (-4, 2, 9) (5, -4, -15), (1, 0, 0), (-3, 1, 6)                                                                   | (-3, -3, -1), (-3, 12, -4), (-1, -1, 0), (-1, 2, -1), (2, -1, 1)                                                                                                                                                       |
| 544700                       | $\pm 2/3 \cdot \nu_{\Delta}$                                     | $\pm(1, 2, 3)$                  | (-2, -3, -3), (0, 1, 0), (-1, -4, -6) (0, 1, 0), (1, 0, 0), (2, 5, 9)                                                                  | (-3, -3, 2), (-1, -1, 1), (-1, 2, -1), (2, -1, 0), (3, -3, 2)                                                                                                                                                          |
| 544749                       | $\pm 1/2 \cdot \nu_{\Delta}$                                     | $\pm(1, 1, 2)$                  | (-6, -5, -8), (0, 1, 0), (1, 0, 0) (0, 1, 0), (-2, -1, 0), (3, 2, 4)                                                                   | (-2, -2, 3), (-1, -1, 1), (-1, 1, 0), (-1, 3, -1), (1, -1, 0), (2, -2, -1)                                                                                                                                             |
|                              |                                                                  |                                 |                                                                                                                                        | (continued)                                                                                                                                                                                                            |

| Table 2.6 | (continued)                  |                    |                                                                                                    |                                                                              |
|-----------|------------------------------|--------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| D         | $vert(\Delta^{FI})$          | $\pm \nu_{\Delta}$ | $\operatorname{vert}(	heta_{\pm})$                                                                 | supp $(\Delta^{\mathrm{FI}})$                                                |
| 520925    | $\pm 1/2 \cdot \nu_{\Delta}$ | ±(2, 1, 1)         | (-2, -1, 0), (-2, 0, -1), (-2, -3, -2)<br>(0, 1, 0), (0, 0, 1), (8, 2, 3)                          | (-1, -1, 3), (0, -1, 1), (0, 1, -1), (1, -2, -2), (1, -1, -1), (1, 0, 0)     |
| 520935    | $\pm 1/2 \cdot \nu_{\Delta}$ | ±(1, 1, 2)         | (1, 0, 0), (0, 1, 0), (-6, -5, -8)<br>(3, 4, 6), (2, 1, 2), (-3, -2, -2)                           | (-2, -2, 3), (-1, -1, 1), (-1, 1, 0), (-1, 3, -1), (0, 4, -3), (1, -1, 0)    |
| 522056    | $\pm 2/3 \cdot \nu_{\Delta}$ | <b>±</b> (2, 1, 3) | (0, 1, 0), (-1, -1, -3), (-5, -3, -6)<br>(-1, -1, 0), (1, 0, 0), (6, 4, 9)                         | (-3, 6, -1), (-1, -1, 1), (-1, 2, 0), (0, -3, 2), (2, -1, -1)                |
| 522059    | $\pm 2/3 \cdot v_{\Delta}$   | ±(1, 2, 3)         | (-2, -3, -3), (0, 1, 0), (-1, -4, -6)<br>(2, 5, 6), (1, 0, 0), (0, 1, 3)                           | (-3, 3, -2), (-1, -1, 1), (-1, 2, -1), (2, -1, 0), (3, -3, 2)                |
| 522087    | $\pm 2/3 \cdot \nu_{\Delta}$ | $\pm (1, -1, -3)$  | (1, 0, 0), (0, 1, 0), (-4, 2, 9)<br>(1, 0, -3), (-3, 1, 6), (5, -4, -12)                           | (-3, -3, -1), (-1, -1, 0), (-1, 2, -1), (2, -1, 1), (9, 0, 4)                |
| 522682    | $\pm 1/2 \cdot \nu_{\Delta}$ | ±(1, 1, 2)         | (-3, -2, -4), (-2, -3, -4), (1, 0, 0), (0, 1, 0)<br>(2, 1, 4), (1, 2, 4), (1, 0, 0), (0, 1, 0)     | (-2, -2, 1), (-2, -2, 3), (-1, -1, 1), (-1, 1, 0), (1, -1, 0), (1, 1, -1)    |
| 522684    | $\pm 1/2 \cdot \nu_{\Delta}$ | ±(1, 1, 2)         | (-2, -1, -4), (1, 0, 0), (-4, -3, -4)<br>(3, 2, 4), (-2, -1, 0), (0, 1, 0)                         | (-2, 2, 1), (-1, -1, 1), (-1, 1, 0), (-1, 3, -1), (1, -1, 0), (2, -2, -1)    |
| 526886    | $\pm 1/2 \cdot \nu_{\Delta}$ | ±(1, −1, 2)        | (-3, 4, -6), (0, 1, -2), (2, -5, 6)<br>(1, 0, 0), (0, 1, 0), (3, -6, 8)                            | (-2, -2, -1), (-1, -1, 0), (-1, 1, 1), (0, 4, 3), (1, -1, -1), (3, -1, -2)   |
| 439403    | $\pm 1/2 \cdot \nu_{\Delta}$ | $\pm(0, 1, 1)$     | (-1, 1, -1), (1, 0, 0), (-1, -2, -2), (1, -3, -1)<br>(1, 2, 2), (-1, 0, 0), (-1, 1, -1), (1, 1, 3) | (-2, -1, 3), (-1, -1, 1), (-1, 0, 0), (1, 0, 0), (1, 1, -1), (2, -1, -1)     |
| 275525    | $\pm 1/2 \cdot \nu_{\Delta}$ | $\pm(1, 0, 0)$     | (0, 1, 0), (-2, -1, 0), (1, 1, 2), (-3, -1, -2)<br>(4, 1, 2), (-2, -1, -2), (1, 1, 0), (1, -1, 0)  | $(-2, 0, 3), (0, -1, 0), (0, -1, 1), \pm (0, 1, -1), (0, 1, 0), (2, -2, -1)$ |
| 275528    | $\pm 1/2 \cdot \nu_{\Delta}$ | $\pm(1, 1, -1)$    | (-3, -2, 1), (-2, -1, 2), (0, -1, 0), (1, 0, 1)<br>(-1, 0, -1), (0, 1, 0), (2, 1, -2), (3, 2, -1)  | (-1, 1, 0), (-1, 2, -1), (0, -1, -1), (0, 1, 1), (1, -2, 1), (1, -1, 0)      |

30

To compute the canonical hull  $\Delta^{can}$  of  $\Delta$ , we obtain  $\text{supp}(\Delta^{\text{FI}}) = \{s_i \mid 1 \le i \le 5\}$  with  $s_1 := (-3, -3, -1), s_2 := (-1, -1, 0), s_3 := (-1, 2, -1), s_4 := (2, -1, 1),$  and  $s_5 := (15, -3, 7)$ , which leads to  $\Delta^{can} = \Delta$ .

**Remark 34** Information about all 20 canonical Fano 3-topes with dim $(\Delta^{FI}) = 1$  and  $0 \in (\Delta^{FI})^{\circ}$  can be found in Tables 2.5 and 2.6.

#### 2.6 Fine Interior of Dimension 3

There exist 49 canonical Fano 3-topes  $\Delta$  such that dim $(\Delta^{\text{FI}}) = 3$ . Exactly 3 of these polytopes  $\Delta$  define minimal surface  $S_{\Delta}$  with non-trivial fundamental group of order 2 and  $K^2 = 2$ . For these 3 polytopes one has  $\Delta = \Delta^{\text{can}}$ . The surfaces  $S_{\Delta}$  were investigated by Todorov [24] as well as Catanese and Debarre [10].

The remaining 46 canonical Fano 3-topes  $\Delta$  define simply connected minimal surfaces  $S_{\Delta}$  with  $K^2 = 1$ . These surfaces were investigated by Kanev [19], Catanese [9], and Todorov [23]. Among these 46 canonical Fano 3-topes there exist exactly 26 polytopes  $\Delta$  such that  $\Delta = \Delta^{can}$ .

