
Chapter 16
Orbit Spaces of Maximal Torus Actions
on Oriented Grassmannians of Planes

Hendrik Süß

Abstract Motivated by Buchstaber’s and Terzić’s work on the complex Grassman-
nians GC(2, 4) and GC(2, 5) we describe the moment map and the orbit space of
the oriented Grassmannians G+

R
(2, n) under the action of a maximal compact torus.

Our main tool is the realisation of these oriented Grassmannians as smooth complex
quadric hypersurfaces and the relatively simple Geometric Invariant Theory of the
corresponding algebraic torus action.
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16.1 Introduction

We denote an algebraic torus (C∗)k by TC and the corresponding compact torus
(S1)k ⊂ TC by T . A complex algebraic variety with a TC-action is called a TC-
variety. The complexity of a TC-variety is the minimal (complex) codimension of an
orbit. In this paper we study the T -orbit spaces of projective TC-varieties and apply
our findings to the case of oriented Grassmannians of planes and that of smooth TC-
varieties of complexity 1. Our main goal is to determine the corresponding T -orbit
spaces up to homeomorphism.

We consider the GrassmannianG+
R
(2, n) parametrising oriented planes inR

2 with
the natural action of a maximal torus in SOn . Our main result determines the orbit
space of this action.

Theorem 1 The orbit space G+
R
(2, n)/T is homeomorphic to the join

S�n/2�−1 ∗ P
�n/2�−2
C

.
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For smooth varieties with a torus action of complexity 1 we derive the following
general results on the structure of their orbit spaces.

Theorem 2 Consider a smooth projective TC-variety X of complexity 1. Then the
corresponding orbit space X/T is a topological manifold with boundary.

Theorem 3 Consider a smooth projective TC-variety X of complexity 1 with only
finitely many lower dimensional TC-orbits. Then the orbit space X/T is homeomor-
phic to a sphere.

Note that results comparable to Theorem2 have been proved by Ayzenberg [3]
and Cherepanov [8], Theorem3 has been proved independently, but using similar
methods, by Karshon and Tolman [15]. Their work covers the more general setting
of symplectic manifolds with Hamiltonian torus actions. In their paper they also
prove Theorem1 for the cases of complexity 1, i.e. for n = 5, 6.

Our main tool is Geometric Invariant Theory (GIT) and its symplectic coun-
terpart in combination with the Kempf–Ness Theorem. This approach suggest to
stratify the manifold and eventually the orbit space via a polyhedral subdivision of
the momentum polytope, which encodes the variation of GIT quotients. In general
these stratifications can become arbitrarily complicated. However, in the cases con-
sidered in this paper they turn out to be almost trivial allowing us to derive concrete
results about the orbits spaces.

In Sect. 16.2 we fix our setting for compact torus actions induced by algebraic
torus actions on complex varieties and recall crucial results fromGeometric Invariant
Theory. Moreover, we derive first results on the structure of orbits spaces in suitable
situations. We then apply these to the special cases of oriented Grassmannians of
planes in Sect. 16.3 and TC-varieties of complexity 1 in Sect. 16.4.

In order to distinguish between the algebraic and the topological category, we are
going to denote isomorphism of algebraic varieties by ∼= and homeomorphisms of
topological spaces by ≈.

16.2 TC-Varieties and Their T -Orbit Spaces

Fix a linearised action of an algebraic torus TC = (C∗)k on P
N
C

with weights
u0, . . . , uN ∈ Z

k , i.e. for t = (t1, . . . , tk) ∈ TC we have

t.(z0 : . . . : zN ) = (tu0 z1 : . . . : tuN zN ),

where tu j := t
(u j )1
1 · · · t (u j )k

k . Then a moment map of this action is given by

ν : P
N
C

→ R
k; (z0 : . . . zN ) �→

∑
j |z j |2u j

∑
j |z j |2

.
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For an embedded projective variety X ⊂ P
N
C
, which is invariant under under this torus

action, a moment map of the induced torus action on X is given by the restrictionμ =
ν|X . The moment image P = μ(X) is known to be a convex polytope [2, 11]. We
start with some notions known as variation ofGIT quotients with [9, 12, 16] being the
most relevant references. For a point x ∈ X themoment image�(x) = μ(TC.x) ⊂ P
of its orbit closure is again a polytope and the orbit TC.x is mapped to the relative
interior �◦(x) ⊂ �(x).

