
Chapter 15
Polygons of Finite Mutation Type

Thomas Prince

Abstract We classify Fano polygons with finite mutation class. This classification
exploits a correspondence between Fano polygons and cluster algebras, refining the
notionof singularity content due toAkhtar andKasprzyk.Wealso introduce examples
of cluster algebras associated to Fano polytopes in dimensions greater than two.

Keywords Polytopes · Toric Varieties · Mirror Symmetry

15.1 Introduction

The notion of combinatorial, or polytope, mutation was introduced by Akhtar–
Coates–Galkin–Kasprzyk [3] to describe mirror partners to Fano manifolds. Fol-
lowing Givental [17–19], Kontsevich [28], and Hori–Vafa [25], the mirror partner
to a Fano manifold consists of a complex manifold together with a holomorphic
function, the superpotential. If this mirror manifold contains a complex torus we
can write down a collection of volume preserving birational maps of this complex
torus which preserve the regularity of the superpotential. We call these rational maps
(algebraic) mutations, following [3] and work of Galkin–Usnich [16]. Combinatorial
mutation is the operation induced on the Newton polyhedra of the restriction of the
superpotential to such tori.

All the polytopes we consider areFano, that is, polytopes which contain the origin
in the interior and such that its vertices are primitive lattice vectors. In joint work [27]
with Kasprzyk and Nill we showed that, in dimension two, the notion of polytope
mutation is compatible with the construction of a quiver and cluster algebras one can
associate to each Fano polygon.

The idea of associating a polygon with a quiver—or toric diagram—has a reason-
ably long history, particularly in the physics literature. In that setting the polygon
describes a toric Calabi–Yau singularity and the quiver is used to describe the matter
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content of a gauge theory arising on a stack of D3-branes probing the toric Calabi–
Yau singularity, (see for example [1, 5, 10, 15, 21, 22, 29] for a selection of the
literature on this subject). The construction of a quiver (and cluster algebra) from a
polygon has also been used by Gross–Hacking–Keel [20] in the study of associated
log Calabi–Yau varieties, and to study the derived category of the toric variety, or the
associated local toric Calabi–Yau as pursued, for example, in [7, 23, 24, 31, 32]. In
each setting the basic construction is the same, and we recall the version relevant to
our applications in Sect. 15.3.

Ourmain result, Theorem30, is a classification of themutation classes of polygons
which contain only finitely many polygons. This parallels a finite type result of
Mandel [30], for rank two cluster varieties. In particular we see that finite mutation
classes of polygons fall into four types An

1, for n ∈ Z≥0, A2, A3, and D4.
There is a close connection between mutation classes of Fano polygons and Q-

Gorenstein deformations of the corresponding toric varieties which is described in
detail in [2]. Following these ideas we predict the existence of a finite type param-
eter space for these deformations, together with a boundary stratification such that
each 0-stratum corresponds to a polygon in the given mutation class, and the 1-strata
corresponds to the mutation families constructed by Ilten [26].

While our main result applies in dimension two, we note that polytope mutation
is defined in all dimensions, and the construction of a quiver and cluster algebra
we provide applies to ‘compatible collection’ of mutations in any dimension, see
Definition 16. This definition is, unfortunately, less well behaved in dimensions
greater than two, but we provide an example indicating that polytope mutation can
detect known examples of cluster structures appearing on linear sections of Grass-
mannians of planes. We expect this to extend to a wide variety of other cluster
structures found in Fano manifolds and their mirror manifolds.

15.2 Quivers and Cluster Algebras

We devote this section to fixing the various conventions and notation, as well as
recalling the basic definitions. We recall the definition of cluster algebra, and in
order to address both geometric and combinatorial applications we shall adapt our
treatment from theworkof Fomin–Zelevinsky [13], and theworkof Fock–Goncharov
[11] and Gross–Hacking–Keel [20]. We first fix the following data:

1. N , a fixed lattice with skew-symmetric form {−,−}: N × N → Z;
2. a saturated sublattice Nu f ⊆ N , the unfrozen sublattice;
3. an index set I , |I | = rk(N ) together with a subset Iu f ⊆ I such that |Iu f | =

rk(Nu f ). For later convenience we set n := |Iu f |.
Remark 1 The requirement that the form is integral is not necessary, but is suffi-
ciently general for our applications and simplifies the exposition considerably.

Definition 2 A (labelled) seed is a pair s = (E,C), where:

1. E is a basis of N indexed by I , such that the subset indexed by Iu f is a basis
of Nu f ;
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2. C is a transcendence basis of F , the field of rational functions in n independent
variables over Q(xi : i ∈ I\Iu f ), referred to as a cluster. Elements of C are also
referred to as cluster variables.

