Chapter 1

Difference Between Families of Weakly Gzt
and Strongly Maximal Integral

Lattice-Free Polytopes

Gennadiy Averkov

Abstract A d-dimensional closed convex set K in R is said to be lattice-free if the
interior of K is disjoint with Z¢. We consider the following two families of lattice-free
polytopes: the family £¢ of integral lattice-free polytopes in R? that are not properly
contained in another integral lattice-free polytope and its subfamily M? consisting
of integral lattice-free polytopes in RY which are not properly contained in another
lattice-free set. It is known that M? = £ holds ford < 3 and, foreachd > 4, M¢ is
a proper subfamily of £¢. We derive a super-exponential lower bound on the number
of polytopes in £\ M“ (with standard identification of integral polytopes up to affine
unimodular transformations).

Keywords Egyptian fraction - Hollow polytope + Lattice-free set - Lattice
polytope - Maximality

1.1 Introduction

By | X| we denote the cardinality of a finite set X. Let N be the set of all positive
integers and let d € N be the dimension. Elements of Z¢ are called integral points
or integral vectors. We call a polyhedron P C R? integral if P is the convex hull
of P NZI. Let Aff(Z¢) be the group of affine transformations A : RY — R¢ satis-
fying A(Z4) = Z%. We call elements of Aff(Z?) affine unimodular transformations.
For a family X of subsets of R?, we consider the family of equivalence classes

X/AfE(ZY) = {{AX) : A e Aff(ZY)} : X € X}

with respect to identification of the elements of X up to affine unimodular transforma-
tions. A subset K of R is called lattice-freeif K is closed, convex, d-dimensional and
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the interior of K contains no points from Z<. A set K is called maximal lattice-free
if K is lattice-free and is not a proper subset of another lattice-free set.

Our objective is to study the relationship between the following two families of
integral lattice-free polytopes:

1. The family £ of integral lattice-free polytopes P in R? such that there exists
no integral lattice-free polytope properly containing P. We call elements of £¢
weakly maximal integral lattice-free polytopes.

2. The family M? of integral lattice-free polytopes P in R such that there exists
no lattice-free set properly containing P. We call the elements of £¢ strongly
maximal integral lattice-free polytopes.

The family £¢ has applications in mixed-integer optimization, algebra and alge-
braic geometry; see [1, 3, 4, 13], respectively. In [2, 11] it was shown that L2 s
finite up to affine unimodular transformations:

Theorem 1 ([2, Theorem 2.1], [11, Corollary 1.3]) £¢/ Aff(Z¢) is finite.

Several groups of researchers are interested in enumeration of £¢, up to affine
unimodular transformations, in fixed dimensions. This requires understanding geo-
metric properties of £¢. Currently, no explicit description of £¢ is available for
dimensions d > 4 and, moreover, it is even extremely hard to decide if a given
polytope belongs to L. A brute-force algorithm based on volume bounds for £¢
(provided in [11]) would have doubly exponential running time in d. In con-
trast to £¢, its subfamily M? is easier to deal with. Lovész’s characterization
[9, Proposition 3.3] of maximal lattice-free sets leads to a straightforward geomet-
ric description of polytopes belonging to M?. This characterization can be used to
decide whether a given polytope is an element of M in only exponential time in d.
Thus, while enumeration of M? in fixed dimensions is a hard task, too, enumeration
of £ is even more challenging.

For a given dimension d, it is a priori not clear whether or not M¢ is a proper
subset of £¢. Recently, it has been shown that the inequality M? = £¢ holds if and
only if d < 3. The equality M? = £ is rather obvious for d € {1, 2}, as it is not
hard to enumerate £¢ in these very small dimensions and to check that every element
of £4 belongs to M¢. Starting from dimension three, the problem gets very difficult.
Results in [1, 2] establish the equality M = £ and enumerate £3, up to affine
unimodular transformations. As a complement, in [11, Theorem 1.4] it was shown
that for all d > 4 there exists a polytope belonging to £¢ but not to M.

While Theorem 1.4 in [11] shows that £¢ and M? are two different families, it
does not provide information on the number of polytopes in £¢ that do not belong
to M?. Relying on a result of Konyagin [6], we will show that, asymptotically, the
gap between £¢ and M? is very large.

