
Chapter 12
An Eisenbud–Goto-Type Upper Bound
for the Castelnuovo–Mumford Regularity
of Fake Weighted Projective Spaces

Bach Le Tran

Abstract We will give an upper bound for the k-normality of very ample lattice
simplices, and then give an Eisenbud–Goto-type bound for some special classes of
projective toric varieties.
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12.1 Introduction

The study of the Castelnuovo–Mumford regularity for projective varieties has been
greatlymotivated by theEisenbud–Goto conjecture [7]which asks for any irreducible
and reduced variety X , is it always the case that

reg(X) ≤ deg(X) − codim(X) + 1?

The Eisenbud–Goto conjecture is known to be true for some particular cases. For
example, it holds for smooth surfaces in characteristic zero [13], connected reduced
curves [8], etc. Inspired by the conjecture, there are also many attempts to give an
upper bound for the Castelnuovo–Mumford regularity for various types of algebraic
and geometric structures [5, 12, 15, 20].

For toric geometry, suppose that (X, L) is a polarizedprojective toric varieties such
that L is very ample. Then there is a corresponding very ample lattice polytope P :=
PL associated to L such that �(X, L) = ⊕

m∈P∩M C · χm [4, Sect. 5.4]. Therefore,
by studying the k-normality of P (cf. Definition2), we can obtain the k-normality
and also the regularity of the original variety (X, L). For the purpose of this article,
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we will focus on the case that X is a fake weighted projective d-space and PL a d-
simplex.

For any fake weighted projective d-space X embedded in Pr via a very ample line
bundle, Ogata [17] gives an upper bound for its k-normality:

kX ≤ dim X +
⌊
dim X

2

⌋

− 1.

In this article, we will improve Ogata’s bound by giving a new upper bound for
the k-normality of very ample lattice simplices and show that

reg(X) ≤ deg(X) − codim(X) +
⌊
dim X

2

⌋

. (12.1)

Recently,McCullough andPeeva showed some counterexamples to theEisenbud–
Goto conjecture and that the difference reg(X) − deg(X) + codim(X) can be arbi-
trary large [14, Counterexample 1.8]. However, for any fake weighted projective
space X embedded in P

r via a very ample line bundle, it follows from (12.1)
that reg(X) − deg(X) + codim(X) is bounded above by dim(X)/2. Furthermore,
we will show that the Eisenbud–Goto conjecture holds for any projective toric vari-
ety corresponding to a very ample Fano simplex.

12.2 Background Material

12.2.1 Toric Varieties and Lattice Simplices

We begin this section by recalling the definition of the Castelnuovo–Mumford reg-
ularity:

Definition 1 Let X ⊆ P
r be an irreducible projective variety andF a coherent sheaf

over X . We say that F is k-regular if

Hi (X,F (k − i)) = 0

for all i > 0. The regularity ofF , denoted by reg(F ), is the minimum number k such
that F is k-regular. We say that X is k-regular if the ideal sheaf IX of X is k-regular
and use reg(X) to denote the regularity of X (or of IX ).

As the main object of the article is to find an upper bound for k-normality of very
ample lattice simplices, it is important for us to revisit the definition of k-normality
of lattice polytopes.

Definition 2 A lattice polytope P is k-normal if the map
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P ∩ M + · · · + P ∩ M︸ ︷︷ ︸
k times

→ kP ∩ M

is surjective. The k-normality of P , denoted by kP , is the smallest positive integer kP
such that P is k-normal for all k ≥ kP .

Suppose now that X is a fake weighted projective d-space embedded in P
r via

a very ample line bundle. Then the polytope P corresponding to the embedding
is a very ample lattice d-simplex. Furthermore, codim(X) = |P ∩ M | − (d + 1),
where M is the ambient lattice, and deg(X) = Vol(P), the normalized volume of P .

We have a combinatorial interpretation of reg(X) in terms of kP and deg(P) [21,
Proposition 4.1.5] as follows:

reg(X) = max{kP , deg(P)} + 1. (12.2)

From this, we obtain a combinatorial form of the Eisenbud–Goto conjecture: for very
ample lattice polytope P ⊂ MR, is it always true that

max{deg(P), kP} ≤ Vol(P) − |P ∩ M | + d + 1?