For a point u ∈ P we define

X ss(u) = {x ∈ X | u ∈ �(x)}, Xps(u) = {x ∈ X | u ∈ �◦(x)}.

Hence, X ss(u) consists of those points in X whose orbit closures intersect μ−1(u)

and Xps(u) consists of those pointswhose orbits intersectμ−1(u). Equivalenty Xps(u)

is the union of closed TC-orbits in X ss(u).
Now for every u ∈ P we may consider

λ(u) =
⋂

x,u∈�(x)

�(x); λ◦(u) =
⋂

x,u∈�◦(x)

�◦(x)

Since only finitely many polytopes occur as moment images of orbit closures their
intersections are again polytopes. We denote the set of all these polytopes λ(u) by�.
This set is partially ordered by the face relation ≺. The polytopes λ ∈ � form a
polyhedral subdivision of P and one obtains a stratification of P via their relative
interiors.

P =
⊔

λ∈�

λ◦.

For u ∈ P let us denote by λ(u) the unique element of λ ∈ � such that u ∈ λ◦.
From the definitions above it follows that X ss(u) = X ss(v) if and only if λ(u) =

λ(v), i.e. u and v are contained in the relative interior of the same element of�. In this
case also Xps(u) = Xps(v) holds. Hence, we may define X ss

λ = X ss(u) and Xps
λ =

Xps(u) for u ∈ λ◦.

Example 4 We consider the linear T = C
∗-action on P

2
C
given by t.(x : y : z) =

(t x : t−1y : z). Then the moment map is given by μ(x : y : z) = |x |2−|y|2
|x |2+|y|2+|z|2 . We

get P = μ(P2) = [−1, 1] ⊂ R. The orbits can be described as follows. We have the
fixed points (1 : 0 : 0), (0 : 1 : 0) and (0 : 0 : 1) with moment images 1, −1 and 0,
respectively. The moment images of the other TC-orbits are

μ(T .(1 : 0 : 1)) = (0, 1) ⊂ R,

μ(T .(0 : 1 : 1)) = (−1, 0) ⊂ R,

μ(T .(1 : 1 : 0)) = (−1, 1) ⊂ R,

μ(T .(α : 1 : 1)) = (−1, 1) ⊂ R, α ∈ C
∗.
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Hence, in this case � is obtained by subdividing the interval [−1, 1] at the point 0,
or more formally � = {[−1, 0], [0, 1], {−1}, {0}, {1}}.

By the Kempf–Ness Theorem for rational values of u the definition of X ss(u)

coincides with the semi-stable locus of Mumford’s Geometric Invariant Theory.
Hence, there exists a categorical quotient morphism qλ : X ss

λ → Yλ = X ss
λ //TC where

Yλ is an orbit space for the TC-action on Xps
λ and the corresponding quotient map is

given by the restriction of qλ to Xps
λ . The occurring quotients Yu have the expected

dimension for u ∈ P◦, but can be lower-dimensional for elements u ∈ ∂P . By [17,
Lemma7.2] for u ∈ λ◦ every TC-orbit in X

ps
λ intersectsμ−1(u) in exactly one T -orbit.

Hence, the restriction of qλ to μ−1(u) induces a homeomorphisms between Yλ =
X ss

λ //TC and the topological orbit spaceμ−1(u)/T . Moreover the inclusion Xλ ⊂ Xγ

for γ ≺ λ induces contraction morphisms on the level of quotients pγ λ : Yλ → Yγ

forming an inverse system.

Example 5 When dim X = dim TC, i.e. if the variety is toric, then the moment
image P completely determines the variety. The moment images �(x) of TC-orbit
closures are just the faces of the polytope P and the stratification of P is the decom-
position of P into the relative interiors of its faces. The preimage μ−1(u) consists
of exactly on T -orbit with dimension equal to dimension of the face containing u
in its interior. Consequently X/T ≈ P with μ coinciding with the quotient map.
Alternatively, we may apply Proposition12 below and obtain X/T ≈ Sk−1 ∗ {pt} ≈
Dk ≈ P .

Example 6 Consider a projective toric variety X corresponding to a polytope Q ⊂
R

d . Then the inclusion of a k-dimensional subtorus TC′ ⊂ TC induces a surjec-
tion F : R

d → R
k .Given amomentmapμ for theTC-action a correspondingmoment

map μ′ : X → R
k is given by μ′ = F ◦ μ. Hence, the moment image for the TC′-

action is P := F(Q) and the stratification of P is induced by the images of the
faces of Q. More precisely, the stratification consists of the relative interiors of the
polytopes

λ(u) =
⋂

τ≺Q, u∈F(τ )

F(τ ).