**Example 35** ([19]) Let  $M \subseteq \mathbb{Q}^4$  be the 3-dimensional affine lattice defined by

$$M := \{ (m_1, m_2, m_3, m_4) \in \mathbb{Z}^4 \mid m_1 + m_2 + m_3 + 2m_4 = 6, \ m_2 + 2m_3 \equiv 0 \pmod{3} \}$$

and  $\Delta' \subseteq M_{\mathbb{Q}}$  be the convex hull of 4 lattice points

 $(6, 0, 0, 0), (0, 6, 0, 0), (0, 0, 6, 0), \text{ and } (0, 0, 0, 3) \in M.$ 

Then  $(\Delta')^{\text{FI}}$  is the 3-dimensional rational simplex

 $conv\{(2, 1, 1, 1), (1, 2, 1, 1), (1, 1, 2, 1), (1, 1, 1, 3/2)\}$ 

and  $(\Delta')^{\mathrm{FI}} \cap M = \{(2, 1, 1, 1)\}.$ 

The canonical Fano 3-tope  $\Delta'$  is the Newton polytope of the  $\mu_3$ -cyclic quotient  $\overline{Z}_{\Delta'}$ of the projective surface of degree 6 defined by the polynomial  $z_1^6 + z_2^6 + z_3^6 + z_4^3 = 0$ in the weighted projective space  $\mathbb{P}(1, 1, 1, 2)$ , where the cyclic group  $\mu_3$  acts via  $(z_1 : z_2 : z_3 : z_4) \mapsto (z_1 : \varepsilon z_2 : \varepsilon^2 z_3 : z_4)$ . The single interior lattice point in  $\Delta'$ corresponds to the monomial  $z_1^2 z_2 z_3 z_4$ . The surface  $\overline{Z}_{\Delta'}$  has 3 cyclic quotient singularities of type  $A_2$ . The minimal desingularization  $S_{\Delta'}$  of  $\overline{Z}_{\Delta'}$  is a simply connected surface of general type with  $K^2 = 1$ .

One can identify  $\Delta'$  with the canonical Fano 3-simplex  $\Delta$  given as the convex hull of

$$v_1 := (1, 0, 0), v_2 := (-2, -4, -5), v_3 := (1, 2, 4), and v_4 := (1, 4, 2)$$



Fig. 2.6 Canonical Fano 3-topes with Fine Interior of Dimension 3. Shaded faces are occluded. The Fine interior and the origin are shown in grey with a double border around the origin. **a** The whole polytope is  $\Delta = \text{conv}\{v_1, v_2, v_3, v_4\}$  with  $v_1 = (1, 0, 0), v_2 = (-2, -4, -5), v_3 = (1, 2, 4), \text{ and } v_4 = (1, 4, 2).$  Moreover,  $\Delta^{\text{FI}} = \text{conv}\{(0, 0, 0), (-1/2, -1, -3/2), (0, -1/3, -2/3), (0, 1/3, -1/3)\}$  and  $\Delta^{\text{can}} = \Delta$ . **b** The whole polytope is  $\Delta = \text{conv}\{v_1, v_2, v_3, v_4\}$  with  $v_1 = (-3, -2, -2), v_2 = (1, 0, 0), v_3 = (1, 3, 1), \text{ and } v_4 = (1, 1, 3).$  Moreover,  $\Delta^{\text{FI}} = \text{conv}\{(0, 0, 0), (-1/2, -1/2), (0, 1/4, 3/4)\}$  and  $\Delta^{\text{can}} = \Delta$ 

(ID 547444, Fig. 2.6a, Tables 2.7, 2.8, and 2.9). The primitive inward-pointing facet normals of the facets  $\theta_{124}$ ,  $\theta_{234}$ ,  $\theta_{123}$ , and  $\theta_{134} \leq \Delta$  of this simplex  $\Delta$  are

$$n_1 := (-2, -1, 2), n_2 := (5, -1, -1), n_3 := (-1, 2, -1), and n_4 := (-1, 0, 0),$$

respectively. They satisfy the relation

$$n_1 + n_2 + n_3 + 2n_4 = 0.$$

To compute the canonical hull  $\Delta^{\text{can}}$  of  $\Delta$ , we obtain  $\text{supp}(\Delta^{\text{FI}}) = \{s_i \mid 1 \le i \le 6\}$ with  $s_1 := (-2, -1, 2), s_2 := (-1, 0, 0), s_3 := (-1, 2, -1), s_4 := (1, 1, -1), s_5 := (3, 0, -1)$ , and  $s_6 := (5, -1, -1)$ , which leads to  $\Delta^{\text{can}} = \Delta$ .

**Example 36** ([24]) Let  $M \subseteq \mathbb{Q}^4$  be the 3-dimensional affine lattice defined by

$$M := \{ (m_1, m_2, m_3, m_4) \in \mathbb{Z}^4 \mid m_1 + m_2 + 2m_3 + 2m_4 = 8, \ 3m_2 + m_3 + 3m_4 \equiv 0 \pmod{4} \}$$

and  $\Delta' \subseteq M_{\mathbb{Q}}$  be the convex hull of 4 lattice points

 $(8, 0, 0, 0), (0, 8, 0, 0), (0, 0, 4, 0), \text{ and } (0, 0, 0, 4) \in M.$ 

| ID     | $\operatorname{vert}(\Delta)$                                                                      |
|--------|----------------------------------------------------------------------------------------------------|
| 547444 | (1, 0, 0), (-2, -4, -5), (1, 2, 4), (1, 4, 2)                                                      |
| 547465 | (-3, -2, -2), (1, 0, 0), (1, 3, 1), (1, 1, 3)                                                      |
| 547524 | (0, 2, 1), (-2, -3, -5), (2, 1, 1), (0, 0, 1)                                                      |
| 547525 | (0, 0, 1), (0, 1, 0), (2, 1, 1), (-2, -5, -7)                                                      |
| 545317 | (-3, 4, -6), (0, 1, 0), (1, 0, 0), (1, -2, 4), (3, -5, 6)                                          |
| 545932 | (0, -1, -1), (1, -1, -3), (-2, 1, 5), (1, 0, 0), (1, 2, -2)                                        |
| 546013 | (3, -5, 6), (1, -2, 4), (1, 0, 0), (-1, 1, -2), (-1, 3, -2)                                        |
| 546062 | (0, 1, 3), (-2, 1, -1), (0, 1, 0), (1, 0, 0), (-1, -2, -2)                                         |
| 546070 | (0, -2, -3), (0, 2, 1), (-2, -3, -5), (2, 1, 1), (0, 0, 1)                                         |
| 546205 | (1, 2, -2), (-1, 0, 2), (1, 0, 0), (-2, 1, 5), (1, -1, -3)                                         |
| 546219 | (1, 1, 1), (-3, -2, -2), (1, 0, 0), (1, 3, 1), (-1, -1, 1)                                         |
| 546663 | (2, -3, -1), (1, 0, 0), (0, 1, 0), (0, 0, 1), (-2, -3, -3)                                         |
| 546862 | (1, 0, 0), (0, 1, 0), (-2, 1, 5), (1, -1, -3), (1, 2, -2)                                          |
| 546863 | (-1, -1, 1), (1, 3, 1), (0, 0, 1), (1, 0, 0), (-3, -2, -2)                                         |
| 547240 | (-1, 1, -2), (0, 1, 0), (1, 0, 0), (1, -2, 4), (3, -5, 6)                                          |
| 547246 | (0, -2, -3), (-2, -3, -5), (2, 1, 1), (0, 1, 0), (0, 0, 1)                                         |
| 532384 | (1, -1, -3), (-2, 1, 5), (1, 0, 0), (1, -1, -2), (0, -1, -1), (1, 2, -2)                           |
| 532606 | (0, -1, 2), (-1, -1, 0), (0, 1, 0), (1, 0, 0), (2, 2, -3), (-2, 0, -3)                             |
| 533513 | (-1, 1, 2), (1, 0, 0), (0, 1, 0), (1, 1, 2), (-1, -2, -4), (-2, -3, -4)                            |
| 534667 | (1, 0, 3), (-1, -1, -1), (0, 1, 0), (1, 0, 0), (-1, -1, 0), (5, 2, 3)                              |
| 534669 | (1, 3, 0), (5, 3, 2), (-1, -1, -1), (0, 0, 1), (1, 0, 0), (-1, -1, 0)                              |
| 534866 | (-1, -1, -3), (1, 0, 0), (0, 1, 0), (1, 1, 1), (-1, -1, 0), (-3, -5, -3)                           |
| 535952 | (3, -5, 6), (1, -2, 4), (1, 0, 0), (0, 1, 0), (-1, 1, -2), (-1, 2, -2)                             |
| 536013 | (0, 1, 1), (0, 0, 1), (0, 1, 0), (2, 1, 1), (-2, -3, -5), (0, -2, -3)                              |
| 536498 | (1, 2, -2), (1, -1, -2), (1, 0, 0), (0, 1, 0), (-2, 1, 5), (1, -1, -3)                             |
| 537834 | (0, 0, 1), (1, 0, 0), (0, 1, 0), (-2, 1, 5), (1, -1, -3), (1, 2, -2)                               |
| 538356 | (-2, -3, -3), (-1, -3, -1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (-1, -1, -3)                          |
| 539063 | (-1, 1, -1), (1, 1, 3), (-3, -2, -2), (1, 0, 0), (0, 1, 0), (1, 1, 2)                              |
| 539304 | (1, 0, 1), (-3, -1, -2), (1, 1, 2), (-2, -1, 0), (1, 0, 0), (1, 2, 0)                              |
| 539313 | (1, -1, -2), (1, 1, -1), (-1, 2, 2), (1, -1, -3), (-2, 1, 5), (1, 0, 0)                            |
| 540602 | (0, 0, 1), (1, 0, 0), (-2, 1, 5), (1, -1, -3), (-1, 2, 2), (1, 1, -1)                              |
| 540663 | (1, 0, 0), (0, 1, 0), (1, 1, 2), (-3, -1, -2), (1, 1, 1), (-3, -2, 0)                              |
| 474457 | (-1, 2, -3), (1, 0, 2), (0, 0, 1), (0, 1, 0), (1, 0, 0), (-1, -1, 0), (-3, -2, -3)                 |
| 481575 | (3, 2, 4), (-1, -1, -2), (-3, -1, -2), (-2, -1, 0), (0, 1, 0), (1, 0, 0), (0, 0, -1)               |
| 483109 | (3, 0, 2), (1, -2, -2), (0, 0, -1), (-1, -1, 0), (1, 1, 1), (0, 1, 0), (-1, 0, 0)                  |
| 490478 | (1, -1, -2), (1, 1, -1), (-1, 2, 2), (1, -1, -3), (-2, 1, 5), (1, 0, 0), (-1, 0, 2)                |
| 490481 | (-3, -2, 0), (-5, -3, -2), (1, 0, 0), (0, 1, 0), (1, 1, 2), (-1, -1, -1), (2, 1, 1)                |
| 490485 | (-1, -1, 0), (1, 2, 0), (1, 0, 0), (-2, -1, 0), (1, 1, 2), (-3, -1, -2), (1, 0, 1)                 |
| 490511 | (1, 0, 0), (0, 1, 0), (-2, -1, 0), (1, 1, 2), (2, 1, 1), (1, 0, 1), (-5, -2, -4)                   |
| 495687 | (0, 0, -1), (1, 1, -1), (-1, 2, 2), (1, -1, -3), (-2, 1, 5), (1, 0, 0), (0, 0, 1)                  |
| 499287 | (1, 1, 1), (-1, -1, -3), (1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, -3, -1), (-2, -3, -3)               |
| 499291 | (-1, -1, -1), (-1, -1, -3), (1, 0, 0), (0, 1, 0), (0, 0, 1), (-1, -3, -1), (-2, -3, -3)            |
| 499470 | (1, 0, 0), (0, 1, 0), (-2, -1, 0), (1, 1, 2), (0, 0, 1), (-5, -2, -4), (2, 1, 1)                   |
| 501298 | (3, -6, 8), (-1, 1, -2), (1, -2, 3), (0, 1, 0), (1, 0, 0), (0, 1, -1), (3, -5, 6)                  |
| 501330 | (1, 0, 0), (0, 1, 0), (-2, -1, 0), (1, 1, 2), (1, 1, 1), (0, 0, 1), (-5, -2, -4)                   |
| 354912 | (3, 1, 2), (1, 0, 0), (0, 1, 0), (-2, -1, 0), (1, 1, 2), (2, 1, 1), (1, 0, 1), (-5, -2, -4)        |
| 372528 | (2, 1, 1), (-1, -1, -1), (1, 1, 2), (0, 1, 0), (1, 0, 0), (-5, -3, -2), (-3, -2, 0), (1, 1, 0)     |
| 372973 | (-5, -2, -4), (1, 0, 1), (2, 1, 1), (1, 1, 2), (-2, -1, 0), (0, 1, 0), (1, 0, 0), (2, 1, 2)        |
| 388701 | (1, 1, 1), (-2, -3, -3), (-1, -3, -1), (0, 0, 1), (0, 1, 0), (1, 0, 0), (-1, -1, -3), (-1, -1, -1) |

