Chapter 1 Difference Between Families of Weakly and Strongly Maximal Integral Lattice-Free Polytopes

Gennadiy Averkov

Abstract A *d*-dimensional closed convex set *K* in \mathbb{R}^d is said to be lattice-free if the interior of K is disjoint with \mathbb{Z}^d . We consider the following two families of lattice-free polytopes: the family \mathcal{L}^d of integral lattice-free polytopes in \mathbb{R}^d that are not properly contained in another integral lattice-free polytope and its subfamily \mathcal{M}^d consisting of integral lattice-free polytopes in \mathbb{R}^d which are not properly contained in another lattice-free set. It is known that $\mathcal{M}^d = \mathcal{L}^d$ holds for $d \leq 3$ and, for each $d \geq 4$, \mathcal{M}^d is a proper subfamily of \mathcal{L}^d . We derive a super-exponential lower bound on the number of polytopes in $\mathcal{L}^d \setminus \mathcal{M}^d$ (with standard identification of integral polytopes up to affine unimodular transformations).

Keywords Egyptian fraction · Hollow polytope · Lattice-free set · Lattice polytope · Maximality

1.1 Introduction

By $|X|$ we denote the cardinality of a finite set *X*. Let $\mathbb N$ be the set of all positive integers and let *^d* [∈] ^N be the dimension. Elements of ^Z*^d* are called *integral points* or *integral vectors*. We call a polyhedron $P \subseteq \mathbb{R}^d$ *integral* if *P* is the convex hull of $P \cap \mathbb{Z}^d$. Let Aff(\mathbb{Z}^d) be the group of affine transformations $A : \mathbb{R}^d \to \mathbb{R}^d$ satisfying $A(\mathbb{Z}^d) = \mathbb{Z}^d$. We call elements of Aff(\mathbb{Z}^d) *affine unimodular transformations*. For a family X of subsets of \mathbb{R}^d , we consider the family of equivalence classes

$$
X/\operatorname{Aff}(\mathbb{Z}^d) := \left\{ \left\{ A(X) \, : \, A \in \operatorname{Aff}(\mathbb{Z}^d) \right\} \, : \, X \in \mathcal{X} \right\}
$$

with respect to identification of the elements of χ up to affine unimodular transformations. A subset *K* of \mathbb{R}^d is called *lattice-free* if *K* is closed, convex, *d*-dimensional and

G. Averkov (\boxtimes)

Brandenburgische Technische Universität Cottbus-Senftenberg, Fakultät 1, Platz der Deutschen Einheit 1, 03046 Cottbus, Germany e-mail: averkov@b-tu.de

[©] Springer Nature Switzerland AG 2022

A. M. Kasprzyk and B. Nill (eds.), *Interactions with Lattice Polytopes*, Springer Proceedings in Mathematics & Statistics 386, https://doi.org/10.1007/978-3-030-98327-7_1

the interior of *K* contains no points from \mathbb{Z}^d . A set *K* is called *maximal lattice-free* if *K* is lattice-free and is not a proper subset of another lattice-free set.

Our objective is to study the relationship between the following two families of integral lattice-free polytopes:

- 1. The family \mathcal{L}^d of integral lattice-free polytopes *P* in \mathbb{R}^d such that there exists no integral lattice-free polytope properly containing *P*. We call elements of \mathcal{L}^d *weakly maximal* integral lattice-free polytopes.
- 2. The family \mathcal{M}^d of integral lattice-free polytopes P in \mathbb{R}^d such that there exists no lattice-free set properly containing *P*. We call the elements of \mathcal{L}^d *strongly maximal* integral lattice-free polytopes.

The family \mathcal{L}^d has applications in mixed-integer optimization, algebra and alge-braic geometry; see [\[1,](#page-8-0) [3](#page-8-1), [4,](#page-8-2) [13](#page-9-0)], respectively. In [\[2,](#page-8-3) [11](#page-8-4)] it was shown that \mathcal{L}^d is finite up to affine unimodular transformations:

Theorem 1 ([\[2](#page-8-3), Theorem 2.1], [\[11,](#page-8-4) Corollary 1.3]) \mathcal{L}^d / Aff(\mathbb{Z}^d) *is finite.*

