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Abstract Restricting path tracing to a small number of paths per pixel in order
to render images faster rarely achieves a satisfactory image quality for scenes of
interest. However, path space filtering may dramatically improve the visual quality
by sharing information across vertices of paths classified as proximate. Unlike screen
space approaches, these paths neither need to be present on the screen, nor is filtering
restricted to the first intersection with the scene. While searching proximate vertices
had been more expensive than filtering in screen space, we greatly improve over this
performance penalty by storing, updating, and looking up the required information
in a hash table. The keys are constructed from jittered and quantized information,
such that only a single query very likely replaces costly neighborhood searches. A
massively parallel implementation of the algorithm is demonstrated on a graphics
processing unit (GPU).

Keywords Integral equations + Real-time light transport simulation - Variance
reduction - Hashing + Monte Carlo integration - Massively parallel algorithms

1 Introduction

Realistic image synthesis consists of high-dimensional numerical integration of func-
tions with potentially high variance. Restricting the number of samples therefore
often results in visible noise, which efficiently can be reduced by path space filtering
[19] as shown in Fig. 1.
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Fig. 1 Path tracing at one path per pixel (top) in combination with hashed path space filtering
(middle) very closely approximates the reference solution using 1024 paths per pixel (bottom) and
does so with an overhead of about 1.5 ms in HD resolution. Scene courtesy of Epic Games

We improve the performance of path space filtering by replacing costly neighbor-
hood search with averages of clusters in voxels resulting from quantization. Our new
algorithm is suitable for interactive and even real-time rendering and it enables many
applications trading a controllable bias for a dramatic speedup and noise reduction.

2 Light Transport Simulation

As illustrated in Fig. 2, light transport is simulated by tracing rays to create paths that
connect the light sources and the camera sensor through a three-dimensional scene
that is represented by surfaces and scattering properties of the materials and volumes
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(a) forward path tracing, subpath (b) density estimation and
connections, and next event estimation path space filtering

Fig. 2 Geometry of light transport simulation by path tracing. Starting from the eye on the left
through the image plane P, a light transport path segment ends in x. (a) Forward path tracing
continues the path until it terminates on the surface of a light source. A path can also be completed
by directly connecting to a point y on the surface of a light source (next event estimation) or to a
vertex y of the same or a different path (subpath connection). (b) Radiance in point x can directly
be evaluated by accumulating radiance in vertices x’ in a local neighborhood either for density
estimation or path space filtering

of participating media. Light transport is ruled by an integral equation: the incident
radiance
Li(x,w) = Le(x, w) + L, (x, w) (D

is the sum of the emitted radiance L, and the reflected radiance L, in direction w. The
following equations show four equivalent ways to formulate the reflected radiance
L, in a point x in direction w, and Fig. 2 illustrates the corresponding sampling
techniques:
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Here, the ray tracing function 4 (y, ) determines the closest point of intersection
of the scene surface and a ray starting in the point y traced into direction w. The
characteristic function

L o fle=xlr<r

(6)

1 (c,x) =
B 0 otherwise.

determines whether the point x is inside the ball B with radius r centered at ¢ or, in
other words, whether the points ¢ and x are no further apart than the distance r. The
sampling techniques are:

Forward Path Tracing: While in reality paths of photons start on emissive sur-
faces, and the camera sensor measures the ones terminating on its surface, sim-
ulations often construct paths backwards. Somewhat counter-intuitively, such a
simulation in reverse photon direction is called “forward path tracing”—forward
in view direction. Equation (2) integrates radiance over the upper hemisphere S>
by multiplying the incident radiance L; from the angle w in the point x with the
spatio-directional reflectivity f, for the two angles in the point x and the cosine
between the normal of the surface and the incident ray to account for the change
of area of the projected solid angle. Inserting the equation into Eq. (1) and the
result back into Eq. (2) allows for subsequently prolonging paths and is known as
(recursive) forward path tracing.

