
Chapter 11
Schubert Calculus on Newton–Okounkov
Polytopes

Valentina Kiritchenko and Maria Padalko

Abstract A Newton–Okounkov polytope of a complete flag variety can be turned
into a convex geometric model for Schubert calculus. Namely, we can represent
Schubert cycles by linear combinations of faces of the polytope so that the intersection
product of cycles corresponds to the set-theoretic intersection of faces (whenever
the latter are transverse). We explain the general framework and survey particular
realizations of this approach in types A, B and C .
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11.1 Introduction

Theory of Newton–Okounkov convex bodies [12, 19] allows us to apply ideas of
toric geometry in the non-toric setting. In this paper, we explore non-toric applica-
tions of polytope rings (see Sect. 11.2 for a definition) introduced by Khovanskii and
Pukhlikov [25]. With a convex polytope P ⊂ R

d , they associated a graded commu-
tative ring (the polytope ring):

RP =
d⊕

i=0

Ri
P

that has Poincaré duality. The polytope ringswere originally used to give a convenient
functorial description of the cohomology rings of smooth toric varieties. In this
case, P is always a simple lattice polytope, that is, all vertices of P belong toZd ⊂ R

d ,
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and only d edges meet at every vertex of P . In [10], Kaveh noted that polytope
rings can also be used for a partial description of the cohomology rings of spherical
varieties. In this case, P is still a lattice polytope but not necessarily simple.

For simple polytopes, every face � ⊂ P can be naturally identified with an ele-
ment x� ∈ RP so that

x�x�′ = x�∩�′

for any two transverse faces� and�′. This is no longer true for non-simple polytopes,
that is, individual faces of P do not have natural counterparts in RP . However, it is
still possible to identify every element of RP with a linear combination of faces
of P so that the product in the polytope ring corresponds to the intersection of faces.
In [14], the first author, Smirnov and Timorin developed a general framework for
such calculus on polytopes, and studied its applications to Schubert calculus on
Gelfand–Zetlin polytopes in type A. In this paper, we mainly consider applications
to Schubert calculus in types B and C .

Representation theory of classical groups is a source of several interesting fami-
lies of lattice convex polytopes. For SLn(C) (type A), there is a well-known family
of Gelfand–Zetlin (GZ) polytopes GZλ. Here λ := (λ1, . . . , λn) ∈ Z

n runs through
dominant weights of SLn(C), that is, λ1 ≥ λ2 ≥ · · · ≥ λn . Originally, GZ polytopes
were constructed using representation theory, namely, lattice points in the polytope
GZλ parameterize the vectors in a special basis in the irreducible representation Vλ

of SLn(C) with the highest weight λ (see [21] for a survey on GZ bases). In con-
vex geometric terms, the GZ polytope GZλ ⊂ R

d , where d := n(n−1)
2 , is defined as

the set of all points (z11, z
1
2, . . . , z

1
n−1; z21, . . . , z2n−2; . . . ; zn−1

1 ) ∈ R
d that satisfy the

following interlacing inequalities:

λ1 λ2 λ3 . . . λn

z11 z12 . . . z1n−1
z21 . . . z2n−2

. . .
. . .

zn−2
1 zn−2

2
zn−1
1

(GZA)

where the notation
a b
c

means a ≥ c ≥ b (the table encodes 2d inequalities). Figure11.1 shows the 3-
dimensional GZ polytope for n = 3 and λ = (3, 0,−3). Note that GZ polytopes
are not simple.

GZ polytopes in types B, C and D were defined in [1] (see Sect. 11.2.2 for defini-
tions in types B and C) and are related to representation theory of SO2n+1(C), Sp2n
and SO2n(C), respectively. They are special cases of string polytopes introduced
by Berenstein–Zelevinsky and Littelmann [20]. There are other families of poly-
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Fig. 11.1 GZ polytope in
type A for n = 3
and λ = (3, 0,−3)

topes in representation theory such as Nakashima–Zelevinsky polyhedral realiza-
tions of crystal bases and Feigin–Fourier–Littelmann–Vinberg polytopes. They have
representation-theoretic meaning similar to that of string polytopes but are not com-
binatorially equivalent to the latter. All these polytopes were exhibited as Newton–
Okounkov polytopes of complete flag varieties for certain geometric valuations [3,
4, 6, 11, 17] (see Sect. 11.2.3 for more details).

For G = SLn(C), the complete flag variety G/B (here B ⊂ G denotes the sub-
group of upper-triangular matrices) can be thought of as a variety of complete flags
of subspaces ({0} ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V n−1 ⊂ C

n) where dim V i = i , and there
are no gaps. There are similar descriptions of complete flag varieties G/B for other
classical groups G (see Sect. 11.2.3). Recall that globally generated line bundles Lλ

on G/B are in bijective correspondence with irreducible representations Vλ of G so
that H 0(Lλ,G/B) � V ∗

λ [2, Proposition 1.4.5]. Here λ runs through the dominant
weights of G. We denote by degλ(G/B) the degree of the image of G/B under the
map G/B → P(Vλ) = P(H 0(Lλ,G/B)∗).