Moreover, the GIT quotients X ss(u)//TC
′ are again toric varieties corresponding

to the polytope F−1(u) ∩ Q, see [13, Proposition 3.5].

Already in [10] it has been observed that orbit space of the T -action on X can be
constructed out of the inverse system of GIT quotients.

Theorem 7 ([10, Sect. 5]) We have

X/T ≈
(

⊔

λ∈�

λ × Yλ

)

/∼,

where (u, y) ∼ (u, y′) if (u, y) ∈ γ × Yγ , (u, y′) ∈ λ × Yλ with γ ≺ λ and pγ λ(y′)
= y.
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We easily derive the following result, which turns out to be a little bit handier in
some situations.

Corollary 8 Assume that we have a compact topological space Y and with proper
surjective maps rλ : Y → Yλ being compatible with the inverse system above. Then
we have the following homeomorphism.

X/T ≈ (P × Y )/∼r .

Here, the equivalence relation is generated by

(u, y) ∼r (u, y′) ⇔ rλ(u)(y) = rλ(u)(y
′)

for u ∈ λ◦.

Proof There is a canonical map

P × Y →
(

⊔

λ∈�

λ × Yλ

)

/∼; (u, y) �→ [(u, rλ(u)(y)]

This map is surjective and continuous and identifies exactly those pairs which are
equivalent under ∼r . The quotient (P × Y )/∼r is compact as (P × Y ) is and by
Theorem7 the codomain of the map is homeomorphic to X/T , which is a Hausdorff
space. Hence, the induced continuous bijection (P × Y )/∼r → X/T is a homeo-
morphism. �

Remark 9 In [6, 7] such a Y is called a universal parameter space for the TC-obits.
In algebraic geometry a natural choice for such a dominating algebraic object Y
would be the inverse limit of the Yλ or the Chow quotient of X by TC, which can be
identified with a distinguished irreducible component of this inverse limit.

If the structure of the inverse system {Yλ}λ∈� of GIT quotients is complicated
Corollary8 might not give much concrete information about the orbit space X/T .
However, in certain situations this structure turns out to be almost trivial allowing us
to effectively calculate the orbit space.

Definition 10 We say the TC-action on X ⊂ P
N
C
has an almost trivial variation of

GIT if for λ �⊂ ∂P the quotients Yλ are all isomorphic to some Y .

Example 11 If the torus action has complexity one than the quotients Yλ are smooth
algebraic curves or just a point, where the latter happens at most over the boundary
of P . The only contraction morphisms here are isomorphisms or the contraction of
a curve to a point. Hence, the definition is automatically fulfilled.

Proposition 12 Consider a TC-action on X with almost trivial variation of GIT and
only finitely many lower-dimensional TC-orbits. Then X/T is homeomorphic to the
topological join Sk−1 ∗ Y .
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Proof Having an almost trivial variation of GIT means that Yλ
∼= Y for λ �⊂ ∂P .

On the other hand, having only finitely many lower-dimensional TC-orbits implies
that the moment fibre of a boundary point u ∈ ∂P consists of exactly one (lower-
dimensional) orbit and therefore Yλ(u) is just a point. Hence, by Corollary8 we have

X/T ≈ (P × Y )/∼∂ ,

where the equivalence relation∼∂ is generated by (u, y) ∼∂ (u, y′) for u ∈ ∂P . Now,
the claim follows from Lemma13 below. �

Lemma 13 Consider the closed unit disc Dk and the unit sphere Sk−1. Then for any
compact topological manifold Y we have

Sk−1 ∗ Y ≈ (Dk × Y )/∼∂ ,

where the equivalence relation ∼∂ is generated by (u, y) ∼∂ (u, y′) for u ∈ ∂Dk.

Proof Recall that the join Sk−1 ∗ Y is defined as (Sk−1 × Y × [0, 1])/∼, with
the equivalence relation being generated by (s, y, 0) ∼ (s ′, y, 0) and (s, y, 1) ∼
(s, y′, 1). Now the homeomorphism is given by

(Sk−1 × Y × [0, 1])/∼ −→ (Dk × Y )/∼∂ , [(u, y, t)] �→ [(tu, y)].