Remark 3 The basis E is referred to as seed data in [11, 20]. Since we have fixed
the lattice N and skew-symmetric form {−,−} the elements of C can be identified
with coordinate functions on the seed torus TN .

Definition 4 Fix a seed s = (E,C), where E = {ei : i ∈ I } and C = {xi : i ∈ Iu f }.
Fixing an element j ∈ Iu f , the j th mutation of (E,C) is the seed (E′,C ′),
where E′ = {e′

i : i ∈ I } is defined by setting

e′
k =

{
−e j if k = j,

ek + max
(
bkj , 0

)
e j otherwise,

where bkl = {ek, el}. While the cluster C ′ = {x ′
i : i ∈ Iu f } is defined by setting,

x ′
k = xk, if k �= j, and x j x

′
j =

∏
k such that
b jk>0

x
b jk

k +
∏

l such that
b jl<0

x
bl j
l . (15.1)

Recall that the matrix B := (bkl)k,l∈Iu f is typically referred to as the exchange
matrix of the seed.

Definition 5 A cluster algebra is the subalgebra of F generated by the union of all
clusters obtained by mutation from a given seed.

Any skew-symmetric n × n matrix B determines a skew-symmetric form on a
(based) lattice Z

n . Set N = Z
n , I = Iu f = {1, . . . , n}, E to be the standard basis

on Z
n , and let C = {x1, . . . , xn}. We letA(B) denote the cluster algebra associated

to the seed (E,C).
Definition 5 is really a special case of the definition of a cluster algebra, a class

referred to as the skew-symmetric cluster algebras of geometric type. In the general
case the form {−,−} need only be skew-symmetrizable. One consequence of the
skew-symmetry of the form {−,−} is the identification of each exchange matrix
with an (unfrozen) quiver. One may assign this quiver in the obvious way, assigning
a vertex vi to each element i ∈ Iu f , and bi j arrows vi → v j , oriented according to
the sign of bi j . We may also add ‘frozen’ vertices vi for each element of i ∈ I\Iu f ,
with arrows introduced between frozen and unfrozen vertices similarly. Equivalently
we may consider the quiver associated to the extended exchange matrix, but we do
not make further use of this terminology. There is a well-known notion of quiver
mutation, going back to Fomin–Zelevinsky [13], generalising the reflection functors
of Bernstein–Gelfand–Ponomarev [6]. Mutating a seed in a skew-symmetric cluster
algebra induces a corresponding mutation of the associated quiver.

Definition 6 Given a quiver Q and an element i ∈ Iu f , the mutation of Q at vi is
the quiver mut(Q, v) obtained from Q by:
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1. adding, for each subquiver v1 → v → v2, an arrow from v1 to v2;
2. deleting a maximal set of disjoint two-cycles;
3. reversing all arrows incident to v.

The resulting quiver is well-defined up to isomorphism, regardless of the choice of
two-cycles in (2).

Sincewe shall refer to quivers frequentlywe shallmake the following conventions.
Given a quiver Q, we define:

1. Q0 to be the set of vertices of Q;
2. Arr(vi , v j ) to be the set of arrows from vi ∈ Q0 to v j ∈ Q0;
3. bi j to be the cardinality of Arr(vi , v j ), with sign indicating orientation.

We shall always assume Q has no vertex-loops or 2-cycles.
Given a seed swe shall also fix notation for the dual basis E� of M := hom(N , Z)

and for each i ∈ I , set vi := {ei ,−} ∈ M .Wenowdefine theA andX cluster varieties
defined by Fock–Goncharov [11]. Toward this, observe to a seed s we can associate
a pair of tori:

Xs = TM As = TN .

The dual pair of bases for the respective lattices define identifications of these tori
with split tori,

Xs −→ G
|I |
m , As −→ G

|I |
m .

Letting s′ denote the kth mutation of s, we associate birational maps μk : Xs ��� Xs′

and μk : As ��� As′ to each seed, defined by setting

μ�
k z

n = zn(1 + zek )−{n,ek } μ�
k z

m = zm(1 + zvk )〈ek ,m〉,

where n ∈ N , m ∈ M , zm (resp. zn) denotes the function on TN := Spec(C[M])
corresponding tom (resp. the function on TM corresponding to n), and 〈−,−〉 denotes
the canonical pairing between M and N . Note that the toriXs andXs′ are canonically
identified with TN , but the maps μk between them are not isomorphisms.

Pulling these birational maps back along the identifications with the split torus
given by the seed, the birational map μk : As ��� As′ is given by the exchange
relation (15.1). That is, this birational map is the coordinate-free expression of the
exchange relation once we identify the standard coordinates on TN with the cluster
variables xi ∈ C (including the frozen variables xn+1 . . . , xm). We obtain schemesX
and A by gluing the seed tori As and Xs along the birational maps defined by the
mutations μk . For more details and related results we refer to [11, 20].