Several groups of researchers are interested in enumeration of \mathcal{L}^d , up to affine unimodular transformations, in fixed dimensions. This requires understanding geometric properties of \mathcal{L}^d . Currently, no explicit description of \mathcal{L}^d is available for dimensions $d \geq 4$ and, moreover, it is even extremely hard to decide if a given polytope belongs to \mathcal{L}^d . A brute-force algorithm based on volume bounds for \mathcal{L}^d (provided in [\[11\]](#page-8-4)) would have doubly exponential running time in *d*. In contrast to \mathcal{L}^d , its subfamily \mathcal{M}^d is easier to deal with. Lovász's characterization [\[9,](#page-8-5) Proposition 3.3] of maximal lattice-free sets leads to a straightforward geometric description of polytopes belonging to \mathcal{M}^d . This characterization can be used to decide whether a given polytope is an element of \mathcal{M}^d in only exponential time in d . Thus, while enumeration of \mathcal{M}^d in fixed dimensions is a hard task, too, enumeration of \mathcal{L}^d is even more challenging.

For a given dimension *d*, it is a priori not clear whether or not \mathcal{M}^d is a proper subset of \mathcal{L}^d . Recently, it has been shown that the inequality $\mathcal{M}^d = \mathcal{L}^d$ holds if and only if $d \leq 3$. The equality $\mathcal{M}^d = \mathcal{L}^d$ is rather obvious for $d \in \{1, 2\}$, as it is not hard to enumerate \mathcal{L}^d in these very small dimensions and to check that every element of \mathcal{L}^d belongs to \mathcal{M}^d . Starting from dimension three, the problem gets very difficult. Results in [\[1](#page-8-0), [2\]](#page-8-3) establish the equality $\mathcal{M}^3 = \mathcal{L}^3$ and enumerate \mathcal{L}^3 , up to affine unimodular transformations. As a complement, in [\[11,](#page-8-4) Theorem 1.4] it was shown that for all $d > 4$ there exists a polytope belonging to \mathcal{L}^d but not to \mathcal{M}^d .

While Theorem 1.4 in [\[11\]](#page-8-4) shows that \mathcal{L}^d and \mathcal{M}^d are two different families, it does not provide information on the number of polytopes in \mathcal{L}^d that do not belong to \mathcal{M}^d . Relying on a result of Konyagin [\[6\]](#page-8-6), we will show that, asymptotically, the gap between \mathcal{L}^d and \mathcal{M}^d is very large.

For $a_1, \ldots, a_d > 0$, we introduce

$$
\kappa(a) := \kappa(a_1, ..., a_d) = \frac{1}{a_1} + \dots + \frac{1}{a_d}.
$$

Reciprocals of positive integers are sometimes called *Egyptian fractions*. Thus, if $a \in$ \mathbb{N}^d , then $\kappa(a)$ is a sum of *d* Egyptian fractions. We consider the set

$$
\mathcal{A}_d := \left\{ (a_1, \ldots, a_d) \in \mathbb{N}^d : a_1 \leq \cdots \leq a_d, \ \kappa(a_1, \ldots, a_d) = 1 \right\}
$$

of all different solutions of the Diophantine equation

$$
\kappa(x_1,\ldots,x_d)=1
$$

in the unknowns $x_1, \ldots, x_d \in \mathbb{N}$. The set \mathcal{A}_d represents possible ways to write 1 as a sum of d Egyptian fractions. It is known that \mathcal{A}_d is finite. Our main result allows is a lower bound on the cardinality of $(\mathcal{L}^d \setminus \mathcal{M}^d)$ / Aff(\mathbb{Z}^d):

Theorem 2 $|({\cal L}^{d+5}\backslash {\cal M}^{d+5})/ \text{Aff}({\mathbb Z}^{d+5})| \geq |{\cal H}_d|$.