As a special case of Lemma13wemay consider the situation when Y ≈ Sm . Then
Lemma13 implies (Dk × Sm)/∼∂ ≈ Sk−1 ∗ Sm , which is known to be homeomor-
phic to Sm+k . The lemma below gives a slightly more general statement.

Lemma 14 For any closed H ⊂ R
k we have

((Dk ∩ H) × Sm)/∼∂ ≈ Sk+m ∩ (H × R
m)

where the equivalence relation ∼∂ is generated by (u, y) ∼∂ (u, y′) for u ∈ ∂Dk.

Proof We can state the homeomorphism explicitly

((Dk ∩ H) × Sm)/∼∂ → Sk+m ∩ H × R
m, [(u, y)] �→ (u,

√
1 − |u|2 · y).

For every (u, y) ∈ (∂Dk ∩ H) × Sm we have (u,
√
1 − |u|2 · y) = (u, 0). Hence,

the map is a well-defined continuous bijection from a compact space to a Hausdorff
space and, therefore a homeomorphism. �
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16.3 Oriented Grassmanians of Planes as TC-Varieties

We consider the smooth manifold G+
R
(2, n) parametrising oriented planes in R

n .
An oriented plane is given by an orthonormal basis (v1, v2). Another orthonormal
pair (v′

1, v
′
2) gives rise to the same oriented plane if and only if (v′

1, v
′
2) = (v1, v2)Qφ

with

Qφ =
(
cosφ − sin φ

sin φ cosφ

)

∈ SO2 .

Hence,
G+

R
(2, n) = {(v1, v2) ∈ R

n×2 | 〈vi , v j 〉 = δi j }/SO2 .

A (compact) torus action on G+
R
(2, n) is induced by the choice of a maximal torus

in SOn via its action on the pair (v1, v2). Amaximal torus T is given by block diagonal
matrices of the formdiag(Qφ1 , . . . , Qφk ) in the casen = 2k or diag(Qφ1 , . . . , Qφk , 1)
in the case n = 2k + 1. In the even-dimensional case the induced action on the
oriented planes is not effective as −I acts trivially. To obtain an effective action one
has to pass to the quotient T/〈±I 〉. However, this does not effect the orbit structure
of the action.

It is well-known that the oriented Grassmannian of planes can be identified with
the underlying smooth manifold of the complex smooth quadric Qn−2 in P

n−1
C

, see
e.g. [18, p. 280]. Indeed, the map

� : R
n×2 → C

n; (v1, v2) �→ w = v1 + i · v2

induces an embedding �̄ : G+
R
(2, n) ↪→ P

n
C
. This iswell-defined as�((v1, v2)Qφ) =

eiφ · �(v1, v2). Moreover the condition 〈v1, v2〉 = 0 is equivalent to �(
∑

j w
2
j ) = 0

and |v1|2/|v2|2 = 1 is equivalent to �(
∑

j w
2
j ) = 0. Hence, the image of the embed-

ding in P
n
C
is cut out by the equation

∑
j w

2
j = 0. A change of coordinates

z2 j−1 = w2 j−1 + i · w2 j ; z2 j = w2 j−1 − i · w2 j for j = 1, . . . , k

in the case n = 2k and additionally zn = wn in the case n = 2k + 1 leads to the
equivalent equation

k∑

j=1

z2 j−1z2 j = 0 (16.1)

or

z2n +
k∑

j=1

z2 j−1z2 j = 0, (16.2)

respectively. Now in these coordinates one easily checks that for an oriented
plane E ∈ G+

R
(2, n) with



342 H. Süß

�̄(E) = (z1 : . . . : zn)

we have

�̄(diag(Qφ1 , . . . , Qφk )E) = (
eiφ1 z1 : e−iφ1 z2 : . . . : eiφk z2k−1 : e−iφ1 z2k

)

in the case n = 2k and similarly

�̄(diag(Qφ1 , . . . , Qφk , 1)E) = (
eiφ1 z1 : e−iφ1 z2 : . . . : eiφk z2k−1 : e−iφ1 z2k : z2k+1

)

in the case n = 2k + 1. Let e j denote the j th canonical basis vector of Z
k . Then the

action of T = (S1)k above is induced by an algebraic torus action of TC = (C∗)k
with weights

deg(z2 j−1) = e j , deg(z2 j ) = −e j ; j = 1, . . . , k.

and deg(z2k+1) = 0 in the case n = 2k + 1.
We are now going to describe the GIT quotients in order to eventually construct

the orbit space using Corollary8. We only describe the case of even n = 2k in detail.
The situation for n odd is very similar.