In [10], polytope rings of string polytopes were identified with the cohomology
rings of complete flag varieties. More generally, string polytope in this description
can be replaced with any linear family (in the sense of [13]) of convex polytopes Pλ

parameterized by the dominant weights λ whenever the following identity holds:

Vol(Pλ) = d! degλ(G/B) (11.1)

where d := dimG/B. We regard both sides of this identity as polynomials in λ. In
particular, polytopes Pλ yield an analog of Kushnirenko’s theorem for G/B.

Since Newton–Okounkov polytopes of line bundles on G/B by construction sat-
isfy identity (11.1) they can be used tomodel Schubert calculus. Recall that the coho-
mology ring H∗(G/B,Z) has a special basis of Schubert cycles [Xw] with striking
positivity properties. Namely, the structure constants (i.e., the coefficients cuvw in the
decomposition [Xw][Xv] = ∑

u c
u
vw[Xu]) are always non-negative. However, no enu-

merative meaning (in the spirit of Littlewood–Richardson rule for Grassmannians)
of these coefficients is known. Polytope rings provide a new framework for combina-
torial interpretation of structure constants. An important task is to find presentations
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of Schubert cycles in polytope rings by linear combinations of faces with positive
coefficients. Another task is to find Newton–Okounkov polytopes for which these
presentations have especially simple combinatorics. It is tempting to use Grossberg–
Karshon cubes [7, 8] since they are combinatorial cubes. However, there are might
be issues with positivity, that is, some Schubert cycles will be represented by linear
combinations of faces with negative coefficients (see Example10).

There is an algorithm (geometric mitosis) for finding positive presentations of
Schubert cycles by faces using convexgeometric analogs ofDemazure operators from
representation theory [15, 16]. In the present paper, we describe geometric mitosis in
more combinatorial terms, outline its applications and formulate conjectures. For GZ
polytopes in type A, this algorithm reduces toKnutson–Millermitosis on pipe dreams
and was used in [14]. In types B and C , geometric mitosis reduces to a different
combinatorial rule that conjecturally yields presentations of Schubert cycles by faces
of GZ polytopes in respective types. In particular, 4-dimensional GZ polytope in
type C2 can be used to model Schubert calculus on the variety of isotropic flags
inC4 [24].Another convex geometricmodel for the sameflag varietywas constructed
in [9] using a different string polytope in type C2.

11.2 Preliminaries

In this section, we recall the definitions of polytope rings, GZ polytopes and flag
varieties in types B and C . We discuss the relationship between the polytope rings
of GZ polytopes and cohomology rings of flag varieties. We also define Newton–
Okounkov polytopes of flag varieties.

11.2.1 Polytope Ring

Let L ⊂ R
d be a lattice, and P ⊂ R

d a convex polytope whose vertices lie in L .
We say that P is a lattice polytope with respect to L . By the standard lattice Z

d

wemean the lattice {(x1, . . . , xd) ∈ R
d | xi ∈ Z for all i = 1, . . . , d}. We choose the

translation invariant volume form on R
d so that the covolume of L is 1.

Recall that two convex polytopes P and Q are called analogous if they have the
same normal fan, i.e. there is a one-to-one correspondence between the faces of P
and the faces of Q such that any linear functional, whose restriction to P attains its
maximal value at a given face F ⊆ P has the property that its restriction to Q attains
its maximal value at the corresponding face of Q.

Denote by SP the set of all polytopes analogous to P . This set can be endowed
with the structure of a commutative semigroup using Minkowski sum

P1 + P2 = {x1 + x2 ∈ R
d | x1 ∈ P1, x2 ∈ P2}
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It is not hard to check that this semigroup has cancelation property. We can also
multiply polytopes in SP by positive real numbers using dilation:

λP = {λx | x ∈ P}, λ ≥ 0.

Hence, we can embed the semigroup of convex polytopes into its Grothendieck
groupVP , which is a real vector space. The elements ofVP are called virtual polytopes
analogous to P .

On the vector space VP , there is a homogeneous polynomial volP of degree d,
called the volume polynomial. It is uniquely characterized by the property that its
value volP(Q) on any convex polytope Q ∈ SP is equal to the volume of Q.

Let �P be a lattice in VP generated by some lattice polytopes (with respect to L)
analogous to P (we do not assume that �P contains all lattice polytopes analogous
to P). The symmetric algebra Sym(�P) of�P can be thought of as the ring of differ-
ential operators with constant integer coefficients acting on R[VP ], the space of all
polynomials on VP . If D ∈ Sym(�P) andϕ ∈ R[VP ], thenwewrite Dϕ ∈ R[VP ] for
the result of this action. Define AP as the homogeneous ideal in Sym(�P) consisting
of all differential operators D such that D volP = 0. Set RP = Sym(�P)/AP . This
ring is called the polytope ring associated with the polytope P and the lattice �P .

