
Chapter 14
On Deformations of Toric Fano Varieties

Andrea Petracci

Abstract In this note we collect some results on the deformation theory of toric
Fano varieties.
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14.1 Introduction

A Fano variety is a normal projective variety X over C such that its anticanonical
divisor −KX is Q-Cartier and ample. Fano varieties constitute the basic building
blocks of algebraic varieties, according to theMinimalModelProgram.Thegeometry
of Fano varieties is a well studied area. In particular, moduli (and consequently
deformations) of Fano varieties constitute a very interesting and important topic in
algebraic geometry, e.g. [21, 62, 69].

Here we will concentrate on deformations and smoothings of toric Fano varieties.
These varieties occupy a prominent role in Mirror Symmetry, a large part of which
is based on the phenomenon of toric degeneration as in [17, 18, 30, 43].

Toric Fano varieties correspond to certain polytopes which are called Fano poly-
topes. The goal of this note is to present some combinatorial criteria on Fano poly-
topes which can detect whether the corresponding toric Fano variety is smoothable,
i.e. can be deformed to a smooth (Fano) variety.

Special attention is given to toric Fano threefolds with Gorenstein singularities.
These varieties correspond to the 4319 reflexive polytopes of dimension 3, which
were classified by Kreuzer and Skarke [66]. In this case, thanks to the use of the soft-
wareMagma [22], we were able to produce a lot of examples for the combinatorial
criteria discussed in this note.
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14.1.1 Outline

In Sect. 14.2.1 the very classical theory of infinitesimal deformations of algebraic
varieties is recalled. In Sect. 14.2.2 we survey some properties of smoothings of
algebraic varieties. In Sect. 14.2.3 two well-studied deformation invariants for Fano
varieties are introduced.

In Sect. 14.3.1 we recall some results on the deformation theory of affine toric
varieties. We provide an example in Sect. 14.3.2.

The core of this note is Sect. 14.4. We recall the definition of Fano polytopes
in Sect. 14.4.1. In Sect. 14.4.2 we present a couple of sufficient conditions that ensure
that a toric Fano variety is non-smoothable. The rigidity of toric Fano varieties is
examined in Sect. 14.4.3. In Sects. 14.4.4 and 14.4.5 we study the smoothability of
toric Fano surfaces and toric Fano threefolds with isolated singularities; an example
is presented in Sect. 14.4.6. In Sect. 14.4.7 we present another sufficient condition
that ensures that a toric Fano threefold is non-smoothable. In Sect. 14.4.8 we include
more results on deformations of toric Fano varieties.

In Sect. 14.5 we write down the lists of the reflexive polytopes of dimension 3
which satisfy the several combinatorial conditions considered in Sect. 14.4.

14.1.2 Notation and Conventions

We work over C, but everything will hold over a field of characteristic zero with
appropriate modifications.

In Sects. 14.3 and 14.4 we assume that the reader is familiar with the basic notions
of toric geometry, which can be found in [34, 41]. All toric varieties considered here
are normal. A lattice is a finitely generated free abelian group. The letters N , N , Ñ
stand for lattices and M, M, M̃ for their duals, e.g. M = HomZ(N , Z); the duality
pairing M × N → Z and its extension MR × NR → R are denoted by 〈·, ·〉.

In a real vector space of finite dimension a polytope is the convex hull of finitely
many points, or equivalently a compact subset which is the intersection of finitely
many closed halfspaces. We refer the reader to the book [99] for the geometry of
polytopes.

14.2 Deformations

14.2.1 Infinitesimal Deformations

Let (Comp) be the category of noetherian complete local C-algebras with residue
field C. For every R ∈ (Comp) we denote by mR the maximal ideal of R. Let (Art)
be the subcategory of (Comp) whose objects are artinian, i.e. local finite C-algebras.
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A functor of Artin rings is a functor F from the category (Art) to the category of
sets such that F(C) is the set with one element. We will only consider functor of
Artin rings which satisfy some additional properties: Schlessinger’s axioms (H1)
and (H2) [91] and Fantechi–Manetti condition (L) [37, (2.9)]. We will not specify
these conditions here, but we refer the reader to [37, Sect. 2] for a quick introduction.
Precise formulations and additional details about the notions we introduce below
can be found in any reference about deformation theory, e.g. [13, 36, 50, 70, 91, 92,
95, 97].

A natural transformation (or briefly map) of functors φ : F → G is called smooth
if the lifting property in Grothendieck’s definition of formally smooth morphisms
holds, i.e. for every local surjection A′ � A in (Art) the natural map F(A′) →
F(A) ×G(A) G(A′) is surjective; in particular, if φ is smooth then φ(A) : F(A) →
G(A) is surjective for all A ∈ (Art). A functor F is called smooth if the map from F
to the trivial functor is smooth.

For a functor F , the set F(C[t]/(t2)) has a natural structure of a C-vector space,
denoted by TF and called the tangent space of F . One can prove that F is the trivial
functor if and only if TF = 0. If φ : F → G is a map, then the function φ(C[t]/(t2))
is linear and denoted by Tφ : TF → TG.

If R ∈ (Comp) one can consider the functor hR = Hom(·, R) prorepresented
by R. A map hR → F is equivalent to a pro-object of F on R = lim←− R/mn+1

R , i.e.

an element of the set lim←− F(R/mn+1
R ). A hull for a functor F is a ring R ∈ (Comp)

together with a smooth morphism φ : hR → F such that Tφ is bijective. A hull exists
if and only if TF has finite dimension. If a hull exists, it is unique. Provided that TF
has finite dimension r , then F is smooth if and only if the hull of F is isomorphic
to C[[t1, . . . , tr ]].

For a functor F , consider the set E made up of pairs (π, ξ), where π : A′ →
A is a surjection in (Art) such that mA′ · (ker π) = 0 and ξ ∈ F(A). A C-vector
space V is called an obstruction space for F if there exists a function ω : E →∐

(π,ξ)∈E ker π ⊗C V such that the two following conditions are satisfied:

1. for every (π, ξ) ∈ E, ω(π, ξ) ∈ ker π ⊗C V ;
2. for every (π, ξ) ∈ E, we have that ω(π, ξ) = 0 if and only if there exists ξ ′ ∈

F(A′) which maps to ξ .

There are infinitelymany obstruction spaces for a functor F because any vector space
containing an obstruction space is an obstruction space. A functor F is smooth if and
only if 0 is an obstruction space for F ; in this case we also say that F is unobstructed.
There is a notion of compatible obstruction spaces for a map φ : F → G: this will
be a linear map oφ from an obstruction space of F to an obstruction space of G with
some compatibility properties with respect to φ.

The following is an important smoothness criterion. Assume that φ : F → G is
a map with compatible obstruction map oφ from an obstruction space of F to an
obstruction space of G. If Tφ is surjective and oφ is injective, then φ is smooth.

Let X be a scheme of finite type over C. We denote by Def X the functor of
(infinitesimal) deformations of X . If R ∈ (Comp), a pro-object of Def X on R is
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called a formal deformation of X over R. If R is a hull for Def X , then the cor-
responding formal deformation of X over R is called the miniversal deformation
of X . We say that X is rigid if all deformations of X are trivial. If X is reduced,
then the tangent space of Def X is Ext1(�X ,OX ); in this case X is rigid if and only
if Ext1(�X ,OX ) = 0. If X is either normal or reduced and local complete intersec-
tion (l.c.i. for short), then Ext2(�X ,OX ) is an obstruction space for Def X . If X is
smooth, then Hi (X, TX ) = Exti (�X ,OX ) for all i ≥ 0. In particular, if X is smooth
and affine then it is rigid.

Proposition 1 If X is a smooth Fano variety, thenHi (X, TX ) = 0 for each i ≥ 2. In
particular, the infinitesimal deformations of X are unobstructed, i.e. Def X is smooth.