Table 2.7 49 Canonical Fano 3-topes with Fine Interior of Dimension 3 Table contains: vertices vert( $\Delta$ ) of  $\Delta$ 

| ID     | $\operatorname{vert}(\Delta^{\mathbf{F}_{\mathbf{I}}})$                |
|--------|------------------------------------------------------------------------|
| 547444 | 0, (-1/2, -1, -3/2), (0, -1/3, -2/3), (0, 1/3, -1/3)                   |
| 547465 | 0, (-1, -1/2, -1/2), (0, 3/4, 1/4), (0, 1/4, 3/4)                      |
| 547524 | 0, (0, 1/2, 0), (1/3, 1/3, 0), (-1/3, -1/3, -1)                        |
| 547525 | 0, (0, 0, -1/2), (1/3, 0, -1/3), (-1/3, -1, -5/3)                      |
| 545317 | 0, (1, -3/2, 2), (2/3, -2/3, 1), (1/2, -1/2, 1), (2/3, -1, 5/3)        |
| 545932 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)                      |
| 546013 | 0, (1, -3/2, 2), (0, 1/2, 0), (1/2, -1/4, 1/2), (1/2, -3/4, 3/2)       |
| 546062 | 0, (-1/2, -1/2, -1/2), (-2/3, 0, -1/3), (-1/3, 0, 1/3)                 |
| 546070 | 0, (0, 1/2, 0), (1/2, 1/4, 0), (0, -1/2, -1), (-1/2, -3/4, -3/2)       |
| 546205 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)                      |
| 546219 | 0, (-1, -1/2, -1/2), (-1/3, 1/3, 0), (-2/3, -1/3, 0)                   |
| 546663 | 0, (0, -1/2, 0), (1/3, -1, -1/3), (-1/3, -1, -2/3)                     |
| 546862 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)                      |
| 546863 | 0, (-1, -1/2, -1/2), (-1/3, 1/3, 0), (-2/3, -1/3, 0)                   |
| 547240 | 0, (1, -3/2, 2), (2/3, -2/3, 1), (1/2, -1/2, 1), (2/3, -1, 5/3)        |
| 547246 | 0, (0, 0, -1/2), (1/3, 0, -1/3), (0, -1/2, -1), (-1/3, -2/3, -4/3)     |
| 532384 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)                      |
| 532606 | 0, (0, 1/2, -1/2), (1/3, 2/3, -1), (-1/3, 1/3, -1)                     |
| 533513 | 0, (-1/2, -1/2, -1), (-1/2, 0, 0), (-1/3, 0, -1/3), (-2/3, -2/3, -1)   |
| 534667 | 0, (1/2, 1/2, 1/2), (4/3, 2/3, 1), (2/3, 1/3, 1)                       |
| 534669 | 0, (1/2, 1/2, 1/2), (4/3, 1, 2/3), (2/3, 1, 1/3)                       |
| 534866 | 0, (0, -1/2, -1/2), (-1/3, -2/3, -1), (-2/3, -4/3, -1)                 |
| 535952 | 0, (1, -3/2, 2), (2/3, -2/3, 1), (1/2, -1/2, 1), (2/3, -1, 5/3)        |
| 536013 | 0, (0, 0, -1/2), (1/3, 0, -1/3), (0, -1/2, -1), (-1/3, -2/3, -4/3)     |
| 536498 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)                      |
| 537834 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 2/3, 1/3)                      |
| 538356 | 0, (0, -1/2, -1/2), (-1/3, -2/3, -1), (-1/3, -1, -2/3), (-1/2, -1, -1) |
| 539063 | 0, (-1, -1/2, -1/2), (-2/3, 0, -1/3), (-1/3, 0, 1/3)                   |
| 539304 | 0, (0, 1/2, 0), (-1/2, 0, 0), (0, 1/3, 1/3), (-2/3, 0, -1/3)           |
| 539313 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (-1/3, 2/3, 1)      |
| 540602 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (-1/3, 2/3, 1)      |
| 540663 | 0, (-1/2, 0, 0), (-1, -1/2, 0), (-1/3, 0, 1/3), (-1, -1/3, -1/3)       |
| 474457 | 0, (0, 0, -1/2), (-1/3, 1/3, -1), (-2/3, -1/3, -1)                     |
| 481575 | 0, (-1/2, 0, 0), (1/2, 1/2, 1), (0, 1/3, 1/3), (-1/3, 0, 1/3)          |
| 483109 | 0, (0, -1/2, 0), (2/3, -1/3, 1/3), (1/3, -2/3, -1/3)                   |
| 490478 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (-1/3, 2/3, 1)      |
| 490481 | 0, (-1/2, 0, 0), (-1, -1/2, 0), (-1/3, 0, 1/3), (-4/3, -2/3, -1/3)     |
| 490485 | 0, (0, 1/2, 0), (-1/2, 0, 0), (0, 1/3, 1/3), (-2/3, 0, -1/3)           |
| 490511 | 0, (-3/2, -1/2, -1), (-1/2, 0, 0), (-2/3, 0, -1/3), (-1, -1/3, -1/3)   |
| 495687 | 0, (-1/2, 1/2, 3/2), (0, 1/3, 2/3), (0, 1/2, 1/2), (-1/3, 2/3, 1)      |
| 499287 | 0, (0, -1/2, -1/2), (-1/3, -2/3, -1), (-1/3, -1, -2/3), (-1/2, -1, -1) |
| 499291 | 0, (0, -1/2, -1/2), (-1/3, -2/3, -1), (-1/3, -1, -2/3), (-1/2, -1, -1) |
| 499470 | 0, (-3/2, -1/2, -1), (-1/2, 0, 0), (-2/3, 0, -1/3), (-1, -1/3, -1/3)   |
| 501298 | 0, (1/2, -1/2, 1), (2/3, -2/3, 1), (1, -3/2, 2), (1, -5/3, 7/3)        |
| 501330 | 0, (-3/2, -1/2, -1), (-1/2, 0, 0), (-2/3, 0, -1/3), (-1, -1/3, -1/3)   |
| 354912 | 0, (-3/2, -1/2, -1), (-1/2, 0, 0), (-2/3, 0, -1/3), (-1, -1/3, -1/3)   |
| 372528 | 0, (-1/2, 0, 0), (-1, -1/2, 0), (-1/3, 0, 1/3), (-4/3, -2/3, -1/3)     |
| 372973 | 0, (-3/2, -1/2, -1), (-1/2, 0, 0), (-2/3, 0, -1/3), (-1, -1/3, -1/3)   |
| 388701 | 0, (0, -1/2, -1/2), (-1/3, -2/3, -1), (-1/3, -1, -2/3), (-1/2, -1, -1) |