Example 1 Let L = Z
d be the standard lattice, and P an integrally simple lattice

polytope (that is, only d edges meet at every vertex of P , and primitive vectors on
these edges span L over Z). Let �P be the lattice in VP generated by all lattice
polytopes (with respect to L) analogous to P . Then the ring RP is isomorphic to the
Chow (or cohomology) ring H∗(XP ,Z) of the smooth toric variety XP associated
with the normal fan of P [25].

When P is simple, every facet � ⊂ P defines a differential operator ∂� ∈ RP

(see [14, Sect. 2.3] for the details). Recall that the closures of torus orbits in XP are
in bijective correspondence with faces of P . They also give a generating set in the
cohomology ring H∗(XP ,Z). Every face F = �1 ∩ · · · ∩ �k can be identified with
the operator [F] = ∂�1 · · · ∂�k ∈ RP . Using linear relations between ∂� in RP we can
compute products in H∗(XP ,Z) by intersecting faces of P .

For instance, if P ⊂ R
2 is the trapezoid with vertices (0, 0), (1, 0), (0, 1), (1, 2),

then the corresponding toric variety XP is the blow-up of CP2 at one point. The
edge �1 = {x = 0} corresponds to the exceptional divisor E ⊂ XP . The other edges
are �2 = {y − x = 1}, �3 = {x = 1} and �4 = {y = 0}. There are two linear rela-
tions between ∂�i . Namely, the parallel translations along x and y axes do not
change the area of P , hence, ∂�1 + ∂�2 = ∂�3 and ∂�2 = ∂�4 . In particular, the iden-
tity [E]2 = −[pt] in H∗(XP ,Z) can be obtained as follows:

[�1]2 = [�1]([�3] − [�2]) = [�1 ∩ �3] − [�1 ∩ �2] = −[pt].

Example 2 Let L = Z
d , and P theGZ polytope in type A corresponding to a strictly

dominant λ = (λ1, . . . , λn) (that is, λ1 > λ1 > · · · > λn). Let�P be the lattice in VP

generated by all GZ polytopes Pλ for all dominant λ. Then the ring RGZ := RP is
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isomorphic to the cohomology ring H∗(GLn(C)/B,Z) of the complete flag variety
in type A [10].

Since the GZ polytope is not simple, there is no correspondence between individ-
ual faces of P and elements of H∗(GLn(C)/B,Z). However, it is possible to identify
every element of H∗(GLn(C)/B,Z)with a linear combination of faces of P (see [14,
Sect. 2] for more details). Again, we can compute all products in H∗(GLn(C)/B,Z)

by intersecting faces of P (see [14, Sect. 2.4] for an example of such computations).

Inwhat follows, L will be a sublattice of 1
2Z

d := {(x1, . . . , xd) |2xi ∈ Z for all i =
1, . . . , d}. We always compute volumes of faces of P with respect to the lattice L .
More precisely, if F ⊂ P is a face, and RF is its affine span then the volume of the
face is computed using the volume form on RF normalized so that the covolume
of L ∩ RF is 1.

11.2.2 GZ Polytopes in Types B and C

Letλ = (λ1, . . . , λn)be a non-increasing collection of non-negative integers. Putd =
n2. Denote coordinates in R

d by (x11 , . . . , x
1
n ; y11 , . . . , y1n−1; . . . ; xn−1

1 , xn−1
2 , yn−1

1 ;
xn1 ). For every λ, define the symplectic GZ polytope SGZλ ⊂ R

d for Sp2n(C) by the
following interlacing inequalities:

λ1 λ2 λ3 . . . λn 0
x11 x12 . . . x1n

y11 y12 . . . y1n−1 0
x21 . . . x2n−1

y21 . . . y2n−2 0
. . .

...
...

xn−1
1 xn−1

2
yn−1
1 0

xn1

GZC

Again, every coordinate in this table is bounded from above by its upper left neighbor
and bounded from below by its upper right neighbor (the table encodes 2d inequal-
ities). We regard SGZλ as a lattice polytope with respect to the standard lattice Zd .
Roughly speaking, SGZλ is the polytope defined using half of the GZ pattern (GZA)

for SL2n(C).

Example 3 The polytope SGZλ ⊂ R
4 for Sp4(C) is given by 8 inequalities:

λ1 ≥ x11 ≥ λ2; λ2 ≥ x12 ≥ 0; x11 ≥ y11 ≥ x12 ; y11 ≥ x21 ≥ 0.

It is not hard to compute the volume polynomial of SGZλ:
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volSGZ (λ1, λ2) = 1

6
λ1λ2(λ1 − λ2)(λ1 + λ2).

This volume times 4! is equal to the degree degλ(Sp4(C)/B) of the isotropic flag
variety.