Proof Let n be the dimension of X . Since the anticanonical line bundle ω∨
X is ample,

by Kodaira–Nakano vanishing we have Hi (X,�n−1
X ⊗ ω∨

X ) = 0 whenever i + n −
1 > n, i.e. i ≥ 2.We conclude because the tangent sheaf TX is isomorphic to�n−1

X ⊗
ω∨

X . �

Let X be a scheme of finite type over C and let Def ltX be the subfunctor of Def X
made up of the locally trivial deformations of X . The tangent space of Def ltX
is H1(X, TX ) and H2(X, TX ) is an obstruction space for Def ltX .

Proposition 2 Let X be a reduced scheme of finite type over C such that X is either
l.c.i. or normal. IfH0(X,Ext1(�X ,OX )) = 0, then all deformations of X are locally
trivial, i.e. Def ltX = Def X .

Proof The local-to-global spectral sequence for Ext gives the following exact
sequence.

0 → H1(TX ) → Ext1(�X ,OX ) → H0(Ext1(�X ,OX ))

→ H2(TX ) → Ext2(�X ,OX )

The vanishing of H0(Ext1(�X ,OX )) implies that the inclusion φ : Def ltX ↪→ Def X
induces an isomorphism on tangent spaces and an injection on obstruction spaces.
Therefore φ is smooth, and consequently surjective. �

In particular, all deformations of a smooth scheme are locally trivial.
Let X be a reduced scheme of finite type over C with isolated singularities.

For each singular point x ∈ X , let Ux be an affine open neighbourhood of x such
that Ux \ {x} is smooth. Then define

Def locX :=
∏

x∈Sing(X)

Def Ux
.

The tangent space of Def locX is H0(X,Ext1(�X ,OX )). If X is either l.c.i. or normal,
then H0(X,Ext2(�X ,OX )) is an obstruction space for Def locX . There is an obvious
map Def X → Def locX which restricts a deformation of X to a deformation of Ux for
each x .
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Proposition 3 Let X be a reduced scheme of finite type over C with isolated sin-
gularities. Assume that X is either l.c.i. or normal. If H2(X, TX ) = 0 then there
are no local-to-global obstructions for the infinitesimal deformations of X, i.e. the
map Def X → Def locX is smooth.

Proof We consider the local-to-global spectral sequence for Ext•(�X ,OX ). The sec-
ond page is given by E p,q

2 = Hp(Extq(�X ,OX )). Since X has isolated singularities,
the sheaves Extq(�X ,OX ) are supported on isolated points for q ≥ 1; in particu-
lar they do not have higher cohomology. This means that E p,q

2 is supported on the
lines p = 0 and q = 0. Therefore, in E2 the only non-zero differential is

d2 : H0(Ext1(�X ,OX )) −→ H2(TX ).

We obtain that the bottom left corner of the third page E3 is the following.

H3(TX ) 0 0 0
cokerd2 0 0 0
H1(TX ) 0 0 0
H0(TX ) ker d2 H0(Ext2(�X ,OX )) H0(Ext3(�X ,OX ))

In E3 the only non-zero differential is

d3 : H0(Ext2(�X ,OX )) −→ H3(TX ).

The bottom left corner of the fourth page E4 is the following.

cokerd3 0 0 0
cokerd2 0 0 0
H1(TX ) 0 0 0
H0(TX ) ker d2 ker d3 H0(Ext3(�X ,OX ))

From the fourth page on, the pieces of total degree ≤ 3 do not change any more.
Therefore we have two short exact sequences:

0 −→ H1(TX ) −→ Ext1(�X ,OX ) −→ ker d2 −→ 0,

0 −→ cokerd2 −→ Ext2(�X ,OX ) −→ ker d3 −→ 0.

These can be joined to construct the following long exact sequence.

0 −→ H1(TX ) −→ Ext1(�X ,OX ) −→ H0(Ext1(�X ,OX ))
d2−→

d2−→ H2(TX ) −→ Ext2(�X ,OX ) −→ H0(Ext2(�X ,OX ))
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So farwedid not use the assumptionH2(TX ) = 0. From this vanishing, via the long
exact sequence above we deduce that the map Def X → Def locX induces a surjection
on tangent spaces and an injection on obstruction spaces. �

14.2.2 Smoothings

Here we discuss smoothability conditions for schemes of finite type over C. We will
only consider the case of equidimensional schemes andwewill refer the reader to [50,
Sect. 29] for a more general treatment, which uses the Lichtenbaum–Schlessinger
functors.

If X is a proper scheme overC, a smoothing of X is a proper flatmorphismX → B
such that B is an integral scheme of finite type over C of positive dimension and
there exists a closed point b0 ∈ B such that the fibre over b0 is X and all the other
fibres are smooth. By restricting to a curve in B and normalising it, we may require
that the base B is a smooth affine curve and that the maximal ideal corresponding
to b0 is principal. We say that X is smoothable if it admits a smoothing.

For every n ≥ 0, set Sn := SpecC[t]/(tn+1). If X is a scheme of finite type overC

with pure dimension d, then a formal smoothing of X is a formal deformation {Xn →
Sn}n of X over C[[t]] such that there exists m such that tm is in the dth Fitting ideal
of�Xm/Sm . We refer the reader to [35, Sect. 20.2] for the definition and the properties
of Fitting ideals.We say that X is formally smoothable if it admits a formal smoothing.
It is clear that if X is formally smoothable, then every open subscheme of X is
formally smoothable.

Remark 4 If {Xn → Sn}n is a formal deformation of X over C[[t]] and tm is in
the dth Fitting ideal of�Xm/Sm , then for all n ≥ m we have that tn is in the dth Fitting
ideal of �Xn/Sn .

The proof of this fact is as follows. We have OXn = OXn+1/t
n+1OXn+1 . Since the

formation of Fitting ideals commutes with base change, we have the equality

Fittd(�Xn/Sn ) = (Fittd(�Xn+1/Sn+1) + tn+1OXn+1)/t
n+1OXn+1 .

Therefore if tn ∈ Fittd(�Xn/Sn ) then t
n ∈ Fittd(�Xn+1/Sn+1) + tn+1OXn+1 , hence t

n+1 ∈
tFittd(�Xn+1/Sn+1) ⊆ Fittd(�Xn+1/Sn+1) as t

n+2 = 0 in OXn+1 .

Lemma 5 Let X be a Cohen–Macaulay proper scheme over C of pure dimension d.
Let B be a smooth curve over C, b0 ∈ B be a closed point, and π : X → B be
a proper flat morphism such that the fibre over b0 is X. Let ξ be the formal mb0 -
adic completion of π at b0, i.e. ξ = {X ×B SpecOB,b0/m

n+1
b0

→ SpecOB,b0/m
n+1
b0

}n.
Then:

1. if π is a smoothing of X, then ξ is a formal smoothing of X;
2. if ξ is a formal smoothing of X, then there exists an open neighbourhood B ′ of b0

in B such that X ×B B ′ → B ′ is a smoothing of X.
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Proof This proof comes from [14, Sect. 0E7S].
Notice that ξ does not change if we restrict π to an open neighbourhood of b0

in B. Therefore, in order to prove the statements (1) and (2) we can arbitrarily restrict
to an open neighbourhood of b0 in B. Hence we may assume that B is affine and the
maximal ideal corresponding to the point b0 is principal, generated by t ∈ OB .

We consider the set W ⊆ X made up of the points x ∈ X such that the local ring
of the fibre Xπ(x) at x is Cohen–Macaulay. By [44, 12.1.7], W is open in X. As π

is closed, B \ π(X \ W ) is an open neighbourhood of b0 in B. Therefore, if we
restrict B to an open neighbourhood of b0 in B, we may assume that all fibres of π

are Cohen–Macaulay. By [14, Lemma 02NM], we may assume that π has relative
dimension d.

Let I ⊆ OX be the dth Fitting ideal of �X/B . For each n, set

Sn = SpecOB,b0/m
n+1
b0

= SpecOB/tn+1OB

and Xn = X ×B Sn; let In ⊆ OXn be the dth Fitting ideal of �Xn/Sn . Since Fitting
ideals commute with base change, we have OXn = OX/tn+1OX and In = IOXn =
(I + tn+1OX)/tn+1OX.