The moment map is given by

μ(z1 : . . . : zn) = 1
∑n

i=1 |zi |2
k∑

j=1

(|z2 j−1|2 − |z2 j |2)e j . (16.3)

The moment image of X is the cross-polytope given as the convex hull of the
weights P = βk = conv(±e1, . . . ,±ek). The fixed point (1 : 0 : . . . : 0) is mapped
to e1, (0 : 1 : . . . : 0) to −e1 and similarly for the other coordinates.

Remark 15 The proper faces of the cross-polytope P are exactly the convex hulls of
subsets of {±e1, . . . ,±ek} where for every j at most one of e j and −e j is contained.

Lemma 16 The moment preimage of a boundary point u ∈ ∂P consists of exactly
one T -orbit. Hence, the quotient Yλ(u) is just a single point.

Proof It follows from Remark15 that a point (z1 : . . . : zn) ∈ X is mapped to the
boundary of P if and only if all the products z2 j−1z2 j vanish. Indeed, assume μ(z)
lies in the convex hull conv(σ1e1, . . . , σnen), where σi ∈ {−1, 1} for i = 1, . . . , n.
Then the coefficients of μ(z) in the corresponding barycentric coordinates are up to
sign the same coefficients as in (16.3). Hence, we must have that

∑k
j=1

∣
∣|z2 j−1|2 − |z2 j |2

∣
∣

∑n
i=1 |zi |2 = 1

or equivalently
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k∑

j=1

∣
∣|z2 j−1|2 − |z2 j |2

∣
∣ =

k∑

j=1

(|z2 j−1|2 + |z2 j |2
)
.

This implies that for every j = 1, . . . , k either z2 j−1 = 0 or z2 j = 0.
Now, assume z = (z1 : . . . : zn) and z′ = (z′

1 : . . . : z′
n) have the same moment

image and that z2 j−1z2 j = z′
2 j−1z

′
2 j = 0, for j = 1, . . . k. By choosing a suitable

representative of the homogeneous coordinates we may assume that
∑

j |z j |2 =
∑

j |z′
j |2 = 1. With these choice of homogenous coordinates |z2 j−1|2 − |z2 j |2 =

|z2 j−1|2 − |z2 j |2 holds for j = 1, . . . k, sinceμ(z) = μ(z′). For sign reasons we have
either z2 j−1 = z′

2 j−1 = 0 or z2 j = z′
2 j = 0. This implies |z2 j | = |z′

2 j | or |z2 j−1| =
|z′

2 j−1|, respectively. In either case we have (z′
2 j−1, z

′
2 j ) = (s j · z2 j−1, s

−1
j · z2 j ) for

some element s j ∈ S1 ⊂ C
∗. Hence, z and z′ lie in the same T -orbit. �

We consider the rational map

q : P
n−1
C

��� P
k−2
C

, (z1 : . . . : zn) �→ (z3z4 : . . . : zn−1zn).

This map is easily seen to be invariant under the TC-action. It is well-defined on the
locus of points where at least one of the products z2 j−1z2 j for j = 2, . . . , k does not
vanish. For a point z ∈ X this is equivalent to the fact that μ(z) ∈ P◦.

Lemma 17 For u ∈ P◦ the map q|μ−1(u) : μ−1(u) → P
k−2
C

is a quotient map to
the T -orbit space of the fibre.

Proof Consider z, z′ ∈ X with μ(z) = μ(z′) ∈ P◦ and q(z) = q(z′). By choosing a
suitable representative of the homogeneous coordinates for z and z′ we may assume
that z2 j−1z2 j = z′

2 j−1z
′
2 j for j = 2, . . . , k − 1. Then the defining equation of X ⊂

P
n−1
C

implies
∑

j z2 j−1z2 j = ∑
j z

′
2 j−1z

′
2 j = 0. Hence, also z1z2 = z′

1z
′
2 must hold.

Let us set N = ∑
i |zi |2 and N ′ = ∑

i |z′
i |2. Assume z2 j−1z2 j = 0 thenμ(z) = μ(z′)

implies
|z2 j−1|2 − |z2 j |2

N
= |z2 j−1|2 − |z2 j |2

N ′ .

