
Chapter 1
Difference Between Families of Weakly
and Strongly Maximal Integral
Lattice-Free Polytopes

Gennadiy Averkov

Abstract A d-dimensional closed convex set K in R
d is said to be lattice-free if the

interior of K is disjointwithZ
d .We consider the following two families of lattice-free

polytopes: the familyLd of integral lattice-free polytopes in R
d that are not properly

contained in another integral lattice-free polytope and its subfamily Md consisting
of integral lattice-free polytopes in R

d which are not properly contained in another
lattice-free set. It is known thatMd = Ld holds for d ≤ 3 and, for each d ≥ 4,Md is
a proper subfamily ofLd . We derive a super-exponential lower bound on the number
of polytopes inLd\Md (with standard identification of integral polytopes up to affine
unimodular transformations).

Keywords Egyptian fraction · Hollow polytope · Lattice-free set · Lattice
polytope · Maximality

1.1 Introduction

By |X | we denote the cardinality of a finite set X . Let N be the set of all positive
integers and let d ∈ N be the dimension. Elements of Z

d are called integral points
or integral vectors. We call a polyhedron P ⊆ R

d integral if P is the convex hull
of P ∩ Z

d . Let Aff(Zd) be the group of affine transformations A : R
d → R

d satis-
fying A(Zd) = Z

d . We call elements of Aff(Zd) affine unimodular transformations.
For a family X of subsets of R

d , we consider the family of equivalence classes

X/Aff(Zd) := {{
A(X) : A ∈ Aff(Zd)

} : X ∈ X}

with respect to identification of the elements ofX up to affine unimodular transforma-
tions.A subset K ofRd is called lattice-free if K is closed, convex, d-dimensional and
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the interior of K contains no points from Z
d . A set K is called maximal lattice-free

if K is lattice-free and is not a proper subset of another lattice-free set.
Our objective is to study the relationship between the following two families of

integral lattice-free polytopes:

1. The family Ld of integral lattice-free polytopes P in R
d such that there exists

no integral lattice-free polytope properly containing P . We call elements of Ld

weakly maximal integral lattice-free polytopes.
2. The family Md of integral lattice-free polytopes P in R

d such that there exists
no lattice-free set properly containing P . We call the elements of Ld strongly
maximal integral lattice-free polytopes.

The family Ld has applications in mixed-integer optimization, algebra and alge-
braic geometry; see [1, 3, 4, 13], respectively. In [2, 11] it was shown that Ld is
finite up to affine unimodular transformations:

Theorem 1 ([2, Theorem 2.1], [11, Corollary 1.3]) Ld/Aff(Zd) is finite.

Several groups of researchers are interested in enumeration of Ld , up to affine
unimodular transformations, in fixed dimensions. This requires understanding geo-
metric properties of Ld . Currently, no explicit description of Ld is available for
dimensions d ≥ 4 and, moreover, it is even extremely hard to decide if a given
polytope belongs to Ld . A brute-force algorithm based on volume bounds for Ld

(provided in [11]) would have doubly exponential running time in d. In con-
trast to Ld , its subfamily Md is easier to deal with. Lovász’s characterization
[9, Proposition 3.3] of maximal lattice-free sets leads to a straightforward geomet-
ric description of polytopes belonging to Md . This characterization can be used to
decide whether a given polytope is an element ofMd in only exponential time in d.
Thus, while enumeration ofMd in fixed dimensions is a hard task, too, enumeration
of Ld is even more challenging.

For a given dimension d, it is a priori not clear whether or not Md is a proper
subset of Ld . Recently, it has been shown that the inequalityMd = Ld holds if and
only if d ≤ 3. The equality Md = Ld is rather obvious for d ∈ {1, 2}, as it is not
hard to enumerateLd in these very small dimensions and to check that every element
ofLd belongs toMd . Starting from dimension three, the problem gets very difficult.
Results in [1, 2] establish the equality M3 = L3 and enumerate L3, up to affine
unimodular transformations. As a complement, in [11, Theorem 1.4] it was shown
that for all d ≥ 4 there exists a polytope belonging to Ld but not toMd .