Since π is flat of relative dimension d, the zero locus of I is the singular locus
of π . Moreover, the fibre over b0 is the closed subset V(t). Therefore, the fibre of b0
is the unique singular fibre if and only if t ∈ √

I .
(1) If π is a smoothing, then there exists m such that tm ∈ I . Since Im = (I +

tm+1OX)/tm+1OX, this implies that tm ∈ Im . So ξ is a formal smoothing.
(2) If ξ is a formal smoothing, then tm ∈ Im = (I + tm+1OX)/tm+1OX for somem.

So in OX we have the equality tm = p + tm+1q, for some p ∈ I and q ∈ OX. Writ-
ing tm(1 − tq) = p and noticing that the function 1 − tq does not vanish at the points
of X = V(t), we deduce that tm belongs to the stalk Ix of I at all points x ∈ X . This
implies that tm lies in I in an open neighbourhood U of X in X. Since π is closed,
by restricting B to B \ π(X \U ) we have tm ∈ I . Therefore π is a smoothing. �

Proposition 6 Let X be a Cohen–Macaulay scheme proper over C.

1. If X is smoothable, then every open subscheme of X is formally smoothable.
2. Assume that X is projective and H2(X,OX ) = 0; if X is formally smoothable,

then X is smoothable.

Proof Wemay assume that X is connected. Therefore X has pure dimension, say d.
(1) This follows immediately fromLemma5 and from the fact that if X is formally

smoothable then every open subscheme of X is formally smoothable.
(2) Set d := dim X . Let ξ = {Xn → Sn}n be a formal smoothing of X , where Sn

is SpecC[t]/(tn+1) as usual. Letm be such that tm is in the dth Fitting ideal of�Xm/Sm .
As X is proper over C, the tangent space of Def X has finite dimension, there-

fore Def X has a hull R ∈ (Comp). Let η = {ηn : Yn → Spec R/mn+1
R }n be the

miniversal deformation of X . By [95, Proposition 6.51] or [92, Theorem 2.5.13],
from H2(OX ) = 0 we deduce that η is effective, i.e. there exists a projective flat
morphismX → Spec R whose mR-adic completion is η.

https://stacks.math.columbia.edu/tag/0E7S
https://stacks.math.columbia.edu/tag/02NM
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By a theorem of Artin [11, Theorem 1.6] (see also [50, Theorem 21.3]), the mor-
phismX → Spec R is algebraizable in the following sense: there exist a scheme Z
of finite type over C, a closed point z0 ∈ Z , and a proper flat morphism X → Z ,
with fibre X over z0, such that R is the completion ÔZ ,z0 of the local ring of Z at z0
and X is isomorphic, as R-schemes, to X ×Z Spec R. In particular, the miniversal
deformation η is the collection {X ×Z SpecOZ ,z0/m

n+1
z0 → SpecOZ ,z0/m

n+1
z0 }n . The

situation is summarised in the following cartesian squares, for all n.

Yn X X

Spec R/mn+1
R Spec R = Spec ÔZ ,z0 Z

ηn

As η is miniversal, there exists a local C-algebra homomorphism

ϕ : ÔZ ,z0 = R −→ C[[t]]

such that ξ is induced by η via ϕ, i.e. Xn is isomorphic to Yn ×Spec R/mn+1
R

Sn as Sn-
schemes for every n. By another theorem of Artin [10, Corollary 2.5], the map ϕ has
an algebraic approximation up to orderm in the following sense: there exist a smooth
affine curve B overCwith a closed point b0 ∈ B and aC-morphism f : B → Z such
that f (b0) = z0 and the completion

ϕ′ : ÔZ ,z0 = R −→ ÔB,b0 = C[[t]]

of f #b0 : OZ ,z0 → OB,b0 satisfies the following property:

ϕ ≡ ϕ′ modulo tm+1. (14.1)

Let π be the base changeX ×Z B → B along f : B → Z . Let ξ ′ be the formalmb0 -
adic completion of π , i.e. ξ ′ = {X ×Z SpecOB,b0/m

n+1
b0

→ SpecOB,b0/m
n+1
b0

}n . The
two formal deformations ξ and ξ ′ of X over C[[t]] are in general different, but they
coincide up to orderm because of (14.1). This implies that tm is in the dth Fitting ideal
of the sheaf of Kähler differentials ofX ×Z SpecOB,b0/m

m+1
b0

→ SpecOB,b0/m
m+1
b0

.
Therefore, ξ ′ is a formal smoothing. By Lemma5, up to restrict B to an open neigh-
bourhood of b0 in B, we have that π : X ×Z B → B is a smoothing. �

The following theorem ensures that a projective schemewith formally smoothable
isolated singularities is smoothable, provided that some local and cohomological
conditions hold.

Theorem 7 Let X be a projective scheme over C such that:

1. X is reduced and Cohen–Macaulay;
2. X is either l.c.i. or normal;
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3. H2(X, TX ) = 0 and H2(X,OX ) = 0;
4. X has isolated singularities and for each singular point x ∈ X there exists an

open affine neighbourhood of x which is formally smoothable.

Then X is smoothable.

Proof Set d = dim X . Let x1, . . . , xr be the singular points of X . Let Ui be an
affine open neighbourhood of xi in X which is formally smoothable and such
thatUi \ {xi } is smooth.Let ξi = {Ui,n → Sn}n be a formal smoothingofUi ,where Sn
is SpecC[t]/(tn+1) as usual.

By Proposition3, from H2(TX ) = 0 we deduce that the map Def X → Def locX =∏r
i=1 Def Ui

is smooth. Therefore there exists a formal deformation ξ = {Xn → Sn}n
of X over C[[t]] such that for each i the restriction of ξ to Ui is ξi , i.e. for all n the
restriction of Xn to Ui is Ui,n . By Remark4 we have that ξ is a formal smoothing
of X . We conclude by Proposition6. �

We now see some conditions that imply that a scheme is not smoothable.

Proposition 8 Let X be a singular scheme of finite type over C of pure dimension.
Assume that at least one of the following conditions holds:

1. every infinitesimal deformation of X is locally trivial;
2. the functor Def X has an artinian hull.

Then X is not formally smoothable.

Proof Set d = dim X .
(1) Let U be a singular affine open subscheme of X . Let {Xn → Sn}n be a for-

mal deformation of X over C[[t]]. Let Un be the restriction of Xn to U . By (1) we
get that Un is isomorphic, as Sn-scheme, to the trivial deformation U ×SpecC Sn .
Therefore Fittd(�Un/Sn ) = Fittd(�U/C)OUn . As U is singular, Fittd(�U/C) � OU .
This implies that tn /∈ Fittd(�Un/Sn ).

(2) Let R be the hull of Def X . Every formal deformation of X over C[[t]] is
induced by the miniversal one via a local C-algebra homomorphism f : R → C[[t]].
As every element in mR is nilpotent and C[[t]] is a domain, the homomorphism f
factors as R � R/mR = C ↪→ C[[t]]. This implies that every formal deformation
of X over C[[t]] is trivial. Using a similar argument as in (1), we can prove that X
cannot have a formal smoothing. �

The following corollary, which is a direct consequence of Propositions2, 6 and 8,
gives some obstructions to the smoothability of a Cohen–Macaulay proper scheme.

Corollary 9 Let X be a Cohen–Macaulay scheme proper over C. Let U ⊆ X be an
open subscheme of X such that U is singular, reduced, and either l.c.i. or normal.
If H0(U,Ext1(�U ,OU )) = 0 or Def U has an artinian hull (e.g. if Ext1(�U ,OU ) =
0), then X is not smoothable.
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14.2.3 Invariants

Here we introduce a couple of invariants for Fano varieties.
The Hilbert series of a Fano variety X is the power series defined by its anti-

plurigenera:
Hilb(X,−KX ) :=

∑

m≥0

h0(X,−mKX )tm ∈ Z[[t]].

The (anticanonical) degree of a Fano variety X is the positive rational num-
ber (−KX )n , where n = dim X . If X is Gorenstein, i.e. KX is Cartier, then the degree
is an integer. The degree can be recovered from the Hilbert series because, up to a
constant which depends on the dimension of X , it is the leading term of the Hilbert
polynomial of −KX .

The following proposition shows that the Hilbert series and the anticanonical
degree are deformation invariants for Fano varieties with Gorenstein log terminal
singularities.