The proof of Theorem [2](#page-2-0) is constructive. This means that, for every $a \in \mathcal{A}_d$, we generate an element in $P_a \in \mathcal{L}^{d+5} \setminus \mathcal{M}^{d+5}$ such that for two different elements *a* and *b* of \mathcal{A}_d , the respective polytopes P_a and P_b do not coincide up to affine unimodular transformations. The proof of Theorem 2 is inspired by the construction in [\[11](#page-8-4)]. Using lower bounds on $|\mathcal{A}_d|$ from [\[6](#page-8-6)], we obtain the following asymptotic estimate:

Corollary 3 $\ln \ln \left| \frac{L^d \mathcal{M}^d}{\mathcal{M}^d} \right| / \text{Aff}(\mathbb{Z}^d) \right| = \Omega \left(\frac{d}{\ln d} \right), \text{ as } d \to \infty.$

Note 4 We view the elements of \mathbb{R}^d as columns. By *o* we denote the zero vector and by e_1, \ldots, e_d the standard basis of \mathbb{R}^d . If $x \in \mathbb{R}^d$ and $i \in \{1, \ldots, d\}$, then x_i denotes the *i*-th component of *x*. The relation $a \leq b$ for $a, b \in \mathbb{R}^d$ means $a_i \leq b_i$ for every $i \in \{1, ..., d\}$. The relations >, > and < on \mathbb{R}^d are introduced analogously. The abbreviations aff, conv, int and relint stand for the affine hull, convex hull, interior and relative interior, respectively.

1.2 An Approach to Construction of Polytopes in $\mathcal{L}^d \setminus \mathcal{M}^d$

We will present a systematic approach to construction of polytopes in $\mathcal{L}^d \setminus \mathcal{M}^d$, but first we discuss general maximal lattice-free sets.

Definition 5 Let *P* be a lattice-free polyhedron in \mathbb{R}^d . We say that a facet *F* of *P* is *blocked* if the relative interior of *F* contains an integral point.

Maximal lattice-free sets can be characterized as follows:

Proposition 6 ([\[9,](#page-8-5) Proposition 3.3]) *Let K be a d-dimensional closed convex subset of* R*^d . Then the following conditions are equivalent:*

- *1. K is maximal lattice-free;*
- *2. K is a lattice-free polyhedron such that every facet of K is blocked.*

It can happen that some facets of a maximal lattice-free polyhedron are more than just blocked. We introduce a respective notion. Recall that the *integer hull* K_I of a compact convex set *K* in \mathbb{R}^d is defined by

$$
K_I := \text{conv}(K \cap \mathbb{Z}^d).
$$

Definition 7 Let *P* be a *d*-dimensional lattice-free polyhedron in \mathbb{R}^d . A facet *F* of *P* is called *strongly blocked* if F_I is $(d - 1)$ -dimensional and $\mathbb{Z}^d \cap$ relint $F_I \neq \emptyset$. The polyhedron *P* is called *strongly blocked* if all facets of *P* are strongly blocked.

The following proposition extracts the geometric principle behind the construction from [\[11,](#page-8-4) Sect. 3]. (Note that arguments in [\[11,](#page-8-4) Sect. 3] use an algebraic language.)

Proposition 8 *Let P be a strongly blocked lattice-free polytope in* \mathbb{R}^d *. Then* $P_I \in$ \mathcal{L}^d . Furthermore, if P is not integral, then $P_I \notin \mathcal{M}^d$.

Proof In order to show $P_I \in \mathcal{L}^d$ it suffices to verify that, for every $z \in \mathbb{Z}^d$ such that conv($P_I \cup \{z\}$) is lattice-free, one necessarily has $z \in P_I$. If $z \notin P_I$, then $z \notin P$ and so, for some facet F of P , the point ζ and the polytope P lie on different sides of the hyperplane aff *F*. Then $\emptyset \neq \mathbb{Z}^d \cap$ relint $F_I \subseteq \text{int}(\text{conv}(P \cup \{z\}))$, yielding a contradiction to the choice of *z*. Thus, for every facet *F* of *P*, *z* and *P* lie on the same side of aff *F*. It follows $z \in P$. Hence $z \in P \cap \mathbb{Z}^d \subseteq P_I$.

If *P* is not integral, then $P_I \notin \mathcal{M}^d$ since $P_I \subsetneq P$ and *P* is lattice-free. \Box

1.3 Lattice-Free Axis-Aligned Simplices

For $a \in \mathbb{R}^d_{>0}$, the *d*-dimensional simplex

$$
T(a) := \text{conv}\{o, a_1e_1, \ldots, a_de_d\}.
$$

is called *axis-aligned*. The proof of the following proposition is straightforward.