Next Event Estimation and Subpath Connection: Equation (3) changes the
integration domain to the scene surface 9V so that a path can be constructed
in which the point x connects to any point y on the scene surfaces. The integrand
is then extended by the mutual visibility V of the two points x and y. The frac-
tion of the cosine of the second angle and the squared distance of the two points
accounts for the change of measure. One often refers to this fraction as the geo-
metric term. Equation (3) is especially useful since it allows to directly connect
to the surface of a light source (next event estimation) or any other vertex of any
path (subpath connection).

Density Estimation: Equation (4) again integrates over the scene surface. How-
ever, it realizes density estimation by restricting to a local neighborhood in a sphere
with radius 7 (x) using the characteristic function of the ball 15. The density is
then obtained by dividing by the area of the circle that stems from the intersec-
tion of the ball and the flat surface. For a radius going to zero, the formulation is
equivalent to the previous formulations. Density estimation tracing photons from
the light sources is referred to as photon mapping [17].

Path Space Filtering: Similarly, Eq. (5) integrates over a local neighborhood of
x. In contrast to density estimation, a local weighted average is calculated. This
local average is normalized by the integral of all weights in the neighborhood
instead of the area of a circle. For a finite non-zero radius, the method trades a
certain bias for variance reduction. Due to the filtering of the local average this
technique has been introduced as path space filtering [19].
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While implementations of equations (2)—(5) each individually come with their
own strengths and weaknesses and are therefore often combined for robustness in
offline rendering applications [12, 15, 21, 35], time constraints of real-time image
synthesis as well as advances in path guiding [6, 26, 27] lead to the vast majority of
implementations only employing equations (2) and (3). Our work aims at a substantial
acceleration of path space filtering, resulting in a considerable variance reduction in
real-time applications at the cost of a controllable amount of bias.

2.1 Previous Work

Filtering results of light transport simulation is gaining more and more attention
in real-time, interactive, and even offline rendering. The surveys by Zwicker et al.
[37] and Sen et al. [33] present an overview of recent developments. The fastest
approaches use only information available at primary intersections and perform fil-
tering in screen space. Further recent work is based on deep neural networks [1, 4],
hierarchical filtering with weights based on estimated variance in screen space [31],
or on improving performance by simplifying the overall procedure [24].

Fast filtering is also possible in texture space [28], which requires a bijection
between the scene surface and texture space. While this may be tricky already, issues
may arise along discontinuities of a parametrization in addition. Furthermore, filter-
ing is restricted to locations on surfaces when operating in texture space, and thus
volumetric effects must be filtered separately.

Path space filtering [19], on the other hand, averages contributions of light trans-
port paths in path space, which allows for filtering at non-primary intersections and
for a more efficient handling of dis-occlusions during temporal filtering. Multiple
Importance Sampling weights, for example those for path space filtering, can be
further optimized [36]. However, querying the contributions in path space so far
had been significantly more expensive than filtering the contributions of neighboring
pixels in screen space. Neglecting the fact that locations that are close in path space
are not necessarily adjacent in screen space enables interactive filtering in screen
space [11]. As a consequence, filtering in screen space is almost only efficient for
primary rays or reflections from sufficiently smooth and flat surfaces. In fact, such
filtering algorithms are a variant of a bilateral filtering using path space proximity
to determine weights. Sharing information across pixels according to a similarity
measure dates back as early as the 1990s [18]. Since then, several variants have
been introduced, for example by re-using paths in nearby pixels [2], for filtering by
anisotropic diffusion [25] or using edge-avoiding A-Trous wavelets [7].

Kontkanen et al. explore irradiance filtering, a subset of path space filtering [20].
Spatial caching of shading results in a hash table for walkthroughs of static scenes [8]
uses similar methods to the ones presented in this work for the lookup of these results.
Again, the method can be seen as a subset of path space filtering: It is restricted to
caching diffuse illumination and neither includes filtering nor spatial and temporal
integration in an arbitrary number of vertices of a light path.
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Hachisuka et al. also use a hash table in a light transport simulation on the
GPU [14]. The approach is fundamentally different in two aspects: First, it traces
photons and stores them in the hash table for density estimation, while our method
averages radiance in vertices from arbitrary light paths. Second, their method imple-
ments simple sampling without replacement in voxels, culling all but one photon per
voxel. Our method does the exact opposite: It collects radiance from all paths whose
vertices coincide in a voxel.