Proposition 10 Let S be a noetherian scheme overQ and letπ : X → S be a proper
flatmorphismwhose geometric fibres are Fano varieties withGorenstein log terminal
singularities. Then the Hilbert series and the degree of the fibres are locally constant
on S.

Proof Themorphismπ is a relativelyGorenstein. Therefore, by [47,V.9.7], the dual-
ising sheaf ωπ is a line bundle on X and its restriction to each fibre Xs is OXs (KXs ).

By Serre duality and Kawamata–Viehweg vanishing [63, Theorem 2.70], we
get H1(Xs,OXs (−mKXs )) = 0 for all m ≥ 0 and s ∈ S. By cohomology and base
change [48, Theorem III.12.11], for all m ≥ 0, we get that the sheaf π∗ω⊗−m

π is
locally free and has rank h0(Xs,OXs (−mKXs )) at the point s ∈ S. This implies that
the Hilbert series of the fibres is locally constant on S. �

14.3 Deformations of Affine Toric Varieties

14.3.1 Toric Singularities

In this section we will consider deformations of toric singularities, that is affine toric
varieties. We refer the reader to [34, 41] for an introduction to toric geometry.

If X is an affine toric variety of dimension 2, then X is a cyclic quotient surface
singularity. There is extensive literature about deformations of this kind of singular-
ities, e.g. [19, 27, 64, 88, 93, 94]. In particular, it is known that every affine toric
variety of dimension 2 is smoothable [12].

The study of the deformation theory of affine toric varieties of dimension at least 3
has been initiated by Altmann [4–8]. For example, he computed the tangent space of
the deformation functor of an affine toric variety. We will not write down the explicit
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description of Ext1(�X ,OX ) when X is an affine toric variety, but we will mention
a consequence.

Proposition 11 (Altmann [5, Corollary 6.5.1]) If X is a Q-Gorenstein affine toric
variety which is smooth in codimension 2 and Q-factorial in codimension 3, then X
is rigid.

Corollary 12 Every isolated Q-Gorenstein toric singularity of dimension ≥ 4 is
rigid.

Now we need to do a brief detour on Minkowski sums. If F0, F1, . . . , Fr are
polytopes in a real vector space, theirMinkowski sum is the polytope

F0 + F1 + · · · + Fr := {v0 + v1 + · · · + vr | v0 ∈ F0, v1 ∈ F1, . . . , vr ∈ Fr }.

Whenwe have F = F0 + F1 + · · · + Fr , we say that we have aMinkowski decompo-
sition of the polytope F . We consider Minkowski decompositions up to translation:
for instance, we consider theMinkowski decomposition F = (v + F0) + (−v + F1)

to be equivalent to F = F0 + F1 for every vector v. Moreover, in what follows we
require that the summands Fj are lattice polytopes, i.e. their vertices belong to a
fixed lattice.

Altmann [5] has noticed that certain Minkowski decompositions induce deforma-
tions of affine toric varieties. In Sect. 14.3.2 we will see an example of this fact. For
the proof we refer the reader to the original reference [5] and to [71, 81].

Now let us concentrate on Gorenstein toric singularities. They are associated to
lattice polytopes of dimension one less than the dimension of the singularity. More
precisely, let F be a lattice polytope of dimension n − 1 in a lattice N of rank n − 1
and let UF be the affine toric variety associated to the cone σF = R≥0(F × {1})
in the lattice N := N ⊕ Z, i.e. UF = SpecC[σ∨

F ∩ M], where M = M ⊕ Z is the
dual of N and σ∨

F is the dual cone of σF . We have that UF has dimension n and is
Gorenstein. All Gorenstein affine toric varieties without torus factors arise in this
way from a lattice polytope. The isomorphism class of UF does not change if we
change F via an affine transformation in N � GL(N , Z).

As usual in toric geometry, the geometric properties of UF can be deduced from
the combinatorial properties of F . For instance:

1. UF is smooth in codimension k if and only if all faces of F with dimension < k
are standard simplices;

2. UF isQ-factorial in codimension k if and only if all faces of F with dimension< k
are simplices.

It is always the case thatUF is smooth in codimension 1 and Q-factorial in codimen-
sion 2.

If F is a segment of lattice length m + 1, then UF is the Am surface singular-
ity SpecC[x, y, z]/(xy − zm+1). This is an isolated hypersurface singularity, there-
fore it is very easy towrite down theminiversal deformation: xy = zm+1 + tmzm−1 +
· · · + t1 over C[[t1, . . . , tm]]. It is clear that this singularity is smoothable.
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Fig. 14.1 A standard square, a standard triangle, an A1-triangle and an A2-triangle

If F is a lattice polygon, then the affine toric threefold UF has the following
properties:

1. UF has, at most, an isolated singularity if and only if the edges of F are unitary,
i.e. have lattice length 1;

2. UF is Q-factorial if and only if F is a triangle.

Now we provide some examples of lattice polygons and their corresponding toric
Gorenstein affine threefolds.

Example 13 A lattice polygon F is called a standard square (Fig. 14.1) if it is a
quadrilateral such that all its lattice points are vertices, or equivalently if it is Z

2
�

GL2(Z)-equivalent to conv{(0, 0), (1, 0), (1, 1), (0, 1)} ⊆ R
2. If F is a standard

square, then UF is the ordinary double point (i.e. node) SpecC[x, y, z, w]/(xy −
zw). This singularity is clearly smoothable as it is a hypersurface singularity. Its
miniversal deformation is given by xy − zw = t over C[[t]].

A lattice polygon F is called a standard triangle if it is a triangle such that
all its lattice points are vertices, or equivalently if it is Z

2
� GL2(Z)-equivalent

to conv{(0, 0), (1, 0), (0, 1)} ⊆ R
2. F is a standard triangle if and only if UF is

isomorphic to A
3.

If m ≥ 1, then a lattice polygon F is called an Am-triangle if it is a triangle such
that there are no interior lattice points and the edges have lattice lengths 1, 1,m + 1,
respectively. Equivalently, a polygon is an Am-triangle if and only if it is Z

2
�

GL2(Z)-equivalent to conv{(0, 0), (m + 1, 0), (0, 1)} ⊆ R
2. If F is an Am-triangle,

then UF is the cAm-singularity SpecC[x, y, z, w]/(xy − zm+1). This singularity is
clearly smoothable as it is a hypersurface singularity.

Altmann [7] explicitly constructed the miniversal deformation of an isolated
Gorenstein toric singularity of dimension 3. (By Corollary12 it is trivial to construct
the miniversal deformation of an isolated Gorenstein toric singularity of dimen-
sion ≥ 4.) A consequence of his construction is the following description of the
irreducible components of the base of the miniversal deformation.

Theorem 14 (Altmann [7]) Let F be a lattice polygon with unitary edges and let UF

be the corresponding isolated Gorenstein toric singularity of dimension 3. Let R be
the hull of Def UF

. Then there exists a one-to-one correspondence between minimal
primes of R and maximal Minkowski decompositions of F. Moreover, if a minimal
prime p ⊂ R corresponds to the maximal Minkowski decomposition F = F0 + F1 +
· · · + Fr , then r = dim R/p.



14 On Deformations of Toric Fano Varieties 299

Corollary 15 Let F be a lattice polygon with unitary edges and let UF be the
associated isolated Gorenstein toric singularity of dimension 3. Then Def UF

has an
artinian hull if and only if F is Minkowski indecomposable.

14.3.2 The Affine Cone over the Del Pezzo Surface
of Degree 7

Here we study an explicit example of what has been considered in Sect. 14.3.1. In
the lattice N = Z

2 consider the pentagon

F = conv

{(
1
0

)

,

(
1
1

)

,

(
0
1

)

,

(−1
0

)

,

(
0

−1

)}

⊆ NR, (14.2)

which is depicted on the left of Fig. 14.2. The toric variety associated to the face
fan of F is the smooth del Pezzo surface of degree 7, which is denoted by dP7 and
is the blow up of P

2 in 2 distinct points. The anticanonical map of dP7 is a closed
embedding into P

7.
Nowwe put the pentagon F at height 1 in the lattice N = N ⊕ Z and we consider

the cone over it:

σF = cone

⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
1
1
1

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
−1
0
1

⎞

⎠ ,

⎛

⎝
0

−1
1

⎞

⎠

⎫
⎬

⎭
⊆ NR ⊕ R.