The first inequality was confirmed to be true recently [11, Proposition 2.2]; namely,

deg(P) ≤ Vol(P) − |P ∩ M | + d + 1. (12.3)

Therefore, in order to verify the Eisenbud–Goto conjecture for the polarized toric
variety (X, L), it suffices to check if

kP ≤ Vol(P) − |P ∩ M | + d + 1. (12.4)

12.2.2 Ehrhart Theory

We now recall some basic facts about Ehrhart theory of polytopes and the definition
of their degree.

Let P be a lattice polytope of dimension d. We define ehrP(k) = |kP ∩ M |, the
number of lattice points in kP . Then from Ehrhart’s theory [6, 19],

EhrP(t) =
∞∑

k=0

ehrP(k)t k = h∗
P(t)

(1 − t)d+1

for some polynomial h∗
P ∈ Z≥0[t] of degree less than or equal to d. Let h∗

P(t) =
∑d

i=0 h
∗
i t

i . We have
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h∗
0 = 1, h∗

1 = |P ∩ M | − d − 1, h∗
d = |P0 ∩ M |, and

d∑

i=0

h∗
i = Vol(P).

Definition 3 ([1, Remark 2.6]) Let P be a lattice polytope of dimension d.We define
the degree of P , denoted by deg(P), to be the degree of h∗

P(t). Equivalently,

deg(P) =
{
d if |P0 ∩ M | �= 0,

min
{
i ∈ Z≥0|(kP)0 ∩ M = ∅ for all 1 ≤ k ≤ d − i

}
otherwise.

12.3 k-Normality of Very Ample Simplices

The following lemma by Ogata is crucial to the main result of this article:

Lemma 4 ([17, Lemma 2.1]) Let P = conv(v0, . . . , vd) be a very ample lattice n-
simplex. Suppose that k ≥ 1 is an integer and x ∈ kP ∩ M. For any i = 0, . . . , d,
we have

x + (k − 1)vi =
2k−1∑

j=1

u j

for some u j ∈ P ∩ M.

Using the ideas in [17, Lemma 2.5], we generalize the above lemma as follows.

Lemma 5 Suppose that P = conv(v0, . . . , vd) is a very ample d-simplex. Let k ∈
N≥1. Then for any x ∈ kP ∩ M, a0, . . . , ad ∈ Z≥0 such that

∑d
i=0 ai = k − 1, we

have
d∑

i=0

aivi + x =
2k−1∑

i=1

ui

for some ui ∈ P ∩ M.

Proof We will use induction in this proof. The case k = 1 is trivial. Suppose that
the lemma holds for k = s − 1. We will now show that it holds for k = s; i.e., for
any x ∈ sP ∩ M , a1, . . . , ad ∈ Z≥0 such that

∑d
i=0 ai = s − 1, we have

d∑

i=0

aivi + x =
2s−1∑

i=1

ui (12.5)

for some ui ∈ P ∩ M . Without loss of generality, we can take a0 to be positive and
move v0 to the origin. By Lemma4,

(s − 1)v0 + x =
2s−1∑

i=1

wi
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for some wi ∈ P ∩ M . Since v0 = 0, we can write x = ∑2s−1
i=1 wi . If wi + wj ∈ P ∩

M for any i �= j , then we can let ti = w2i−1 + w2i for i = 1, . . . , s − 1 and have x =
t1 + · · · + ts−1 + w2s−1, which lies in

∑s
i=1 P ∩ M . Therefore,

d∑

i=0

aivi + x =
d∑

i=0

aivi +
s−1∑

i=1

ti + w2s−1,

which satisfies (12.5). Conversely, without loss of generality, suppose thatw1 + w2 /∈
P ∩ M . Then since x = w1 + w2 + (w3 + · · · + w2s−1) ∈ sP ∩ M , we have y :=
w3 + · · · + w2s−1 ∈ (s − 1)P ∩ M and v0 + x = w1 + w2 + y. Using the induction
hypothesis,

(a0 − 1)v0 +
d∑

i=1

aivi

︸ ︷︷ ︸
a0−1+∑d

i=1 ai=s−2

+y =
2(s−1)−1∑

i=1

w′
i

for some w′
i ∈ P ∩ M . It follows that

d∑

i=0

aivi + x = v0 + x + (a0 − 1)v0 +
d∑

i=1

aivi

= w1 + w2 + y + (a0 − 1)v0 +
d∑

i=1

aivi

= w1 + w2 +
2(s−1)−1∑

i=0

w′
i .