Table 2.8 49 Canonical Fano 3-topes with Fine Interior of Dimension 3. Table contains: vertices  $vert(\Delta^{FI})$  of the Fine interior  $\Delta^{FI}$ 

| the canonic | al hull $\Delta^{can}$ , and order of fundamental group $ \pi_1(S_\Delta) $ of the minimal model $S_\Delta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                           |                               |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|
| D           | $(\mathrm{H})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vert( $\Delta^{can}$ )                    | $ \pi_1(\mathcal{S}_\Delta) $ |
| 547444      | (-2, -1, 2), (-1, 0, 0), (-1, 2, -1), (1, 1, -1), (3, 0, -1), (5, -1, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vert( $\Delta$ )                          | 1                             |
| 547465      | (-1, -1, 3), (-1, 0, 0), (-1, 0, 1), (-1, 0, 2), (-1, 1, 0), (-1, 1, 1), (-1, 2, 0), (-1, 3, -1), (2, -1, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vert(\Delta)                              | 2                             |
| 547524      | (-1, -2, 2), (-1, 1, 0), (-1, 2, -1), (0, 0, -1), (0, 1, -1), (0, 2, -1), (1, 0, -1), (1, -1), (2, 0, -1), (3, 0, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vert( $\Delta$ ), (0, -1, -1)             | -                             |
| 547525      | (-1, -2, 2), (-1, 2, -1), (0, -1, 0), (0, 0, -1), (0, 1, -1), (1, -1, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, 0, -1), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (1, -1, 0), (               | vert( $\Delta$ ), (1, 1, 1), (-1, -2, -3) | 1                             |
|             | $ \begin{array}{l} (1,1,-1),(2,-1,-1),(2,-1,0),(2,0,-1),(3,-1,-1),(3,-1,0),(3,0,-1),(4,-1,-1),(4,0,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1),(6,-1$ |                                           |                               |
| 545317      | (-2, -2, -1), (-1, -1, 0), (-1, 2, 2), (1, -1, -1), (1, 2, 1), (3, 2, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | vert( $\Delta$ )                          | 1                             |
| 545932      | (-2, -1, -1), (-1, 0, 0), (-1, 2, -1), (0, 1, 0), (1, 1, 0), (2, 0, 1), (3, 0, 1), (5, -1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vert( $\Delta$ ), (1, -1, -2), (1, 0, -3) | 1                             |
| 546013      | (-2, -2, -1), (-1, 0, 1), (-1, 2, 2), (0, 1, 1), (1, 0, 0), (1, 2, 1), (2, 1, 0), (3, 0, -1), (3, 2, 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | vert( $\Delta$ )                          | 2                             |
| 546062      | (-1, -1, 0), (-1, -1, 1), (-1, -1, 2), (-1, 0, 0), (-1, 0, 1), (-1, 1, 0), (-1, 2, -1), (0, -1, 0), (2, 1, -1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | vert( $\Delta$ )                          | 1                             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           | (continued)                   |

 Table 2.9
 49 Canonical Fano 3-topes with Fine Interior of Dimension 3. Table contains: support supp( $\Delta^{H}$ ) of the Fine interior  $\Delta^{H}$ , vertices vert( $\Delta^{can}$ ) of

| Table 2.9 | (continued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |                               |
|-----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------|
| D         | supp $(\nabla^{\mathrm{H}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $vert(\Delta^{can})$                              | $ \pi_1(\mathcal{S}_\Delta) $ |
| 546070    | $\left  \begin{array}{c} (-1,-2,2), (-1,2,-1), (0,0,-1), (0,1,-1), (0,2,-1), (1,0,-1), (1,1,-1), (2,0,-1), (3,0,-1) \end{array} \right  \\ \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\operatorname{vert}(\Delta)$                     | 2                             |
| 546205    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $vert(\Delta)$                                    | _                             |
| 546219    | $ (-1, -1, 3), (-1, 0, 0), (-1, 0, 1), (-1, 0, 2), (-1, 1, -1), (-1, 1, 0), (-1, 1, 1), (-1, 2, 0), \\ (0, 0, -1), (2, -1, -1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $vert(\Delta)$                                    | 1                             |
| 546663    | $ \begin{array}{l} (-1,-1,-1),(-1,-1,0),(-1,-1,1),(-1,-1,2),(-1,0,-1),(0,-1,-1),(0,-1,0),\\ (0,-1,1),(0,0,-1),(1,-1,-1),(1,-1,0),(1,0,-1),(1,2,-2),(2,-1,-1),(2,-1,0),\\ (2,0,-1),(3,-1,-1) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $vert(\Delta), (-1, -1, -1)$                      | _                             |
| 546862    | $ \begin{array}{l} (-2,-1,-1),(-1,0,0),(-1,2,-1),(-1,3,-1),(0,1,0),(0,4,-1),(1,1,0),(1,2,0),\\ (2,0,1),(2,3,0),(3,0,1),(3,1,1),(4,2,1),(5,-1,2),(5,0,2),(6,1,2),(7,-1,3),\\ (8,0,3),(10,-1,4) \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $vert(\Delta), (0, 0, 1)$                         | _                             |
| 546863    | $ (-1, -1, 3), (-1, 0, 0), (-1, 0, 1), (-1, 0, 2), (-1, 1, -1), (-1, 1, 0), (-1, 1, 1), (-1, 2, 0), \\ (0, 0, -1), (2, -1, -1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $vert(\Delta) \setminus \{(0, 0, 1)\}, (1, 1, 1)$ | -                             |
| 547240    | $ \left( \begin{array}{c} (-2,-2,-1),(-1,-1,0),(-1,0,1),(-1,2,2),(0,-1,0),(0,1,1),(1,-1,-1),(1,0,0),(1,2,1),(2,-1,-1),(2,0),(3,0,-1),(3,2,0) \end{array} \right) \\ \left( (1,2,1),(2,-1,-1),(2,1,0),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(2,-1,-1),(2,1,0),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(2,-1,-1),(2,1,0),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(2,-1),(2,1,0),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(2,-1),(2,1,0),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(2,-1),(2,1,0),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(2,-1),(3,0,-1),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(3,0,-1),(3,0,-1),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(3,0,-1),(3,0,-1),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(3,0,-1),(3,0,-1),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(3,0,-1),(3,0,-1),(3,0,-1),(3,2,0) \right) \\ \left( (1,2,1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),(3,0,-1),$ | $vert(\Delta), (0, 1, -1), (0, 0, 1)$             | 1                             |
| 547246    | (-1,-2,2),(-1,2,-1),(0,-1,0),(0,0,-1),(0,1,-1),(0,2,-1),(1,-1,-1),(1,-1,0),(1,0,-1),(1,0,-1),(1,0,-1),(2,-1,-1),(2,-1,0),(2,0,-1),(3,0,-1),(4,-1,-1),(2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $vert(\Delta), (1, 1, 1), (-1, -1, -2)$           | 1                             |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   | (continued)                   |

| nue     |  |
|---------|--|
| Ē       |  |
| con     |  |
| Ċ       |  |
|         |  |
| 2.9     |  |
| le 2.9  |  |
| ble 2.9 |  |