The affine toric varietyUF = SpecC[σ∨
F ∩ (M ⊕ Z)] is the affine cone over the anti-

canonical embedding of dP7 and has an isolated Gorenstein canonical non-terminal
singularity at the vertex of the cone.

Altmann [7, (9.1)] shows that the hull of Def UF
is C[[t1, t2]]/(t21 , t1t2), which is a

line with an embedded point. The reduction of the miniversal deformation, i.e. the
base change to the reduction of the hull, is induced by the uniquemaximalMinkowski
decomposition of the pentagon F in the following way.

Fig. 14.2 The Minkowski decomposition (14.3) of the pentagon F in (14.2)
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In the lattice N we have the Minkowski decomposition

F = conv

{(
0
0

)

,

(−1
0

)

,

(
0

−1

)}

+ conv

{(
0
0

)

,

(
1
1

)}

, (14.3)

which is illustrated in Fig. 14.2. Following [5, (3.4)], in the lattice Ñ = N ⊕ Ze1 ⊕
Ze2 we construct the cone

σ̃ = cone

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

0
0
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

−1
0
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
−1
1
0

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

0
0
0
1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

1
1
0
1

⎞

⎟
⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭

⊆ ÑR.

Notice that the the first three rays of σ̃ come from the vertices of the first summand
of F in (14.3), whereas the last two rays of σ̃ come from the vertices of the second
summand of F in (14.3). Let Ũ = SpecC[σ̃∨ ∩ M̃] be the affine toric variety asso-
ciated to the cone σ̃ , where M̃ denotes the dual of Ñ . One can prove that Ũ has only
an isolated terminal Gorenstein singularity. Let f1 and f2 be the regular functions
on Ũ associated to the characters (0, 0, 1, 0) ∈ M̃ and (0, 0, 0, 1) ∈ M̃ , respectively.
The variety UF is the zero locus of the function f1 − f2, i.e. we have a cartesian
diagram

UF Ũ

π

SpecC A
1
C

(14.4)

where π is given by the function f1 − f2 and the bottom morphism is given by
the origin of A

1
C
. Since f1 − f2 is not constant and A

1
C
is regular of dimension

1, the morphism π is flat. The reduction of the miniversal deformation of UF is the
formal deformation ofUF overC[[t]] obtained from the square (14.4) by base change
via SpecC[t]/(tn+1) ↪→ SpecC[t] = A

1
C
for all n. The following proposition shows

that this is a formal smoothing.

Proposition 16 Let F be the pentagon defined in (14.2) and let UF be the cor-
responding Gorenstein toric threefold singularity. Then the collection of the base
change of π in (14.4) via SpecC[t]/(tn+1) → SpecC[t] = A

1
C
for all n is a formal

smoothing of UF . In particular, UF is formally smoothable.

Proof We want to study the closed fibres of π . The fibre over the origin of A
1
C

is UF . Let us fix λ ∈ C \ {0} and we consider the fibre π−1(λ) of π over the closed
point (t − λ) of A

1
C
corresponding to λ. We consider the subcone τ1 (resp. τ2) of σ̃

that is generated by the first three (resp. last two) rays of σ̃ . We consider the affine
toric varietyWj = SpecC[τ∨

j ∩ M̃], for j = 1, 2. We have thatW1 andW2 are open

subschemes of Ũ .
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We have that W1 is the open subset of Ũ where the function f2 does not vanish,
i.e.W1 = { f2 �= 0} ⊆ Ũ , and analogouslyW2 = { f1 �= 0} ⊆ Ũ . It is clear that there
is an isomorphismW1 � A

3 × Gm with respect to which the function f1|W1 becomes
a projection onto aA

1-factor inA
3 and the function f2|W1 becomes the projection onto

the Gm-factor. There is also an isomorphism W2 � A
2 × G

2
m with respect to which

the function f1|W2 becomes a projection onto a Gm-factor and the function f2|W2

becomes a projection onto an A
1-factor.

Now π−1(λ) ∩ W1 = { f1 = f2 + λ} ∩ W1 is isomorphic toA
2 × Gm and π−1(λ)

∩ W2 = { f2 = f1 − λ} ∩ W2 is isomorphic to A
1 × G

2
m. Since λ �= 0, it is clear

that π−1(λ) ⊆ W1 ∪ W2. Therefore we have proved that π−1(λ) is smooth.
One can also show that the generic fibre of π is smooth over the generic point

of A
1
C
. In order to prove this, it is enough to base change to the spectrum of the

field C(t) of rational function of A
1
C
and pursue a similar argument, which deals

with toric varieties over the field C(t).
In particular, π is flat of relative dimension 3 and has Cohen–Macaulay fibres. As

in the proof of Lemma5, from the fact that all non-special fibres of π are smooth we
can deduce that π induces a formal smoothing of UF . �

14.4 Deformations of Toric Fano Varieties

14.4.1 Fano Polytopes

Fano polytopes are the combinatorial-polyhedral avatars of toric Fano varieties.

Definition 17 A polytope P in a lattice N of rank n is called Fano if:

1. P has dimension n;
2. the origin 0 lies in the interior of P;
3. the vertices of P are primitive lattice elements of N .

If P is a Fano polytope, we denote by XP the complete toric variety associated to
the spanning fan (also called the face fan) of P .

If P is a Fano polytope, then XP is a Fano variety. All toric Fano varieties arise
in this way from a Fano polytope [34, Sect. 8.3]. The variety XP is Gorenstein,
i.e. its (anti)canonical divisor is Cartier, if and only if P is reflexive, i.e. the facets
of P lie on hyperplanes with height 1 with respect to the origin. The maximal toric
affine charts of XP (or equivalently the torus-fixed points of XP ) are in one-to-one
correspondence with the facets of P . If n is the dimension of P , for every 0 ≤ k ≤ n
there is a one-to-one correspondence between the k-dimensional torus-orbits of XP

and the (n − k − 1)-dimensional faces of P .
Fano polytopes of small dimension with specific properties have been classi-

fied [15, 16, 57–59, 65–67, 77, 78, 89, 90, 98]. We refer the reader to [60] for a
survey on the classification of Fano polytopes.
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14.4.2 Two Sufficient Conditions for Non-smoothability

It is an open problem to understand whether an arbitrary toric Fano variety is smooth-
able. Here we state a couple of conditions that forbid the smoothability. Both condi-
tions on a toric Fano variety X are based on the existence of an open affine singular
subscheme U such that U is not formally smoothable.

Theorem 18 Let N be a lattice, let P be a Fano polytope in N, and let X be the
toric Fano variety associated to the spanning fan of P. Assume that there exists a
face F of P which satisfies the following conditions:

1. for each 1-face F ′ of F, there exists a basis of N which contains the two vertices
of F ′;

2. each 2-face of F is a triangle;
3. there exists no basis of N which contains all the vertices of F.

Then X is not smoothable.

Proof Let U be the affine toric open subscheme of X associated to the cone
spanned by the face F . The condition (1) means that U is smooth in codimension
2. The condition (2) means that U is Q-factorial in codimension 3. Therefore U is
rigid by Proposition11. The condition (3) implies that U is singular. Therefore, by
Corollary9, X is not smoothable. �

If P is a reflexive polytope of dimension 3, then the theorem above applies if
there exists a triangular facet F with unitary edges and such that it is not a standard
triangle. Below we see that we can relax the condition of F being triangular to F
being Minkowski-indecomposable.

Proposition 19 Let P be a reflexive polytope of dimension 3 and let X be the toric
Fano threefold associated to the spanning fan of P. Assume that there exists a facet F
of P such that:

1. F has unitary edges;
2. F is Minkowski-indecomposable;
3. F is not a standard triangle (i.e. the vertices of F do not form a basis of the

lattice).

Then X is not smoothable.