Hence, for sign reasons we have z2 j−1 = z′
2 j−1 = 0 or z2 j = z′

2 j = 0 in this case.
Now, for each j = 1, . . . k we set s j = z′

2 j−1/z2 j−1 or s j = z2 j/z′
2 j whichever is

defined. If they are both defined they have to coincide, since z2 j−1z2 j = z′
2 j−1z

′
2 j .

If z2 j−1 = z′
2 j−1 = z2 j = z′

2 j = 0, thenwe set s j = 1.By these choiceswehave s.z =
z′ with s = (s1, . . . , sk) ∈ TC. It remains to show, that s ∈ T ⊂ TC.

W.l.o.g we may assume that

|s1| = max{|s1|, |s−1
1 |, . . . , |sk |, |s−1

k |}. (16.4)

The condition μ(z) = μ(z′) implies
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|z1| − |z2|
N

= |z′
1| − |z′

2|
N ′ ,

Note, that by (16.4) we have |s1|−2 ≤ N ′
N ≤ |s1|2. Now, from (z′

1, z
′
2) = (s1z1, s

−1
1 z2)

we obtain |z1|2 − |z2|2
N

= |s1|2|z1|2 − |s1|−2|z2|2
N ′ ,

which implies (N ′/N − |s1|2)|z1|2 = (N ′/N − |s1|−2)|z2|2. For sign reasons this is
only possible if |s1|2 = N ′/N = 1. Now, it follows from (16.4) that |s1| = · · · =
|sk | = 1 and s ∈ T . �

Since X ss(u) consists exactly of the orbits whose closures intersect μ−1(u) it
follows also that q|X ss(u) is a good quotient in the sense of Geometric Invariant
Theory. Hence, it coincides with the GIT quotient.

Proof (Proof of Theorem1)WeuseCorollary8.Here,Y is just given asY = P
�n/2�−2

and byLemma16we have rλ(u) : Y → {pt} for u ∈ ∂P and byLemma17 rλ(u) = idY .
In particular, the equivalent relation on P × Y is just given by (u, y) ∼r (u, y′)
for u ∈ ∂P . Now, the claim follows from Lemma13. �

We conclude this section by studying the moment images �(x) of TC-orbit clo-
sures and the induced subdivision of P from Sect. 16.2. For n = 2k + 1 the convex
hull of every subset of vertices of P occurs as a moment image. For n = 2k such con-
vex hulls are moment images if an only if they are faces of P or contain at least two
pairs of opposite vertices {ei ,−ei }, {e j ,−e j }. Indeed, for every such polytope � a
corresponding TC-orbit is given by TC · (z1 : z2 : . . . : zn)with z2 j−1 �= 0 ⇔ e j ∈ �

and z2 j �= 0 ⇔ −ei ∈ � for j = 1, . . . , k. Note, that for n = 2k + 1 such (z1 : z2 :
. . . : zn) fulfilling (16.2) always exist, but for n = 2k there is obviously no non-trivial
solution of (16.1) where all but one monomial vanish. In both cases, with the excep-
tion of k = 2, the induced subdivision of P is the same and coincides with the stellar
subdivision of P obtained by starring in the origin.

Remark 18 In [7] Buchstaber and Terzić introduced the notion of (2n, k)-manifold.
It’s relatively straightforward to check that for n = 2k, the axioms of this notion are
indeed fulfilled for the associated effective torus action by TC/〈±1〉. However, in
the odd case on a generic point of the hyperplane section [zn = 0] we have finite
stabilisers of order 2, which violates the conditions for a (2n, k)-manifold.

Remark 19 Note thatG+
R
(2, 6) can be identified withGC(2, 4) as both are given by

the smooth quadric hypersurface in P
5
C
. Hence, for this case we just rediscover the

results of [5]. Combinatorially this fact is reflected by coincidence of the moment
polytopes, i.e. the cross-polytope β3 and the hypersimplex �4,2.
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16.4 Complexity-One TC-Varieties

If the complexity of the torus action is 1 the possibleGIT quotientsYλ are either single
points or isomorphic to a fixed algebraic curve Y . Hence, when applying Corollary8
to this situation the maps pλ : Y → Yλ are either isomorphisms or contractions to a
point. Our main aim in this section is to prove that in this situation the resulting orbits
spaces are topological manifolds with boundary and even spheres if the number of
lower dimensional TC-orbits is finite.