Foray,...,a; > 0, we introduce

1
k() :=«(ay,...,a5) = —+ -+ —.
ap aq
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Reciprocals of positive integers are sometimes called Egyptian fractions. Thus, ifa €
N9, then « (a) is a sum of d Egyptian fractions. We consider the set

Aq={(ar,....a0) €N 1 ay < -+ < aq, x(ay,...,a9) =1}
of all different solutions of the Diophantine equation
KXy, ...,xq9) =1

in the unknowns xi, ..., xs € N. The set A, represents possible ways to write 1 as
a sum of d Egyptian fractions. It is known that A, is finite. Our main result allows
is a lower bound on the cardinality of (LI\ M)/ Aff(Z4):

Theorem 2 |(LITI\MIH)/ Aff(Z4H5)| = |A,|.

The proof of Theorem 2 is constructive. This means that, for every a € Ay, we
generate an element in P, € L4975\ M?*+3 such that for two different elements a and b
of Ay, the respective polytopes P, and P, do not coincide up to affine unimodular
transformations. The proof of Theorem 2 is inspired by the construction in [11].
Using lower bounds on |.‘f7ld| from [6], we obtain the following asymptotic estimate:

Corollary 3 Inln|(LI\M!)/ ATf(Z)| = Q (), as d — oc.

Note 4 We view the elements of R as columns. By o we denote the zero vector

and by ey, ..., e; the standard basis of R IfxeR?and i €{l,...,d}, then x;
denotes the i-th component of x. The relationa < b fora, b € R? means g; < b; for
every i € {l,...,d}. The relations >, > and < on R4 are introduced analogously.

The abbreviations aff, conv, int and relint stand for the affine hull, convex hull,
interior and relative interior, respectively.

1.2 An Approach to Construction of Polytopes in £\ M¢

We will present a systematic approach to construction of polytopes in £\ M¢, but
first we discuss general maximal lattice-free sets.

Definition 5 Let P be a lattice-free polyhedron in R?. We say that a facet F of P
is blocked if the relative interior of F contains an integral point.

Maximal lattice-free sets can be characterized as follows:

Proposition 6 ([9, Proposition 3.3]) Let K be a d-dimensional closed convex subset
of RY. Then the following conditions are equivalent:

1. K is maximal lattice-free;
2. K is a lattice-free polyhedron such that every facet of K is blocked.
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It can happen that some facets of a maximal lattice-free polyhedron are more than
just blocked. We introduce a respective notion. Recall that the infeger hull K; of a
compact convex set K in R? is defined by

K, := conv(K NZ%).

Definition 7 Let P be a d-dimensional lattice-free polyhedron in R?. A facet F
of P is called strongly blocked if F; is (d — 1)-dimensional and Z¢ N relint F; # ¢.
The polyhedron P is called strongly blocked if all facets of P are strongly blocked.

The following proposition extracts the geometric principle behind the construction
from [11, Sect.3]. (Note that arguments in [11, Sect. 3] use an algebraic language.)

Proposition 8 Let P be a strongly blocked lattice-free polytope in RY. Then P; €
L. Furthermore, if P is not integral, then P; ¢ M.

Proof In order to show P; € £¢ it suffices to verify that, for every z € Z¢ such
that conv(P; U {z}) is lattice-free, one necessarily has z € P;.If z ¢ P/, thenz ¢ P
and so, for some facet F' of P, the point z and the polytope P lie on different sides
of the hyperplane aff F. Then @ # Z? Nrelint F; € int(conv(P U {z})), yielding a
contradiction to the choice of z. Thus, for every facet F' of P, z and P lie on the
same side of aff F. It follows z € P.Hence z € P NZ% C P,.

If P is not integral, then P; ¢ M¢? since P; G P and P is lattice-free. O

1.3 Lattice-Free Axis-Aligned Simplices

Fora € R¢

¢ 0> the d-dimensional simplex

T (a) := conv{o, aeq, ..., aqseq}.

is called axis-aligned. The proof of the following proposition is straightforward.
Proposition 9 Fora € R‘io, the following statements hold:

1. the simplex T (a) is a lattice-free set if and only if k(a) > 1;

2. the simplex T (a) is a maximal lattice-free set if and only if k (a) = 1.