We conclude this section by recalling the classifications of cluster algebras of finite
type and finite mutation type.

Definition 7 A cluster algebra is said to be of finite type if it contains finitely many
clusters.
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Given an undirected graphG we say that a quiver Q is an orientation ofG if it has
the same set of vertices and for each edge of G there is precisely one arrow between
the respective vertices. Given a simply-laced Dynkin diagram D we say that Q is
of type D if it is an orientation of the underlying graph of D.

Theorem 8 ([14]) There is a canonical bijection between the Cartan matrices of
finite type and cluster algebras (without frozen variables) of finite type. Under this
bijection, a Cartan matrix A of finite type corresponds to the cluster algebraA(B),
where B is an arbitrary skew-symmetrizable matrix with Cartan companion equal
to A.

Theorem 8 describes skew-symmetric cluster algebras with finitelymany clusters.
We can ask instead for the weaker condition that only finitely many quivers appear
associated to seeds of the cluster algebra. This is the notion of finite mutation type
cluster algebra, for which a classification is also known.

Theorem 9 ([9, Theorem 6.1]) Given a quiver Q with finite mutation class, its
adjacency matrix bi j is the adjacency matrix of a triangulation of a bordered surface
or is mutation equivalent to one of eleven exceptional types.

The class of quivers coming from triangulations of surfaces is well-studied and
we make use of a combinatorial characterisation of this class of quivers via block
decomposition. A quiver Q is said to admit a block decomposition if it may be
assembled from the six blocks shown inFig. 15.5 by identifying the vertices of quivers
shown with unfilled circles, the outlets. More precisely, we choose an injection from
a subset of the combined set of outlets O into O such that no outlet is mapped
to a vertex of the same block, including itself. We form Q by gluing the quiver
along these vertices and cancelling any two cycles formed by this process. See [12,
Definition 13.1] for further discussion and examples of this definition.

Theorem 10 ([12, Theorem 13.3]) A quiver Q given by the adjacency matrix of a
triangulation of a surface is mutation equivalent to a quiver which admits a block
decomposition.

15.3 Mutations of Polytopes

In two dimensions all combinatorial mutations are ‘tropicalisations’ of cluster muta-
tions. While this ceases to be true in higher dimensions there is a natural class of
combinatorial mutations, the edge mutations which do appear in this way. In terms
of the definition of combinatorial mutation given in [3], edge mutations are those
which have one-dimensional factor. In particular each edge mutation is obtained by
studying the effect of the following birational maps—an algebraic mutation [3]—on
the Newton polyhedra of certain Laurent polynomials. Throughout this section N
denotes an n-dimensional lattice (not necessarily related to the definition of a cluster
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algebra). We recall that, working over C, if M is the lattice dual to N , the torus TM

is defined to be Spec(C[N ]).
Definition 11 Given an elementw ∈ M , theweight vector, and f ∈ Ann(w), the fac-
tor, define a birational map φw, f : TM ��� TM sending

zn 
→ zn(1 + z f )〈w,n〉.

Given a Laurent polynomial W ∈ C[N ] such that φ�
w, f (W ) ∈ C[N ] say that W is

mutable with weight vector w and factor f .

Definition 12 (Cf. [3, pg. 12]) Fix a Fano polytope P ⊂ NQ and its dual P� ⊂
MQ, a weight vector w ∈ M , and factor f ∈ Ann(w). Define a piecewise linear
map Tw, f : MQ → MQ by setting

Tw, f : m 
→ m + max(0, 〈m, f 〉)w.

If Tw, f (P�) is a convex polytope then we say P admits the mutation (w, f ) and
that P mutates to (Tw, f (P�))�.

Remark 13 This definition of mutation is really a ‘dual characterisation’ of [3,
Definition 5], which encodes how the Newton polytope of a Laurent polynomial
changes under algebraic mutation.

Remark 14 In [3] the authors show that the result of applying a mutation to a Fano
polytope produces another Fano polytope, so the last dualization in Definition 12 is
well-defined.

Proposition 15 Givenw ∈ M, f ∈ Ann(w) andamutable Laurent polynomialW ∈
C[N ] we have the following identity;

Newt
(
φ�
w, f W

)� = Tw, f
(
Newt(W )�

)
.

Proof The notion of combinatorial mutation is compatible with the mutation W by
construction. The interpretation of a combinatorial mutation as a piecewise linear
map is made in the proof of Proposition 4 in [3]. �

Definition 16 We definemutation data to be elements (w, f ) ∈ M ⊕ N such thatw
and f are primitive, and f ∈ Ann(w). A set of mutation data {(wi , fi ) ∈ M ⊕ N :
i ∈ I }, for a finite index set I , is called compatible if

〈wi , f j 〉 = −〈wj , fi 〉 for all i, j ∈ I.