The polytope ring RSGZ defined by the family of symplectic GZ polytopes is
isomorphic to the cohomology ring H∗(Sp2n(C)/B,Z). Indeed, by [10] it is iso-
morphic to the subring of H∗(Sp2n(C)/B,Z) generated by the first Chern classes
of line bundles Lλ corresponding to the weights of Sp2n(C). Since the torsion index
of Sp2n(C) is 1, this subring coincides with the whole ring (see [26] for the details
on torsion indices of classical groups).

The odd orthogonal GZ polytope OGZλ ⊂ R
d for SO2n+1(C) is defined using

the same pattern (GZC) but a different lattice LB ⊂ R
d . Namely, LB consists

of all points (x11 , . . . , x
1
n ; y11 , . . . , y1n−1; . . . ; xn−1

1 , xn−1
2 , yn−1

1 ; xn1 ) ∈ 1
2Z

d such that
all coordinates except for x1n , x

2
n−1,…, xn1 are integer. Lattice points SGZλ ∩ Z

d

and SGZλ ∩ LB parameterize basis vectors in irreducible representations of Sp2n(C)

and SO2n+1(C), respectively (see [20, Sect. 6] for more details).

Remark 4 Family of odd orthogonal GZ polytopes (as defined in [1, 20]) consists of
two subfamilies parameterized by integer and half-integer λ. The group SO2n+1(C)

is not simply connected, and half-integer weights correspond to the characters of
the maximal torus in the universal cover Spin(2n + 1). If we define the polytope
ring RSGZ using the first subfamily we get a subring of H∗(SO2n+1/B,Z) generated
by the first Chern classes of line bundles Lλ corresponding to the characters λ of the
maximal torus in SO2n+1(C).

Example 5 The polytope OGZλ ⊂ R
4 for Sp4(C) is given by the same 8 inequali-

ties as in Example3. However, its volume polynomial is computed using a different
volume form chosen so that the covolume of LB is 1. Since Z4 ⊂ LB has index 4,
we get volOGZ = 4 volSGZ .

There is an exceptional isomorphism Sp4(C)/±1 � SO5(C). In particular, flag
varieties in types B2 and C2 are the same. This isomorphism takes the dominant
weight λ = (λ1, λ2) of Sp4(C) to the dominant weight λ̃ = (λ1 + λ2)/2, (λ1 −
λ2)/2) of SO5(C). This agrees with the identity vol(SGZλ) = vol(OGZ λ̃).

11.2.3 Newton–Okounkov Polytopes of Flag Varieties

We recall a definition of Newton–Okounkov convex bodies in the case of flag vari-
eties. We refer the reader to [12, 19] for definitions in the more general setting.

Recall that the complete flag variety SLn(C)/B is defined as the variety of com-
plete flags of subspaces M• = ({0} ⊂ V 1 ⊂ V 2 ⊂ · · · ⊂ V n−1 ⊂ C

n). We define
SOn(C)/B and Sp2n/B as subvarieties oforthogonal and isotropicflags in SLn(C)/B
and SL2n/B, respectively. A complete flagM• inCn is orthogonal if V i is orthogonal
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to toV n−i with respect to a non-degenerate symmetric bilinear formfixed by SOn(C).
Let ω be a non-degenerate skew-symmetric bilinear form fixed by Sp2n(C). A
complete flag M• in C

2n is called isotropic if the restriction of ω to V n is zero,
and V 2n−i = {v ∈ C

2n | ω(v, u) = 0 for all u ∈ V i }.
Every flag variety X of dimension d has an open dense subset C (open Schubert

cell) isomorphic to the affine space Cd . It can be constructed as follows. Fix a com-
plete flag F• := (F1 ⊂ F2 ⊂ · · · ⊂ Fn−1 ⊂ C

n) such that F• ∈ X (this amounts to
fixing a Borel subgroup B ⊂ G). Also fix a basis e1,…, en inCn compatible with F•
(or a maximal torus in B), that is, Fi = 〈e1, . . . , ei 〉. The open Schubert cell C with
respect to F• is defined as the set of all flags M• that are in general position with
the standard flag F•, i.e., all intersections Mi ∩ F j are transverse. Let x1, …, xd be
coordinates on the open Schubert cell C .

Example 6 In type A, we can identify the open Schubert cell C with an affine
spaceCd (for d = n(n − 1)/2) by choosing for every flag M• a basis v1,…, vn inCn

of the form:
v1 = en + xn−1

1 en−1 + · · · + x11e1,

v2 = en−1 + xn−2
2 en−2 + · · · + x12e1, . . . , vn−1 = e2 + x1n−1e1, vn = en,

so that Mi = 〈v1, . . . , vi 〉. Such a basis is unique, hence, the coefficients (xij )i+ j<n

are coordinates on the open cell. In other words, every flag M• ∈ C gets identified
with a triangular matrix: ⎛

⎜⎜⎜⎜⎜⎝

x11 x12 . . . x1n−1 1
x21 x22 . . . 1 0
...

... 0
xn−1
1 1 . . . 0 0
1 0 0 0

⎞

⎟⎟⎟⎟⎟⎠
(FFLV ).