We introduce transformations which preserve the values of . The transformations
arise from the following trivial identities for # > 0:

1 = ; + ; (1.1)
tot+1 e+’ '
l= ! + ! + ! , (1.2)
o t+2  t@+2) t@t+2)

1=£+l. (1.3)
t 3t 3t
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Consider a vector a € R‘io. By (1.1), if ¢ is a component of a, we can replace this
component with two new components ¢ + 1 and #(¢ 4+ 1) to generate a vector b €
ngl satisfying « (b) = «(a). Identities (1.2) and (1.3) can be applied in a similar
fashion. For every d € N, with the help of (1.1)—(1.3), we introduce the following
maps:

ai
¢a 1 RZ) > RE!, $a(a) : as | (1.4)

ag + 1
aq(ag +1)

ap

aq—1
a;+3 ’
aq(aq + 1)
(aq + D(aq +3)
(aa + D(aq +3)

aj

Ya  RY, — RIS, Vala) :

g4 R, — R £i(a) : (1.5)

aq—1
3
24d
3ad

The map ¢, replaces the component a; by two other components based on (1.1),
while &, replaces a; based on (1.3). The map 4 acts by replacing the component a,
based on (1.1) and then replacing the component a; + 1 based on (1.2). Identities

(1.1)—(1.3) imply
k(pq(a)) = k(Wa(a)) = k(éq(a))) = k(a). (1.6)

Lemma 10 Let P = T(§,(a)), where a € Ay and d > 2. Then P is a strongly
blocked lattice-free (d + 1)-dimensional polytope. Furthermore, if ay is odd, P is
not integral.

Proof In this proof, we use the all-ones vector

1
1,=1]:]¢€ RY.
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For the sake of brevity we introduce the notation ¢ := a;. One has 1 = k(a) =
> 1> >0 1 =4, which implies # > d > 2. By (1.6), one has k (§,(a)) = 1
and so, by Proposition 9, P is maximal lattice-free.

If ¢ is even, the polytope P is integral and hence every facet of P is integral, too. In
view of Proposition 6, integral maximal lattice-free polytopes are strongly blocked,
and so we conclude that P is strongly blocked.

Assume that ¢ is odd, then the polytope P has one non-integral vertex. In this case,
we need to look at facets of P more closely, to verify that P is strongly blocked. We

consider all facets of P.

1. The facet F = conv{o, ajey, ..., aq—1eq-1, 3teg41} is a d-dimensional integral
integral axis-aligned simplex. Since

k(ay,...,aq_1,3t) <1,

the integral point e; + - - - 4+ e4—1 + €4+ is in the relative interior of F. Hence, F
is strongly blocked.

2. The facet F = conv{o, aieq, ..., a4_1€4—1, %ted] contains the d-dimensional
integral axis-aligned simplex

3t—1
G = Convlo,alel,...,ad,led,l, B ed},

as a subset. In view of ¢t > 2, we have

3r—1
K(al,...,ad,l, 5 ) <1,

which implies that the integral point e; 4 - - - 4- ¢4 is in the relative interior of G.
It follows that F is strongly blocked.

3. The facet F := conv{alel, o, ag—1€4—1, %ted, 3ted+1} contains the integral d-

dimensional simplex

3t—1
2

G = conv{alel, .o, ag_184_1, ed+ed+1,3ted+1}.

as a subset. It turns out that 1,4 is the relative interior of G, because 1,4 is a
convex combination of the vertices of relint G, with positive coefficients. Indeed,
the equality

1 3tr—1
Ly = a_( ae;) +)»< 5 e +€d+1) + 1(3teas1)

et

holds for A = and n=; (3 — 1) , where
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<l
Za— Atu=1

4. It remains to consider faces F with the vertex set
3
o,aiei, ...,aqeq, Eted» 3teqq1 ¢ \{aiei},
where i € {1,...,d + 1}. Without loss of generality, let i = 1 so that
3
F =convio,aes, ..., 51‘6,1, 3t€d+] .

This facet contains the integral d-dimensional simplex

3r—1

G = conv{o, aras, ...,A4_1€4_1, eq+eqt1,3teqq }
Similarly to the previous case, one can check that e; + - - - + ¢4 is an integral
point in the relative interior of G. Consequently, F is strongly blocked. (]

1.4 Proof of the Main Result

Ford > 4, Nill and Ziegler [7] construct one vectora € R?  with T (a); € LI\M?.
We generalize this construction and provide many further vectors a with the above
properties. We will also need to verify that for different choices of a, we get essentially
different polytopes T (a);.

Lemma 11 Let P and Q be d-dimensional strongly blocked lattice-free polytopes
such that for their integral hulls the equality Q; = A(P;) holds for some A €
Aff(Z%). Then Q = A(P).