Remark 17 If dim N = 2 mutation data is automatically compatible; indeed 〈wi ,

f j 〉 can be identified with wi ∧ wj for a suitable orientation of M .

Definition 18 To a compatible collection of mutation data E we define a quiver QE
as follows:
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1. the vertex set of QE is E;
2. between two vertices (wi , fi ) and (wj , f j ) there are 〈wi , f j 〉 arrows, with sign

indicating orientation.

Observe that, as 〈wi , f j 〉 is skew-symmetric, the quiver QE contains no loops
or two cycles. Note that we can use this definition to assign a cluster algebra to a
compatible collection of mutation data. We define a rule governing how compatible
collections of mutations themselves mutate.

Definition 19 Given a compatible collection of mutation data E, let L be the sublat-
tice ofM ⊕ N generated by the elements ofE, and let {(wi , fi ), (wj , f j )} := 〈wi , f j 〉
define a skew-symmetric form on L . Fixing a pair Ek = (wk, fk) ∈ E we mutate E
to a new collection Ek as follows:

1. Ek 
→ −Ek ;
2. Ei 
→ Ei − max({Ei , Ek}, 0)Ek , if i �= k.

This formula is identical to the mutation of seed data given in [11]; a connection
we now make precise. Fix a compatible collection of mutations E and define a
skew-symmetric form [−,−] on Z

|E| defined by setting [ei , e j ] := {θ(ei ), θ(e j )},
where θ : Z

|E| → M ⊕ N is defined by sending ei 
→ (wi , fi ). The followingLemma
follows immediately by comparison of the formulae formutating seed data in a cluster
algebra with Definition 19.

Lemma 20 The operations of mutation given in Definition 19, and of mutation of
the seeds defined above, are intertwined by θ .

Example 21 In dimensions higher than two a compatible collection ofmutation data
which defines a set of combinatorial mutations of a given polytope can transform
by mutation to a compatible collection of mutation data which does not define a set
of combinatorial mutations of the transformed polytope. In particular the piecewise
linear maps may fail to preserve convexity. This appears to be a important obstruc-
tion to generalising the two-dimensional theory of mutations to higher dimensional
polytopes. For example, consider the polytope

P := conv

⎛
⎝

⎛
⎝1
0
0

⎞
⎠ ,

⎛
⎝0
1
0

⎞
⎠ ,

⎛
⎝0
0
1

⎞
⎠ ,

⎛
⎝ 0

0
−1

⎞
⎠ ,

⎛
⎝−1

−1
0

⎞
⎠ ,

⎛
⎝−1

−1
−1

⎞
⎠

⎞
⎠.

Consider mutation data (w1, f1) := (e�
1, e3) and (w2, f2) = (e�

2, e3). Since f1 = f2,
we have that 〈wi , f j 〉 = 0 for all i, j ∈ {1, 2}; hence these mutations are compatible.
However, while P admits both these mutations, the composition of these two (in
either order) is the mutation corresponding to the pair (w, f ) := (e�

1 + e�
2, e3), which

does not define a mutation of P .

Proposition 22 Given seed data E such that QE is a directed simply-laced Dynkin
diagram the number of polytopes obtained by successive edge mutation is bounded
by the numbers of seeds in the cluster algebra determined by QE. If QE is of type An

this bound is the Catalan number Cn+1.
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In fact, compatible collections of mutations appear whenever we have a cluster
algebra with skew-symmetric exchange matrix.

Proposition 23 Every compatible collection of mutations determines and is deter-
mined by a skew-symmetric cluster algebra without frozen variables, together with a
subspace V of the kernel of the skew-symmetric form {−,−} defined by the exchange
matrix.

Proof Fix a skew-symmetric cluster algebra without frozen variables and a nom-
inated subspace V ⊂ ker{−,−}. Recall that a seed defines a basis ei of a lattice,
which we denote Ñ . Define M := Ñ/V and let p : Ñ → M be the canonical projec-
tion. The map θ : Ñ → M ⊕ hom(M, Z) defined by θ : n 
→ (p(n), {n,−}) defines
a compatible collection of mutation data with weight vectors in the lattice M . �

Note that N and M play dual roles to those in [11], and we insist throughout
that P ⊂ NQ. This exchange of roles explains the odd definition of M in the proof
of Proposition 23. To compare the birational maps associated to the two notions of
mutations let s be a seed of the cluster algebra determined by a compatible collection
of mutation data, and let E be the compatible collection corresponding to s. Fix an
element Ek = (wk, fk) ∈ E and consider the following diagram,

As
μk

p

Aμk (s)

p

TM
φ(wk , fk )

TM ,

(15.2)

Proposition 24 The diagram shown in (15.2) commutes.