Mara et al. summarize and evaluate a number of methods for photon mapping on
the GPU [23]. Their evaluation also includes work from Ma and McCool using hash
tables with lists of photons in per voxel [22]. While all examined methods may be
used for path space filtering instead of photon mapping, their performance is at least
limited by the maintenance of lists.

Havran et al. use two trees for final gathering with photon mapping [16]. The
overhead of tree construction and traversal as well as iterating through lists of vertices
severely limit the performance in our intended real-time use case.

3 Algorithm

Like path space filtering [ 19], the algorithm receives a set of vertices in which radiance
should be filtered to reduce variance. For each vertex complementary information
such as the surface normal, the attenuation from the camera along the light transport
path up to the vertex, and incident radiance is provided.

A first phase generates the aforementioned data from light transport paths, for
example, by path tracing. The second phase averages the radiance of vertices in
voxels, as described in Sect. 3.1, and stores and looks up the averages in a hash
table, see Sect. 3.2. Finally, for each vertex its associated average is multiplied by its
attenuation and accumulated in its respective pixel. Techniques described in Sect. 3.3
reduce the variance of voxels with a small number of vertices. Sect. 3.4 discusses
filtering over time for interactive light transport simulation.

3.1 Averaging in Voxels

Rather than averaging the radiance of vertices in a three-dimensional ball, we partition
the space of vertex information into voxels and compute one average per voxel. We
therefore introduce the concept of a key k of a vertex x. The key is a subset of
the data stored for a vertex and at least contains the 3-dimensional position of the
vertex x along with possibly other vertex data, for example, the surface normal
(see Sect. 3.1.1). The voxels result from quantizing the scaled components of a
key vector to integers. The scale defines the size of the voxels and is determined
by the resolution selection function s(k), which itself may depend on the key (see
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Sect. 3.1.2). It balances bias and variance, while remaining quantization artifacts are
taken care of by stochastic interpolation (see Sect. 3.1.3).
We define the characteristic function

Iy (k. k) == 1 Lstk) Ok] = [s(k') Ok'] As(k) =s(K') 7
v "o otherwise,

telling us whether two key vectors k and k’ of vertices x and x’, respectively, share
the same voxel. Note that sharing the same voxel requires identical scale vectors,
too. Here © denotes component-wise multiplication and the floor function |[-] is
applied per component. Depending on the number of components selected for a key,
voxels are not necessarily three-dimensional, and their extent may vary between
components.

Replacing the characteristic function 15 by 1y in path space filtering as given by
equation (5), selecting the weight w(x, x’) = 1, and considering an approximation
rather than the limit, we obtain

L o)~ / Sy Lv(k, KYLi (X', @) fr (@, x, ) cos Oy dx’

Ty vk, k)dx’ do. @)

S2(x)

If f,(w,,x,w) is separable into f,(w,,x) - fi(x,w), and f;(x, w) is—at least
approximately—constant within the voxel, we will be able to rewrite Eq. (8) as
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In the following, we call the product L; (x’, w) - f; (x’, w) - cos 6, the contribution of
the vertex in x’. Since all terms of the integrand except for 1y (k, k") are independent
of x and w,, it is now possible to calculate the integral in Eq. (9) only once for all
vertices sharing a voxel. Thereby, the integral calculated per voxel is independent of
those components excluded from the key.

3.1.1 Construction of Keys

The key k of a vertex is a vector that contains a subset of the information stored with
a vertex x. This vector incorporates all information required to cluster proximate
vertices. The selection of components is critically important for defining the tradeoff
between bias and variance reduction: including additional components of the vertex
information in the key may reduce the bias, while excluding components allows for
the inclusion of more vertices in the integral in Eq. (9), therefore reducing variance.
In the following we will give an overview of components (see Fig. 3) that one would
typically include in the key.
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vertices normals incident angles BSDF layers

Fig. 3 The components of the key vector k of a vertex usually consist of the coordinates of the
point x of the vertex and optionally may include the normal in x, the angle of incidence of radiance,
and an identifier of a layer of a bidirectional scattering distribution function (BSDF)

The quality of the approximation in Eq. (9) highly depends on the deviation of L;
in x’ from the one in x. First and foremost, it is therefore recommended to restrict the
world space extent of the voxel by including the position x of the vertex in the key
k. While L; is not continuous in practice—for example along shadow edges—the
visible error of the approximation decreases with the world space extent of a voxel.