Proof Since A is an affine transformation, we have
A(P;) = A(conv(P NZ%)) = conv A(P N Z%).

Using A € Aff(Z9), itis straightforward to check the equality A(P N Z%) = A(P) N
Z4 . We thus conclude that A(P;) = A(P),.Theassumption Q; = A(P;)yields Q;=
A(P);. Since P is strongly blocked lattice-free, A(P) too is strongly blocked lattice-
free. We thus have the equality O; = A(P), for strongly blocked lattice-free poly-
topes Q and A(P). To verify the assertion, it suffices to show that a strongly blocked
lattice-free polytope Q is uniquely determined by the knowledge of its integer
hull Q;. This is quite easy to see. For every strongly blocked facet G of Qy, the
affine hull of G contains a facet of Q. Conversely, if F is an arbitrary facet of Q,
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then G = Fj is a strongly blocked facet of Q;. Thus, the knowledge of Q; allows
to determine affine hulls of all facets of Q. In other words, Q; uniquely determines
a hyperplane description of Q. ]

Lemma 12 Let a,b € R‘io be such that the equality T (b) = A(T (a)) holds for
some A € Aff(Z?). Then a and b coincide up to permutation of components.

Proof We use induction on d. For d = 1, the assertion is trivial. Let d > 2. One
of the d facets of T (a) containing o is mapped by A to a facet of 7'(b) that con-

tains o. Without loss of generality we can assume that the facet T'(ay, . . ., ag—1) x {0}
of T (a) is mapped to the facet T'(by,...,bs—1) x {0} of T(b). By the inductive
assumption, (ai, ..., aqs—1) and (by, ..., by_1) coincide up to permutation of com-

ponents. Since unimodular transformations preserve the volume, 7' (a) and 7' (b) have
the same volume. This means, ]_[?:1 a;, = Hflzl b;. Consequently, a; = b; and we
conclude that @ and b coincide up to permutation of components.

Proof (Proof of Theorem?2) Foreverya € A,, weintroduce the (d + 5)-dimensional
integral lattice-free polytope
Py :=T(a);,

where

n(x) = Eg14(Wat1(da(x)))

and the functions &;44, Y441 and ¢, are defined by (1.4)—(1.5).

By (1.6) for each a € A;, we have k(n(a)) = 1. For a € A, the last component
of ¢4(a) is even. This implies that the last component of ¥4 (¢4 (a)) is odd. Thus,
by Lemma 10, T (n(a)) is strongly blocked lattice-free polytope which is not integral.

Let a, b € A, be such that the polytopes P, and P, coincide up to affine uni-
modular transformations. Then, by Lemma 11, T (n(a)) and T (5 (b)) coincide up to
affine unimodular transformations. But then, by Lemma 12, (a) and 1(b) coincide
up to permutations. Since the components of a and b are sorted in the ascending
order, the components of n(a) and B(b) too are sorted in the ascending order. Thus,
we arrive at the equality n(a) = n(b), which implies a = b.

In view of Proposition 8, each P, witha € A, belongs to L7 but not to M?. Thus,
the equivalence classes of the polytopes P, witha € A, with respect to identification
up to affine unimodular transformations form a subset of (L4+\ M?+)/ Aff (Z4+)
of cardinality |Ay|. This yields the desired assertion. ([

Proof (Proof of Corollary 3) The assertion is a direct consequence of Theorem 2
and the asymptotic estimate
d
Inln |Ay| = Q2 ( >

Ind

of Konyagin [6, Theorem 1] (see also [5, Corollary 1.2]). (Il



1 Difference Between Families of Weakly and Strongly ... 9

Remark 13 In view of the asymptotic upper bound In In | A;| = O(d), determined
with different degrees of precision in [8, 10] and [12, Theorem 2], the lower bound
of Konyagin is optimal up to the logarithmic factor in the denominator.

Since all known elements of £¢ are of the form Py, for some strongly blocked
lattice-free polytope P, we ask the following:

Question 14 Do there exist polytopes L € £¢ which cannot be represented as L =
P; for any strongly blocked lattice-free polytope P?

If there is a gap between the families £¢ and the family
{PI : P C R? strongly blocked lattice-free polytope} ,

then it would be interesting to understand how irregular the polytopes from this gap
can be. For example, one can ask the following:

Question 15 Do there exist polytopes L € £? with the property that no facet of L
is blocked?

Acknowledgements I would like to thank Christian Wagner for valuable comments and Christian
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