Proof This is an exercise in writing out the definitions of the respective mutations:
see [27, Sect. 3]. �
Example 25 The del Pezzo surface of degree 5 admits a toric degeneration to a toric
surface Z with a pair of A1 singularities. Given a three-dimensional linear section X
of the Grassmannian Gr(2, 5) X admits a toric degeneration to the projective cone
over Z . The fan determined by this toric threefold is formed by taking the cones over
the faces of the reflexive polytope with PALP id 245.

In Fig. 15.1 we show a pentagon of polytopes obtained by successively mutating
the polytope shown in the top-right with respect to the mutation data

E := {(w1, f1), (w2, f2)}

where,

w1 := (−1, 0, 0), f1 := (0, 1, 1)T ,

w2 := (0, 0,−1), f2 := (−1, 0, 0)T .
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Fig. 15.1 Pentagon of edge
mutations among toric
degenerations of B5

We recall that there is an A2 cluster structure on the co-ordinate ring of the Grass-
mannian, and a toric degeneration of Gr(2, 5) for each cluster chart in the dual
Grassmannian [33]. We expect that cluster structures in the mirror to a Fano variety
to be detected by such compatible collections of mutations.

Note that the polytopes we show in Fig. 15.1 are not dual to Fano polytopes.
However, recalling that B5 has Fano index 2, we can obtain a reflexive polytope by
dilating each of the polytopes shown in Fig. 15.1 by a factor of two, and translating.

In the two dimensional case, we can canonically define a maximal set of compat-
ible mutations, making use of the notion of singularity content [4].

Definition 26 (Cf. [27, Sect. 1.2]) Given a Fano polygon P ⊂ NQ with singularity
content (n,B) and m := |B| + n, we define:

1. an index set I of size m containing a subset Iu f of size n, together with functions

φu f : Iu f → {edges of P} φ f : I\Iu f → B

such that fibres φ−1
u f (E) contain mE := ��(E)/rE� elements, where �(E) is the

lattice length of the edge E , and rE is the Gorenstein (or local) index of the cone
over E , while the map φ f is a bijection;

2. a lattice map ρ : Z
m → M sending each basis element to the primitive, inward-

pointing normal to the edge of P defined by the cone given by the specified
functions φu f and φ;

3. a form {ei , e j } := ρ(ei ) ∧ ρ(e j ). Note that this is an integral skew-symmetric
form.
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Fig. 15.2 The Fano polygon
for P

2

The value mE appears in the definition of the singularity content of a two dimen-
sional cone; and is equal to the maximal number of T -cones of Gorenstein index rE
which fit inside the cone on E .

By [27, Proposition 3.17] the construction of a quiver frommutation data provided
by Definition 26 intertwines polygon and quiver mutations. We let (EP ,CP) denote
the seed associated to a Fano polygon,whereEP is the standard basis ei ofZm , andCP

is the standard transcendence basis of the field of rational functions in n variables
overQ(xi : i ∈ I\Iu f ).We let QP denote the unfrozen quiver associated to (EP ,CP).
We say a Fano polygon is of finite mutation type if it is mutation equivalent to only
finitely many Fano polygons.

Conjecture 27 The cluster algebra CP associated to a Fano polygon P , together
with a bijection between the set of frozen variables and B, is a complete mutation
invariant of the Fano polygon P .

Example 28 Consider the Fano polygon P for P
2 (this is depicted in Fig. 15.2).

Computing the determinant of the inward-pointing normals we obtain the quiver QP

•
3

•
3

•
3

The mutations of this quiver are well-known, and the triple (3a, 3b, 3c) of non-zero
entries of the exchange matrix satisfy the Markov equation a2 + b2 + c2 = 3abc.
Indeed, as the polygon P ismutated the corresponding toric surfaces areP(a2, b2, c2)
for the same triples (a, b, c). We see that in this case the mutations of the quivers
exactly capture the mutations of the polygon.

Example 29 Consider the toric surface (using the notation for these surfaces appear-
ing in [8]), X5,5/3 associated with the Fano polygon shown in Fig. 15.3. The unfrozen
quiver associated to this surface is simply the A2 quiver:

• •

This example is important, both in this section, because it is an example of a finite
type polygon, and since a smoothing of this surface is given by 5 Pfaffian equations,
see [8, Sect. 3.3], a fact closely connected to the A2 quiver we construct here.
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Fig. 15.3 The Fano polygon
for X5,5/3

15.4 Finite Type Classification

We now make use of the classification of finite type and finite mutation type cluster
algebras to establish the following result.

Theorem 30 P is of finite mutation type if and only if QP is mutation equivalent to
a quiver of type (A1)

n, A2, A3, or D4.

Remark 31 The types referred to in Theorem 30 may also be referred to as
type In , I I , I I I , and I V respectively; in analogy with Kodaira’s monodromy matri-
ces. The relationship between these matrices, log Calabi–Yau manifolds, and mon-
odromy in certain integral affine manifolds is explored by Mandel in [30].