Proof The proof is very similar to the proof of Theorem18. Let U be the affine
toric open subscheme of X associated to the cone spanned by F . The conditions (1)
and (3)means thatU has an isolated singularity. Since P is reflexive,U is Gorenstein.
By Corollary15, from (2) we deduce that Def U has an artinian hull. Therefore, by
Proposition8, U is not formally smoothable. By Corollary9, X is not smoothable.

�
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14.4.3 Rigidity

Here we will see that if a toric Fano variety has very mild singularities then it is rigid.

Lemma 20 Let X be a toric Fano variety. Then Hi (X, TX ) = 0 for each i ≥ 1. In
particular, all locally trivial deformations of X are trivial.

Proof Set n = dim X . Consider the smooth locus j : U ↪→ X . Let D be the toric
boundary of X . The sheaves TX and ( j∗�n−1

U ⊗ OX (D))∨∨ are reflexive on X
and their restrictions to U coincide, because U is smooth and TU is isomorphic
to �n−1

U ⊗ ω∨
U . Therefore, since the complement ofU has codimension at least 2, by

[49, Proposition 1.6]wehave that TX is isomorphic to ( j∗�n−1
U ⊗ OX (D))∨∨. Since D

is ample, we conclude by Bott–Steenbrink–Danilov vanishing [34, Theorem 9.3.1]
(see also [24, 40, 75]). �

An immediate consequence of the lemma above is the following result.

Proposition 21 Every smooth toric Fano variety is rigid.

This result was originally proved by Bien and Brion [20]. Later de Fernex and
Hacon [38] proved the rigidity of Q-factorial terminal toric Fano varieties. The
following theorem, due to Totaro, is the most general rigidity theorem for toric
Fano varieties of which we are aware.

Theorem 22 (Totaro [96, Theorem 5.1]) A Fano toric variety which is smooth in
codimension 2 and Q-factorial in codimension 3 is rigid.

Proof By Lemma20, H1(TX ) = 0. By Proposition11, the sheaf Ext1(�X ,OX ) is
zero. From the five term exact sequence of Ext, which is written in the proof of
Proposition2, we deduce that Ext1(�X ,OX ) is zero. �

If P is a Fano polytope, then XP satisfies the hypotheses of this theorem if and
only if all 2-faces of P are triangles and each edge, i.e. 1-face, of P has lattice length 1
and is contained in some hyperplane which has height 1 with respect to the origin.

Corollary 23 Let X be a toric Fano variety of dimension ≥ 4. If X has isolated
singularities, then X is rigid.

In Sects. 14.4.4 and 14.4.5 we will study deformations of toric Fanos with isolated
singularities and of dimension 2 or 3.

14.4.4 Toric del Pezzo Surfaces

A del Pezzo surface is a Fano variety of dimension 2. A toric del Pezzo surface is
associated to a Fano polygon, which is a Fano polytope of dimension 2.
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Theorem 24 Every toric del Pezzo surface is smoothable.

Proof Let X be an arbitrary toric del Pezzo surface. It is well known that X
is a normal Cohen–Macaulay projective variety. By Demazure vanishing
[34, Theorem 2.9.3], H2(OX ) = 0. By Lemma20, H2(TX ) = 0. Since X is normal
and of dimension 2, X has isolated singularities. By Theorem7 it is enough to check
that the singularities of X are formally smoothable.

The singularities of X are cyclic quotient surface singularities. This kind of sin-
gularities is always smoothable; indeed, it is enough to pick the Artin component of
the base of the miniversal deformation [12]. �

Remark 25 When the canonical divisor of a normal variety X is not Cartier, flat
deformations of X are too wild for hoping to study moduli of varieties. For a
normal Q-Gorenstein non-Gorenstein variety X one should consider a subfunctor
of Def X which is made up of the deformations of X in which the canonical divi-
sor deforms well. This is the theory of Q-Gorenstein deformations, developed by
Kollár–Shepherd-Barron [64] (see also [1, 9, 45, 68]).

In the context of Q-Gorenstein deformations the analogous statement of
Theorem24 is false: there exist non-Gorenstein toric del Pezzo surfaces which can-
not be deformed via Q-Gorenstein deformations to a smooth del Pezzo surface, e.g.
the weighted projective space P(1, 1, 3). Nonetheless, it is true that forQ-Gorenstein
deformations of del Pezzo surfaces there are no local-to-global obstructions [2,
Lemma 6]. Therefore, a del Pezzo surface is Q-Gorenstein smoothable if and only
if its singularities are Q-Gorenstein smoothable.

Since the main focus of this note is the study of deformations of Gorenstein toric
Fano threefolds, we will omit to discuss the theory of Q-Gorenstein deformations.
We refer the reader to [46, 82] for the study of toric del Pezzo surfaces which haveQ-
Gorenstein smoothings.

14.4.5 Toric Fano Threefolds with Isolated Singularities

Theorem 26 Let X be a toric Fano variety of dimension 3with isolated singularities.
Then X is smoothable if and only if its singularities are formally smoothable.

Proof ByProposition6, if X is smoothable then its singularities are formally smooth-
able. Conversely, suppose that the singularities of X are formally smoothable. Then
we argue as in the proof of Theorem24: X is a normal Cohen–Macaulay projective
variety with H2(OX ) = 0, by [34, Theorem 2.9.3], and H2(TX ) = 0, by Lemma20.
By Theorem7, X is smoothable. �

Corollary 27 Let P be a reflexive polytope of dimension 3 and let X be the toric
Fano threefold associated to the spanning fan of P. If each facet of P is either a
standard triangle or a standard square (see the definition in Example13), then X is
smoothable.
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Proof By Example13 we have that the singularities of X are at most ordinary double
points (i.e. nodes). These singularities are formally smoothable. By Theorem26 we
conclude. �

The proof of this corollary is essentially a specific case of [39, Sect. 4.a]. The
corollary could have been deduced also from a more general result by Namikawa
according to which every Fano threefold with Gorenstein terminal singularities is
smoothable [76]. The smooth Fano threefolds which are the smoothings of the toric
Fano threefold appearing in Corollary27 have been studied by Galkin [42].

For d ∈ {6, 7}, let dPd be the smooth del Pezzo surface of degree d; it is toric. The
complete anticanonical linear systemon dPd induces a closed embedding dPd ↪→ P

d .
We consider the projective cone C(dPd) ⊆ P

d+1 over this embedding; we have
that C(dPd) is a toric Fano threefold with a Gorenstein canonical non-terminal iso-
lated singularity. In Sect. 14.4.6 we will see that C(dP7) is smoothable. In [80] it is
shown that C(dP6) has two smoothings (see also [56, Example 3.3]).

14.4.6 The Projective Cone over the Del Pezzo Surface of
Degree 7

Here we study the deformations of an explicit toric Fano threefold with an isolated
Gorenstein non-terminal singularity.

Fix the lattice N = Z
2. Consider the pentagon F ⊆ NR defined in (14.2), imagine

to put it into the plane NR × {1} in NR ⊕ R � R
3, and create the pyramid over it

with apex at the point (0, 0,−1): this is the polytope

P = conv

⎧
⎨

⎩

⎛

⎝
1
0
1

⎞

⎠ ,

⎛

⎝
1
1
1

⎞

⎠ ,

⎛

⎝
0
1
1

⎞

⎠ ,

⎛

⎝
−1
0
1

⎞

⎠ ,

⎛

⎝
0

−1
1

⎞

⎠ ,

⎛

⎝
0
0

−1

⎞

⎠

⎫
⎬

⎭
(14.5)

in the lattice N ⊕ Z and is depicted in Fig. 14.3. It is clear that P is a Fano polytope.

Fig. 14.3 The
3-dimensional lattice
polytope P defined in (14.5)
and associated to the
projective cone over the
del Pezzo surface of degree 7
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Let X be the toric variety associated to the spanning fan of P . Then X is the
projective cone over the anticanonical embedding of the smooth del Pezzo surface
of degree 7. The affine toric variety UF considered in Sect. 14.3.2 is the affine open
toric subscheme of X associated to the pentagonal facet F of P . We have that X is a
Fano threefold with an isolated non-terminal canonical Gorenstein singularity at the
vertex of the cone.