Similar coordinates can be introduced on flag varieties in other types.

LetV ⊂ C(X) = C(x1, . . . , xd)be afinite-dimensional subspaceof rational func-
tions on X . Ourmain examples are spaces of global sections H 0(Lλ, X) � V ∗

λ of line
bundles on X .We fix a section s0 ∈ H 0(Lλ, X), and identify sections s ∈ H 0(Lλ, X)

with rational functions f = s
s0

∈ C(X).

Example 7 (Example6 continued) If

λ = (1, . . . , 1︸ ︷︷ ︸
k

, 0 . . . , 0︸ ︷︷ ︸
n−k

),

then V ∗
λ can be identified with the subspace of C(xij )i+ j<n spanned by the minors of

the n × k matrix formed by the first k columns of the matrix (FFLV ). These minors
are exactly the Plücker coordinates of the Grassmannian G(k, n) in the Plücker
embedding. The map X → H 0(Lλ, X)∗ is the composition of the projection X →
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G(k, n) (obtained by forgetting all subspaces in the flag M• except for the V k) and
the Plücker embedding of G(k, n).

To assign the Newton–Okounkov convex body to V we need an extra ingredient.
Choose a translation-invariant total order on the lattice Z

d (e.g., we can take the
lexicographic order). Consider a map

v : C(x1, . . . , xd) \ {0} → Z
d ,

that behaves like the lowest order term of a polynomial, namely: v( f + g) ≥
min{v( f ), v(g)} and v( f g) = v( f ) + v(g) for all nonzero f, g. Recall that maps
with such properties are called valuations.

Definition 8 The Newton–Okounkov convex body �v(X, V ) is the closure of the
convex hull of the set ∞⋃

k=1

{
v( f )

k
| f ∈ V k

}
⊂ R

d .

By V k we denote the subspace spanned by the kth powers of the functions from V .

Example 9 Using coordinates of Example6 we can define the valuation v as fol-
lows. Order the coefficients (xij )i+ j<n of the matrix (FFLV ) by starting from col-
umn (n − 1) and going from top to bottom in every column and from right to left
along columns. Then �v(X, V ∗

λ ) coincides with the Feigin–Fourier–Littelmann–
Vinberg polytope FFLV (λ) [17]. Moreover, the inclusion FFLV (λ) ⊂ �v(X, V ∗

λ )

follows from a straightforward computation of the valuation v on the minors of the
matrix (FFLV ) (see [17, Example 2.9] for more details).

Different valuations might yield different Newton–Okounkov convex bodies. In
particular, GZ polytopes can also be obtained as Newton–Okounkov polytopes of
flag varieties [6, 11]. Okounkov made the first explicit computation of this kind,
namely, he exhibited symplectic GZ polytopes as Newton–Okounkov polytopes of
the isotropic flag varieties [22].

11.3 Geometric Mitosis

In [15], convex geometric analogs of Demazure (or divided difference) operators
are defined on convex polytopes and used to construct DDO polytopes that have the
same properties as Newton–Okounkov polytopes of flag varieties. In [16], operations
on faces of a DDO polytope (geometric mitosis) are defined that yield positive pre-
sentations of Schubert cycles by faces. Here we define the same operations in more
combinatorial terms using a vertex cone instead of a DDO polytope. We refer the
reader to [15, Theorem 3.6], [16, Proposition 2.5] for connectionswith representation
theory and convex geometry.
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Fig. 11.2 Mitosis as explained in Example10

Example 10 Figure11.2 illustrates the idea of mitosis in the simplest example. The
trapezoid and rectangle on the left picture have the same number of lattice points
with given sum of coordinates. The same is true for the right picture. However, the
trapezoid on the right picture becomes a virtual polytope (in particular, lattice points
marked with circles have to be counted with the zero coefficient) while the rectangle
remains a true polytope. There is a price to pay: the left vertical edge of the trapezoid
corresponds to two edges of the rectangle (that is, a single edge of the trapezoid has
the same number of lattice points as two edges of the rectangle). In short, mitosis
preserves positivity at the cost of more involved combinatorics.

Consider a vector space with the direct sum decomposition

R
d = R

d1 ⊕ · · · ⊕ R
dr ,

and choose coordinates x = (x11 , . . . , x
1
d1

; . . . ; xr1, . . . , xrdr ) with respect to this
decomposition. Let C ⊂ R

d be a convex polyhedral cone with the vertex at the ori-
gin 0. Assume that C is given by inequalities either of type xij ≤ axi

′
j ′ where a > 0

and i �= i ′ or of type 0 ≤ xij . In what follows, we use the bijective correspondence

between facets of C and inequalities, namely, every inequality xij ≤ axi
′
j ′ defines the

facet H(i, j; i ′, j ′) given by the equation xij = axi
′
j ′ , and every inequality 0 ≤ xij

defines the facet H(0, 0; i, j) given by the equation xij = 0.
In addition, assume that C does not contain any rays parallel to the xij -axis

unless j = 1. Then the geometric mitosis of [15, Sect. 5.1] can be defined on faces
of C . Below we describe the resulting mitosis operations M1,…, Mr from a combi-
natorial viewpoint.