The conclusion follows. �

Now define the invariants dP and νP as in [21, Definition 2.2.8]:

Definition 6 Let P be a lattice polytope with the set of verticesV = {v0, . . . , vn−1}.
We define dP to be the smallest positive integer such that for every k ≥ dP ,

(k + 1)P ∩ M = P ∩ M + kP ∩ M.

We also define νP to be the smallest positive integer such that for any k ≥ νP ,

(k + 1)P ∩ M = V + kP ∩ M.

Notice that for P an n-simplex, dP ≤ νP ≤ n − 1.

Proposition 7 Let P = conv(v0, . . . , vd) be a very ample d-simplex. Then

kP ≤ νP + dP − 1.
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Proof For any k ≥ dP + νP − 1 and p ∈ kP ∩ M , by the definition of dP and νP ,
we have

p = x +
νP−dP∑

i=1

ui +
d∑

i=0

aivi (12.6)

for some x ∈ dP P ∩ M , ui ∈ P ∩ M ,
∑d

i=0 ai = k − νP . By assumption, k − νP ≥
dP − 1, so it follows from Lemma5 that

x +
d∑

i=0

aivi =
dP+k−νP∑

i=1

u′
i (12.7)

for some u′
i ∈ P ∩ M . Substitute (12.7) into (12.6), we have

p =
νP−dP∑

i=1

ui +
dP+k−νP∑

i=1

u′
i .

The conclusion follows. �

Remark 8 This bound is stronger than [17, Proposition 2.4] since νP ≤ d [21,
Proposition 2.2] and dP ≤ d/2 [17, Proposition 2.2].

12.4 Eisenbud–Goto-Type Upper Bound for Very Ample
Simplices

Suppose that P is a very ample simplex. If P is unimodularly equivalent to the stan-
dard simplex �d = conv(0, e1, . . . , ed) then (12.4) holds. Now consider the case P
is not unimodularly equivalent to �d .

The following lemma is a rewording of [9, Proposition IV.10] to fit our purpose.
We provide a proof for the sake of completeness.

Lemma 9 LetV = {v0, . . . , vd} and suppose that P = conv(V) is a lattice simplex
not unimodularly equivalent to �d . Then deg(P) ≥ νP .

Proof Since νP ≤ d, it suffices to show that for any d ≥ k ≥ deg(P),

V + kP ∩ M � (k + 1)P ∩ M.

Indeed, any x ∈ (k + 1)P ∩ M can be written as x = ∑d
i=0 aivi such that ai ≥ 0

and
∑d

i=0 ai = k + 1. If ai < 1 for all i , then d > k and the point
∑d

i=0(1 − ai )vi
is an interior lattice point of (d − k)P , a contradiction since d − k ≤ d − deg(P).
Hence, ai ≥ 1 for some i , say a0 ≥ 1. Then
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x = v0 + (a0 − 1)v0 +
d∑

i=1

aivi = v0 +
(

(a0 − 1)v0 +
d∑

i=1

aivi

)

∈ V + kP ∩ M.

Hence, k ≥ νP . The conclusion follows. �

Proposition 10 Let P = conv(v0, . . . , vd) be a very ample simplex. Then

kP ≤ Vol(P) − |P ∩ M | + d +
⌊
d

2

⌋

.

Proof From Proposition7, (12.3), and Lemma9,

kP ≤ dP + νP − 1 ≤ dP + deg(P) − 1

≤ dP + Vol(P) − |P ∩ M | + d.

By [17, Proposition 2.2], dP ≤ d
2 . Therefore, since kP , Vol(P), and |P ∩ M | are all

integers,

kP ≤ Vol(P) − |P ∩ M | + d +
⌊
d

2

⌋

.

�

Remark 11 We show some cases that the result of Proposition10 is stronger
than [17, Proposition 2.4]:

1. Vol(P) ≤ |P ∩ M | + 2. In this case,

Vol(P) − |P ∩ M | + d +
⌊
d

2

⌋

≤ d +
⌊
d

2

⌋

− 2.