Remark 32 We remark that all the cases which appear in Theorem 30 do occur as
(unfrozen) quivers associated to polygons. Several examples can be found in [8, p.
42] and are tabulated below.

Quiver QP Polygon Surface
∅ = A0

1 9 X6,2

A3
1 11 X4,7/3

A6
1 12 B2,8/3

A2 7 X5,5/3
A3 17 X3,4
D4 5 X4,4/3

Examples of polygons P with QP = A2k+2
1 and A2k+1

1 for k ≥ 5 are given by the
quadrilaterals

conv

((−1
−3

)
,

(
1

−3

)
,

( −1
k − 2

)
,

(
1

k − 2

))
, and

conv

((−1
−3

)
,

(
1

−2

)
,

( −1
k − 2

)
,

(
1

k − 2

))
.

We first make two straightforward observations. First we note that the cluster
algebra CP induces a sequence of surjections:
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{Clusters of CP}

{Polygons mutation equivalent to P}

{Quivers mutation equivalent to QP}.

(15.3)

The first vertical arrow follows from the fact that algebraic mutations determine
combinatorial mutations, the second from Lemma 20. For example, using this tower
of surjections in the case of a type A2 cluster algebra, we can immediately state the
following result.

Proposition 33 If a Fano polygon P has singularity content (2,B) and the primitive
inward-pointing normal vectors of the two edges corresponding to the unfrozen
variables of CP form a basis of the lattice M, then the mutation-equivalence class
of P has at most five members.

Proof The quiver associated to P is precisely an orientation of the A2 quiver. The
cluster algebra CP is well-known and its cluster exchange graph forms a pentagon.
Note however that the quiver mutation graph is trivial, as the A2 quiver mutates only
to itself. �

Proposition 24 implies that themutation class of P has at most five elements. Note
that we do not have a non-trivial lower bound: there is only one polygon in mutation
equivalent to the polygon described in Example 29 up to GL(2, Z) equivalence. Next
observe that the sequence of surjections shown in (15.3) immediately implies that

CP finite type ⇒ P finite mutation type ⇒ CP finite mutation type.

Lemma 34 Given a Fano polygon P of finite mutation type, QP does not contain a
Kronecker subquiver

Qk := { v1 k
v2 },

where k > 1 is the number of arrows from v1 to v2.

Remark 35 This result is expected from results on the corresponding cluster alge-
bra. The Kronecker quiver defines a rank 2 cluster algebra which is known not to be
of finite type when k > 1. Given that P is the Newton polygon of a superpotential
which is itself a combination of cluster monomials, we expect the polygon P to grow
as we mutate.

Proof (Proof of Lemma 34) Assume there is a Qk subquiver of QP , with ver-
tices v1, v2 corresponding to edges E1 E2 of P . We define ρ : Z

2 → M by mapping
the standard basis to the primitive inward normal vectors wi to Ei for i ∈ {1, 2}.
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Fig. 15.4 Schematic
diagram of a polygon in
standard form

Let P ′ ⊂ Q
2 be the image of P under ρ�. The resulting polygon in Q

2 is shown
schematically in Fig. 15.4.

The local index of each cone in P is the integral height of the edge from the origin.
Let hi denote the local indices of Ei for i ∈ {1, 2}. Note that, as hi = 〈ei , ρ�u〉 for
any u ∈ Ei , hi is also the local index of ρ�(Ei ) in P ′. Mutating at v1 and v2 we denote
the new local indices,

(h1, h′
2) (h1, h2) (h′

1, h2).

We first show that ρ� increases the lattice lengths of Ei by a factor of k :=
|w1 ∧ w2| for each i ∈ {1, 2}. Let ui1 and ui2 denote the vertices of Ei , and fi :=
(ui1 − ui2)/�(Ei ); where �(Ei ) denotes the lattice length of Ei . Note that 〈w1, f2〉 =
〈w2, f1〉 = w1 ∧ w2 for a suitable choice of orientation of M . Moreover, since – for
each i ∈ {1, 2} – 〈ρ�(u), ei 〉 = hi is constant as u varies in Ei , the edge ρ�(Ei ) has
direction vector e�

3−i ; where {e�
1, e

�
2} is the dual basis to {e1, e2}. In other words,

ρ�(ui1) − ρ�(ui2) = �(ρ�(Ei ))e
�
3−i ,

and hence we have that

�(ρ�(Ei )) = 〈�(ρ�(Ei ))e
�
3−i , e3−i 〉

= 〈ρ�(ui1) − ρ�(ui2), e3−i 〉
= 〈ui1 − ui2, ρ(e3−i )〉
= �(Ei )〈 fi ,w3−i 〉
= ±�(Ei )(w1 ∧ w2),

where signs and orientations are chosen such that �(E) is always positive. Study-
ing Fig. 15.4 note that h1 + h′