Let � be a face of the cone C of codimension 	. The i th mitosis operation Mi

applied to � will produce a collection Mi (�) (possibly empty) of faces of C . Choose
a minimal subset of facets H1,…, H	 of C such that � = H1 ∩ · · · ∩ H	. If none
of these facets coincides with H(p, q; i, di ) for some p and q, then Mi (�) = ∅.
Otherwise, let s be the smallest number such that the subset {H1, . . . , H	} contains
facets of type H(·, ·; i, j) for all j = s, s + 1, …, di . For brevity, we label these
facets by H+(i, s), H+(i, s + 1), …, H+(i, di ). For every j = s + 1, s + 2,…, di ,
we now label by H+(i, j) the facet of type H(i, j; ·, ·). If there are two such
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facets H(i, j; p, q) and H(i, j; p′, q ′), and x p
q ≤ x p′

q ′ everywhere on � then we
put H+(i, j) := H(i, j; p, q).

Let Ji (�) ⊂ {s, s + 1, . . . , di } consist of indices j such that H+(i, j) /∈ {H1, . . . ,

H	}. For every j ∈ Ji (�), we define an offspring � j ∈ Mi (�) as the intersection of
facets

� j = H1( j) ∩ H2( j) ∩ · · · ∩ H	−1( j),

where the set {H1( j), . . . , H	−1( j)} is obtained from the set {H1, . . . , H	} by the
following rule. First, remove the facet H+(i, j). Second, for every k ∈ Ji (�) such
that k > j replace the facet H+(i, k) by the facet H+(i, k). Note that dim� j =
dim � + 1.

Definition 11 The i th mitosis operation Mi sends � to

Mi (�) = {� j | j ∈ Ji (�)}.

11.3.1 Type A: GZ Polytopes

Let C be the vertex cone of the GZ polytope in type A for the vertex a =
(λ2, . . . , λn; λ3, . . . , λn; . . . ; λn) (see table (GZA)). After an affine change of coor-
dinates x = z − a the inequalities that define C can be written as follows:

0 ≤ x11 ; 0 ≤ x12 ≤ x21 ; . . . ; 0 ≤ x1n−1 ≤ x2n−2 ≤ · · · ≤ xn−1
1 .

The cone C has d = n(n−1)
2 facets: H(0, 0; 1, i) for 1 ≤ i ≤ (n − 1) and H(i −

1, j + 1; i, j) for 2 ≤ i ≤ (n − 1), 1 ≤ j ≤ n − i . In particular, we have the follow-
ing identifications of facets:

H(0, 0; 1, i) = H+(1, i), H(i − 1, j + 1; i, j) = H+(i, j) = H+(i − 1, j + 1).

It is convenient to encode a face� ofC by an n × n table (pipe dream) filledwith+ as
follows.The table contains+ in cell (i, i + j) iff� ⊂ H(i − 1, j + 1; i, j) and i ≥ 2
or � ⊂ H(0, 0; i, j) and i = 1. In particular, only cells above the main diagonal
might have +. In this notation, mitosis operations M1, M2 applied to the vertex 0
produce the following faces (only cells (1, 2), (1, 3) and (2, 3) of 3 × 3 tables are
shown since the other cells never contain +):

{0} = + +
+

M1−→ +
+

M2−→ + M1−→ = C
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{0} M2−→ + + M1−→
⎧
⎨

⎩
+ ,

+

⎫
⎬

⎭
M2−→ C

For arbitrary n, the mitosis operations M1,…, Mn−1 encoded by tables coincide
with Knutson–Miller mitosis on pipe dreams [18] after reflecting tables in a vertical
line. Instead of the vertex cone C we could take the GZ polytope in type A and
consider mitosis operations on faces that contain the vertex a (so called Kogan
faces). Geometric meaning of the resulting collections of faces is described in [14,
Theorem 5.1, Corollary 5.3]. In particular, the following analog of Kushnirenko’s
theorem holds.

Recall that Schubert subvarieties Xw are labeled by the elements of the Weyl
group of G, namely, Xw is the closure of the B-orbit BwB/B, where w is an element
of the Weyl group of G. The Weyl group of G = SLn(C) is the symmetric group Sn .
By s1,…, sn−1 we denote the elementary transpositions.

Theorem 12 ([14, Theorem 5.4]) Let Xw ⊂ SLn(C)/B be the Schubert subvariety
corresponding to a permutation w ∈ Sn. Let w = s j1 . . . s j	 be a reduced decompo-
sition of a permutation w ∈ Sn such that ( j1, . . . , j	) is a subword of (1; 2, 1; 3, 2,
1; . . . ; n − 1, . . . , 1). Let Sw ⊂ GZλ be the set of all faces produced from the ver-
tex a ∈ GZλ by applying successively the operations Mn− j	 ,…, Mn− j1 :

Sw = Mn− j1 · · · Mn− j	 (a).