Proposition 28 Let X be the toric Fano threefold associated to the polytope P in
(14.5), i.e. X is the projective cone over the anticanonical embedding of the smooth
del Pezzo surface of degree 7. Then X is smoothable and can be deformed to the
smooth Fano threefold P(OP2 ⊕ OP2(1)).

Proof ByProposition16, X has an isolated singularitywhich is formally smoothable.
By Theorem26 we know that X is smoothable. We need to know to which smooth
Fano threefold X can be deformed.

From toric geometry [34, Theorem 13.4.3], we have that the anticanonical
degree (−KX )3 is the normalised volume of the polar polytope of P , which is 56 in
this case. Since X has Gorenstein canonical singularities, by Proposition10 we have
that the anticanonical degree is preserved in the smoothing. By inspecting the list
of smooth Fano threefolds (see [53, 54, 72–74] or [55, Sect. 12]), there is a unique
smooth Fano threefold of anticanonical degree 56, namely P(OP2 ⊕ OP2(1)). �

14.4.7 Another Sufficient Condition for Non-smoothability

In addition to the result of Proposition19, here we present another obstruction for
the smoothability of a toric Fano threefold with Gorenstein singularities.

Theorem 29 ([79]) Let N be a lattice of rank 3, let M = HomZ(N , Z), let 〈·, ·〉 : M
× N → Z be the duality pairing, let P be a reflexive polytope in N, and let X be the
toric Fano threefold associated to the spanning fan of P. Assume that there are two
adjacent facets F0 and F1 of P such that:

1. both F0 and F1 are An-triangles for some integer n ≥ 1 (see the definition in
Example13);

2. F0 ∩ F1 is a segment with n + 2 lattice points;
3. 〈w1, v0〉 = 0, wherew1 ∈ M is such that F1 ⊆ {v ∈ NR | 〈w1, v〉 = 1} and v0 ∈

N is the vertex of F0 which does not lie on the segment F0 ∩ F1.

Then X is not smoothable.

With the terminology of [79], the two triangles F0 and F1 are called “two adjacent
almost-flat An-triangles”.

Proof (Sketch of the proof of Theorem 29) We refer the reader to [79] for all the
details missing here. Let Ui be the toric open affine subscheme of X associated to
the facet Fi , for each i = 0, 1. Set U = U0 ∪U1.



14 On Deformations of Toric Fano Varieties 307

One can show thatU admits an An-bundle structure over P
1. More precisely, one

can construct a toric morphism π : U → P
1 such that, for each i = 0, 1, if Vi denotes

the i th standard affine chart of P
1 then π−1(Vi ) = Ui and the restriction π |Ui : Ui →

Vi is the projection SpecC[x, y, z, w]/(xy − zn+1) → SpecC[w]. This An-bundle
may be non trivial, depending on the relative position of the two triangles F0 and F1.
Set d = 〈w1, v0〉. By [79, Proposition 3.5] there exists an isomorphism of coherent
sheaves on P

1:
π∗Ext1OU

(�U ,OU ) �
⊕

2≤ j≤n+1

OP1(− jd − j).

Since d = 0, the sheaf on the right is a direct sum of negative line bundles on P
1,

hence we have H0(U,Ext1OU
(�U ,OU )) = 0. By Corollary9, X is not smoothable.

�

With the same technique of the theorem above one can also construct some rigid
toric Fano threefoldswith only cA1-singularities (see [79, Theorem1.2]). This refutes
a conjecture of Prokhorov [85] according to which every Fano threefold with com-
pound Du Val singularities is smoothable.

14.4.8 Other Methods

Here we briefly collect some other results on deformations and smoothings of toric
Fano varieties. Most of these results have been motivated by Mirror Symmetry for
Fano varieties (see [2, 3, 26, 30, 31, 61, 86, 87]).

Byanalysing cluster transformations of tori,Akhtar–Coates–Galkin–Kasprzyk [3]
have introduced the notion of mutation of Fano polytopes. A mutation is a combi-
natorial procedure that, under certain conditions, transforms a Fano polytope P into
another Fano polytope P ′. Ilten [51] has proved that mutations of Fano polytopes
induce deformations of the corresponding toric Fano varieties; more precisely, if P
and P ′ are related via a mutation, then he has constructed a flat family over P

1 such
that the fibre over 0 is XP and the fibre over ∞ is XP ′ .

Ilten, Lewis and Przyjalkowski [52] have constructed toric degenerations of
smooth Fano threefolds with Picard rank 1.

Christophersen and Ilten [29] have constructed degenerations of smooth Fano
threefolds of low degree to certain unobstructed Fano Stanley–Reisner schemes.
Since these unobstructed Fano Stanley–Reisner schemes are also degenerations of
singular toric Fano varieties, this implies the following result.

Theorem 30 (Christophersen–Ilten [28, Proposition 4.2, Theorems 5.1, 7.1]) Let X
be a toric Fano threefoldwithGorenstein singularities. If (−KX )3 ∈ {4, 6, 8, 10, 12},
then X is smoothable.

Coates–Kasprzyk–Prince [32] have introduced a combinatorial gadget, called scaf-
folding, on a Fano polytope P which induces a closed embedding of the toric Fano
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variety XP into a bigger toric varietyY . Often XP is a complete intersection in theCox
coordinates of Y , therefore it is easy to construct embedded deformations of XP in Y .
In many cases this produces smoothings of XP . For instance, Cavey and Prince [25]
have successfully applied the scaffolding method to construct deformations of toric
del Pezzo surfaces to del Pezzo surfaces with a single 1

k (1, 1) singularity.
Moreover, Prince [83] has found necessary and sufficient conditions in order to

have that the ambient toric variety Y is smooth: this is the notion of cracked polytope.
He has also found a sufficient condition for a smoothing of XP to exist inside Y . Via
the scaffolding method and cracked polytopes, in [84] he constructs a degeneration
of each smooth Fano threefold with very ample anticanonical bundle and Picard
rank ≥ 2 to a Gorenstein toric Fano threefold.

14.5 Lists of Reflexive Polytopes of Dimension 3

Below we write lists of reflexive polytopes of dimension 3 which satisfy specific
properties. There are exactly 4319 reflexive polytopes of dimension 3: the classifi-
cation is due to Kreuzer and Skarke [66]. The IDs we use are numbers between 1
and 4319 and come from the Graded Ring Database [23]. All polytopes we consider
below are reflexive of dimension 3. They correspond to toric Fano threefolds with
Gorenstein singularities. We denote by XP the toric Fano threefold associated to the
spanning fan of P .

Let Ssmoothable be the set of polytopes P such that the corresponding toric Fano
threefold XP is smoothable. It is an open question to explicitly compute Ssmoothable.

Let Ssmooth be the set of polytopes which have only standard triangles as facets.
These 18 polytopes correspond to the smooth toric Fano threefolds.

Let Sisol be the set of polytopes with unitary edges such that at least one facet is
not a standard triangle. These 137 polytopes correspond to the singular toric Fano
threefolds with isolated Gorenstein singularities.

Let Snodes be the set of polytopes such that all facets are either standard triangles
or standard squares and there is at least a square facet. These 82 polytopes correspond
to the singular toric Fano threefolds with at most ordinary double points, or equiv-
alently to the singular toric Fano threefolds with Gorenstein terminal singularities.
By Corollary27 these varieties are smoothable.

LetSlow be the set of polytopes P such that the normalised volume of the polar P∗
of P belongs to {4, 6, 8, 10, 12}. These 220 polytopes correspond to the toric Goren-
stein Fano threefolds X such that (−KX )3 ∈ {4, 6, 8, 10, 12}.

LetSindec be the set of polytopes which contain a facet F which has unitary edges,
is Minkowski indecomposable and is not a standard triangle. By Proposition19 the
corresponding toric Fano threefolds are not smoothable.

Let Saft be the set of polytopes which contain a pair of adjacent almost-flat An-
triangles, for some n ≥ 1. In other words, the setSaft contains exactly all polytopes P
to which Theorem29 applies. Therefore, the corresponding toric Fano threefolds are
not smoothable.
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LetS denote the set of all reflexive polytopes of dimension 3, i.e. the set of positive
integers not greater than 4319. We have:

Snodes ⊆ Sisol ⊆ S \ Ssmooth,

Ssmooth ∪ Snodes ∪ Slow ⊆ Ssmoothable,

Sindec ∪ Saft ⊆ S \ Ssmoothable.