Proposition 9 *For a* $\in \mathbb{R}^d_{>0}$ *, the following statements hold:*

- *1. the simplex* $T(a)$ *is a lattice-free set if and only if* $\kappa(a) > 1$;
- *2. the simplex* $T(a)$ *is a maximal lattice-free set if and only if* $\kappa(a) = 1$ *.*

We introduce transformations which preserve the values of κ . The transformations arise from the following trivial identities for $t > 0$:

$$
\frac{1}{t} = \frac{1}{t+1} + \frac{1}{t(t+1)},\tag{1.1}
$$

$$
\frac{1}{t} = \frac{1}{t+2} + \frac{1}{t(t+2)} + \frac{1}{t(t+2)},
$$
\n(1.2)

$$
\frac{1}{t} = \frac{2}{3t} + \frac{1}{3t}.\tag{1.3}
$$

Consider a vector $a \in \mathbb{R}^d_{>0}$. By [\(1.1\)](#page-3-0), if *t* is a component of *a*, we can replace this component with two new components $t + 1$ and $t(t + 1)$ to generate a vector $b \in$ $\mathbb{R}_{>0}^{d+1}$ satisfying $\kappa(b) = \kappa(a)$. Identities [\(1.2\)](#page-3-1) and [\(1.3\)](#page-3-2) can be applied in a similar fashion. For every $d \in \mathbb{N}$, with the help of [\(1.1\)](#page-3-0)–[\(1.3\)](#page-3-2), we introduce the following maps:

$$
\phi_d : \mathbb{R}_{>0}^d \to \mathbb{R}_{>0}^{d+1}, \qquad \phi_d(a) := \begin{pmatrix} a_1 \\ \vdots \\ a_{d-1} \\ a_d + 1 \\ a_d (a_d + 1) \end{pmatrix}, \qquad (1.4)
$$
\n
$$
\psi_d : \mathbb{R}_{>0}^d \to \mathbb{R}_{>0}^{d+3}, \qquad \psi_d(a) := \begin{pmatrix} a_1 \\ \vdots \\ a_d \\ a_d \\ a_d + 1 \\ a_d + 3 \\ a_d (a_d + 1) \\ (a_d + 1)(a_d + 3) \\ (a_d + 1)(a_d + 3) \end{pmatrix},
$$
\n
$$
\xi_d : \mathbb{R}_{>0}^d \to \mathbb{R}_{>0}^{d+1} \qquad \xi_d(a) := \begin{pmatrix} a_1 \\ \vdots \\ a_{d-1} \\ \frac{1}{2} a_d \\ \frac{3}{2} a_d \\ \frac{3}{2} a_d \end{pmatrix}.
$$
\n
$$
(1.5)
$$

The map ϕ_d replaces the component a_d by two other components based on [\(1.1\)](#page-3-0), while ξ_d replaces a_d based on [\(1.3\)](#page-3-2). The map ψ_d acts by replacing the component a_d based on (1.1) and then replacing the component $a_d + 1$ based on (1.2) . Identities (1.1) – (1.3) imply

$$
\kappa(\phi_d(a)) = \kappa(\psi_d(a)) = \kappa(\xi_d(a))) = \kappa(a). \tag{1.6}
$$

Lemma 10 *Let* $P = T(\xi_d(a))$ *, where* $a \in \mathcal{A}_d$ *and* $d \geq 2$ *. Then P is a strongly blocked lattice-free* $(d + 1)$ *-dimensional polytope. Furthermore, if* a_d *is odd, P is not integral.*

Proof In this proof, we use the *all-ones vector*

$$
\mathbb{1}_d := \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^d.
$$

 $\sum_{i=1}^{d} \frac{1}{a_i} \ge \sum_{i=1}^{d} \frac{1}{t} = \frac{d}{t}$, which implies $t \ge d \ge 2$. By [\(1.6\)](#page-4-0), one has $\kappa(\xi_d(a)) = 1$ For the sake of brevity we introduce the notation $t := a_d$. One has $1 = \kappa(a)$ and so, by Proposition [9,](#page-3-3) *P* is maximal lattice-free.

If *t* is even, the polytope *P* is integral and hence every facet of *P* is integral, too. In view of Proposition [6,](#page-2-1) integral maximal lattice-free polytopes are strongly blocked, and so we conclude that *P* is strongly blocked.

Assume that *t* is odd, then the polytope *P* has one non-integral vertex. In this case, we need to look at facets of *P* more closely, to verify that *P* is strongly blocked. We consider all facets of *P*.