Remark 20 In the toric case the orbit space can be identified with the moment poly-
tope. In particular, it is also a topological manifold with boundary. Hence, Theorem2
can be seen as generalisation of this fact. On the other hand, this phenomenon is very
special to complexity 0 and 1. In higher dimensions this will almost never be the
case. For example for a smooth projective variety Y the join Sn ∗ Y , which occurs
as an orbit space in the situation of Proposition12, is a topological manifold if and
only if Y ∼= P

1
C
.

Proposition 21 Consider the projective d-space with a (d − 1)-torus TC acting
effectively byweights u0 = 0, u1, . . . , ud ∈ Z

d−1 on the coordinates z0, . . . , zd . Then
the orbit space P

d
C
/T is homeormorphic to either a disc or a sphere. In particular,

it is a topological manifold with boundary.

Proof Themoment imageofPd
C
is givenby the convexhull of theweightsu0, . . . , ud .

Theweights u0, . . . , ud are necessarily affinely dependent inR
d−1. On the other hand

they span R
d−1 as an affine space due to the effectiveness of the torus action. Hence,

there is a non-trivial choice of α j ∈ Z, such that 0 = ∑d
i=0 αi ui and 0 = ∑d

i=0 αi

and the coefficients are unique up to simultaneous scaling.
Set K = {i ∈ {0, . . . , d} | αi �= 0}. Then P is obtained as the join Q ∗ � of

the lower-dimensional polytopes Q = conv{ui }i∈K and � = conv{ui }i /∈K of dimen-
sions m := (#K − 2) and n := (d − #K ), respectively. Here, we allow that � = ∅

and use the non-standard convention Q ∗ ∅ := Q. Note, that � is a simplex (or
empty). Hence, a u ∈ � has a unique representation as u = ∑

j∈K λ j u j with λ j ≥ 0
and

∑
j λ j = 1. For u ∈ Q such a representation u = ∑

j /∈K λ j u j is unique if and
only if u ∈ ∂Q. It follows that u ∈ P = Q ∗ � has a unique such representation if
and only if u ∈ ∂Q ∗ �.

Now, Yλ(u) = μ−1(u)/T is a point whenever u ∈ P has a unique representation
as u = ∑

j λ j u j andμ−1(u)/T ≈ P
1
C
otherwise. This is just a special case of Exam-

ple6, when F : R
d → R

k is given by F(ei ) = ui for i = 1, . . . , d. Then the intersec-
tion of F−1(u) and the standard simplex consists of all linear combinations

∑n
i=1 λi ei

with non-negative coefficients, such that u = ∑n
i=1 λi ui and

∑
λi = 1. The result is

a point if the linear combination is unique or a line segment if not. The correspond-
ing toric varieties are a single point and P

1
C
, respectively. Alternatively, it not hard to

show that the non-trivial quotient morphisms X ss
λ → Yλ = P

1 are all restrictions of
the rational map
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P
d ��� P

1, (z0 : . . . : zd) �→
(

z
∑

i αi

0 :
∏

i

zαi
i

)

.

From Corollary8 we obtain that

P
d
C
/T ≈ (

P × P
1
C

)
/ ∼,

where the equivalence relation ∼ is generated by (u, y) ∼ (u, y′) with y, y′ ∈ P
1
C

and u ∈ ∂Q ∗ � ⊂ ∂P . Topologically ∂Q can be identifiedwith a sphere Sm−1 and Q
with the cone Sm−1 ∗ {pt}. Similarly we have a homeomorphism � ≈ Sn−1 ∗ {pt}
for � �= ∅. For the pair (P, ∂Q ∗ �) we obtain

(P, ∂Q ∗ �) ≈ (Sm−1 ∗ pt ∗Sn−1 ∗ {pt}, Sm−1 ∗ (Sn−1 ∗ {pt}))
≈ (Sm+n−1 ∗ {pt} ∗ {pt}, Sm+n−1 ∗ {pt})
≈ (Dm+n ∗ {pt}, Dm+n).

Note, that the disc Dm+n can be identified with the hemisphere via projection
and Dm+n ∗ {pt} with the corresponding halfdisc. Now, by choosing H to be an
arbitrary halfspace it follows from Lemma14 that the orbit space is a hemisphere.