V. Batyrev et al.

| Table 2.9 | (continued)                                                                                                                                                                                                 |                                                    |                               |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| Ð         | (H) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A                                                                                                                                                                  | $\operatorname{vert}(\Delta^{\operatorname{can}})$ | $ \pi_1(\mathcal{S}_\Delta) $ |
| 532384    | $\left  \begin{array}{c} (-2,-1,-1), (-1,0,0), (-1,2,-1), (0,1,0), (1,1,0), (2,0,1), (3,0,1), (5,-1,2) \end{array} \right $                                                                                 | vert( $\Delta$ ), (1, 0, -3)                       | 1                             |
| 532606    | (-1, -1, -1), (-1, 1, 0), (-1, 2, 1), (0, -1, -1), (0, 1, 0), (1, -2, 0), (1, -1, -1), (2, -1, -1)                                                                                                          | $vert(\Delta), (0, -1, 1)$                         | 1                             |
| 533513    | (-1, -1, 1), (-1, 0, 0), (-1, 1, 0), (-1, 2, -1), (0, -1, 0), (0, 1, -1), (0, 3, -2), (2, -2, 1)                                                                                                            | vert( $\Delta$ ), (1, 1, 1), (0, -1, -1)           | 1                             |
| 534667    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | $\operatorname{vert}(\Delta)$                      | 1                             |
| 534669    | $ \begin{array}{c} (-1,0,2),(-1,1,1),(-1,2,-1),(-1,2,0),(0,0,1),(0,1,-1),(0,1,0),(1,-1,-2),\\ (1,0,-1),(1,0,0),(2,-1,-1),(2,-1,0) \end{array} $                                                             | $\operatorname{vert}(\Delta)$                      | 1                             |
| 534866    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | $\operatorname{vert}(\Delta)$                      | 1                             |
| 535952    | $ \begin{array}{l} (-2,-2,-1),(-1,-1,0),(-1,0,1),(-1,2,2),(0,1,1),(1,-1,-1),(1,0,0),(1,2,1),(1,0,0),(1,2,1),(2,1,0),(3,0,-1),(3,2,0) \end{array} \\ \end{array} $                                           | $vert(\Delta)$                                     | 1                             |
| 536013    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                     | $\operatorname{vert}(\Delta)$                      | 1                             |
| 536498    | $ \begin{array}{l} (-2,-1,-1),(-1,0,0),(-1,2,-1),(0,1,0),(1,1,0),(1,2,0),(2,0,1),(2,3,0),\\ (3,0,1),(3,1,1),(4,2,1),(5,-1,2),(5,0,2),(6,1,2),(7,-1,3),(8,0,3),(10,-1,4)\\ \end{array} $                     | $\operatorname{vert}(\Delta)$                      | 1                             |
| 537834    | $ \begin{array}{l} (-2,-1,-1),(-1,0,0),(-1,2,-1),(-1,3,-1),(0,1,0),(0,4,-1),(1,1,0),(1,2,0),\\ (2,0,1),(2,3,0),(3,0,1),(3,1,1),(4,2,1),(5,-1,2),(5,0,2),(6,1,2),(7,-1,3),\\ (8,0,3),(10,-1,4) \end{array} $ | vert(\Delta)                                       | 1                             |
|           |                                                                                                                                                                                                             |                                                    | (continued)                   |

| Table 2.9 | (continued)                                                                                                                                                                                               |                                                      |                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|
| D         | supp $(\Delta^{\mathbf{H}})$                                                                                                                                                                              | $\operatorname{vert}(\Delta^{\operatorname{can}})$   | $ \pi_1(\mathcal{S}_\Delta) $ |
| 538356    | $ \begin{array}{l} (-2,1,1),(-1,-1,-1),(-1,-1,0),(-1,-1,1),(-1,0,-1),(-1,0,0),(-1,1,-1),\\ (0,-1,-1),(0,-1,0),(0,0,-1),(1,-1,-1),(1,-1,0),(1,0,-1),(2,-1,-1),(2,-1,0),\\ (2,0,-1),(3,-1,-1) \end{array} $ | $\operatorname{vert}(\Delta), (-1, -1, -1)$          | _                             |
| 539063    | (-1, -1, 1), (-1, 0, 0), (-1, 0, 1), (-1, 0, 2), (-1, 1, 0), (-1, 1, 1), (-1, 2, 0), (-1, 3, -1), (0, -1, 0), (2, -1, -1)                                                                                 | vert( $\Delta$ ) \ {(0, 1, 0), (1, 1, 2)}, (1, 1, 1) | 1                             |
| 539304    | (-1, 0, 0), (-1, 0, 1), (-1, 0, 2), (-1, 1, 0), (-1, 1, 1), (-1, 2, 0), (-1, 2, 1), (-1, 3, 0), (0, 1, -1), (0, 1, 0), (2, -2, -1)                                                                        | $vert(\Delta), (-2, -1, -1)$                         | 1                             |
| 539313    | (-2, -1, -1), (-1, 0, 0), (-1, 2, -1), (0, 1, 0), (1, -1, 1), (1, 1, 0), (1, 2, 0), (2, 0, 1), (2, 3, 0), (3, 0, 1), (3, 1, 1), (4, 2, 1), (5, 0, 2), (6, 1, 2)                                           | $vert(\Delta), (-1, 1, 2)$                           | 1                             |
| 540602    | (-2, -1, -1), (-1, 0, 0), (-1, 2, -1), (-1, 3, -1), (0, 1, 0), (0, 4, -1), (1, -1, 1), (1, 1, 0), (1, 2, 0), (2, 0, 1), (2, 3, 0), (3, 0, 1), (3, 1, 1), (4, 2, 1), (5, 0, 2), (6, 1, 2)                  | $vert(\Delta), (-1, 1, 2)$                           | 1                             |
| 540663    | (-1, -1, 1), (-1, -1, 2), (-1, 0, 0), (-1, 0, 1), (-1, 0, 2), (-1, 1, 0), (-1, 1, 1), (-1, 2, -1), (-1, 2, 0), (-1, 2, 1), (0, -1, 0), (0, -1, 1), (2, -2, -1)                                            | $vert(\Delta), (-1, 0, -1)$                          | 1                             |
| 474457    | (-2, 1, 2), (-1, -1, 0), (-1, 0, 0), (-1, 1, 0), (-1, 2, 0), (1, -1, -1), (1, 0, -1), (2, -1, -1)                                                                                                         | $\operatorname{vert}(\Delta)$                        | 1                             |
| 481575    | (-1, -1, 1), (-1, 0, 1), (-1, 1, 0), (-1, 2, 0), (-1, 3, -1), (0, -1, 1), (0, 1, 0), (2, -2, -1)                                                                                                          | vert( $\Delta$ ), (-1, -1, -1)                       | 1                             |
| 483109    | (-1, -1, 1), (0, -1, 0), (0, -1, 1), (0, 2, -1), (1, -1, -1), (1, -1, 0), (1, -1, 1), (1, 0, -2), (1, 0, -1), (1, 0, 0), (1, 0, 1)                                                                        | $vert(\Delta)$                                       | 1                             |
|           |                                                                                                                                                                                                           |                                                      | (continued)                   |