While Theorem 1.4 in [11] shows that Ld and Md are two different families, it
does not provide information on the number of polytopes in Ld that do not belong
to Md . Relying on a result of Konyagin [6], we will show that, asymptotically, the
gap between Ld and Md is very large.

For a1, . . . , ad > 0, we introduce

κ(a) := κ(a1, . . . , ad) = 1

a1
+ · · · + 1

ad
.
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Reciprocals of positive integers are sometimes calledEgyptian fractions. Thus, if a ∈
N

d , then κ(a) is a sum of d Egyptian fractions. We consider the set

Ad := {
(a1, . . . , ad) ∈ N

d : a1 ≤ · · · ≤ ad , κ(a1, . . . , ad) = 1
}

of all different solutions of the Diophantine equation

κ(x1, . . . , xd) = 1

in the unknowns x1, . . . , xd ∈ N. The set Ad represents possible ways to write 1 as
a sum of d Egyptian fractions. It is known that Ad is finite. Our main result allows
is a lower bound on the cardinality of (Ld\Md)/Aff(Zd):

Theorem 2
∣∣(Ld+5\Md+5)/Aff(Zd+5)

∣∣ ≥ ∣∣Ad

∣∣.

The proof of Theorem 2 is constructive. This means that, for every a ∈ Ad , we
generate an element in Pa ∈ Ld+5\Md+5 such that for two different elements a and b
of Ad , the respective polytopes Pa and Pb do not coincide up to affine unimodular
transformations. The proof of Theorem 2 is inspired by the construction in [11].
Using lower bounds on

∣∣Ad

∣∣ from [6], we obtain the following asymptotic estimate:

Corollary 3 ln ln
∣∣(Ld\Md

)
/Aff(Zd)

∣∣ = �
(

d
ln d

)
, as d → ∞.

Note 4 We view the elements of R
d as columns. By o we denote the zero vector

and by e1, . . . , ed the standard basis of R
d . If x ∈ R

d and i ∈ {1, . . . , d}, then xi
denotes the i-th component of x . The relation a ≤ b for a, b ∈ R

d means ai ≤ bi for
every i ∈ {1, . . . , d}. The relations ≥,> and < on R

d are introduced analogously.
The abbreviations aff, conv, int and relint stand for the affine hull, convex hull,
interior and relative interior, respectively.

1.2 An Approach to Construction of Polytopes in Ld\Md

We will present a systematic approach to construction of polytopes in Ld\Md , but
first we discuss general maximal lattice-free sets.

Definition 5 Let P be a lattice-free polyhedron in R
d . We say that a facet F of P

is blocked if the relative interior of F contains an integral point.

Maximal lattice-free sets can be characterized as follows:

Proposition 6 ([9, Proposition 3.3]) Let K be a d-dimensional closed convex subset
of R

d . Then the following conditions are equivalent:

1. K is maximal lattice-free;
2. K is a lattice-free polyhedron such that every facet of K is blocked.
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It can happen that some facets of a maximal lattice-free polyhedron are more than
just blocked. We introduce a respective notion. Recall that the integer hull KI of a
compact convex set K in R

d is defined by

KI := conv(K ∩ Z
d).

Definition 7 Let P be a d-dimensional lattice-free polyhedron in R
d . A facet F

of P is called strongly blocked if FI is (d − 1)-dimensional and Z
d ∩ relint FI 	= ∅.

The polyhedron P is called strongly blocked if all facets of P are strongly blocked.

The following proposition extracts the geometric principle behind the construction
from [11, Sect. 3]. (Note that arguments in [11, Sect. 3] use an algebraic language.)