1. The facet $F = \text{conv}\lbrace o, a_1e_1, \ldots, a_{d-1}e_{d-1}, 3te_{d+1}\rbrace$ is a *d*-dimensional integral integral axis-aligned simplex. Since

$$
\kappa(a_1,\ldots,a_{d-1},3t)<1,
$$

the integral point $e_1 + \cdots + e_{d-1} + e_{d+1}$ is in the relative interior of *F*. Hence, *F* is strongly blocked.

2. The facet $F = \text{conv}\bigg\{o, a_1e_1, \ldots, a_{d-1}e_{d-1}, \frac{3}{2}te_d\bigg\}$ contains the *d*-dimensional integral axis-aligned simplex

$$
G := \text{conv}\Big\{o, a_1e_1, \ldots, a_{d-1}e_{d-1}, \frac{3t-1}{2}e_d\Big\},\,
$$

as a subset. In view of $t \geq 2$, we have

$$
\kappa\left(a_1,\ldots,a_{d-1},\frac{3t-1}{2}\right)<1,
$$

which implies that the integral point $e_1 + \cdots + e_d$ is in the relative interior of *G*. It follows that *F* is strongly blocked.

3. The facet $F := \text{conv}\left\{a_1e_1, \ldots, a_{d-1}e_{d-1}, \frac{3}{2}te_d, 3te_{d+1}\right\}$ contains the integral *d*dimensional simplex

$$
G := \text{conv}\Big\{a_1e_1,\ldots,a_{d-1}e_{d-1},\frac{3t-1}{2}e_d+e_{d+1},3te_{d+1}\Big\}.
$$

as a subset. It turns out that $\mathbb{1}_{d+1}$ is the relative interior of *G*, because $\mathbb{1}_{d+1}$ is a convex combination of the vertices of relint *G*, with positive coefficients. Indeed, the equality

$$
\mathbb{1}_{d+1} = \sum_{i=1}^{d-1} \frac{1}{a_i} (a_i e_i) + \lambda \left(\frac{3t-1}{2} e_d + e_{d+1} \right) + \mu \left(3t e_{d+1} \right)
$$

holds for $\lambda = \frac{2}{3t-1}$ and $\mu = \frac{t-1}{t(3t-1)}$, where

1 Difference Between Families of Weakly and Strongly … 7

$$
\sum_{i=1}^{d-1} \frac{1}{a_i} + \lambda + \mu = 1.
$$

4. It remains to consider faces *F* with the vertex set

$$
\left\{o,a_1e_1,\ldots,a_de_d,\frac{3}{2}te_d,3te_{d+1}\right\}\setminus\{a_ie_i\},\right\}
$$

where $i \in \{1, ..., d + 1\}$. Without loss of generality, let $i = 1$ so that

$$
F = \text{conv}\left\{o, a_2e_2, \ldots, \frac{3}{2}te_d, 3te_{d+1}\right\}.
$$

This facet contains the integral *d*-dimensional simplex

$$
G := \text{conv}\Big\{o, a_2a_2, \ldots, a_{d-1}e_{d-1}, \frac{3t-1}{2}e_d + e_{d+1}, 3te_{d+1}\Big\}.
$$

Similarly to the previous case, one can check that $e_2 + \cdots + e_{d+1}$ is an integral point in the relative interior of G. Consequently F is strongly blocked point in the relative interior of *G*. Consequently, *F* is strongly blocked.

1.4 Proof of the Main Result

For $d \geq 4$, Nill and Ziegler [\[7](#page-8-7)] construct one vector $a \in \mathbb{R}^d_{>0}$ with $T(a)_I \in \mathcal{L}^d \backslash \mathcal{M}^d$. We generalize this construction and provide many further vectors *a* with the above properties.We will also need to verify that for different choices of *a*, we get essentially different polytopes $T(a)$ _I.