Example 12 Let �d be the standard d-simplex. Then

Vol(�d) − |�d ∩ M | + d +
⌊
d

2

⌋

= 1 − (d + 1) + d +
⌊
d

2

⌋

=
⌊
d

2

⌋

.

This is clearly a better bound compared to d + ⌊
d
2

⌋ − 1.

2. P0 ∩ M = ∅ or equivalently deg(P) ≤ d − 1. Indeed, in this case,

kP ≤ dP + deg(P) − 1 ≤
⌊
d

2

⌋

+ d − 2.

Wewill show in next section that this is the only case that we still need to consider
in order to verify the Eisenbud–Goto conjecture for very ample simplices.

Example 13 Consider P = 2�d for d ≥ 4, where �d is the standard d-simplex.
Then deg(P) = 2 and by Proposition7,
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kP ≤ dP + 1 ≤
⌊
d

2

⌋

+ 1 <

⌊
d

2

⌋

+ d − 1.

Theorem 14 Suppose that X is a fake weighted projective space embedded in P
r

via a very ample line bundle. Then

reg(X) ≤ deg(X) − codim(X) +
⌊
dim(X)

2

⌋

.

Proof Let P be the corresponding polytope of the embedding. From (12.2), (12.3),
and Proposition10, it follows that

reg(X) ≤ Vol(P) − |P ∩ M | + d +
⌊
d

2

⌋

+ 1 = deg(X) − codim(X) +
⌊
d

2

⌋

.

12.5 Eisenbud–Goto Conjecture for Non-hollow Very
Ample Simplices

In this section, we will improve the bound of k-normality for non-hollow very ample
simplices.

Definition 15 A lattice polytope is hollow if it has no interior lattice points.

We now show that the inequality (12.4) holds for non-hollow very ample simplices.

Proposition 16 Let P ⊆ MR be a non-hollow very ample lattice d-simplex. Then

kP ≤ Vol(P) − |P ∩ M | + d + 1.

Proof Wewill consider two cases, namely |P ∩ M | = d + 2 and |P ∩ M | ≥ d + 3.
For the first case, we have the following lemma:

Lemma 17 Suppose that P = conv(v0, . . . , vd) is a very ample lattice d-simplex
with u is the only lattice point beside the vertices. Then P is normal. �

Proof Assume that dP ≥ 2. Then there exists a point p ∈ dP P ∩ M such that p
cannot be written as p = x + w for some x ∈ (dP − 1)P ∩ M and w ∈ P ∩ M .
Since P is a simplex, u and p can be uniquely written as

p =
d∑

i=0

λi vi ,
d∑

i=0

λi = dP

and
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u =
d∑

i=0

λ∗
i vi ,

d∑

i=0

λ∗
i = 1,

respectively. It follows from the condition of p that λi < 1 for all 0 ≤ i ≤ d and
there exists 0 ≤ i ≤ d such that λi < λ∗

i , say i = 0. By Lemma4,

p + (dP − 1)v1 =
d∑

i=0

aivi + bu

for some ai , b ∈ Z≥0 such that b + ∑d
i=0 ai = 2dP − 1. Replacing p by

∑d
i=0 λi vi

and u by
∑d

i=0 λ∗
i vi yields

λ0 = a0 + bλ∗
0

λ1 + dP − 1 = a1 + bλ∗
1

λ2 = a2 + bλ∗
2

...

λd = ad + bλ∗
d .

Since λ0 < λ∗
0 and λi < 1 for all 0 ≤ i ≤ d, it follows that a0 = a2 = · · · = ad = 0

and b = 0. Then p = dPv1, a contradiction to the choice of p. Therefore, P is normal.
�

As a consequence, 1 = kP ≤ Vol(P) − |P ∩ M | + d + 1 = Vol(P) − 1. Now we
consider the case |P ∩ M | ≥ d + 3. By the hypothesis, |P ∩ M | − (d + 1) ≥ 2.
Consider the Ehrhart vector h∗ = (h∗

0, · · · , h∗
d) of P . We have

h∗
0 = 1

h∗
1 = |P ∩ M | − d − 1 ≥ 2

h∗
d = |P0 ∩ M | ≥ 2.