Proposition 8 Let P be a strongly blocked lattice-free polytope in R
d . Then PI ∈

Ld . Furthermore, if P is not integral, then PI /∈ Md .

Proof In order to show PI ∈ Ld it suffices to verify that, for every z ∈ Z
d such

that conv(PI ∪ {z}) is lattice-free, one necessarily has z ∈ PI . If z /∈ PI , then z /∈ P
and so, for some facet F of P , the point z and the polytope P lie on different sides
of the hyperplane aff F . Then ∅ 	= Z

d ∩ relint FI ⊆ int(conv(P ∪ {z})), yielding a
contradiction to the choice of z. Thus, for every facet F of P , z and P lie on the
same side of aff F . It follows z ∈ P . Hence z ∈ P ∩ Z

d ⊆ PI .
If P is not integral, then PI /∈ Md since PI � P and P is lattice-free. �

1.3 Lattice-Free Axis-Aligned Simplices

For a ∈ R
d
>0, the d-dimensional simplex

T (a) := conv{o, a1e1, . . . , aded}.

is called axis-aligned. The proof of the following proposition is straightforward.

Proposition 9 For a ∈ R
d
>0, the following statements hold:

1. the simplex T (a) is a lattice-free set if and only if κ(a) ≥ 1;
2. the simplex T (a) is a maximal lattice-free set if and only if κ(a) = 1.

We introduce transformationswhich preserve the values of κ . The transformations
arise from the following trivial identities for t > 0:

1

t
= 1

t + 1
+ 1

t (t + 1)
, (1.1)

1

t
= 1

t + 2
+ 1

t (t + 2)
+ 1

t (t + 2)
, (1.2)

1

t
= 2

3t
+ 1

3t
. (1.3)
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Consider a vector a ∈ R
d
>0. By (1.1), if t is a component of a, we can replace this

component with two new components t + 1 and t (t + 1) to generate a vector b ∈
R

d+1
>0 satisfying κ(b) = κ(a). Identities (1.2) and (1.3) can be applied in a similar

fashion. For every d ∈ N, with the help of (1.1)–(1.3), we introduce the following
maps:

φd : R
d
>0 → R

d+1
>0 , φd(a) :=

⎛

⎜⎜⎜⎜⎜
⎝

a1
...

ad−1

ad + 1
ad(ad + 1)

⎞

⎟⎟⎟⎟⎟
⎠

, (1.4)

ψd : R
d
>0 → R

d+3
>0 , ψd(a) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

a1
...

ad−1

ad + 3
ad(ad + 1)

(ad + 1)(ad + 3)
(ad + 1)(ad + 3)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

ξd : R
d
>0 → R

d+1
>0 ξd(a) :=

⎛

⎜⎜⎜⎜⎜
⎝

a1
...

ad−1
3
2ad
3ad

⎞

⎟⎟⎟⎟⎟
⎠

. (1.5)

The map φd replaces the component ad by two other components based on (1.1),
while ξd replaces ad based on (1.3). The map ψd acts by replacing the component ad
based on (1.1) and then replacing the component ad + 1 based on (1.2). Identities
(1.1)–(1.3) imply

κ(φd(a)) = κ(ψd(a)) = κ(ξd(a))) = κ(a). (1.6)

Lemma 10 Let P = T (ξd(a)), where a ∈ Ad and d ≥ 2. Then P is a strongly
blocked lattice-free (d + 1)-dimensional polytope. Furthermore, if ad is odd, P is
not integral.

Proof In this proof, we use the all-ones vector

1d :=
⎛

⎜
⎝

1
...

1

⎞

⎟
⎠ ∈ R

d .
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For the sake of brevity we introduce the notation t := ad . One has 1 = κ(a) =∑d
i=1

1
ai

≥ ∑d
i=1

1
t = d

t , which implies t ≥ d ≥ 2. By (1.6), one has κ(ξd(a)) = 1
and so, by Proposition 9, P is maximal lattice-free.