Lemma 11 *Let P and Q be d-dimensional strongly blocked lattice-free polytopes such that for their integral hulls the equality* $Q_I = A(P_I)$ *holds for some A* ∈ Aff (\mathbb{Z}^d) *. Then* $Q = A(P)$ *.*

Proof Since *A* is an affine transformation, we have

$$
A(P_I) = A(\text{conv}(P \cap \mathbb{Z}^d)) = \text{conv}\,A(P \cap \mathbb{Z}^d).
$$

Using $A \in \text{Aff}(\mathbb{Z}^d)$, it is straightforward to check the equality $A(P \cap \mathbb{Z}^d) = A(P) \cap \mathbb{Z}^d$ \mathbb{Z}^d . We thus conclude that $A(P_I) = A(P)_I$. The assumption $Q_I = A(P_I)$ yields $Q_I =$ $A(P)_I$. Since *P* is strongly blocked lattice-free, $A(P)$ too is strongly blocked latticefree. We thus have the equality $Q_I = A(P)_I$ for strongly blocked lattice-free polytopes Q and $A(P)$. To verify the assertion, it suffices to show that a strongly blocked lattice-free polytope *Q* is uniquely determined by the knowledge of its integer hull Q_I . This is quite easy to see. For every strongly blocked facet *G* of Q_I , the affine hull of *G* contains a facet of *Q*. Conversely, if *F* is an arbitrary facet of *Q*, then $G = F_I$ is a strongly blocked facet of Q_I . Thus, the knowledge of Q_I allows to determine affine hulls of all facets of Q . In other words, Q_I uniquely determines a hyperplane description of *Q*. -

Lemma 12 *Let* $a, b \in \mathbb{R}^d_{>0}$ *be such that the equality* $T(b) = A(T(a))$ *holds for some* $A \in \text{Aff}(\mathbb{Z}^d)$ *. Then a and b coincide up to permutation of components.*

Proof We use induction on *d*. For $d = 1$, the assertion is trivial. Let $d > 2$. One of the *d* facets of $T(a)$ containing *o* is mapped by *A* to a facet of $T(b)$ that contains *o*. Without loss of generality we can assume that the facet $T(a_1, \ldots, a_{d-1}) \times \{0\}$ of *T*(*a*) is mapped to the facet $T(b_1, \ldots, b_{d-1}) \times \{0\}$ of $T(b)$. By the inductive assumption, (a_1, \ldots, a_{d-1}) and (b_1, \ldots, b_{d-1}) coincide up to permutation of components. Since unimodular transformations preserve the volume, $T(a)$ and $T(b)$ have the same volume. This means, $\prod_{i=1}^{d} a_i = \prod_{i=1}^{d} b_i$. Consequently, $a_d = b_d$ and we conclude that *a* and *b* coincide up to permutation of components.

Proof (Proof of Theorem [2\)](#page-2-0) For every $a \in A_d$, we introduce the $(d + 5)$ -dimensional integral lattice-free polytope

$$
P_a := T(\eta(a))_I,
$$

where

$$
\eta(x) := \xi_{d+4}(\psi_{d+1}(\phi_d(x)))
$$

and the functions ξ_{d+4} , ψ_{d+1} and ϕ_d are defined by [\(1.4\)](#page-4-1)–[\(1.5\)](#page-4-2).

By [\(1.6\)](#page-4-0) for each $a \in \mathcal{A}_d$, we have $\kappa(\eta(a)) = 1$. For $a \in \mathcal{A}_d$ the last component of $\phi_d(a)$ is even. This implies that the last component of $\psi_{d+1}(\phi_d(a))$ is odd. Thus, by Lemma [10,](#page-4-3) $T(\eta(a))$ is strongly blocked lattice-free polytope which is not integral.

Let $a, b \in \mathcal{A}_d$ be such that the polytopes P_a and P_b coincide up to affine uni-modular transformations. Then, by Lemma [11,](#page-6-0) $T(\eta(a))$ and $T(\eta(b))$ coincide up to affine unimodular transformations. But then, by Lemma [12,](#page-7-0) $\eta(a)$ and $\eta(b)$ coincide up to permutations. Since the components of *a* and *b* are sorted in the ascending order, the components of $\eta(a)$ and $\beta(b)$ too are sorted in the ascending order. Thus, we arrive at the equality $\eta(a) = \eta(b)$, which implies $a = b$.

In view of Proposition [8,](#page-3-4) each P_a with $a \in \mathcal{A}_d$ belongs to \mathcal{L}^d but not to \mathcal{M}^d . Thus, the equivalence classes of the polytopes P_a with $a \in \mathcal{A}_d$ with respect to identification up to affine unimodular transformations form a subset of $(\mathcal{L}^{d+5}\setminus\mathcal{M}^{d+5})/\text{Aff}(\mathbb{Z}^{d+5})$ of cardinality $|\mathcal{A}_d|$. This vields the desired assertion. of cardinality $|\mathcal{A}_d|$. This yields the desired assertion.