In practice, one can furthermore not guarantee that lim, _, , cos ,, = cos 6, due
to different surface orientations in the two locations, for example along edges of
objects. Including the normal of the surface in the point x in the key avoids a potential
“smearing” around edges and “flattening” of surfaces. Representations of unit vectors
are surveyed in [5].

Splitting f, (w,, x, ®) into f.(w,, x) - fi(x, ®) is not always possible. On highly
reflective surfaces, f, is defined as a Dirac delta function, and filtering is pointless.
Therefore, vertices on such surfaces should not be selected in the first place. On
glossy surfaces, however, filtering may reduce variance efficiently, again at the cost
of a certain bias. While f, cannot be split on these surfaces without unpleasantly
and undesirably changing the visual appearance, partitioning the domain of incident
angles and computing separate averages for each interval may be a viable tradeoff.
Therefore, for vertices on such surfaces one can append the incident angle to the key
in order to identify vertices with similar incident angle.

Materials are often composed of different layers with different properties. Filtering
the layers independently offers the opportunity to use different voxel resolutions as
well as constructing keys with different components for the different layers. For
example, a material consisting of a glossy layer on top of a diffuse layer could only
include the angle w, in the key used for filtering the glossy layer since the attenuation
of the diffuse layer is independent of it. In turn, the integral for the diffuse layer
benefits from including more samples. Appending an identifier of the layer to the
key partitions the average into several individual ones, which can be combined later.

3.1.2 Adaptive Resolution

In the simplest case, the resolution selection function s (k) is a constant. In practice, it
is often advisable to increase the world space extent of a voxel with its distance to the
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Fig. 4 The characteristic function of a voxel 1y (k, k") is 1 for all k, k" inside the same voxel, here
depicted by the same color. A constant resolution selection function s(k) yields uniformly sized
voxels (a), while increasing s (k) along the xg-axis from left to right shrinks voxels according to
distance (b) reminiscent of a quad-tree structure

camera sensor along the light transport path. Then, one can filter more aggressively
in distant voxels, and increasing the size counteracts the decrease of the density of
vertices from paths directly coming from the camera sensor with increasing distance.
Our implementation parameterizes s(k) by defining an area on the screen, and then
calculates the projected size of the area on the screen using the projection theorem.
Fig. 4 illustrates the principle for sets of two-dimensional keys defined by this char-
acteristic function. In practice, keys are at least three-dimensional, i.e. defined by the
world space position of the vertex.

The choice of the resolution selection function s(k) is crucial for finding a good
tradeoff between visible bias and reduction of variance. Shrinking the voxels by
increasing s (k) reduces bias by averaging over a smaller neighborhood, but increases
variance. In theory, s (k) should be large in areas with a lot of high frequency detail in
L;. In practice, those areas are almost always unknown since L; is unknown. Fig. 5
shows how a sharp shadow is blurred due to averaging radiance in a large voxel. One
would therefore like to adaptively chose a finer resolution along its boundary.

Finite spatial differences may be used in heuristics for adaptation. While their
computation either introduces a certain overhead or reduces the number of indepen-
dent samples, cost may be amortized over frames in environments changing only
slowly over time. Note that finite differences only estimate spatial variations of the
averages, and one must therefore carefully both choose and adjust such heuristics as
well as determine the number samples used for finite spatial differences.
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Fig. 5 Increasing the filter size by lowering the resolution s(k) (left to right) increasingly blurs
shadows and also increases the amount of light and shadow leaking. The leftmost image is repre-
sentative of the reference solution

3.1.3 Filter Kernel Approximation by Jittering

The discontinuities of quantization are removed by jittering components of the key,
which in fact amounts to approximating a filter kernel by sampling. Jittering depends
on the kind of component of the key, for example, positions are jittered in the tangent
plane of an intersection, see Algorithm 1. The resulting noise is clearly preferable
over the visible discretization artifacts resulting from quantization, as illustrated and
shown in Figs. 6 and 7. In contrast to discretization artifacts, noise from jitter is less
perceptually pronounced and simple to filter. Note that jittering is not limited to the
position; in fact jittering is advantageous for all continuous components of the key
that may suffer discontinuities introduced by quantization, such as the normal.