| (continue |  |
|-----------|--|
| Table 2.9 |  |

| Table 2.9 | (continued)                                                                                                                                                                                                               |                                                    |                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------------------------------|
| D         | $( \Delta H )$                                                                                                                                                                                                            | $\operatorname{vert}(\Delta^{\operatorname{can}})$ | $ \pi_1(\mathcal{S}_\Delta) $ |
| 490478    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | vert(Δ)                                            | -                             |
| 490481    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | vert( $\Delta$ )                                   | 1                             |
| 490485    | (-1,0,0), (-1,0,1), (-1,0,2), (-1,1,0), (-1,1,1), (-1,2,0), (-1,2,1), (0,1,-1), (0,1,0), (2,-2,-1)                                                                                                                        | vert(Δ)                                            | 1                             |
| 490511    | $\left(-1,-1,2),(-1,0,1),(-1,1,0),(-1,1,1),(-1,2,0),(-1,3,0),(0,-1,0),(0,1,-1),(2,-2,-1)\right)$                                                                                                                          | $vert(\Delta), (2, 1, 2)$                          | 1                             |
| 495687    | $ \begin{array}{l} (-2,-1,-1),(-1,0,0),(-1,2,-1),(-1,3,-1),(0,1,0),(0,4,-1),(1,-1,1),(1,1,0), \\ (1,2,0),(2,0,1),(2,3,0),(3,0,1),(3,1,1),(4,2,1) \end{array} $                                                            | vert( $\Delta$ )                                   | 1                             |
| 499287    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | $vert(\Delta), (-1, -1, -1)$                       |                               |
| 499291    | $ \begin{array}{l} (-2,1,1), (-1,-1,-1), (-1,-1,0), (-1,-1,1), (-1,0,-1), (-1,0,0), (-1,1,-1), \\ (0,-1,-1), (0,-1,0), (0,0,-1), (1,-1,-1), (1,-1,0), (1,0,-1), (2,-1,-1), \\ (2,-1,0), (2,0,-1), (3,-1,-1) \end{array} $ | vert(\Delta)                                       | -                             |
| 499470    | $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                   | vert(\Delta)                                       | 1                             |
|           |                                                                                                                                                                                                                           |                                                    | (continued)                   |

| inue  |  |
|-------|--|
| (cont |  |
| 5.0   |  |
| ble   |  |
| 3     |  |

| Table 2.9 | (continued)                                                                                                                                                                                         |                      |                               |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------|
| Ð         | supp $(\Delta^{\mathrm{H}})$                                                                                                                                                                        | $vert(\Delta^{can})$ | $ \pi_1(\mathcal{S}_\Delta) $ |
| 501298    | (-2, -2, -1), (-1, -1, 0), (-1, 0, 1), (-1, 2, 2), (0, -1, 0), (0, 1, 1), (1, -1, -1), (1, 0, 0), (1, 2, 1), (2, -1, -1), (2, 1, 0), (3, -1, -2), (3, 0, -1), (4, -1, -2), (5, 0, -2), (6, -1, -3)) | vert(\Delta)         | _                             |
| 501330    | (-1, -1, 1), (-1, -1, 2), (-1, 0, 0), (-1, 0, 1), (-1, 1, 0), (-1, 1, 1), (-1, 2, -1), (-1, 2, 0), (-1, 3, -1), (-1, 3, 0), (0, -1, 0), (0, 1, -1), (2, -2, -1)                                     | vert(\Delta)         | _                             |
| 354912    | (-1, -1, 2), (-1, 0, 1), (-1, 1, 1), (-1, 2, 0), (-1, 3, 0), (0, -1, 0), (0, 1, -1), (2, -2, -1)                                                                                                    | vert( $\Delta$ )     | 1                             |
| 372528    | (-1, 0, 1), (-1, 0, 2), (-1, 1, 0), (-1, 1, 1), (-1, 2, -1), (-1, 2, 0), (0, -1, 0), (0, -1, 1), (0, -1, 2), (2, -2, -1)                                                                            | vert( $\Delta$ )     | -                             |
| 372973    | (-1,-1,2),(-1,0,1),(-1,1,0),(-1,1,1),(-1,2,0),(-1,3,0),(0,-1,0),(0,1,-1),(2,-2,-1)                                                                                                                  | $vert(\Delta)$       | 1                             |
| 388701    | (-2, 1, 1), (-1, -1), (-1, 0, 0), (-1, 1, -1), (0, -1, 0), (0, 0, -1), (1, -1, -1), (1, -1, 0), (1, 0, -1), (2, -1, -1), (2, -1, 0), (2, 0, -1), (3, -1, -1)                                        | $vert(\Delta)$       | 1                             |
|           |                                                                                                                                                                                                     |                      |                               |

| 5          |
|------------|
| ō          |
| -          |
| =          |
| .=         |
| 4          |
| п          |
| 0          |
| 0          |
|            |
| $\sim$     |
| $\sim$     |
| $\tilde{}$ |
| ٠<br>و     |
| .)<br>0.2  |
| .2.9       |
| e 2.9 (    |
| ole 2.9 (  |
| ble 2.9 (  |
| able 2.9 ( |

Then  $(\Delta')^{\text{FI}}$  is the 3-dimensional rational simplex

 $conv\{(3, 1, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 1, 2)\}$ 

and  $(\Delta')^{\mathrm{FI}} \cap M = \{(1, 1, 2, 1)\}.$ 

The canonical Fano 3-tope  $\Delta'$  is the Newton polytope of the  $\mu_4$ -cyclic quotient  $\overline{Z}_{\Delta'}$  of the projective surface of degree 8 defined by the polynomial  $z_1^8 + z_2^8 + z_3^4 + z_4^4 = 0$  in the weighted projective space  $\mathbb{P}(1, 1, 2, 2)$ , where the cyclic group  $\mu_4$  acts via  $(z_1 : z_2 : z_3 : z_4) \mapsto (z_1 : i^3 z_2 : i z_3 : i^3 z_4)$ . The single interior lattice point in this lattice simplex  $\Delta'$  corresponds to the monomial  $z_1 z_2 z_3^2 z_4$ . The projective surface  $\overline{Z}_{\Delta'}$  has two Gorenstein cyclic quotient singularities of type  $A_3$ . The minimal desingularization  $S_{\Delta'}$  of  $\overline{Z}_{\Delta'}$  is a surface of general type with  $K^2 = 2$  and fundamental group  $\pi_1(S_{\Delta})$  of order 2.

One can identify  $\Delta'$  with the canonical Fano 3-simplex  $\Delta$  given as the convex hull of

$$v_1 := (-3, -2, -2), v_2 := (1, 0, 0), v_3 := (1, 3, 1), and v_4 := (1, 1, 3)$$

(ID 547465, Fig. 2.6b, Tables 2.7, 2.8, and 2.9). The primitive inward-pointing facet normals of the facets  $\theta_{123}$ ,  $\theta_{124}$ ,  $\theta_{234}$ ,  $\theta_{134} \leq \Delta$  of this simplex  $\Delta$  are

$$n_1 := (-1, -1, 3), n_2 := (-1, 3, -1), n_3 := (-1, 0, 0), and n_4 := (2, -1, -1),$$

respectively. They satisfy the relation

$$n_1 + n_2 + 2n_3 + 2n_4 = 0.$$

To compute the canonical hull  $\Delta^{\text{can}}$  of  $\Delta$ , we obtain  $\text{supp}(\Delta^{\text{FI}}) = \{s_i \mid 1 \le i \le 9\}$  with  $s_1 := (-1, -1, 3), s_2 := (-1, 0, 0), s_3 := (-1, 0, 1), s_4 := (-1, 0, 2), s_5 := (-1, 1, 0), s_6 := (-1, 1, 1), s_7 := (-1, 2, 0), s_8 := (-1, 3, -1), \text{ and } s_9 := (2, -1, -1),$  which leads to  $\Delta^{\text{can}} = \Delta$ .

**Remark 37** Information about all 49 canonical Fano 3-topes with dim $(\Delta^{FI}) = 3$  can be found in Tables 2.7, 2.8, and 2.9.

#### 2.7 Hollow 3-Topes with Non-empty Fine Interior

A lattice polytope  $\Delta \subseteq M_{\mathbb{Q}}$  is called *hollow* if it has no interior lattice points in its relative interior, i.e.,  $\Delta^{\circ} \cap M = \emptyset$ . By [25, Theorem 1.3], any 3-dimensional hollow lattice polytope can be projected to the unimodular 1-simplex, to the double unimodular 2-simplex, or is an exceptional hollow 3-tope, whereas up to unimodular transformation there exist only a finite number of these. This theorem implies that a hollow 3-tope with non-empty Fine interior has to be exceptional because the

unimodular 1-simplex and the double unimodular 2-simplex have empty Fine interior. Treutlein has found 9 maximal exceptional hollow polytopes, which was not an complete list. Averkov et al. [1, 2] have found the complete list consisting of 12 maximal exceptional hollow 3-topes  $\Delta_i$  ( $1 \le i \le 12$ ) (Table 2.10, Fig. 2.7). Computations show that exactly 9 of 12 maximal exceptional hollow 3-topes  $\Delta_i$  have non-empty Fine interior  $\Delta_i^{FI}$  (Table 2.10). Moreover, no one of these 9 polytopes contains a proper lattice 3-subpolytope with non-empty Fine interior. Thus, there exist exactly 9 hollow 3-topes  $\Delta_i$  with non-empty Fine interior  $\Delta_i^{FI}$ .