Below we write down the elements of most of the sets mentioned above.
Ssmooth = {1, 5, 6, 7, 8, 25, 26, 27, 28, 29, 30, 31, 82, 83, 84, 85, 219, 220}
Sisol = {3, 4, 11, 12, 17, 21, 22, 23, 24, 42, 48, 49, 50, 51, 54, 68, 69, 70, 71, 72,

73, 74, 75, 76, 77, 78, 79, 80, 81, 155, 156, 158, 159, 160, 167, 168, 170, 177, 187,
188, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,
214, 215, 216, 217, 218, 360, 363, 364, 365, 366, 376, 377, 378, 380, 385, 403, 410,
411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422, 423, 424, 425, 426, 427,
686, 688, 689, 692, 693, 694, 695, 696, 707, 710, 725, 729, 730, 731, 732, 733, 734,
735, 736, 737, 738, 739, 740, 741, 1085, 1086, 1087, 1091, 1092, 1093, 1109, 1110,
1111, 1112, 1113, 1114, 1517, 1518, 1519, 1524, 1528, 1529, 1530, 1941, 1943,
2355, 2356}

Snodes = {4, 21, 22, 23, 24, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214,
215, 216, 217, 218, 410, 411, 412, 413, 414, 415, 416, 417, 418, 419, 420, 421, 422,
423, 424, 425, 426, 427, 729, 730, 731, 732, 733, 734, 735, 736, 737, 738, 739, 740,
741, 1109, 1110, 1111, 1112, 1113, 1114, 1528, 1529, 1530, 1943, 2356}

Slow = {1946, 2711, 2756, 2817, 3043, 3051, 3053, 3079, 3314, 3319, 3329,
3331, 3349, 3350, 3390, 3393, 3406, 3416, 3447, 3452, 3453, 3505, 3573, 3620,
3625, 3626, 3667, 3683, 3702, 3727, 3728, 3731, 3733, 3735, 3736, 3738, 3739,
3740, 3756, 3760, 3762, 3777, 3790, 3791, 3792, 3795, 3796, 3844, 3845, 3846,
3848, 3853, 3857, 3868, 3869, 3874, 3875, 3879, 3901, 3903, 3922, 3923, 3927,
3928, 3933, 3936, 3937, 3938, 3946, 3962, 3964, 3965, 3966, 3967, 3981, 3983,
3984, 3985, 3991, 3995, 4003, 4004, 4005, 4006, 4007, 4022, 4023, 4024, 4027,
4031, 4032, 4041, 4042, 4043, 4044, 4056, 4058, 4059, 4060, 4070, 4074, 4075,
4076, 4080, 4088, 4092, 4094, 4095, 4102, 4104, 4117, 4118, 4119, 4122, 4124,
4131, 4132, 4133, 4134, 4135, 4143, 4144, 4145, 4149, 4159, 4160, 4161, 4167,
4168, 4169, 4170, 4179, 4180, 4181, 4182, 4183, 4184, 4186, 4190, 4191, 4194,
4200, 4202, 4203, 4205, 4206, 4214, 4215, 4216, 4217, 4218, 4219, 4220, 4225,
4228, 4229, 4231, 4232, 4233, 4235, 4236, 4238, 4239, 4241, 4244, 4245, 4246,
4247, 4249, 4250, 4251, 4252, 4254, 4255, 4256, 4258, 4260, 4261, 4263, 4267,
4268, 4269, 4270, 4272, 4273, 4275, 4278, 4280, 4281, 4282, 4284, 4285, 4286,
4287, 4288, 4290, 4291, 4292, 4293, 4294, 4295, 4297, 4298, 4299, 4300, 4301,
4303, 4304, 4307, 4308, 4309, 4310, 4311, 4312, 4313, 4314, 4315, 4317, 4318,
4319}

Sindec = {3, 12, 17, 32, 38, 48, 49, 51, 54, 88, 91, 94, 98, 99, 100, 101, 102, 103,
105, 115, 119, 121, 134, 137, 138, 141, 142, 155, 158, 159, 170, 188, 228, 235, 239,
242, 243, 247, 248, 252, 254, 256, 260, 262, 265, 271, 278, 293, 294, 298, 299, 301,
317, 318, 330, 351, 353, 360, 378, 380, 438, 439, 440, 443, 445, 455, 468, 480, 491,
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492, 493, 497, 501, 502, 515, 525, 526, 529, 530, 532, 539, 541, 543, 546, 550, 553,
562, 570, 575, 604, 608, 609, 614, 620, 645, 650, 660, 663, 688, 744, 752, 753, 754,
756, 760, 774, 775, 776, 780, 784, 790, 791, 792, 800, 834, 841, 844, 845, 852, 856,
859, 864, 866, 887, 900, 908, 912, 914, 923, 935, 963, 979, 990, 991, 1012, 1019,
1020, 1130, 1151, 1154, 1183, 1199, 1204, 1205, 1208, 1215, 1218, 1220, 1261,
1275, 1277, 1283, 1299, 1302, 1309, 1311, 1352, 1370, 1384, 1397, 1547, 1585,
1598, 1631, 1636, 1638, 1679, 1683, 1687, 1693, 1728, 1750, 1751, 1777, 1791,
1992, 2014, 2046, 2047, 2050, 2051, 2080, 2081, 2084, 2096, 2124, 2129, 2379,
2404, 2425, 2427, 2455, 2456, 2716, 2750, 2751, 2755}

Saft = {15, 16, 36, 41, 45, 53, 58, 59, 61, 65, 66, 102, 105, 110, 111, 112, 113,
116, 117, 124, 125, 128, 135, 141, 142, 144, 146, 147, 148, 149, 152, 162, 172, 179,
183, 189, 192, 193, 197, 230, 236, 244, 248, 261, 268, 271, 272, 277, 278, 279, 280,
281, 282, 286, 288, 290, 292, 302, 310, 324, 325, 327, 331, 332, 333, 334, 335, 337,
340, 343, 347, 349, 351, 355, 356, 358, 361, 362, 386, 399, 400, 407, 443, 445, 448,
452, 453, 456, 457, 463, 467, 487, 490, 496, 497, 499, 501, 502, 505, 507, 508, 509,
511, 512, 516, 523, 540, 545, 550, 563, 569, 577, 579, 581, 582, 583, 594, 599, 600,
601, 605, 606, 617, 629, 633, 658, 670, 671, 672, 674, 679, 682, 687, 705, 760, 764,
770, 771, 780, 781, 786, 787, 792, 797, 799, 809, 811, 812, 815, 816, 824, 859, 865,
868, 873, 875, 878, 883, 884, 889, 891, 892, 893, 894, 895, 902, 905, 929, 956, 960,
965, 987, 1003, 1004, 1006, 1011, 1021, 1038, 1045, 1051, 1156, 1160, 1168, 1175,
1177, 1199, 1203, 1209, 1216, 1217, 1225, 1232, 1234, 1251, 1252, 1253, 1255,
1256, 1260, 1262, 1265, 1275, 1286, 1287, 1293, 1300, 1305, 1308, 1324, 1327,
1351, 1371, 1383, 1398, 1533, 1545, 1550, 1551, 1554, 1561, 1579, 1589, 1613,
1614, 1615, 1620, 1637, 1638, 1656, 1665, 1666, 1671, 1686, 1690, 1693, 1697,
1711, 1747, 1748, 1760, 1763, 1989, 2000, 2001, 2027, 2045, 2051, 2052, 2068,
2071, 2072, 2076, 2084, 2096, 2098, 2102, 2379, 2380, 2385, 2403, 2405, 2423,
2424, 2425, 2427, 2738, 2777, 2778, 2792, 3047, 3057, 3063, 3064}

We have |Sindec ∪ Saft| = 442. Therefore there exist at least 442 non-smoothable
toric Fano threefolds with Gorenstein singularities.
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