Proof (Proof of Corollary [3\)](#page-2-2) The assertion is a direct consequence of Theorem [2](#page-2-0) and the asymptotic estimate

$$
\ln \ln |\mathcal{A}_d| = \Omega \left(\frac{d}{\ln d} \right)
$$

of Konyagin [\[6,](#page-8-6) Theorem 1] (see also [\[5,](#page-8-8) Corollary 1.2]). \Box

Remark 13 In view of the asymptotic upper bound ln ln $|\mathcal{A}_d| = O(d)$, determined with different degrees of precision in [\[8,](#page-8-9) [10\]](#page-8-10) and [\[12,](#page-9-1) Theorem 2], the lower bound of Konyagin is optimal up to the logarithmic factor in the denominator.

Since all known elements of \mathcal{L}^d are of the form P_l , for some strongly blocked lattice-free polytope *P*, we ask the following:

Question 14 Do there exist polytopes $L \in \mathcal{L}^d$ which cannot be represented as $L =$ *PI* for any strongly blocked lattice-free polytope *P*?

If there is a gap between the families \mathcal{L}^d and the family

 $\{P_I : P \subseteq \mathbb{R}^d \text{ strongly blocked lattice-free polytope}\}\,$

then it would be interesting to understand how irregular the polytopes from this gap can be. For example, one can ask the following:

Question 15 Do there exist polytopes $L \in \mathcal{L}^d$ with the property that no facet of L is blocked?

Acknowledgements I would like to thank Christian Wagner for valuable comments and Christian Elsholtz for pointing to [\[5,](#page-8-8) [8,](#page-8-9) [10](#page-8-10)].

References

- 1. Averkov, G., Krümpelmann, J., Weltge, S.: Notions of maximality for integral lattice-free polyhedra: the case of dimension three. Math. Oper. Res. **42**(4), 1035–1062 (2017)
- 2. Averkov, G., Wagner, C., Weismantel, R.: Maximal lattice-free polyhedra: finiteness and an explicit description in dimension three. Math. Oper. Res. **36**(4), 721–742 (2011)
- 3. Blanco, M., Haase, C., Hofmann, J., Santos, F.: The finiteness threshold width of lattice polytopes. Trans. Am. Math. Soc. Ser. B **8**, 399–419 (2021)
- 4. Del Pia, A., Weismantel, R.: Relaxations of mixed integer sets from lattice-free polyhedra. Ann. Oper. Res. **240**(1), 95–117 (2016)
- 5. Elsholtz, C.: Egyptian fractions with odd denominators. Q. J. Math. **67**(3), 425–430 (2016)
- 6. Konyagin, S.V.: Double exponential lower bound for the number of representations of unity by Egyptian fractions. Math. Notes **95**(1–2), 277–281 (2014). Translation of Mat. Zametki **9**5 (2014), no. 2, 312–316
- 7. Lagarias, J.C., Ziegler, G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math. **43**(5), 1022–1035 (1991)
- 8. Landau, E.: Über die Klassenzahl der binären quadratischen Formen von negativer Discriminante. Math. Ann. **56**(4), 671–676 (1903)
- 9. Lovász, L.: Geometry of numbers and integer programming. In: Mathematical Programming, Tokyo (1988). Mathematics Applied (Japanese Ser.), vol. 6, pp. 177–201. SCIPRESS, Tokyo (1989)
- 10. Newman, M.: A bound for the number of conjugacy classes in a group. J. London Math. Soc. **43**, 108–110 (1968)
- 11. Nill, B., Ziegler, G.M.: Projecting lattice polytopes without interior lattice points. Math. Oper. Res. **36**(3), 462–467 (2011)
- 12. Sándor, C.: On the number of solutions of the Diophantine equation $\sum_{i=1}^{n} \frac{1}{x_i} = 1$. Period. Math. Hungar. **47**(1–2), 215–219 (2003)
- 13. Treutlein, J.: 3-dimensional lattice polytopes without interior lattice points. Ph.D. thesis, Eberhart Karls Universität Tübingen (2010)