Jittering can be performed either before accumulation or before lookup, leading to
similar results. In practice, we suggest using the same jittered key for both accumu-
lation and lookup. Then, the contribution is guaranteed to be included in the average.
Furthermore, this allows us to determine the index in the hash table only once for
accumulation, and re-use the index later for the lookup of the average without having
to calculate the two hash functions and solve potential collisions with linear probing
redundantly.

Fig. 6 lJittering trades quantization artifacts for noise. Left: Note that the resolution s(k) at the
jittered location (red) may differ from the one of the original location (green). Spatial jittering hides
otherwise visible quantization artifacts (middle): The resulting noise (right) is more amenable to
the eye and much simpler to remove by a secondary filter
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Fig.7 Two-dimensional example for averages in voxels: The noisy input (a) is filtered in each vertex
by path space filtering (b) yielding a splotchy result that is difficult to filter. Instead, the new method
filters in each voxel, resulting in block artifacts (c). Additionally jittering before accumulation and
lookup resolves the artifacts in noise that is simple to filter (d)

3.2 Accumulation and Lookup in a Hash Table

The averages in each voxel can be calculated in two different ways: First, each voxel
can gather radiance of all included vertices. This process may run in parallel over
all voxels and does not require any synchronization. On the other hand, a list of
voxels as well as a list of vertices per voxel must be maintained. The second way
to calculate the average radiance in a voxel runs in parallel over all vertices: Each
vertex atomically adds its contribution L; (x’, ) f; (x", ) cos 8- to a running sum of
the voxel and increments the counter of the voxel. Dividing the sum by the counter
yields the average. While the latter approach requires atomic operations, it does not
involve the maintenance of any lists. Furthermore, the summation can be parallelized
over the paths or over the vertices, matching the parallelization scheme of typical
light transport simulations. Finally, parallelization per path or per vertex exposes
more parallelism, and therefore the second approach significantly outperforms the
first one on modern graphics processing units (GPUs).

Accumulation with the latter approach needs a mapping from the key of a vertex
to the voxel with its running sum and counter. Typically, the set of voxels is sparse
since vertices are mostly on two-dimensional surfaces in three-dimensional space.
Additional components of the key increase sparsity even further.

Hash tables provide such a mapping in constant time for typical sets of keys: First,
a hash of the key is calculated using a fast hash function. A modulo operator then
wraps this hash into the index range of the table cells. Since both the hash function
as well as the modulo operator are not bijective, different keys may be mapped to
the same index. Therefore, an additional check for equality of keys is required, and
keys must also be stored in the table. Sect. 3.2.1 details a cheaper alternative for long
keys.

Upon index collision with a different key, linear probing subsequently increments
the index, checking if the table cell at the updated index is empty or occupied by
an entry with same key. There exist various other collision resolution methods that
improve upon several aspects of linear probing and have proven to be more efficient in
certain use cases, especially for hash tables with high occupancy. On the other hand,
we do not primarily aim to minimize the size of the hash table, and our experiments
show that linear probing comes with a negligible overhead if the table is sufficiently
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large. We restrict the number of steps taken for linear probing to avoid performance
penalties of extreme outliers, and resort to the unfiltered contribution of the vertex
if the number of steps exceeds this limit. So far, our choices for the table size and
number of steps so extremely rarely resulted in such failures that further improvement
has been deemed unnecessary. Sect. 3.2.2 broadens the application of linear probing
from only collision resolution to an additional search for similar voxels.

3.2.1 Fingerprinting

Instead of storing and comparing the rather long keys, we calculate a shorter finger-
print [30, 34] from a second, different hash function of the same key and use it for
this purpose, see Algorithm 1. Using a sentinel value that cannot be a fingerprint, we
can furthermore mark empty cells.