If t is even, the polytope P is integral and hence every facet of P is integral, too. In
view of Proposition 6, integral maximal lattice-free polytopes are strongly blocked,
and so we conclude that P is strongly blocked.

Assume that t is odd, then the polytope P has one non-integral vertex. In this case,
we need to look at facets of P more closely, to verify that P is strongly blocked. We
consider all facets of P .

1. The facet F = conv
{
o, a1e1, . . . , ad−1ed−1, 3ted+1

}
is a d-dimensional integral

integral axis-aligned simplex. Since

κ(a1, . . . , ad−1, 3t) < 1,

the integral point e1 + · · · + ed−1 + ed+1 is in the relative interior of F . Hence, F
is strongly blocked.

2. The facet F = conv
{
o, a1e1, . . . , ad−1ed−1,

3
2 ted

}
contains the d-dimensional

integral axis-aligned simplex

G := conv
{
o, a1e1, . . . , ad−1ed−1,

3t − 1

2
ed

}
,

as a subset. In view of t ≥ 2, we have

κ
(
a1, . . . , ad−1,

3t − 1

2

)
< 1,

which implies that the integral point e1 + · · · + ed is in the relative interior of G.
It follows that F is strongly blocked.

3. The facet F := conv
{
a1e1, . . . , ad−1ed−1,

3
2 ted , 3ted+1

}
contains the integral d-

dimensional simplex

G := conv
{
a1e1, . . . , ad−1ed−1,

3t − 1

2
ed + ed+1, 3ted+1

}
.

as a subset. It turns out that 1d+1 is the relative interior of G, because 1d+1 is a
convex combination of the vertices of relintG, with positive coefficients. Indeed,
the equality

1d+1 =
d−1∑

i=1

1

ai

(
aiei

) + λ
(3t − 1

2
ed + ed+1

)
+ μ

(
3ted+1

)

holds for λ = 2
3t−1 and μ = t−1

t (3t−1) , where
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d−1∑

i=1

1

ai
+ λ + μ = 1.

4. It remains to consider faces F with the vertex set
{
o, a1e1, . . . , aded ,

3

2
ted , 3ted+1

}
\{aiei },

where i ∈ {1, . . . , d + 1}. Without loss of generality, let i = 1 so that

F = conv

{
o, a2e2, . . . ,

3

2
ted , 3ted+1

}
.

This facet contains the integral d-dimensional simplex

G := conv
{
o, a2a2, . . . , ad−1ed−1,

3t − 1

2
ed + ed+1, 3ted+1

}
.

Similarly to the previous case, one can check that e2 + · · · + ed+1 is an integral
point in the relative interior of G. Consequently, F is strongly blocked. �

1.4 Proof of the Main Result

For d ≥ 4, Nill and Ziegler [7] construct one vector a ∈ R
d
>0 with T (a)I ∈ Ld\Md .

We generalize this construction and provide many further vectors a with the above
properties.Wewill also need to verify that for different choices ofa, we get essentially
different polytopes T (a)I .

Lemma 11 Let P and Q be d-dimensional strongly blocked lattice-free polytopes
such that for their integral hulls the equality QI = A(PI ) holds for some A ∈
Aff(Zd). Then Q = A(P).

Proof Since A is an affine transformation, we have

A(PI ) = A(conv(P ∩ Z
d)) = conv A(P ∩ Z

d).