By [10, Theorem 1.1], 2 ≤ h∗
1 ≤ h∗

i for all 1 ≤ i < d. Therefore,

Vol(P) − |P ∩ M | + d + 1 = h∗
0 + h∗

2 + · · · + h∗
d ≥ 1 + 2(d − 1) = 2d − 1.

By [17, Proposition 2.4],

kP ≤
⌊
d

2

⌋

+ d − 1 ≤ 2d − 1 ≤ Vol(P) − |P ∩ M | + d + 1

for all d ≥ 3. The conclusion follows. �
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Let us now recall the definition of Fano polytopes:

Definition 18 A Fano polytope is a convex lattice polytope P ⊆ MR such that P0 ∩
M = {0} and each vertex v of P is a primitive point of M .

From Proposition16, we obtain the following corollary:

Corollary 19 The Eisenbud–Goto conjecture holds for any projective toric variety
corresponding to a very ample Fano simplex.

12.6 Final Remarks

We start with a remark that Proposition7 fails in general.

Example 20 ([3]) Consider the polytope P which is the convex hull of the vertices
given by the columns of the following matrix

M =
⎛

⎝
0 1 0 0 1 0 1 1
0 0 1 0 0 1 1 1
0 0 0 1 1 1 s s + 1

⎞

⎠

with s ≥ 4. Then dP = νP = 2, and by [2, Theorem 3.3], kP = s − 1. It is clear
that kP > dP + νP − 1 for all s ≥ 6.

Furthermore, it can be shown that P cannot be covered by very ample simpli-
cies [21, Proposition 4.3.3]; hence, it is very unlikely that we can apply Proposition7
to find a bound of the k-normality of generic very ample polytopes.

12.6.1 Hollow Very Ample Simplices

Finally, we would love to see a classification of hollow very ample lattice simplices.
For dimension 2, Rabinotwiz [18, Theorem 1] showed that any such simplex is
unimodularly equivalent to either Tp,1 := conv(0, (p, 0), (0, 1)) for some p ∈ N

or T2,2 = conv(0, (2, 0), (0, 2)). Now we will show a way to obtain some hollow
very ample simplices in any dimension with arbitrary volume.

We recall the definition of lattice pyramids as in [16]:

Definition 21 Let B ⊆ R
k be a lattice polytopewith respect toZk . Then conv(0, B ×

{1}) ⊆ R
k+1 is a lattice polytope with respect to Z

k+1, called the (1-fold) standard
pyramid over B. Recursively, we define for l ∈ N≥1 in this way the l-fold standard
pyramid over B. As a convention, the 0-fold standard pyramid over B is B itself.

Proposition 22 Let P be a lattice polytope. Then the 1-fold pyramid over P is very
ample if and only if P is normal.
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Proof Let Q = conv(0, P × {1}) be the 1-fold pyramid over P . Then it is easy to
see that if P is normal then so is Q. Now suppose that Q is very ample.We have kQ ≥
kP [21, Lemma 4.2.2] and each lattice point of kQQ ∩ M sits in (t P ∩ M) × {t} for
some 0 ≤ t ≤ kQ . In particular, suppose that (x, t) ∈ (t P ∩ M) × {t} ⊆ kQQ ∩ M .
Then

(x, t) =
t∑

i=1

(ui , 1) + (kQ − t)0

for some ui ∈ P ∩ M . It follows that x = ∑t
i=1 ui . Hence, P is t-normal for all kQ ≥

t ≥ 1. Since kQ ≥ kP , it follows that P is normal. The conclusion follows. �

FromProposition22, ifwe take any (d − 2)-fold pyramid over either Tp,1 with p ∈
Z≥1 or T2,2, which are all normal, then we obtain a hollow normal (hence very
ample) d-simplex with normalized volume p. The Eisenbud–Goto conjecture holds
for these.

Example 23 We give here an example to demonstrate the case that if Q is very
ample but not normal then the 1-fold pyramid over Q is not very ample. Let Q be
the convex polytope given by taking s = 4 in Example20. Then Q is very ample;
however, the 1-fold pyramid of Q, which is given by the convex hull of

⎛

⎜
⎜
⎝

0 0 1 0 0 1 0 1 1
0 0 0 1 0 0 1 1 1
0 0 0 0 1 1 1 4 5
0 1 1 1 1 1 1 1 1

⎞

⎟
⎟
⎠ ,

is not very ample.
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