1 ≥ �(ρ�(E2)), however—by the calculation above—
�(ρ�(E2)) = k�(E2). Moreover, we have that �(E2) ≥ h2, since the Fano polygon P
admits a mutation along this edge. Hence we observe that

h′
1 ≥ kh2 − h1 h′

2 ≥ kh1 − h2.
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Consider the case k ≥ 3, and assumewithout loss of generality that h2 ≥ h1.We have
that h′

1 ≥ 3h2 − h1 ≥ 2h2 ≥ 2h1. Thus in this case the values in the pair (h1, h2)
grow (at least) exponentially with mutation, and in particular take infinitely many
values.

Next consider the case k = 2. The inequalities above become,

h′
1 ≥ 2h2 − h1 h′

2 ≥ 2h1 − h2,

and we are again free to assume that h2 ≥ h1. Thus h′
1 ≥ 2h2 − h1 ≥ h1, and

if h2 > h1, h′
1 ≥ 2h2 − h1 > h2. Thus, assuming h1 �= h2, one can generate an

infinite increasing sequence of local indices. The only remaining case is if h :=
h1 = h2 = h′

1 = h′
2. To eliminate this possibility observe that, since k = 2, the

edges ρ�(E1), ρ�(E2) must meet in a vertex with coordinates (−h,−h) (indeed,
assuming this does not hold, a mutation returns us to the previous case and one of
the above inequalities is strict). Note that the sublattice ρ�(N ) is determined by the
fact that ρ� doubles the edge lengths of E1 and E2. The lattice vectors (a, a) are in
this sublattice for all a ∈ Z. Thus, by primitivity of the vertices in P , h = 1. Since
the origin is in the interior of P , mutating in one of v1 or v2 returns us to the previous
case. �

Remark 36 Proposition 34 implies all the quivers that we consider from now on
are directed graphs. Hence we refer to vertices as adjacent if they are adjacent in the
underlying graph.

As well as the non-existence of Kronecker quivers in QP for finite mutation type
polygons P , we use heavy use of a connectedness result for quivers QP which follows
immediately from the definition of QP via determinants in the plane; or equivalently
from the fact the exchange matrix has rank 2 (Fig. 15.5).

Lemma 37 Given a Fano polygon P and vertices v1, v2, v3 of QP such that vi
and vi+1 are not adjacent for i = 1, 2, then v1 and v3 are not adjacent.

Proof (Proof of Theorem 30) By Lemma 37, if QP is not connected, QP
∼= An

1 for
some n. Similarly, if QP is of type A or D, then it must be one of A2, A3 or D4.
Thus we only need to show that there is no Fano polygon P of finite mutation type
such that CP is not of finite-type. However CP is of finite mutation type, and we
use the classification described in Theorems 9 and 10, following [9, 12]. In fact,
using Lemma 37, none of the eleven exceptional types can occur as QP for a Fano
polygon P . Hence we can restrict to quivers which admit a block decomposition and
work case-by-case.

We claim that every quiver QP associated to a Fano polygon P which admits a
block decomposition is either mutation equivalent to an orientation of a simply-laced
Dynkin diagram or to a quiver which contains a subquiver Qk for k > 1. We assume
for contradiction that QP is the quiver associated to a Fano polygon P of finite-type
which is not mutation equivalent to a simply laced Dynkin diagram.
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Fig. 15.5 The blocks of a block decomposition

Fig. 15.6 Mutations of block V

Fig. 15.7 Quiver V′

Block V: First observe that, since only one vertex of the block V is an outlet, the V
block quiver is a subquiver of any quiver which contains the V block in its decom-
position. However this quiver mutates to a quiver with a Q2 subquiver as shown in
Fig. 15.6. Therefore block V never appears in a decomposition of a quiver QP . For
later use we shall fix the following intermediate quiver, V′, shown in Fig. 15.7.
Blocks IIIa and IIIb: Assume there is a type III block (a or b) connected to a quiver Q′
at a vertex v. If there is a vertex v′ of Q′ such that v and v′ are not adjacent, the quiver
violates Lemma 37. In particular the vertex set of Q′ must be the vertex set of a single
block. In particular, using the previous part, Q′ has at most four vertices. Case by
case study shows that only the A3 and D4 types appear.
Block IV: Consider the case of a decomposition only using type IV blocks. Note that
the type IV block is itself of type D4. Consider attaching two type IV blocks. If the
blocks are attached at a single outlet the resulting quiver contradicts Lemma 37. In
fact it is easy to see that it is impossible to add additional type IV blocks to meet
this condition. If both pairs of outlets are matched there are two possible quivers
depending on the relative orientations of the arrow between the outlets, one orienta-
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(a) Attaching I blocks to a IV block (b) Attaching II blocks to a IV block

Fig. 15.8 A type IV block

tion produces a Q2 subquiver automatically, the other produces a quiver containing
the quiver V′ as a subquiver. Thus, for a type IV block to appear in a decomposition
of QP it must include a type I or II block.