Using fingerprints instead of the full keys is a tradeoff between correctness and
performance: In theory, fingerprints of different keys may coincide. In practice, our
choice of 32bit fingerprints never caused any collision in our evaluation of several test
scenes and numerous simulations. Still, there is a certain probability of failure, and
we deliberately favor the tiny probability of a failure over the performance penalty
of storing and comparing full length keys.

Algorithm 1: Computation of the two hashes used for lookup. Note that the
arguments of a hash function, which form the key, may be extended to refine
clustering (denoted by “...”, see Sect. 3.1.2).
Input: Location x of the vertex, the normal n, the position of the camera pc,m, and the scale
s (see Sect. 3.1.1).
Output: Hash i to determine the position in the hash table and hash f for fingerprinting.
| < level_of_detail (|pcam — x|)

x' < x+ jitter(n) -s-2!

I! < level_of_detail (|pecam — x'|)
i < hash(X,...)

f < hash2(x,n,...)

3.2.2 Searching by Linear Probing

As shown in Fig. 8, linear probing may be used to differentiate attributes of the light
transport path at a finer resolution: For example, normal information may be included
in the key handed to the fingerprinting hash function instead of already including it
in the main key. This allows one to search for similar normals by linear probing.
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Fig. 8 Instead of including normals in the key (a) to differentiate contributions whose vertices fall
into the same voxel (b), the fingerprint of a key may include normal information. This allows one
to differentiate normal information by linear probing as shown in (c¢)

Note that due to completely unrelated voxels also possibly occupying neighboring
cells in the hash table, searching with linear probing must go beyond those with
mismatching fingerprints. Therefore, the method works best if both the number of
additional contributions as well as the occupancy of the hash table are low.

3.3 Handling Voxels with a low Number of Vertices

Often, there exists a tiny number of voxels that contain very few vertices. Examples
of such voxels include those that are only slightly overlapped by objects. Sects. 3.3.1
and 3.3.2 present two approaches that reduce variance in such voxels at an almost
negligible cost.

3.3.1 Neighborhood Search

Accumulation in voxels by using quantized keys and a hash table requires one
atomicAdd operation for each component of the radiance of each vertex as well as
one atomicAdd or atomicInc operation for updating the counter of the voxel.
The final average is computed with one additional non-atomic read operation per
component for the sum and one for the counter. So, as long as access to the hash
table happens in constant time, the calculation of the average also takes constant
time. This is in sharp contrast to existing methods that compute sums or averages in
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Fig. 9 Instead of searching the n? neighborhood in d dimensions (left), we utilize clustering
resulting from quantization at a lower resolution to accumulate contributions, which allows for a
single look up (right). We only resort to an additional neighborhood search in the rare case that the
number of vertices in a voxel falls below a certain threshold

a spatial neighborhood which for each vertex takes linear time for a search within
a given radius or (typically) logarithmic time for a fixed number of neighboring
vertices.

Even if primarily only one average per voxel is computed and looked up, searching
for neighboring voxels can still be valuable: In theory, increasing the resolution s (k)
and additionally searching for neighboring voxels may result in variance reduction
similar to the one at a lower resolution, however then with a lower bias. Yet, the
number of neighbors grows exponentially with the number of components of the key.
Hence, such an approach is ruled out by the time constraints of real-time applications.
Fig. 9 shows a comparison between neighborhood search and clustering by selecting
a coarser resolution.

Neighborhood search is still very valuable as a fallback: If the number of vertices
in a voxel falls below a certain threshold, we allow for an additional search. We
observe that given an appropriate threshold, the number of such voxels is so low that
the overhead is negligible while the perceptual improvement is clearly visible.

3.3.2 Multiresolution Accumulation

A special treatment of voxels with averages from only very few vertices is important
for visual fidelity: Even if the number of voxels with a high variance is very low,
they may be very visible, especially since their appearance is so different from the
rest. Such voxels are very often found on the silhouette of objects. While one may
not be able to identify them in still images, they become especially visible across
frames. Besides searching in a local neighborhood to reduce variance in these cases
(see Sect. 3.3.1), selecting a coarser resolution also effectively increases the number
of vertices in the local average—at the price of an increased bias. Using more than
one resolution at a time avoids the chicken-and-egg problem that arises from first
selecting an appropriate resolution, and then, after accumulation according to this
resolution, determining that it has been set too high or too low.