Then
degλ(Xw) = 	!

∑

�∈Sw

Vol(�).

This implies that the Schubert cycle [Xw] (that is, the cohomology class of Xw

in H∗(SLn(C)/B,Z)) in the polytope ring RGZ � H∗(SLn(C)/B,Z) is represented
by the sum of faces in Sw.

Example 13 Forn = 3,wehave [Xs1s2 ] = M2M1(a) and [Xs2s1 ] = M1M2(a). Since
the faces in these two presentations are transverse and their intersection consists of
two edgesM1(a) andM2(a)we get the identity: [Xs1s2 ] · [Xs2s1 ] = [Xs1] + [Xs2 ] (see
Fig. 11.3).

11.3.2 Type C2−3: DDO Polytopes

In [16, Example 2.9], the following family of DDO polytopes in R
4 = R

2 ⊕ R
2 is

considered:
0 ≤ x11 ≤ λ1, x21 ≤ x11 + λ2, x12 ≤ 2x21 ,
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Fig. 11.3 Faces M1(a), M2(a), M2M1(a), M1M2(a), M1M2M1(a) of the GZ polytope in
type A, n = 3

x12 ≤ x21 + λ2, 0 ≤ x22 ≤ λ2, x22 ≤ x12
2

(these polytopes can also be realized asNewton–Okounkov polytopes of the isotropic
flag variety Sp4/B [16, Proposition 4.1]). The vertex coneC of the vertex 0 is given by
4 homogeneous inequalities: 0 ≤ x11 , 0 ≤ 2x22 ≤ x12 ≤ 2x21 . It is convenient to encode
a face � of C by a (2n − 1) × n table (skew pipe dream) for n = 2 filled with +
as follows (see Sect. 11.3.3 for the general definition of skew pipe dreams). The
table contains + in cell (3 − i, i) (for i = 1, 2) iff � ⊂ H(0, 0; i, i), + in cell (2, 2)
iff� ⊂ H(2, 2; 1, 2) and+ in cell (3, 2) iff� ⊂ H(1, 2; 2, 1). There are twomitosis
operations M1 and M2.

{0} = +
+
+
+

M1−→
+
+
+

M2−→
+
+ M1−→

+
M2−→ = C

{0} M2−→ +
+
+ M1−→

⎧
⎨

⎩

+

+
, +

+ ⎫
⎬

⎭
M2−→

M2−→
⎧
⎨

⎩ + ,

+
, +

⎫
⎬

⎭
M1−→ C

The Weyl group of G = Sp4(C) is the dihedral group D4. By s1, s2 we denote
simple reflections that generate D4 so that s2 corresponds to the longer root. By [16,
Corollary 3.6] we have

Proposition 14 Let Xw ⊂ Sp4(C)/B be the Schubert subvariety corresponding to
a permutation w ∈ D4. Let w = s j1 . . . s j	 be a reduced decomposition of a permu-
tation w ∈ D4 such that ( j1, . . . , j	) is a subword of (1, 2; 1, 2). Let Sw ⊂ GZλ be
the set of all faces produced from the vertex a ∈ GZλ by applying successively the
operations Mj	 ,…, Mj1 :
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Sw = Mj1 · · · Mj	 (0).

Then
degλ(Xw) = 	!

∑

�∈Sw

Vol(�).

This example can be extended to DDO polytopes for Sp2n . For n = 3 and the
DDO polytope for (s3s2s1)3 (where s3 is the simple reflection with respect to the
longer root) this was done in [23]. The corresponding family of DDO polytopes
in R9 = R

3 ⊕ R
3 ⊕ R

3 is given by inequalities:

0 ≤ x11 ≤ λ1; x21 ≤ λ2 + x11 ; x31 ≤ λ3 + x21 ;

0 ≤ x12 ≤ min{x21 , λ2}; x22 ≤ min{λ3 + x12 + x31 , 2x
3
1};

x32 ≤ min

{
x12 + λ3,

1

2
x22

}
; x13 ≤ min{x22 , x31 + λ3, λ3 + x22 − x32};

x23 ≤ min{x13 , x32 + λ3, 2x
3
2 }; 0 ≤ x33 ≤ min

{
1

2
x23 , λ3

}
.

In particular, the vertex cone at 0 is not simplicial. It is defined by 10 inequalities:

0 ≤ x11 ; 0 ≤ x12 ≤ x21 ; 0 ≤ x33 ≤ 1

2
x23 ≤ 1

2
x13 ≤ 1

2
x22 ≤ x31 ;

1

2
x23 ≤ x32 ≤ 1

2
x22 .

An analog of Proposition14 follows easily from [16, Corollary 3.6]. However, com-
binatorics of mitosis becomes more involved as analogs of pipe dreams in this case
have a loop.