It is remarkable that all minimal surfaces  $S_{\Delta_i}$  corresponding to these 9 hollow 3topes  $\Delta_i$  have non-trivial fundamental group  $\pi_1(S_{\Delta})$  of order 2, 3, or 5 (Table 2.10). There exist exactly 5 hollow 3-topes  $\Delta_i$  with 0-dimensional Fine interior  $\Delta_i^{\text{FI}} = \{R\}$ , where  $R \in \frac{1}{2}M \setminus M$  is a rational point (Table 2.10). The normal fans  $\Sigma^{\Delta_i}$  of these 5 hollow polytopes  $\Delta_i$  define 5 toric Fano threefolds  $X_{\Sigma^{\Delta_i}}$  with at worst canonical singularities (Table 2.11). These Fano threefolds can be obtained as quotients of Gorenstein toric Fano threefolds  $X_{\Sigma_{\Delta_i''}}$  in the following 5 ways:

1.  $\mathbb{P}(1, 1, 2, 4)$  with a  $\mu_2$ -action given by

$$(x_0, x_1, x_2, x_3) \mapsto (x_0, -x_1, -x_2, -x_3);$$

2.  $\mathbb{P}^3$  with a  $\mu_4$ -action given by

$$(x_0, x_1, x_2, x_3) \mapsto (x_0, ix_1, -x_2, -ix_3);$$

3.  $\{x_1x_2 - x_3x_4 = 0\} \subseteq \mathbb{P}(2, 1, 1, 1, 1)$  with a  $\mu_2$ -action given by

$$(x_0, x_1, x_2, x_3, x_4) \mapsto (-x_0, -x_1, -x_2, x_3, x_4);$$

4.  $\mathbb{P}^1 \times \mathbb{P}(1, 1, 2)$  with a  $\mu_2$ -action given by

$$(x_0, x_1, y_0, y_1, y_2) \mapsto (x_0, -x_1, y_0, -y_1, -y_2);$$

5.  $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$  with a  $\mu_2$ -action given by

$$(x_0, x_1, y_0, y_1, z_0, z_1) \mapsto (x_0, -x_1, y_0, -y_1, z_0, -z_1).$$

In addition, Table 2.12 contains the support supp $(\Delta_i^{\text{FI}})$  of the Fine interior  $\Delta_i^{\text{FI}}$  and the vertices of the canonical hull  $\Delta_i^{\text{can}}$  for all 9 hollow polytopes  $\Delta_i$  with non-empty Fine interior  $\Delta_i^{\text{FI}}$ .

Acknowledgements AK is supported by EPSRC Fellowship EP/N022513/1, *The Combinatorics of Mirror Symmetry*. The computations that underpin this work were performed on the Imperial College London HPC cluster. We thank Andy Thomas, Matt Harvey, and the Imperial College Research Computing Service team for invaluable technical assistance.

| <b>Tabl</b><br>dime | <b>2.10 12 Maximal Hollow 3-topes.</b> Table contansion dim $(\Delta_i^{\text{FI}})$ of Fine interior $\Delta_i^{\text{FI}}$ , vertices vert $(A_i^{\text{FI}})$ | ains: inde<br>$\Delta_i^{\rm FI}$ ) of $\Delta$ | x <i>i</i> of the $\frac{H}{i}$ , and or | : maximal hollow 3-tope $\Delta_i$ , vertices vert( $\Delta_i$ ) of der of fundamental group $ \pi_1(S_\Delta) $ of the minimal 1 | $\Delta_i$ , lattice width w( $\Delta_i$ ) of $\Delta_i$ , nodel $S_{\Delta_i}$ |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| <i>i</i>            | $\operatorname{vert}(\Delta_i)$                                                                                                                                  | $w(\Delta_i)$                                   | $\dim(\Delta_i^{\mathrm{FI}})$           | $vert(\Delta_i^{\mathrm{FI}})$                                                                                                    | $ \pi_1(\mathcal{S}_\Delta) $                                                   |
| -                   | (0, 0, 0), (6, 0, 0), (3, 3, 0), (4, 0, 2)                                                                                                                       | 2                                               | -1                                       | Ø                                                                                                                                 | 1                                                                               |
| 5                   | (0, 0, 0), (4, 0, 0), (0, 4, 0), (2, 0, 2)                                                                                                                       | 2                                               | -1                                       | Ø                                                                                                                                 | 1                                                                               |
| ŝ                   | (0, 0, 0), (3, 0, 0), (0, 3, 0), (3, 0, 3)                                                                                                                       | 3                                               | -1                                       | Ø                                                                                                                                 | 1                                                                               |
| 4                   | (0, 0, 0), (4, 0, 0), (2, 4, 0), (3, 0, 2)                                                                                                                       | 2                                               | 0                                        | $1/2 \cdot (5, 1, 2)$                                                                                                             | 2                                                                               |
| s                   | (0, 0, 0), (2, 2, 0), (1, 1, 2), (3, -1, 2)                                                                                                                      | 2                                               | 0                                        | $1/2 \cdot (3, 1, 2)$                                                                                                             | 2                                                                               |
| 9                   | (0, 0, 0), (2, 2, 0), (4, 0, 0), (2, -2, 0), (3, 1, 2)                                                                                                           | 2                                               | 0                                        | $1/2 \cdot (5, 1, 2)$                                                                                                             | 2                                                                               |
| 7                   | (0, 0, 0), (1, 1, 0), (2, -2, 0), (3, -1, 0), (1, -1, 2), (2, 0, 2)                                                                                              | 2                                               | 0                                        | $1/2 \cdot (3, -1, 2)$                                                                                                            | 2                                                                               |
| ×                   | $ \begin{array}{l} (0,0,0),(1,1,0),(1,-1,0),(2,0,0),(1,-1,2),(2,0,2),\\ (2,-2,2),(3,-1,2) \end{array} $                                                          | 2                                               | 0                                        | $1/2 \cdot (3, -1, 2)$                                                                                                            | 2                                                                               |
| 6                   | (0, 0, 0), (3, 0, 0), (1, 3, 0), (2, 0, 3)                                                                                                                       | 3                                               | 1                                        | (4/3, 1, 1), (5/3, 1, 1)                                                                                                          | 3                                                                               |
| 10                  | (0, 0, 0), (1, 2, 0), (1, -1, 0), (3, 0, 0), (2, 1, 3)                                                                                                           | 3                                               | 1                                        | (4/3, 2/3, 1), (5/3, 1/3, 1)                                                                                                      | 3                                                                               |
| 11                  | (0, 0, 0), (1, 1, 0), (3, 0, 0), (2, -1, 0), (4, 1, 3), (2, 2, 3)                                                                                                | 3                                               | 1                                        | (5/3, 2/3, 1), (7/3, 1/3, 1)                                                                                                      | 3                                                                               |
| 12                  | (-1, 0, 0), (0, 1, -2), (1, 2, 1), (2, -2, -1)                                                                                                                   | n                                               | ε                                        | (1/5, 1/5, -2/5), (2/5, 2/5, -4/5), (3/5, 3/5, -1/5), (4/5, -1/5, -3/5)                                                           | 5                                                                               |



Fig. 2.7 12 Maximal Hollow 3-topes. Shaded faces are occluded. The Fine interior is shown in grey with double borders around its vertices

| corr<br>usec<br>refe | esponding to $\Delta_i$ , ID of the canonical Fano 3-tope $\Delta'$ such to construct the Gorenstein toric Fano threefold $X_{\Sigma_{\Delta''}}$ to the corresponding Gorenstein toric Fano threefold | h that $\Sigma^{\Delta_i} \cong \Sigma_{\Delta}$<br>obtain the toric F<br>$X_{\Sigma_{\Delta''}}$ including t | $\iota$ , rays of the spanning fan $\Sigma_{\Delta'}$ , ID of the reflexive canonic<br>ano threefold $X_{\Sigma_{\Delta'}}$ with at worst canonical singularities as<br>the precise $\mu_2$ -action on Sect. 2.7 | al Fano 3<br>a µ2 quc   | -tope $\Delta''$ otient, and |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|
| .~                   | $\Sigma^{\Delta_i}(1)$                                                                                                                                                                                 | ID(∆')                                                                                                        | $\Sigma_{\Delta'}(1)$                                                                                                                                                                                            | $\mathrm{ID}(\Delta'')$ | $X_{\Sigma_{\Delta''}}$      |
| 4                    | (2, -1, -3), (0, 0, 1), (0, 1, 0), (-2, -1, -1)                                                                                                                                                        | 547354                                                                                                        | (-2, -3, -5), (2, 1, 1), (0, 1, 0), (0, 0, 1)                                                                                                                                                                    | 547363                  | (i)                          |
| 2                    | (1, -1, 0), (1, 1, -1), (-1, 1, 2), (-1, -1, -1)                                                                                                                                                       | 547364                                                                                                        | (0, 0, 1), (0, 2, 1), (2, 1, 0), (-2, -3, -2)                                                                                                                                                                    | 547367                  | (ii)                         |
| 9                    | (0, 0, 1), (1, 1, -2), (1, -1, -1), (-1, -1, 0), (-1, 1, -1)                                                                                                                                           | 544353                                                                                                        | (1, 0, 0), (0, 1, 0), (-2, -1, 0), (1, 1, 2), (-3, -1, -2)                                                                                                                                                       | 544357                  | (iii)                        |
| -                    | (0, 0, 1), (-1, 1, -1), (1, -1, -1), (1, 1, 0), (-1, -1, 0)                                                                                                                                            | 544310                                                                                                        | (-1, -1, -2), (1, 1, 2), (-2, -1, 0), (0, 1, 0), (1, 0, 0)                                                                                                                                                       | 544342                  | (iv)                         |
| ~                    | (-1, 1, 1), (0, 0, -1), (-1, -1, 0), (1, 1, 0), (1, -1, -1), (0, 0, 1)                                                                                                                                 | 520134                                                                                                        | (1, 0, 0), (0, 1, 0), (1, 1, 2), (-1, 0, 0), (0, -1, 0),                                                                                                                                                         | 520140                  | (v)                          |
|                      |                                                                                                                                                                                                        |                                                                                                               | (-1, -1, -2)                                                                                                                                                                                                     |                         |                              |