Massively Parallel Path Space Filtering 163

For simulations in interactive scenarios, one may also select the resolution based
on information from previous frames, see Sect. 3.4.1.

3.4 Accumulation over Time

Reusing contributions over time dramatically increases efficiency. Attention should
be paid to pitfalls and aspects of efficiency: Sect. 3.4.1 details the differences and
similarities between filtering and integration across frames, Sect. 3.4.2 explains the
handling of resolution changes across frames, and Sect. 3.4.3 is concerned with the
amount of information stored over time to avoid running out of memory in the hash
table.

3.4.1 Temporal Filtering and Temporal Integration

For static scenes, the averages will converge with an increasing number of frames.
For dynamic environments, maintaining two sets of averaged contributions and com-
bining them with an exponential moving average ¢ = « - colg + (1 — @) - Cpew 1S
common tradeoff between convergence and temporal adaptivity.

However, combining the averages coq and cpey by an exponential moving average
is not equivalent to temporal integration. Especially averages in voxels with relatively
few samples do not converge. In fact, denoting Nyjq and Ny, the number of vertices
in the voxel in the previous and current frame, and setting « := ﬁ correctly
integrates across frames. On the other hand, temporal integration is only possible if
the underlying setting, including lighting conditions and object positions, remains
unchanged across frames.

A first, simple heuristic is to accumulate samples over time up to a certain degree.
This may be implemented using a fixed threshold for the number of samples and
accumulating samples across frames until reaching it. Note that this heuristic is
completely unaware of changes in the scene.

A second, more expensive heuristic builds upon temporal finite differences: A
number of paths is re-evaluated with the same parameters, and the difference of their
contribution to the original ones allows one to detect changes that affect the current
voxel. Similar to the spatial finite differences in Sect. 3.1.2, the additional cost may
be amortized across frames, and the number of samples used for finite differences
as well as their influence on the balance between temporal adaptation and temporal
integration must be carefully optimized. Note that averaging in voxels can be used for
the samples used for finite differences, too. Figure 10 shows a comparison of temporal
filtering, temporal integration and a hybrid that blends both based on temporal finite
differences. A similar approach for screen space filtering has been explored in detail
by Schied et al. [32].
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(a) temporal filtering (b) temporal integration (c) hybrid

Fig. 10 In a scene with a moving light source, temporal filtering using an exponential moving
average blurs shadow boundaries (a), and temporal integration averages out the entire shadow (b).
Adaptively blending o between zero (for large temporal differences) and o := AN%— (for no
temporal differences) combines both and preserves sharp shadow boundaries (c). Note that jittering
has deliberately been disabled here to enable simple distinction

3.4.2 Changing Resolution Across Frames

In many simulations, the camera is dynamic, and therefore the resolution of a voxel
may change across frames if it depends on the position of the camera. Then accu-
mulated contributions in a voxel at one resolution must be copied to a voxel at either
a higher or lower resolution.

If the resolution in the new frame decreases, one can simply add up the contri-
butions in voxels of higher resolution. Since we store sums and counters, both only
need to be added individually.

If the resolution in the new frame increases, the contributions in voxels of lower
resolution must be distributed to voxels at a higher resolution. Due to the lack of
resolution, this case is much nuanced: On the one hand, using already collected
contributions lowers variance, but on the other hand, the coarser resolution may
become unpleasantly visible. One therefore needs to find a good compromise between
the two, and set « in the exponential moving average accordingly.

Finite spatial or temporal differences can also be filtered across frames in a similar
way.

3.4.3 Voxel Eviction Strategy

Evicting contributions of voxels which have not been queried for a certain period of
time is necessary for larger scenes and changing camera. Besides the least recently
used (LRU) eviction strategy, heuristics based on longer term observations are effi-
cient.

A very simple method relies on replacing the most significant bits of the fin-
gerprinting hash by a priority composed of for example the number of vertices in
the voxel and last access time during temporal filtering. Thus the pseudo-randomly
hashed least significant bits guarantee eviction to be uniformly distributed across the
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scene, while the most significant bits ensure that contributions are evicted according
to priority. This allows collision handling and eviction to be realized by a single
atomicMin operation.