Recently, Fujita identified DDO polytopes with certain Nakashima–Zelevinsky
polyhedral realizations of crystal bases [5, Theorem 4.1]. In particular, there are
explicit inequalities for these polytopes in types A, B,C , D andG2 [5, Example 4.3].
In type A, they coincide with the GZ polytope and in type C2−3 with the polytopes
described in this section. It would be interesting to apply geometric mitosis to these
polytopes in the other cases.

11.3.3 Type C: GZ Polytopes

The combinatorics of C2 example from Sect. 11.3.2 can be extended to Cn in a
different way by using the string cone C for the reduced decomposition w0 =
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(snsn−1 . . . s2s1s2 . . . sn−1sn) . . . (s2s1s2)(s1) of the longest element in theWeyl group
(here s1 corresponds to the longer root). The corresponding string polytope coincides
with the symplectic GZ polytope after a unimodular change of coordinates [20, Sect.
6]. The cone C is simplicial and is given by d = n2 inequalities:

0 ≤ xi2 ≤ xi−1
4 ≤ xi−2

6 ≤ · · · ≤ x22i−2 ≤ x1i ≤ x22i−3 ≤ · · · ≤ xi−2
5 ≤ xi−1

3 ≤ xi1

for all i = 1,…, n. We define symplectic mitosis as the geometric mitosis associ-
ated with the cone C . Combinatorics of the symplectic mitosis is quite simple and
described in detail in [16, Sect. 5.2] using skew pipe dreams. However, arguments
of [16, Corollary 3.6] do not directly yield presentations for Schubert cycles since
the symplectic GZ polytope does not satisfy the necessary conditions. Still computa-
tions for n = 2, 3 suggest that the collections of faces of the symplectic GZ polytope
obtained using symplectic mitosis do represent the corresponding Schubert cycles
in the polytope ring RSGZ . Below we describe a bijection between faces of C and
faces of SGZλ that we used.

Let v be the vertex of SGZλ given by equations λs = xij = ykl for all triples λs , xij
and ykl such that s = i + j − 1 = k + l. We now define a bijection between those
facets of Pλ that contain v and skew pipe dreams of size n with exactly one +. Recall
that a skew pipe dream of size n is a (2n − 1) × n tablewhose cells are either empty or
filledwith+. Only cells (i, j)withn − j < i < n + j are allowed to have+ (see [16,
Sect. 5.2] for more details on skew pipe dreams). Put y0i := λi for i = 1,…, n. The
facet given by equation xij = yi−1

j corresponds to the skew pipe dream with + in
cell (i + j − 1, n − i + 1). The facet given by equation yij = xij+1 corresponds to
the skew pipe dream with + in cell (2n − i − j + 1, n − i + 1). In what follows,
we denote by H(k,l) the facet whose skew pipe dream under this correspondence
contains + in cell (k, l).

This correspondence between facets and skewpipe dreamswith a single+ extends
to all faces of the symplectic GZ polytope that contain the vertex v. Namely, the
face Hk1,l1 ∩ · · · ∩ Hks ,ls obtained as the intersection of s facets corresponds to the
skew pipe dream that has + precisely in cells (k1, l1),…, (ks, ls). In particular, the
vertex v corresponds to the skew pipe dream D0 that has + in all (fillable) cells. In
what follows, we denote by FD the face corresponding to a skew pipe dream D.

We now formulate a conjecture. Let w be an element of the Weyl group
of G = Sp2n . Choose a reduced decomposition w = s j1 . . . s j	 such that it is a sub-
word of (snsn−1 . . . s2s1s2 . . . sn−1sn) . . . (s2s1s2)(s1).

Conjecture 15 Define the setSw of faces of the symplectic GZ polytope as follows:

Sw = {FD | D ∈ Mn+1− j	 · · · Mn+1− j1(D0)}

where Mi denotes the i th symplectic mitosis operation. Then

degλ(Xw) = 	!
∑

F∈Sw

Vol(F).
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This conjecture is verified in the casen = 2 and for certainw in the casen = 3 [24].
Note that the bijection between faces of SGZλ that contain the vertex v and faces
of the string cone C does not come from the unimodular change of coordinates that
identifies the string polytope and the symplectic GZ polytope. There are might be
piecewise linear transformations (such as the ones used in [17, Sect. 5.2]) that yield
scissor congruence of unions of faces of SGZλ and faces of another polytope for
which geometric meaning of symplectic mitosis is more transparent.

11.3.4 Type B: GZ Polytopes

Note that the Weyl groups of Sp2n(C) and SO2n+1(C) are the same. Since the GZ
polytopes for both groups differ only by lattices symplectic mitosis is also a natu-
ral tool for finding presentations of Schubert cycles by faces of OGZλ in type B.
However, coefficients will be rational rather than integer (with powers of 2 in denom-
inator) because the torsion index of SO2n+1(C) is a power of 2. Note also that the
volumes of faces of both SGZλ and OGZλ should be computed with respect to their
lattices. The difference is already visible in the case n = 2 (see Example5).
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Project ‘5–100’.
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