Table 2.11 5 Hollow 3-topes with 0-dimensional Fine Interior. Table contains: index i of the maximal hollow 3-tope  $\Delta_i$ , rays of the normal fan  $\Sigma^{\Delta_i}$ 

|    | -i                                                                       |                                                      |
|----|--------------------------------------------------------------------------|------------------------------------------------------|
| i  | $\operatorname{supp}(\Delta_i^{\operatorname{FI}})$                      | $\operatorname{vert}(\Delta_i^{\operatorname{can}})$ |
| 4  | (-2, -1, -1), (0, -1, -2), (2, -1, -3), (0, 0, 1), (0, 0, -1), (0, 1, 0) | $\operatorname{vert}(\Delta_i)$                      |
| 5  | (1, -1, 0), (1, 1, -1), (0, 0, 1), (0, 0, -1), (-1, -1, -1), (-1, 1, 2)  | $\operatorname{vert}(\Delta_i)$                      |
| 6  | (1, 1, -2), (1, -1, -1), (-1, -1, 0), (-1, 1, -1), (0, 0, 1), (0, 0, -1) | $\operatorname{vert}(\Delta_i)$                      |
| 7  | (1, 1, 0), (1, -1, -1), (-1, -1, 0), (-1, 1, -1), (0, 0, 1), (0, 0, -1)  | $\operatorname{vert}(\Delta_i)$                      |
| 8  | (1, 1, 0), (1, -1, -1), (-1, -1, 0), (0, 0, 1), (0, 0, -1), (-1, 1, 1)   | $\operatorname{vert}(\Delta_i)$                      |
| 9  | (0, -1, -1), (0, 0, 1), (3, -1, -2), (0, 1, 0), (-3, -2, -1)             | $\operatorname{vert}(\Delta_i)$                      |
| 10 | (-1, 2, -1), (1, 1, -1), (-1, -1, 0), (2, -1, -1), (0, 0, 1)             | $\operatorname{vert}(\Delta_i)$                      |
| 11 | (1, -1, 0), (0, 0, 1), (-1, -2, 1), (-1, 1, 0), (1, 2, -2)               | $\operatorname{vert}(\Delta_i)$                      |
| 12 | (1, 1, 1), (1, -1, 0), (-2, -1, 1), (0, 1, -2)                           | $\operatorname{vert}(\Delta_i)$                      |

**Table 2.12 9 Hollow 3-topes with Non-empty Fine Interior**. Table contains: index *i* of the maximal hollow 3-tope  $\Delta_i$ , support supp $(\Delta_i^{\text{FI}})$  of  $\Delta_i^{\text{FI}}$ , and vertices  $\text{vert}(\Delta_i^{\text{can}})$  of the canonical hull  $\Delta_i^{\text{can}}$ 

#### References

- Averkov, G., Krümpelmann, J., Weltge, S.: Notions of maximality for integral lattice-free polyhedra: the case of dimension three. Math. Oper. Res. 42(4), 1035–1062 (2017)
- 2. Averkov, G., Wagner, C., Weismantel, R.: Maximal lattice-free polyhedra: finiteness and an explicit description in dimension three. Math. Oper. Res. **36**(4), 721–742 (2011)
- Batyrev, V.: The stringy Euler number of Calabi-Yau hypersurfaces in toric varieties and the Mavlyutov duality. Pure Appl. Math. Q. 13(1), 1–47 (2017)
- Batyrev, V., Kreuzer, M.: Integral cohomology and mirror symmetry for Calabi-Yau 3-folds. In: Mirror symmetry. V, AMS/IP Studies in Advanced Mathematics, vol. 38, pp. 255–270. American Mathematical Society, Providence, RI (2006)
- Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3(3), 493–535 (1994)
- Beck, M., Robins, S.: Computing the continuous discretely. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (2015). Integer-point enumeration in polyhedra, With illustrations by David Austin
- Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The User Language, pp. 235–265 (1997). Computational algebra and number theory (London, 1993)
- 8. Brown, G., Kasprzyk, A.M.: Graded Ring Database. http://www.grdb.co.uk
- 9. Catanese, F.: Surfaces with  $K^2 = p_g = 1$  and their period mapping. In: Algebraic Geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978). Lecture Notes in Mathematics, vol. 732, pp. 1–29. Springer, Berlin (1979)
- 10. Catanese, F., Debarre, O.: Surfaces with  $K^2 = 2$ ,  $p_g = 1$ , q = 0. J. Reine Angew. Math. **395**, 1–55 (1989)
- Corti, A., Golyshev, V.: Hypergeometric equations and weighted projective spaces. Sci. China Math. 54(8), 1577–1590 (2011)
- Danilov, V.I., Khovanskiĭ, A.G.: Newton polyhedra and an algorithm for calculating Hodge-Deligne numbers. Izv. Akad. Nauk SSSR Ser. Mat. 50(5), 925–945 (1986)
- Fine, J.: Resolution and completion of algebraic varieties. Ph.D. thesis, University of Warwick (1983)
- Hovanskiĭ, A.G.: Newton polyhedra, and the genus of complete intersections. Funktsional. Anal. i Prilozhen. 12(1), 51–61 (1978)
- Ishii, S.: The minimal model theorem for divisors of toric varieties. Tohoku Math. J. 51(2), 213–226 (1999)
- 16. Kasprzyk, A.M.: Canonical toric Fano threefolds. Canad. J. Math. 62(6), 1293-1309 (2010)

- 2 On the Fine Interior of Three-Dimensional ...
- Kreuzer, M., Skarke, H.: Classification of reflexive polyhedra in three dimensions. Adv. Theor. Math. Phys. 2(4), 853–871 (1998)
- Kreuzer, M., Skarke, H.: Complete classification of reflexive polyhedra in four dimensions. Adv. Theor. Math. Phys. 4(6), 1209–1230 (2000)
- Kynev, V.I.: An example of a simply connected surface of general type for which the local Torelli theorem does not hold. C. R. Acad. Bulgare Sci. 30(3), 323–325 (1977)
- Reid, M.: Young person's guide to canonical singularities. In: Algebraic Geometry, Bowdoin, 1985 (Brunswick, Maine, 1985), Proceedings of Symposia in Pure Mathematics, vol. 46, pp. 345–414. American Mathematical Societ, Providence, RI (1987)
- Skarke, H.: Weight systems for toric Calabi-Yau varieties and reflexivity of Newton polyhedra. Modern Phys. Lett. A 11(20), 1637–1652 (1996)
- 22. Stanley, R.P.: Decompositions of rational convex polytopes. Ann. Discrete Math. 6, 333–342 (1980)
- 23. Todorov, A.N.: Surfaces of general type with  $p_g = 1$  and (K, K) = 1. I. Ann. Sci. École Norm. Sup. **13**(1, 4), 1–21 (1980)
- 24. Todorov, A.N.: A construction of surfaces with  $p_g = 1$ , q = 0 and  $2 \le (K^2) \le 8$ . Counterexamples of the global Torelli theorem. Invent. Math. **63**(2), 287–304 (1981)
- Treutlein, J.: 3-dimensional lattice polytopes without interior lattice points. Ph.D. thesis, Eberhart Karls Universität Tübingen (2010)