Now consider decompositions using type I and II blocks as well as type IV blocks.
First note there must be exactly one IV block (assuming there is at least one). Indeed,
if type IV blocks are not connected using both vertices, a non-outlet vertex of a IV
block is not adjacent to some outlet, and some non-outlet vertex of a (different)
IV block. However outlets and non-outlets of a type IV block are always adjacent,
violating Lemma 37.

Thus we must attach I and II blocks to a single type IV block. By Lemma 37 the
vertex set of the final quiver must be equal to the vertex set obtained by attaching
a single block to each outlet of the IV block. Considering these cases in turn, we
note first that attaching a type I block to cancel the arrow between the two outlets
produces a quiver mutation equivalent to D4 and therefore eliminated. For chains
type I blocks of length two, if a 3-cycle is produced, a mutation in the vertex between
the type I blocks produces the V′ quiver. If not, the same mutation produces a Q2

subquiver.
Attaching a type II block along two outlets of the type IV block recovers the V′

or Q2 subquiver cases we have already seen. Attaching type II blocks to a single
outlet each we observe that every new vertex must be adjacent to both outlets of
the IV block. Hence the only case without a Q2 subquiver is shown on the right of
Fig. 15.8, however this quiver mutates to one with a Q2 subquiver. Attaching further
type II blocks any quiver we obtain must contradict Lemma 37.
Blocks I and II: From what we have shown above, the block decomposition of QP

consists only of type I and type II blocks. Any connected quiver with a block decom-
position into type I blocks is a path (with possibly changing orientations), which
possibly closes up into a cycle. The only cases not violating Lemma 37 are mutation
equivalent to orientations of simply laced Dynkin diagrams.
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For decompositions of QP with type I and II blocks we divide the proof into cases
indexed by the number of type II blocks. For a single type II block, we can attach a
type I block to two outlets and in this way reduce to the type III case. Attaching each
type I block to a type II block in at most one outlet, we use the fact that every new
vertex must be adjacent to at least two of the vertices of the type II block. Thus we
can obtain only two undirected graphs—the underlying graph of a type IV block or
an orientation of a tetrahedron, these cases can easily be eliminated. For example,
there is no orientation of the tetrahedron making every cycle oriented; hence after a
single mutation we obtain a quiver violating Lemma 34.

Consider the case of a pair of type II blocks. If these have disjoint vertex sets, each
outlet of a type II block cannot be adjacent to two of the outlets of the other type II
block. Thus we must cancel the arrow between these two outlets with a type I block.
However this creates a pair of 1-valent non-outlet vertices which can be eliminated
similarly to the type III case. At the other extreme, if we attach along all three outlets,
we produce two easy cases. Attaching along a pair of outlets we generate either a Q2

subquiver or a 4-cycle. Considering the 4-cycle with two outlets v1 and v2 (on non-
adjacent corners) to meet the conditions of Lemma 37 any vertex adjacent to one
of v1 or v2 must be adjacent to the other. Moreover, if the resulting quiver contains
an arrow between v1 and v2, a mutation at one of the non-outlet vertices gives a Q2

subquiver. Given a vertex v adjacent to v1 and v2, if this defines a path between them,
mutating at this node and a non-outlet in the four cycle produces a Q2 subquiver. If v
does not lie on a path between v1 and v2 then mutating at both outlets produces a Q2

subquiver.
Attaching the type II blocks at a single outlet, the four arrows incident to this

vertex are now fixed, so any new vertex must be adjacent to each of the remaining
four outlets by Lemma 37. However this cannot be achieved with type I blocks.

Attaching more than two type II blocks together, we can eliminate the case where
two are connected to form a 4-cycle as above. Since we can easily eliminate the case
that two type II blocks meet in three outlets, we assume that each type II block meets
every other in at most one outlet. Some pair of type II blocks must be attached in
an outlet (otherwise we can argue as in the case of type II block separated by type I
blocks). Thus, since every new vertex must be adjacent to all four outlets formed by
attaching two type II blocks, all possible quivers can be represented as an octahedron
with some orientation, see Fig. 15.9.

Considering an orientation of the octahedron; if any triangular face does not form
a cycle we can mutate to form a Q2 subquiver. Assuming every triangle is a cycle,
and possibly mutating, the vertices adjacent to the ‘top’ of the octahedron form a
type V block subquiver. Following the same reasoning as for the type V block case
(although note that the type V block is not part of a block decomposition here) these
cases can be eliminated. �
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Fig. 15.9 Octahedron of
type II blocks
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