Using A ∈ Aff(Zd), it is straightforward to check the equality A(P ∩ Z
d) = A(P) ∩

Z
d .We thus conclude that A(PI ) = A(P)I . The assumptionQI = A(PI )yieldsQI=

A(P)I . Since P is strongly blocked lattice-free, A(P) too is strongly blocked lattice-
free. We thus have the equality QI = A(P)I for strongly blocked lattice-free poly-
topes Q and A(P). To verify the assertion, it suffices to show that a strongly blocked
lattice-free polytope Q is uniquely determined by the knowledge of its integer
hull QI . This is quite easy to see. For every strongly blocked facet G of QI , the
affine hull of G contains a facet of Q. Conversely, if F is an arbitrary facet of Q,
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then G = FI is a strongly blocked facet of QI . Thus, the knowledge of QI allows
to determine affine hulls of all facets of Q. In other words, QI uniquely determines
a hyperplane description of Q. �

Lemma 12 Let a, b ∈ R
d
>0 be such that the equality T (b) = A(T (a)) holds for

some A ∈ Aff(Zd). Then a and b coincide up to permutation of components.

Proof We use induction on d. For d = 1, the assertion is trivial. Let d ≥ 2. One
of the d facets of T (a) containing o is mapped by A to a facet of T (b) that con-
tains o.Without loss of generalitywe can assume that the facet T (a1, . . . , ad−1) × {0}
of T (a) is mapped to the facet T (b1, . . . , bd−1) × {0} of T (b). By the inductive
assumption, (a1, . . . , ad−1) and (b1, . . . , bd−1) coincide up to permutation of com-
ponents. Since unimodular transformations preserve the volume, T (a) and T (b) have
the same volume. This means,

∏d
i=1 ai = ∏d

i=1 bi . Consequently, ad = bd and we
conclude that a and b coincide up to permutation of components.

Proof (Proof ofTheorem2)For everya ∈ Ad ,we introduce the (d + 5)-dimensional
integral lattice-free polytope

Pa := T (η(a))I ,

where
η(x) := ξd+4(ψd+1(φd(x)))

and the functions ξd+4, ψd+1 and φd are defined by (1.4)–(1.5).
By (1.6) for each a ∈ Ad , we have κ(η(a)) = 1. For a ∈ Ad the last component

of φd(a) is even. This implies that the last component of ψd+1(φd(a)) is odd. Thus,
by Lemma 10, T (η(a)) is strongly blocked lattice-free polytopewhich is not integral.

Let a, b ∈ Ad be such that the polytopes Pa and Pb coincide up to affine uni-
modular transformations. Then, by Lemma 11, T (η(a)) and T (η(b)) coincide up to
affine unimodular transformations. But then, by Lemma 12, η(a) and η(b) coincide
up to permutations. Since the components of a and b are sorted in the ascending
order, the components of η(a) and β(b) too are sorted in the ascending order. Thus,
we arrive at the equality η(a) = η(b), which implies a = b.

In view of Proposition 8, each Pa with a ∈ Ad belongs toLd but not toMd . Thus,
the equivalence classes of the polytopes Pa with a ∈ Ad with respect to identification
up to affine unimodular transformations form a subset of (Ld+5\Md+5)/Aff(Zd+5)

of cardinality |Ad |. This yields the desired assertion. �

Proof (Proof of Corollary 3) The assertion is a direct consequence of Theorem 2
and the asymptotic estimate

ln ln |Ad | = �

(
d

ln d

)

of Konyagin [6, Theorem 1] (see also [5, Corollary 1.2]). �
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Remark 13 In view of the asymptotic upper bound ln ln |Ad | = O(d), determined
with different degrees of precision in [8, 10] and [12, Theorem 2], the lower bound
of Konyagin is optimal up to the logarithmic factor in the denominator.

Since all known elements of Ld are of the form PI , for some strongly blocked
lattice-free polytope P , we ask the following:

Question 14 Do there exist polytopes L ∈ Ld which cannot be represented as L =
PI for any strongly blocked lattice-free polytope P?

If there is a gap between the families Ld and the family

{
PI : P ⊆ R

d strongly blocked lattice-free polytope
}
,

then it would be interesting to understand how irregular the polytopes from this gap
can be. For example, one can ask the following:

Question 15 Do there exist polytopes L ∈ Ld with the property that no facet of L
is blocked?
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