4 Results and Discussion

While filtering contributions at primary intersections with the proposed algorithm is
quite fast, it only removes some artifacts of filtering in screen space. However, hashed
path space filtering has been designed to target real-time light transport simulation:
It is the only efficient option when screen space filtering fails or is not available, for
example, when filtering after the first diffuse bounce (Fig. 11).

Filtering on non-diffuse surfaces requires to include additional parameters in the
key and heuristics such as increasing the quantization in areas with non-diffuse
materials to reduce the visible artifacts.

Filtering, and especially accumulating contributions, is always prone to light and
shadow leaking (see Fig. 5), which is the price paid for performance. Some artifacts
may be ameliorated by employing suitable heuristics as reviewed in [19, Sect. 2.1]
and in Sect. 3.1.2.

The new algorithm filters incoherent intersections at HD resolution (1920 x 1080
pixels) in about 3ms on an NVIDIA Titan V GPU. Filtering primary intersections
doubles the performance due to the more coherent memory access patterns.

The image quality is determined by the filter size, which balances noise versus
blur as shown in Fig. 5. Both the number of collisions in the hash table and hence the
performance of filtering depend on the size of the voxels, too. We found specifying
the voxel size by so-times the projected size of a pixel most convenient. Since s
specifies the tradeoff between bias and variance reduction, its value highly depends
on the scene and variance. Values between 4 and 16 may serve as a good starting
point.

Note that maximum performance does not necessarily coincide with best image
quality. The hash table size is chosen proportional to the number of pixels at target
resolution such that potentially one vertex could be stored per pixel. In practice,
filtering requires multiple vertices to coincide in a voxel, and therefore the occupancy
of the hash table is rather low. Such a small occupancy improves the performance as
it lowers the number of collisions and time spent for collision resolution.

While path space filtering dramatically reduces the noise at low sampling rates
(see Fig. 1), some noise is added back by spatial jittering. Instead of selecting the first
sufficiently diffuse vertex along a path from the camera, path space filtering can be
applied at any vertex. For example, filtering at the second sufficiently diffuse vertex
as shown in Fig. 11 resembles final gathering or local passes [17]. Furthermore,
it is possible to filter in several vertices along the path at the same time. In fact,
path space filtering trades variance reduction for controlled bias and is orthogonal
to other filtering techniques. We therefore abstain from comparisons with these:
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Fig. 11 Indirect illumination by hashed path space filtering only at the second bounce: At 16 paths
per pixel (left), the variance of the integrand is dramatically reduced (right)

temporal anti-aliasing and complimentary noise filters in screen space are appropriate
to further reduce noise [24]. A local smoothing filter [31] can even help reduce the
error inherent in the approximation.

5 Conclusion

In combination with hardware accelerated ray tracing, our variance reduction tech-
nique enables visual fidelity of light transport simulation in real-time. Relying on
only a few synchronizations during accumulation, path space filtering based on hash-
ing scales on massively parallel hardware. Both accumulation as well as queries run
in constant time per vertex. Neither the traversal nor the construction of a hierarchi-
cal spatial acceleration data structure is required. At the same time, the simplistic
algorithm overcomes many restrictions of screen space filtering, does not require
motion vectors, and enables variance reduction beyond the first intersection of a
light transport path, including non-diffuse surfaces.

The hashing scheme still bears potential for improvement. For example, important
hashes could be excluded from eviction by reducing the resolution that is accumu-
lating their contributions at a coarser level. Other than selecting the resolution by
the length of the path, path differentials and variance may be used to determine the
appropriate resolution.

Besides the classic applications of path space filtering [ 19, Sect. 3] like multi-view
rendering, spectral rendering, participating media, and decoupling anti-aliasing from
shading, the adaptive hashing scheme can be applied to photon mapping [13, 17] and
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irradiance probes in reinforcement learned importance sampling [6] in combination
with final gathering. Since the first publication of this work as a technical report
evolutions of the presented method have improved the efficiency of real-time ambient
occlusion in massive scenes [9, 10], reinforcement learned importance sampling [29],
and reservoir-based importance resampling [3] in light transport simulation.
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