For� = ∅ and P = Q we see directly (P, ∂Q ∗ �) = (Q, ∂Q) ≈ (Dd−1, Sd−2)

and we obtain P
d
C
/T ≈ Sd+1 from invoking Lemma14 again, this time with H =

R
d−1. �

Proof (Proof of Theorem2) We first consider the situation of a complexity-one
torus action on the affine space C

d . Such an action is linearisable by [4]. We may
equivariantly compactify the TC-action onC

d to a TC-action on P
d
C
. ThenC

d/T is an
open subset ofPd

C
/T . Hence, the claim follows from the observation inProposition21

that the orbit space P
d
C
/T is a manifold with boundary.

To deduce the general case we consider the two situations from Lemma23. If
contractions to a point do not occur the equivalence relation ∼r is trivial and by
Corollary8 we have X/T ≈ P × Y which is a product of topological manifolds
with boundary.

In the second situation, we have Y ∼= P
1. Then by [1, Theorem 5] we have an

equivariant open cover of X by copies of C
n and the result follows directly from the

consideration above. �

Remark 22 To deduce the general case from the case X = C
d in the proof of

Theorem2 wemay alternatively consider the induced TC-action on the tangent space
at a fixed point and reduce everything to this situation by applying Luna’s Slice
Theorem.

Lemma 23 ([14, Lemma 5.7]) In the situation of a complexity-one TC-action on a
smooth projective variety either

1. the GIT quotients are all isomorphic to Y , or
2. Y ∼= P

1
C
.
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Consider the following definition.

Definition 24 A k-holed n-sphere is defined as the intersection of Sn ⊂ R
n+1 with k

affine closed halfspaces, such that Sn is contained in none of them and their boundary
hyperplanes intersect only outside the sphere.

In other words, we remove the interiors of k disjoint closed discs from Sn .

Proposition 25 Consider a smooth TC-variety X of complexity 1 with moment
polytope P and stratification �. Let �′ be the set of λ ∈ �, such that λ ⊂ ∂P
and Yλ �= {pt}. Assume that �′ consists of k disjoint polytopes. Then X/T is a k-
holed sphere.

Proof In our situation the equivalence relation ∼r from Corollary8 is generated
by (u, y) ∼r (u, y′) for u ∈ ∂P \ ⋃

λ∈�′ λ◦. Note that by the preconditions ∂P \⋃
λ∈�′ λ◦ is a k-holed sphere. Hence, by Lemma14 the orbit space X/TC ≈ (P ×

P
1)/ ∼r is a k-holed sphere as well. �

This statement is useful to determine the orbit space in concrete situation. To
demonstrate this we look at the classification of Fano threefolds from [19]. In [20,
21] the ones within the classification which admit a TC-action of complexity 1 where
identified. In the following we determine the orbit spaces for all of them.

Theorem 26 Using the notation of the Mori-Mukai classification [19] for the Fano
threefolds with (C∗)2-action we obtain the orbits spaces being k-holed spheres
with k = 0 for Q, 2.24, 2.29, 2.32, 3.10 and 3.20 with k = 1 for 2.30, 2.31, 3.18,
3.21, 3.23 and 3.24, with k = 2 for 3.19, 3.22, 4.4, 4.5, 4.7 and 4.8.

Proof For every of the above Fano varieties the combinatorial data provided in [21,
Sect. 5] consists of the moment polytope P and a piecewise linear map

� : P → DivR P
1
C

from the polytope to the vector space of R-divisors on P
1. By [21, Sect. 3.1] we

have Yλ(u) = {pt} if and only deg�(u) = 0. Now, one checks that in every case
the subset {u ∈ ∂P | deg�(u) > 0} ⊂ ∂P consists of the interior of k disjoint facts
of P . Applying Proposition25 gives the desired result. �

Remark 27 Note, that Q is the smooth quadric and by Sect. 16.3 coincides with
G+

R
(2, 5). Moreover, 2.32 is the variety of complete flags in C

3. Hence, we recover
results of [7, Proposition 8] and [15].

Proof (Proof of Theorem3) To have finitely many lower dimensional TC-orbits
implies that the GIT quotients Yu for u ∈ ∂P are just points. Then by Lemma23
we conclude that Yu = P

1
C
for every u ∈ P◦. By applying Proposition12 we obtain

X/T ≈ P
1 ∗ Sk−1 ≈ S2 ∗ Sk−1 ≈ Sk+2.
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